WO2001064716A1 - Antiviral compounds - Google Patents

Antiviral compounds Download PDF

Info

Publication number
WO2001064716A1
WO2001064716A1 PCT/JP2001/001642 JP0101642W WO0164716A1 WO 2001064716 A1 WO2001064716 A1 WO 2001064716A1 JP 0101642 W JP0101642 W JP 0101642W WO 0164716 A1 WO0164716 A1 WO 0164716A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
compound
group
pharmaceutically acceptable
lys
Prior art date
Application number
PCT/JP2001/001642
Other languages
French (fr)
Japanese (ja)
Inventor
Nobutaka Fujii
Hideki Nakashima
Original Assignee
Nobutaka Fujii
Hideki Nakashima
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nobutaka Fujii, Hideki Nakashima filed Critical Nobutaka Fujii
Priority to AU2001236065A priority Critical patent/AU2001236065A1/en
Publication of WO2001064716A1 publication Critical patent/WO2001064716A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/02Linear peptides containing at least one abnormal peptide link
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/56Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention has an excellent antiviral activity by acting as an antagonist against a novel antiviral compound, specifically, a glycoprotein, particularly a CXCR4 chemokine receptor, and has improved in vivo stability. It relates to a peptidic compound. Furthermore, the present invention relates to an anti-HIV agent containing the antiviral compound as an active ingredient. Background art
  • Polypeptides derived from captogae (genus Tachypleus, Limulus, Carcinoscopius), which have strong affinity for endotoxin, have five structural analogs, each consisting of 17 or 18 natural amino acids It is a polypeptide having a cyclic structure, and it has been known that these polypeptides have antibacterial activity (Matsuzaki K., Biochem. Biophys. Acta 1070, 259-264 (1991)).
  • WO90 / 043474 focuses on the strong endotoxin affinity of the Limulus aegypti polypeptide and discusses its structural transformation and anti-human immunodeficiency virus (HIV) activity, especially HIV A study of the correlation with the receptor describes that a novel polypeptide having high anti-disease activity was obtained.
  • HIV immunodeficiency virus
  • AIDS acquired immunodeficiency syndrome
  • HIV human immunodeficiency virus
  • the CXCR4 chemokine receptor has attracted attention, and it has become clear that the polypeptide is a peptide antagonist of the CXCR4 chemokine receptor (Tamamura H. et al., Biochem. Biophys. Res. Coraraun. 253, 877-882 (1998)).
  • the polypeptides disclosed in the prior art are composed of natural amino acids, (i) the terminal amino acid is degraded by endopeptidase, and (ii) the disulfide bond in the polypeptide molecule under reducing conditions. Is cut off, and (iii) poly
  • stability problems such as the turn part of the peptide being susceptible to protease-induced ⁇
  • reduction in the molecular weight of the peptide was required for the purpose of improving activity and reducing toxicity (Arakaki R. et al., J. Virology 73, 2, p. 1719-1723 (1999)). Disclosure of the invention
  • An object of the present invention is to provide an antiviral compound having a low molecular weight and an improved stability of the polypeptide.
  • the present invention provides a compound of formula (I):
  • X 2 is an amino acid having an aromatic ring
  • X 3 is a single bond or one CR—CH—, wherein is a hydrogen, C Cs alkyl or halogen atom;
  • X 4 is NHR 2 wherein R 2 is hydrogen or C Cs alkyl; or OH;
  • X 5 is one CH 2 —S—S—CH 2 —, or C 4 -C 8 a 7 ylene or C 4 -C 8 anolekenenylene;
  • Y 2 is an L-amino acid or a D-amino acid selected from Pro, A la, Va 1 or other aliphatic amino acids; and C it is L-citrulline;
  • the present invention also relates to an anti-HIV agent containing the ⁇ : virus compound as an active ingredient.
  • the peptide chain in the novel anti-disease compound of the present invention can be produced by a known method, for example, a solid phase synthesis method.
  • the carboxyl group of N-protected arginine may be bonded directly or, in some cases, via a spacer having a functional group capable of bonding to the carboxyl group or a carboxyl group to an insoluble resin having an amino group, to give each protected amino acid.
  • a spacer having a functional group capable of bonding to the carboxyl group or a carboxyl group to an insoluble resin having an amino group to give each protected amino acid.
  • the protecting group of the insoluble resin and the amino acid is removed to obtain the following formula ():
  • X 2 , X 3 , X 4 , Y and Y 2 are the same as those of the above formula (I)].
  • the canolepoxyl terminus of the amino acid residue at the C-terminus may be free (X 4 corresponds to -OH) or converted to an acid amide (X 4 corresponds to one NH 2 ) .
  • C 1 -C 5 alkyl can be added by a known method (X 4 corresponds to one NHR 2 ).
  • D-amino acids can be used in addition to L-amino acids.
  • the desired D-amino acid can be introduced by using the protected D-amino acid for solid phase synthesis.
  • the carboxyl group of the N-protected arginine at the C-terminal via the amino group or, optionally, the sugar group attached to the carboxyl group of the spacer is bonded.
  • It is an insoluble resin having an amino group, which is possible and can be removed thereafter.
  • resins include, for example, aminomethyl resin Fatty acid (aminomethinolelated styrene-dibutylbenzene copolymer), benzhydrylamine resin, methylbenzhydrylamine resin, dimethoxybenzhydrylamine (DMBHA) resin, aminomethylphenoxymethyl resin These derivatives are included.
  • methylbenzhydrylamine resin dimethoxybenzhydrylamine (DMBHA) resin, or aminomethylphenoxymethyl resin
  • aminomethyl resin is preferred in terms of yield .
  • the spacer having a hydroxyl group and a carpoxyl group capable of binding to a lipoxyl group include, but are not particularly limited to, those capable of converting a carboxyl group of arginine into a lipoxymethyl ester.
  • the protecting group for the amino group of the amino acid which can be used for the synthesis of the polypeptide chain in the compound of the present invention is, for example, t-butyloxycarbonyl (B oc) or 9-fluoroenylmethyloxycarbonyl. It is.
  • the protecting group for the arginine guanidino group is, for example, tosyl (To s), nitro, 4-methoxy-1,2,3,6-trimethylbenzene snorehoninole (Mtr) or 2,2,5,7,8-pentamethylchroman One is 6-snolehonyl (Pmc).
  • the protecting groups for the mercapto group of cysteine include, for example, benzyl (Bz1), 4-methoxybenzyl (MBz1), 4-methylbenzyl (41-MeBz1), acetamidomethyl (Acm), trityl (Tr t), force including 3-nitro-2-pyridinesulfenyl (Npys), t-butyl (t-Bu), t-butylthio (t-BuS), etc.
  • MBz1, 4-MeBz1 , Trt, Acm and Npys are preferred.
  • Hydroxyl group of tyrosine for example B z 1, 2, 6- dichloro port base Njiru (C 1 2 ⁇ B zl) , may not force ⁇ or protected protected with t-Bu.
  • Protecting groups for the ⁇ -amino group of lysine are, for example, benzyloxycarponyl ( ⁇ ), 2-chlorobenzoyl canoprene (C 1 ⁇ Z), Boc or Npys. It is preferable that each protecting group is appropriately selected in consideration of the peptide synthesis conditions and the like.
  • the binding of the protected amino acid can be carried out by a conventional condensation method such as DCC (diclohexyl canoleopreimide) method, DIP CDI (disopropyl carpoimide) method, active ester method, mixed or symmetric acid.
  • a conventional condensation method such as DCC (diclohexyl canoleopreimide) method, DIP CDI (disopropyl carpoimide) method, active ester method, mixed or symmetric acid.
  • Anhydrous method Carboerdiimidazole method, DC C-HOB t (1-hydroxybenzotriazole) method, Diphenyl phosphoryla
  • a zid method or the like a DCC method, a DCC-HOBt method, a DIPCDI method, and a symmetric acid anhydride method are preferred.
  • X 4 in formula (I), wherein 1 2 is a ⁇ 1 ⁇ 5 Arukiru] NHR 2 preferably is.
  • X 2 can be tributophan (X 6 is [TRP]), but tryptophan 1H-indole (TRP) can be replaced with Na 1, Cys (Bzl), Cys (Ad) or T rp (M ts) the substituted o; - by using amino acid peptidyl de synthesis, it is possible to obtain a desired X 2.
  • Formula (I) wherein —X 3 —Y 2 , preferably dLys-Pro or dLys—CH CH—Ala, where dLys represents D—lysine.
  • dLys-CH CH-A1a is more preferable because the stability of the compound is improved by making the turn portion of the i3 sheet structure of the compound of the present invention less susceptible to peptidase. .
  • a disulfide bond (X 5 is —CH 2 —S—S—CH 2 —) with cysteines at the 4- and 13-positions forms an S—S bridge, for example, via a mercapto group.
  • the mercapto group is protected with a protecting group t-BuS, and t-BuS is deprotected and oxidized to form a disulfide bond.
  • a known method can be used for the oxidation treatment, but usually an oxidizing agent such as oxygen in the air or a ferricyanate (eg, potassium ferricyanide) is used.
  • X 5 in the formula (I) is represented by the following general formula:
  • C 4 -C 8 alkylene or C 4 -C 8 alkenylene selected from the group consisting of pentamethylene, cis-3-pentenylene, trans-2-pentenylene or hexamethylene. preferable.
  • the derivative obtained in this way was subjected to conformation analysis by CD analysis, and it was shown that the compound derived from arylglycine and homoarylglycine had a ⁇ -sheet structure similar to that of the original peptide.
  • the compounds obtained as described above are subjected to extraction, recrystallization, various chromatographies (eg, gel filtration, ion exchange, partitioning, adsorption, reverse phase), electrophoresis, countercurrent partitioning, and other techniques.
  • Reversed phase high performance liquid chromatography which can be isolated and purified by methods known for peptides, is preferred.
  • the compounds represented by the formula (I) of the present invention are exemplified in Table 1 below.
  • the compounds ⁇ 134 and ⁇ 140 were prepared according to the prior art described above (Tamamura H. et al., Biochem. Biophys. Res. Coraraun. 253, 877-882 (1998); Arakaki R. et al. al., J. Virology 73, 2, p. 1719-1723 (1999)).
  • the antiviral compound of the present invention exemplified in this way has a high antiviral activity and a low toxicity equivalent to or higher than that of a known compound, and has improved stability in a living body.
  • In vivo stability is imparted because the peptide compound is less susceptible to aging and because the cyclic structure of the peptide compound is prevented from being linearized due to dissociation of the Z or SS bridge.
  • the drug containing the antiviral compound represented by the formula (I) of the present invention as an active ingredient contains the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof as an active ingredient, and is used for virus infection or virus. It can be administered orally or parenterally for the disease.
  • the drug of the present invention can be formulated into various dosage forms, such as tablets, granules, capsules, powders, suppositories, pessaries, ointments, creams, aerosols, liquids, such as liquids for internal use, injections, and infusions. Can be administered.
  • various pharmaceutically acceptable additives may be used, for example, excipients, binders, disintegrants, buffers, dissolution aids, isotonic Agents, P-preservatives, antioxidants, pH regulators, suspending agents, diluents and the like.
  • the daily dose of the drug of the present invention varies depending on the method of administration, the dosage form and the degree of symptoms.
  • the antiviral compound of the present invention or a pharmaceutically acceptable salt thereof is administered in a range from 0.1 mg / kg to human LOOOOmg / kg human body weight.
  • parenteral administration as an injection it is administered in the range of 0.1 to 100 mg / kg human body weight.
  • the daily dose of the agent of the present invention can be administered one or more times, but more generally, once to three times a day, a unit dose is orally or parenterally administered. Is preferred. BEST MODE FOR CARRYING OUT THE INVENTION
  • a polypeptide having NH 2 -Arg-Arg-Trp-Cis-Tyr-Arg-Lys-Dlys-Pro-Tyr-Arg-Cit-Cys-Arg-C00H was synthesized as follows.
  • a peptide chain is constructed by a Ru-catalyzed RCM reaction according to the following reaction scheme 2, and hexamethylene is introduced to introduce the cyclic peptide of the present invention.
  • the active compounds TM14 ⁇ , ⁇ (E), TM140, HH (Z) and TM140, HH (Red) were synthesized.
  • TM140, AH (E), TMl40, AH (Z), TM140, AA (E), TMl40, HA (E), TMl40, HA (Z), TMl40, AH (Red ) And TMl40, AA (Red) were synthesized and CD analysis was performed with T140 synthesized in Reference Example 2. The results showed that the compound of the present invention had a sheet structure similar to that of T140 (FIG. 1).
  • test compound solution final concentration: 10 ⁇ M
  • test compound solution final concentration: 10 ⁇ M
  • 40 ⁇ L 3 OmM
  • hSDF ligand
  • the inhibition rate of each test compound with respect to the change in Ca 2+ concentration in the Vehic 1e-added group is calculated, and the compound concentration at which 50 % inhibition is exhibited is defined as IC 50 .
  • Table 5 shows the results.
  • Fmoc-DLy s (CIZ) was synthesized using an EAD I ((E) -alkene dipeptide isostere) synthesis method utilizing a stereospecific anti-SN 2 'reaction with an organocopper reagent.
  • E) CH CH] —A 1a was synthesized.
  • the antiviral activity against HIV of the compounds prepared in Examples 1 to 3 was determined as follows according to the MTT method (Pauwels et al., J. Virol. Methods, 20; 309-321 (1988)). .
  • HIV-infected MT-4 cells (2.5 10 4 cells / well, multiplicity of infection [MO1: 0.01]) were added with various concentrations of the test substance immediately after infection. After 5 days of culture at 37 ° C for at C0 2 incubator, it was measured number of remaining cells by MT T method. Antiviral activity, cell failure 50% inhibition concentration by HI V infection: expressed by (EC 5. 50% Effective Concentration ). On the other hand, in order to examine the cytotoxicity of the test compound to MT-4 cells, non-virus-infected cells were similarly cultured with various concentrations of the test substance. Cytotoxicity 50% cytotoxicity concentration by the test substance: expressed by (CC 5. 50% Cytotoxic Concentration ). The effective coefficient (SI: Selectivity Index) was calculated as CC 50 ZE C 50 .
  • SI Selectivity Index
  • a novel antiviral compound having excellent antiviral activity against human immunodeficiency virus (HIV) and improved in vivo stability or a pharmaceutically acceptable salt thereof, and An anti-HIV agent containing the active ingredient as an active ingredient is provided.
  • FIG. 1 is a graph of the CD analysis pattern of the compound of the present invention, showing the CD spectrum of the TM140 derivative from 80 to 260 nm.

Abstract

Novel antiviral compounds represented by the general formula (I) which have an excellent antiviral activity and the stability of which is improved in vivo or pharmaceutically acceptable salts thereof and anti-HIV agents containing the same as the active ingredient.

Description

明 細 書  Specification
抗ウィルス化合物 技術分野  Technical Field of Antiviral Compounds
本発明は、新規な抗ウィルス化合物、詳しくは糖蛋白質、特に C X C R 4ケモカ ィン受容体に対して拮抗剤として作用して優れた抗ゥィルス活性を有し、且つ生体 内における安定性が向上したペプチド性化合物に関する。更に、本発明は、 当該抗 ウィルス化合物を有効成分として含有する抗 H I V剤に関する。 背景技術  INDUSTRIAL APPLICABILITY The present invention has an excellent antiviral activity by acting as an antagonist against a novel antiviral compound, specifically, a glycoprotein, particularly a CXCR4 chemokine receptor, and has improved in vivo stability. It relates to a peptidic compound. Furthermore, the present invention relates to an anti-HIV agent containing the antiviral compound as an active ingredient. Background art
エンドトキシンに強い親和性を示すカプトガエ (Tachypleus 属、 Limulus 属、 Carcinoscopius属) 由来のポリペプチドには 5種類の構造類似体が存在し、 いず れもが 1 7または 1 8個の天然アミノ酸からなる環状構造を有するポリペプチド であり、 これらポリペプチドが抗菌活性を有することが知られていた (Matsuzaki K. , Biochem. Biophys. Acta 1070, 259-264 (1991) )。  Polypeptides derived from captogae (genus Tachypleus, Limulus, Carcinoscopius), which have strong affinity for endotoxin, have five structural analogs, each consisting of 17 or 18 natural amino acids It is a polypeptide having a cyclic structure, and it has been known that these polypeptides have antibacterial activity (Matsuzaki K., Biochem. Biophys. Acta 1070, 259-264 (1991)).
WO 9 0 / 0 4 3 7 4には、前記カブトガ二のポリペプチドの強いエンドトキシ ン親和性に着目して該ポリペプチドの構造変換と抗ヒト免疫不全ウィルス (H I V) 活性、特に H I Vの第二受容体との相関関係の研究から、高い抗ゥイスル活性 を有する新規なポリぺプチドが得られたことが記載されている。  WO90 / 043474 focuses on the strong endotoxin affinity of the Limulus aegypti polypeptide and discusses its structural transformation and anti-human immunodeficiency virus (HIV) activity, especially HIV A study of the correlation with the receptor describes that a novel polypeptide having high anti-disease activity was obtained.
一方、 ヒト免疫不全ウィルス (H I V) の感染により引き起こされる後天性免疫 不全症候群 (A I D S )の化学治療剤の薬物標的として、逆転写酵素および H I V プロテアーゼの他に、 H I Vの第二受容体であるの C X C R 4ケモカイン受容体が 注目され、前記ポリぺプチドが C X C R 4ケモカイン受容体のぺプチド性拮抗剤で あることが明ら力 となっている (Tamamura H. et al. , Biochem. Biophys. Res. Coraraun. 253, 877-882 (1998) )。  On the other hand, as a drug target for acquired immunodeficiency syndrome (AIDS) chemotherapeutic agents caused by human immunodeficiency virus (HIV) infection, in addition to reverse transcriptase and HIV protease, The CXCR4 chemokine receptor has attracted attention, and it has become clear that the polypeptide is a peptide antagonist of the CXCR4 chemokine receptor (Tamamura H. et al., Biochem. Biophys. Res. Coraraun. 253, 877-882 (1998)).
しかしながら、先行技術に開示されるポリぺプチドは天然ァミノ酸で構成されて いるため、 (i) 末端アミノ酸がエンドぺプチダーゼで分解される、 (ii) 還元条件 下ではポリペプチド分子内のジスルフイド結合が切断される、 および (iii) ポリ ペプチドのターン部分がプロテアーゼによる分^^を受けやすいなど安定性の面に おける問題があると共に、活性の改善および低毒性の目的のためにべプチドの低分 子化が求められていた (Arakaki R. et al. , J. Virology 73, 2, p. 1719 - 1723 (1999))。 発明の開示 However, since the polypeptides disclosed in the prior art are composed of natural amino acids, (i) the terminal amino acid is degraded by endopeptidase, and (ii) the disulfide bond in the polypeptide molecule under reducing conditions. Is cut off, and (iii) poly In addition to the stability problems, such as the turn part of the peptide being susceptible to protease-induced ^^, reduction in the molecular weight of the peptide was required for the purpose of improving activity and reducing toxicity (Arakaki R. et al., J. Virology 73, 2, p. 1719-1723 (1999)). Disclosure of the invention
本発明の課題は、上記ポリペプチドを低分子化すると共に、安定性が向上した抗 ゥィルス化合物を提供することである。  An object of the present invention is to provide an antiviral compound having a low molecular weight and an improved stability of the polypeptide.
本発明者は、ポリペプチドのターン部分のアミノ酸を非アミノ酸化する、ジスル ブイド架橋をアルキルまたはアルキレン架橋とするおよぴ またはぺプチド末端 を修飾することにより上記課題を解決し得ることを見出した。 従って、 本発明は、 式 (I):
Figure imgf000004_0001
The present inventors have found that the above-mentioned problems can be solved by deamidating the amino acid in the turn portion of the polypeptide, making the disulfide bridge an alkyl or alkylene bridge, or modifying the peptide terminal. . Accordingly, the present invention provides a compound of formula (I):
Figure imgf000004_0001
{式中、 X は、 NH2または NH=C(NMe 2)2 [式中、 M eはメチル基である] であり ; {Wherein, X is NH 2 or NH = C (NMe 2 ) 2 [where Me is a methyl group];
X2は、 芳香環を有するアミノ酸であり ; X 2 is an amino acid having an aromatic ring;
X3は、 単結合または一 CR -CH— [式中、 は水素、 C Csアルキルま たはハロゲン原子である] であり ; X 3 is a single bond or one CR—CH—, wherein is a hydrogen, C Cs alkyl or halogen atom;
X4は、 NHR2 [式中、 R2は水素または C Csアルキルである] または OH であり ; X 4 is NHR 2 wherein R 2 is hydrogen or C Cs alkyl; or OH;
X5は、一 CH2— S— S— CH2—、または C4〜C8ァ 7レキレンまたは C4〜C8 ァノレケニレンであり ; X 5 is one CH 2 —S—S—CH 2 —, or C 4 -C 8 a 7 ylene or C 4 -C 8 anolekenenylene;
は、 Ar g、 Ly s、 O r nまたは他の塩基性アミノ酸から選択される L— アミノ酸または D—アミノ酸であり ;  Is an L-amino acid or a D-amino acid selected from Arg, Lys, Orn or other basic amino acids;
Y2は、 P r o、 A l a、 Va 1または他の脂肪族アミノ酸から選択される L— アミノ酸または D—アミノ酸であり ;および C i tは Lーシトルリンであり ; Y 2 is an L-amino acid or a D-amino acid selected from Pro, A la, Va 1 or other aliphatic amino acids; and C it is L-citrulline;
ただし、 X^SNH2、 X^SN a 1、 Y — X3— Y2が d Ly s— P r o、 X4 が OH、 および X5がー CH2— S— S— CH2—である場合;並びに Where X ^ SNH 2 , X ^ SN a 1, Y—X 3 — Y 2 is d Ly s—Pro, X 4 is OH, and X 5 is —CH 2 —S—S—CH 2 — Case; and
が NH2、 X2が T r p、 — X3— Y2が d L y s— P r o、 X4が OH、お ょぴ X5が一 CH2— S— S— CH2—である場合を除く } Is NH 2 , X 2 is T rp, — X 3 — Y 2 is d Lys — Pro, X 4 is OH, and X 5 is one CH 2 — S— S— CH 2 — Excluding}
で表される抗ウィルス化合物またはその医薬上許容され得る塩に関する。 Or a pharmaceutically acceptable salt thereof.
本発明はまた、前記^:ウィルス化合物を有効成分として含有する抗 H I V剤に関 する。  The present invention also relates to an anti-HIV agent containing the ^: virus compound as an active ingredient.
本発明の新規な抗ゥイスル化合物中のぺプチド鎖は、公知の方法、例えば固相合 成法によって製造することができる。例えば、 N—保護アルギニンのカルボキシル 基を直接、または場合によりカルボキシル基と結合し得る官能基おょぴカルボキシ ル基を有するスぺーサーを介してアミノ基を有する不溶性樹脂に結合させ、各保護 アミノ酸を固相合成法に従って順次結合し、次いで不溶性樹脂およびアミノ酸の保 護基を脱離させて、 下記の式 ( ):  The peptide chain in the novel anti-disease compound of the present invention can be produced by a known method, for example, a solid phase synthesis method. For example, the carboxyl group of N-protected arginine may be bonded directly or, in some cases, via a spacer having a functional group capable of bonding to the carboxyl group or a carboxyl group to an insoluble resin having an amino group, to give each protected amino acid. Are sequentially bonded in accordance with the solid phase synthesis method, and then the protecting group of the insoluble resin and the amino acid is removed to obtain the following formula ():
Xi-Arg- Arg- X2- Cys-Tyr- Arg- Lys- Y厂 X3- Y2- Tyr- Arg- Cit- Cys- Arg- Χ4 ( ) Xi-Arg- Arg- X 2 -Cys-Tyr- Arg- Lys- Y factory X 3 -Y 2 -Tyr- Arg- Cit- Cys- Arg- Χ 4 ()
[式中、 Xい X2、 X3、 X4、 Y および Y2の定義は前記式 (I ) と同じ] で示される本発明のペプチド性化合物を得ることができる。この場合 C—末端のァ ミノ酸残基のカノレポキシル末端はフリー (X4がー OH相当) であってもよいし、 または酸アミド (X4が一 NH2に相当) に変換することもできる。 さらに、 公知 の方法によって、 C1〜C5アルキルを付加する (X4が一 NHR2に相当) ことも できる。 [Wherein the definitions of X 2 , X 3 , X 4 , Y and Y 2 are the same as those of the above formula (I)]. In this case, the canolepoxyl terminus of the amino acid residue at the C-terminus may be free (X 4 corresponds to -OH) or converted to an acid amide (X 4 corresponds to one NH 2 ) . Further, C 1 -C 5 alkyl can be added by a known method (X 4 corresponds to one NHR 2 ).
前記固相合成法においては、 L—アミノ酸の他に D—アミノ酸を使用することが できる。所望の D—アミノ酸は、保護した D—アミノ酸を固相合成に用いることに よって導入することができる。  In the solid phase synthesis method, D-amino acids can be used in addition to L-amino acids. The desired D-amino acid can be introduced by using the protected D-amino acid for solid phase synthesis.
本発明の化合物中におけるポリぺプチド鎖を合成するには、ァミノ基を介して C 末端の N—保護アルギニンのカルボキシル基または場合によりこれに結合してい るスぺーサ一の力ルポキシル基と結合可能であり、 そしてその後脱離可能である、 アミノ基を有する不溶性樹脂である。そのような樹脂には、例えばアミノメチル樹 脂 (アミノメチノレ化スチレン一ジビュルベンゼン共重合体)、 ベンズヒドリルアミ ン樹脂、 メチルベンズヒドリルァミン樹脂、 ジメ トキシベンズヒドリルァミン (D MBHA)樹脂、アミノメチルフエノキシメチル樹脂おょぴこれらの誘導体が包含 される。 メチルベンズヒドリルァミン樹脂、 ジメ トキシベンズヒドリルァミン (D MBHA)樹脂、アミノメチルフエノキシメチル樹脂を用いれば開裂によって直接 アミドを与えることができるが、 収率の点においてアミノメチル樹脂が好ましい。 力ルポキシル基と結合し得る官^基およぴカルポキシル基 有するスぺーサー は、例えばアルギニンのカルボキシル基を —力ルポキシメチルエステルに変換し 得るものを挙げることができるが、 特に制限はない。 To synthesize the polypeptide chain in the compound of the present invention, the carboxyl group of the N-protected arginine at the C-terminal via the amino group or, optionally, the sugar group attached to the carboxyl group of the spacer is bonded. It is an insoluble resin having an amino group, which is possible and can be removed thereafter. Such resins include, for example, aminomethyl resin Fatty acid (aminomethinolelated styrene-dibutylbenzene copolymer), benzhydrylamine resin, methylbenzhydrylamine resin, dimethoxybenzhydrylamine (DMBHA) resin, aminomethylphenoxymethyl resin These derivatives are included. When methylbenzhydrylamine resin, dimethoxybenzhydrylamine (DMBHA) resin, or aminomethylphenoxymethyl resin can be used to give an amide directly by cleavage, aminomethyl resin is preferred in terms of yield . Examples of the spacer having a hydroxyl group and a carpoxyl group capable of binding to a lipoxyl group include, but are not particularly limited to, those capable of converting a carboxyl group of arginine into a lipoxymethyl ester.
本発明の化合物におけるポリべプチド鎖の合成に使用しうるアミノ酸の ーァ ミノ基の保護基は、例えば t一ブチルォキシカルボュノレ (B o c ) または 9一フル ォレニルメチルォキシカルボニルである。 アルギニンのグァュジノ基の保護基は、 例えばトシル (To s)、 ニトロ、 4—メ トキシ一 2 , 3 , 6—トリメチルベンゼン スノレホニノレ (M t r ) または 2, 2, 5, 7, 8一ペンタメチルクロマン一 6—スノレホ ニル(Pmc)である。システィンのメルカプト基の保護基は、例えばべンジル(B z 1 )、 4—メ トキシベンジル(MB z 1 )、 4—メチルベンジル(4一 Me B z 1 )、 ァセタミドメチル (Acm)、 トリチル (Tr t)、 3—二トロ 2 _ピリジンスルフ ェニル (Np y s)、 t—ブチル (t—Bu)、 t—プチルチオ ( t— B u S) など を包含する力 MB z 1、 4— Me B z 1、 T r t、 A cmおよび Np y sが好ま しい。 チロシンの水酸基は、例えば B z 1、 2, 6—ジクロ口べンジル (C 12 · B z l)、 t—Buで保護する力 \ または保護しなくてもよい。 リジンの ε—アミノ 基の保護基は、 例えばべンジルォキシカルポニル (Ζ)、 2—クロ口べンジルォキ シカノレポ-ノレ (C 1 · Z)、 B o cまたは Np y sである。 各保護基は、 ペプチド の合成条件などを考慮し適宜選択するのが好ましい。 The protecting group for the amino group of the amino acid which can be used for the synthesis of the polypeptide chain in the compound of the present invention is, for example, t-butyloxycarbonyl (B oc) or 9-fluoroenylmethyloxycarbonyl. It is. The protecting group for the arginine guanidino group is, for example, tosyl (To s), nitro, 4-methoxy-1,2,3,6-trimethylbenzene snorehoninole (Mtr) or 2,2,5,7,8-pentamethylchroman One is 6-snolehonyl (Pmc). The protecting groups for the mercapto group of cysteine include, for example, benzyl (Bz1), 4-methoxybenzyl (MBz1), 4-methylbenzyl (41-MeBz1), acetamidomethyl (Acm), trityl (Tr t), force including 3-nitro-2-pyridinesulfenyl (Npys), t-butyl (t-Bu), t-butylthio (t-BuS), etc. MBz1, 4-MeBz1 , Trt, Acm and Npys are preferred. Hydroxyl group of tyrosine, for example B z 1, 2, 6- dichloro port base Njiru (C 1 2 · B zl) , may not force \ or protected protected with t-Bu. Protecting groups for the ε-amino group of lysine are, for example, benzyloxycarponyl (Ζ), 2-chlorobenzoyl canoprene (C 1 · Z), Boc or Npys. It is preferable that each protecting group is appropriately selected in consideration of the peptide synthesis conditions and the like.
保護アミノ酸の結合は、従来使用されている縮合法、例えば DCC (ジクロ口へ キシルカノレポジィミド) 法、 D I P CD I (ジィソプロピルカルポジィミ ド) 法、 活性エステル法、混合もしくは対称酸無水法、 カルボエルジイミダゾール法、 DC C一 HOB t (1—ヒドロキシベンゾトリァゾール) 法、 ジフエニルホスホリルァ ジド法等によって実施することができるが、 DCC法、 DCC-HOB t法、 D I P C D I法、 対称酸無水法が好ましい。 The binding of the protected amino acid can be carried out by a conventional condensation method such as DCC (diclohexyl canoleopreimide) method, DIP CDI (disopropyl carpoimide) method, active ester method, mixed or symmetric acid. Anhydrous method, Carboerdiimidazole method, DC C-HOB t (1-hydroxybenzotriazole) method, Diphenyl phosphoryla Although it can be carried out by a zid method or the like, a DCC method, a DCC-HOBt method, a DIPCDI method, and a symmetric acid anhydride method are preferred.
式 (I) で表される本発明における抗ウィルス化合物において、 X は NH2ま たは NH=C.(NMe 2)2 [式中、 Meはメチル基である] であるが、 当該化合物 のペプチド部分がエンドぺプチダーゼによって分解されにくくなるため、 式 (I) 中の X は NH=C (NMe 2) 2であるのが好ましい。 X に NH=C(NMe 2)2で ある化合物を所望する場合は、例えば N—末端のアルギニンの α—アミノ基を ΝΗ =C (NM e 2) 2に変換し、 この変換したアルギニンをべプチド合成に用いること で得ることができる。 In the antiviral compound of the present invention represented by the formula (I), X is NH 2 or NH = C. (NMe 2 ) 2 [wherein Me is a methyl group]. X in the formula (I) is preferably NH = C (NMe 2 ) 2 because the peptide moiety is less likely to be degraded by endopeptidase. When a compound in which X is NH = C (NMe 2 ) 2 is desired, for example, the α-amino group of arginine at the N-terminal is converted into ΝΗ = C (NM e 2 ) 2, and the converted arginine is converted to arginine. It can be obtained by using it for peptide synthesis.
同じ観点から、 式 (I) 中の X4は、 NHR2 [式中、 1 2が〇1〜〇5ァルキルで ある] であるのが好ましい。 From the same viewpoint, X 4 in formula (I), wherein 1 2 is a 〇 1 ~〇 5 Arukiru] NHR 2 preferably is.
本発明における式 (I) の抗ウィルス化合物において、 X2の芳香環を有するァ ミノ酸としてはトリブトファンなどの必須ァミノ酸以外の芳香環を有するァミノ 酸も包含されるが、当該化合物の抗ウィルス活性の向上および/または毒性の低減 の理由から、 式 (Π) : 6 In antiviral compound of formula (I) in the present invention, as the § amino acid having an aromatic ring of X 2 are also encompassed Amino acids having an aromatic ring other than the essential Amino acids such Toributofan, antiviral of the compound For reasons of increased activity and / or reduced toxicity, equation (II): 6
(Π)  (Π)
NH-CH-CO  NH-CH-CO
[式中、 x6[Where x 6 is
Figure imgf000007_0001
力^なる群からから選択される]で表される芳香環を有するアミノ酸であるのが好 ましい。
Figure imgf000007_0001
Amino acid having an aromatic ring represented by the following formula:
本発明において、 X2はトリブトファン (X6が [TRPである]) とすることが できるが、 トリプトファンの 1H—インドール (TRP) を、 Na 1、 Cy s (B z l)、 C y s (Ad) または T r p (M t s ) に置換した o;—アミノ酸をぺプチ ド合成に使用することにより、 所望の X2を得ることができる。 In the present invention, X 2 can be tributophan (X 6 is [TRP]), but tryptophan 1H-indole (TRP) can be replaced with Na 1, Cys (Bzl), Cys (Ad) or T rp (M ts) the substituted o; - by using amino acid peptidyl de synthesis, it is possible to obtain a desired X 2.
式 (I) 【こおいて、 — X3— Y2 、 好ましくは dLy s - P r oまたは dL y s— CH = CH— A l a [式中、 d L y sは D—リジンを表す] であるが、 本発 明の化合物の i3シート構造のターン部分がぺプチダーゼの影響を受けにくくする ことにより当該化合物の安定性が向上するため、 dLy s—CH=CH— A 1 aで あるのがさらに好ましい。 Formula (I) wherein —X 3 —Y 2 , preferably dLys-Pro or dLys—CH = CH—Ala, where dLys represents D—lysine. However, dLys-CH = CH-A1a is more preferable because the stability of the compound is improved by making the turn portion of the i3 sheet structure of the compound of the present invention less susceptible to peptidase. .
本発明の化合物中の ]3シート構造のターン部分である Yi— X3— Y2が d Ly s— CH=CH— A 1 aである化合物を所望する場合、アミノ酸をキラルプールと して、 有機銅試薬による立体特異的抗一 SN 2'反応を活用する独自の EAD I ((E) - alkene dipeptide isostere) 合成法を用いることにより、 D— Ly s— A 1 a型 EAD I、 具体的には Fmo c— DLy s (C I Z) —Ψ [(E) CH=C H] -A 1 aを導入した化合物を得ることができる (TamamuraH., J. Chem. Soc, Perlkin Trans I 1999, 2983-2996)。 In the compound of the present invention, when a compound in which Yi—X 3 —Y 2 which is the turn part of the three-sheet structure is d Lys—CH = CH—A 1 a is desired, the amino acid is used as a chiral pool, By using a unique EAD I ((E) -alkene dipeptide isostere) synthesis method that utilizes the stereospecific anti-SN 2 'reaction with organocopper reagents, D-Lys-A1a type EAD I, Can obtain a compound into which Fmo c— DLy s (CIZ) —Ψ [(E) CH = CH] -A 1 a is introduced (Tamamura H., J. Chem. Soc, Perlkin Trans I 1999, 2983- 2996).
式 (I) の化合物において、 4位と 13位のシスティンによるジスルフィ ド結合 (X5がー CH2— S— S— CH2—) は、 例えばメルカプト基を介して S— S架橋 を形成させることにより導入することができる。 この場合、メルカプト基を保護基 t— BuSで保護し、 t— BuSを脱保護して酸化させて、ジスルフィド結合を形 成させる。 この際の酸化処理は、公知の方法を用いることができるが、通常は大気 中の酸素やフェリシアン酸塩(例えば、 フェリシアン化カリウム) などの酸化剤を 用いる。 In the compound of formula (I), a disulfide bond (X 5 is —CH 2 —S—S—CH 2 —) with cysteines at the 4- and 13-positions forms an S—S bridge, for example, via a mercapto group. Can be introduced. In this case, the mercapto group is protected with a protecting group t-BuS, and t-BuS is deprotected and oxidized to form a disulfide bond. In this case, a known method can be used for the oxidation treatment, but usually an oxidizing agent such as oxygen in the air or a ferricyanate (eg, potassium ferricyanide) is used.
また、本発明の化合物の非ぺプチド化として安定性を向上させるために、式( I ) 中の X5は次の一般式: In order to improve the stability of the compound of the present invention as a non-peptide, X 5 in the formula (I) is represented by the following general formula:
からなる群から選択される C 4〜C 8アルキレンまたは C 4〜C 8アルケニレンであ るのが好ましく、ペンタメチレン、 cis— 3—ペンテ二レン、 trans— 2—ペンテ二 レンまたはへキサメチレンがさらに好ましい。 It is preferably C 4 -C 8 alkylene or C 4 -C 8 alkenylene selected from the group consisting of pentamethylene, cis-3-pentenylene, trans-2-pentenylene or hexamethylene. preferable.
X 5を C 4〜C 8アルキレンまたは C 4〜C 8アルケニレンとするために、システィ ン誘導体の代わりにァリルグリシン (Allylglycine) またはホモアリルグリシン (Horaoallylglycine)誘導体を用いてペプチド鎖を構築し、 R u触媒 R CM (ring closing olefin metathesis) 反応によってアルケンまたはアルカン架橋を形成さ せることができる。 このようにして得られた誘導体を、 C D分析により conformation解析した結果、 ァリルグリシン、 ホモァリルグリシンから誘導した 化合物が元のぺプチドと同様の βシート構造を有することが示されている。 The X 5 to a C 4 -C 8 alkylene or C 4 -C 8 alkenylene, constructing the peptide chain using instead Arirugurishin (Allylglycine) or homo-allyl glycine (Horaoallylglycine) derivatives of Shisuti emissions derivatives, R u Alkene or alkane bridges can be formed by a catalytic RCM (ring closing olefin metathesis) reaction. The derivative obtained in this way was subjected to conformation analysis by CD analysis, and it was shown that the compound derived from arylglycine and homoarylglycine had a β-sheet structure similar to that of the original peptide.
上述のようにして得られた化合物は、抽出、再結晶、各種ク口マトグラフィー(例 えば、 ゲルろ過、 イオン交換、 分配、 吸着、 逆相)、 電気泳動、 向流分配などのポ リぺプチドにおいて知られた方法によつて単離精製することができる 逆相高速 液体クロマトグラフィーが好ましい。  The compounds obtained as described above are subjected to extraction, recrystallization, various chromatographies (eg, gel filtration, ion exchange, partitioning, adsorption, reverse phase), electrophoresis, countercurrent partitioning, and other techniques. Reversed phase high performance liquid chromatography, which can be isolated and purified by methods known for peptides, is preferred.
本発明の式(I ) で表される化合物を、 下記の表 1に例示する。 なお、 化合物 Τ 1 3 4およぴ Τ 1 4 0は、 既に述べた先行技術 (Tamamura H. et al., Biochem. Biophys. Res. Coraraun. 253, 877 - 882 (1998); Arakaki R. et al., J. Virology 73, 2, p. 1719-1723 (1999) ) に開示されている。
Figure imgf000010_0001
The compounds represented by the formula (I) of the present invention are exemplified in Table 1 below. The compounds Τ134 and Τ140 were prepared according to the prior art described above (Tamamura H. et al., Biochem. Biophys. Res. Coraraun. 253, 877-882 (1998); Arakaki R. et al. al., J. Virology 73, 2, p. 1719-1723 (1999)).
Figure imgf000010_0001
Figure imgf000011_0001
Figure imgf000011_0001
Figure imgf000012_0001
Figure imgf000012_0001
表 1で示した本発明のぺプチド性化合物について、その具体的な構造の例を次 示す。Examples of specific structures of the peptide compounds of the present invention shown in Table 1 are shown below.
Figure imgf000013_0001
Figure imgf000013_0001
差替え用紙(規則 2
Figure imgf000014_0001
Replacement form (Rule 2
Figure imgf000014_0001
差替え用紙(規則 26) m) ^ Ύ m Replacement form (Rule 26) m) ^ Ύ m
Figure imgf000015_0001
l/Zl
Figure imgf000015_0001
l / Zl
9UP9/W OAV 12/2 9UP9 / W OAV 12/2
Figure imgf000016_0001
Figure imgf000016_0001
差替え用紙(規則 26) ( u ) m ^ Replacement form (Rule 26) (u) m ^
Figure imgf000017_0001
Figure imgf000017_0001
Odf/ェ:) d 9Ϊ.1-9/Ϊ0 OAV 13 本発明のぺプチド性化合物の物性値を下記の表 2 4にて示す。Odf / e :) d 9Ϊ.1-9 / Ϊ0 OAV 13 The physical properties of the peptide compounds of the present invention are shown in Table 24 below.
3 Sμα 0μ寸1 Jzq 1φΛβ0s βφseΛz  3 Sμα 0μ Dimension 1 Jzq 1φΛβ0s βφseΛz
Figure imgf000018_0001
差替え用紙(規則 26) M 3
Figure imgf000018_0001
Replacement form (Rule 26) M 3
MS Characterization of T(E)-140 and Its Related PeptidesMS Characterization of T (E) -140 and Its Related Peptides
Compound X 6 X4 Formula Ion sprav mass (reconstructed) Compound X 6 X 4 Formula Ion sprav mass (reconstructed)
Figure imgf000019_0001
Figure imgf000019_0001
4 Four
Physicochemical Constants of T(E)-140 and Its Related Peptides Physicochemical Constants of T (E) -140 and Its Related Peptides
Compound X X, 6 X4 [a]D (Cone, in H20, temp)Compound XX, 6 X 4 [a] D (Cone, in H 20 , temp)
T134 ^N^NNNNN^ NN-N 0 (C = 0.10, 16°C) T140 ^^HHHHHHHHH HHT134 ^ N ^ NNNNN ^ NN-N 0 (C = 0.10, 16 ° C) T140 ^^ HHHHHHHHH HH
^ ^^ 22222222222", - 0.01 ( C = 0.24, 27。C) ^ ^^ 22222222222 ",-0.01 (C = 0.24, 27.C)
TMG-140-NH2 -7.2 (C = 0.55, 25°C)TMG-140-NH2 -7.2 (C = 0.55, 25 ° C)
T(E)-134-OH ^ - M M T (E) -134-OH ^-M M
¾ e e -17.1 (C = 0.31,27°C) ¾ e e -17.1 (C = 0.31,27 ° C)
T(E)-140-OH -11.5 ( C = 0.52, 25°C)T (E) -140-OH -11.5 (C = 0.52, 25 ° C)
T(E)-134-NH2 T CC -14.6 (C = 0.27,37°C)T (E) -134-NH2 T CC -14.6 (C = 0.27,37 ° C)
T(E)-140-NH2 PSTT TNNNNNN N -8.1 (C = 0.37, 36°C)T (E) -140-NH2 PSTT TNNNNNN N -8.1 (C = 0.37, 36 ° C)
T(E)-141-NH2 T (E) -141-NH2
T(E)-142-NH2 お -0.9 (C = 0.22, 28°C)  T (E) -142-NH2 -0.9 (C = 0.22, 28 ° C)
-12.0 (C = 0.25, 38°C) -12.0 (C = 0.25, 38 ° C)
T(E)-143-NH2 + 2.5 (C = 0.16, 29°C)T (E) -143-NH2 + 2.5 (C = 0.16, 29 ° C)
TM(E)-134-OH OOOONOO ONNNNON TM (E) -134-OH OOOONOO ONNNNON
TM(E)-140-OH -3.3 (C = 0.57, 26°C)  TM (E) -140-OH -3.3 (C = 0.57, 26 ° C)
HHiHH H  HHiHH H
TMG(E)-140-OH -6.5 (C = 0.29, 27°C) des-Argl-TMG(E)- -2.6 (C = 0.39, 19°C) TMG (E) -140-OH -6.5 (C = 0.29, 27 ° C) des-Argl-TMG (E)--2.6 (C = 0.39, 19 ° C)
140-OH -24.2 (C = 0.29,22°C) 140-OH -24.2 (C = 0.29,22 ° C)
16 このように例示される本発明の抗ウィルス化合物は、公知化合物と同等またはそ れ以上の高い抗ウィルス活性および低い毒性を有し、且つ生体内における安定性が 向上している。 本発明の化合物において、 X および X 4の末端部分の修飾、 0シ ートのターン部分の非ペプチド化、 並びに X 5のアルキレン化またはアルケニレン 化により、 当該化合物はプロテアーゼなどの生体内代謝影響を受けにくくなるた め、および Zまたは S— S架橋の解離によるぺプチド性化合物の環状構造の線状化 が防止されるために生体内における安定性が付与される。 The antiviral compound of the present invention exemplified in this way has a high antiviral activity and a low toxicity equivalent to or higher than that of a known compound, and has improved stability in a living body. In the compounds of the present invention, modification of the distal portion of the X and X 4, non-peptide of the turn portion of the 0 sheet over preparative, as well as the alkylene reduction or alkenylene of X 5, the compounds in vivo metabolic effects such as proteases In vivo stability is imparted because the peptide compound is less susceptible to aging and because the cyclic structure of the peptide compound is prevented from being linearized due to dissociation of the Z or SS bridge.
本発明の式 ( I ) で表される抗ウィルス化合物を有効成分とする薬剤は、前記式 ( I ) で表される化合物またはその医薬上許容され得る塩有効成分として含有し、 ウイルス感染またはウイルス疾患に対し、経口的または非経口的に投与することが できる。 また、 本発明の薬剤は、 種々の剤形、 例えば錠剤、 顆粒剤、 カプセル剤、 散剤、 座剤、 ペッサリー、 軟膏、 クリーム、 エアゾール、 液剤例えば内服用液剤、 注射剤または点滴剤などに製剤化して投与することが可能である。また、場合によ り薬剤の投与方法および投与形態に応じて医薬上許容されうる種々の添加剤、例え ば賦形剤、結合剤、崩壌剤、緩衝剤、溶解捕助剤、等張化剤、 P方腐剤、酸化防止剤、 p H調整剤等、 懸濁剤、 希釈剤などを含むことができる。  The drug containing the antiviral compound represented by the formula (I) of the present invention as an active ingredient contains the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof as an active ingredient, and is used for virus infection or virus. It can be administered orally or parenterally for the disease. The drug of the present invention can be formulated into various dosage forms, such as tablets, granules, capsules, powders, suppositories, pessaries, ointments, creams, aerosols, liquids, such as liquids for internal use, injections, and infusions. Can be administered. Depending on the method and mode of administration of the drug, various pharmaceutically acceptable additives may be used, for example, excipients, binders, disintegrants, buffers, dissolution aids, isotonic Agents, P-preservatives, antioxidants, pH regulators, suspending agents, diluents and the like.
本発明の薬剤の 1日当たりの投与量は、投与方法■剤形および症状の程度により 異なる。例えば錠剤として経口的に投与する場合、本発明の抗ウィルス化合物また はその医薬上許容され得る塩をヒト体重 1 k g当たり 0. l m g〜: L O O O m gの 範囲で投与する。 また、注射剤として非経口的に投与する場合は、 ヒト体重 1 k g 当たり 0. l m g〜 1 0 0 O m gの範囲で投与する。 本発明の薬剤の 1日量を、 1 回または複数回にて投与することができるが、 より一般的には 1日に 1回乃至 3 回、 単位投与量を経口的または非経口的に投与するのが好ましい。 発明を実施するための最良の形態  The daily dose of the drug of the present invention varies depending on the method of administration, the dosage form and the degree of symptoms. For example, when administered orally as a tablet, the antiviral compound of the present invention or a pharmaceutically acceptable salt thereof is administered in a range from 0.1 mg / kg to human LOOOOmg / kg human body weight. In the case of parenteral administration as an injection, it is administered in the range of 0.1 to 100 mg / kg human body weight. The daily dose of the agent of the present invention can be administered one or more times, but more generally, once to three times a day, a unit dose is orally or parenterally administered. Is preferred. BEST MODE FOR CARRYING OUT THE INVENTION
本発明を下記の実施例によって具体的に説明する力 本努明はこれらに限定され るものではない。 17 実施例 The present invention is not limited to the following examples. 17 Example
参考例 1 T 134の製造 Reference Example 1 Production of T134
次の配列: '  The following array: '
NH2-Arg-Arg-Trp-Cis-Tyr-Arg-Lys-Dlys-Pro-Tyr-Arg-Cit-Cys-Arg-C00H を有するポリぺプチドを下記のように合成した。 A polypeptide having NH 2 -Arg-Arg-Trp-Cis-Tyr-Arg-Lys-Dlys-Pro-Tyr-Arg-Cit-Cys-Arg-C00H was synthesized as follows.
アミノメチル樹脂と Fmo c—DMBHA—CH2CH2COOHを固相合成用 カラムに人れ、 D I PCD I -HOB t法により 2時問縮合反 jfeを行った。縮合反 応終了後、フリ一のァミノ基を保護するための無水齚酸を用いて力ップリングを行 つた (DMBHA樹脂)。 このようにして調製した DMBHA樹脂の Fmo c基を 20%ピぺリジン ZDMFで除去後、 DMBHA樹脂に対し Fmo c— Ar g (M t r ) —OHの 2.5 e qを加え DMF中、 D I P CD I— HO B t法によって縮 合反応を行った。縮合反応の進行の程度はニンヒドリンの試験により測定して行つ た。 People are aminomethyl resin and Fmo c-DMBHA-CH 2 CH 2 COOH to the solid-phase synthesis column, 2 Tokitoichijimigohan jfe was performed by DI PCD I -HOB t method. After the completion of the condensation reaction, force coupling was performed using anhydrous acetic anhydride to protect free amino groups (DMBHA resin). After removing the Fmo c group of the DMBHA resin thus prepared with 20% piperidine ZDMF, 2.5 eq of Fmo c—Ar g (M tr) —OH was added to the DMBHA resin, and DIP CD I— The condensation reaction was performed by the HOBT method. The degree of progress of the condensation reaction was measured by a ninhydrin test.
このように調製したアルギニン導入 DMBHA樹脂の Fmo c基を 20 %ピぺ リジン/ DMFで除去後 DMBHA樹脂に対し Fmo c— Cy s (MB z l) — O Hの 2.5 e qを加え、 同様に D I PCD I—HOB t法によって縮合反応を行つ た。 縮合反応の進行の程度は同様にニンヒドリン試験により測定して行った。 以下同様にして C—末端ァミノ酸からの配列に従い順次保護基保護化ァミノ酸 を DMBHA樹脂に導入して保護基保護化ペプチド一樹脂を得た D次いで、 この保 護基保護化ペプチド一樹脂を 20%ピぺリジン ZDMF処理により Fmo c基を 除去し、そして該樹脂 10 Omg当り 1M TMSOT f —チオア二ソ^"ル /TF A系 (m—クレゾール (100 e q)、 エタンジチオール (300 e q) の存在す るトリフルォロ酢酸 10m 1 ) で反応させ、反応混合液から樹脂を濾別し、未環化 T 134ポリぺプチドを得た。次いで、通気により空気酸化して環化反応を実施し、 T 134ポリぺプチドを得た。 参考例 2 T 140の製造 After removing the Fmo c group of the arginine-introduced DMBHA resin thus prepared with 20% piperidine / DMF, 2.5 eq of Fmo c—Cys (MB zl) —OH was added to the DMBHA resin, and DI PCD I —Condensation reaction was performed by the HOB t method. The degree of progress of the condensation reaction was similarly measured by a ninhydrin test. In the same manner C- terminal sequentially protecting group-protected Amino acid according to the sequence from Amino acid were introduced into DMBHA resin to obtain a protecting group-protected peptide first resin D then the coercive Mamorumoto protected peptide first resin The Fmoc group is removed by treatment with 20% piperidine ZDMF, and 1 M TMSOTf-thioanisole / TFA per 10 Omg of the resin (m-cresol (100 eq), ethanedithiol (300 eq) The resin was filtered from the reaction mixture to obtain an uncyclized T134 polypeptide, which was then oxidized with air to carry out a cyclization reaction. T 134 polypeptide was obtained Reference Example 2 Production of T 140
次の配列: 18 The following array: 18
NH2-Arg-Arg- [Nal] -Cis- Tyr- Arg- Lys- Dlys- Pro-Tyr- Arg- Cit- Cys- Arg- COOH を有するポリペプチドを合成するに際し、 3位のトリプトファン (TRP) を L一 3- (2—ナフチル)ァラユン [N a 1 ]に換えて参考例 1と同様の操作を繰返し、 T 140ポリペプチドを得た。 実施例 1 ぺプチド性化合物へのアル力ン架橋の導入 NH 2 -Arg-Arg- [Nal] -Cis- Tyr- Arg- Lys- Dlys- Pro-Tyr- Arg- Cit- Cys- Arg- upon synthesizing a polypeptide having a COOH, 3-position of tryptophan (TRP) Was replaced with L-1- (2-naphthyl) arayun [Na1], and the same operation as in Reference Example 1 was repeated to obtain a T140 polypeptide. Example 1 Introduction of Alkin Bridge to Peptidic Compound
次の反応スキーム 1に従って、 Fmo c— L—ホモアリルグリシンを合成した。 反応スキーム 1
Figure imgf000023_0001
According to the following reaction scheme 1, Fmoc-L-homoallylglycine was synthesized. Reaction Scheme 1
Figure imgf000023_0001
し- Serine  -Serine
Figure imgf000023_0002
Figure imgf000023_0002
Fmoc-レ Hag-OH  Fmoc-Le Hag-OH
得られた Fm o c— Lーホモアリルグリシンを用いて、下記の反応スキーム 2に 従って R u触媒 R CM反応によつてぺプチド鎖を構築し、へキサメチレンを導入し て、本発明の環状ペプチド性化合物 TM14 Ο,ΗΗ (E)、 TM140, HH (Z) および TM140,HH (Re d) を合成した。 Using the obtained Fmoc-L-homoallylglycine, a peptide chain is constructed by a Ru-catalyzed RCM reaction according to the following reaction scheme 2, and hexamethylene is introduced to introduce the cyclic peptide of the present invention. The active compounds TM14Ο, ΗΗ (E), TM140, HH (Z) and TM140, HH (Red) were synthesized.
*替え用紙(規則 26) 19 反応スキーム 2 * Replacement form (Rule 26) 19 Reaction Scheme 2
Figure imgf000024_0001
同様にして、 TM140,AH (E)、 TMl 40, AH (Z)、 TM 140, AA (E)、 TMl 40, HA (E)、 TMl 40,HA (Z)、 TMl 40, AH (Re d) および TMl 40, AA (Re d) を合成し、 参 #例 2において合成した T 140 と共に CD分析を実施した。その結果から、本発明の前記化合物は T 140と同様 の シート構造を有することが示された (図 1)。 差替え用紙(規則 26) 20 比較試験 1 CXCR 4—ケモカイン受容体に対するアンタゴニスト活性試験 各試験化合物の CXCR4—ケモカイン受容体に対するァンタゴエスト活性を 評価するために、 CXCR 4—ケモカイン受容体を過剰発現させた CHO (Chinese Hamster Ovarian) 細胞に対して C X C R 4—ケモカイン受容体の内因性リガンド、 ヒ ト SDF (Stromal Cell-derived Factor) が誘起する細胞内カルシウムイオン 濃度上昇の各試験薬物の抑制能を評価した。
Figure imgf000024_0001
Similarly, TM140, AH (E), TMl40, AH (Z), TM140, AA (E), TMl40, HA (E), TMl40, HA (Z), TMl40, AH (Red ) And TMl40, AA (Red) were synthesized and CD analysis was performed with T140 synthesized in Reference Example 2. The results showed that the compound of the present invention had a sheet structure similar to that of T140 (FIG. 1). Replacement form (Rule 26) 20 Comparative test 1 CXCR4-chemokine receptor antagonist activity test To evaluate the antagoest activity of each test compound on CXCR4-chemokine receptor, CHO (Chinese Hamster Ovarian) cells overexpressing CXCR4-chemokine receptor In contrast, the ability of each test drug to suppress the increase in intracellular calcium ion concentration induced by human Stromal Cell-derived Factor (SDF), an endogenous ligand of CXCR4-chemokine receptor, was evaluated.
リガンドによるシグナル伝達能を解析する目的で、 細胞内ある C a 2+イオンの 測定を実施した。 あらかじめ各披検物質の 1 OmM DMSO溶液を調製し、測定 直前に適当な濃度 (終濃度 0. 0 1〜30 μΜ) となるように 20mM He p e s含有 H a n k s溶液で希釈した。 In order to analyze the signal transduction ability by the ligand, measurement of intracellular C a 2+ ions was performed. A 1 OmM DMSO solution of each test substance was prepared in advance and diluted with a 20 mM Hepes-containing Hanks solution to an appropriate concentration (final concentration: 0.01 to 30 µΜ) immediately before measurement.
測定の 24または 48時間前に細胞をそれぞれ 3 X 1 04または1. 5 X 1 04 細胞 Zl 5 μ L ウエルの濃度で 96穴マイクロタイタープレート(C o s t e r 3 6 3 5または m c o n 3 2 96) に播種する。 細胞内 C a 2+濃度測定直前に 5 μΜ Fu r a 2— AMを遮光下で 1〜 2時間ロードし、 2 OmM He p e s含 有 H a n k s溶液 1 00 μ 1で 2回洗浄後、 S p e c t r o n u o r ome t e r (FDS S-4000または FDS S— 2000、浜松ホトュタス株式会社) を用 いて 340 nm/3 80 nmの比を測定する。 2 OmM H e p e s含有 H a n k s溶液 1 00 μ L/we 1 1で満たした細胞に対して、測定開始 30秒後に試験化 合物溶液 1 0 L (終濃度 10 μ M) を、試験化合物添加 3分後に、 リガンド ( h SDF) 溶液 40 μ L (3 OmM) を加え、 その後さらに 4分間の細胞内 C a 2 + 濃度をモニターする。 Ve h i c 1 e添加群の C a 2+濃度変化に対する各試験化 合物の抑制率を算出し、 5 0%抑制を示した時の化合物濃度を I C50とする。 そ の結果を表 5に示す。 0 Each 3 X 1 cells before 24 or 48 hours of measurement 4 or 1. 5 X 1 0 4 cells Zl 5 mu L wells concentration in 96-well microtiter plate (C oster 3 6 3 5 or MCON 3 2 96 ). Immediately before measuring the intracellular Ca 2+ concentration, load 5 μΜ Fura 2—AM for 1 to 2 hours in the dark, and wash twice with 100 μl of Hanks solution containing 2 OmM Hepes, then remove the spectrometer. Measure the ratio of 340 nm / 380 nm using ter (FDS S-4000 or FDS S-2000, Hamamatsu Phototus Co., Ltd.). 2 For cells filled with 100 μL / we 11 of Hanks solution containing OmM Hepes, 30 L of test compound solution (final concentration: 10 μM) was added to the test compound 30 seconds after the start of measurement. After one minute, add 40 μL (3 OmM) of the ligand (hSDF) solution, and then monitor the intracellular Ca 2+ concentration for another 4 minutes. The inhibition rate of each test compound with respect to the change in Ca 2+ concentration in the Vehic 1e-added group is calculated, and the compound concentration at which 50 % inhibition is exhibited is defined as IC 50 . Table 5 shows the results.
差替え用紙(規則 26) 21 Replacement form (Rule 26) twenty one
表 5 Table 5
アン夕ゴニスト活性  Ango gonist activity
化合物 IC50 (iiM) [CXCR4/SDF] Compound IC 50 (iiM) [CXCR4 / SDF]
T140 ト 3  T140 G 3
TM140,AH(Z) ト 3  TM140, AH (Z) G 3
TM140,AH(Red.) 3  TM140, AH (Red.) 3
TM140,HA(E) 1  TM140, HA (E) 1
TM140,HH(Red) 0.3〜1  TM140, HH (Red) 0.3-1
表 5のアンタゴニスト活性試験結果から、本発明の抗ウィルス化合物も公知の化 合物 T 140と同様に、 CXCR 4ケモカイン受容体に対してアンタゴュストとし て作用すること示された。 実施例 2 ぺプチド性化合物における eシートのターン部分への(E)エチレンジ ぺプチド (d L y s— CH=CH— A 1 a) の揷入 The results of the antagonist activity test in Table 5 show that the antiviral compound of the present invention also acts as an antagonist on the CXCR4 chemokine receptor, similarly to the known compound T140. Example 2 Introduction of (E) ethylene dipeptide (d Lys— CH = CH—A 1 a) into the turn part of the e-sheet in a peptide compound
下記の反応スキーム 3に従って、 有機銅試薬による立体特異的抗ー S N 2'反応 を活用する EAD I ((E)- alkene dipeptide isostere) 合成法を用いて Fmo c -DLy s (C I Z) 一 Ψ [(E) CH=CH] —A 1 aを合成した。 According to the following reaction scheme 3, Fmoc-DLy s (CIZ) was synthesized using an EAD I ((E) -alkene dipeptide isostere) synthesis method utilizing a stereospecific anti-SN 2 'reaction with an organocopper reagent. (E) CH = CH] —A 1a was synthesized.
22 反応スキーム 322 Reaction Scheme 3
r
Figure imgf000027_0001
r
Figure imgf000027_0001
Fmoc-DLys(CIZ)-M^[(E)CH=CH;i-LAIa 得られた Fmo c -DLy s (C I Z) 一 Ψ [(E) CH=CH] —A 1 aを用 いて、 下記の反応スキーム 4を実施し、 (E) エチレンジペプチドを導入した本発 明の化合物を得た。  Fmoc-DLys (CIZ) -M ^ [(E) CH = CH; i-LAIa Using the obtained Fmoc-DLys (CIZ) Ψ [(E) CH = CH] —A1a, Reaction Scheme 4 was performed to obtain (E) a compound of the present invention into which an ethylene dipeptide was introduced.
差替え用紙機則 26》 22/1 反応スキーム 4 Replacement Paper Rules 26 >> 22/1 Reaction Scheme 4
Pmc Ptnc Trt ¾u Pmc Boc Boc ½u Pijic Trt Pmc  Pmc Ptnc Trt ¾u Pmc Boc Boc ½u Pijic Trt Pmc
Fmoc - Α!¾— Aig- Y- C s— T r— Arg—し s-D "し s-Pra-T r—Arg- Cit-C — Arg - r PAL Resin -cresol, EDT Fmoc-Α! ¾— Aig- Y- C s— T r— Arg—S sD “S s-Pra-T r—Arg- Cit-C — Arg-r PAL Resin- cresol, EDT
Figure imgf000028_0001
Figure imgf000028_0001
T(E)-140 Derivatives  T (E) -140 Derivatives
差'替え用紙(規則 26) 23 実施例 3 T 134誘導体および Τ 140誘導体の製造 Replacement sheet (Rule 26) 23 Example 3 Production of T134 Derivative and Τ140 Derivative
実施例 1のアルカンもしくはアルケン架橋の導入および/または実施例 2の (Ε) エチレンジペプチド (d Ly s— CH=CH— A 1 a) の揷入を m (E) ェ チレンジペプチド (d Ly s— CH=CH— A 1 a) の揷入を用いて、表 2〜4に 記載の本発明の化合物を製造した。 比較試験 2 抗 til V活性測 験  Introduction of the alkane or alkene bridge of Example 1 and / or introduction of the (Ε) ethylene dipeptide (d Lys— CH = CH—A 1 a) of Example 2 was performed using the m (E) ethylene dipeptide (d Lys The compounds of the invention described in Tables 2 to 4 were prepared using the introduction of s-CH = CH-A1a). Comparative test 2 Anti-til V activity test
実施例 1〜3にて製造した化合物の H I Vに対する抗ウィルス活性を MTT法 (Pauwels et al. , J. Virol. Methods, 20; 309-321 (1988)) に従い、 下記のよ うに浪 lj定した。  The antiviral activity against HIV of the compounds prepared in Examples 1 to 3 was determined as follows according to the MTT method (Pauwels et al., J. Virol. Methods, 20; 309-321 (1988)). .
96穴マイクロタイタープレートに、種々の濃度の試験物質と共に H I V感染 M T—4細胞 (2. 5 104細胞 ゥエル, 多重感染度 [MO 1 : 0.01]) を感染 直後に添力 Bした。 C02インキュベーター内にて 37°Cで 5日間培養した後、 MT T法によって残存細胞数を測定した。抗ウィルス活性は、 HI V感染による細胞障 害を 50%抑制する濃度 (EC5。: 50% Effective Concentration) で表す。 一方、 試験化合物め M T - 4細胞に対する細胞毒性を調べるために、ウィルス非感染細胞 を同様に種々の濃度の試験物質と共に培養した。 細胞毒性は、 試験物質による 5 0%細胞障害濃度 (CC5。: 50% Cytotoxic Concentration) で表す。 また、 有効 係数 (S I : Selectivity Index) を、 C C 50ZE C 50として算出した。 In a 96-well microtiter plate, HIV-infected MT-4 cells (2.5 10 4 cells / well, multiplicity of infection [MO1: 0.01]) were added with various concentrations of the test substance immediately after infection. After 5 days of culture at 37 ° C for at C0 2 incubator, it was measured number of remaining cells by MT T method. Antiviral activity, cell failure 50% inhibition concentration by HI V infection: expressed by (EC 5. 50% Effective Concentration ). On the other hand, in order to examine the cytotoxicity of the test compound to MT-4 cells, non-virus-infected cells were similarly cultured with various concentrations of the test substance. Cytotoxicity 50% cytotoxicity concentration by the test substance: expressed by (CC 5. 50% Cytotoxic Concentration ). The effective coefficient (SI: Selectivity Index) was calculated as CC 50 ZE C 50 .
試験物質としては、 本発明の化合物として実施例 1〜3にて製造した化合物を、 さらにケモカイン拮抗剤として知られている T 22、試験例 1~2にて製造した T 134および T 140、並びに現在 H I Vの治療に用いられているアジドチミジン (AZT) を用いた。 抗 H I V活性試験の結果を下記の表 6に示す。 24 表 6 As test substances, the compounds prepared in Examples 1 to 3 as compounds of the present invention, T22 further known as a chemokine antagonist, T134 and T140 prepared in Test Examples 1 and 2, and Azidothymidine (AZT), which is currently used to treat HIV, was used. The results of the anti-HIV activity test are shown in Table 6 below. 24 Table 6
抗 H I V活性測定試験  Anti-HIV activity measurement test
iし 5ひ IJIM) じし so nM bX し 50/しし  Ishi 5 h IJIM) ji so nM bX shi 50 / shi
T22 43.6 Nd  T22 43.6 Nd
T134 15.1 Nd  T134 15.1 Nd
T140 く 0.3 66600 >222000 T140 c 0.3 66 600> 222000
TMG140-NH2 2.4 59500 24887TMG140-NH 2 2.4 59500 24887
T(E)l34-OH く 1.3 101000 >77692T (E) l34-OH 1.3 1.3 1000> 77692
T(E)140-OH 1.9 269400 138462T (E) 140-OH 1.9 269 400 138462
T(E)134-NH2 2.9 58200 19901T (E) 134-NH 2 2.9 58 200 19901
T(E)140-NH2 1.9 57500 30775T (E) 140-NH 2 1.9 57500 30775
T(E)141-NH2 44.8 58500 1306T (E) 141-NH 2 44.8 58500 1306
T(E)142-NH2 16.9 56500 3339T (E) 142-NH 2 16.9 56500 3339
T(E)143-NH2 1.4 11800 8284T (E) 143-NH2 1.4 11800 8284
TM(E)134-0H 15.7 55800 3551 M(E)140~OH 11.5 261600 22763TM (E) 134-0H 15.7 55800 3551 M (E) 140 ~ OH 11.5 261600 22763
AZT 1.1 45700 35369 表 6の抗 H I V活性測定試験の結果から、本発明の抗ウィルス化合物は公知の抗 H I V剤と同様に優れた抗ウイルス活性を有することが示された。 さらに、本発明 の化合物は細胞毒性が低く、また生体内安定性が向上しているため、優れた抗 H I V剤となることが期待される。 産業上の利用可能性 AZT 1.1 45700 35369 The results of the anti-HIV activity measurement test shown in Table 6 showed that the antiviral compound of the present invention had excellent antiviral activity similarly to known anti-HIV agents. Furthermore, since the compound of the present invention has low cytotoxicity and improved in vivo stability, it is expected to be an excellent anti-HIV agent. Industrial applicability
本発明によれば、 ヒト免疫不全ウィルス (H I V) に対して優れた抗ウィルス活 性を有すると共に生体内において安定性が向上している新規な抗ウィルス化合物 またはその医薬上許容され得る塩、およびこれを有効成分とする抗 H I V剤が提供 される。 図面の簡単な説明  According to the present invention, a novel antiviral compound having excellent antiviral activity against human immunodeficiency virus (HIV) and improved in vivo stability or a pharmaceutically acceptable salt thereof, and An anti-HIV agent containing the active ingredient as an active ingredient is provided. BRIEF DESCRIPTION OF THE FIGURES
図 1 . 本発明の化合物の C D分析パターンのグラフであり 8 0〜2 6 0 n mで の TM 1 4 0誘導体の C Dスぺクトルを示す。 FIG. 1 is a graph of the CD analysis pattern of the compound of the present invention, showing the CD spectrum of the TM140 derivative from 80 to 260 nm.
差'替え用紙(規則 26)  Replacement sheet (Rule 26)

Claims

25 請求の範囲 25 Claims
1. 式 (I):
Figure imgf000031_0001
1. Formula (I):
Figure imgf000031_0001
{式中、 X は、 NH2または NH=C(NMe 2)2 [式中、 Meはメチル基である] であり ; ' {Where X is NH 2 or NH = C (NMe 2 ) 2 [where Me is a methyl group];
X2は、 芳香環を有するアミノ酸であり ; X 2 is an amino acid having an aromatic ring;
X3は、 単結合または一 CI^ CH— [式中、 1^は水素、 C1〜C5アルキルま たはハロゲン原子である] であり ; X 3 is a single bond or one CI ^ CH—, wherein 1 ^ is hydrogen, C 1 -C 5 alkyl or a halogen atom;
X4は、 NHR2 [式中、 R2は水素または C Csアルキルである] または OH であり ; X 4 is NHR 2 wherein R 2 is hydrogen or C Cs alkyl; or OH;
1 X5は、一 CH2— S— S— CH2—、または C4〜C8アルキレンまたは C4〜C8 アルケニレンであり ; 1 X 5 is one CH 2 —S—S—CH 2 —, or C 4 -C 8 alkylene or C 4 -C 8 alkenylene;
は、 Ar g、 Ly s、 O r nまたは他の塩基性アミノ酸から選択される L _ アミノ酸または D—アミノ酸であり ;  Is an L_amino acid or a D-amino acid selected from Arg, Lys, Orn or other basic amino acids;
Y2は、 P r o、 A l a, Va 1または他の脂肪族アミノ酸から選択される L— アミノ酸 L一アミノ酸または D—アミノ酸であり ;および Y 2 is an L-amino acid L-amino acid or a D-amino acid selected from Pro, A la, Va 1 or other aliphatic amino acids; and
C i tは L—シトノレリンであり ;  C i t is L-chitonorelin;
ただし、 X^SNH2、 X2が Na 1、 Y — X3— Y2が d Ly s—P r o、 X4 が OH、 および X5がー CH2— S— S— CH2—である場合;並びに Where X ^ SNH 2 , X 2 is Na 1, Y — X 3 — Y 2 is d Ly s—Pro, X 4 is OH, and X 5 is —CH 2 —S—S—CH 2 — Case; and
が NH22が丁 r p、 — X3— Y2が d L y s— P r o、 X4が OH、お よび X5が一 CH2— S— S— CH2—である場合を除く } Is NH 2 , 2 is rp, — X 3 — Y 2 is d Lys — Pro, X 4 is OH, and X 5 is one CH 2 — S— S— CH 2
で表される抗ウィルス化合物またはその医薬上許容され得る塩。 Or a pharmaceutically acceptable salt thereof.
2. X2が、 式 (Π) : 2. X 2 is the formula (Π):
I (ID I (ID
NH-CH-CO 26 NH-CH-CO 26
[式中、 X6[Where X 6 is
Figure imgf000032_0001
からなる群から選択される]で表される芳香族アミノ酸である、請求項 1記載の抗 ゥィルス化合物またはその医薬上許容され得る塩。
Figure imgf000032_0001
Selected from the group consisting of the following]: the anti-viral compound or a pharmaceutically acceptable salt thereof.
3. Y — X3— Y2が、 d Ly s—P r οまたは d Ly s— CH=CH— A 1 a [式中、 dLy sは D—リジンを表す]である、請求項 1記載の抗ウィルス化合物 またはその医薬上許容され得る塩。 3. The method according to claim 1, wherein Y—X 3 —Y 2 is d Lys—Pro or d Lys—CH = CH—A1a, wherein dLys represents D—lysine. Or a pharmaceutically acceptable salt thereof.
4. X5が、 次の一般式: 4. X 5 has the general formula:
からなる群から選択される C4〜C8アルキレンまたは C4〜C87ルケ-レンであ る、 請求項 1記載の抗ウィルス化合物またはその医薬上許容され得る塩。 Selected from the group consisting of the C 4 -C 8 alkylene or C 4 -C 8 7 Luque - Len der Ru, antiviral compounds or acceptable salts their pharmaceutically according to claim 1.
5. が、 NH=C(NMe 2)2である、 請求項 1〜 5のいずれか 1項に記載の抗 ウィルス化合物またはその医薬上許容され得る塩。 5. is a NH = C (NMe 2) 2 , may be antiviral compounds, or their pharmaceutically acceptable according to any one of claims 1 to 5 salt.
6.請求項 1〜 5のいずれか 1項に記載の抗ウイルス化合物またはその医薬上許容 され得る塩を有効成分として含有する抗 HI V剤。  6. An anti-HIV agent comprising the antiviral compound according to any one of claims 1 to 5 or a pharmaceutically acceptable salt thereof as an active ingredient.
PCT/JP2001/001642 2000-03-03 2001-03-02 Antiviral compounds WO2001064716A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001236065A AU2001236065A1 (en) 2000-03-03 2001-03-02 Antiviral compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000059495 2000-03-03
JP2000-59495 2000-03-03

Publications (1)

Publication Number Publication Date
WO2001064716A1 true WO2001064716A1 (en) 2001-09-07

Family

ID=18579937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001642 WO2001064716A1 (en) 2000-03-03 2001-03-02 Antiviral compounds

Country Status (2)

Country Link
AU (1) AU2001236065A1 (en)
WO (1) WO2001064716A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020561A1 (en) * 2000-09-05 2002-03-14 Seikagaku Corporation Novel polypeptides and anti-hiv drugs containing the same
US8410059B2 (en) 2002-08-27 2013-04-02 Biokine Therapeutics Ltd. CXCR4 antagonist and use thereof
US8435939B2 (en) 2000-09-05 2013-05-07 Biokine Therapeutics Ltd. Polypeptide anti-HIV agent containing the same
US8455450B2 (en) 2006-12-21 2013-06-04 Biokine Therapeutics Ltd. Methods for obtaining a therapeutically effective amount of hematopoietic precursor cells and long term engraftment thereof
US9427456B2 (en) 2009-06-14 2016-08-30 Biokine Therapeutics Ltd. Peptide therapy for increasing platelet levels
US9439942B2 (en) 2012-04-24 2016-09-13 Biokine Therapeutics Ltd. Peptides and use thereof in the treatment of large cell lung cancer
WO2020101032A1 (en) * 2018-11-16 2020-05-22 味の素株式会社 Method for producing cyclized peptide having intramolecular s-s bond
US10682390B2 (en) 2015-07-16 2020-06-16 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US10993985B2 (en) 2016-02-23 2021-05-04 BioLmeRx Ltd. Methods of treating acute myeloid leukemia
JP7476798B2 (en) 2018-11-16 2024-05-01 味の素株式会社 Method for producing cyclized peptide having intramolecular S-S bond

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153699A (en) * 1987-12-11 1989-06-15 Takeda Chem Ind Ltd Novel peptide and production thereof
EP0425212A2 (en) * 1989-10-23 1991-05-02 Smithkline Beecham Corporation Cyclic anti-aggregatory peptides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153699A (en) * 1987-12-11 1989-06-15 Takeda Chem Ind Ltd Novel peptide and production thereof
EP0425212A2 (en) * 1989-10-23 1991-05-02 Smithkline Beecham Corporation Cyclic anti-aggregatory peptides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROKAZU TAMAMURA ET AL.: "A low-molecular-weight inhibitor against the chemokine receptor CXCR4: A strong anti-HIV peptide T140", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 253, 1998, pages 877 - 882, XP002937874 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020561A1 (en) * 2000-09-05 2002-03-14 Seikagaku Corporation Novel polypeptides and anti-hiv drugs containing the same
US7138488B2 (en) 2000-09-05 2006-11-21 Biokine Therapeutics Ltd. Polypeptides having anti-HIV activity and compositions comprising same
US7595298B2 (en) 2000-09-05 2009-09-29 Biokine Therapeutics Ltd. Polypeptides having anti-HIV activity and compositions comprising same
US8435939B2 (en) 2000-09-05 2013-05-07 Biokine Therapeutics Ltd. Polypeptide anti-HIV agent containing the same
US8410059B2 (en) 2002-08-27 2013-04-02 Biokine Therapeutics Ltd. CXCR4 antagonist and use thereof
US8455450B2 (en) 2006-12-21 2013-06-04 Biokine Therapeutics Ltd. Methods for obtaining a therapeutically effective amount of hematopoietic precursor cells and long term engraftment thereof
US8663651B2 (en) 2006-12-21 2014-03-04 Biokine Therapeutics Ltd. T-140 peptide analogs having CXCR4 super-agonist activity for immunomodulation
US8765683B2 (en) 2006-12-21 2014-07-01 Biokine Therapeutics Ltd. T-140 peptide analogs having CXCR4 super-agonist activity for cancer therapy
US9427456B2 (en) 2009-06-14 2016-08-30 Biokine Therapeutics Ltd. Peptide therapy for increasing platelet levels
US9439942B2 (en) 2012-04-24 2016-09-13 Biokine Therapeutics Ltd. Peptides and use thereof in the treatment of large cell lung cancer
US10786547B2 (en) 2015-07-16 2020-09-29 Biokine Therapeutics Ltd. Compositions, articles of manufacture and methods for treating cancer
US11607444B2 (en) 2015-07-16 2023-03-21 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11648293B2 (en) 2015-07-16 2023-05-16 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11642393B2 (en) 2015-07-16 2023-05-09 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11534478B2 (en) 2015-07-16 2022-12-27 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11554159B2 (en) 2015-07-16 2023-01-17 Blokine Therapeutics Ltd. Compositions and methods for treating cancer
US11559562B2 (en) 2015-07-16 2023-01-24 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11590200B2 (en) 2015-07-16 2023-02-28 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11596666B2 (en) 2015-07-16 2023-03-07 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US10682390B2 (en) 2015-07-16 2020-06-16 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11612638B2 (en) 2015-07-16 2023-03-28 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11638742B2 (en) 2015-07-16 2023-05-02 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US11638743B2 (en) 2015-07-16 2023-05-02 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
US10993985B2 (en) 2016-02-23 2021-05-04 BioLmeRx Ltd. Methods of treating acute myeloid leukemia
WO2020101032A1 (en) * 2018-11-16 2020-05-22 味の素株式会社 Method for producing cyclized peptide having intramolecular s-s bond
US11939404B2 (en) 2018-11-16 2024-03-26 Ajinomoto Co., Inc. Method for producing cyclized peptide having intramolecular S-S bond
JP7476798B2 (en) 2018-11-16 2024-05-01 味の素株式会社 Method for producing cyclized peptide having intramolecular S-S bond

Also Published As

Publication number Publication date
AU2001236065A1 (en) 2001-09-12

Similar Documents

Publication Publication Date Title
JP3266311B2 (en) Novel polypeptide and anti-HIV agent using the same
US9221871B2 (en) Methods for preparing internally constrained peptides and peptidomimetics
JP4926942B2 (en) Preparation method of eptifibatide
JPH06263797A (en) Biologically active cyclized polypeptide
SK742003A3 (en) Novel peptides as NS3-serine protease inhibitors of hepatitis C virus
TW201326200A (en) Peptidomimetic macrocycles
US20070123465A1 (en) Oligomeric peptides and their use for the treatment of hiv infections
JP2002530430A (en) Pharmaceutical composition for inhibiting hepatitis C virus NS3 protease
JP3178835B2 (en) Novel polypeptide and anti-HIV agent using the same
JP2002541156A (en) Chemokine-derived synthetic peptide
WO2022234853A1 (en) Cyclic compound having inhibitory effect selective for kras but not for hras and nras
WO2001064716A1 (en) Antiviral compounds
JPH08311098A (en) New peptides and interleukin 6 antagonistic agent containing the peptide
WO2006025536A1 (en) Anti-sars virus agent
RU2083589C1 (en) Polypeptides or their salts and pharmaceutical composition
EP1511765B1 (en) Par-2-activating peptide derivative and pharmaceutical composition using the same
US5786335A (en) Sulfhydryl containing peptides for treating vascular disease
CN113583088A (en) Cyclic peptide for treating gastric cancer and pharmaceutical composition thereof
US7655629B2 (en) Peptides and their use for the treatment of HIV infections
KR20130034701A (en) Biological stabilized par-2 activated peptide derivatives and pharmaceutical composition containing the same
US20030191278A1 (en) Cyclic pentapeptides and their preparation
WO2024013390A1 (en) Antiviral cyclic compounds
WO2023214576A1 (en) Cyclic compound having selective kras inhibitory effect on hras and nras
WO1995030694A1 (en) New opioid peptide analogs with mixed mu agonist/delta antagonist properties
WO2013075606A1 (en) Small molecule-polypeptide conjugate inhibiting hiv infection

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 564209

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase