WO2001063969A1 - Enregistreur antibruit - Google Patents

Enregistreur antibruit Download PDF

Info

Publication number
WO2001063969A1
WO2001063969A1 PCT/CN2001/000108 CN0100108W WO0163969A1 WO 2001063969 A1 WO2001063969 A1 WO 2001063969A1 CN 0100108 W CN0100108 W CN 0100108W WO 0163969 A1 WO0163969 A1 WO 0163969A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
noise
pickup
main cylinder
cylinder
Prior art date
Application number
PCT/CN2001/000108
Other languages
English (en)
French (fr)
Inventor
Ziyi Cheng
Original Assignee
Ziyi Cheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2000/000358 external-priority patent/WO2001058210A1/zh
Application filed by Ziyi Cheng filed Critical Ziyi Cheng
Priority to EP01905594A priority Critical patent/EP1261233A1/en
Priority to AU3358001A priority patent/AU3358001A/xx
Priority to AU2001233580A priority patent/AU2001233580B9/en
Priority to JP2001562057A priority patent/JP2003524355A/ja
Priority to US10/203,107 priority patent/US7194095B2/en
Priority to CA002399204A priority patent/CA2399204A1/en
Publication of WO2001063969A1 publication Critical patent/WO2001063969A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/01Electrostatic transducers characterised by the use of electrets

Definitions

  • the present invention relates to a sound pickup, and more particularly to a single and a combination of high-noise pickups with noise-proof pickups whose front and rear sound inlet openings are approximately the same or substantially perpendicular to each other.
  • X have disclosed in detail the electret anti-noise pickup and a combination type high anti-noise made on the basis of this pickup
  • the pickup has two parts, a main cylinder and a rear cylinder, which are combined with each other.
  • As a single anti-noise pickup it already has very good performance. In use, it not only has the characteristics of high signal-to-noise, but also does not lose good resistance in the higher frequency range.
  • the noise function meanwhile, enables the microphone to be directly mounted on an external device without a housing, making the structure light and convenient for assembly.
  • this single anti-noise electret pickup because its front and rear sound inlets are at two opposite positions of the front cover front wall and the rear cover rear wall of the main cylinder of the pickup, and one sound inlet is directly opposite At the position facing the main sound source, the other is at a position away from the main sound source, so when the pickup is more than 10 cm away from the main sound source, the sound wave arriving at this part is already close to the plane wave, so that the sound wave characteristics reaching the front and rear sound holes Phase The difference is large. Although the thickness of the main cylinder is reduced and the anti-noise effect is greatly improved, the anti-noise characteristics still cannot achieve satisfactory results.
  • the current non-noise-resistant electret pickup is because a non-acoustic signal receiving device such as an impedance conversion circuit is directly placed in the pickup, so that its thickness is relatively large.
  • the front and rear sound inlets are oriented substantially the same or approximately the same.
  • the anti-noise pickups that are perpendicular to each other, when two single anti-noise electret pickups or two single non-noise electret pickups are stacked, because of the anti-noise effect and frequency range and two single pickups
  • the distance of the sound receiving end of the main sound source has a direct relationship. The closer the distance is, the stronger the anti-noise effect and the higher the frequency range.
  • the thickness of the body can be reduced according to the design needs and the level of the manufacturing process at the time to reduce the thickness of the main cylinder of the sound receiving end to as small as 0.2 to 10 mm or even smaller and thinner, or thicker. .
  • the current non-noise-resistant electret pickups are relatively thick, and the sound between two single pickups enters the gap, which makes the distance between the sound receiving ends of the main sound sources of a single two pickups relatively long. To the required performance indicators.
  • the current non-noise-resistant electret pickup is because the sound inlet hole is provided on the front wall of the front cover, and the front and rear sound inlets of the present invention have substantially the same orientation or substantially perpendicular to each other.
  • a straight anti-noise pickup when two single non-noise-resistant electret pickups are used overlappingly, in order to allow sound waves to enter the sound inlet holes on the front wall of the front cover of the rear pickup, two A sound entry channel is set between the non-noise-resistant electret pickups, resulting in an increase in the distance between the two pickups.
  • the pickup of the present invention is to achieve the purpose of eliminating environmental noise by utilizing the difference between the main sound source and the ambient noise sound source and the pickup, it is a sound transmitting device that is very sensitive to the distance between the pickup and the main sound source.
  • the sound wave signal from a useful main sound source is rapidly attenuated, so it is necessary to timely issue a warning signal that the pickup is out of the receiving range, and a distance monitoring and amplification factor control circuit that automatically adjusts the amplification factor of the amplifier according to the distance between the two.
  • the object of the present invention is to provide an anti-noise pickup with front and rear sound inlets facing approximately the same or substantially perpendicular to each other, so as to overcome the lack of anti-noise capability of a single anti-noise pickup in the prior art in a harsh high noise environment. Defects.
  • Another object of the present invention is to provide an anti-noise pickup with the front and rear sound inlets facing approximately the same or substantially perpendicular to each other, in order to easily control the tolerances of parts when the above-mentioned patented products are mass-produced, so that the product qualification rate can be improved.
  • Another object of the present invention is to provide a pickup having the present invention.
  • Another object of the present invention is to provide a pickup having a sound inlet hole opened on the side wall of a non-noise-resistant pickup, so that the sound inlet hole is opened in the barrel in some cases.
  • the side wall is used, for example, when multiple non-noise-resistant pickups arranged in a row are used to form an anti-noise pickup, if the current sound inlet hole is used to open the non-noise-resistant pickup on the front wall of the front cover, the sound can enter the front of the rear pickup
  • the sound inlet hole on the front wall of the cover needs to leave a sound inlet channel between the front and rear pickups.
  • the sound inlet when used to open a pickup on the side wall of the non-noise-resistant pickup, the sound inlet can be eliminated. , So that the distance between the front and rear sound inlet holes of the anti-noise pickup composed of multiple non-noise-resistant pickups can be shortened. Of course, this kind of non-noise-resistant pickup can also be applied to a variety of other types that need to be used. Non-noise-proof pickup place.
  • Another object of the present invention is to provide a device and a device capable of monitoring whether an anti-noise pickup and a main sound source are out of a receiving distance range, and issuing a warning of exceeding the receiving distance range, and automatically adjusting an amplifier amplification factor according to the distance between the two and Circuit.
  • an anti-noise pickup which includes a main cylinder and a rear cylinder which are combined with each other, and is characterized in that a forward sound and / or a rear end of a side wall of the main cylinder have forward sounds respectively.
  • the hole and the rear sound inlet, the front and rear sound inlets face each other between 0 ° -135 °.
  • the outer main cylinder body includes a plurality of anti-noise pickup units and / or non-noise-resistant pickup units, and the front and / or rear ends of the side wall of the main cylinder body respectively have forward sound holes and rear sound holes, and forward and backward sounds.
  • the mouths face each other between 0 ° _135 °.
  • the forward sound hole and / or the backward sound hole respectively correspond to a corresponding side of the diaphragm.
  • the side wall of the main cylinder has forward sound holes, and / or the side wall of the main cylinder has backward sound holes.
  • the sound inlet of the pickup is opened on the side wall.
  • a sound collecting cover is provided on the outer wall of the main cylinder corresponding to the forward sound hole and / or the backward sound hole.
  • a tension membrane ring is provided in the main cylinder body, and a middle portion of the spacer is raised between the front gasket and the spacer gasket in front of the tension ring, and the middle portion of the spacer is raised into the tension ring.
  • the edge of the raised part is close to the inner edge of the membrane ring and forms a cavity between the diaphragm and the diaphragm.
  • the partition plate in the anti-noise pickup is placed within the inner edge of the stretch membrane ring, and there is a partition gasket between the diaphragm and the partition plate.
  • the acoustic structure in the anti-noise pickup from the two sides of the diaphragm to the front and rear sound inlet holes is approximately symmetrical.
  • the back pole in the main cylinder is penetrated from the back pole through hole in the back pole seat at the same level as the back pole, and is connected to its circuit part.
  • a sound wave guiding module and a sound tube are provided at the positions of the sound inlet holes in the main cylinder.
  • the circuit part of the anti-noise pickup is placed in the main cylinder or the rear cylinder.
  • the tension in the anti-noise pickup The conductive contact between the membrane ring and the housing of the microphone cylinder is arranged at the position of the rear cylinder.
  • it also includes a sound-activated switching circuit, which is composed of a detection circuit, a comparator circuit, and a switching circuit.
  • a pickup over-receiving distance alarm circuit is also included, which is composed of a comparator circuit.
  • it also includes a control circuit that adjusts the amplification factor of the amplifier according to the reception distance, which is composed of a window comparator circuit having a plurality of sections.
  • it also includes a circuit that performs two common mode suppressions of the two differential mode acoustic electric signals received by the pickup through a common mode suppression circuit.
  • the front and rear sound inlet holes are respectively provided on the side wall of the front cover of the main cylinder and / or the side wall of the rear cover of the main cylinder, and the direction of the main sound source on the side of the main cylinder is on the front cover of the main cylinder.
  • One side of the side wall and the other side of the rear cover side wall of the main cylinder are arranged back and forth, or the direction of the main sound source on the side of the main cylinder is on one side of the front cover side wall of one main cylinder and the other
  • the other side of the side wall of the front cover of a main cylinder is arranged back and forth.
  • the plurality of main cylinders are staggered, and the front and rear sound inlet holes are respectively provided on the side wall of the front cover of the main cylinder and / or the side wall of the main cover, with respect to the main sound source on the side of the main cylinder.
  • the direction is near the center of the side wall of the main cylinder front cover and / or the side wall of the main cylinder rear cover, or the direction of the main sound source on the side of the main cylinder is on the side wall of the main cylinder front cover and / Or the two sides of the side wall of the back cover are arranged back and forth.
  • the main advantage of this device is that it has multiple sound entry holes arranged side by side, and at least multiple sound entry holes corresponding to each other.
  • the sound inlet openings are oriented approximately the same (the range is 0 0 ⁇ 45 0 ), and is approximately vertical.
  • the front and rear sound inlet holes are oriented substantially the same or are approximately perpendicular to each other
  • the forward sound hole may be one or more
  • the backward sound hole may be one.
  • a plurality of forward sound holes and backward sound holes may be opened in front of the front wall of the front cover of the pickup, and the main sound source 38 on the extension line 40 of the center axis of the pickup may have an angle of forward sound holes and a rear sound hole.
  • Angle The angles between the angles are compared. The difference between the angles around "0 degrees” is called “the front and rear sound holes are roughly the same.” The difference is about 90 degrees. "Approximately perpendicular to each other”. The difference between the angles of the two front and rear sound inlet holes is approximately between 0 degrees and 130 degrees.
  • the noise treatment achieves the purpose of directional positioning reception.
  • the anti-noise pickups with the front and rear sound inlets facing the same or substantially perpendicular to each other can be applied to various places where low-noise pickups are needed.
  • the problem that the acoustic structure on the front and back sides of the diaphragm in the front cylinder cannot be roughly symmetrical is improved.
  • the shape and placement position of the partially raised partition plate 9 were modified.
  • the partition plate 9 was placed in a ring shape into the stretch membrane ring 11, and the outer edge of the partition plate 9 was close to the inner edge of the stretch film ring 11.
  • the back electrode and the back electrode are made into one body at the same time, and the back electrode is directly led out from the back pole seat to the inner rear cylinder.
  • the diaphragm in the front cylinder is The acoustical symmetry of the side is improved and the yield is improved during mass production.
  • FIG. 1 is a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 1A to 1C It is a sectional view taken along lines AA, B-B, and CC shown in FIG. 1, respectively.
  • Fig. 2 shows a cross-sectional view of an anti-noise pickup of the present invention
  • Figs. 2A and 2C are cross-sectional views taken along lines A-A, B-B, and C-C shown in Fig. 2, respectively.
  • Fig. 3 shows a cross-sectional view of an anti-noise pickup of the present invention
  • Figs. 3A-3C are cross-sectional views taken along lines A-A, B-B, and C-C shown in Fig. 2, respectively.
  • FIG. 4 shows a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 4A to 4B are cross-sectional views taken along lines A-A and B-B shown in FIG. 4, respectively.
  • Fig. 5 shows a cross-sectional view of an anti-noise pickup of the present invention.
  • 5A to 5C are cross-sectional views of lines A-A, B-B, and C-C shown in FIG. 5, respectively.
  • Fig. 6 shows a sectional view of an anti-noise pickup according to the present invention.
  • 6A to 6B are sectional views taken along lines A-A and B-B shown in FIG. 6, respectively.
  • Fig. 7 shows a cross-sectional view of an anti-noise pickup of the present invention.
  • 7A to 7B are a top view and a cross-sectional view taken along line A-A of FIG. 7, respectively.
  • Fig. 8 shows a cross-sectional view of an anti-noise pickup of the present invention.
  • 8A to 8B are cross-sectional views taken along lines A-A and B-B shown in FIG. 8, respectively.
  • FIG. 9 shows a cross-sectional view of an anti-noise pickup of the present invention
  • FIG. 9A is a cross-sectional view taken along the line A-A shown in FIG. 9.
  • Fig. 10 shows a cross-sectional view of an anti-noise pickup of the present invention.
  • 10A is a cross-sectional view taken along the line A-A shown in FIG. 10.
  • FIG. 11 shows a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 11A to 11C are cross-sectional views respectively taken along lines A-A, B-B, and C-C shown in FIG. 11.
  • Fig. 12 shows a cross-sectional view of a noise-proof pickup of the present invention
  • Figs. 12A and 12B are cross-sectional views taken along lines A-A and B-B shown in Fig. 12, respectively.
  • FIG. 13 shows a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 13A to 13C are cross-sectional views respectively taken along lines A-A, B-B, and C-C shown in FIG. 13.
  • FIG. 14 shows a cross-sectional view of an anti-noise pickup of the present invention
  • FIG. 14A to FIG. 14C is a sectional view taken along lines AA, BB, and C-C shown in FIG. 14, respectively.
  • Fig. 15 shows a cross-sectional view of an anti-noise pickup of the present invention
  • Figs. 15A to 15B are a top view and a cross-sectional view taken along the line A-A of Fig. 15, respectively.
  • Fig. 16 shows a cross-sectional view of an anti-noise pickup of the present invention.
  • 16A is a cross-sectional view taken along the line A-A shown in FIG. 16.
  • Fig. 17 is a sectional view showing a noise pickup of the present invention.
  • 17A is a cross-sectional view taken along the line A-A shown in FIG. 17.
  • FIG. 18 is a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 18A and 18B are cross-sectional views taken along lines A-A and B-B shown in FIG. 14.
  • FIG. 19 shows a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 15A to 15B are a top view and a cross-sectional view taken along the line A-A of FIG. 15, respectively.
  • Fig. 20 shows a cross-sectional view of an anti-noise pickup of the present invention.
  • 16A is a cross-sectional view taken along the line A-A shown in FIG. 16.
  • FIG. 21 to 21 are cross-sectional views of a non-noise-resistant pickup used in the present invention
  • FIG. 17A is a cross-sectional view taken along the line A-A shown in FIG. 17.
  • FIG. 22 shows a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 18A and 18B are cross-sectional views taken along lines A-A and B-B shown in FIG. 14.
  • FIG. 23 shows a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 18A and 18B are cross-sectional views taken along lines A-A and B-B shown in FIG. 14.
  • Fig. 24a shows a circuit diagram of a sound signal control switch of an anti-noise pickup of the present invention.
  • FIG. 24b shows a circuit diagram of a sound signal control switch of an anti-noise pickup of the present invention.
  • FIG. 24c shows a circuit diagram of a sound signal control switch of an anti-noise pickup of the present invention.
  • FIG. 25 shows an out-of-reception distance report of an anti-noise pickup of the present invention.
  • Police circuit
  • FIG. 26 shows a cross-sectional view of the anti-noise pickup of the present invention
  • FIGS. 26A-26C are cross-sectional views taken along lines A-A, B-B, and C-C shown in FIG. 26, respectively.
  • FIG. 27 shows a cross-sectional view of the anti-noise pickup of the present invention
  • FIGS. 22A-22C are cross-sectional views taken along lines A-A, B-B, and C-C shown in FIG. 22, respectively.
  • FIG. 28 shows a cross-sectional view of the anti-noise pickup of the present invention
  • FIGS. 28A-28C are cross-sectional views of lines A-A, B-B, and C-C shown in FIG. 28, respectively.
  • FIG. 29 shows a cross-sectional view of the anti-noise pickup of the present invention
  • FIGS. 29A-29B are cross-sectional views taken along lines A-A and B-B shown in FIG. 29, respectively.
  • FIG. 30 shows a cross-sectional view of the anti-noise pickup of the present invention
  • FIGS. 30A-30B are cross-sectional views taken along lines A-A and B-B shown in FIG. 30, respectively.
  • FIG. 31 shows a block diagram of an over-receiving distance alarm circuit of an anti-noise pickup of the present invention.
  • FIG. 32 shows a block diagram of an over-receiving distance alarm circuit of an anti-noise pickup of the present invention.
  • Figure 33a is a block diagram of a digital data acquisition common mode suppression system
  • Figure 33b is a block diagram of a digital data acquisition common mode suppression system
  • FIG. 34 shows a flowchart of a computer for over-receiving alarm of an anti-noise pickup used in the pickup of the present invention.
  • Fig. 35 shows a flowchart of a non-noise-resistant pickup used in the pickup of the present invention for an over-receiving distance alarm computer.
  • Fig. 36 shows an over-receiving distance alarm circuit of an anti-noise pickup used in the pickup of the present invention.
  • Fig. 37 shows a digital noise cancellation positioning receiving computer flow used in the pickup of the present invention.
  • Fig. 38 is a diagram showing an anti-noise pickup used in the pickup of the present invention.
  • a window comparator circuit with a plurality of sections that adjusts the amplification factor of the amplifier according to the reception distance.
  • Fig. 39 shows an amplifier circuit of an anti-noise pickup used in the pickup of the present invention to adjust the amplification factor of the amplifier according to the reception distance.
  • Fig. 40 shows a cross-sectional view of an anti-noise pickup of the present invention.
  • Figure 41 shows the flow of a digital noise canceling computer used in the pickup of the present invention.
  • Fig. 42 is a block diagram showing a noise canceling circuit used in the pickup of the present invention.
  • FIG. 43 shows a cross-sectional view of an anti-noise pickup used in the present invention
  • FIG. 43A is a cross-sectional view taken along the line A-A shown in FIG. 43.
  • Fig. 44 shows a cross-sectional view of an anti-noise pickup used in the present invention
  • Fig. 44A is a cross-sectional view taken along the line A-A shown in Fig. 44.
  • FIG. 45 shows a cross-sectional view of an anti-noise pickup used in the present invention.
  • FIG. 1 is a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 1A to 1C are cross-sectional views respectively taken along lines AA, BB, and CC shown in FIG. 1.
  • the electret anti-noise pickup of the present invention has a cylindrical shell, which is formed by combining the inner side wall 1 and the inner rear cylinder 20, and the front part of the inner cylinder side wall 1 has a front cover front wall 2 and a rear part.
  • the shell can also adopt various other shapes such as a square, a rectangle, an oval, and the like, as required.
  • the outer diameter of the inner cylinder side wall 1 can be between 0.2-55 mm, and the height can be between 0.2-50 mm, which can be determined according to the test.
  • An anti-noise pickup unit is placed in the main cylinder. This unit can be composed of the following components: First, one or more forward sound holes 4 and rear sound holes are provided at each of the front and rear ends of the inner cylinder side wall 1 of the housing.
  • a sound collecting hood 19 is provided on the outer side wall of the inner cylinder side wall 1 corresponding to the front and rear sound inlet holes 4, 4a, and surrounds the inner cylinder
  • the inner wall of the forward sound hole 4 and the rear sound hole 4a of the body side wall 1 is provided with a front damping film 5, a rear damping film 5a, and a front damping film pressing sheet 6, a rear damping film pressing sheet 6a. It is placed in the cavity between the damping membrane pressing pieces 6, 6a and the inner cylinder side wall 1.
  • This damping membrane can also be placed in the inner main cylinder in other parts before and after the diaphragm, as well as It can be placed outside the sound inlet hole.
  • the diaphragm 12 which is close to the spacer gasket 10 and the stretcher ring 11 can be placed near the center position of the side wall 1 of the inner cylinder.
  • the diaphragm 12 can also be placed near the front wall of the front cover or the rear according to the design requirements. Cover the position on the back wall.
  • a raised spacer 9 is placed in the middle portion, and the intermediate portion of the spacer 9 is raised into the stretcher ring 11, and the edge of the raised portion is A cavity is formed between the diaphragm gasket 10 and the inner edge of the tension membrane ring 11 and the diaphragm 12. In this way, the rear surface of the partition plate 9 is close to the front surface of the diaphragm 12, but there is a certain distance from the front surface of the diaphragm 12.
  • the separation distance between the rear surface of the diaphragm 9 and the front surface of the diaphragm 12 and the distance between the rear surface of the diaphragm 12 and the front surface of the back pole 15 may be approximately the same as required.
  • the rear surface of the diaphragm 9 and the diaphragm 12 The distance between the front surfaces should be determined by the acoustic characteristics of the front and back sides of the diaphragm 12, so that the time for the sound entering from the sound entry ends of the front and rear sound entrance holes 4, 4a to reach the front and back sides of the diaphragm 12 is approximately equal.
  • the acoustic characteristics on both sides of the membrane 12 are approximately the same.
  • the front gasket 8, the partition plate 9, and the partition gasket 10 can be made of conductive or non-conductive metal or non-metal material according to the design requirements. If the partition plate 9 is made of a metal material, the partition plate can be made. 9 and the membrane ring 11 are in close contact to conduct electricity, and the two can also be insulated by a non-metal material, and at the same time play a role of making the two in close contact.
  • the thickness of the protruding portion of the partition plate 9 is substantially equal to the thickness of the back electrode 15 and may not be equal. In order to make the two thicknesses approximately equal, the front surface of the partition plate 9 may be flat, or may be convex or concave toward the diaphragm 12.
  • the shape and thickness of the spacer gasket 10 can also be adjusted according to the principle that the acoustic characteristics on both sides of the diaphragm 12 are approximately the same.
  • the shape of the back surface of the back pole facing the rear wall and the spacer 9 facing the front cover can be adjusted.
  • the front shape in the direction of the front wall is similar, so that the thickness of the back pole is close to the thickness of the convex portion of the partition plate 9 and so on.
  • the size, number, and placement position of the two can be symmetrical to each other or asymmetrical.
  • the spacer gasket 10 can be placed between the front of the stretch membrane ring 11 and the edge of the outer non-convex portion of the spacer 9 protruding in the middle part as shown in FIG. 1, or it can be placed within the inner edge of the stretch membrane ring
  • a cavity is formed between the diaphragm 12 and the middle convex portion of the partition plate 9, so that a cavity is formed between the diaphragm 12 and the middle convex portion of the partition plate 9 and the inner edge of the partition plate 9 9 can also be placed in other places according to the design requirements, as long as it can play a role in separating the diaphragm 12 and the middle convex portion of the partition 9 from a certain distance, so that the distance between the diaphragm 12 and the partition 9 is determined by The thickness of the spacer gasket 9 is determined.
  • the inside edge of the corresponding back electrode spacer washer 13 may also extend inwardly to a position corresponding to the inside edge of the partition pad 9.
  • a forward sound hole 4, a rear sound hole 4 a and a front damping film pressing piece 6 and a rear damping film pressing piece 6 a are provided at the front end of the inner cylinder side wall 1 to place a front acoustic wave guiding module 7 and a rear acoustic wave guiding module 7 a.
  • front and rear sound pipes 27, 27a in the front and rear sound wave guide modules 7, 7a also can be made into a sound groove, a sound plate Etc.
  • the front and rear sound pipes 27, 27a It can also point in other directions according to the design requirements.
  • a partition front cavity is formed between the inner surface of the acoustic wave guiding module 7, the inner wall of the front gasket 8, and the front surface of the partition 9 16.
  • the diaphragm 12 forms a diaphragm front cavity 17 between the stretch membrane ring 11 provided around the inner wall of the inner cylinder side wall 1 and the rear surface of the partition plate 9, so that sound waves pass through the outer side wall of the inner main cylinder body.
  • the condenser cover 19 enters the forward sound hole 4, the front damping 5, the front damping membrane pressing sheet 6, and the sound tube 27 in the sound wave guiding module 7 enters the front cavity 16 of the partition and passes through the partition hole on the partition 9.
  • the cavity 18 before entering the diaphragm acts on the diaphragm 12 from the front of the diaphragm 12.
  • one or more inner main cylinder rear sound inlet holes 4a are provided at the rear end of the inner cylinder side wall 1 so that sound waves can pass through the main cylinder side wall.
  • the outer condenser hood 19 enters the rear entrance hole 4a, the rear damping film 5a, the rear damping film pressing piece 6a, and the rear acoustic tube 27a in the rear acoustic wave guide module 7a.
  • the sound wave propagates in the direction of the diaphragm.
  • the back pole cavity 16a formed between the back surface of the back pole 15 and the front surface of the acoustic wave guide module 7a and the back surface of the back pole seat 14 passes through the back pole hole 18a in the back pole 15 to the back pole spacer 13.
  • the diaphragm 12 acts on the diaphragm 12 from the back of the diaphragm 12.
  • the acoustic wave guiding module can be made of metallic materials or non-metallic materials. It can be made of the same material as the damping film tablet, or it can be made of different materials. It can be made in one piece or made of separate pieces. Can decide whether to use the acoustic guidance module according to the design requirements.
  • the acoustic characteristics of the two acoustic wave channels between the diaphragm and the two initial sound entrance holes from the beginning of the sound wave signal to the pickup are approximately the same (or may be different), and the mechanical structure is used to make the sound waves reach
  • the phase of the two acoustic signals of the diaphragm is approximately 180 degrees out of phase. A better common mode suppression effect can be achieved on the diaphragm, and the differential mode signal is extracted to eliminate noise.
  • the electret anti-noise pickup Condenser 19 sound inlet holes 4, 4a of the inner main cylinder side wall, front sound wave guide module 7, rear sound wave guide module 7a, sound wave guide module 7, 7a, front damping film 5, rear damping film 5a ,
  • the inner rear cylinder 20, the inner rear cylinder fixing device 26, and its working principle, structure, materials used and circuits are all the same as the existing patents and patents of the present inventor The application is the same as the existing anti-noise pickup, so the description is omitted.
  • the opening of the condenser hood 19 can be oriented toward the main sound source (or other directions).
  • the opening direction of the sound wave entrance of each condenser hood 19 should be approximately the same. Of course, it can be changed to not exactly the same direction according to the design requirements.
  • 19 Collect and guide the sound waves from the main sound source into the sound inlet holes 4, 4a, and at the same time weaken the sound entering from other directions. It can be greater than, equal to, and smaller than the external dimensions of the sound inlet holes 4, 4a.
  • the condenser hood 19 is used to change the orientation of the sound inlet holes 4, 4a of the inner main cylinder, so that the front and rear sound wave inlets have approximately the same orientation, so that the phase of the sound waves entering the front and rear sound wave inlets is approximately the same, and the sound waves entering the pickup pass.
  • the mechanical (or electronic) method is used to perform phase shifting, so that the phase of the sound waves entering from the front and rear sound wave entrances is about 180 degrees different. In this way, the mechanical (or electronic) method is used to perform common mode suppression, and the differential mode signal is extracted to resist noise.
  • the various types of electret anti-noise pickups of the present invention can decide whether to use the condenser 19 outside the sound inlet hole according to the design requirements, whether to use all the sound inlet holes or part of the sound inlet holes, according to the design requirements.
  • the positions of the sound inlets of the various types of pickups of the present invention and the condenser hood 19 may be symmetrical to each other or asymmetrical to each other.
  • the orientations of the respective condenser hoods 19 may be the same or different.
  • the front condenser hood 19 The front centerline 32 and the extension line of the rear centerline 32a of the rear condenser 19 may be on the same line segment, or on different line segments.
  • the front centerline 32 and the rear centerline 32a may be on the same line segment. They may be parallel to each other, or may have a certain angle, and the front centerline 32 and the rear centerline 32a may be parallel to the center axis of the inner main cylinder, or may have a certain angle.
  • the condenser hood 19 can be (1) the sound inlet holes 4, 4a opened on the side wall 1 of the inner cylinder as shown in FIG. 1 are not oriented toward the sound source, but they are still oriented Same direction. (2) As shown in FIG.
  • the sound inlet hole may be partially opened on the front wall 2 of the front cover toward the direction of the main sound source, and the other part is opened on the side wall of the side wall 1 of the inner cylinder, and the direction is substantially perpendicular to the main sound source.
  • the anti-noise performance is worse than using the condenser hood 19, and the opening of the condenser hood 19 can be oriented toward the main sound source, the effect is worse, but it is significantly stronger than when the sound inlet hole is opened on the front wall of the front and rear covers.
  • the anti-noise effect can still achieve a relatively satisfactory effect, so the condenser hood 19 can decide whether to use it or not according to the design requirements.
  • Outer rear cylinder, outer main cylinder, inner main cylinder support frame 31, inner main cylinder, inner rear cylinder 20, rear cylinder 20a, condenser 19, front and rear sound wave guide modules 7, 7a, sound inlet 4, 4a, sound tube 27, 27a, partition 9, partition 18, front gasket 8 and other internal and external shapes can be shaped, rectangular, circular, cylindrical, rectangular, triangular, diamond, Various basic shapes such as polygons, sectors, ellipses, and various arcs, such as parabola, arc, etc., as well as geometric function curves, as well as some curve segments in them, can also be various basic shapes.
  • the complex shape formed by the combination of shapes can be a simple monomer of a single shape, or a complex formed by the combination of monomers of various shapes, etc. It can be a whole or a part of the whole.
  • Metal can be used according to the design needs Materials can also be made of non-metallic materials or composite materials formed by combining the two with each other.
  • the inner main cylinder and the inner rear cylinder 20 may be straight or curved.
  • the length and width of the side wall 1 of the inner cylinder body may be between 0.2 to 50 mm, and generally between 1 to 15 mm.
  • the acoustic wave guide modules 7, 7a can be integrated with the damping film pressing plates 6, 6a, or they can be separate. The same material or different materials can be used. Metal materials or non-metal materials can be used. A material formed by combining the two with each other. In order to achieve the cardioid direction directivity, the back pole cavity 16a may be filled with a damping material.
  • the damping material is used to adjust the transmission speed of the sound waves, so that the sound waves entering from the front and rear sound inlet holes can reach both sides of the diaphragm 12 at the same time. This allows the two sound waves to be properly coupled to each other in order to eliminate noise. If it is a figure 8 direction directivity, the damping material (referred to as: damping material A) that reduces the sound wave transmission speed may not be filled, and the type and amount of the filled damping material A can be determined through experiments according to specific requirements.
  • Non-metal materials such as non-woven fabrics can also be made of metal materials such as wire mesh or materials formed by a combination of metals and non-metals, and various synthetic materials such as various synthetic materials (referred to as: damping material B).
  • damping material B The purpose is to reduce the damping membrane that is added during the use of the pickup because the gas exhaled from the mouth blows on the diaphragm 12 during breathing.
  • the material and the principle of use and the sound inlet hole usually on the housing of the electret pickup.
  • the front-mounted damping membrane is the same.
  • the diaphragm 12 can be put into the casing in order not to damage the diaphragm 12 and affect the pickup performance.
  • the damping film 5 can be made of various damping materials such as damping felt or damping non-woven fabric.
  • the damping film 5 and 5a can be used according to the design requirements. For example: Put the pickup on the microphone The damping film may not be placed in the microphone in the casing. If the casing is not installed outside and the microphone of the present invention is used alone, it can be decided whether to put it in the microphone according to needs.
  • the back pole base 14 can be made of an insulating material or the like.
  • Impedance conversion circuit 21 can be a composite field effect tube, it can also be an integrated circuit, or it can be other Various circuits
  • printed circuit board 23 wiring electrode 24, etc. are placed in the inner rear cylinder, so that it faces the direction of the sound source
  • the distance between the front and back two sound inlet holes of the side wall of the inner main cylinder of U rn, can be made very close according to the needs, to achieve higher noise resistance in higher frequency bands.
  • the inner rear cylinder can also be used as a part directly connected to the microphone stand, which can save the use of a microphone housing.
  • a fixing device 26 is made on the outside of the inner rear cylinder 20, and a fixing device 26 that is connected to the external device can be made on any part of the inner rear cylinder 20, Various shapes such as protruding outward from the wall of the cylinder, or recessed, etc. are possible.
  • the fixing device 26 shown in FIG. 1 is recessed. Inside the rear cylinder is placed the front inner support block 22 and the rear inner support block 25 of the rear cylinder.
  • the back electrode holder 14 and the support block have back electrode 15a through holes 28, and back electrode 15a through the holes 28 through the inside.
  • the side of the main cylinder enters the inner rear cylinder.
  • the back electrode 15a penetrates the back electrode electrode through hole 28 in the back electrode holder 14 at the same level as the back electrode 15, and it can be integrated with the back electrode 15 or it can be a separate electrode.
  • the electrode 15a is connected to a pin of the composite field-effect tube 21 (which may also be an integrated circuit). Circuit components such as the composite field-effect tube 21 are mounted on the printed circuit board 23. The output pins 24 and The peripheral circuit is connected.
  • the lead wire "back electrode 15a" of the back pole may also be directly led through the rear wall 3 or the wall of the inner rear cylinder 20, and the back electrode lead 15a may be integrated with the back pole or may be divided. Physical.
  • the circuit part can also be installed in the rear cylinder according to the design requirements, or the circuit part can be installed elsewhere outside the pickup without being installed in the inner main cylinder or the inner rear cylinder.
  • the inner rear cylinder 20 may be cylindrical or other shapes, and its diameter (or cross section, the same below) may be greater than, equal to, or smaller than the diameter of the inner cylinder side wall 1, that is, the inner cylinder side wall 1 of the pickup. The diameter can be the same or different.
  • the inner rear cylinder 20 can be installed in any part of the inner main cylinder according to design requirements, as long as it does not prevent sound waves from entering the forward sound hole 4 and the rear sound hole 4a, it can be oriented in any direction.
  • the diaphragm 12 may be made of FEP50A (a copolymer of polytetrafluoroethylene and polyhexafluoroethylene) or a polyester film according to whether the electret is on the diaphragm 12 and the vibration performance of the diaphragm 12, whether it is a non-metallic material. 5 ⁇ ⁇ Or a metal material or a composite material formed by the combination of the two, etc. can be used for the thin film of various materials, the thickness of which can be determined according to the test, such as the thickness is equal to, greater than or less than 12. 5 microns or so. There may be a metal layer on the diaphragm 12.
  • FEP50A a copolymer of polytetrafluoroethylene and polyhexafluoroethylene
  • a polyester film according to whether the electret is on the diaphragm 12 and the vibration performance of the diaphragm 12, whether it is a non-metallic material. 5 ⁇ ⁇
  • the inner cylinder side wall 1, the front cover front wall 2, the rear cover rear wall 3, the inner rear cylinder 20 and the condenser hood 19 can be made of metal materials such as stainless steel, copper, aluminum, etc. A metal material or a composite material formed by combining the two with each other. For other parts of this pickup, you can refer to the structure and materials used for electret anti-noise pickups using various types of first-order or multi-order air-conducting electrets with cardioid or figure-eight directivity.
  • Inner cylinder side wall 1, front cover front wall 2, inner rear cylinder 20, rear cover rear wall 2 and condenser hood 19 can be separately manufactured and connected to each other as shown in the figure, or they can be made into a composite body after each other combination. Similarly, the internal components can also be manufactured separately and combined, or combined into a composite body.
  • FIG. 2 shows a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 2A to 2C are cross-sectional views respectively taken along lines AA, B-B, and C-C shown in FIG. 2.
  • FIG. 2 and FIG. 1, FIG. 1A and FIG. 1C that the difference is that the back electrode 15 a bypasses the back electrode holder 14 from the outside of the back electrode holder 14, and the sound tube 27 a is connected behind the inner main cylinder.
  • the impedance conversion circuit 21 and the printed circuit board 23 (the impedance conversion circuit 21 and the printed circuit board 23 can also be placed on the inner rear cylinder connected behind the inner cylinder side wall 1 FIG.
  • FIG. 3 shows a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 3A to 3C are cross-sectional views respectively taken along lines AA, BB, and CC shown in FIG. 2.
  • the difference lies in that: the partition plate and the partition plate are eliminated in front of the diaphragm 12, and the sound waves entering from the condenser 19 and the forward sound hole 4 pass through the front damping.
  • the membrane 5, the front damping membrane pressing sheet 6, is guided by the acoustic wave guide module 7, and the sound tube 27 on the acoustic wave guide, so that the direction of sound wave propagation is changed to approximately the direction of the diaphragm, and directly enters the front cavity 17 of the diaphragm.
  • the front surface of the diaphragm 12 causes the diaphragm to vibrate.
  • the circuit part is placed in the cylinder, so the rear part of the back electrode 15 must be modified accordingly.
  • the back electrode 15a does not pass through the back electrode passage hole 28 on the back electrode base 14.
  • the side wall of the inner main cylinder body enters the inner rear cylinder body, but directly enters the rear part of the pickup, and is connected to the impedance conversion circuit 21, and the printed circuit board 23 is also in the cylinder body 1.
  • This is actually adding an existing anti-noise pickup to the sound inlet holes 4, 4a of the side wall of the inner main cylinder, the front acoustic wave guiding module 7, the rear acoustic wave guiding module 7a, the front damping film 5, and the rear damping film 5a.
  • the anti-noise pickup with the front and rear sound inlets of the present invention oriented substantially the same or substantially perpendicular to each other.
  • the most basic requirement of the present invention is to set the openings of the front and rear sound inlet holes 4 and 4a on the side wall of the inner main cylinder, instead of setting the rear opening on the rear wall of the rear cover like the current various anti-noise pickups. .
  • FIG. 4 shows a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 4A to 4B are cross-sectional views taken along lines A-A and B-B shown in FIG. 4, respectively.
  • the difference is that the forward sound hole 4 is not opened on the side wall of the side wall 1 of the inner cylinder, but is opened on the front wall 2 of the front cover.
  • the sound collecting hood 19 outside the forward sound hole 4 can be eliminated.
  • the most basic requirement of the present invention is to set the opening of the back sound hole 4a on the side wall of the inner cylinder side wall 1, instead of the back sound hole 4a like the existing various anti-noise pickups.
  • the opening is provided on the rear wall of the rear cover, and then the sound collecting cover 19 is added outside the rear sound hole 4a, and the opening direction of the sound collecting cover 19 and the forward sound hole opening are substantially the same.
  • Fig. 5 is a sectional view showing an anti-noise pickup of the present invention.
  • 5A to 5C are cross-sectional views of lines A-A, B-B, and C-C shown in FIG. 5, respectively.
  • the rear cylinder 20a of the electret pickup of the present invention is a complete support cylinder, which can be used as the main cylinder in two or more single pickups (fig. In the middle is a common rear cylinder of two single pickups, the upper electret pickup 29 and the lower electret pickup 30). Therefore, the inner main cylinder and the lower electret of the rear cylinder 20a and the upper electret pickup 29 are common.
  • the inner main tube system of the polar pickup 30 is made into one device.
  • the rear cylinder 20a may be made of a metal such as a stainless steel material, a copper material, or an aluminum material, or a non-metal material such as plastic or a composite material.
  • the shape of the rear cylindrical body 20a may be substantially the same as or different from the shape of the inner rear cylindrical body 20 of Fig. 1.
  • the present invention uses a common-mode signal suppression circuit to take out the differential-mode signals received by the two pickups to eliminate noise, etc.
  • the common-mode signal suppression circuit 32 can be placed in the rear cylinder 20a, or it can be placed. Elsewhere.
  • each single electret pickup (such as the inner main cylinder of the upper electret pickup 29 and the inner main cylinder of the lower electret pickup 30) (the central axis formed by the extension of the central line) ) They can be on the same central axis, or on different central axes. When they are on different central axes, each central axis can be parallel to each other or at a certain angle.
  • the distance between each single electret pickup of the present invention and the main sound source must be different.
  • the main cylinder (such as the inner cylinder side wall 1 and the lower electret of the upper electret pickup 29) in every two electret anti-noise pickups.
  • the front-rear distance between the front sound-receiving end (front cover front wall 2) and the front-wall sound inlet hole 3 of the inner cylinder side wall 1) of the body pickup 30 is determined according to design requirements, for example: can be in the range of 0.1- 200 mm or more If it is smaller than this, it can be determined according to the test, and it is usually between 1-20 mm.
  • the inner main cylinder of each electret pickup can be put into the outer main cylinder to play the role of protection and support, and multiple outer electret pickups can also use one outer main cylinder together.
  • the inner main cylinder of multiple electret anti-noise pickups (such as the inner main cylinder of the upper electret pickup 29 and the inner main cylinder of the lower electret pickup 30) can be supported by the inner main cylinder support 31 They can be connected and fixed to each other, or the inner main cylinder and the outer main cylinder 33 (see FIG. 11) can be connected and fixed to each other to strengthen the fixing.
  • the front gasket 8 can be used in regular or irregular deformed square, rectangular, circular, rectangular, triangular, diamond shapes according to design requirements and actual needs.
  • Polygonal, fan-shaped, various arc shapes such as: arcs of elliptic parabolic curved surfaces, etc., and various basic shapes, can also be complex shapes formed by the combination of various basic shapes, can be a simple single shape, or it can be Various shapes
  • the various forms of the three-dimensional structure (also a hollow three-dimensional structure) formed by a single combination of various tubes, grooves, balls, plates, blocks, etc. can be a whole or a part of the whole
  • the shape and installation position of this outer rear cylinder, outer main cylinder, inner main cylinder support, inner rear cylinder and outer rear cylinder cannot affect each electret pickup.
  • the inner rear cylinder and the outer rear cylinder can be integrated or independent of each other. Depending on the design requirements, all can be used at the same time, or some of them can be selected. .
  • acoustic characteristics of the two acoustic wave channels between the two inner main cylinders 29 and 30 that reach each other and reach the two acoustic wave channels between the diaphragms are substantially the same (or may not be completely the same), and the phase is approximately Similarly, common mode suppression can be performed by a common mode suppression circuit to extract a differential mode signal to eliminate noise.
  • the outer main cylinder 25 may be provided with anti-vibration washers 36 or anti-vibration pads 37 for anti-vibration isolation.
  • the individual pickups and pickup components in the present invention can also adopt various existing various types of anti-noise pickups or non-noise-resistant pickups, such as: electret pickups, moving group pickups, electromagnetic pickups, piezoelectric ceramic pickups , Semiconductor pickups, etc.
  • the main cylinder of various types of anti-noise pickups in the aforementioned patents and patent applications of the inventor may be used. And the existing various anti-noise pickups are made into a new combined high anti-noise pickup.
  • Fig. 6 is a sectional view showing an anti-noise pickup of the present invention.
  • 6A to 6B are sectional views taken along lines A-A and B-B shown in FIG. 6, respectively.
  • FIG. 6 and FIG. 5 and FIG. 5A to FIG. 5C that the difference lies in that: the rear sound hole 4a, in the inner main cylinder of the upper electret pickup 29 and the inner main cylinder of the lower electret pickup 30,
  • the rear damping film pressing piece 6a, the rear acoustic wave guiding module 7a, and the rear acoustic tube 27a in the rear acoustic wave guiding module 7a are removed, and the inner main cylinder of the upper electret pickup 29 and the inner of the lower electret pickup 30 are retained.
  • Forward sound hole in main cylinder 4, front resistance Nimbrane pressure sheet 6, the front acoustic wave guide module 7, and the front acoustic tube 27 in the acoustic wave guide module 7, are made of non-noise-resistant pickups in the main cylinder with an upper electret pickup 29
  • the inner main cylinder and the lower electret pickup 30 are made of non-noise-resistant pickups in the main cylinder with an upper electret pickup 29
  • the inner main cylinder and the lower electret pickup 30 eliminate noise through a common mode suppression circuit, and the anti-noise pickup combination is made with the front and rear sound inlets facing approximately the same or approximately perpendicular to each other. High anti-noise pickup.
  • the inner main cylinder of the upper electret pickup 29 and the inner main cylinder of the lower electret pickup 30 can be made into a single inner main cylinder as required, instead of two inner main cylinders.
  • Fig. 7 is a sectional view showing an anti-noise pickup of the present invention.
  • 7A to 7B are a top view and a cross-sectional view taken along line A-A of FIG. 7, respectively.
  • FIGS. 7 and 6 and FIGS. 6A to 6B the difference is that the inner main cylinder of the upper electret pickup 29 of the main cylinder of the non-noise-resistant pickup and the inner part of the lower electret pickup 30
  • the main cylinder is placed in the front and rear sides, and the front and rear sound inlet holes 4 and 4a are on the side wall 1 of the inner cylinder (although the front wall 2 should be the front cover 2 opposite to the diaphragm 12, but because it is two
  • the pickups are placed sideways from front to back, so that the front and back sides of the barrel of each of them form a front and rear wall, so their front cover 2 forms the side wall of the barrel 1), and the condenser 19 is placed in the sound inlet hole 4 Outside, the openings point in the same direction.
  • an inner main cylinder support frame 31 may be placed according to design requirements.
  • the inner main cylinder support frame 31 may be made of metal or non-metal material.
  • the inner main cylinder support frame 31 is made of a non-metallic material, and when electromagnetic shielding is required between the inner main cylinder of the upper electret pickup 29 and the inner main cylinder of the lower electret pickup 30, a metal material may be used.
  • the formed main body supports the shielding frame 31a, which can be a metal sheet or a metal sheet.
  • the main cylinder support frame 31 in the metal plating layer is a metal plating layer or the like on a non-metal material. It can be made into a single main cylinder or two main cylinders.
  • the non-noise-resistant pickup structure (if the pickup structure shown in FIG. 18), which is currently commonly used and puts the pickup part and the circuit part together in a main cylinder, can be made into a combined high-noise pickup with front and back Instead of using a pickup made of two parts, the main cylinder and the inner rear cylinder, as shown in the figure.
  • Fig. 8 is a sectional view showing an anti-noise pickup of the present invention.
  • 8A-8B are cross-sectional views taken along lines A-A and B-B shown in FIG. 9, respectively. It can be seen from Figure 8 and Figures 6 and 6A to 6B that the differences are: Because there is no inner rear cylinder, the circuit part is placed in the main cylinder, so the rear part of the back pole 15 must be modified accordingly.
  • the back electrode 15a does not pass through the back electrode passage hole 28 on the back electrode holder 14 and enters the inner rear cylinder through the side of the inner main cylinder, but directly into the rear of the pickup, and is connected to the impedance conversion circuit 21 and the printed circuit board.
  • the front acoustic wave guide module 7 and the front sound tube 27 are added. Multiple identical sound pickups of the existing non-noise-resistant pickups can be installed in one cylinder. And circuit part, in front of the pickup part of each electret pickup, an inner main cylinder side wall sound inlet hole 4 a front sound wave guide module 7 a front damping film 5 and a condenser cover 19 can be added to make this sound entry hole opening Combined anti-noise pickups all facing the same direction.
  • Fig. 9 is a sectional view showing an anti-noise pickup of the present invention.
  • 9A is a cross-sectional view taken along the line A-A shown in FIG. 9.
  • the difference lies in that: the placement direction of the inner main cylinder of the upper electret pickup 29 of the main cylinder of the non-noise-proof pickup is changed to the front, and the sound is received
  • the hole 4 is on the front wall 2 of the front cover facing the front, and the condenser hood 19 is placed outside the sound inlet hole 4 on the side of the inner main cylinder of the lower electret pickup 30, and the openings face the same direction.
  • Upper electret pickup 29 and lower electret pickup 30 The inner main cylinder support frame 31 can be placed therebetween according to design requirements. It can be made into a single main cylinder or two main cylinders.
  • the non-noise-resistant pickup structure (such as the pickup structure shown in FIG. 18) in which the pickup part and the circuit part are commonly used together in a main cylinder can be made into a combined high-noise pickup with front and rear placement. Instead of using a microphone with a main cylinder and an inner rear cylinder as shown in the figure.
  • Fig. 10 is a sectional view showing an anti-noise pickup of the present invention.
  • 10A is a cross-sectional view taken along the line A-A shown in FIG. 10.
  • the main cylinder body of the lower electret pickup 30 which is a non-noise-resistant microphone main body is placed in the front direction instead.
  • the sound hole 4 is on the front wall 2 facing the front cover, and the condenser hood 19 is placed outside the sound inlet hole 4a on the side of the inner cylinder side wall 1 of the lower electret pickup 30.
  • the opening and the upper electret pickup 29 are The condenser hoods 19 face the same direction.
  • An inner main cylinder support frame 31 may be placed between the upper electret pickup 29 and the lower electret pickup 30 according to design requirements.
  • a rear acoustic wave guide module 7a is placed in front of the sound inlet hole 4 of the lower electret pickup 30, and there is a rear acoustic tube 27a of the rear sound wave guide module 7a from the sound inlet hole 4a to the sound inlet hole 4.
  • the non-noise-resistant pickup structure (if the pickup structure shown in FIG. 18), which is commonly used and puts the pickup part and the circuit part together in a main cylinder, can also be made into a combined high-noise pickup with front and rear placement. Instead of using a pickup made of two parts, the main cylinder and the inner rear cylinder, as shown in the figure. It is also possible to switch the front and rear positions of the upper electret pickup 29 and the lower electret pickup 30 to a new embodiment.
  • the inner main cylinder of the upper electret pickup 29 and the lower electret pickup 30 of FIG. 5 to FIG. 10 can also be designed as two separate main cylinder shells, or Designed as a shared inner main cylinder shell, the components in the inner main cylinder of the original upper electret pickup 29 and the lower electret pickup 30 are placed at the front and rear of the shared inner main cylinder casing, respectively.
  • the inner main cylinder support frame 31 placed inside the shared inner main cylinder shell is used for isolation, on the one hand, it can isolate the sound waves, and on the other hand, it can keep the two front and rear sound receiving parts. A certain distance and the role of the connection support.
  • the inner main cylinder support frame 31 may be integrated with the rear acoustic wave guide module 7a of the front pickup and the front acoustic wave guide module 7 of the rear pickup as required, or may be made as a separate body.
  • the inner main cylinder support frame 31 may It can be made of materials with sound damping effect according to needs, and it can also be made of other various materials. Various suitable shapes can be adopted according to design requirements.
  • FIG. 11 shows a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 11A to 11C are cross-sectional views respectively taken along lines A-A, B-B, and C-C shown in FIG. 11. It can be seen from the comparison between FIG. 11 and FIG. 1 and FIG. 1A and FIG. 1C that the difference is that: the outer main cylinder 33 and the outer rear cylinder 34 are used, and the brackets are used in the aforementioned patents and patent applications of the inventor.
  • Various types of anti-noise pickups are used.
  • the inner rear cylinder 20 of the high-noise pickup and the inner rear cylinder inserted into the outer rear cylinder 34 are inserted into the insertion holes 35, and the inner main cylinder of each anti-noise pickup is placed in the outer main cylinder 33 back and forth, respectively. Outside the forward sound hole 4 and the backward sound hole 4a of the body side wall 1, sound wave guide modules 7, 7a and sound passage pipes 27, 27a in the sound wave guide modules 7, 7a are placed.
  • shockproof washers 36 and shockproof pads between the outer main cylinder body 33, the inner main cylinder support frame 31, the sound wave guiding modules 7, 7a and the inner cylinder side wall 1, the front cover front wall 2, the rear cover rear wall 3 37 is used for anti-vibration isolation, and an anti-vibration gasket 36 may be used between the inner rear cylinder 20 of the electret pickup and the inner wall of the inner rear cylinder insertion hole 35 as required, or they may not be used.
  • the front and rear ends of the anti-noise pickup in the outer main cylinder are forwarded
  • the sound hole 4 and the rear sound hole 4a are used to place a front acoustic wave guide between the front wall of the outer front cover and the rear wall of the outer main cover and the front wall of the high-resistance voice pickup and the rear wall of the rear cover.
  • the module 7 and the rear acoustic wave guiding module 7a, the inward openings of the front acoustic tube 27 and the rear acoustic tube 27a therein correspond to the front and rear sound inlet holes 4, 4a on the front wall of the front cover and the rear wall of the rear cover.
  • Shock pads 37 can be used at the positions between the front wall of the front cover and the back wall of the high-noise pickup and the front and rear sound wave guide modules 7, 7a, as required, and there are sound passage holes in the shock pads.
  • a sound collecting hood 19 may be provided at a portion of the front and rear sound inlet holes of the outer side wall of the outer main cylinder 33.
  • Fig. 12 shows a cross-sectional view of an anti-noise pickup of the present invention
  • Figs. 12A and 12B are cross-sectional views taken along lines A-A and B-B shown in Fig. 12, respectively. It can be seen from FIG. 12 and FIG. 11 and FIGS. 11A to 11D that the differences are as follows: The inner main cylinder and the inner rear cylinder 20 used in FIGS. 11 and 11A to 11D are replaced by ordinary ones placed in a single cylinder.
  • the anti-noise pickup of the component is equipped with an outer main cylinder 33 on the outside, and a sound collecting hood 19 may be provided at the sound inlet hole behind the outer side wall of the outer main cylinder 33. Is the forward sound hole of the outer main cylinder 33 open? On the side wall but on the front wall of the front cover.
  • a rear acoustic wave guide module 7a is provided at the rear portion of the outer main cylinder 33, and the inward opening of the rear sound passage tube 27a thereof corresponds to the rear sound inlet hole 4a on the rear wall 3 of the rear cover.
  • the front damping film 5 can be placed between the forward sound hole of the outer main cylinder 33 and the forward sound hole 4 of the inner cylinder side wall 1, or it can be placed between the forward sound hole 4 of the inner cylinder side wall 1 and the diaphragm 12 You can also use it.
  • FIG. 13 shows a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 13A to 13C are cross-sectional views taken along lines AA, B-B, and CC shown in FIG. 13, respectively. It can be seen from Fig. 13 and Fig. 11, Fig. 11A to 11D and Fig. 1, Fig. 1A to 1C that the difference is that: the outer main cylinder 33 and the outer rear cylinder 34 are used, and a plurality of Various types of anti-noise pickups in the aforementioned patents and patent applications of the present inventor.
  • an anti-vibration pad 36 and an anti-vibration pad 37 between the outer main cylinder 33, the sonic guide modules 7, 7a and the inner main cylinder of the upper electret pickup 29a and the inner main cylinder of the lower electret pickup 30a. It can be isolated from shock and vibration.
  • An inner main cylinder support frame 31 may be placed between the two inner main cylinders.
  • a condenser cover 19 may be installed at a position corresponding to the openings of the front and rear sound inlet holes 4, 4a of each anti-noise pickup in the support cylinder.
  • the forward sound hole and the backward sound hole of the 33 cylinder are located between the front wall and the rear wall of each anti-noise pickup in the outer main cylinder and the front wall and the rear wall of the high-noise pickup.
  • the front acoustic wave guiding module 7 and the front acoustic tube 27 in the acoustic wave guiding module 7 are placed. Place the front acoustic wave guide module 7 between the front wall of the front cover and the rear wall of the rear cover of the high-noise pickup, and use a shock-proof pad if necessary. There are sound passage holes on the shockproof pad.
  • An anti-shock washer 36 may be used between the inner rear cylinder 20 of the electret pickup and the inner wall of the inner rear cylinder insertion hole 35 as needed.
  • FIG. 14 shows a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 14A to 14D are cross-sectional views respectively taken along lines A-A, B-B, and C-C shown in FIG. 12. It can be seen from Fig. 14 and Fig. 11 and Fig. 11A to 11D and Fig. 13 and Fig. 13A to 13D that the difference is that the pickup used is the inner main cylinder of the upper electret pickup 29a in the main cylinder.
  • Fig. 15 is a sectional view showing an anti-noise pickup of the present invention.
  • 15A-15B are a top view and a cross-sectional view taken along line A-A of FIG. 15, respectively.
  • the difference is that the inner main cylinder of the non-noise-resistant pickup with the upper electret pickup 29a and the lower electret pickup 30a
  • the inner main cylinder is placed on the side, the sound inlet hole 4b is on the front wall 2a of the front cover on the side of the outer main cylinder 33, and the sound collecting cover 19 is placed outside the sound inlet hole 4b, and the openings face the same direction.
  • the inner main cylinder support frame 31 can be placed between the inner main cylinder of the upper electret pickup 29a and the inner main cylinder of the lower electret pickup 30a, and a shockproof pad ⁇ 36 can also be placed.
  • Fig. 16 is a cross-sectional view showing a noise-proof pickup of the present invention.
  • 16A is a cross-sectional view taken along the line AA shown in FIG. 16. It can be seen from FIG. 16 and FIG. 15 and FIGS. 15A to 15B that the differences are as follows: The direction of placing the inner main cylinder of the upper electret pickup 29a of the main cylinder of the non-noise-resistant pickup is changed to the front direction.
  • a condenser hood 19 is placed outside the sound inlet hole 4a of the side wall of the outer main cylinder 33 corresponding to the sound inlet hole 4 of the lower electret pickup 30, and the upper electret
  • the openings of the pickup 29a and the lower electret pickup 30a face the same direction.
  • An inner main cylinder support frame 31 may be placed between the upper electret pickup 29a and the lower electret pickup 30a according to design requirements.
  • the non-noise-resistant pickup structure (if the pickup shown in FIG. 18), which commonly uses the pickup part and the circuit part together in a main cylinder, can also be made into a combined high-noise pickup with front and rear placement. Instead of a pickup made of two parts, the main cylinder and the rear cylinder, as shown in the figure.
  • Fig. 17 is a sectional view showing an anti-noise pickup of the present invention.
  • 17A is a cross-sectional view taken along the line A-A shown in FIG. 17.
  • FIG. 17 and FIG. 15, FIGS. 15A to 15B and FIG. 16 that the differences are as follows: the placement direction of the inner main cylinder of the lower electret pickup 30 a of the main cylinder in the non-noise-resistant pickup is changed to the front placement
  • the sound inlet hole 4 is located on the front wall 2 of the front cover facing the front, and the condenser cover 19 is placed outside the sound inlet hole 4a on the side wall of the corresponding outer main cylinder 33, and the electret is lowered inside the outer main cylinder 33.
  • a rear acoustic wave guide module 7a is placed in front of the sound inlet hole 4 of the sound pickup 30, and a rear sound passage tube 27a of the rear sound wave guide module 7a is provided between the sound inlet hole 4a and the sound inlet hole 4.
  • the openings of the condenser 19 of the upper electret pickup 29 and the lower electret pickup 30 face in the same direction.
  • An inner main cylinder support frame 31 may be placed between the upper electret pickup 29a and the lower electret pickup 30a according to design requirements.
  • the non-noise-resistant pickup structure (if the pickup structure shown in FIG. 18), which is commonly used and puts the pickup part and the circuit part together in an outer main cylinder, can also be made into a combination type with high anti-noise.
  • a pickup not a pickup made of two parts, the main cylinder and the rear cylinder, as shown in the figure.
  • the front and rear positions of the upper electret pickup 29a and the lower electret pickup 30a can be reversed to make a new embodiment.
  • 18 is a cross-sectional view of an anti-noise pickup of the present invention
  • FIGS. 18A and 18B are cross-sectional views taken along lines AA and BB shown in FIG. 18. It can be seen from FIG. 18 and FIG. 14, FIG.
  • FIG. 11A to 11C that the difference is that the pickup used is the inner main cylinder and the lower electret pickup of the upper electret pickup 29.
  • the back electrode 15a in the inner main cylinder of 30 does not pass through the back pole passage hole 28 on the back pole seat 14 and enters the inner rear cylinder through the side of the inner main cylinder. Instead, it directly enters the rear of the pickup to connect impedance conversion.
  • the circuit 21 and the printed circuit board 23 are also in the cylinder 1 to form a front pickup 31a and a rear pickup 32a.
  • FIG. 19 is a cross-sectional view of the anti-noise pickup of the present invention
  • FIGS. 19A to 19C are cross-sectional views of lines A-A, B-B, and C-C shown in FIG. 19, respectively.
  • the difference lies in that: the separator 10 is placed inside the inner edge of the stretcher ring, so that a separator gasket 9 is placed between the diaphragm 12 and the separator 10 In this way, a cavity is formed between the diaphragm 12, the spacer 10 and the spacer gasket 9 placed in the middle.
  • the spacer gasket 9 can also be placed elsewhere according to the design requirements, as long as it can play the role of the diaphragm 12 and
  • the function of separating a certain distance between the separators 10 causes the distance between the diaphragm 12 and the separator 10 to be determined by the thickness of the separator gasket 9.
  • the inner edge of the corresponding back electrode spacer 13 may also extend inwardly to a position corresponding to the inner edge of the spacer pad 9.
  • the protruding portion 7b of the acoustic wave guiding module, the protruding portion 8a of the front gasket, the protruding portion 11a of the sphincter ring, the protruding portion 14a of the back pole seat, and the protruding portion 15a of the back pole can be positioning markers to make the vibration
  • the installation positions of the various components of the acoustic channel before and after the membrane can be designed to roughly correspond to the design requirements, or other types of markers that can serve as a reference can be used. You can determine which device needs a positioning marker according to your needs. .
  • the position of the conductive contact between the cylinder shells is changed from the front cylinder part to the shell of the inner rear cylinder.
  • the connection with the shell can be through the hard connection of the conductive sheet or the elasticity of the elastic conductor such as the conductive spring sheet 26. connection. This further makes the acoustic structure in the anti-noise pickup from the two sides of the diaphragm to the front and rear sound inlet holes approximately the same and approximately symmetrical.
  • FIG. 20 shows a cross-sectional view of the anti-noise pickup of the present invention
  • FIGS. 20A to 20C are cross-sectional views of lines A-A, B-B, and C-C shown in FIG. 20, respectively. It can be seen from Figure 20 and Figures 1 and 1C to 1C that the differences are:
  • FIG. 21 shows a cross-sectional view of a non-noise-resistant pickup used in the present invention
  • FIGS. 21A to 21C are cross-sectional views of lines A-A, B-B, and C-C shown in FIG. 21, respectively.
  • 21 and FIG. 1 and FIGS. 1A to 1C are compared with each other, and the differences are as follows: As can be seen from FIG. 21 and FIG. 20 and FIGS.
  • the front and rear sound inlet holes 4 and 4a are not opened in the side wall of the inner cylinder 1 Instead, they are opened on the front wall 2 and the rear wall 3 of the front cover, so that the front and rear acoustic wave guide modules 7, 7a and the front and rear acoustic wave guide modules 7, 7a are Can't use it anymore.
  • This embodiment can also be applied to the actual production improvement of various types of anti-noise pickups in the aforementioned invention patents and patent applications.
  • FIG. 22 is a cross-sectional view of the anti-noise pickup of the present invention
  • FIGS. 22A-22C are cross-sectional views of lines A-A, B-B, and C-C shown in FIG. 22, respectively. It can be seen from Figure 22 and Figure 21 and Figures 21A to 22C that the differences are:
  • Example 21 was put into the outer main cylinder 33 and the outer rear cylinder 34.
  • Various types of anti-noise pickups and various types of anti-noise pickups in the aforementioned patents and patent applications of my invention can also be put into the outer main cylinder 33 and the outer rear cylinder 34 to become the resistance of the present invention. Noise pickup.
  • FIG. 23 shows a cross-sectional view of the anti-noise pickup of the present invention
  • FIGS. 23A-23C are cross-sectional views taken along lines AA, B-B, and C-C, respectively, shown in FIG. 22. From Figure 23 It can be seen from comparison with FIG. 19 and FIGS. 19A to 19C, and the difference lies in: This is mainly an actual production improvement type in each embodiment of the present invention. This embodiment can also improve the actual production of the sound pickup
  • Fig. 24a shows a circuit diagram of a sound signal control switch of an anti-noise pickup of the present invention.
  • a sound-activated switching circuit as shown in Figure 24a is set between the capacitor C10 and the NOT gate U4, the analog switches U6, U5.
  • the structure of the sound control switch circuit is: a low distortion and low noise sound signal output from a common mode signal suppression circuit passes a capacitor C10 through a detection circuit composed of diodes D1 and D2 and a resistor R9, and a transistor T2 capacitors C15, C16, C17 resistors R14, R15 , R16 NOT gate U8, U13, Ull, U12, analog switch U10 and RJ trigger U9, which is a sound control switch circuit, which controls the control terminal 13 of the analog switch U5 to open, and the sound signal input from input 1 is output 2 Output, and after the inversion of the NOT gate U4, the control terminal 13 of the analog switch U6 is controlled to close, and the sound signal input from the input terminal 1 cannot be output from the output terminal 2.
  • One of the analog switches U5 and U6 is on and the other is off. Conversely, when there is no sound signal input from the main sound source, the on and off are reversed.
  • the capacitors C17 and R16 you can determine the opening and closing time of the analog switches U5 and U6 after speaking (for example, after 10 seconds) to prevent the analog switches U5 and U6 from being turned on and off by mistake due to short-term interruptions in speaking.
  • the various circuits in this circuit can use integrated circuits or discrete component circuits. According to different needs, it can use analog switch circuits or digital logic switch circuits, and various types of circuits that can perform the functions of this circuit.
  • FIG. 24b shows a circuit diagram of a sound signal control switch of an anti-noise pickup of the present invention.
  • a sound-activated switching circuit as shown in FIG. 24b is provided between the capacitor C10 and U4, U6, U5, a sound-activated switching circuit as shown in FIG. 24b is provided.
  • the principle of this circuit is the same as that of Example 24a, except that the control mode
  • the sound control circuit of the pseudo switch adopts a comparator circuit.
  • the comparator circuit will now be described:
  • the low distortion and low noise sound signal output from the common-mode signal suppression circuit passes the capacitor C10 through a detection circuit composed of diodes D1 and D2 resistors R9, and is stabilized by resistors R17, R18, R19, R120, and R21.
  • One of the analog switches U5 and U6 is turned on and the other is turned off. On the contrary, when there is no sound signal input from the main sound source, it is turned on and off.
  • the setting of capacitor C18 and resistor R22 can determine the on and off time of analog switches U5 and U6 after speaking (for example, after 10 seconds), to prevent analog switches U5 and U6 from being turned on and off by mistake due to short-term interruptions in speaking.
  • FIG. 24c shows a circuit diagram of a sound signal control switch of an anti-noise pickup of the present invention.
  • a sound signal control switch circuit as shown in FIG. 24c may be provided between the capacitors C10, C12 and U4, U6, U5.
  • the principle of this circuit is the same as that of Example 24a, except that the sound control circuit that controls the analog switch uses the sound signal received by the pickup without the reduction of ambient noise and compares it with the sound signal of low ambient noise output from the common-mode signal suppression circuit. Control the sound activated switch circuit.
  • the principle of this circuit is the same as that of Example 13b, except that a hysteresis comparator is used.
  • the low-distortion, low-noise sound signal output from the common-mode signal suppression circuit passes the capacitor C10 through a detection circuit composed of diodes D1, D2 and resistor R13, and the sound signal from one of the two pickups, which has not been subjected to ambient noise reduction, passes through the capacitor C12 Through a detection circuit composed of diodes D5, D6 and resistor R23, through a resistor R24, R25, R26, R22, diode D4, capacitors C15, C19, C18, hysteresis comparator U16, and R-J flip-flop U15, the control circuit is controlled by analog The control terminal 13 of the switch U5 is turned on, and the voice signal input from the input terminal 1 is turned on. No.
  • Each of the signal-controlled switching circuits used in 24a-24c can use integrated circuits or discrete component circuits, and can use various types of comparator circuits and flip-flop circuits. According to different needs, it can use analog circuits, digital circuits, and required operating programs or analog-digital hybrid circuits, and various types of circuits that can complete the function of the entire circuit.
  • FIG. 25 shows an over-receiving distance alarm circuit of an anti-voice pickup of the present invention.
  • the signal attenuation is so large that it cannot be effectively received.
  • the invention designs a warning circuit for exceeding the receiving distance.
  • This circuit is actually a window comparator circuit. If the input voltage is between two specified voltages (the upper limit is the lower limit value within the design distance range, and the lower limit is the upper limit value when the distance exceeds the certain range), then the circuit There is an output (0 V in this example). If it is outside this window, the output is positive. Two comparators U17, U18 are used as window voltage comparators. If Vin is more positive than Vref (high end), U17 loses The output will be positive, while U17 is forward biased. Otherwise, the output is negative and U17 is reverse biased, so Vout is 0 V. Similarly, if Vin is more negative than Vref (low-side), U18 output will be positive, and U18 times forward biased, the output will be positive.
  • Vout is 0 V. If Vin is within the window established by the reference voltage, Vout will be 0 V.
  • the window comparator detects that the input voltage is between two specified voltages, it outputs a start signal to the alarm circuit U19, and outputs an alarm signal to remind the user that the distance between the anti-noise pickup and the main sound source is outside the applicable range.
  • the comparator circuit in this embodiment may be a MC14574 comparator, or may use other types and types of operational amplifiers, or may use various types and types of comparators, and the comparator circuit may also use other types.
  • the comparator circuit can also use other comparator circuits composed of transistors, operational amplifiers, comparators, or digital circuits. You can use integrated circuits or discrete component circuits. You can use various types of comparator circuits and Trigger circuit. According to different needs, it can use analog circuits, digital circuits, and required running programs or analog-digital hybrid circuits, and various types of circuits that can complete the function of the entire circuit.
  • Fig. 26 shows a cross-sectional view of the anti-noise pickup of the present invention
  • Figs. 26A-26C are cross-sectional views of lines A-A, B-B, and C-C shown in Fig. 26, respectively.
  • FIG. 26 and FIG. 20, FIG. 20A to 20C and FIG. 14, and FIG. 14A to FIG. 14C that the difference is that the non-noise-resistant pickup used is the spacer gasket 10 in the noise-free pickup shown in FIG. 20.
  • Front gasket 8, baffle 9, rear sound inlet hole 4a, rear sound wave guide module 7a, and rear sound tube 27a are taken out, which is actually the sound input on the front wall of the front cover of a normal non-noise pickup
  • the hole is instead opened on the side wall of the main cylinder.
  • the sound inlet hole 4 can also be partly on the side wall of the main cylinder and part on the front wall of the front cover.
  • Front wall of front cover of inner main cylinder of polar pickup 29a and inner electret of lower electret pickup 30a There is no need to leave the sound inlet hole 4b and the corresponding sound inlet channel between the sound inlet holes 4 on the top 2.
  • a plurality of electret non-noise-resistant pickup main barrels can be made by the main barrel support 31.
  • the main body of the upper electret pickup 29 and the main body of the lower electret pickup 30 are connected and fixed to each other.
  • This figure shows an anti-noise pickup constituted by two non-noise-resistant pickups 29, 30 of this type.
  • One or more non-noise-resistant pickups of this type can be used.
  • FIG. 27 shows a cross-sectional view of the anti-noise pickup of the present invention
  • FIGS. 22A-22C are cross-sectional views taken along lines A-A, B-B, and C-C shown in FIG. 22, respectively.
  • the non-noise-resistant pickup used is the sound wave guide module 7, the sound tube 27 in the non-noise-resistant pickup shown in Fig. 26.
  • This figure shows three anti-noise pickups of this type made of three non-noise-resistant pickups 29, 30, 30a.
  • One or more non-noise-proof pickups of this type can be used. It is not necessary to use the conductive sheet 26 when the tension ring is directly in contact with the front cylinder shell.
  • Fig. 28 shows a cross-sectional view of the anti-noise pickup of the present invention
  • Figs. 28A to 28C are cross-sectional views of lines A-A, B-B, and C-C shown in Fig. 28, respectively.
  • the difference is that the anti-noise pickups formed by the rear cylinders 20 of the multiple non-noise-resistant pickups are respectively inserted into the outer rear cylinders 34.
  • Fig. 28 shows a cross-sectional view of the anti-noise pickup of the present invention
  • Figs. 28A-28C are cross-sectional views taken along lines A-A, B-B, and C-C shown in Fig. 28, respectively.
  • FIG. 29 shows a cross-sectional view of the anti-noise pickup of the present invention
  • FIGS. 29A-29B are cross-sectional views taken along lines A-A and B-B shown in FIG. 29, respectively. It can be seen from FIG. 29 and FIG. 26 and FIG. 26A and FIG. 26C that the differences are as follows: And the front cover 2 of the front cover 2 of the plurality of non-noise-resistant pickups 29, 30, and 30a is placed in the same direction. One or more non-noise-resistant pickups of this type can be used.
  • Fig. 30 shows a cross-sectional view of an anti-noise pickup of the present invention
  • Figs. 30A-30B It is a sectional view taken along line AA and line BB shown in FIG. 30, respectively. It can be seen from FIG. 30 and FIG. 29 and FIGS. 29A to 29B that the differences are as follows: The sound wave guiding module 7 and the sound tube 27 in the multiple non-noise-resistant pickups in this figure are taken out. In addition, the front wall 2 of the front cover of the pickups in the plurality of non-noise-resistant pickups 29 and 30 is placed facing away. One or more non-noise-resistant pickups of this type can be used.
  • various types of anti-noise pickups and non-noise-proof pickups in the various embodiments of the present invention may be used alone, or a plurality of them may be connected and fixed to each other at a certain interval or a certain spatial structure to form a two-dimensional or three-dimensional three-dimensional structure.
  • FIG. 31 shows a block diagram of an over-receiving distance alarm circuit of an anti-noise pickup of the present invention.
  • the present invention designed a warning circuit for exceeding the receiving distance.
  • non-noise-resistant pickups are used for ranging alarming.
  • the non-noise-resistant pickups 311, 312, and 313 receive external environmental noise.
  • the non-noise-resistant pickups 312 are divided into two paths after amplitude compensation 314, respectively.
  • Anti-noise pickups 311, 313 electric signals after amplitude compensation 313, 315 pass common mode suppression Circuits 316 and 317 remove common mode signals (this actually forms two anti-noise pickups), and the two extracted differential mode signals (sound electrical signals from the main sound source at close range) are compared with each other through a window comparator circuit 318 One is used as the reference benchmark, and the other is compared with the reference benchmark.
  • the circuit When the ratio between the two is between a certain ratio (the lower limit of the upper limit is within the design distance range, the lower limit is the upper limit of the distance beyond the certain range of the design distance. Limit value), the circuit will output to the alarm circuit 319, and alarm through the alarm 3110.
  • This embodiment uses three non-noise-resistant pickups 311, 312, and 313. More non-noise-resistant pickups may be used, or non-noise-resistant pickups and anti-noise pickups may be used in combination.
  • FIG. 32 shows a block diagram of an over-receiving distance alarm circuit of an anti-noise pickup of the present invention.
  • the anti-noise pickups 321 and 32 Receive the acoustic electric signals from the main sound source at a short distance, and perform electrical compensation after amplitude compensation 323 and 324, respectively, and compare each other through the window comparator circuit 325. One way serves as a reference, and the other way and the reference The benchmark is compared.
  • the circuit When the ratio between the two is within a certain ratio (the upper limit is the lower limit value within the design distance range, and the lower limit is the upper limit value beyond the certain range of the design distance), the circuit will output to the alarm circuit. 326, alarm through the alarm 327.
  • two anti-noise pickups 321 and 322 are used, and more anti-noise pickups may also be used, or non-noise-resistant pickups and anti-noise pickups may be used in combination.
  • Figure 33a and Figure 33b are block diagrams of a digital data acquisition common mode suppression system circuit
  • FIG. 34 shows a computer flow chart of an anti-noise pickup over-receiving distance alarm and adjusting an amplifier's amplification factor based on the receiving distance in a pickup of the present invention.
  • the sound signals received by the multiple anti-noise pickups 1, 2 ... are subjected to A / D conversion by using multiple anti-noise pickups
  • the sound signals received by the two anti-noise pickups 1, 2, ... are extracted by a filter circuit.
  • the same acoustic wave electrical signal calculate the distance and / or orientation between the main sound source and the pickup by calculating parameters such as the power magnitude and / or time difference of two identical sound wave signals and / or looking up the table, and beforehand Set the effective receiving distance of the pickup for comparison. Is the distance between the main sound source and the microphone between the upper and lower limits of the predetermined distance? When it is between the upper and lower limits of the predetermined distance, calculate the amplification factor that the amplifier should be at this distance.
  • Fig. 35 shows a computer flow chart of a non-noise-resistant pickup used in the pickup of the present invention for an over-receiving distance alarm and adjusting an amplifier's amplification factor based on the receiving distance.
  • the sound signals received by the multiple non-noise-resistant pickups 1, 2, and 3 are subjected to A / D conversion to calculate the differential mode between the two microphones.
  • a / D conversion to calculate the differential mode between the two microphones.
  • you can directly connect the two sonic signals Make a rough calculation of the approximate distance between the main sound source and the time source.
  • the same acoustic electric signal in the sound signal picked up by the microphone is calculated by calculating one or more parameters such as the power of two identical sound wave signals picked up by the microphone and / or the time difference between the two sound pickup signals and / or Calculate a more accurate distance and / or orientation between the main sound source and the pickup by using a table lookup method, and compare it with the preset effective receiving distance of the pickup. Is the distance between the main sound source and the microphone within the predetermined upper and lower limits?
  • Fig. 36 shows an over-receiving distance alarm circuit of an anti-noise pickup used in the pickup of the present invention.
  • This circuit is actually a window comparator circuit with a gating function.
  • the sound and electrical signals of the main sound source received by the two anti-noise pickups can be pre-processed by various pre-processing circuits such as filtering and time delay according to the design requirements. It is also possible not to use a pre-processing circuit.
  • the main electrical sound signal Va and Vb received by two anti-noise pickups assuming that the main electrical sound signal received by the anti-noise pickup close to the main sound source is Va, and the main sound source electrical signal received by the anti-noise pickup far from the sound source For Vb, You can set Va or Vb as the reference standard. Here, suppose Vb is used as the reference standard.
  • Fig. 37 shows a digital noise cancellation positioning receiving computer flow used in the pickup of the present invention.
  • the following describes the process of positioning and receiving an anti-noise pickup or non-noise pickup using a plurality of two-dimensional structures arranged side by side or a three-dimensional structure with a certain three-dimensional structure or a three-dimensional array structure with a certain spatial array configuration in the present invention:
  • the differential electrical signals can be extracted by digital common mode suppression between the acoustic and electrical signals received by the two pickups, or the next step can be directly processed without common mode suppression.
  • Fig. 38 shows a window comparator circuit with a plurality of intervals, which adjusts the amplification factor of the amplifier according to the reception distance, of an anti-noise pickup used in the pickup of the present invention.
  • Fig. 36 uses a single interval comparator
  • Fig. 38 uses a window comparator with multiple intervals, so that the amplifier can be based on the distance between the pickup and the sound source. Different amplification factors are used.
  • This circuit is actually a window comparator circuit with a gating function with multiple intervals.
  • the two electrical signals Va, Vb from the main sound source received by the anti-noise pickup are assumed to be received by the anti-noise pickup close to the sound source.
  • the electrical sound signal from the main sound source is Va.
  • Set the electrical sound signal from the main sound source that is received by the anti-noise pickup far from the sound source is Vb.
  • Vb The ratio of Vb to the reference reference is between the specified ratios M and N (the ratio of the upper limit of M when the distance exceeds a certain range of the design distance and the lower limit of N within the design distance), and the Vb signal is amplified by Circuits 36A1 and 36A2, which are amplified by M and N times (the values of M and N can be positive or negative The value can be an integer or a non-integer with a decimal. )
  • the Vb signal passes through the amplifying circuits 36A1 and 36A2, and the voltage interval after being amplified by M and N times is assumed to be Vbl, and the window comparator circuit with the gating function in multiple intervals is four intervals, assuming 37R3 to 37R4.
  • Voa, Vob, Voc, and Vod high-level outputs can respectively start the switches of different amplification factors of the analog amplifier, and can also start multiple alarm circuits, or both the switches of different amplification factors of the amplifier and Activate one or more alarm circuits.
  • the window comparator circuit with gating function in multiple sections can design the number of gating sections and the window voltage value of the sections according to the design requirements.
  • the comparator circuit may use the MC14574 comparator, or other various types and types of comparators and comparator circuits, and the AND circuit may use CD4081, and the comparator circuit And AND circuits can also use other types of comparator circuits, AND circuits, NAND circuits, etc., or other comparator circuits composed of transistors, operational amplifiers, comparators or digital circuits, and Gate circuits or NAND circuits, etc., can use integrated circuits or discrete component circuits. Various types of 'comparator circuits, AND circuits or NAND circuits, and flip-flop circuits can be used. According to different needs, various types of analog circuits, digital circuits, or analog-digital hybrid circuits can be used, and various types of circuits that can perform the functions of this circuit.
  • Fig. 39 shows an amplifier circuit of an anti-noise pickup used in the pickup of the present invention to adjust the amplification factor of the amplifier according to the reception distance.
  • FIG. 40 shows a cross-sectional view of an anti-noise pickup of the present invention
  • the difference is that it is a combination of a plurality of non-noise-resistant pickups 40a1 and 40a2 and anti-noise pickups 40a3 and 40a4.
  • one or more non-noise-resistant pickups can be used and one or more anti-noise pickups can be combined.
  • Figure 41 shows the flow of a digital noise canceling computer used in the pickup of the present invention.
  • the processing flow of anti-noise receiving by using a plurality of two-dimensional structure anti-noise pickups or non-noise-proof pickups arranged in the present invention is as follows:
  • the delay time is that the sound wave signals are respectively from the close to the main sound source The time it takes for each pickup to reach the pickup farthest from the main sound source.
  • the actual distance and / or orientation of the main sound source and the pickup that emits this sound wave can be known, and the actual distance and / or orientation of the main sound source and the pickup can also be obtained by using various other calculation processing methods.
  • the sound wave signal from the main sound source at a certain distance from the pickup can be extracted.
  • the obtained differential mode signal and / or the sound wave signal from the main sound source at a certain distance are stored, and / or output through I / O, and / or other further processing is performed.
  • a common mode calculation is performed between one of the sound wave signals picked up in the pickups 1, 2, 3, ... and the differential mode signal obtained again after amplification, to obtain the differential mode signal between them, which is removed.
  • Ambient noise of sound waves from the main source The environmental noise storage from which the sound wave from the main sound source is removed, and / or the I / O output, and / or further processing is performed.
  • Fig. 42 is a block diagram showing a noise canceling circuit used in the pickup of the present invention.
  • the processing block diagram of the present invention using a plurality of two-dimensional structured anti-noise pickups or non-noise-resistant pickups for anti-noise reception is: You can use 1. 2. Or the sound wave signals of the pickups 42al, 42a2, 42a3 except for the sound wave signal picked up by the pickup farthest from the main sound source are passed through the time delay circuit 42a4, 42a5, 42a6, and the delay time is the sound wave signal. The time it takes for each pickup close to the main sound source to reach the pickup farthest from the main sound source, and the sound wave signals picked up by each pickup pass through the common mode suppression circuits 42a7 and 42a8 in pairs, so that the differential sound signal from the main sound source Sound waves can be reduced to a minimum degree of distortion.
  • the multi-mode differential signal is obtained by calculating the common-mode rejection between the sound wave signals picked up by each pickup in the previous step 2.
  • the two or more differential-mode signals are passed through the common-mode suppression circuit 42al again. l, get the differential mode signal again. (The delay time is: the time it takes for a sound signal to travel from one pickup to another pickup.
  • All time delays are used to eliminate the two signals from the time difference caused by the sound wave transmission speed when the sound waves emitted by the main sound source reach the front and rear pickups.
  • the distortion of the sound wave from the main sound source in the differential mode signal caused by common mode signal suppression.).
  • a common mode suppression circuit 42al3 is obtained between one of the sound wave signals picked up in the pickups 42al, 42a2, and 42a3 and the differential mode signal obtained again through the amplification circuit 42al2 to obtain a differential mode signal between them, which is removed.
  • This noise cancellation block diagram flow can be implemented using digital circuits, or it can be implemented using analog circuits or mixed circuits containing analog circuits and digital circuits.
  • the delay circuit can adopt analog delay circuit, CCD delay circuit, digital delay circuit ...
  • FIG. 43 shows a cross-sectional view of an anti-noise pickup used in the present invention
  • FIG. 43A is a cross-sectional view taken along the line A-A shown in FIG. 43. From Fig. 43 and Fig. 1, Fig. 1A to 1C, Fig. 21, and Figs.
  • the difference is that the front and rear sound inlet holes 4, 4a are not opened on the side wall of the outer wall 1 of the inner cylinder, but they are Opened on the side wall 2 of the front cover of the main cylinder body 3 on the side wall of the main cover of the main cylinder body (the relative position between the main sound source and the pickup in the previous embodiments is a back-and-forth relationship, so it is named: the inner cylinder side wall 1, front cover front wall 2, rear cover rear wall 3, although the absolute position of each component has not changed in embodiments 43, 44, 45, but because the relative position between the main sound source and the pickup as shown in the figure changes Therefore, in embodiments 43, 44, 45, he was renamed the outer wall of the cylinder 1, the front cover side wall 2, the rear cover side wall 3), so that the front and rear acoustic wave guide modules 7, 7a and the front and rear acoustic wave guide modules 7,
  • Figures 1, 1A, 1C, and 21A-21C are the same as the existing anti-noise pickups.
  • the main sound source is located in front of the front wall of the front cover of the pickup or behind the rear wall of the rear cover
  • the relative positions of the front and rear sound inlet holes and the main sound source are arranged one behind the other and one behind the other.
  • the position of the main sound source 40 is on the side of the pickup, that is, on the outer circumference of the front main cylinder section AA
  • the relative positions of the front and rear sound holes and the main sound source are arranged side by side, and the distances to the main sound source are approximately the same.
  • the surface 39 of the outer wall 1 corresponding to the main sound source 38 becomes the actual front wall
  • the sound inlet hole 4 on the side wall of the front cover of the main cylinder is The direction of the sound inlet holes 4 on the side wall of the main cylinder with respect to the surface 39 corresponding to the main sound source 38 on the side of the main cylinder is arranged one after the other, such as the forward sound in the figure
  • the hole 4 is on one side (front) of the side wall 2 of the front cover of the main cylinder
  • the rear sound inlet hole 4a is on the other side (rear) of the side wall 3 of the main cover of the main cylinder, and vice versa, relative to the main sound source.
  • the front and rear sound inlet holes are respectively on the side wall of the front cover of the main cylinder of the anti-noise pickup and the side wall of the main cover of the main cylinder, and the direction of the main sound source on the side of the main cylinder is on the front side of the main cylinder.
  • One side of the wall and the other side of the side wall of the back cover of the main cylinder are arranged in front and back, and may be one or a plurality of sound inlet holes.
  • the main sound source 38 in FIG. 43A is provided on the outside of the outer wall 1 of the cylinder opposite to the rear cylinder 20, instead of being provided on the outside of the outer wall 1 of the cylinder parallel to the side of the rear cylinder 20 in FIG. 43. .
  • This is to show that when the relative positions of the main sound source 38 and the outer surface of the outer wall 1 of the cylinder are different, the relative positions of the front and rear sound inlet openings on the side wall of the front cover of the main cylinder and the side wall of the main cover are also different.
  • the specific position of the main sound source on the outer circumference of the pickup can be determined according to the design requirements.
  • the front and rear sound inlet holes 4, 4a are determined relative to the specific position of the main sound source on the side wall of the front cover of the main cylinder 1, and the rear cover of the main cylinder.
  • the direction and position of the side-by-side arrangement of the side wall 3 and the distance between the side-by-side arrangement relative to the main sound source are different.
  • the sound collecting hood 19 may be installed outside the front and rear sound inlet holes, or it may not be installed.
  • New types of anti-noise pickups for front and rear sound inlets can be made by using various types of anti-noise pickups and other various types of anti-noise pickups in various patents and patent applications of the present inventor.
  • FIG. 44 shows a cross-sectional view of an anti-noise pickup used in the present invention
  • FIG. 44A is a cross-sectional view taken along the line AA in FIG. 44. It can be seen from Fig. 44 and Fig. 1, Figs. 1A to 1C, Fig. 43, and Fig. 431A that the difference is that when the main sound source is on the side of the main cylinder, the sound inlet holes 4, 4a are not opened on the side of the outer wall 1 of the inner cylinder.
  • two non-noise-resistant pickups 29, 30 placed in parallel with each other are opposite to the forward sound hole 4 and the side wall of the main cylinder body cover.
  • the rearward sound holes 4a on 2a are arranged one behind the other in the direction of the main sound source on the side of the main cylinder.
  • the forward sound holes 4 in the figure are on the side of the front cover side wall 2 of a pickup.
  • the rear sound inlet hole 4a is on the other side (rear) of the side wall 2a of the front cover of the other main cylinder of the pickup, and vice versa, there is a certain back and forth between the two with respect to the main sound source The distance is poor. That is, the front and rear sound inlet holes are on different planes of the side walls of the main cylinder cover of the two anti-noise pickups 29 and 30, respectively.
  • the direction of the main sound source on the side of the main cylinder is on the main cylinder front cover.
  • One side of the side wall and the other side of the side wall of the front cover of the other main cylinder of the microphone are arranged back and forth, and may be one or multiple sound inlet holes.
  • Two of the latter can be placed in parallel or side by side at a certain angle, can be placed side by side, or there can be a certain front-to-back distance, which can make the two pickups closely contact each other, or make the two There is a certain distance between them (the filling material can be filled in between).
  • Fig. 45 shows a cross-sectional view of an anti-noise pickup used in the present invention. From Fig. 45 and Fig. 1, Fig. 1A to 1C, Fig. 43, Fig. 431A, Fig. 44, and Fig. 44A, the difference is that when the main sound source is on the side of the main cylinder, the sound inlet holes 4 and 4a are not opened. On the side walls of the outer wall 1 of the cylinder, they are opened on the side walls of the main cylinder cover 2 and the side walls 2a of the main cylinder cover of the two non-noise-resistant pickups 29 and 30 which are placed alternately with each other.
  • the forward sound hole 4 on the side wall 2 of the front cover of the main cylinder and the rear sound hole 4a on the side wall 2a of the front cover of the non-noise pickup are in the center of the side walls of the front cover of the two main cylinders. Or, in the opening position of the normal sound inlet of a more common pickup, the positions of the sound inlets of the two pickups are approximately the same. This is achieved by placing two non-noise-resistant pickups in parallel with each other and staggered to each other so as to face the main sound source 38. of The front and rear sound inlet holes 4 and 4a in the direction of the front end 39 of the side wall of the main cylinder are arranged one after the other.
  • FIG. 43, FIG. 44, and FIG. 45 can be modified to make a new forward and backward sound by using various types of anti-noise pickups and other various types of anti-noise pickups in various patents and patent applications of the present inventor.
  • High mouth anti-noise pickup The front and rear inlets are oriented towards the same or almost vertical high noise pickup.
  • the front and rear sound inlet holes are provided at the front and rear ends of the main cylinder body front cover side wall and the main cylinder body rear cover side wall of the anti-noise pickup, which are not on one plane, However, in terms of the end face 39 of the anti-noise pickup, which is directly opposite the main sound source, it is still located on the side wall of the outer wall of the anti-noise pickup. (In fact, the end face 39 of the pickup directly facing the main sound source is the main The side wall of the front cover of the cylinder, and the side wall 2 of the front cover of the main cylinder and the side wall 2a of the back cover of the main cylinder are actually the outer wall of the main cylinder).
  • All the components in the present invention such as: outer rear cylinder, outer main cylinder, inner main cylinder, inner main cylinder support frame 31, inner cylinder side wall 1, cylinder 20, rear cylinder 20a,
  • the internal and external shapes of each component such as the condenser hood 19, the front and rear sound wave guide modules 7, 7a, the sound inlet holes 4, 4a, the sound pipes 27, 27a, the partition 9, the partition hole 18, the front gasket 8, and so on
  • Various regular or irregular deformed squares, rectangles, circles, cylinders, rectangles, triangles, rhombuses, polygons, sectors, ovals can be used according to design requirements and actual needs.
  • Various arcs such as: parabolic, Various shapes such as arcs and geometric function curves, as well as some basic curve segments and other basic shapes, can also be complex shapes formed by the combination of various basic shapes, which can be simple single shapes, or It is a composite body formed by a single combination of various shapes. It can be a whole or a part of the whole. Depending on the design, you can use metal materials or non-metal materials. So the two are combined The formed composite material is made. However, the shape and installation position of this outer rear cylinder, outer main cylinder, inner main cylinder, inner main cylinder support, inner rear cylinder, and outer rear cylinder cannot affect each electret pickup.
  • the inner main cylinder, the outer main cylinder, the inner main cylinder, the inner main cylinder supporting frame, and the inner rear cylinder, the outer rear cylinder, etc. may be integrated into one body, or may be independent of each other. Design requirements can be used all at the same time, or some of them can be selected.
  • the inner main cylinder support 31 will be able to combine multiple inner main cylinders of the electret anti-noise pickup (such as the inner main cylinder of the upper electret pickup 29 and the inner main cylinder of the lower electret pickup 30), and
  • the outer main cylinders 25 are connected and fixed to each other to strengthen the fixing.
  • the central axis (center) of the inner main body of each single electret pickup in the combined anti-noise pickup (such as the inner main cylinder of the upper electret pickup 29 and the inner main cylinder of the lower electret pickup 30)
  • the central axis formed by the extension of the line can be on the same central axis, or on different central axes. When on different central axes, each central axis can be parallel to each other or there can be some angle.
  • the front and rear sound inlet holes used by the various pickups and the condenser hood 19 placed outside the sound inlet holes may be on the same line segment, or on different line segments, and when on different line segments.
  • the two may be parallel to each other, may have a certain angle, may be parallel to each other, and may have a certain angle with the central axis of the inner cylinder side wall 1. It can be on one line segment parallel to the central axis of the pickup, or on different line segments. When on different line segments, the line segments can be parallel to each other or at a certain angle.
  • the openings of the sound entry holes from the front and rear are oriented in approximately the same direction (or they may not be completely the same, such as a difference of about 0 ° -135 degrees), which can be achieved by using Use a polyphonic hood to make the initial sound inlet hole in the direction of the main sound source, so that the phase of the incoming sound wave signal is approximately the same (also can be approximately 0 ° -135 degrees apart).
  • the acoustic characteristics of the two acoustic wave channels between the two corresponding initial sound inlet holes on each main cylinder in the cylinder and between the two diaphragms are approximately the same (or they may not be completely the same), and through the action of the mechanical structure
  • the phase between the two acoustic signals is approximately 180 degrees (also approximately 0 ° -135 °), and the common mode suppression effect can be achieved on the diaphragm, and the differential mode signal is extracted to eliminate noise.
  • the common mode suppression can be performed by the common mode suppression circuit, and the principle of eliminating the noise of the differential mode signal is extracted.
  • Electromagnetic conversion pickups include: a. In electro-dynamic pickups: dynamic coils Type pickups, flat pickups, moving coil pickups, etc., b. Electromagnetic pickups, etc. c. Magnetostrictive pickups, etc. 2. Included in electrostatic conversion pickups: a.
  • Electrostrictive pickups piezoelectric two-chip pickups, etc. 3.
  • Impedance transformation pickups Resistive wire strain pickups, semiconductor strain pickups, etc. 4.
  • Photoelectric conversion pickups a. Phase change pickups: Interference pickups, DAD pickups, etc. b.
  • the spacer gasket 10, the front spacer 8, the spacer 9, the sling ring 11, the diaphragm 12, and the back pole 15 in the inner main cylinder can be composed.
  • the pickup part is replaced with other various pickup components, such as electret pickups, condenser pickups, dynamic pickups, electromagnetic pickups, piezoelectric ceramic pickups, semiconductor pickups, etc., or the entire pickups can be replaced. .
  • Various single non-noise-resistant pickups of the existing and new inventions also used in the present invention can be replaced with electret pickups, condenser pickups, Various types of pickup pickup components, such as dynamic pickups, electromagnetic pickups, piezoelectric ceramic pickups, semiconductor pickups, etc., can be replaced with their entire pickups.
  • the noise elimination method adopted in the present invention makes the noise cancellation better, the useful signal generated by the main sound source is lower than the signal of a general pickup, so an amplification circuit needs to be added, and various current amplification circuits commonly used can be adopted.
  • This amplifier circuit can be placed inside or outside the pickup.
  • a plurality of anti-noise pickups and / or non-noise-resistant pickups of the present invention may be arranged in a two-dimensional structure or a three-dimensional structure with a certain three-dimensional structure or a three-dimensional array structure with a certain spatial array configuration.
  • a plurality of anti-noise pickups and / or non-noise-proof pickups are used to perform a two-dimensional arrangement in front and back, they are arranged up and down in the drawings of the description, and in actual use, the distance between the front and back of the main sound source.
  • the inner main cylinder and the inner rear cylinder which are combined with each other may be used in the present invention, or only the inner main cylinder is used, and the outer main cylinder and the outer rear cylinder which are combined with each other may also be used. Only the outer main cylinder body may be used, and there may be the front wall of the front cover and the rear wall of the rear cover of the housing of the inner main cylinder and the outer main body, or there may be no front wall of the front cover and rear wall of the rear cover. , Or just one of them. When using only one pickup part and pickup in the inner main cylinder and outer main cylinder, you should use Anti-noise pickup parts and use of anti-noise pickups.
  • both anti-noise pickup parts and anti-noise pickups can be used, as well as non-noise-resistant pickup parts and non-noise-resistant pickups.
  • These pickup parts and pickups can be placed together in the same main body
  • the cylinder body and the same outer main cylinder body may also be separately placed in a plurality of inner main cylinder bodies and a plurality of outer main cylinder bodies.
  • an inner rear cylinder and an outer rear cylinder may be connected to one or a plurality of inner main cylinders or outer main cylinders.
  • each of them can be arranged and combined in various positions and directions, such as: each pickup can be serially connected in front or back, or all can be placed side by side, or It can be partly facing forward or backward, another part facing the side, or different directions within 360 degrees, etc., and various permutations and combinations.
  • the sound receiving end can also be facing the same direction, or it can be facing the opposite direction. It can also be oriented in opposite directions, partly in the forward or backward direction, another part in the direction of the side, or all in the direction of the side, or in different directions within 360 degrees.
  • the positions and orientations of the sound pipes, etc. can also be changed accordingly. You can decide whether to use all or part of them according to the design requirements.
  • the inner rear cylinder and the outer rear cylinder can be installed at any position on the inner main cylinder and the outer main cylinder except for a position that prevents sound waves from entering the front and rear sound inlets, and can face in any direction.
  • the inner main cylinder and the outer main cylinder When the pickup is divided into a front cylinder and a rear cylinder as shown in FIG. 1 and other embodiments, the front cylinder is the main cylinder.
  • the circuit part When it is set in the main cylinder, the main cylinder contains two parts: a pickup part and a circuit part.
  • the main cylinder includes three parts: the front wall of the main cylinder facing the main sound source, the rear wall of the main cylinder facing away from the main sound source, and the side wall of the main cylinder facing the main sound source.
  • the side wall of the main cylinder is the side wall 1 of the cylinder
  • the front wall of the main cylinder is the front wall of the front cover
  • the rear wall of the main cylinder is the rear wall of the rear cover.
  • the side wall of the main cylinder is the side wall of the front cover of the main cylinder and / or the side wall of the back cover of the main cylinder
  • the front wall of the main cylinder is the main cylinder facing the main sound source.
  • the part of the side wall of the body, the rear wall of the main cylinder is the part of the side wall of the main cylinder facing away from the main sound source, so the front wall of the front cover should actually be named the front cover side wall, and the rear wall of the rear cover should actually be Name the side wall of the back cover, and the side wall of the cylinder should be named the outer wall of the cylinder.
  • the present invention is designed based on an embodiment in which an electret pickup is made of an electret high anti-noise pickup, but it can also be used in various types of pickups to make corresponding types of anti-noise pickups.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Exhaust Silencers (AREA)

Description

抗噪音拾音器 本发明涉及一种拾音器, 特别涉及一种前后进声口朝向大致 相同或大致相互垂直的抗噪音拾音器单个和组合型高抗噪音拾音 器。
无论在用于通讯系统的拾音器, 还是用于日常生活中, 进行 声音输入时, 都希望在不减低或者减低不多拾音器灵敏度的情况 下, 具有尽可能高的减低环境噪音的能力, 尤其是在较高频段范 围内, 特别在噪音较高的环境状态下使用时, 具有高抗噪音的能 力就更加需要, 设计一种更为完善的, 具有高抗噪音(減低环境 噪音) 性能的拾音器, 就成为本发明的主要任务, 本发明所涉及 到的技术内容, 是在本发明人已完成的几项专利研究的基础上的 又一次的创新与明显的改进, 本发明人的 PCT 专利申请 PCT/CN99/00097, 实用新型专利申请 No. 98207092. 6 以及实用新 型专利申请 No. 99217256. X都已经详尽的公开了驻极体抗噪音拾 音器和在这种拾音器基础上制成的组合型高抗噪音拾音器的全部 结构及内部装配关系, 该拾音器具有相互结合的主筒体和后筒体 两个部分, 作为一种单个的抗噪音拾音器, 它已经具备了很优良 的性能, 在使用中, 它不仅具有信噪比较高的特点, 而且, 在较 高的频率范围内, 也不丧失很好的抗噪音功能, 同时, 使送话器 无须外壳, 便可直接安装于外部装置上, 使结构既轻便又宜于装 配。 但是, 这种单个的抗噪音驻极体拾音器, 因为它的前后进声 口是在拾音器主筒体的前盖前壁和后盖后壁两个相对的位置上, 一个进声口在正对着主音源的位置上, 另一个在背离主音源的位 置上, 因此当拾音器在距离主音源大于 10厘米的距离时, 此部位 到达的声波已经接近于平面波, 使到达前后进声孔的声波特性相 差很大, 虽然将主筒体制作的厚度减小, 抗噪音效果有了很大的 改善, 但是抗噪音特性仍然不能达到满意的效果。 对于某些特定 的环境; 如噪音很高的恶劣环境下, 抗噪音将表现得能力欠缺, 尤其当运用于高环境噪音下的计算机的语音识别信号输入时, 这 种单个抗噪音拾音器的性能, 仍然不能满足要求, 因此就需要借 助新的装配结构, 在新的电路应用上加以考虑与改进, 使这种改 进的结构能在恶劣的高噪音的环境下, 或者在较高频段语音信号 输入下, 仍能保持优良的性能。 这就希望一种具有前后进声口朝 向大致相同或大致相互垂直的抗噪音拾音器其抗噪音能力得以加 强的拾音器问世。
目前的非抗噪音驻极体拾音器因为是将阻抗变换电路等非声 波信号接收器件直接放在拾音器内, 因此使得它的厚度比较大, 而在本发明的具有前后进声口朝向大致相同或大致相互垂直的抗 噪音拾音器中, 当使用的两个单个抗噪音驻极体拾音器或两个单 个非抗噪音驻极体拾音器重迭放置的时候, 因为抗噪音的效果及 频率范围和两个单个拾音器主音源声音接收端的距离有直接关 系, 距离越近抗噪音的效果越强及频率范围越高, 本发明人的前 述专利申请和专利, 已经解决了抗噪音驻极体拾音器的声音接收 端主筒体厚度问题, 可以根据设计需要及根据当时的制造工艺水 平, 尽可能的将声音接收端主筒体厚度减小到 0. 2-10亳米之间甚 至更小更薄, 也可以更厚一些。 而目前的非抗噪音驻极体拾音器 因为厚度比较厚, 再加上在两个单个拾音器之间的声音进入间隙, 使得单个的两个拾音器主音源声音接收端之间的距离比较远, 达 不到所要求的性能指标。
目前的非抗噪音驻极体拾音器因为是将进声孔设置在前盖前 壁上, 而在本发明的具有前后进声口朝向大致相同或大致相互垂 直的抗噪音拾音器中, 当使用的两个单个非抗噪音驻极体拾音器 重迭放置的时候, 为了使得声波可以进入位于后拾音器前盖前壁 上的进声孔内, 需要在前后两个非抗噪音驻极体拾音器之间设置 声音进入信道, 造成两个拾音器之间距离的增加。
因为本发明的拾音器是一种利用主音源与环境噪音音源与拾 音器距离不同达到消除环境噪音的目地的, 因此是一种对于拾音 器和主音源距离十分敏感的传声器件, 当超出有效接收距离时, 有用的主音源发出的声波信号很快衰减, 因此需要及时发出拾音 器超出接收范围的告警信号以及根据两者之间距离改变自动调节 放大器放大系数的距离监测和放大系数控制电路。
本发明的目的是提供一种具有前后进声口朝向大致相同或大 致相互垂直的抗噪音拾音器, 以克服现有技术的单个的抗噪音拾 音器在恶劣的高噪音环境下呈现出的抗噪音能力不足的缺陷。
本发明的另外一个目的是提供一种具有前后进声口朝向大致 相同或大致相互垂直的抗噪音拾音器, 以在批量生产上述专利产 品时, 容易控制零件的公差, 使得产品合格率得以提高。
本发明的另外一个目的是提供一种具有本发明的另外一个目 的是提供一种具有进声孔开在非抗噪音拾音器的侧壁上的拾音 器, 以便在一些特别需要进声孔开在筒体側壁的地方使用, 如当 使用前后排列的多个非抗噪音拾音器组成抗噪音拾音器时, 如果 使用目前的进声孔开在前盖前壁上的非抗噪音拾音器, 为了声波 可以进入后面拾音器前盖前壁上的进声孔需要在前后拾音器之间 留出进声通道, 但是当时用进声孔开在非抗噪音拾音器的筒体侧 壁上的拾音器时就可以不用留出进声通道了, 使得由多个非抗噪 音拾音器组成的抗噪音拾音器前后进声孔之间的距离可以缩短。 当然这种非抗噪音拾音器也可以应用于各种需要使用其它种类的 非抗噪音拾音器的地方。
本发明的另外一个目的是提供一种具有可以监测抗噪音拾音 器和主音源之间是否超出接收距离范围, 并且发出超出接收距离 范围警告以及根据两者之间距离改变自动调节放大器放大系数的 器件和电路。
根据本发明的一个技术方案, 提供了一种抗噪音拾音器, 其 包括相互结合的主筒体和后筒体, 其特征在于: 在主筒体侧壁的 前端和 /或后端分别具有前进声孔和后进声孔, 前后进声口相互间 的朝向在 0°- 135°之间。 以及所述外主筒体内包括多个抗噪音拾音 器单元和 /或非抗噪音拾音器单元, 在主筒体筒体側壁的前端和 / 或后端分别具有前进声孔和后进声孔, 前后进声口相互间的朝向 在 0°_135°之间。 特别是, 所述前进声孔和 /或后进声孔分别对应 于振膜相应的一侧。 特别是, 所述在主筒体的側壁有前进声孔, 和 /或在主筒体的侧壁有后进声孔。 特别是, 所述拾音器进声孔开 在側壁上。 特别是, 所述在前进声孔和 /或后进声孔相对应的主筒 体外壁上有聚声罩。 特别是, 在主筒体内具有绷膜环, 在所述绷 膜环前面的前垫片和隔板垫片之间放置中间部分凸起的隔板, 该 隔板中间部分凸起进入绷膜环内, 其凸起部分的边缘紧贴绷膜环 内边缘, 与振膜之间构成一个空腔。 特别是, 所述抗噪音拾音器 内的隔板放置在绷膜环内側缘之内, 在振膜与隔板的之间有隔板 垫片。 特别是, 所述抗噪音拾音器内的从振膜两侧到前后进声孔 之间的声学结构大致对称。 特别是, 所述主筒体内的背极在与背 极相同水平的位置从背极座中的背极通过孔中穿出, 与其电路部 分相连接。 特别是, 所述主筒体内进声孔的位置设置有声波引导 模块、 声通管。 特别是, 所述的抗噪音拾音器的电路部分放置在 主筒体中或放置在后筒体中。 特别是, 所述抗噪音拾音器内的绷 膜环和拾音器筒体外壳之间导电接点设置在后筒体的部位。 特别 是, 还包括声控开关电路, 其由检波电路、 比较器电路和开关电 路构成。 特别是, 还包括拾音器超出接收距离报警电路, 其由比 较器电路构成。 特别是, 还包括根据接收距离调节放大器放大系 数的控制电路, 其由有多个区间的窗口比较器电路构成。 特别是, 还包括将拾音器接收的两路差模声波电信号通过共模抑制电路进 行二次共模抑制的电路。 特别是, 所述前后进声孔分别设置在主 筒体前盖侧壁上和 /或主筒体后盖侧壁上, 相对于在主筒体侧面的 主音源的方向在主筒体前盖侧壁的一侧和在主筒体后盖侧壁的另 一側呈前后排列, 或相对于在主筒体側面的主音源的方向在一个 主筒体的前盖侧壁的一側和另一个主筒体前盖側壁的另一側呈前 后排列。 特别是, 所述多个主筒体交错设置, 前后进声孔分别设 置在主筒体前盖側壁上和 /或主筒体后盖侧壁上, 相对于在主筒体 側面的主音源的方向位于主筒体前盖侧壁和 /或主筒体后盖侧壁的 中央附近, 或相对于在主筒体侧面的主音源的方向在主筒体的主 筒体前盖侧壁和 /或后盖侧壁的两侧呈前后排列。
本装置的主要优点是, 具有多个前后排列的声音进入孔, 并 且至少是互相对应的多个声音进入孔, 其进声口开口朝向大致相 同(其范围是 00 ± 450)、 大致垂直(其范围是 900 ± 450) (也就是前 后进声口开口朝向其范围大致在 0 -135°左右) 的单个和组合型 高抗噪音拾音器, 前后进声孔朝向大致相同或大致相互垂直是指: 当主音源 38的位置在拾音器的前盖前壁前方 39的拾音器前筒体 中心线的延长线 40上时, 前进声孔可以是一个也可以使多个, 后 进声孔可以是一个也可以使多个, 前进声孔和后进声孔各自开口 的朝向和位于拾音器前盖前壁前方、 拾音器中轴线的延长线 40上 的主音源 38之间各自有前进声孔夹角和后进声孔夹角, 将两个夹 角之间的角度度数进行比较差值在 " 0 度" 左右的叫 "前后进声 孔朝向大致相同" , 差值在 " 90" 度左右的叫 "前后进声孔朝向 大致前后进声孔朝向大致相互垂直" , 两个前后进声孔夹角之间 的差值大致在 0度〜 130度之间。
其抗噪音的功能比目前现有的单个抗噪音拾音器状态下增强 很多, 由于声音进入孔开口均朝向相同方向(特别是当从互相对应 的朝向方向相同的前后进声口到达振膜的两面之间的声学信道的 声学特性大致相同的情况下), 使进入的声波信号的相位是大致相 同的、 各路声波信号的特性也大致相同, 其中进入的一路的声波 信号可以通过机械结构也可以通过电路改变相位, 然后同进入的 另一路声波信号进行共模抑制得到差模信号而消除噪音。 它可以 有比较强的抑制噪音信号功能, 使本装置即便工作在极恶劣环境 的高噪音状态下, 仍有较高的信噪比, 使声音保持清晰, 并且也 可以通过计算机数字处理程序进行抗噪音处理, 达到实现定向定 位接收的目的, 本发明的前后进声口朝向大致相同或大致相互垂 直的抗噪音拾音器可以适用于各种需要低噪音拾音器的地方使 用。 同时将前述专利和专利申请中前筒体内振膜前后两侧的声学 结构不能大致对称的问题进行改进, 通过将放置在绷膜环 11与前 垫片 8之间的隔板垫片 10和中间部分凸起的隔板 9的形状和放置 位置进行修改, 将隔板 9改成环状放入绷膜环 11内, 其外側边缘 紧贴绷膜环 11内边缘,隔板垫片 10放置于隔板 9和振膜 12之间, 同时将背极电极和背极制成一体的, 背极电极从背极座直接引出 到内后筒体, 经过结构的改进使得前筒体内振膜前后两側的声学 结构对称性得到提高并且批量制造时成品率也得到提高。
下面结合附图, 进一步说明各实施例。
图 1 是本发明的一种抗噪音拾音器的剖面图, 而图 1A 1C 是分别为图 1所示的 A-A线、 B- B线及 C-C线的剖面图。
图 2示出了本发明的一种抗噪音拾音器剖面图, 而图 2A 2C 是分别为图 2所示的 A- A线、 B- B线及 C-C线的剖面图。
图 3示出了本发明的一种抗噪音拾音器剖面图, 而图 3A - 3C 是分别为图 2所示的 A- A线、 B-B线及 C-C线的剖面图。
图 4示出了本发明的一种抗噪音拾音器剖面图, 而图 4A ~ 4B 是分别为图 4所示的 A-A线、 B- B线的剖面图。
图 5示出了本发明的一种抗噪音拾音器的剖面图。 而图 5A ~ 5C是分别为图 5所示的 A- A线、 B-B线及 C-C线的剖面图。
图 6示出了本发明的一种抗噪音拾音器剖面图。 而图 6A ~ 6B 是分别为图 6所示的 A- A线、 B-B线的剖面图。
图 7示出了本发明的一种抗噪音拾音器的剖面图。 而图 7A ~ 7B分别是图 7的顶视图和 A- A线剖面图。
图 8示出了本发明的一种抗噪音拾音器的剖面图。 而图 8A ~ 8B是分别为图 8所示的 A- A线、 B-B线的剖面图。
图 9 示出了本发明的一种抗噪音拾音器的剖面图, 而图 9A 是图 9所示的 A- A线的剖面图。
图 10示出了本发明的一种抗噪音拾音器的剖面图。 而图 10A 是图 10所示的 A-A线的剖面图。
图 11示出了本发明的一种抗噪音拾音器剖面图, 而图 11A ~ 11C是分别为图 11所示的 A-A线、 B- B线、 C-C线的剖面图。
图 12 示出了本发明的一种抗噪音拾音器剖面图剖面图, 而 图 12A 12B是分别为图 12所示的 A- A线、 B-B线的剖面图。
图 13示出了本发明的一种抗噪音拾音器剖面图, 而图 13A ~ 13C是分别为图 13所示的 A-A线、 B- B线、 C-C线的剖面图。
图 14示出了本发明的一种抗噪音拾音器剖面图, 而图 14A ~ 14C是分别为图 14所示的 A-A线、 B-B线及 C- C线的剖面图。
图 15示出了本发明的一种抗噪音拾音器剖面图, 而图 15A ~ 15B分别是图 15的顶视图和 A-A线剖面图。
图 16示出了本发明的一种抗噪音拾音器的剖面图。 而图 16A 是图 16所示的 A-A线的剖面图。
图 17 示出了本发明的一种噪音拾音器的剖面图。 而图 17A 是图 17所示的 A-A线的剖面图。
图 18示出了本发明的一种抗噪音拾音器剖面图, 而图 18A、 18B是沿图 14所示的 A-A线、 B- B线的剖面图
图 19示出了本发明的一种抗噪音拾音器剖面图, 而图 15A ~ 15B分别是图 15的顶视图和 A-A线剖面图。
图 20示出了本发明的一种抗噪音拾音器的剖面图。 而图 16A 是图 16所示的 A-A线的剖面图。
图 21 图 21 示出了本发明中使用的非抗噪音拾音器的剖面 图, 而图 17A是图 17所示的 A-A线的剖面图。
图 22示出了本发明的一种抗噪音拾音器剖面图, 而图 18A、 18B是沿图 14所示的 A- A线、 B-B线的剖面图
图 23示出了本发明的一种抗噪音拾音器剖面图, 而图 18A、 18B是沿图 14所示的 A- A线、 B-B线的剖面图
图 24a示出了本发明的一种抗噪音拾音器声音信号控制开关 电路图。
图 24b 示出了本发明的一种抗噪音拾音器的声音信号控制开 关电路图。
图 24c 示出了本发明的一种抗噪音拾音器的声音信号控制开 关电路图。
图 25 示出了本发明的一种抗噪音拾音器的超出接收距离报 警电路。
图 26示出了本发明的抗噪音拾音器的剖面图, 而图 26A-26C 是分别为图 26所示的 A-A线、 B-B线及 C-C线的剖面图。
图 27示出了本发明的抗噪音拾音器的剖面图, 而图 22A-22C 是分别为图 22所示的 A- A线、 B-B线及 C- C线的剖面图。
图 28示出了本发明的抗噪音拾音器的剖面图, 而图 28A-28C 是分别为图 28所示的 A-A线、 B- B线及 C-C线的剖面图。
图 29示出了本发明的抗噪音拾音器的剖面图, 而图 29A-29B 是分别为图 29所示的 A-A线、 B-B线的剖面图。
图 30示出了本发明的抗噪音拾音器的剖面图, 而图 30A- 30B 是分别为图 30所示的 A- A线、 B- B线剖面图。
图 31 示出了本发明的一种抗噪音拾音器的超出接收距离报 警电路框图。
图 32 示出了本发明的一种抗噪音拾音器的超出接收距离报 警电路框图。
图 33a为一种数字数据采集共模抑制系统框图;
图 33b为一种数字数据采集共模抑制系统框图;
图 34 示出了本发明的拾音器中使用的一种抗噪音拾音器的 超出接收距离报警计算机流程图。
图 35 示出了本发明的拾音器中使用的一种非抗噪音拾音器 的超出接收距离报警计算机流程图。
图 36 示出了本发明的拾音器中使用的一种抗噪音拾音器的 超出接收距离报警电路。
图 37 示出了本发明的拾音器中使用的一种数字消除噪音定 位接收计算机流程。
图 38 示出了本发明的拾音器中使用的一种抗噪音拾音器的 根据接收距离调节放大器放大系数的具有多个区间的窗口比较器 电路。
图 39 示出了本发明的拾音器中使用的一种抗噪音拾音器的 根据接收距离调节放大器放大系数的放大器电路。
图 40示出了本发明的一种抗噪音拾音器的剖面图。
图 41 示出了本发明的拾音器中使用的一种数字消除噪音计 算机流程。
图 42 示出了本发明的拾音器中使用的一种消除噪音电路框 图。
图 43 示出了本发明的使用的一种抗噪音拾音器的剖面图, 而图 43A是图 43所示的 A-A线的剖面图。
图 44 示出了本发明的使用的一种抗噪音拾音器的剖面图, 而图 44A是图 44所示的 A- A线的剖面图。
图 45示出了本发明的使用的一种抗噪音拾音器的剖面图。 图 1 是本发明的一种抗噪音拾音器的剖面图, 而图 1A ~ 1C 是分别为图 1所示的 A-A线、 B-B线及 C-C线的剖面图。 其中, 本发明的驻极体抗噪音拾音器有一圆筒形的外壳, 由内侧壁 1 和 内后筒体 20结合而成, 并且该内筒体側壁 1的前部有前盖前壁 2 而后部有后盖后壁 3, 同时根据需要, 该外壳也可以采用方形、 长方形、 椭圆形等等其它各种形状。 内筒体側壁 1 的外径尺寸可 以在 0. 2 - 55毫米之间, 高度可以在 0. 2 - 50毫米之间, 可以根 据试验决定。 在主筒体内放置有抗噪音拾音单元, 此单元可以由 下列部件组成: 首先在外壳的内筒体側壁 1 的前端和后端每端设 有一个或者多个前进声孔 4和后进声孔 4a, 在前后进声孔 4、 4a 相对应的内筒体侧壁 1 的外側壁上有聚声罩 19,并且环绕该内筒 体側壁 1的前进声孔 4和后进声孔 4a的内壁设置有前阻尼膜 5、 后阻尼膜 5a, 同时有前阻尼膜压片 6、 后阻尼膜压片 6a, 将该阻 尼膜 5、 5a放置在阻尼膜压片 6、 6a与内筒体侧壁 1之间的空腔 中,此阻尼膜也可以根据需要放置在内主筒体内在振膜前及在振膜 后的其它部位, 也可以放在进声孔的外面, 根据设计要求可以使 用全部也可以只使用一部分, 也可以增加或者减少一些部件。 此 外, 紧靠隔板垫片 10和绷膜环 11的振膜 12可以放置在内筒体侧 壁 1的中心位置附近, 当然振膜 12也可以根据设计要求放置在靠 近前盖前壁或者后盖后壁的位置上。 在绷膜环 11前面的隔板垫片 10和前垫片 8之间放置中间部分凸起的隔板 9, 该隔板 9 中间部 分凸起进入绷膜环 11 内, 其凸起部分的边缘紧贴隔板垫片 10和 绷膜环 11 内边缘, 与振膜 12之间构成一个空腔。 这样使得隔板 9的后表面接近振膜 12前表面, 但是和振膜 12前表面之间有一 定的距离。 根据需要隔板 9后表面与振膜 12前表面之间的间隔距 离与振膜 12后表面与背极 15前表面之间的距离可以大致相等, 一般地说隔板 9后表面与振膜 12前表面之间的距离,应该由振膜 12前后两边声学特性来决定, 使得同时从前后进声孔 4、 4a的声 音进入端进入的声音到达振膜 12的前后两个面的时间大致相等, 振膜 12两边的声学特性大致相同。 根据设计要求前垫片 8、 隔板 9 和隔板垫片 10, 根据设计要求可以采用导体或者非导体的金属 或者非金属材料制成, 如果隔板 9 采用金属材料制成, 可以使隔 板 9和绷膜环 11进行紧密接触导电, 也可以使两者之间通过非金 属材料进行两者之间的绝缘, 同时起到使两者之间紧密接触的作 用。 根据设计要求隔板 9凸起部分的厚度与背极 15的厚度大致相 等, 也可以不相等。 为了使得两者厚度大致相等, 隔板 9 的前表 面可以为平面, 也可以向振膜 12方向凸起或凹陷。 隔板 9、 背极 15、 隔板垫片 10的形状和厚度也可以根据使振膜 12 两边的声学 特性大致相同的原则进行调整, 例如将背极面向后盖后壁的背面 形状设计成和隔板 9 面向前盖前壁的方向的前面形状相近似, 使 背极的厚度和隔板 9的凸起部分的厚度相接近等等。 隔板 9上面 有隔板孔 18, 背极上面有背极孔 18a, 根据设计要求两者的大小、 数目和安放位置可以互相对称, 也可以不对称。
隔板垫片 10可以如图一所示的放置在绷膜环 11前面和中间 部分凸起的隔板 9 的外周非凸起部分的边缘之间, 也可以放置在 绷膜环内侧缘之内, 振膜 12与隔板 9的中间凸起部分之间, 这样 在振膜 12与隔板 9的中间凸起部分和隔板垫片 9内侧缘之间就形 成一个空腔, 隔板垫片 9 也可以根据设计要求放置在其它地方, 只要能起到将振膜 12与隔板 9的中间凸起部分之间隔开一定的距 离的作用, 使振膜 12与隔板 9之间的距离由隔板垫片 9的厚度决 定。 相应的背极间隔垫圈 13的内側缘也可以向内延伸到与隔板垫 片 9内侧缘相对应的位置处。
在内筒体侧壁 1的前端设有前进声孔 4、 后进声孔 4a及前 阻尼膜压片 6、 后阻尼膜压片 6a之间的部位放置前声波引导模 块 7、 后声波引导模块 7a, 是使得从筒体側壁进声孔进入的传 播方向不是指向振膜方向的声波通过前后声波引导模块 7、 7a 中的前后声通管 27、 27a (也可以制成声通槽、 声通板等等) 的 引导, 使声波传播方向改变为大致指向振膜的方向, 使得振膜 两侧接受的声波振动大小大致相同, 这样可以更好地进行共模 抑制作用, 前后声通管 27、 27a也可以根据设计要求指向其它 方向, 根据设计要求也可以只使用声通管不使用声波引导模块, 也可以不使用声通管和声波引导模块。 声波引导模块 7 的内表 面、 前垫片 8 的内壁和隔板 9 前表面之间形成一个隔板前空腔 16, 振膜 12 通过环绕内筒体侧壁 1 的内壁而设置的绷膜环 11 与隔板 9 的后表面之间形成振膜前空腔 17, 于是声波便通过内 主筒体侧壁外面的聚声罩 19进入前进声孔 4、 前阻尼 5、 前阻 尼膜压片 6、 声波引导模块 7的中的声通管 27进入隔板前空腔 16再通过隔板 9上的隔板孔 18进入振膜前空腔 17从振膜 12前 面作用在振膜 12上。 为了减低环境噪音及形成 8字型或者心型 方向指向特性, 在内筒体侧壁 1 后端设有一个或者多个内主筒 体后进声孔 4a, 以便使声波能通过主筒体侧壁外面的聚声罩 19 进入后进声孔 4a、 后阻尼膜 5a、 后阻尼膜压片 6a、 后声波引导 模块 7a中的后声通管 27a的引导使声波传播方向大致指向振膜 的方向进入由背极 15背面、声波引导模块 7a前表面和背极座 14 的后表面之间形成的背极后空腔 16a中, 再通过背极 15上的背 极孔 18a到达由背极间隔垫圏 13隔开的背极 15和振膜 12之间 的振膜后空腔 17a 中, 从振膜 12背面作用在振膜 12上。 可以 根据设计要求决定是否使用隔板垫片 10、 前声波引导模块 7、 后声波引导模块 7a和声波引导模块中的声通管 27、 27a, 是使 用全部还是使用一部分。 声波引导模块可以采用金属材料也可 以采用非金属材料制成, 它可以和阻尼膜压片使用相同材料也 可以使用不同材料, 可以制成一体的, 也可以制成分体的。 可 以根据设计要求决定是否使用声波引导模块„
通过分别使从声波信号起始进入拾音器的前后两个起始进声 孔到达振膜之间的两个声波信道的声学特性大致相同 (也可以不 相同) , 并且通过机械结构的作用, 使到达振膜的两路声波信号 相位大致相差 180 度, 作用到振膜上可以达到更好的共模抑制作 用, 提取出差模信号消除噪音。
本发明的驻极体抗噪音拾音器除了在以往的驻极体抗噪音拾 音器中增加了聚声罩 19、 内主筒体侧壁进声孔 4、 4a、 前声波引 导模块 7、 后声波引导模块 7a、 声波引导模块 7、 7a前阻尼膜 5、 后阻尼膜 5a、 内后筒体 20、 内后筒体固定装置 26, 而其工作原 理、 结构和使用的材料以及电路, 都和现有的本发明人的前述专 利和专利申请本发明人的前述专利和专利申请和已有的抗噪音拾 音器相同, 故说明从略。
聚声罩 19 的开口可以朝向将主音源方向 (也可以朝向其它 方向) 各个聚声罩 19的声波进入口开口方向应该大致一致, 当然 可以根据设计要求进行更改为朝向不完全一致, 聚声罩 19收集并 引导主音源发出的声波进入进声孔 4、 4a 中, 同时减弱从其它方 向进入的声音, 它可以大于、 等于、 小于进声孔 4、 4a 的外形尺 寸。 聚声罩 19是起改变内主筒体的进声孔 4、 4a的朝向, 使前后 声波进入口的朝向大致相同, 这样使得进入前后声波进入口的声 波相位大致相同, 进入拾音器的声波再经过机械(或者电子) 的 方法进行移相, 使得从前后声波进入口进入的声波相位大致相差 180 度左右, 这样经过机械(或者电子) 的方法进行共模抑制, 提取出差模信号来抗噪音。 本发明的各种类型的驻极体抗噪音拾 音器可以根据设计要求决定是否在进声孔外面使用聚声罩 19, 是 全部进声孔外面都使用, 还是部分进声孔外面使用, 根据设计要 求本发明中各个类型的拾音器的进声孔和聚声罩 19可以设置的位 置可以相互对称, 也可以相互不对称, 各个聚声罩 19的朝向可以 相同, 也可以不相同, 前聚声罩 19的前中心线 32和后聚声罩 19 的后中心线 32a 的延长线可以在同一条线段上, 也可以在不同的 线段上, 当在不同的线段上时前中心线 32和后中心线 32a相互之 间可以互相平行, 也可以有一定的角度, 前中心线 32和后中心线 32a 可以和内主筒体的中轴线互相平行, 也可以有一定的角度。 当根据设计要求不使用聚声罩 19时将可以是( 1 )如图 1 所示开 在内筒体侧壁 1上的进声孔 4、 4a的朝向不是指向声源方向, 但 是仍然是朝向相同方向。 (2 )也可以是如图 3所示的进声孔一部 分开在前盖前壁 2 上面朝向主音源方向, 另一部分开在内筒体侧 壁 1 的侧壁上, 朝向和主音源大致垂直的方向, 在此情况下虽然 抗噪音性能比使用聚声罩 19, 并且使聚声罩 19 的开口可以朝向 将主音源方向时效果差, 但是明显强于当进声孔开在前后盖后壁 时的抗噪音效果, 仍然可以达到一个比较满意的效果, 因此聚声 罩 19可以根据设计要求决定是否使用。 外后筒体、 外主筒体、 内 主筒体支撑架 31、 内主筒体、 内后筒体 20、 后筒体 20a、 聚声罩 19、 前后声波引导模块 7、 7a、 进声孔 4、 4a、 声通管 27、 27a, 隔板 9、 隔板孔 18、 前垫片 8等结构体的内部以及外部形状都可 形、 矩形、 圆形、 筒形、 长方形、 三角形、 菱形、 多边形、 扇形、 椭圆形、 各种弧线如: 采用抛物线形、 弧形等等各种形状曲线以 及几何函数曲线, 以及它们中的部分曲线线段等等各种基本形状, 也可以是各种基本形状组合形成的复杂形状,可以是单一形状的简 单单体, 也可以是各种形状的单体组合形成的复合体等等, 可以 是一个整体也可以是整体的一部分, 根据设计需要可以使用金属 材料也可以使用非金属材料, 也可以是两者相互结合形成的复合 材料制作。
内主筒体和内后筒体 20 可以是直的, 也可以是弯曲的。 内 筒体侧壁 1其长度和宽度根据需要可以在 0. 2 ~ 50亳米之间, 一 般在 1 ~ 15毫米之间。 声波引导模块 7、 7a可以和阻尼膜压片 6、 6a是一体的也可以是分开的, 可以使用相同的材料也可以使用不 同的材料, 可以使用金属材料也可以使用非金属材料, 也可以是 两者相互结合形成的材料。 为了达到心型方向指向特性可以在背 极空腔 16a 中充填有阻尼材料, 用这种阻尼材料来调节声波的传 输速度, 使得同时从前后进声孔进入的声波能同时达到振膜 12两 侧, 这样使两者声波可以正确地互相耦合, 以便消除噪音。 如果 是 8 字型方向指向性也可以不充填降低声波传输速度的阻尼材料 (称为: 阻尼材料 A ) , 充填的阻尼材料 A 的种类和多少可以根 据具体要求通过试验来决定。 在从筒体側壁进声孔 4、 4a 的外面 到振膜之间的路径中, 可以根据需要决定是否使用和在何部位使 用阻尼膜 5、 阻尼膜 5a, 阻尼膜 5、 5a可以采用毛毡或无纺布等 非金属材料也可以采用金属丝网等金属材料或者金属和非金属的 结合形成的材料及各种合成材料等各种有阻尼特性的材料制成(称 为: 阻尼材料 B ) 制成, 是为了减小在拾音器使用过程中因为呼 吸时从口中呼出的气体吹到振膜 12上产生噪音而增加的阻尼膜, 用料和使用原理和通常在驻极体拾音器的外壳上进声孔前面加装 的阻尼膜相同。 当直接使用本发明的驻极体抗噪音拾音器, 而且 不在其外面加装话筒外壳时, 为了不损坏振膜 12及影响拾音性能 而可以将其放入外壳内。 阻尼膜 5 可以采用阻尼毛毡或阻尼无纺 布等各种有阻尼特性的材料制成, 阻尼膜 5、 5a阻尼膜压片 6、 6a 可以根据设计需要决定是否使用, 如: 将拾音器放置于话筒外壳 中就可以不将阻尼膜放置于拾音器内, 如不在外面加装外壳而本 发明的拾音器单独使用可以根据需要决定是否将其放入拾音器 内。 背极座 14可以采用绝缘材料之类来制成。
因为内主筒体部分只有驻极体抗噪音拾音器接收声音所必须 的部分, 而将不是必须的部分如: 阻抗变换电路 21 (可以是复合 场效应管, 也可以是集成电路, 也可以是其它各种电路) 、 印刷 线路板 23、 接线电极 24 等放在内后筒体之内, 使朝向声源方向 , U rn , 的内主筒体筒体侧壁的前面和后面两个进声孔之间的距离可以根 据需要制作得很接近, 达到在较高频段上有较高的抗噪音能力。 同时内后筒体还可以作为直接和话筒支架连接的部分, 可以省去 使用话筒外壳。 为了将拾音器更好的固定在外部装置上防止脱落, 在内后筒体 20的外面制作固定装置 26, 可以在内后筒体 20的任 意部位上制作和外部装置进行相互连接的固定装置 26, 可以是从 筒体壁上向外凸出的也可以是凹陷的等等各种形状都可以, 如图 1所示的该固定装置 26为凹陷形状。 后筒体之内放置后筒体前内 支块 22和后内支块 25, 在背极座 14和支块上有背极电极 15a通 过孔 28, 背极电极 15a穿过通过孔 28通过内主筒体侧面进入内 后筒体内。
背极电极 15a在与背极 15相同水平的位置从背极座 14中的 背极电极通过孔 28 中穿出, 它可以是和背极 15 —体的, 也可以 是单独的一个电极, 背极电极 15a与复合场效应管 21 (也可以是 集成电路) 的一个管脚的连接, 复合场效应管 21等电路组件安装 在印刷线路板 23上, 通过印刷线路板 23上的输出脚 24和外周电 路连接。 也可以直接将背极的引出线 "背极电极 15a" 通过后盖 后壁 3或内后筒体 20的壁引出, 背极引出线背极电极 15a可以和 背极是一体的也可以是分体的。 也可以根据设计要求将电路部分 安装于后筒体内, 也可以将电路部分安装于拾音器外面其它地方 而不安装在内主筒体或者内后筒体内。 内后筒体 20可以是圓筒形 也可以是其它形状, 它的直径(或截面, 下同此) 可以大于、 等 于、 小于内筒体側壁 1 的直径, 亦即与拾音器内筒体側壁 1 的直 径可以相同也可以不相同。 内后筒体 20可以根据设计需要安装在 内主筒体的任何部位, 只要不妨碍声波进入前进声孔 4 和后进声 孔 4a, 它可以朝向任何方向。 振膜 12可以根据是否在振膜 12上驻极及振膜 12的振动性 能, 而采用 FEP50A (聚四氟乙烯与聚六氟乙烯的共聚物)或者聚酯 薄膜等等材料, 可以是非金属材料或者金属材料或者是两者相互 结合形成的复合材料等等可以用于振膜的各种材料的薄膜, 其厚 度可以根据试验决定, 如厚度等于、 大于或小于 12. 5微米左右。 在振膜 12上可以有金属层, 如果不在振膜 12上驻极可以将驻极 体薄膜覆于背极 15上。 内筒体侧壁 1、 前盖前壁 2、 后盖后壁 3、 内后筒体 20和聚声罩 19外壳可以由不锈钢材料、 铜材料、 铝材 料等金属材料、 也可以由塑料等非金属材料、 也可以两者相互结 合形成的复合材料制成。 本拾音器的其它部分可以参考采用各种 类型的一阶或者多阶气导式具有心形或 8 字形方向指向性的驻极 体抗噪音拾音器的结构和所使用的材料。 内筒体侧壁 1、 前盖前 壁 2、 内后筒体 20、 后盖后壁 2和聚声罩 19可以分开制作后如图 所示进行互相连接组合,也可以制作成复合体后互相组合。 同样内 部构件也可以分开制作进行组合,或者制作成复合体后进行组合。
也可以通过使用在本发明人的前述专利和专利申请中的各种 类型的抗噪音拾音器的内主筒体和目前已有的各种抗噪音拾音器 通过改造并加装本发明中的聚声罩 19、 内主筒体側壁进声孔 4、 4a、 前声波引导模块 7、 后声波引导模块 7a等等制成新的高抗噪 音拾音器。
图 2示出了本发明的一种抗噪音拾音器剖面图, 而图 2A ~ 2C 是分别为图 2所示的 A-A线、 B- B线及 C- C线的剖面图。 由图 2 和图 1、 图 1A 1C与比较可见, 其不同处在于: 背极电极 15a从 背极座 14的外側绕过背极座 14后声通管 27a等连接放置在内主 筒体后部的阻抗变换电路 21, 印刷电路板 23 (阻抗变换电路 21, 印刷电路板 23也可以放置在于内筒体侧壁 1后面连接的内后筒体 图 3示出了本发明的一种抗噪音拾音器的剖面图, 而图 3A ~ 3C是分别为图 2所示的 A-A线、 B-B线及 C-C线的剖面图。 与图 2和图 1、 图 1A - 1C与比较可见, 其不同处在于: 振膜 12前面将 隔板、 隔板垫片取消, 从聚声罩 19、 前进声孔 4进入的声波经过 前阻尼膜 5、 前阻尼膜压片 6、 由声波引导模块 7、 上的声通管 27 的引导, 使声波传播方向改变为大致指向振膜的方向, 直接进入 振膜前空腔 17, 在振膜 12前面作用在振膜 12上引起振膜的震动。 并且因为没有内后筒体, 而将电路部分放置在筒体内, 因此背极 15后面的部分要作相应的改动, 背极电极 15a不是穿过在背极座 14上的背极通过孔 28 通过内主筒体側壁側面进入内后筒体内, 而是直接进入拾音器的后部, 连接阻抗变换电路 21, 印刷电路板 23也在筒体 1 内。 (这实际上是将目前已有的一种抗噪音拾音器 增加内主筒体侧壁进声孔 4、 4a、 前声波引导模块 7、 后声波引导 模块 7a、 前阻尼膜 5、 后阻尼膜 5a、 该制成本发明的前后进声口 朝向大致相同或大致相互垂直的抗噪音拾音器。
本发明的最基本的要求是将前后进声孔 4、 4a的开口设置在 内主筒体的侧壁上, 而不是和目前的各种抗噪音拾音器一样将后 开口设置在后盖后壁上。
图 4示出了本发明的一种抗噪音拾音器的剖面图, 而图 4A ~ 4B是分别为图 4所示的 A- A线、 B- B线的剖面图。
由图 4和图 3、 图 3A 3C与比较可见, 其不同处在于: 前进 声孔 4不是开在内筒体侧壁 1 的側壁上, 而是将它开在前盖前壁 2上, 这样前进声孔 4外面的聚声罩 19, 就可以不使用了。 本发 明的最基本的要求是将后进声孔 4a的开口设置在内筒体侧壁 1的 侧壁上, 而不是目前已有的各种抗噪音拾音器一样将后进声孔 4a 的开口设置在后盖后壁上, 再通过在后进声孔 4a的外面增加集音 罩 19, 并使聚声罩 19 的开口方向和前进声孔开口的方向大致一 致。
图 5是表示本发明的一种抗噪音拾音器的剖面图。 而图 5A ~ 5C是分别为图 5所示的 A- A线、 B- B线及 C-C线的剖面图。
由图 5 与图 1 比较可见,其不同处在于: 本发明的驻极体拾 音器的后筒体 20a 为一个完整的支持筒体, 它可以作为两只或者 多只单个拾音器内主筒体(图中是两个单个拾音器上驻极体拾音 器 29 和下驻极体拾音器 30 ) 的一个共同的后筒体, 因此是将后 筒体 20a和上驻极体拾音器 29的内主筒体和下驻极体拾音器 30 的内主筒体制做成一个器件。 后筒体 20a 可以由不锈钢材料、 铜 材料、 铝材料等金属或者塑料等非金属材料或者复合材料制成。 后筒体 20a的形状可以和图 1的内后筒体 20形状大致相同也可以 不同。 当使用多个拾音器时本发明是使用共模信号抑制电路取出 两个拾音器接收的差模信号消除噪音等等方法的, 可以将共模信 号抑制电路 32放置在后筒体 20a中, 也可以放置在其它地方。
这里各单个驻极体拾音器的内主筒体(如上驻极体拾音器 29 的内主筒体和下驻极体拾音器 30的内主筒体) 的中轴线(中心线 的延长线形成的中轴线) 可以同在一个中轴线上, 也可以在不同 的中轴线上, 当在不同的中轴线上时, 各个中轴线相互之间可以 是平行的也可以有一定的角度。
本发明的各单个驻极体拾音器到主音源之间的距离必须不 同, 每两个驻极体抗噪音拾音器内主筒体(如上驻极体拾音器 29 的内筒体侧壁 1和下驻极体拾音器 30的内筒体侧壁 1 ) 的前声音 接收端 (前盖前壁 2 ) 的前盖前壁进声孔 3 之间的前后距离根据 设计要求决定, 例如: 可以在 0. 1-200 亳米之间, 也可以大于或 者小于这个尺寸, 可以根据试验决定, 一般在 1-20毫米之间。 根据设计要求可以将各个驻极体拾音器内主筒体放入外主筒 体内, 起保护支撑的作用, 也可以将多个驻极体拾音器共同使用 一个外主筒体。 根据设计要求可以由内主筒体支撑架 31将多个驻 极体抗噪音拾音器内主筒体(如上驻极体拾音器 29的内主筒体和 下驻极体拾音器 30的内主筒体)相互连接固定, 也可以使内主筒 体和外主筒体 33 (见图 11 )之间相互连接固定, 起加强固定作用, 可以有一个或者多个内主筒体支撑架 31, 可以采用十字型.圆圈 形.本发明中所有的外后筒体、 外主筒体、 内主筒体支撑架 31、 内筒体侧壁 1、 内后筒体 20、 后筒体 20a、 聚声罩 19、 前后声波 引导模块 7、 7a、 声通管 27、 27a. 前垫片 8等都可以根据设计要 求和实际需要, 采用规则或者不规则的变形的方形、 矩形、 圆形、 长方形、 三角形、 菱形、 多边形、 扇形、 各种弧线形状如: 椭圆 形抛物线曲面的弧形等等各种基本形状,也可以是各种基本形状组 合形成的复杂形状,可以是单一形状的简单单个, 也可以是各种形 状的单个组合形成的复合体等等各种形状的立体结构 (也可以是 中空的立体结构的) 的各种管、 槽、 球、 板、 块等等, 可以是一 个整体也可以是整体的一部分,但是这个外后筒体、外主筒体、 内 主筒体支撑架、 内后筒体和外后筒体的形状和安装位置不能影响 每个驻极体拾音器.驻极体抗噪音拾音器和整体的具有前后进声口 朝向大致相同或大致相互垂直的抗噪音拾音器的抗噪音效果。 这 个外主筒体.内主筒体支撑架. 内后筒体和外后筒体可以是连成一 体的, 也可以是相互独立的, 根据设计要求可以同时使用全部, 也可以选取其中部分应用。
为了达到提取出差模信号消除噪音的目的, 可以使用以下两 种方式: a.使前后两个内主筒体中每一个内主筒体 29或者 30上 的互相对应的两个起始进声孔到达振膜之间两个的声波信道的声 学特性大致相同 (也可以不完全相同) , 并且通过机械结构的作 用使两路声波信号之间的相位大致相差 180 度, 作用到振膜上可 以达到更好的共模抑制作用, 提取出差模信号消除噪音。 B.又使 前后两个内主筒体 29、 30之间互相对应的两个进声孔到达振膜之 间两个的声波信道的声学特性大致相同 (也可以不完全相同) , 并且相位大致相同, 可以通过共模抑制电路进行共模抑制, 提取 出差模信号消除噪音。
根据设计要求外主筒体 25.内主筒体支撑架 31和驻极体拾音 器内主筒体的之间可以有防震垫圈 36或者防震垫 37进行防震隔 离。
本发明中的各个单个拾音器以及拾音器部件也可以采用各种 现有的各种类型的抗噪音拾音器或者非抗噪音拾音器, 如: 驻极 体拾音器、 动團拾音器、 电磁式拾音器、 压电陶瓷拾音器、 半导 体拾音器等等。
当然也可以不使用前后进声口朝向大致相同或大致相互垂直 的抗噪音拾音器的内主筒体而使用在本发明人的前述专利和专利 申请中的各种类型的抗噪音拾音器的主筒体和目前已有的各种抗 噪音拾音器制成新的組合型高抗噪音拾音器。
图 6是表示本发明的一种抗噪音拾音器的剖面图。 而图 6A ~ 6B是分别为图 6所示的 A-A线、 B-B线的剖面图。
由图 6和图 5、 图 5A ~ 5C比较可见, 其不同处在于: 将上驻 极体拾音器 29的内主筒体和下驻极体拾音器 30的内主筒体中的 后进声孔 4a、 后阻尼膜压片 6a和后声波引导模块 7a、 和后声波 引导模块 7a中的后声通管 27a去除, 保留上驻极体拾音器 29的 内主筒体和和下驻极体拾音器 30的内主筒体中前进声孔 4、 前阻 尼膜压片 6、 之间的部位放置前声波引导模块 7、 和声波引导模块 7 中的前声通管 27, 制成由非抗噪音拾音器内主筒体的有上驻极 体拾音器 29的内主筒体和下驻极体拾音器 30的内主筒体和后筒 体 20a, 通过共模抑制电路消除噪音, 制成的前后进声口朝向大 致相同或大致相互垂直的抗噪音拾音器组合型高抗噪音拾音器。 上驻极体拾音器 29的内主筒体和下驻极体拾音器 30的内主筒体 可以根据需要制成一个单一的内主筒体, 而不是分别制成两个内 主筒体。
这样使前后两个内主筒体之间互相对应的两个进声孔到达振 膜之间两个的声波信道的声学特性大致相同, 并且相位大致相同, 可以通过共模抑制电路进行共模抑制, 提取出差模信号消除噪音。
图 7是表示本发明的一种抗噪音拾音器的剖面图。 而图 7A ~ 7B分别是图 7的顶视图和 A-A线剖面图。
由图 7和图 6、 图 6A - 6B与比较可见, 其不同处在于: 将由 非抗噪音拾音器内主筒体的上驻极体拾音器 29的内主筒体和下驻 极体拾音器 30的内主筒体放置方向改为前后侧向放置, 前后进声 孔 4、 4a在侧面的内筒体侧壁 1上(虽然与振膜 12相对的应该是 前盖前壁 2, 但是因为是两个拾音器前后側向放置, 这样它们每 个拾音器的筒体前后两側就形成了前后壁, 因此它们的前盖前壁 2形成了筒体侧壁 1), 聚声罩 19放置在进声孔 4外面, 开口朝向 同一个方向。 在上驻极体拾音器 29和下驻极体拾音器 30之间可 以根据设计要求放置内主筒体支撑架 31, 内主筒体支撑架 31 可 以是金属的也可以是非金属的材料制成, 如果内主筒体支撑架 31 是非金属材料制成的, 而上驻极体拾音器 29的内主筒体和下驻极 体拾音器 30的内主筒体之间需要电磁屏蔽时, 可以使用金属材料 制成的主通体支撑屏蔽架 31a, 它可以是金属片, 也可以是在金 属镀层内主筒体支撑架 31是非金属材料上的金属镀层等等。 可以 制成一个单一的主筒体, 也可以分别制成两个主筒体。 也可以将 目前普遍使用的将拾音部分和电路部分共同放入一个主筒体内的 非抗噪音拾音器结构 (如果图 18所示的拾音器结构)制成此具有 前后放置的组合型高抗噪音拾音器, 而不是用如图所示的主筒体 和内后筒体两部分制成的拾音器。
图 8是表示本发明的一种抗噪音拾音器的剖面图。 而图 8A - 8B是分别为图 9所示的 A-A线、 B-B线的剖面图。 由图 8和图 6、 图 6A ~ 6B与比较可见, 其不同处在于: 因为没有内后筒体, 而将 电路部分放置在内主筒体内, 因此背极 15后面的部分要作相应的 改动, 背极电极 15a不是穿过在背极座 14上的背极通过孔 28通 过内主筒体侧面进入内后筒体内, 而是直接进入拾音器的后部, 连接阻抗变换电路 21, 印刷电路板 23也在筒体 1 内, 形成上拾 音器 31和下拾音器 32 两部分。 这实际上是目前已有的非抗噪音 拾音器的内部结构增加前声波引导模块 7、 前声通管 27, 在一个 筒体内可以安装多个相同的目前已有的非抗噪音拾音器的拾音部 分和电路部分, 在每个驻极体拾音器的拾音部分前面可以增加内 主筒体侧壁进声孔 4前声波引导模块 7前阻尼膜 5和聚声罩 19等 制成此声音进入孔开口均朝向相同方向组合型抗噪音拾音器。
图 9 是表示本发明的一种抗噪音拾音器的剖面图。 而图 9A 是图 9所示的 A-A线的剖面图。
由图 9和图 7、 图 7A ~ 7B与比较可见, 其不同处在于: 将由 非抗噪音拾音器主筒体的上驻极体拾音器 29的内主筒体放置方向 改为向前面放置, 进声孔 4在朝向前面的前盖前壁 2上, 聚声罩 19放置在下驻极体拾音器 30的内主筒体側面的进声孔 4外面, 开口朝向同一个方向。 在上驻极体拾音器 29和下驻极体拾音器 30 之间可以根据设计要求放置内主筒体支撑架 31。 可以制成一个单 一的主筒体, 也可以分别制成两个主筒体。 也可以将目前普遍使 用的将拾音部分和电路部分共同放入一个主筒体内的非抗噪音拾 音器结构 (如图 18所示的拾音器结构) 制成此具有前后放置的组 合型高抗噪音拾音器, 而不是用如图所示的有主筒体和内后筒体 两部分的拾音器。
图 10是表示本发明的一种抗噪音拾音器的剖面图。 而图 10A 是图 10所示的 A-A线的剖面图。
由图 10和图 7、 图 7A ~ 7B与图 9比较可见, 其不同处在于: 将由非抗噪音拾音器主筒体的下驻极体拾音器 30的主筒体放置方 向改为向前面放置, 进声孔 4在朝向前面的前盖前壁 2上, 聚声 罩 19放置在下驻极体拾音器 30的内筒体侧壁 1的侧面的进声孔 4a外面, 开口和上驻极体拾音器 29的聚声罩 19朝向同一个方向。 在上驻极体拾音器 29和下驻极体拾音器 30之间可以根据设计要 求放置内主筒体支撑架 31。 在下驻极体拾音器 30进声孔 4的前 面放置后声波引导模块 7a, 在从进声孔 4a到进声孔 4之间有后 声波引导模块 7a的后声通管 27a。
可以制成一个单一的主筒体, 也可以分别制成两个内主筒 体。 也可以将目前普遍使用的将拾音部分和电路部分共同放入一 个主筒体内的非抗噪音拾音器结构 (如果图 18 所示的拾音器结 构) 制成此具有前后放置的组合型高抗噪音拾音器, 而不是用如 图所示的主筒体和内后筒体两部分制成的拾音器。 同样也可以将 上驻极体拾音器 29和下驻极体拾音器 30之间的前后位置倒换制 成一个新的实施例。
根据设计要求也可以将图 5〜图 10的上驻极体拾音器 29和下 驻极体拾音器 30的内主筒体设计为两个分开的主筒体外壳, 也可 以设计为一个共享内主筒体外壳, 将原来上驻极体拾音器 29的内 主筒体和下驻极体拾音器 30内的各个部件分别放置在共享内主筒 体外壳内的前部和后部, 中间用放置在共享内主筒体外壳内的内 主筒体支撑架 31进行隔离, 一方面可以起到隔离声波的作用, 另 一方面可以起到使前后两个声音接受部分之间保持一定的距离以 及连接支撑的作用。 这个内主筒体支撑架 31可以根据需要和前拾 音器的后声波引导模块 7a和后拾音器的前声波引导模块 7制成一 体的, 也可以制成分体的, 内主筒体支撑架 31可以根据需要采用 具有声波阻尼作用的材料制成也可以采用其它各种材料制成, 可 以根据设计要求采用各种合适的形状。
图 11示出了本发明的一种抗噪音拾音器的剖面图,而图 11A ~ 11C是分别为图 11所示的 A-A线、 B-B线、 C-C线的剖面图。 由 图 11 和图 1、 图 1A 1C 比较可见, 其不同处在于: 使用了外主 筒体 33 和外后筒体 34, 在支架内安装使用了在本发明人的前述 专利和专利申请中的各种类型的抗噪音拾音器。
将高抗噪音拾音器的内后筒体 20和插入外后筒体 34的内后 筒体插入孔 35 内, 在外主筒体 33 中前后分别放置各个抗噪音拾 音器的内主筒体, 在内筒体側壁 1的前进声孔 4和后进声孔 4a的 外面放置声波引导模块 7、 7a和声波引导模块 7、 7a中的声通管 27、 27a。
可以在外主筒体 33、 内主筒体支撑架 31、 声波引导模块 7、 7a与内筒体侧壁 1、 前盖前壁 2、 后盖后壁 3之间可以有防震垫 圈 36和防震垫 37进行防震隔离, 在驻极体拾音器的内后筒体 20 和内后筒体插入孔 35的内壁之间根据需要可以使用防震垫圈 36, 也可以不使用它们。
在外主筒体筒体的内的抗噪音拾音器的前端和后端均有前进 声孔 4和后进声孔 4a, 在外主筒体的外前盖前壁和外后盖后壁与 其内的高抗嗓音拾音器的前盖前壁和后盖后壁之间的部位放置前 声波引导模块 7、 和后声波引导模块 7a, 它们中的前声通管 27和 后声通管 27a 的向内开口对应于前盖前壁和后盖后壁上的前后进 声孔 4、 4a。 在高抗噪音拾音器的前盖前壁和后盖后壁和前后声 波引导模块 7、 7a之间的部位根据需要可以使用防震垫 37, 在防 震垫上有声音通过孔。
在外主筒体 33的外側壁前后进声孔的部位可以有聚声罩 19。 图 12示出了本发明的一种抗噪音拾音器的剖面图,而图 12A 12B是分别为图 12所示的 A-A线、 B-B线的剖面图。 由图 12和图 11、 图 11A ~ 11D比较可见, 其不同处在于: 在将图 11、 图 11A ~ 11D使用的内主筒体和内后筒体 20改为普通的在单一筒体内放置 所有部件的抗噪音拾音器, 在外面加装了外主筒体 33, 在外主筒 体 33的外侧壁后进声孔的部位可以有聚声罩 19, 而外主筒体 33 的前进声孔是不是开在侧壁上而是开在前盖前壁上。 在外主筒体 33的后部位有后声波引导模块 7a, 它们中的后声通管 27a的向内 开口对应于后盖后壁上 3的后进声孔 4a。 前阻尼膜 5可以放在外 主筒体 33的前进声孔和内筒体側壁 1的前进声孔 4的中间, 也可 以放置在内筒体侧壁 1的前进声孔 4与振膜 12之间, 也可以不使 用。
图 13示出了本发明的一种抗噪音拾音器的剖面图,而图 13A ~ 13C是分别为图 13所示的 A-A线、 B- B线、 C-C线剖面图。 由图 13 和图 11、 图 11A - 11D与图 1、 图 1A - 1C比较可见, 其不同处在 于: 使用了外主筒体 33 和外后筒体 34, 在支架内安装使用了多 个在本发明人的前述专利和专利申请中的各种类型的抗噪音拾音 器。 将高抗噪音拾音器的内后筒体 20插入外后筒体 34的后筒体 插入孔 35 内, 在外主筒体 33 中放置各个抗噪音拾音器的主筒体 (例如上驻极体拾音器 29a的内主筒体和下驻极体拾音器 30a的 内主筒体) , 在各个内筒体侧壁 1的前进声孔 4和后进声孔 4a的 外面放置前后声波引导模块 7、 7a 以及前后声波引导模块 7、 7a 中的前后声通管 27、 27a。
可以在外主筒体 33、 和声波引导模块 7、 7a与上驻极体拾音 器 29a的内主筒体和下驻极体拾音器 30a的内主筒体之间可以有 防震垫團 36和防震垫 37进行防震隔离, 也可以不使用。
在两个内主筒体之间可以放置内主筒体支撑架 31。 在外主筒 体 33的筒体外侧壁上, 在与支架筒体内的各个抗噪音拾音器前后 进声孔 4、 4a的开口部位相对应的部位, 均可以装有聚声罩 19, 在外主筒体 33的筒体前进声孔和后进声孔, 在外主筒体内的各个 抗噪音拾音器的前盖前壁和后盖后壁与高抗噪音拾音器的前盖前 壁和后盖后壁之间的部位放置前声波引导模块 7、 和声波引导模 块 7中的前声通管 27。 在高抗噪音拾音器的前盖前壁和后盖后壁 之间的部位放置前声波引导模块 7 之间根据需要可以使用防震 垫。 在防震垫上有声音通过孔。
在驻极体拾音器的内后筒体 20和内后筒体插入孔 35的内壁 之间根据需要可以使用防震垫圈 36。
图 14示出了本发明的一种抗噪音拾音器的剖面图,而图 14A ~ 14D是分别为图 12所示的 A- A线、 B- B线、 C- C线的剖面图。 由 图 14和图 11、 图 11A ~ 11D与图 13、 图 13A ~ 13D比较可见, 其 不同处在于: 所使用的拾音器是将主筒体中的在上驻极体拾音器 29a 的内主筒体和下驻极体拾音器 30a 的内主筒体上的后进声孔 4c、 后进声孔 4、 后阻尼膜压片 6、 后阻尼膜 5去除, 和外主筒体 33 内相应部位的后声波引导模块 7a、 和后声波引导模块 7a 中的 后声通管 27a以及聚声罩 19去除, 保留上驻极体拾音器 29的内 筒体側壁 1和下驻极体拾音器 30的内筒体侧壁 1中的前进声孔 4、 前阻尼膜压片 6、 前阻尼膜 5。 以及在外主筒体 33的主筒体前面 的进声孔 4b, 和在外主筒体内的各个拾音器的前盖前壁部位放置 的前声波引导模块 7、 和前声波引导模块 7中的前声通管 27以及 聚声罩 19。 制成由非抗噪音拾音器内主筒体的有外主筒体 33、 外 后筒体 34的制成的前后进声口朝向大致相同或大致相互垂直的抗 噪音拾音器组合型高抗噪音拾音器。
图 15是表示本发明的一种抗噪音拾音器的剖面图。而图 15A - 15B分别是图 15的顶视图和 A-A线剖面图。
由图 15和图 14、 图 14A ~ 14B与比较可见, 其不同处在于: 将由非抗噪音拾音器内主筒体的有上驻极体拾音器 29a 的内主筒 体和下驻极体拾音器 30a的内主筒体放置为侧面放置, 进声孔 4b 在外主筒体 33側面的前盖前壁 2a上, 聚声罩 19放置在进声孔 4b 外面, 开口朝向同一个方向。 在上驻极体拾音器 29a 的内主筒体 和下驻极体拾音器 30a 的内主筒体之间可以根据设计要求放置内 主筒体支撑架 31, 也可以放置防震垫圏 36。
也可以将目前普遍使用的将拾音部分和电路部分共同放入一 个主筒体内的非抗噪音拾音器制成此具有前后放置的組合型高抗 噪音拾音器, 而不是用如图所示的主筒体和后筒体两部分制成的 拾音器。
图 16是表示本发明的一种抗噪音拾音器的剖面图。 而图 16A 是图 16所示的 A- A线的剖面图。 由图 16和图 15、 图 15A ~ 15B 与比较可见, 其不同处在于: 将由非抗噪音拾音器内主筒体的上 驻极体拾音器 29a 的内主筒体放置方向改为向前面放置, 进声孔 4在朝向前面的前盖前壁 2上, 聚声罩 19放置在下驻极体拾音器 30的进声孔 4相对应的外主筒体 33侧壁的进声孔 4a的外面, 上 驻极体拾音器 29a和下驻极体拾音器 30a开口朝向同一个方向。 在上驻极体拾音器 29a和下驻极体拾音器 30a之间可以根据设计 要求放置内主筒体支撑架 31。 也可以将目前普遍使用的将拾音部 分和电路部分共同放入一个主筒体内的非抗噪音拾音器结构 (如 果图 18所示的拾音器) 制成此具有前后放置的组合型高抗噪音拾 音器, 而不是用如图所示的主筒体和后筒体两部分制成的拾音器。
图 17是表示本发明的一种抗噪音拾音器的剖面图。 而图 17A 是图 17所示的 A-A线的剖面图。
由图 17和图 15、 图 15A ~ 15B与图 16比较可见, 其不同处 在于: 将由非抗噪音拾音器内主筒体的下驻极体拾音器 30a 的内 主筒体放置方向改为向前面放置, 进声孔 4 在朝向前面的前盖前 壁 2上, 聚声罩 19放置在相对应的外主筒体 33侧壁的进声孔 4a 的外面, 在外主筒体 33内下驻极体拾音器 30的进声孔 4前面放 置有后声波引导模块 7a, 在从进声孔 4a到进声孔 4之间有后声 波引导模块 7a的后声通管 27a。 上驻极体拾音器 29和下驻极体 拾音器 30的聚声罩 19开口朝向同一个方向。 在上驻极体拾音器 29a和下驻极体拾音器 30a之间可以根据设计要求放置内主筒体 支撑架 31。
也可以将目前普遍使用的将拾音部分和电路部分共同放入一 个外主筒体内的非抗噪音拾音器结构 (如果图 18所示的拾音器结 构) 制成此具有前后放置的组合型高抗噪音拾音器, 而不是用如 图所示的主筒体和后筒体两部分制成的拾音器。 同样也可以将上 驻极体拾音器 29a和下驻极体拾音器 30a之间的前后位置倒换制 成一个新的实施例。 图 18示出了本发明的一种抗噪音拾音器的剖面图,而图 18A、 18B是沿图 18所示的 A-A线、 B-B线的剖面图。 由图 18和图 14、 图 14A ~ 14C与图 11、 图 11A ~ 11C比较可见, 其不同处在于: 所 使用的拾音器是将上驻极体拾音器 29的内主筒体和下驻极体拾音 器 30的内主筒体中的背极电极 15a不是穿过背极座 14上的背极 通过孔 28通过内主筒体侧面进入内后筒体内, 而是直接进入拾音 器的后部, 连接阻抗变换电路 21, 印刷电路板 23也在筒体 1 内, 形成前拾音器 31a和后拾音器 32a。 这实际上是使用了目前已有 的各种常用的非抗噪音驻极体拾音器制成的前后进声口朝向大致 相同或大致相互垂直的抗噪音拾音器组合型高抗噪音拾音器。
图 19示出了本发明的抗噪音拾音器的剖面图,而图 19A ~ 19C 是分别为图 19所示的 A-A线、 B- B线及 C-C线的剖面图。 由图 19 和图 1、 图 1A ~ 1C与比较可见, 其不同处在于: 隔板 10放置在 绷膜环内侧缘之内, 这样在振膜 12与隔板 10的中间放置隔板垫 片 9, 这样振膜 12、 隔板 10和中间放置的隔板垫片 9之间就形成 一个空腔, 隔板垫片 9也可以根据设计要求放置在其它地方, 只 要能起到将振膜 12与隔板 10之间之间隔开一定的距离的作用, 使振膜 12与隔板 10之间的距离由隔板垫片 9的厚度决定。 相应 的背极间隔垫團 13的内侧缘也可以向内延伸到与隔板垫片 9内側 缘相对应的位置处。
并且可以将声波引导模块的突出部分 7b、 前垫片的突出部分 8a、 绷膜环的突出部分 lla、 背极座的突出部分 14a 和背极的突 出部分 15a是定位标志物, 起到使得振膜前后的声学信道各个部 件的安装位置可以设计跟据设计要求大致互相对应的定位作用, 也可以采用其它类型的起到安放基准的作用的标志物, 可以根据 需要决定哪一个器件需要定位标志物。 也可以将绷膜环和拾音器 筒体外壳之间的导电接点的位置从前筒体部位改接到内后筒体的 外壳上, 和外壳连接方式可以是通过导电片的硬连接也可以通过 导电弹簧片 26等弹性导电体的弹性连接。 这样更加使得抗噪音拾 音器内的从振膜两侧到前后进声孔之间的声学结构大致相同、 大 致对称。
图 20示出了本发明的抗噪音拾音器的剖面图,而图 20A 20C 是分别为图 20所示的 A-A线、 B-B线及 C-C线的剖面图。 由图 20 和图 1、 图 1A ~ 1C与比较可见, 其不同处在于:
图 21 示出了本发明的使用的一种非抗噪音拾音器的剖面图, 而图 21A ~ 21C是分别为图 21所示的 A-A线、 B-B线及 C- C线的 剖面图。 由图 21和图 1、 图 1A ~ 1C与比较可见, 其不同处在于: 由图 21和图 20、 图 20A-20C比较可见: 前后进声孔 4、 4a不是 开在内筒体侧壁 1 的侧壁上, 而是将它们开在前盖前壁 2、 后盖 后壁 3上, 这样前后声波引导模块 7、 7a和前后声波引导模块 7、 7a中的前后声通管 27、 27a就可以不使用了。 这个实施例也可以 用于前述的本人各项发明的专利和专利申请中的各种类型的抗噪 音拾音器的实际生产改进型。
图 22示出了本发明的抗噪音拾音器的剖面图, 而图 22A-22C 是分别为图 22所示的 A-A线、 B-B线及 C-C线的剖面图。 由图 22 和图 21、 图 21A ~ 22C与比较可见, 其不同处在于:
将实施例 21放入外主筒体 33和外后筒体 34 中。 也可以将 前述的本人各项发明的专利和专利申请中的各种类型的抗噪音拾 音器以及各种类型的抗噪音拾音器放入外主筒体 33和外后筒体 34 中成为本发明的抗噪音拾音器。
图 23示出了本发明的抗噪音拾音器的剖面图, 而图 23A- 23C 是分别为图 22所示的 A-A线、 B- B线及 C- C线的剖面图。 由图 23 和图 19、 图 19A ~ 19C 与比较可见, 其不同处在于: 这主要是本 发明的各个实施例中的一种实际生产改进型。 这个实施例也可以 音拾音器的实际生产改进型
图 24a示出了本发明的一种抗噪音拾音器声音信号控制开关 电路图。
在电容 C10和非门 U4、 模拟开关 U6、 U5之间设置一种如图 24a 所示的声控开关电路。 该声控开关电路的构成是: 从共模信号抑制 电路输出的低失真低噪音声音信号通过电容 C10经过由二极管 D1、D2 电阻 R9构成的检波电路, 三极管 T2电容 C15、 C16、 C17电阻 R14、 R15、 R16非门 U8、 U13、 Ull、 U12、 模拟开关 U10和 R-J触发器 U9 組成的声控开关电路, 控制模拟开关 U5的控制端 13使之开通, 从 输入端 1输入的声音信号从输出端 2输出, 而经过非门 U4的反向, 控制模拟开关 U6控制端 13使之关闭, 从输入端 1输入的声音信号 不能从输出端 2输出。 模拟开关 U5、 U6中一个是导通的另一个是关 闭的, 反之当无主音源发出的声音信号输入时, 导通和关闭倒过来。 通过电容 C17和 R16的设置可以决定讲话完毕(例如 10秒后 )后模 拟开关 U5、 U6的开通和关闭时间, 防止因为说话中短时间的中断使 模拟开关 U5、 U6误开通和关闭。 在这个电路中的各个电路可以使用 集成电路也可以使用分立組件电路, 根据不同的需要可以采用模拟 开关电路也可以用数字逻辑开关电路, 及可以完成此电路功能的各 种类型电路。
图 24b 示出了本发明的一种抗噪音拾音器的声音信号控制开 关电路图。
在电容 C10与 U4、 U6、 U5之间设置一种如图 24b所示的声控 开关电路。 这个电路的原理同实施例 24a的原理相同, 只是控制模 拟开关的声控电路采用比较器电路。 现就比较器电路进行描述: 从 共模信号抑制电路输出的低失真低噪音声音信号通过电容 C10 经过 由二极管 Dl、 D2电阻 R9构成的检波电路, 经由电阻 R17、 R18、 R19、 R120、 R21稳压二极管 D3二极管 D4电容 C15、 C18, 任意电平比较 器 U14和 R-J触发器 U15組成的声控开关电路, 控制模拟开关 U5的 控制端 13使之开通, 从输入端 1输入的声音信号从输出端 2输出, 而经过非门 U4的反向, 控制模拟开关 U6控制端 13使之关闭, 从输 入端 1输入的声音信号不能从输出端 2揄出。 模拟开关 U5、 U6中一 个是导通的另一个是关闭的, 反之当无主音源发出的声音信号输入 时, 导通和关闭倒过来。 通过电容 C18和电阻 R22 的设置可以决定 讲话完毕(例如 10秒后)后模拟开关 U5、 U6 的开通和关闭时间, 防止因为说话中短时间的中断使模拟开关 U5、 U6误开通和关闭。
图 24c 示出了本发明的一种抗噪音拾音器的声音信号控制开 关电路图。
并且可在上述电容 C10、 C12与 U4、 U6、 U5之间设置一种如图 24c所示的声音信号控制开关电路。 这个电路的原理同实施例 24a的 原理相同, 只是控制模拟开关的声控电路利用拾音器接收的未经减 低环境噪音处理的声音信号与从共模信号抑制电路输出的低环境噪 音的声音信号进行比较后控制声控开关电路。 这个电路的原理同实 施例 13b 的原理相同, 只是采用了迟滞比较器。 从共模信号抑制电 路输出的低失真低噪音声音信号通过电容 C10经过由二极管 Dl、 D2 电阻 R13构成的检波电路, 和从两个拾音器中的一个未经减低环境 噪音处理的声音信号通过电容 C12经过由二极管 D5、 D6电阻 R23构 成的检波电路, 经由电阻 R24、 R25、 R26、 R22二极管 D4电容 C15、 C19、 C18, 迟滞比较器 U16和 R- J触发器 U15组成的声控开关电路, 控制模拟开关 U5的控制端 13使之开通, 从输入端 1输入的声音信 号从输出端 2输出, 而经过非门 U4的反向, 控制模拟开关 U6控制 端 13使之关闭, 从输入端 1输入的声音信号不能从输出端 2输出。 模拟开关 U5、 U6 中一个是导通的另一个是关闭的, 反之当无主音源 发出的声音信号输入时,导通和关闭倒过来。通过电容 C18和电阻 R22 的设置可以决定讲话完毕(例如 10秒后)后模拟开关 U5、 U6的开 通和关闭时间, 防止因为说话中短时间的中断使模拟开关 U5、 U6误 开通和关闭。
在 24a-24c 中所使用的信号控制开关电路中的各个电路可以使 用集成电路也可以使用分立组件电路, 可以使用各种不同类型的比 较器电路和触发器电路。 根据不同的需要可以采用模拟电路也可以 采用数字电路以及所需的运行程序或者模拟数字混合电路, 及可以 完成整个电路功能的各种种类的电路。
图 25 示出了本发明的一种抗嗓音拾音器的超出接收距离报 警电路。
当本发明的抗噪音拾音器和主音源之间的距离超出一定范围 时信号衰减非常大, 以至于不能有效的接收, 为了提醒使用者当 抗噪音拾音器和主音源之间的距离超出适用范围了, 本发明设计 了超出接收距离报警电路。
这是根据当抗噪音拾音器和主音源之间的距离超出适用范围 后接受的声波信号衰減过大使得接收的声波信号功率过低这个原 理进行的。
这个电路实际上就是一个窗口比较器电路, 如果输入电压在 两个指定电压之间 (上限在设计距离范围之内的下限值, 下限在 距离超出设计距离一定范围以外的上限值) 则电路有输出 (本例 是 0 V )如果在这一窗口之外, 输出是正的。 利用两个比较器 U17、 U18作为窗口电压比较器。 如果 Vin 比 Vref (高端)还正, U17输 出将是正的, 而 U17 为正向偏置。 否则, 输出是负的, U17 反向 偏置, 从而 Vout为 0 V, 同样, 如果 Vin比 Vref (低端)还负, U18 输出将是正的, U18 倍正向偏置, 则输出是正的。 否则, Vout 是 0 V。 如果 Vin处于由参考电压所设立的窗口内, Vout将是 0 V。 当窗口比较器检测到输入电压在两个指定电压之间时输出启动信 号给报警电路 U19, 输出报警信号提醒使用者抗噪音拾音器和主 音源之间的距离超出适用范围了。
本实施例中比较器电路可以是 MC14574 比较器, 也可以采用 其它各种型号和类型的运算放大器, 也可以采用各种型号和类型 的比较器, 而所述比较器电路, 也可以采用其它类型的比较器电 路, 也可以采用其它的由晶体管、 运算放大器、 比较器或者由数 字电路组成的比较器电路, 可以使用集成电路也可以使用分立组 件电路, 可以使用各种不同类型的比较器电路和触发器电路。 根 据不同的需要可以采用模拟电路也可以采用数字电路以及所需的 运行程序或者模拟数字混合电路, 及可以完成整个电路功能的各 种种类的电路。
图 26示出了本发明的抗噪音拾音器的剖面图, 而图 26A-26C 是分别为图 26所示的 A-A线、 B-B线及 C- C线的剖面图。
由图 26与图 20、 图 20A ~ 20C与图 14、 图 14A 14C与比较 可见, 其不同处在于: 所使用的非抗噪音拾音器是将图 20中的抗 噪音拾音器内的隔板垫片 10、 前垫片 8、 隔板 9、 后进声孔 4a、 后声波引导模块 7a、 后声通管 27a取出而形成的, 这实际上是将 普通的非抗噪音拾音器前盖前壁上的进声孔改为开在主筒体側壁 上, 当然根据设计要求这个进声孔 4 也可以部分在主筒体側壁上 部分在前盖前壁上, 这样当图 14中的外主筒体内的上驻极体拾音 器 29a的内主筒体和下驻极体拾音器 30a的内主筒体的前盖前壁 上 2的进声孔 4, 之间就不需要留出进进声孔 4b和相应的进声通 道, 根据设计要求可以由主筒体支撑架 31将多个驻极体非抗噪音 拾音器主筒体(如上驻极体拾音器 29的主筒体和下驻极体拾音器 30 的主筒体) 相互连接固定。 本图中画出利用两个这种类型的非 抗噪音拾音器 29、 30构成的抗噪音拾音器。 可以使用一个或者多 个这种类型的非抗噪音拾音器。
图 27示出了本发明的抗噪音拾音器的剖面图, 而图 22A- 22C 是分别为图 22所示的 A-A线、 B- B线及 C- C线的剖面图。 由图 22 和图 21、 图 21A ~ 22C 与比较可见, 其不同处在于: 所使用的非 抗噪音拾音器是将图 26 中的非抗噪音拾音器内的声波引导模块 7、 声通管 27 取出。 本图中画出利用三个这种类型的非抗噪音拾 音器 29、 30、 30a构成的抗噪音拾音器,可以使用一个或者多个这 种类型的非抗噪音拾音器。 当绷膜环直接和前筒体外壳进行接触 时也可以不使用导电片 26。
图 28示出了本发明的抗噪音拾音器的剖面图, 而图 28A- 28C 是分别为图 28所示的 A-A线、 B- B线及 C-C线的剖面图。 由图 28 和图 26、 图 26A - 26C 比较可见, 其不同处在于: 本图中的多个 非抗噪音拾音器的后筒体 20分别插入外后筒体 34 中构成的抗噪 音拾音器。 图 28 示出了本发明的抗噪音拾音器的剖面图, 而图 28A-28C是分别为图 28所示的 A-A线、 B-B线及 C-C线的剖面图。
图 29示出了本发明的抗噪音拾音器的剖面图, 而图 29A-29B 是分别为图 29所示的 A-A线、 B-B线的剖面图。 由图 29和图 26、 图 26A 26C比较可见, 其不同处在于: 并且多个非抗噪音拾音器 29、 30、 30a 内的拾音器的前盖前壁 2 是朝向相同方向放置的。 可以使用一个或者多个这种类型的非抗噪音拾音器。
图 30示出了本发明的抗噪音拾音器的剖面图, 而图 30A- 30B 是分别为图 30所示的 A-A线、 B-B线剖面图。 由图 30和图 29、 图 29A - 29B比较可见, 其不同处在于: 本图中的多个非抗噪音拾 音器内的声波引导模块 7、 声通管 27取出。 并且多个非抗噪音拾 音器 29、 30内的拾音器的前盖前壁 2是背向放置的。 可以使用一 个或者多个这种类型的非抗噪音拾音器。
根据设计要求本发明各个实施例中各种类型的抗噪音拾音器 和非抗噪音拾音器可以单独使用, 也可以多个以一定间隔或者一 定空间结构相互连接固定构成二维或者三维的立体结构。
图 31 示出了本发明的一种抗噪音拾音器的超出接收距离报 警电路框图。
当本发明的抗噪音拾音器和主音源之间的距离超出一定范围 时信号衰减非常大, 以至于不能有效的接收, 为了提醒使用者抗 噪音拾音器和主音源之间的距离超出适用范围了, 本发明设计了 超出接收距离报警电路。
是利用有一定距离间隔的多个抗噪音拾音器 (或者利用多个 非抗嗓音拾音器分别在两两之间使用共模抑制电路提取出差模信 号形成多个抗噪音拾音器) , 可以在多个抗噪音拾音器接收的差 模信号之间通过声波信号功率等参数进行比较,得出话筒和主音源 之间的距离, 当距离超出一定范围时, 通过触发器电路等电路进 行超距离报警, 也可以利用多个非抗噪音拾音器直接通过测定拾 音器和主音源之间的距离来进行报警。 可以采用模拟电路, 或者 数字电路, 或者模拟数字混合电路。
本实施例是采用多个非抗噪音拾音器进行测距报警的, 非抗 噪音拾音器 311、 312、 313接收外界环境噪音, 非抗噪音拾音器 312 经过进行振幅补偿 314后分为两路, 分别和非抗噪音拾音器 311、 313 经过进行振幅补偿 313、 315 后的电信号通过共模抑制 电路 316、 317去除共模信号(这实际上就是形成了两路抗噪音拾 音器) , 两路提取出的差模信号 (近距离主音源发出的声波电信 号) 通过窗口比较器电路 318进行互相比较, 一路作为参考基准, 另一路和参考基准进行比较, 当两者之间的比值在一定比例之间 (上限在设计距离范围之内的下限值, 下限在距离超出设计距离 一定范围以外的上限值) 则电路有输出到报警电路 319, 通过报 警器 3110报警。 本实施例采用了三个非抗噪音拾音器 311、 312、 313, 也可以采用更多的非抗噪音拾音器, 或者混合采用非抗噪音 拾音器和抗噪音拾音器。
图 32 示出了本发明的一种抗噪音拾音器的超出接收距离报 警电路框图。
是利用多个抗噪音拾音器测定主声源和话筒之间的距离, 当 抗噪音拾音器和主音源之间的距离超出适用范围后进行报警这个 原理进行的。 可以采用模拟电路, 或者数字电路, 或者模拟数字 混合电路。 抗噪音拾音器 321、 32?接收近距离主音源发出的声波 电信号, 分别经过进行振幅补偿 323、 324后的电信号, 通过窗口 比较器电路 325 进行互相比较, 一路作为参考基准, 另一路和参 考基准进行比较, 当两者之间的比值在一定比例之间 (上限在设 计距离范围之内的下限值, 下限在距离超出设计距离一定范围以 外的上限值) 则电路有输出到报警电路 326, 通过报警器 327 报 警。 本实施例采用了两个抗噪音拾音器 321、 322, 也可以采用更 多的抗噪音拾音器, 或者混合采用非抗噪音拾音器和抗噪音拾音 器。
图 33a和图 33b分别为一种数字数据采集共模抑制系统电路 框图;
有关图 33a、 图 33b详细说明在本发明人的前述的本人发明 各项的专利和专利申请文件中已经作了充分公开, 在此不再赘述。 图 34 示出了本发明的拾音器中使用的一种抗噪音拾音器的 超出接收距离报警和根据接收距离调节放大器放大系数的计算机 流程图。
是根据通过多个抗噪音拾音器测定声源和话筒之间的距离, 当抗噪音拾音器和主音源之间的距离超出适用范围后进行报警这 个原理进行的。
当利用多个抗噪音拾音器将多个抗噪音拾音器 1、 2...接收的声 音信号经过 A/D 转换后, 通过滤波电路提取出两路抗噪音拾音器 1、 2...接收的声音信号中相同的声波电信号, 通过计算两路相同 的声波信号的功率大小和 /或时间差异等等参数和 /或查表等方法 计算出主音源和拾音器之间的距离和 /或方位, 和事先设定的拾音 器有效接收距离进行比较, 主音源和话筒之间的距离是否在预定 距离上下限之间, 当在预定距离上下限之间时计算在此距离时放 大器应该的放大系数, 放大器是否在最大放大能力之内, 当在放 大器最大放大能力之内时, 调节放大器放大系数, 当在放大器最 大放大能力之内外时启动报警输出。 从 D/A 输出。 当在主音源和 话筒之间的距离在预定距离上下限之外时不再进一步处理。
当然也可以采用其它抗噪音拾音器的超出接收距离报警和根 据接收距离调节放大器放大系数的计算机程序流程。
图 35 示出了本发明的拾音器中使用的一种非抗噪音拾音器 的超出接收距离报警和根据接收距离调节放大器放大系数的计算 机流程图。
当利用多个非抗噪音拾音器时, 例如三个非抗噪音拾音器, 将 多个非抗噪音拾音器 1、 2、 3接收的声音信号经过 A/D转换后, 计算两两拾音器之间的差模信号, 可以通过直接将两路声波信号 进行比较粗略计算主音源和时引起之间的大致距离, 也可以通过 滤波电路提取出两路拾音器差模信号中的声音信号中相同的声波 电信号, 也可以直接通过滤波电路提取出各路是音器拾取的声音 信号中相同的声波电信号, 通过计算各路是音器拾取的两路相同 的声波信号的功率大小和 /或到达两路拾音器的时间差等一项或者 多项参数和 /或通过查表等方法计算出主音源和拾音器之间的比较 精确的距离和 /或方位, 和事先设定的拾音器有效接收距离进行比 较, 主音源和话筒之间的距离是否在预定距离上下限之间, 当在 预定距离上下限之间时计算在此距离时放大器放大器应该的放大 系数, 放大器是否在最大放大能力之内, 当在放大器最大放大能 力之内时, 调节放大器放大系数, 当在放大器最大放大能力之内 外时启动报警输出。 从 D/A输出。 当在主音源和话筒之间的距离 在预定距离上下限之外时不再进一步处理。
当然也可以采用其它抗噪音拾音器的超出接收距离报警和根 据接收距离调节放大器放大系数的计算机程序流程。
图 36 示出了本发明的拾音器中使用的一种抗噪音拾音器的 超出接收距离报警电路。
这是根据比较两路抗噪音拾音器接收的主音源发出的声音信 号之间的大小比值确定出拾音器和主音源之间的距离是否超出抗 噪音拾音器适宜接收范围的这个原理进行的。
这个电路实际上就是一个带有选通功能的窗口比较器电路, 两路抗噪音拾音器接收的主音源声音电信号可以根据设计要求经 过滤波、 时间延迟等等各种预处理电路的预处理后, 也可以不使 用预处理电路。 两路抗噪音拾音器接收的主音源声音电信号 Va、 Vb, 假设接近主声源的抗噪音拾音器接收的主音源声音电信号为 Va, 设远离声源的抗噪音拾音器接收的主音源声音电信号为 Vb, 可以将 Va或者 Vb设为参考基准, 这里假设 Vb设为参考基准, 如 果 Va和参考基准 Vb的比值在指定比值 M和 N之间 ( M在距离超 出设计距离一定范围以外的上限值比值, N 在设计距离范围之内 的下限值的比值) , 则电路有输出启动报警电路, 将 Vb信号通过 放大电路 36A1、 36A2,分别放大 M倍和 N倍(M、 N的值可以为正 值, 也可以为负值, 可以为整数, 也可以为带有小数的非整数。 ), 分别进入运算放大器 36A3、 36A4 的一个输入极, Va 分别进入运 算放大器 36A3、 36A4的另一个揄入极与之进行比较, 当 Va〉M倍 于 Vb时, 36A3输出为正、 36A4输出为负; 与门 36A5的输出为 Vo= " 0" 。 当 &<^倍 1)时, 36A3揄出为负、 36A4输出为正; 与门 36A5的输出为 Vo= "0" Vo=0。 当 N倍 Vb〈Va〉M倍 Vb时, 36A3、 36A4输出都为负; 与门 36A5的输出为 Vo= " ,启动报警电路输 出报警信号。
图 37 示出了本发明的拾音器中使用的一种数字消除噪音定 位接收计算机流程。
下面, 说明本发明的利用多个前后排列的二维结构或者有一 定立体结构的三维结构或者有一定空间阵列配置的三维阵列结构 的抗噪音拾音器或者非抗噪音拾音器进行定位接收的处理流程 是: 当利用多个非抗噪音拾音器接收主音源发出的声音信号, 可 以采用两两拾音器接收的声波电信号之间用数字共模抑制提取出 差模信号, 也可以不经过共模抑制直接进行下一步处理, 或者直 接用多个抗噪音拾音器, 接收主音源发出的声音信号的差模信号, 用数字滤波方法, 分别滤出多个拾音器中一个拾音器接收的声音 信号和 /或差模信号中的每一个声波, 然后将多个拾音器接收的声 音信号中相同波形的每一个声波进行声功率大小的比较, 计算出 各个相同波形的声波电信号之间的大小比值, 和 /或接收时间的先 后差值等等各项参数, 结合多个拾音器相互之间的距离和 /或位置 关系, 对照根据实际测定的或者计算得出的一定距离的主音源发 出的声音信号两者比值表, 就可以知道发出这一个声波的主音源 和拾音器的实际距离和 /或方位, 也可以采用其它各种计算处理方 法得到主音源和拾音器的实际距离和 /或方位。 此时可以提取出在 离拾音器一定距离的主音源发出的声音。 然后根据指定的距离和 / 或方位的要求将向对应的声波存储和 /或输出。
图 38 示出了本发明的拾音器中使用的一种抗噪音拾音器的 根据接收距离调节放大器放大系数的具有多个区间的窗口比较器 电路。
由图 38和图 36 比较可见, 其不同处在于: 图 36采用的是 单区间比较器, 而图 38采用了具有多个区间的窗口比较器, 使得 放大器可以根据拾音器和声源之间的距离不同而采用不同的放大 系数.
这是根据比较两路抗噪音拾音器接收的主音源发出的声音信 号之间的大小比值确定出拾音器和主音源之间的距离是找出在此 距离上放大器合适的放大系数这个原理进行的。
这个电路实际上就是一个具有多个区间的带有选通功能的窗 口比较器电路, 两路抗噪音拾音器接收的主音源发出的声音电信 号 Va、 Vb, 假设接近声源的抗噪音拾音器接收的主音源发出的声 音电信号为 Va, 设远离声源的抗噪音拾音器接收的主音源发出的 声音电信号为 Vb, 可以将 Va或者 Vb设为参考基准, 这里假设 Vb 设为参考基准, 如果 Va和参考基准 Vb的比值在指定比值 M和 N 之间 (M在距离超出设计距离一定范围以外的上限值比值, N在设 计距离范围之内的下限值的比值),将 Vb信号通过放大电路 36A1、 36A2,分别放大 M倍和 N倍(M、 N的值可以为正值, 也可以为负 值, 可以为整数, 也可以为带有小数的非整数。 ) , 这样 Vb信号 通过放大电路 36A1、 36A2,分别放大 M倍和 N倍后的电压区间假 设为 Vbl, 多个区间的带有选通功能的窗口比较器电路为四个区 间, 假设 37R3二 37R4=37R5=37R6则当 Va在 3/4Vbl~Vbl则 Voa为 高电平输出, 当 Va在 l/2Vbl~3/4Vbl则 Vob为高电平输出, 当 Va 在 l/4Vbl~l/2Vbl 则 Voc为高电平输出, 当 Va在 OVb广 l/4Vbl 则 Vod为高电平输出。 根据设计要求 Voa、 Vob、 Voc、 Vod高电平 输出可以分别启动模拟放大器的不同放大系数的开关导通, 也可 以分别启动多个的报警电路, 或者分别既启动放大器的不同放大 系数的开关又启动一个或者多个报警电路。
多个区间的带有选通功能的窗口比较器电路可以根据设计要 求设计选通区间的个数以及区间的窗口电压值。
在本发明的各个实施例的电路中, 比较器电路可以使用 MC14574 比较器, 也可以采用其它各种型号和类型的比较器以及 比较器电路, 与门电路可以使用 CD4081,而所述比较器电路、 与 门电路, 也可以采用其它类型的比较器电路、 与门电路、 与非门 电路等等, 也可以采用其它的由晶体管、 运算放大器、 比较器或 者由数字电路组成的比较器电路、 与门电路或者与非门电路等等, 可以使用集成电路也可以使用分立组件电路, 可以使用各种不同 类型的'比较器电路、 与门电路或者与非门电路等等和触发器电路。 根据不同的需要可以采用各种类型的模拟电路、 数字电路或者模 拟数字混合电路, 及可以完成这个电路功能的各种种类的电路。
图 39 示出了本发明的拾音器中使用的一种抗噪音拾音器的 根据接收距离调节放大器放大系数的放大器电路。
当图 38的与门电路 37al、 137al2、 37al3、 37al4的输出端 Voa. Vob、 Voc、 Vod 分别为高电平输出时, 分别通过启动模拟开 关 38a6的 Voa、 Vob、 Voc、 Vod的输入端, 分别使得 al~a2、 bl〜b2、 cl〜c2、 dl〜(! 2导通, 而使放大器 38A1有不同的放大系数。
图 40示出了本发明的抗噪音拾音器的剖面图,
由图 40与图 22、 图 23比较可见, 其不同处在于: 是由多个 非抗噪音拾音器 40al、 40a2和抗噪音拾音器 40a3、 40a4相亙结 合而成。 根据设计要求可以使用一个或者多个非抗噪音拾音器以 及使用一个或者多个抗噪音拾音器进行组合。
图 41 示出了本发明的拾音器中使用的一种数字消除噪音计 算机流程。
说明本发明的利用多个前后排列的二维结构抗噪音拾音器或者 非抗噪音拾音器进行抗噪音接收的处理流程是:
1.当利用多个非抗噪音拾音器接收主音源发出的声音信号, 可 以采用 ( 1 ) .将拾音器 1、 2 和拾音器 2、 3...之间的每两路拾音 器拾取的信号中的靠近主音源的拾音器的一路声音信号进行时间 延迟, 延迟时间为声波信号从一个拾音器到达另一个拾音器所使 用的时间, 将各路拾音器拾取的声波信号两两之间进行共模抑制 计算。 (2 ) .或者将拾音器 1、 2、 3...的除了距离主音源最远的 拾音器拾取的一路声波信号外各路声波信号均进行时间延迟, 延 迟时间为声波信号分别从靠近主音源的各个拾音器到达最远离主 音源的拾音器所使用的时间, 将各路拾音器拾取的声波信号两两 之间进行共模抑制计算后, 这样差模信号中主音源发出的声波可 以减少到最低的失真度。
2. ( 1 )将上一步 1.中得到的多路差模信号中的靠近主音源的 拾音器拾取的差模信号进行再次进行时间延迟, 可以将两路差模 信号进行二次共模抑制计算, 再次得到差模信号。 (2 )或者将上 一步 2.中进行的将各路拾音器拾取的声波信号两两之间进行共模 抑制计算后得到多路差模信号, 将两路或者多路差模信号进行二 次共模抑制计算, 再次得到差模信号。 (延迟时间为: 声波信号 从一个拾音器到达另一个拾音器所使用的时间, 所有的时间延迟 是为了使两路信号中消除因为主音源发出的声波到达前后拾音器 时因为声波传输速度造成的时间差, 引起的当进行共模信号抑制 时造成的差模信号中主音源发出的声波失真。 ) 。 (3 )或者将进 行过时间延迟或者不进行时间延迟的两路差模信号, 用数字滤波 等等方法, 分别滤出多个拾音器中一个拾音器接收的声音信号和 / 或差模信号中的每一个声波, 然后利用将多个拾音器接收的声音 信号中相同波形的每一个声波进行声功率大小的比较等等方法, 计算出各个相同波形的声波电信号之间的大小比值, 和 /或接收时 间的先后差值等等各项参数, 结合多个拾音器相互之间的距离和 / 或位置关系, 对照根据实际测定的或者计算得出的一定距离的主 音源发出的声音信号两者比值表, 就可以知道发出这一个声波的 主音源和拾音器的实际距离和 /或方位, 也可以采用其它各种计算 处理方法得到主音源和拾音器的实际距离和 /或方位。 此时可以提 取出在离拾音器一定距离的主音源发出的声波信号。 将再次得到 的差模信号和 /或一定距离的主音源发出的声波信号进行存储, 和 /或通过 I/O 输出, 和 /或进行其它进一步的处理。 如: 将拾音器 1、 2、 3...中拾取的声波信号中的一路和经过放大后的再次得到的 差模信号之间进行共模计算, 得到它们之间的差模信号, 得到去 除了主音源发出的声波的环境噪音。 将去除了主音源发出的声波 的环境噪音存储, 和 /或 I/O 输出, 和 /或进行进一步进行其它处 理。
这个计算机流程不仅可以采用数字电路实现, 也可以采用模拟 电路或者包含有模拟电路和数字电路的混合电路实现。 图 42 示出了本发明的拾音器中使用的一种消除噪音电路框 图。
说明本发明的利用多个前后排列的二维结构抗噪音拾音器或 者非抗噪音拾音器进行抗噪音接收的处理框图是: 当利用多个非 抗噪音拾音器 42al、 42a2、 42a3接收主音源发出的声音信号, 可 以采用 1. 2.或者将拾音器 42al、 42a2、 42a3 的除了距离主音源 最远的拾音器拾取的一路声波信号外各路声波信号均通过时间延 迟电路 42a4、 42a5、 42a6, 延迟时间为声波信号分别从靠近主音 源的各个拾音器到达最远离主音源的拾音器所使用的时间, 将各 路拾音器拾取的声波信号两两之间通过共模抑制电路 42a7、 42a8, 这样差模信号中主音源发出的声波可以减少到最低的失真 度。 将上一步 1.中得到的多路差模信号中的靠近主音源的拾音器 拾取的差模信号进行再次通过时间延迟电路 42a9、 42al0, 将两 路差模信号再次通过共模抑制电路 42all, 再次得到差模信号。 或者将上一步 2.中进行的将各路拾音器拾取的声波信号两两之间 进行共模抑制计算后得到多路差模信号, 将两路或者多路差模信 号再次通过共模抑制电路 42al l, 再次得到差模信号。 (延迟时 间为: 声波信号从一个拾音器到达另一个拾音器所使用的时间, 所有的时间延迟是为了使两路信号中消除因为主音源发出的声波 到达前后拾音器时因为声波传输速度造成的时间差, 引起的当进 行共模信号抑制时造成的差模信号中主音源发出的声波失真。 ) 。 将再次得到的差模信号输出, 和 /或进行其它进一步的处理。 如: 将拾音器 42al、 42a2、 42a3中拾取的声波信号中的一路和通过放 大电路 42al2 后的再次得到的差模信号之间通过共模抑制电路 42al3, 得到它们之间的差模信号, 得到去除了主音源发出的声波 的环境噪音。 这个消除噪音框图流程可以采用数字电路实现, 也可以采用 模拟电路或者包含有模拟电路和数字电路的混合电路实现。 如: 延时电路可以采用模拟延时电路、 CCD延时电路、数字延时电路…。
图 43 示出了本发明的使用的一种抗噪音拾音器的剖面图, 而图 43A是图 43所示的 A-A线的剖面图。 由图 43与图 1、 图 1A ~ 1C图 21、 图 21A - 21C比较可见, 其不同处在于: 前后进声孔 4、 4a不是开在内筒体外壁 1的侧壁上, 而是将它们开在主筒体前盖 侧壁 2、 主筒体后盖侧壁 3 上(在前面各个实施例中主音源的和 拾音器之间的相对位置为前后关系, 因此命名为: 内筒体侧壁 1, 前盖前壁 2、 后盖后壁 3, 在实施例 43、 44、 45 中虽然各个部件 的绝对位置没有改变, 但是因为主音源的和拾音器之间如附图所 示的相对位置改变了, 因此在实施例 43、 44、 45中将他满改名为 筒体外壁 1、 前盖侧壁 2、 后盖侧壁 3 ) , 这样前后声波引导模块 7、 7a和前后声波引导模块 7、 7a中的前后声通管 27、 27a, 外主 筒体 33和外后筒体 34等等就可以不使用了。
图 1、 图 1A 1C和图 21A - 21C是和目前已有的抗噪音拾音 器一样, 在假设主音源的位置在拾音器的前盖前壁的前方或者后 盖后壁的后方的拾音器, 在前筒体中心线的延长线上的前提下, 前后进声孔与主音源之间的相对位置是一个在前面、 一个在后面 呈前后排列的。 而当主音源 40的位置在拾音器的侧面, 也就是在 前主筒体切面 A-A 的外周时, 前后进声孔与主音源之间的相对位 置是并列排列的, 到达主音源的距离大致相同。 本实施例是当主 音源 38在筒体外壁 1的外側面对, 筒体外壁 1与主音源 38相对 应的表面 39成为实际上的前壁, 将主筒体前盖側壁上的进声孔 4 和主筒体后盖侧壁上的进声孔 4相对于在主筒体侧面与主音源 38 相对应的表面 39的方向一个在前一个在后排列, 例如图中前进声 孔 4在主筒体前盖侧壁 2的一侧 (前方) , 后进声孔 4a在主筒体 后盖侧壁 3 的另一侧 (后方) 的位置上, 反之也可以, 相对于主 音源两者之间有一定的前后距离差。 也就是前后进声孔分别在在 抗噪音拾音器的主筒体前盖侧壁上和主筒体后盖侧壁上, 相对于 在主筒体侧面的主音源的方向在主筒体前盖侧壁的一侧和在主筒 体后盖侧壁的另一侧呈前后排列, 可以是一个也可以是多个进声 孔。
而图 43A中的主音源 38是设置在与后筒体 20相反位置的筒 体外壁 1的外面, 而不是在图 43 中是设置在与后筒体 20侧面方 向平行的筒体外壁 1的外面。 这是为了表示当主音源 38与筒体外 壁 1 的外面相对位置不同时, 开在主筒体前盖側壁与主筒体后盖 侧壁上的前后进声孔的相对位置也不同。
可以根据设计要求决定主音源在在拾音器的外侧面圆周上的 具体位置, 相对于主音源的具体位置来确定前后进声孔 4、 4a在 主筒体前盖侧壁 1、 主筒体后盖侧壁 3的前后排列的方向与位置, 以及相对于主音源两者之间前后排列的距离差。 可以在前后进声 孔的外面装有聚声罩 19, 也可以不安装。
可以通过使用在本发明人的各个专利和专利申请中的各种类 型的抗噪音拾音器的和其它的各种类型的抗噪音拾音器通过改造 制成新的前后进声口高抗噪音拾音器。 前后进声口朝向大致相同 或大致垂直的高抗噪音拾音器
图 44 示出了本发明的使用的一种抗噪音拾音器的剖面图, 而 图 44A是图 44所示的 A- A线的剖面图。由图 44与图 1、图 1A ~ 1C、 图 43、 图 431A 比较可见, 其不同处在于: 当主音源在主筒体側 面时, 进声孔 4、 4a不是开在内筒体外壁 1 的侧壁上, 而是将它 们开在两个相互平行放置的非抗噪音拾音器 29、 30的主筒体前盖 侧壁 2、 主筒体后盖侧壁 2a上, 两个相互平行放置的非抗噪音拾 音器相对于在将主筒体前盖侧壁 2上的前进声孔 4和主筒体后盖 侧壁 2a上的后进声孔 4a, 是在相对于在主筒体侧面的主音源的 方向一个在前一个在后排列的, 例如图中前进声孔 4 在一个拾音 器主筒体前盖側壁 2的一侧 (前方) , 后进声孔 4a在另一个拾音 器主筒体前盖侧壁 2a的另一侧(后方) 的位置上, 反之也可以, 相对于主音源而言两者之间有一定的前后距离差。 也就是前后进 声孔分别在在两个抗噪音拾音器 29、 30的不同的主筒体前盖側壁 非同一个平面上, 相对于在主筒体侧面的主音源的方向在主筒体 前盖侧壁的一侧和在另一个拾音器主筒体前盖側壁的另一侧呈前 后排列, 可以是一个也可以是多个进声孔。 两个后者多个可以平 行放置, 也可以呈一定角度的并列放置, 可以在并排放置, 也可 以有一定的前后距离, 可以使两个拾音器之间可以紧密相接触, 也可以使两者之间有一定的距离 (中间可以充填有一些充填材 料) 。
图 45 示出了本发明的使用的一种抗噪音拾音器的剖面图。 由图 45与图 1、 图 1A ~ 1C、 图 43、 图 431A、 图 44、 图 44A 比较可见, 其不同处在于: 当主音源在主筒体侧面时, 进声孔 4、 4a不是开在内筒体外壁 1 的側壁上, 而是将它们开在两个 相互交错放置的非抗噪音拾音器 29、 30的主筒体前盖側壁 2、 主筒体前盖側壁 2a 上, 两个相互交错放置的非抗噪音拾音器 在主筒体前盖侧壁 2上的前进声孔 4和主筒体前盖側壁 2a上 的后进声孔 4a, 是在两个拾音器主筒体前盖側壁比较中心的 位置, 或者在比较普遍的拾音器正常进声孔的开口位置上, 两 个拾音器的进声孔位置大致相同, 是通过使两个非抗噪音拾音 器相互平行并且相互错开放置达到让在面对主音源 38 的 主筒体側壁的前端 39的方向前后进声孔 4、 4a一个在前一个在后 排列的。
图 43、 图 44、 图 45可以通过使用在本发明人的各个专利和 专利申请中的各种类型的抗噪音拾音器的和其它的各种类型的抗 噪音拾音器通过改造制成新的前后进声口高抗噪音拾音器。 前后 进声口朝向大致相同或大致垂直的高抗噪音拾音器。
图 43、 图 44、 图 45实施例虽然前后进声孔设置在抗噪音拾 音器的主筒体前盖侧壁和主筒体后盖侧壁的不在一个平面上的前 端和后端两个部位, 但是在这个抗噪音拾音器的相对于直接面对 主音源的端面 39来讲, 还是位于这个抗噪音拾音器的外侧壁的側 壁上(这里实际上拾音器的直接面对主音源的端面 39就是拾音器 的主筒体前盖侧壁, 而主筒体前盖侧壁 2和主筒体后盖侧壁 2a实 际上就是主筒体的外侧壁) 。
说明:
1.本发明中所有的各个部件如: 外后筒体、 外主筒体、 内 主筒体、 内主筒体支撑架 31、 内筒体侧壁 1、筒体 20、后筒体 20a、 聚声罩 19、 前后声波引导模块 7、 7a、 进声孔 4、 4a、 声通管 27、 27a、 隔板 9、 隔板孔 18、 前垫片 8等等各个部件的内部以及外部 形状都可以根据设计要求和实际需要采用各种规则或者不规则的 变形的方形、 矩形、 圆形、 筒形、 长方形、 三角形、 菱形、 多边 形、 扇形、 椭圆形,各种弧线如: 采用抛物线形、 弧形等等各种形 状曲线以及几何函数曲线, 以及它们中的部分曲线线段等等各种 基本形状,也可以是各种基本形状组合形成的复杂形状,可以是单 一形状的简单单个, 也可以是各种形状的单个组合形成的复合体 等等, 可以是一个整体也可以是整体的一部分, 根据设计需要可 以使用金属材料也可以使用非金属材料, 也可以是两者相互结合 形成的复合材料制作。 但是这个外后筒体、 外主筒体、 内主筒体、 内主筒体支撑架、 内后筒体和外后筒体的形状和安装位置不能影 响每个驻极体拾音器。 驻极体抗噪音拾音器和整体的具有前后进 声口朝向大致相同或大致相互垂直的抗噪音拾音器的抗噪音效 果。 这个内主筒体、 外主筒体、 内主筒体、 内主筒体支撑架、 和 内后筒体、 外后筒体等等可以是连成一体的, 也可以是相互独立 的, 根据设计要求可以同时使用全部, 也可以选取其中部分应用。 内主筒体支撑架 31 将可以将多个驻极体抗噪音拾音器内主筒体 (如上驻极体拾音器 29的内主筒体和下驻极体拾音器 30的内主 筒体) 以及将多个外主筒体 25之间相互连接固定, 起加强固定作 用。 可以有一个或者多个内主筒体支撑架 31, 可以采用十字型、 圓圈形、 圆盘形、 钩形或者 "一" 字型等等各种形状。 在组合型 的抗噪音拾音器中的各单个驻极体拾音器的内主筲体(如上驻极 体拾音器 29的内主筒体和下驻极体拾音器 30的内主筒体) 的中 轴线(中心线的延长线形成的中轴线) 可以同在一个中轴线上, 也可以在不同的中轴线上, 当在不同的中轴线上时, 各个中轴线 相互之间可以是平行的也可以有一定的角度。 同样在本发明中的 各种拾音器所使用的前后进声孔和放置于进声孔之外的聚声罩 19 可以在在同一条线段上, 也可以在不同的线段上, 当在不同的线 段上时两者之间可以相互之间可以互相平行, 也可以有一定的角 度, 可以和内筒体側壁 1 的中轴线互相平行, 也可以有一定的角 度。 可以在与拾音器中轴线平行的一条线段上也可以在不同线段 上, 当在不同的线段上时, 各个线段相互之间可以是平行的也可 以有一定的角度。
2. 本发明中采用的是从前后声音进入孔开口朝向大致相同 方向(也可以不完全相同, 如相差 0°-135度左右) , 可以通过使 用聚声罩使起始进声孔朝向主音源的方向, 使进入的声波信号的 相位是大致相同的, (也可以大致相差 0°-135度左右) , 通过 a. 即使前后两个内主筒体中每一个内主筒体上的互相对应的两个起 始进声孔到达振膜之间两个的声波信道的声学特性大致相同 (也 可以不完全相同) , 并且通过机械结构的作用使两路声波信号之 间的相位大致相差 180度(也可以大致相差 0°- 135°左右) , 作用 到振膜上可以达到更好的共模抑制作用, 提取出差模信号消除噪 音。 B.又使前后两个内主筒体之间互相对应的两个进声口到振膜 两侧之间两个的声波信道的声学特性大致相同, 并且相位大致相 同 (也可以不完全相同, 大致相差 0°-135°左右), 可以通过共模 抑制电路进行共模抑制, 提取出差模信号消除噪音的原理。
本发明实施例中虽然采用了驻极体拾音器的原理和部件, 但 是可以根据设计要求在本发明中采用其它各种类型的抗噪音拾音 器或者非抗噪音拾音器, 以及各种拾音器的原理及部件, 制成本 发明的前后进声口朝向大致相同或大致相互垂直的抗噪音拾音器 单个和組合型高抗噪音拾音器, 如: 1.电磁变换拾音器包括的: a. 动电型拾音器中的: 动圈式拾音器、 扁型拾音器、 动圈式拾音器 等, b.电磁型拾音器等。 c.磁致伸缩拾音器等。 2.静电变换拾音 器中包括的: a.静电型拾音器中的: 电容式拾音器、 驻极体拾音 器、 静电拾音器等, b.压电型拾音器中的: 压电陶瓷、 罗息盐、 石英、 压电高分子等材料制成的拾音器。 C.电致伸缩拾音器中的: 电致伸缩拾音器、 压电双芯片型拾音器等。 3.电阻变换型拾音器 中的: a.接触阻抗型拾音器如电话用碳粒送话器等。 b.阻抗变换 拾音其中的: 电阻丝应变型拾音器、 半导体应变拾音等。 4.光电 变换拾音器中的: a.相位变化型拾音器中的: 干涉型拾音器、 DAD 拾音器等, b.光量变化型拾音器等各种拾音器以及各种拾音器部 件等等进行对照互换使用。 例如: 本发明的各种单个的抗噪音拾 音器实施例中可以将内主筒体内的隔板垫片 10、 前垫片 8、 隔板 9, 绷膜环 11、 振膜 12和背极 15组成的拾音部分更换为其它各 种驻极体拾音器、 电容式拾音器、 动圈拾音器、 电磁式拾音器、 压电陶瓷拾音器、 半导体拾音器等等的相应的拾音部件, 也可以 是换上它们整个拾音器。 同样在本发明中所使用的已有的和新发 明的各种单个的非抗噪音拾音器可以将外主筒体 33、 筒体侧壁 1 的拾音器部分更换为驻极体拾音器、 电容式拾音器、 动圏拾音器、 电磁式拾音器、 压电陶瓷拾音器、 半导体拾音器等等各种类型的 拾音器拾音部件, 也可以是换上它们整个拾音器。
因为本发明采用的消除噪音的方式使得虽然噪音消除的比较 好, 但是产生的主音源产生的有用信号也比一般拾音器的信号低, 因此需要增加放大电路, 可以采用目前常用的各种放大电路, 可 以将此放大电路放入拾音器内也可以放在拾音器外。
3. 可以根据设计要求将本发明多个抗噪音拾音器和 /或非抗 噪音拾音器进行多个前后排列的二维结构或者有一定立体结构的 三维结构或者有一定空间阵列配置的三维阵列结构。 当采用多个 抗噪音拾音器和 /或非抗噪音拾音器进行多个前后排列的二维结构 时在说明书附图中是上下排列而在实际使用中对主音源来讲是距 离的远近前后关系。
可以根据设计要求将本发明中可以采用相互结合的内主筒体 和内后筒体, 也可以只采用内主筒体, 同样也可以采用相互结合 的外主筒体和外后筒体, 也可以只采用外主筒体, 可以有该内主 筒体和外主筒体的外壳前部的前盖前壁和后部的后盖后壁, 也可 以没有前盖前壁和后盖后壁, 也可以只有其中一个。 当在内主筒 体和外主筒体中总共只使用一个拾音部件和拾音器时, 应当使用 抗噪音拾音器部件以及使用抗噪音拾音器。 当使用多个拾音器部 件和拾音器时既可以使用抗噪音拾音器部件以及使用抗噪音拾音 器, 也可以使用非抗噪音拾音器部件以及使用非抗噪音拾音器, 这些拾音器部件以及拾音器可以共同放在同一个内主筒体内以及 同一个外主筒体内, 也可以分开放置于多个内主筒体内以及多个 外主筒体内。 同样一个内后筒体以及外后筒体也可以连接一个也 可以连接多个内主筒体或者外主筒体。 当在使用多个拾音器单元 或者拾音器时, 可以将其中的每个拾音器单元或者拾音器放置的 位置和放置方向进行各种排列组合, 如: 各个拾音器可以都前后 串行, 也可以都前后并列, 也可以部分朝向前方或者后方的方向, 另一部分朝向侧面的方向, 也可以分别朝向 360 度内的不同的方 向等等各种排列组合, 声音接收端也可以都朝向相同方向, 也可 以朝向相反方向, 也可以朝向相对方向, 也可以部分朝向前方或 者后方的方向, 另一部分朝向侧面的方向, 也可以全部都朝向侧 面的方向, 也可以分别朝向 360 度内的不同的方向等等各种排列 组合。 当拾音部件和拾音器放置的位置和放置的方向改变时, 在 内主筒体以及外主筒体外壳上每个驻极体拾音器的前端和后端的 前进声孔和后进声孔, 以及在前后进声孔相对应的内主筒体以及 外主筒体外侧壁的聚声罩, 以及环绕该内主筒体和外主筒体上的 前后进声孔的内壁设置的前后声波引导模块、 前后声通管等, 它 们放置的位置、 方向、 也可以相应改变, 可以根据设计需要决定 是否全部使用还是使用其中的一部分。 内后筒体和外后筒体可以 安装在除了妨碍声波进入前后进声口的部位以外的内主筒体和外 主筒体上的任何部位, 可以朝向任何方向。
4.由于篇幅所限不可能将本发明的各个最佳实施例中的各个 部件相互组合成新的各种实施方案——列出,例如: 将附图中的外 后筒体.外主筒体和内主筒体支撑架重新互换组合, 或者将外后筒 体、 外主筒体和内主筒体支撑架中的各个内部部件互换进行重新 組合,以及将本人前述各个专利及专利申请的各种类型的拾音器或 者各种现有的各种类型的抗噪音拾音器或者非抗噪音拾音器, 如: 驻极体拾音器、 动圈拾音器、 电磁式拾音器、 压电陶瓷拾音器、 半导体拾音器等各种类型的抗噪音拾音器或者非抗噪音拾音器进 行重新组合后形成的新的实施方案列出。 因此各种重新组合形成 的新的实施方案也应该包括在本发明之中。
5.内主筒体和外主筒体, 当拾音器如图 1 等实施例分为前筒 体和后筒体两部分时, 前筒体就是主筒体, 当拾音器没有后筒体, 电路部分设置在主筒体内时, 这个主筒体内就包含了拾音部分和 电路部分两部分。 主筒体包括面向主音源的主筒体前壁、 背向主 音源的主筒体后壁和侧向主音源主筒体侧壁三个部分, 在图 1〜图 42 各种拾音器的实施例中, 主筒体側壁就是筒体側壁 1, 主筒体 前壁就是前盖前壁和主筒体后壁就是后盖后壁。 在图 43〜图 45各 种拾音器的实施例中, 主筒体侧壁就是主筒体前盖侧壁和 /或主筒 体后盖侧壁, 主筒体前壁就是面向主音源的主筒体侧壁的部分, 主筒体后壁就是背向主音源的主筒体侧壁的部分, 因此附图中前 盖前壁实际上应该命名为前盖侧壁, 后盖后壁实际上应该命名为 后盖侧壁, 筒体側壁应该命名为筒体外壁。
本发明是以驻极体拾音器制成驻极体高抗噪音拾音器为实施 例设计的, 但是也可以用于各种种类的拾音器, 制成相应种类的 抗噪音拾音器。
如上所述, 已经参照各附图, 详细描述了本发明的最佳实施 例, 但是, 不应认为本发明仅仅限于上述的各个实施例。 本领域 的技术人员, 通过上述各实施例的启迪, 不难对本发明的驻极体 抗噪音拾音器作出各种改进、 改变或替换, 因此, 这些改进、 改 变或替换, 不应认为已脱离了本发明的构思, 或所附权利要求书 所限定的范围。

Claims

权 利 要 求
1. 一种抗噪音拾音器, 包括相互结合的主筒体和后筒体, 其特 征在于: 在主筒体侧壁的前端和 /或后端分别具有前进声孔和后进 声孔, 前后进声口相互间的朝向在 0°-135°之间。
2. 一种抗噪音拾音器, 其特征在于: 所述外主筒体内包括多个 抗噪音拾音器单元和 /或非抗噪音拾音器单元, 在主筒体筒体侧壁 的前端和 /或后端分别具有前进声孔和后进声孔, 前后进声口相互 间的朝向在 0°- 135°之间。
3. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 所 述前进声孔和 /或后进声孔分别对应于振膜相应的一侧。
4. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 所 述在主筒体的侧壁有前进声孔, 和 /或在主筒体的侧壁有后进声 孔。
5. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 所 述拾音器进声孔开在側壁上。
6. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 所 述在前进声孔和 /或后进声孔相对应的主筒体外壁上有聚声罩。
7. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 在 主筒体内具有绷膜环, 在所述绷膜环前面的前垫片和隔板垫片之 间放置中间部分凸起的隔板, 该隔板中间部分凸起进入绷膜环内, 其凸起部分的边缘紧贴绷膜环内边缘, 与振膜之间构成一个空腔。
8. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 所 述抗噪音拾音器内的隔板放置在绷膜环内側缘之内, 在振膜与隔 板的之间有隔板垫片。
9. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 所 述抗噪音拾音器内的从振膜两側到前后进声孔之间的声学结构大 致对称。
10. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 所 述主筒体内的背极在与背极相同水平的位置从背极座中的背极通 过孔中穿出, 与其电路部分相连接。
11. 根据权利要求 1 或 2 所述的抗噪音拾音器, 其特征在于, 所述主筒体内进声孔的位置设置有声波引导模块、 声通管。
12. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 所 述的抗噪音拾音器的电路部分放置在主筒体中或放置在后筒体 中。
13. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 所 述抗噪音拾音器内的绷膜环和拾音器筒体外壳之间导电接点设置 在后筒体的部位。
14. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 还 包括声控开关电路, 其由检波电路、 比较器电路和开关电路构成。
15. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 还 包括拾音器超出接收距离报警电路, 其由比较器电路构成。
16. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 还 包括根据接收距离调节放大器放大系数的控制电路, 其由有多个 区间的窗口比较器电路构成。
17. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 还 包括将拾音器接收的两路差模声波电信号通过共模抑制电路进行 二次共模抑制的电路。
18. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 所 述前后进声孔分别设置在主筒体前盖側壁上和 /或主筒体后盖侧壁 上, 相对于在主筒体侧面的主音源的方向在主筒体前盖側壁的一 侧和在主筒体后盖侧壁的另一侧呈前后排列, 或相对于在主筒体 侧面的主音源的方向在一个主筒体的前盖侧壁的一侧和另一个主 筒体前盖侧壁的另一侧呈前后排列。
19. 根据权利要求 1或 2所述的抗噪音拾音器, 其特征在于, 所 述多个主筒体交错设置, 前后进声孔分别设置在主筒体前盖側壁 上和 /或主筒体后盖侧壁上, 相对于在主筒体側面的主音源的方向 位于主筒体前盖侧壁和 /或主筒体后盖侧壁的中央附近, 或相对于 在主筒体侧面的主音源的方向在主筒体的主筒体前盖侧壁和 /或后 盖側壁的两侧呈前后排列。
PCT/CN2001/000108 2000-02-03 2001-02-02 Enregistreur antibruit WO2001063969A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP01905594A EP1261233A1 (en) 2000-02-03 2001-02-02 An anti-noise pick-up
AU3358001A AU3358001A (en) 2000-02-03 2001-02-02 An anti-noise pick-up
AU2001233580A AU2001233580B9 (en) 2000-02-03 2001-02-02 An anti-noise pick-up
JP2001562057A JP2003524355A (ja) 2000-02-03 2001-02-02 雑音抑圧音声ピックアップ
US10/203,107 US7194095B2 (en) 2000-02-03 2001-02-02 Anti-noise pick-up
CA002399204A CA2399204A1 (en) 2000-02-03 2001-02-02 An anti-noise pick-up

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN00100775.0 2000-02-03
CN00100775 2000-02-03
CNPCT/CN00/00358 2000-10-24
PCT/CN2000/000358 WO2001058210A1 (en) 2000-02-03 2000-10-24 Anti-noise pickup

Publications (1)

Publication Number Publication Date
WO2001063969A1 true WO2001063969A1 (fr) 2001-08-30

Family

ID=25739119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/000108 WO2001063969A1 (fr) 2000-02-03 2001-02-02 Enregistreur antibruit

Country Status (5)

Country Link
EP (1) EP1261233A1 (zh)
JP (1) JP2003524355A (zh)
AU (1) AU3358001A (zh)
CA (1) CA2399204A1 (zh)
WO (1) WO2001063969A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85101800A (zh) * 1985-04-01 1987-02-04 北方电信有限公司 电话手机用送话器组件
CN1070532A (zh) * 1991-09-09 1993-03-31 星电株式会社 驻极体电容传声器
CN2273937Y (zh) * 1996-08-05 1998-02-04 胡建国 电容式驻极体传声器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85101800A (zh) * 1985-04-01 1987-02-04 北方电信有限公司 电话手机用送话器组件
CN1070532A (zh) * 1991-09-09 1993-03-31 星电株式会社 驻极体电容传声器
CN2273937Y (zh) * 1996-08-05 1998-02-04 胡建国 电容式驻极体传声器

Also Published As

Publication number Publication date
AU3358001A (en) 2001-09-03
AU2001233580B2 (en) 2005-08-11
CA2399204A1 (en) 2001-08-30
JP2003524355A (ja) 2003-08-12
EP1261233A1 (en) 2002-11-27

Similar Documents

Publication Publication Date Title
US9961437B2 (en) Dome shaped microphone array with circularly distributed microphones
WO2021036560A1 (zh) 无线耳机
EP3706430A1 (en) Noise-reducing air conduit microphone, secure noise-reducing earphone and secure noise-reducing bluetooth earphone
US10356507B1 (en) Phantom powered JFET circuit for audio application
WO2015172601A1 (zh) 扬声器模组
WO2022048395A1 (zh) 防风噪耳机
WO2008062850A1 (fr) Dispositif d&#39;entrée vocale, procédé de production de ce dernier et système de traitement d&#39;informations
WO2008062848A1 (fr) Dispositif d&#39;entrée vocale, procédé de production de ce dernier et système de traitement d&#39;informations
CN209845244U (zh) 入耳式降噪音耳机
CN203072150U (zh) 一种降噪驻极体麦克风
US7227957B2 (en) Noise-suppressing receiver
WO2001063969A1 (fr) Enregistreur antibruit
Ballou et al. Microphones
WO2012159380A1 (zh) 用于对移动终端降风噪的装置及方法
WO2001058210A1 (en) Anti-noise pickup
CN207995325U (zh) 具有微机电麦克风的耳道式耳机麦克风
CN211959478U (zh) 多功能降噪麦克风
US8483412B2 (en) Variable pattern hanging microphone system with remote polar control
JP2009246635A (ja) コンデンサーマイクロホンユニットおよびコンデンサーマイクロホン
CN2814864Y (zh) 单指向微型麦克风
CN219644104U (zh) 一种超指向性传声器
CN2429985Y (zh) 开放式有源消噪音受话器
CN220528203U (zh) 一种充电仓及多麦音频传输系统
JP2003078987A (ja) マイクロホン装置
CN110536195B (zh) 动态降噪喊话器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10203107

Country of ref document: US

Ref document number: 2399204

Country of ref document: CA

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 562057

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 018045278

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001233580

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2001905594

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001905594

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001905594

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001233580

Country of ref document: AU