WO2001063603A1 - Disk drive - Google Patents

Disk drive Download PDF

Info

Publication number
WO2001063603A1
WO2001063603A1 PCT/JP2001/001277 JP0101277W WO0163603A1 WO 2001063603 A1 WO2001063603 A1 WO 2001063603A1 JP 0101277 W JP0101277 W JP 0101277W WO 0163603 A1 WO0163603 A1 WO 0163603A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser power
gain
laser
temperature
signal
Prior art date
Application number
PCT/JP2001/001277
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Tada
Toshihide Hamaguchi
Hideaki Yano
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Publication of WO2001063603A1 publication Critical patent/WO2001063603A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0941Methods and circuits for servo gain or phase compensation during operation

Definitions

  • the present invention relates to an optical disk device, and particularly to, for example, a recording surface of an optical disk.
  • the present invention relates to an optical disk device that irradiates the light and records and reproduces a signal.
  • an optical pickup is used for recording an image signal on a magneto-optical disk. If the operation continues in an environment where the temperature around the optical pickup is high, the life of the semiconductor laser is shortened. In order to prevent the shortening of the life, the laser power of the laser light output from the semiconductor laser is reduced as the peripheral temperature increases.
  • An optical disk device irradiates a laser beam output from a semiconductor laser to a recording surface of an optical disk through an optical lens, and includes: a detection device for detecting an ambient temperature of the semiconductor laser; Means; laser power reduction means for reducing the laser power value of the semiconductor laser as the ambient temperature detected by the detection means increases; generation means for generating a servo control signal based on the reflected light of the laser light on the recording surface; A displacement means for displacing the optical lens in response to a control signal; a gain table in which a plurality of temperature values and a servo control gain that increases as the temperature value increases are stored in association with each other; Read the servo control gain corresponding to the temperature from the gain table Read the servo control gain And servo control gain setting means for setting the servo control gain read by the
  • the laser power of the laser beam output from the semiconductor laser and the servo control gain added to the servo control signal are changed according to the change in the ambient temperature of the semiconductor laser.
  • the detecting means detects the ambient temperature of the semiconductor laser.
  • the laser power reduction means reduces the laser power of the semiconductor laser if the ambient temperature detected by the detection means is high, and prevents the temperature of the semiconductor laser from further increasing.
  • the gain table a plurality of temperature values and a support control gain corresponding to this temperature value are stored in association with each other, and a higher temperature value corresponds to a larger support control gain.
  • the servo control gain readout means reads out the support control gain corresponding to the ambient temperature detected by the detection means from the gain table, and the support gain setting means sets the readout servo control gain in the generation means.
  • the generating means generates a servo control signal, and further adds the set servo control gain to the servo control signal and outputs the signal.
  • the displacement means displaces the position of the optical lens in response to the servo control signal output by the generation means.
  • the servo gain signal includes a focus control signal for performing focus control of the optical lens and a tracking signal for performing tracking control
  • the gain table further includes a plurality of temperatures.
  • the focus control signal and the tracking control signal which increase as the value and the temperature value increase are stored. Therefore, even when the peripheral temperature of the semiconductor laser changes, such as a high temperature, focus control and tracking control of the optical lens can be stably performed.
  • the laser power value set for the semiconductor laser is determined with reference to a table provided in advance. That is, first, a laser power value table is prepared in which a plurality of temperature values and a laser power value corresponding to the temperature value are stored in association with each other. Each of the plurality of temperature values is equal to each of the temperature values of the servo gain table. Also, the laser power value increases as the corresponding temperature value increases. And become smaller.
  • Laser power value reading means reads a laser power value corresponding to the ambient temperature from the laser power value table.
  • Laser power reducing means changes the laser power of the semiconductor laser to the laser power value read by the laser power value reading means.
  • the laser power value to be changed is held in a table corresponding to the temperature value, and the laser power value is determined based on this table. Therefore, the laser temperature value of the laser power is shifted and corrected to thereby correct the laser power value. Unlike the case of determining the value, it is possible to set an optimum laser power value at a predetermined temperature value. In addition, since the temperature value and the number corresponding to the laser power value are equal to the temperature number and the value corresponding to the support control gain, the optimum servo control gain for the laser power value is accurately and quickly determined. be able to. Therefore, even when the ambient temperature changes, the focus control and the tracking control can be appropriately performed, and the disk device can be stably operated.
  • the laser power value of the laser light output from the semiconductor laser is changed according to the peripheral temperature of the semiconductor laser to prevent the temperature of the semiconductor laser from rising, and the changed ambient temperature, that is, The optimum control gain for the selected laser power value is added to the control signal. Therefore, even if the peripheral temperature of the semiconductor laser rises, the optical disc device can be operated stably by performing appropriate servo control.
  • FIG. 1 is a block diagram showing one embodiment of the present invention
  • FIG. 2 is an illustrative view showing a change in laser power with respect to a temperature change
  • FIG. 2 (A) is a graph showing a change in a reproduction laser power
  • FIG. 2 (B) is a graph showing a change in a recording laser power
  • Figure 3 is an illustrative view showing a table associating temperature with reproduction laser power, recording laser power, and gain;
  • Figure 4 is an illustrative view showing the change in the response characteristics of the tracking servo system and the focus servo system to a temperature change;
  • FIG. 5 is an illustrative view showing a part of the operation of the embodiment in FIG. 1; and FIG. 6 is an illustrative view showing another portion of the operation of the embodiment in FIG.
  • a disk device 10 of this embodiment includes an optical pickup 12.
  • the optical pickup 12 is connected to the thread module 38 by a rack gear and a pinion gear, and is driven in the radial direction of the optical disk 60 by driving these gears.
  • the thread module 38 is controlled by a thread control signal provided from a digital signal processor (DSP) 32 through a pulse width modulation (PWM) driver 42a.
  • the optical pickup 12 includes an optical lens (objective lens) 16, which is supported by a tracking actuator 14 and a force actuator 18.
  • the position of the optical lens 16 in the optical axis direction is controlled by a focus function 14, and the position of the optical lens 16 in the radial direction of the optical disc 60 is controlled by a tracking function.
  • the tracking work 14 and the focus work 18 are based on the tracking work signal and the focus work provided from the DSP 32 through the PWM driver 42 b and the PWM driver 42 c. It operates according to the heater signal.
  • Laser light oscillated from a laser diode (semiconductor laser) 20 provided inside the optical pickup 12 is converged by the objective lens 14 and irradiated on the recording / reproducing surface of the optical disk 60.
  • a desired signal is written to the optical disc 60, and a desired signal is reproduced from the optical disc 60.
  • the laser light (reflected light) reflected by the recording Z reproducing surface of the optical disk passes through the same objective lens 16 and enters the photodetector 22.
  • the sensor signal output from the photodetector 22 is input to the TE signal detection circuit 28 and the FE signal detection circuit 30 through the servo amplifier 26.
  • the TE signal detection circuit 28 detects the TE signal (tracking error signal), and the FE signal detection circuit 30 detects the FE signal (focus error signal).
  • the TE signal and FE signal respectively detected by the TE signal detection circuit 28 and the FE signal detection circuit 30 are sent to the AZD converter 40a and the AZD converter 40b provided in the DSP 32. Each given.
  • the optical disk 60 is mounted on a turntable 44 and a turn tape is provided.
  • the screw 44 is connected to a spindle motor 40 via a shaft 42.
  • the spindle motor 40 is rotated by a motor control signal provided from the DSP 32 through the PWM driver 42d.
  • the spindle motor 40 rotates, the rotation is transmitted to the table 44 via the shaft 42, and the turntable 44, that is, the optical disk 60 rotates.
  • the spindle motor 40 generates an FG pulse related to the rotation speed, and the FG pulse is given to the AZD converter 40 c of the DSP 32.
  • the TE signal, the FE signal, and the FG signal provided to the AZD converters 40a, 40b, 40c are converted to digital signals and then provided to the DSP 3732a.
  • 03 Core 32 & executes the tracking support processing based on the TE signal, executes the focus support processing based on the FE signal, and further executes the spindle support processing based on the FG signal.
  • the tracking servo process generates a thread control signal and a tracking work control signal.
  • the thread control signal and the tracking work control signal are converted into PWM signals by the PWM drivers 42a and 42b, and supplied to the thread control 38 and the tracking work 14.
  • the focus control signal generated by the focus support processing is converted into a PWM signal by the PWM dry line 42b and supplied to the focus control 18.
  • a spindle servo motor control signal is generated by the spindle support process, converted into a PWM signal by the PWM driver 42 d, and given to the spindle motor 40.
  • a tracking support system is formed by the TE signal detection circuit 28, the DSP 32, the tracking function unit 14 and the thread module 38.
  • the tracking servo system appropriately controls the tracking of the optical lens 16 based on the TE signal.
  • a focus servo system is formed by the FE signal detection circuit 30, the DSP 32, and the focus actuator 18.
  • the focus support system appropriately controls the focus of the optical lens 16 based on the FE signal.
  • a spindle servo system is formed by the spindle motor 40 and the DSP 28, and the spindle motor 40, that is, the rotation of the optical disk 38 is controlled based on the FG signal. Rolling is properly controlled.
  • the laser beam oscillated from the laser diode 20 is applied to a desired position on the recording / reproducing surface of the optical disc 60, whereby a desired signal is appropriately recorded on the optical disc 60 and reproduced.
  • the tracking servo system and the focus servo system perform control based on the TE signal and the FE signal obtained from the reflected light of the laser light. Therefore, the stability of the operation of the optical disk device 10 depends on the stability of the laser light oscillated from the laser diode 20.
  • the life of the laser diode 20 is shortened if laser light oscillation is continued in a high temperature state. Therefore, when the temperature around the laser diode 20 becomes high, it is necessary to lower the laser power value of the oscillating laser light to prevent the temperature from further rising. However, as described above, if the laser beam changes due to the ambient temperature, the tracking servo process and the focus servo process become unstable, and the operation of the optical disc device 10 becomes unstable.
  • the laser power value of the oscillating laser light is changed in accordance with the changing ambient temperature of the laser diode 20, and the focus laser is appropriately adjusted at the changed ambient temperature, that is, at the changed laser power value.
  • the gain (Gain) that can perform the zooming process and the tracking process is added to the focus control signal and the tracking control signal.
  • a temperature sensor 24 is arranged around the optical pickup 12.
  • the temperature sensor 24 generates a temperature signal corresponding to the detected temperature and supplies the temperature signal to the microcomputer 34.
  • FIG. 1 shows a temperature sensor 24 outside the optical pickup 12, but in actuality, the temperature sensor 24 is a mouthpiece mechanism, a pickup feed mechanism, a pickup mechanism, a rotation mechanism, and the like. And a drive mechanism (not shown). Therefore, the temperature sensor 24 generates a temperature signal corresponding to the temperature of the room in which the drive mechanism is sealed and supplies the temperature signal to the microcomputer 34.
  • the microcomputer 34 detects the temperature based on the temperature signal.
  • the ROM 36 that can be read from the microcomputer 34 is detected by the microcomputer 34. Temperature, laser power value, focus support system gain and tracking
  • Table 48 that stores each of the gains of the control system is stored. Details of this table 48 will be described later.
  • the microcomputer 34 refers to the table 48 using the detected temperature value as a key, and determines each of the laser power value, the focus control system gain, and the tracking servo system gain corresponding to the temperature. Then, these values are given to DSP 32.
  • the laser light oscillated from the laser diode 20 greatly differs between when recording information and when reproducing information. Therefore, a laser power value corresponding to the temperature is required for each of the reproducing laser and the recording laser. Also, the temperature of the laser diode 20 increases as the laser power increases. Therefore, in order to suppress the temperature rise of the laser diode 20, the laser power is reduced as the temperature increases.
  • the relationship shown in FIGS. 2A and 2B can be adopted. The range of power is different between the reproducing laser power and the recording laser power, but in both cases, the laser power gradually decreases as the temperature rises.
  • the values of the laser power with respect to the temperature are sampled as the reproduction laser power list 48 b and the recording laser power power 48 c of the table 48 shown in FIG.
  • the number of samplings is set to 5, but this number may be changed as needed.
  • the focus servo system and the tracking servo system have the response characteristics shown by the solid line A in FIG.
  • the laser pulse decreases.
  • the outputs of the TE signal and the FE signal output from the TE signal detection circuit 28 and the FE signal detection circuit 30 also decrease. Therefore, in order to secure the same output of the tracking work signal and the focus work overnight signal as at the standard recording Z playback laser power, the gains of the tracking servo system and the focus support system are obtained. Raise. When the gain is increased, the response characteristic spreads to the high frequency band as shown by the solid line B in FIG. On the other hand, the temperature is low Then, since the laser power is increased, the output of the TE signal and the FE signal also increases.
  • the gains of the tracking servo system and the focus support system are reduced.
  • the response characteristic narrows to the low frequency band as shown by the solid line C in Fig. 4.
  • the gain list 48 d of the tape 48 is prepared in such a manner that the gain values corresponding to the changing temperature are prepared by the number of change values of the recording Z reproduction laser power.
  • step S1 the microcomputer 34 captures the temperature signal transmitted by the temperature sensor 24 and detects the temperature around the optical pickup 12.
  • step S3 the microcomputer 34 compares the detected temperature with each temperature in the temperature list 48a of the table 48 in ascending order of the temperature, and finds the highest temperature lower than the detected temperature, This is determined as the temperature around the optical pickup 12.
  • the microcomputer 34 obtains the value of the reproduction laser power corresponding to the determined ambient temperature in the table 48 from the reproduction laser power list in step S5. Also, in step S7, the value of the recording laser corresponding to the ambient temperature is obtained from the recording laser power list, and in step S9, the value of the gain corresponding to the ambient temperature is obtained from the gain list. I do. In step SI1, the microcomputer 34 outputs the acquired values of the reproduction laser power, the recording laser power, and the gain to the DSP 32.
  • step S 21 the DSP 32 acquires the value of the reproduction laser power, the value of the recording laser power, and the value of the gain from the microcomputer 34.
  • the DSP 32 determines in step S23 whether the optical disk device 10 is in the reproduction mode. If it is determined that the mode is the reproduction mode, the value of the reproduction laser power obtained from the microcomputer 34 is set in the laser drive 50 in step S25. If the mode is not the reproduction mode, the value of the recording laser power is determined in step S27. Is set to laser drive 50.
  • the DSP 32 adds the gain obtained from the microcomputer 34 to the focus actuating signal at step S29, and outputs the signal to the focus actuating signal 18. Also, in step S31, a gain is given to the tracking work overnight signal, and the signal is output to the focus work overnight 14.
  • the laser drive 50 drives the laser diode 20 to emit a set laser beam.
  • the tracking position and the focus position of the optical lens 16 of the optical pickup 12 are adjusted based on the tracking work overnight signal and the focus work overnight signal to which the gain is given.
  • the laser power value of the laser light oscillating according to the changing ambient temperature of the laser diode 20 is changed. Further, an optimum gain for appropriately performing the focus servo control and the tracker servo control with the changed laser power value is determined, and this gain is added to the force control signal and the tracking control signal. Therefore, irrespective of the temperature change of the peripheral temperature of the laser diode 20, the force control and the tracking control of the optical lens 16 can be appropriately performed, and the stable operation can be performed.
  • This embodiment is not limited to the above-described example, and may be implemented with various modifications.
  • the actuary system was realized by DSP, but may be constituted by a filter and a driver instead.
  • Table 48 shows the values of the reproduction laser power, recording laser power, and gain corresponding to the five temperatures of 5 degrees, 10 degrees, 22 degrees, 40 degrees, and 60 degrees. Although stored, the number and value of the temperatures to be set are not limited to these, and can be changed according to the embodiment.
  • one table is used. However, a table is prepared for each value of the reproduction laser power, the value of the recording laser power, and the value of the gain, and the number of elements to be stored for each table is determined. You can change it.
  • gain value added to the tracking work signal and the gain value added to the focus work signal are common, different gains may be added respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

A disk drive includes a temperature sensor (24) arranged near an optical pickup (12). The temperature sensor detects the temperature of the surroundings of the optical pickup. The values of laser power and gain corresponding to the detected temperature are read from a table (48) recorded in a ROM (36). The value of laser power is set to a laser drive (50), and the value of gain is given to a tracking actuator signal and a focal actuator signal. Low laser power is set at high temperature while high laser power is set at low temperature.

Description

明 細 書  Specification
ディスク装置 技術分野  Disk unit technical field
この発明は、 光ディスク装置に関し、 特にたとえば、 光ディスクの記録面にレ The present invention relates to an optical disk device, and particularly to, for example, a recording surface of an optical disk.
—ザ光を照射して信号を記録 Z再生する、 光ディスク装置に関する。 —The present invention relates to an optical disk device that irradiates the light and records and reproduces a signal.
背景技術  Background art
この種の光ディスク装置では、 光磁気ディスクへの画像信号の記録に光ピック ァップを用いている。 光ピックアツプの周辺温度が高温になった環境で動作を続 けると、 半導体レーザの寿命が短くなる。 この短命化を防止するために、 周辺温 度が高くなるほど半導体レーザから出力するレーザ光のレーザパヮーを低くして いる。  In this type of optical disk device, an optical pickup is used for recording an image signal on a magneto-optical disk. If the operation continues in an environment where the temperature around the optical pickup is high, the life of the semiconductor laser is shortened. In order to prevent the shortening of the life, the laser power of the laser light output from the semiconductor laser is reduced as the peripheral temperature increases.
レーザパワーが低下すると、 サーポ系の制御信号の出力も低くなつてサ一ポ系 の動作が不安定になる。 その結果、 リードノライト時にリードエラーおよびライ トエラ一が頻繁に発生するという問題があつた。  When the laser power decreases, the output of the control signal of the servo system also decreases, and the operation of the support system becomes unstable. As a result, there has been a problem that read errors and write errors frequently occur during read / write.
発明の概要  Summary of the Invention
それゆえに、 この発明の主たる目的は、 光ピックアップの周辺温度が高温にな つても安定して動作させることができる、光ディスク装置を提供することである。 この発明に従つた光ディスク装置は、半導体レーザから出力されたレーザ光を、 光学レンズを通して光ディスクの記録面に照射するものであって、 次のものを備 える:半導体レーザの周辺温度を検出する検出手段;検出手段によって検出され た周辺温度が高くなるにつれて半導体レーザのレーザパワー値を低減させるレー ザパヮ一低減手段;レーザ光の記録面における反射光に基づいてサーポ制御信号 を生成する生成手段;サーポ制御信号に応答して光学レンズを変位させる変位手 段;複数の温度値と温度値が高くなるにつれて大きくなるサーポ制御ゲインとが 互いに関連付けられて格納されたゲインテーブル;検出手段によって検出された 周辺温度に対応するサ一ボ制御ゲインをゲインテーブルから読み出すサ一ポ制御 ゲイン読み出し手段;およびサーポ制御ゲイン読み出し手段によって読み出され たサーポ制御ゲインを生成手段に設定するサ一ボ制御ゲイン設定手段。 この発明においては、 半導体レ一ザの周辺温度の変化に応じて、 半導体レーザ から出力するレーザ光のレーザパワーおよびサーポ制御信号に付加するサーポ制 御ゲインを変更する。 まず検出手段が半導体レーザの周辺温度を検出する。 レー ザパワー低減手段は、 検出手段によって検出された周辺温度が高ければ半導体レ 一ザのレーザパワーを低減させて、 半導体レーザの温度がさらに上昇することを 防ぐ。 ゲインテ一ブルには、 複数の温度値とこの温度値に対応するサ一ポ制御ゲ インとが関連付けて格納されており、 高い温度値ほど大きいサ一ポ制御ゲインが 対応する。 サーポ制御ゲイン読み出し手段は、 検出手段によって検出された周辺 温度に対応するサ一ポ制御ゲインをゲインテーブルから読み出し、 サ一ポゲイン 設定手段は、読み出されたサーポ制御ゲインを生成手段に設定する。生成手段は、 サーポ制御信号を生成し、 さらに設定されたサーポ制御ゲインをサーポ制御信号 に付加して出力する。 生成手段が出力するサーポ制御信号に応答して、 変位手段 が光学レンズの位置を変位させる。 これにより、 周辺温度が上昇したときに半導 体レーザのレーザパワーを低下させても、 その低下されたレーザパワーに最適な サ一ポ制御信号が生成され、 このサーボ制御信号に応答して光学レンズの位置が 制御される。 したがって、 半導体レーザの周辺温度が上昇しても安定して動作さ せることができる。 SUMMARY OF THE INVENTION Therefore, a main object of the present invention is to provide an optical disk device that can operate stably even when the ambient temperature of an optical pickup is high. An optical disk device according to the present invention irradiates a laser beam output from a semiconductor laser to a recording surface of an optical disk through an optical lens, and includes: a detection device for detecting an ambient temperature of the semiconductor laser; Means; laser power reduction means for reducing the laser power value of the semiconductor laser as the ambient temperature detected by the detection means increases; generation means for generating a servo control signal based on the reflected light of the laser light on the recording surface; A displacement means for displacing the optical lens in response to a control signal; a gain table in which a plurality of temperature values and a servo control gain that increases as the temperature value increases are stored in association with each other; Read the servo control gain corresponding to the temperature from the gain table Read the servo control gain And servo control gain setting means for setting the servo control gain read by the servo control gain reading means in the generation means. In the present invention, the laser power of the laser beam output from the semiconductor laser and the servo control gain added to the servo control signal are changed according to the change in the ambient temperature of the semiconductor laser. First, the detecting means detects the ambient temperature of the semiconductor laser. The laser power reduction means reduces the laser power of the semiconductor laser if the ambient temperature detected by the detection means is high, and prevents the temperature of the semiconductor laser from further increasing. In the gain table, a plurality of temperature values and a support control gain corresponding to this temperature value are stored in association with each other, and a higher temperature value corresponds to a larger support control gain. The servo control gain readout means reads out the support control gain corresponding to the ambient temperature detected by the detection means from the gain table, and the support gain setting means sets the readout servo control gain in the generation means. The generating means generates a servo control signal, and further adds the set servo control gain to the servo control signal and outputs the signal. The displacement means displaces the position of the optical lens in response to the servo control signal output by the generation means. As a result, even if the laser power of the semiconductor laser is reduced when the ambient temperature rises, a support control signal optimal for the lowered laser power is generated, and the optical control signal is generated in response to the servo control signal. The position of the lens is controlled. Therefore, even if the peripheral temperature of the semiconductor laser rises, it can be operated stably.
この発明の他の好ましい実施例では、 サーポゲイン信号は、 光学レンズのフォ —カス制御を行うためのフォーカス制御信号およびトラッキング制御を行うため のトラッキング信号を含み、 さらに、 ゲインテーブルには、 複数の温度値と温度 値が高くなるにつれて大きくなるフォ一カス制御信号およびトラッキング制御信 号が格納される。 したがって、 半導体レーザの周辺温度が高温になるなど変化し ても、 光学レンズのフォーカス制御およびトラッキング制御を安定して行うこと ができる。  In another preferred embodiment of the present invention, the servo gain signal includes a focus control signal for performing focus control of the optical lens and a tracking signal for performing tracking control, and the gain table further includes a plurality of temperatures. The focus control signal and the tracking control signal which increase as the value and the temperature value increase are stored. Therefore, even when the peripheral temperature of the semiconductor laser changes, such as a high temperature, focus control and tracking control of the optical lens can be stably performed.
この発明の他の好ましい実施例では、 半導体レーザに設定するレーザパワー値 を予め設けたテ一ブルを参照して決定する。 つまり、 まず複数の温度値とこの温 度値に対応するレーザパワー値とを関連付けて格納したレーザパヮ一値テーブル を準備する。 複数の温度値のそれぞれは、 サーボゲインテーブルが有する温度値 のそれぞれに等しい。 また、 レ一ザパワー値は、 対応する温度値が高くなるにつ れて小さくなる。 レーザパワー値読み出し手段が、 周辺温度に対応するレーザパ ヮー値をレ一ザパワー値テーブルから読み出す。 レーザパワー低減手段が、 半導 体レーザのレーザパヮ一をレーザパワー値読み出し手段によつて読み出されたレ —ザパワー値に変更する。 このように、 変更するレーザパワー値を温度値に対応 させてテーブルに保持し、 このテーブルに基づいてレーザパヮ一値を決定するの で、 レ一ザパヮ一の温度特性をシフト補正してレーザパヮ一値を決定する場合な どと異なり、 所定の温度値における最適なレーザパワー値を設定することができ る。 また、 レーザパヮ一値に対応する温度の値および数が、 サ一ポ制御ゲインに 対応する温度の数および値と等しいので、 レーザパワー値に対して最適なサーボ 制御ゲインを正確かつ迅速に決定することができる。 したがって、 周辺温度が変 化しても適切にフォ一カス制御およびトラッキング制御を行って、 安定してディ スク装置を動作させることができる。 In another preferred embodiment of the present invention, the laser power value set for the semiconductor laser is determined with reference to a table provided in advance. That is, first, a laser power value table is prepared in which a plurality of temperature values and a laser power value corresponding to the temperature value are stored in association with each other. Each of the plurality of temperature values is equal to each of the temperature values of the servo gain table. Also, the laser power value increases as the corresponding temperature value increases. And become smaller. Laser power value reading means reads a laser power value corresponding to the ambient temperature from the laser power value table. Laser power reducing means changes the laser power of the semiconductor laser to the laser power value read by the laser power value reading means. As described above, the laser power value to be changed is held in a table corresponding to the temperature value, and the laser power value is determined based on this table. Therefore, the laser temperature value of the laser power is shifted and corrected to thereby correct the laser power value. Unlike the case of determining the value, it is possible to set an optimum laser power value at a predetermined temperature value. In addition, since the temperature value and the number corresponding to the laser power value are equal to the temperature number and the value corresponding to the support control gain, the optimum servo control gain for the laser power value is accurately and quickly determined. be able to. Therefore, even when the ambient temperature changes, the focus control and the tracking control can be appropriately performed, and the disk device can be stably operated.
この発明によれば、 半導体レーザの周辺温度に応じて半導体レーザが出力する レ一ザ光のレーザパワー値を変更して半導体レーザの温度上昇を防止し、 さらに 変化した周辺温度、 つまり変ィ匕したレ一ザパワー値に最適なサ一ポ制御ゲインを サーポ制御信号に付加する。したがって、半導体レーザの周辺温度が上昇しても、 適切なサ一ボ制御を行って光ディスク装置を安定して動作させることができる。 この発明の上述の目的、 その他の目的、 特徴および利点は、 図面を参照して行 う以下の実施例の詳細な説明から一層明らかとなろう。  According to the present invention, the laser power value of the laser light output from the semiconductor laser is changed according to the peripheral temperature of the semiconductor laser to prevent the temperature of the semiconductor laser from rising, and the changed ambient temperature, that is, The optimum control gain for the selected laser power value is added to the control signal. Therefore, even if the peripheral temperature of the semiconductor laser rises, the optical disc device can be operated stably by performing appropriate servo control. The above and other objects, features, and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1はこの発明の一実施例を示すブロック図であり ;  FIG. 1 is a block diagram showing one embodiment of the present invention;
図 2は温度変化に対するレーザパワーの変化を示す図解図で、 図 2 (A) は再 生レーザパワーの変化を示すグラフで、 図 2 (B) は記録レーザパワーの変化を 示すグラフであり ;  FIG. 2 is an illustrative view showing a change in laser power with respect to a temperature change, FIG. 2 (A) is a graph showing a change in a reproduction laser power, and FIG. 2 (B) is a graph showing a change in a recording laser power;
図 3は温度と再生レーザパワー、 記録レーザパワーおよびゲインを対応づけた テーブルを示す図解図であり ;  Figure 3 is an illustrative view showing a table associating temperature with reproduction laser power, recording laser power, and gain;
図 4は温度変化に対するトラッキングサーポ系およびフォーカスサーポ系の応 答特性の変更を示す図解図であり ;  Figure 4 is an illustrative view showing the change in the response characteristics of the tracking servo system and the focus servo system to a temperature change;
図 5は図 1実施例の動作の一部を示す図解図であり ;そして 図 6は図 1実施例の動作の他の一部を示す図解図である。 FIG. 5 is an illustrative view showing a part of the operation of the embodiment in FIG. 1; and FIG. 6 is an illustrative view showing another portion of the operation of the embodiment in FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
図 1を参照して、 この実施例のディスク装置 1 0は、 光ピックアップ 1 2を含 む。 光ピックアップ 1 2は、 スレツドモ一夕 3 8とラックギアおよびピニオンギ ァで連結され、 これらのギヤが駆動されることによって光ディスク 6 0の径方向 に移動される。 なお、 スレツドモ一夕 3 8は、 D S P (Digital Signal Processor) 3 2からPWM (パルス幅変調) ドライバ 4 2 aを通して与えられるスレッド制 御信号によって制御される。 光ピックアップ 1 2は、 光学レンズ (対物レンズ) 1 6を含み、 対物レンズ 1 6はトラッキングァクチユエ一タ 1 4およびフォー力 スァクチユエ一夕 1 8によって支持される。 光学レンズ 1 6の光軸方向における 位置は、 フォーカスァクチユエ一夕 1 4によって制御され、 光ディスク 6 0の径 方向における光学レンズ 1 6の位置は、 トラッキングァクチユエ一夕によって制 御される。 なお、 トラッキングァクチユエ一夕 1 4およびフォーカスァクチユエ —夕 1 8は、 D S P 3 2から PWMドライバ 4 2 bおよび PWMドライバ 4 2 c を通して与えられるトラッキングァクチユエ一夕信号およびフォ一カスァクチュ ェ一タ信号に応じて動作する。  Referring to FIG. 1, a disk device 10 of this embodiment includes an optical pickup 12. The optical pickup 12 is connected to the thread module 38 by a rack gear and a pinion gear, and is driven in the radial direction of the optical disk 60 by driving these gears. The thread module 38 is controlled by a thread control signal provided from a digital signal processor (DSP) 32 through a pulse width modulation (PWM) driver 42a. The optical pickup 12 includes an optical lens (objective lens) 16, which is supported by a tracking actuator 14 and a force actuator 18. The position of the optical lens 16 in the optical axis direction is controlled by a focus function 14, and the position of the optical lens 16 in the radial direction of the optical disc 60 is controlled by a tracking function. . The tracking work 14 and the focus work 18 are based on the tracking work signal and the focus work provided from the DSP 32 through the PWM driver 42 b and the PWM driver 42 c. It operates according to the heater signal.
光ピックアップ 1 2の内部に設けられたレーザダイオード (半導体レーザ) 2 0から発振されたレ一ザ光は、 対物レンズ 1 4で収束されて光ディスク 6 0の記 録 再生面に照射される。 これによつて、 所望の信号が光ディスク 6 0に書き込 まれ、 また所望の信号が光ディスク 6 0から再生される。  Laser light oscillated from a laser diode (semiconductor laser) 20 provided inside the optical pickup 12 is converged by the objective lens 14 and irradiated on the recording / reproducing surface of the optical disk 60. Thus, a desired signal is written to the optical disc 60, and a desired signal is reproduced from the optical disc 60.
光ディスクの記録 Z再生面で反射したレーザ光 (反射光) は、 同じ対物レンズ 1 6を通過して光検出器 2 2に入射される。 光検出器 2 2から出力されるセンサ 信号は、 サーポアンプ 2 6を通して T E信号検出回路 2 8および F E信号検出回 路 3 0にそれぞれ入力される。 T E信号検出回路 2 8では T E信号 (トラッキン グエラー信号)が、 F E信号検出回路 3 0では F E信号(フォーカスエラー信号) がそれぞれ検出される。 T E信号検出回路 2 8および F E信号検出回路 3 0でそ れぞれ検出された T E信号および F E信号は、 D S P 3 2に設けられた AZD変 換器 4 0 aおよび AZD変換器 4 0 bにそれぞれ与えられる。  The laser light (reflected light) reflected by the recording Z reproducing surface of the optical disk passes through the same objective lens 16 and enters the photodetector 22. The sensor signal output from the photodetector 22 is input to the TE signal detection circuit 28 and the FE signal detection circuit 30 through the servo amplifier 26. The TE signal detection circuit 28 detects the TE signal (tracking error signal), and the FE signal detection circuit 30 detects the FE signal (focus error signal). The TE signal and FE signal respectively detected by the TE signal detection circuit 28 and the FE signal detection circuit 30 are sent to the AZD converter 40a and the AZD converter 40b provided in the DSP 32. Each given.
光ディスク 6 0は、 ターンテ一ブル 4 4の上に搭載されており、 ターンテープ ル 44は、 シャフト 42を介してスピンドルモー夕 40に連結される。 スピンド ルモ一夕 40は、 DS P 32から PWMドライバ 42 dを通して与えられるモー 夕制御信号によって回転する。 スピンドルモータ 40が回転すると、 その回転が シャフト 42を介して夕一ンテ一ブル 44に伝わり、 タ一ンテーブル 44がつま り光ディスク 60が回転する。 また、 スピンドルモータ 40は、 回転数に関連す る FGパルスを発生し、 この FGパルスが DSP 32の AZD変換器 40 cに与 えられる。 The optical disk 60 is mounted on a turntable 44 and a turn tape is provided. The screw 44 is connected to a spindle motor 40 via a shaft 42. The spindle motor 40 is rotated by a motor control signal provided from the DSP 32 through the PWM driver 42d. When the spindle motor 40 rotates, the rotation is transmitted to the table 44 via the shaft 42, and the turntable 44, that is, the optical disk 60 rotates. The spindle motor 40 generates an FG pulse related to the rotation speed, and the FG pulse is given to the AZD converter 40 c of the DSP 32.
このようにして、 AZD変換器 40 a、 40b、 40 cに与えられた TE信号、 FE信号および FG信号は、 ディジタル信号に変換された後に、 DSP3732 aに与えられる。 03 コァ32 &は、 TE信号に基づいてトラッキングサーポ 処理を実行し、 FE信号に基づいてフォーカスサ一ポ処理を実行し、 さらに FG 信号に基づいてスピンドルサ一ポ処理を実行する。  In this way, the TE signal, the FE signal, and the FG signal provided to the AZD converters 40a, 40b, 40c are converted to digital signals and then provided to the DSP 3732a. 03 Core 32 & executes the tracking support processing based on the TE signal, executes the focus support processing based on the FE signal, and further executes the spindle support processing based on the FG signal.
トラッキングサ一ボ処理によってスレツド制御信号およびトラッキングァクチ ユエ一夕制御信号が生成される。 スレツド制御信号およびトラッキングァクチュ ェ一夕制御信号は、 PWMドライバ 42 aおよび 42 bによって PWM信号に変 換されて、 スレツドモ一夕 38およびトラッキングァクチユエ一夕 14に与えら れる。 また、 フォーカスサ一ポ処理によって生成されたフォ一カスァクチユエ一 夕制御信号が、 P WMドライノ 42 bで P WM信号に変換され、 フォーカスァク チユエ一夕 18に与えられる。 さらに、 スピンドルサ一ポ処理によってスピンド ルサーポモータ制御信号が生成され、 PWMドライバ 42 dで PWM信号に変換 されて、 スピンドルモー夕 40に与えられる。  The tracking servo process generates a thread control signal and a tracking work control signal. The thread control signal and the tracking work control signal are converted into PWM signals by the PWM drivers 42a and 42b, and supplied to the thread control 38 and the tracking work 14. The focus control signal generated by the focus support processing is converted into a PWM signal by the PWM dry line 42b and supplied to the focus control 18. Further, a spindle servo motor control signal is generated by the spindle support process, converted into a PWM signal by the PWM driver 42 d, and given to the spindle motor 40.
このように、 TE信号検出回路 28、 DSP32、 トラッキングァクチユエ一 夕 14およびスレツドモ一夕 38によってトラッキングサ一ポ系が形成される。 このトラッキングサーポ系が、 TE信号に基づいて光学レンズ 16のトラツキン グを適切に制御する。 また、 FE信号検出回路 30、 DSP 32、 フォーカスァ クチユエ一夕 18によってフォ一カスサーポ系が形成される。 このフォーカスサ ーポ系が、 FE信号に基づいて光学レンズ 16のフォーカスを適切に制御する。 さらに、 スピンドルモータ 40および DS P 28によってスピンドルサーポ系が 形成され、 FG信号に基づいてスピンドルモータ 40つまり光ディスク 38の回 転が適切に制御される。 この結果、 レーザダイオード 2 0から発振されたレーザ 光が光ディスク 6 0の記録 Z再生面の所望の位置に照射され、 このことにより、 所望の信号が光ディスク 6 0に適切に記録され、 また再生される。 Thus, a tracking support system is formed by the TE signal detection circuit 28, the DSP 32, the tracking function unit 14 and the thread module 38. The tracking servo system appropriately controls the tracking of the optical lens 16 based on the TE signal. Further, a focus servo system is formed by the FE signal detection circuit 30, the DSP 32, and the focus actuator 18. The focus support system appropriately controls the focus of the optical lens 16 based on the FE signal. Further, a spindle servo system is formed by the spindle motor 40 and the DSP 28, and the spindle motor 40, that is, the rotation of the optical disk 38 is controlled based on the FG signal. Rolling is properly controlled. As a result, the laser beam oscillated from the laser diode 20 is applied to a desired position on the recording / reproducing surface of the optical disc 60, whereby a desired signal is appropriately recorded on the optical disc 60 and reproduced. You.
光ディスク 6 0に対する情報の記録 Z再生が適切に行われるのは、 トラツキン ダサ一ポ系、 フォ一カスサ一ボ系およびスピンドルサーポ系の働きによる。 しか し、 トラッキングサーポ系およびフォ一カスサーポ系は、 レーザ光の反射光から 得られる T E信号および F E信号に基づいて制御を行う。 したがって、 光デイス ク装置 1 0の動作の安定性は、 レーザダイオード 2 0から発振されるレーザ光の 安定性にかかっている。  Recording of information on the optical disk 60 Z reproduction is performed properly by the functions of the tracking system, focus servo system, and spindle servo system. However, the tracking servo system and the focus servo system perform control based on the TE signal and the FE signal obtained from the reflected light of the laser light. Therefore, the stability of the operation of the optical disk device 10 depends on the stability of the laser light oscillated from the laser diode 20.
レーザダイオード 2 0は、 高温状態でレ一ザ光の発振を継続すると寿命が短く なる。 そのため、 レーザダイオード 2 0の周辺温度が高温になると、 発振するレ 一ザ光のレーザパワー値を低くして、 さらに温度が上昇することを防ぐ必要があ る。 しかし、 上述のように、 レーザ光が周辺温度によって変化したのではトラッ キングサーポ処理およびフォーカスサーポ処理が不安定になり、 光ディスク装置 1 0の動作が安定しない。  The life of the laser diode 20 is shortened if laser light oscillation is continued in a high temperature state. Therefore, when the temperature around the laser diode 20 becomes high, it is necessary to lower the laser power value of the oscillating laser light to prevent the temperature from further rising. However, as described above, if the laser beam changes due to the ambient temperature, the tracking servo process and the focus servo process become unstable, and the operation of the optical disc device 10 becomes unstable.
そこで、 この実施例では、変化するレーザダイオード 2 0の周辺温度に応じて、 発振するレーザ光のレーザパワー値を変更し、さらに変化した周辺温度において、 すなわち変更したレーザパワー値において適切にフォーカスサーポ処理およびト ラッキンダサ一ポ処理を行うことができるゲイン (Gain) をフォーカス制御信号 'およびトラッキング制御信号に付加する。  Therefore, in this embodiment, the laser power value of the oscillating laser light is changed in accordance with the changing ambient temperature of the laser diode 20, and the focus laser is appropriately adjusted at the changed ambient temperature, that is, at the changed laser power value. The gain (Gain) that can perform the zooming process and the tracking process is added to the focus control signal and the tracking control signal.
図 1に示すように、 光ピックアップ 1 2の周辺に温度センサ 2 4を配置する。 温度センサ 2 4は、 検知した温度に応じた温度信号を発生させてマイコン 3 4に 与える。 図示の便宜上、 図 1では光ピックアップ 1 2の外側に温度センサ 2 4を 示しているが、 実際には、 温度センサ 2 4は、 口一ディング機構、 ピックアップ の送り機構、 ピックアップ機構および回転機構などのドライブメカ系(図示せず) とともに、所定の部材によって密封されている。 したがって、温度センサ 2 4は、 ドライブメカ系が密封されている室内の温度に応じた温度信号を発生させてマイ コン 3 4に与える。 マイコン 3 4では、 温度信号に基づいて温度を検出する。一 方、 マイコン 3 4から読み取り可能な R OM 3 6には、 マイコン 3 4で検出され る温度と、 レ一ザパワー値、 フォーカスサ一ポ系のゲインおよびトラッキングサAs shown in FIG. 1, a temperature sensor 24 is arranged around the optical pickup 12. The temperature sensor 24 generates a temperature signal corresponding to the detected temperature and supplies the temperature signal to the microcomputer 34. For convenience of illustration, FIG. 1 shows a temperature sensor 24 outside the optical pickup 12, but in actuality, the temperature sensor 24 is a mouthpiece mechanism, a pickup feed mechanism, a pickup mechanism, a rotation mechanism, and the like. And a drive mechanism (not shown). Therefore, the temperature sensor 24 generates a temperature signal corresponding to the temperature of the room in which the drive mechanism is sealed and supplies the temperature signal to the microcomputer 34. The microcomputer 34 detects the temperature based on the temperature signal. On the other hand, the ROM 36 that can be read from the microcomputer 34 is detected by the microcomputer 34. Temperature, laser power value, focus support system gain and tracking
—ボ系のゲインのそれぞれとを対応付けたテーブル 4 8が格納されている。 この テーブル 4 8の詳細については後述する。 マイコン 3 4は、 検出した温度の値を キーとしてテ一ブル 4 8を参照し、 当該温度に対応するレーザパヮ一値、 フォー カスサ一ポ系のゲインおよびトラッキングサ一ボ系のゲインのそれぞれを決定し て、 これらの値を D S P 3 2に与える。 —Table 48 that stores each of the gains of the control system is stored. Details of this table 48 will be described later. The microcomputer 34 refers to the table 48 using the detected temperature value as a key, and determines each of the laser power value, the focus control system gain, and the tracking servo system gain corresponding to the temperature. Then, these values are given to DSP 32.
レーザダイオード 2 0から発振されるレーザ光は、 情報の記録時と再生時とで 大きく異なる。 そのため、 温度に応じたレーザパワーの値が、 再生レーザ用と記 録レーザ用とのそれぞれ必要になる。 また、 レーザダイオード 2 0の温度は、 レ —ザパワーが大きくなるほど、 高くなる。 したがって、 レーザダイオード 2 0の 温度上昇を抑制するために、温度が高くなるに連れてレーザパヮ一を小さくする。 温度と再生レーザパヮ一および記録レーザパヮ一との関係の一例として、 図 2 (A) および (B) に示すような関係が採用できる。 再生レ一ザパワーと記録レ 一ザパワーとでは、 パワーの範囲が異なるが、 どちらも温度が上昇するにしたが つて、 レーザパワーが徐々に小さくなつている。 これらのグラフから、 温度に対 するレーザパワーの値をサンプリングしたものが、 図 3に示すテーブル 4 8の再 生レ一ザパヮ一リスト 4 8 bおよび記録レ一ザパワーリスト 4 8 cである。 この 実施例では、 サンプリングの数を 5としているが、 この数は必要に応じて変更し てもよい。 The laser light oscillated from the laser diode 20 greatly differs between when recording information and when reproducing information. Therefore, a laser power value corresponding to the temperature is required for each of the reproducing laser and the recording laser. Also, the temperature of the laser diode 20 increases as the laser power increases. Therefore, in order to suppress the temperature rise of the laser diode 20, the laser power is reduced as the temperature increases. As an example of the relationship between the temperature and the reproducing laser beam and the recording laser beam, the relationship shown in FIGS. 2A and 2B can be adopted. The range of power is different between the reproducing laser power and the recording laser power, but in both cases, the laser power gradually decreases as the temperature rises. From these graphs, the values of the laser power with respect to the temperature are sampled as the reproduction laser power list 48 b and the recording laser power power 48 c of the table 48 shown in FIG. In this embodiment, the number of samplings is set to 5, but this number may be changed as needed.
通常温度 (たとえば 2 2度) において、 つまり標準の記録 Z再生レーザパワー に対しては、 フォーカスサーポ系およびトラッキングサ一ポ系は図 4に実線 Aで 示す応答特性を有している。  At normal temperature (for example, 22 degrees), that is, for a standard recording / playback laser power, the focus servo system and the tracking servo system have the response characteristics shown by the solid line A in FIG.
図 2 (A) および (B) に示したように、 温度が高くなると、 レーザパヮ一を 低くする。 レーザパヮ一が低くなると、 T E信号検出回路 2 8および F E信号検 出回路 3 0から出力される T E信号および F E信号の出力も低くなる。 したがつ て、 標準の記録 Z再生レーザパワーにおけるのと同じトラッキングァクチユエ一 夕信号およびフォーカスァクチユエ一夕信号の出力を確保するために、 トラツキ ングサーポ系およびフォーカスサ一ポ系のゲインを上げる。 ゲインを上げると、 図 4に実線 Bで示すように応答特性は高周波帯域に広がる。 一方、 温度が低くな ると、 レーザパヮ一を高くするので T E信号および F E信号の出力も高くなる。 したがって、 今度は、 トラッキングァクチユエ一タ信号およびフォーカスァクチ ユエ一夕信号の出力を抑えるために、 トラッキングサーポ系およびフォーカスサ —ポ系のゲインを下げる。 ゲインを下げると、 図 4に実線 Cで示すように応答特 性は低周波帯域に狭まる。 このような考えに基づいて、 変化する温度に対応させ たゲインの値を、 記録 Z再生レーザパワーの変更値の数だけ用意したものが、 テ 一プル 4 8のゲインリスト 4 8 dである。 As shown in FIGS. 2 (A) and (B), as the temperature increases, the laser pulse decreases. When the laser power decreases, the outputs of the TE signal and the FE signal output from the TE signal detection circuit 28 and the FE signal detection circuit 30 also decrease. Therefore, in order to secure the same output of the tracking work signal and the focus work overnight signal as at the standard recording Z playback laser power, the gains of the tracking servo system and the focus support system are obtained. Raise. When the gain is increased, the response characteristic spreads to the high frequency band as shown by the solid line B in FIG. On the other hand, the temperature is low Then, since the laser power is increased, the output of the TE signal and the FE signal also increases. Therefore, in order to suppress the output of the tracking actuator signal and the focus actuating signal, the gains of the tracking servo system and the focus support system are reduced. When the gain is reduced, the response characteristic narrows to the low frequency band as shown by the solid line C in Fig. 4. Based on such a concept, the gain list 48 d of the tape 48 is prepared in such a manner that the gain values corresponding to the changing temperature are prepared by the number of change values of the recording Z reproduction laser power.
この実施例における、 マイコン 3 4の処理動作を、 図 5のフロー図を用いて説 明する。 マイコン 3 4は、 その処理動作の中で、 図 5のフロー図の処理を定期的 に繰り返し実行する。 まず、 ステップ S 1において、 マイコン 3 4は、 温度セン サ 2 4が発信する温度信号を取り込み、 光ピックアップ 1 2周辺の温度を検出す る。 つぎに、 ステップ S 3においてマイコン 3 4は、 検出した温度をテ一ブル 4 8の温度リスト 4 8 aの各温度と値が小さい順に比較し、 検出した温度より高く て最も低い温度を求め、 これを光ピックアップ 1 2周辺の温度に決定する。  The processing operation of the microcomputer 34 in this embodiment will be described with reference to the flowchart of FIG. The microcomputer 34 periodically and repeatedly executes the processing of the flowchart of FIG. 5 in the processing operation. First, in step S1, the microcomputer 34 captures the temperature signal transmitted by the temperature sensor 24 and detects the temperature around the optical pickup 12. Next, in step S3, the microcomputer 34 compares the detected temperature with each temperature in the temperature list 48a of the table 48 in ascending order of the temperature, and finds the highest temperature lower than the detected temperature, This is determined as the temperature around the optical pickup 12.
基準となる周辺温度が決定すると、 マイコン 3 4は、 ステップ S 5において、 テーブル 4 8の決定した周辺温度に対応する再生レーザパワーの値を再生レーザ パワーリストから取得する。 また、 ステップ S 7において、 周辺温度に対応する 記録レ一ザパヮ一の値を記録レ一ザパワーリストから取得し、 さらに、 ステップ S 9において、 ゲインリストから周辺温度に対応するゲインの値を取得する。 ス テツプ S I 1では、 マイコン 3 4が、 取得した再生レーザパワーの値、 記録レー ザパワーの値およびゲインの値を D S P 3 2に出力する。  When the reference ambient temperature is determined, the microcomputer 34 obtains the value of the reproduction laser power corresponding to the determined ambient temperature in the table 48 from the reproduction laser power list in step S5. Also, in step S7, the value of the recording laser corresponding to the ambient temperature is obtained from the recording laser power list, and in step S9, the value of the gain corresponding to the ambient temperature is obtained from the gain list. I do. In step SI1, the microcomputer 34 outputs the acquired values of the reproduction laser power, the recording laser power, and the gain to the DSP 32.
つぎに、 この実施例における、 D S P 3 2の処理動作を、 図 6のフロー図を用 いて説明する。 まず、 ステップ S 2 1において、 D S P 3 2は、 マイコン 3 4か ら再生レーザパワーの値、 記録レーザパワーの値およびゲインの値を取得する。 マイコン 3 4からのデータを取得すると、 D S P 3 2はステップ S 2 3において、 光ディスク装置 1 0が再生モ一ドであるか否かを判断する。 再生モードであると 判断すると、 ステップ S 2 5で、 マイコン 3 4から取得した再生レーザパワーの 値をレーザドライブ 5 0に設定し、 再生モードでないと判断するとステップ S 2 7で記録レーザパワーの値をレーザドライプ 5 0に設定する。 レーザパワーの設 定を終えると、 D S P 3 2はステップ S 2 9において、 マイコン 3 4から得たゲ インをフォーカスァクチユエ一夕信号に付与し、 フォーカスァクチユエ一夕 1 8 に出力する。 また、 ステップ S 3 1において、 ゲインをトラッキングァクチユエ 一夕信号に付与し、 フォーカスァクチユエ一夕 1 4に出力する。 Next, the processing operation of the DSP 32 in this embodiment will be described with reference to the flowchart of FIG. First, in step S 21, the DSP 32 acquires the value of the reproduction laser power, the value of the recording laser power, and the value of the gain from the microcomputer 34. Upon obtaining the data from the microcomputer 34, the DSP 32 determines in step S23 whether the optical disk device 10 is in the reproduction mode. If it is determined that the mode is the reproduction mode, the value of the reproduction laser power obtained from the microcomputer 34 is set in the laser drive 50 in step S25. If the mode is not the reproduction mode, the value of the recording laser power is determined in step S27. Is set to laser drive 50. Setting of laser power When the setting is completed, the DSP 32 adds the gain obtained from the microcomputer 34 to the focus actuating signal at step S29, and outputs the signal to the focus actuating signal 18. Also, in step S31, a gain is given to the tracking work overnight signal, and the signal is output to the focus work overnight 14.
レーザドライブ 5 0は、 レーザダイオード 2 0を駆動して設定されたパヮ一の レーザ光を発信させる。 また、 光ピックアップ 1 2の光学レンズ 1 6は、 ゲイン が付与されたトラッキングァクチユエ一夕信号およびフオーカスァクチユエ一夕 信号に基づいて、 トラッキング位置およびフォーカス位置が調整される。  The laser drive 50 drives the laser diode 20 to emit a set laser beam. The tracking position and the focus position of the optical lens 16 of the optical pickup 12 are adjusted based on the tracking work overnight signal and the focus work overnight signal to which the gain is given.
このように、 この実施例の光ディスク装置では、 変化するレーザダイオード 2 0の周辺温度に応じて発振するレーザ光のレーザパワー値を変更する。 さらに、 変更したレーザパヮ一値において適切にフォーカスサーポ制御およびトラツキン ダサーポ制御を行うことができる最適なゲインを決定し、 このゲインをフォー力 ス制御信号およびトラッキング制御信号に付加する。 したがって、 レーザダイォ ード 2 0の周辺温度の温度変化にかかわらず、 適切に光学レンズ 1 6のフォ一力 ス制御およびトラッキング制御を行って、 安定した動作をさせることができる。 なお、 この実施例は、 上述の例に限るものではなく、 種々に変更して実施して もよい。 たとえば、 上述の例ではァクチユエ一夕系を D S Pで実現したが、 これ に代えて、 フィルタおよびドライバによって構成してもよい。  As described above, in the optical disk device of this embodiment, the laser power value of the laser light oscillating according to the changing ambient temperature of the laser diode 20 is changed. Further, an optimum gain for appropriately performing the focus servo control and the tracker servo control with the changed laser power value is determined, and this gain is added to the force control signal and the tracking control signal. Therefore, irrespective of the temperature change of the peripheral temperature of the laser diode 20, the force control and the tracking control of the optical lens 16 can be appropriately performed, and the stable operation can be performed. This embodiment is not limited to the above-described example, and may be implemented with various modifications. For example, in the above-mentioned example, the actuary system was realized by DSP, but may be constituted by a filter and a driver instead.
また、 テーブル 4 8には、 5度、 1 0度、 2 2度、 4 0度、 6 0度の 5つの温 度に対応する再生レーザパワーの値、 記録レーザパワーの値およびゲインの値を 格納したが、 設定する温度の数および値はこれらに限らず、 実施例に応じて変更 することができる。  Also, Table 48 shows the values of the reproduction laser power, recording laser power, and gain corresponding to the five temperatures of 5 degrees, 10 degrees, 22 degrees, 40 degrees, and 60 degrees. Although stored, the number and value of the temperatures to be set are not limited to these, and can be changed according to the embodiment.
さらに、上述の実施例では、テーブルを 1つとしたが、再生レーザパワーの値、 記録レーザパワーの値およびゲインの値ごとにテーブルを用意し、 それぞれのテ 一ブルごとに格納する要素の数を変えることもできる。  Further, in the above-described embodiment, one table is used. However, a table is prepared for each value of the reproduction laser power, the value of the recording laser power, and the value of the gain, and the number of elements to be stored for each table is determined. You can change it.
また、 トラッキングァクチユエ一夕信号に付加するゲインの値とフォーカスァ クチユエ一夕信号に付加するゲインの値とを共通としたが、 それぞれ異なる値の ゲインを付加するようにしてもよい。  Although the gain value added to the tracking work signal and the gain value added to the focus work signal are common, different gains may be added respectively.
この発明が詳細に説明され図示されたが、 それは単なる図解および一例として 用いたものであり、 限定であると解されるべきではないことは明らかであり、 こ の発明の精神および範囲は添付されたクレームの文言によってのみ限定される。 While this invention has been described and illustrated in detail, it has been presented by way of illustration only and as an example. It is clear that they have been used and should not be construed as limiting, the spirit and scope of the invention being limited only by the language of the appended claims.

Claims

請求の範囲 The scope of the claims
1 . 半導体レーザから出力されたレーザ光を、 光学レンズを通して光ディスク の記録面に照射する光ディスク装置であって、 次のものを備える:  1. An optical disc device for irradiating a laser beam output from a semiconductor laser to a recording surface of an optical disc through an optical lens, comprising:
前記半導体レーザの周辺温度を検出する検出手段;  Detecting means for detecting an ambient temperature of the semiconductor laser;
前記検出手段によって検出された前記周辺温度が高くなるにつれて前記半導体 レ一ザのレーザパワー値を低減させるレーザパワー低減手段;  Laser power reduction means for reducing the laser power value of the semiconductor laser as the ambient temperature detected by the detection means increases;
前記レーザ光の前記記録面における反射光に基づいてサーポ制御信号を生成す る生成手段;  Generating means for generating a servo control signal based on the reflected light of the laser light on the recording surface;
前記サ一ポ制御信号に応答して前記光学レンズを変位させる変位手段; 複数の温度値と前記温度値が高くなるにつれて大きくなるサーポ制御ゲインと が互いに関連付けられて格納されたゲインテ一ブル;  A displacement means for displacing the optical lens in response to the support control signal; a gain table in which a plurality of temperature values and a service control gain that increases as the temperature value increases are stored in association with each other;
前記検出手段によって検出された前記周辺温度に対応するサーポ制御ゲインを 前記ゲインテーブルから読み出すサーポ制御ゲイン読み出し手段;および 前記サ一ポ制御ゲイン読み出し手段によって読み出された前記サーポ制御ゲイ ンを前記生成手段に設定するサーポ制御ゲイン設定手段。  A servo control gain reading means for reading from the gain table a servo control gain corresponding to the ambient temperature detected by the detection means; and the generation of the servo control gain read by the support control gain reading means. Servo control gain setting means to be set in the means.
2 . クレーム 1に従属するディスク装置であって、 前記サーポ制御信号は、 フ オーカス制御信号およびトラツキング制御信号を含み、 そして前記ゲインテ一ブ ルに格納される前記サ一ポ制御ゲインは、 フォーカス制御ゲインおよびトラツキ ング制御ゲインを含む。  2. The disk device according to claim 1, wherein the servo control signal includes a focus control signal and a tracking control signal, and the support control gain stored in the gain table is a focus control signal. Includes gain and tracking control gain.
3 . クレーム 1または 2に従属するディスク装置であって、 前記複数の温度値 と前記温度値が高くなるにつれて減少する複数のレーザパワー値とが互いに関連 付けられたレーザパヮ一値テーブル;および前記検出手段によって検出された前 記周辺温度に対応するレ一ザパワー値を前記レーザパワー値テーブルから読み出 すレーザパヮ一値読み出し手段をさらに備え、  3. A disk device according to claim 1 or 2, wherein the plurality of temperature values and a plurality of laser power values decreasing as the temperature values increase are associated with each other; A laser power value reading means for reading a laser power value corresponding to the ambient temperature detected by the means from the laser power value table,
前記レーザパワー低減手段は、 前記レーザパワー値読み出し手段によつて読み 出された前記レーザパワー値を前記半導体レ一ザのレーザパワー値とする。  The laser power reducing means sets the laser power value read by the laser power value reading means as a laser power value of the semiconductor laser.
PCT/JP2001/001277 2000-02-23 2001-02-21 Disk drive WO2001063603A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-45749 2000-02-23
JP2000045749A JP2001236649A (en) 2000-02-23 2000-02-23 Disk device

Publications (1)

Publication Number Publication Date
WO2001063603A1 true WO2001063603A1 (en) 2001-08-30

Family

ID=18568285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001277 WO2001063603A1 (en) 2000-02-23 2001-02-21 Disk drive

Country Status (2)

Country Link
JP (1) JP2001236649A (en)
WO (1) WO2001063603A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8406090B2 (en) 2008-03-04 2013-03-26 HGST Netherlands B.V. Laser power sensor for thermally assisted magnetic recording

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196733A (en) * 1988-02-02 1989-08-08 Canon Inc Optical information recording and reproducing device
JPH01294224A (en) * 1988-05-20 1989-11-28 Alpine Electron Inc Cd player

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196733A (en) * 1988-02-02 1989-08-08 Canon Inc Optical information recording and reproducing device
JPH01294224A (en) * 1988-05-20 1989-11-28 Alpine Electron Inc Cd player

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8406090B2 (en) 2008-03-04 2013-03-26 HGST Netherlands B.V. Laser power sensor for thermally assisted magnetic recording

Also Published As

Publication number Publication date
JP2001236649A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP4487972B2 (en) Optical disk drive device
WO2001063603A1 (en) Disk drive
US8054716B2 (en) Optical disc apparatus and defocus control method
WO2000065582A1 (en) Pickup control device for optical disk drive
JPH11328830A (en) Optical disk drive device
US20070030772A1 (en) Optical disc apparatus
JP2002230760A (en) Information recorder and program
JP2904365B2 (en) Optical disk drive
US6747925B2 (en) Method and system for generating a center error signal in an optical storage system
JP2007026486A (en) Light receiving element circuit and optical disk drive
US20050213443A1 (en) Method for generating gain-adjusted tracking error signal
JPH11167721A (en) Optical disk recording device
JP3311161B2 (en) Optical data reader
US8050159B2 (en) Method of recording data on optical disc and optical disc apparatus
JP3964279B2 (en) Optical disk device
US20040136298A1 (en) Disk device and disk method
JP2003030878A (en) Wobble signal detection circuit for optical disk recording and reproducing device
JP2000357338A (en) Device for driving recording medium and detection of tilt
JP2003281746A (en) Optical pickup feeding control method and device
JP5169847B2 (en) Optical disk drive and focus search control method
JP2003303414A (en) Head device and information recording/reproducing device using the same
KR20070006152A (en) Internal temperature regulating method for optical disc apparatus
JP2002222530A (en) Automatic adjustment method of digital servo of disk device
JP2007234084A (en) Control device of optical pickup, and optical disk device
US20090086593A1 (en) Optical disc apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase