WO2001061709A1 - Enceinte pour procedes de distillation de separation a effets multiples - Google Patents

Enceinte pour procedes de distillation de separation a effets multiples Download PDF

Info

Publication number
WO2001061709A1
WO2001061709A1 PCT/SG2000/000024 SG0000024W WO0161709A1 WO 2001061709 A1 WO2001061709 A1 WO 2001061709A1 SG 0000024 W SG0000024 W SG 0000024W WO 0161709 A1 WO0161709 A1 WO 0161709A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
vessel according
vessel
zone
different
Prior art date
Application number
PCT/SG2000/000024
Other languages
English (en)
Inventor
Tiong Huan Wee
Hui Tong Chua
Wun Jern Ng
Original Assignee
The National University Of Singapore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The National University Of Singapore filed Critical The National University Of Singapore
Priority to TW089102632A priority Critical patent/TW495366B/zh
Priority to PCT/SG2000/000024 priority patent/WO2001061709A1/fr
Priority to AU2000228417A priority patent/AU2000228417A1/en
Priority to GCP20011154 priority patent/GC0000269A/en
Publication of WO2001061709A1 publication Critical patent/WO2001061709A1/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/08Vessels characterised by the material; Selection of materials for pressure vessels
    • G21C13/093Concrete vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J12/00Pressure vessels in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • This invention relates to a method for a construction of an integral concrete
  • containment vessel particularly as applied to contain the entire or part of multi-
  • the first solution is to
  • vessel is connected to one another via a connecting piping system, and separately
  • each modular containment vessel is constructed
  • each of the modular concrete vessels is connected to one another via a
  • module housing a number of process stages and is connected to one another via
  • thermally induced cracks should be
  • concrete mixes is separately used to construct one or more modular concrete
  • the objective of the present invention is to improve the cost
  • integral process vessel for containment of the entire or part of a large-scale multi-
  • interlocking segments may be precast or cast
  • the joints may be gasketed, O-ring sealed and/or grouted depending on the
  • zones of the integral process containment vessel so as to match the severity of the
  • the entire resultant segmental structure is preferably prestressed both
  • section may be cast with one type of concrete mix, while each of the subsequent
  • sections may be cast with a different type of concrete mix.
  • the interface between dissimilar concrete mixes may be vibrated by means
  • longitudinal prestressing may also be introduced. Compared with the
  • temperatures may, by means of
  • part of the process containment vessel is generally hydraulically reinforced by the
  • the said part of the process containment vessel may simply be reinforced by
  • total-aggregate ratio of about 40% to 50% may also be contemplated.
  • blend concrete mix may also be preferably used where ordinary Portland cement, silica fume (5% - 209. ) and fly ash (10% - 40%) can be advantageously
  • fly ash (20% - 30%) may also be employed.
  • blast furnace slag may be estimated by the standard means of the Furnace method
  • volume of corrosion resistant fibre with high length to diameter ratio may be
  • temperatures may,
  • forming that part of the vessel may still be reinforced with carbon steel, although
  • stainless steel or even high nickel content stainless steel may be considered, and
  • pressure zone may be considered, a more du ⁇ .ble type of concrete mix is
  • Liquid glass based concrete blended w th slag having a calcium oxide to silicon dioxide ratio of less than 0.62, which is much more cost effective, and
  • disodium oxide mole ratio of the said liquid glass may range from 2.0 - 2.3,
  • glass to total powder ratio may range from 0.20 to 0.35, while the water to total
  • blended concrete interlocking segment lined with a relatively thinner and therefore
  • polymer concrete segment where the polymer concrete segment may be
  • length to diameter ratio may be added to arrest and distribute cracks depending on
  • cross sectional shape so that the cross section can be cylindrical, elliptical, square,
  • Figure 1 shows a longitudinal cross-sectional view of a vessel for a vertically
  • Figure 2 shows a transverse cross sectional view of that part of the vessel of Fig.
  • Figure 3 shows to a larger scale than that of Figs. 1 and 2 a perspective view of
  • Figure 4 shows a longitudinal cross-sectional view of a vessel for a vertically
  • FIG. 1 illustrates schematically one embodiment of the invention as
  • the process containment vessel by means of a specific example, typically
  • seawater concentration is the lowest at the top and highest
  • integral process containment vessel is divided into two process zones. The first
  • process zone or zone 1 is located at the lower section, where the pressures range
  • temperatures range from, by means of a specific example, 30°C to 70°C. Such a temperature range translates to a process zone height that is typically 67 m.
  • zone or zone 2 is located above zone 1, where the pressures range from, by means
  • zone 2 are the most severe, in terms of leaching, thermally induced stress and
  • the two process zones are formed by means of a multi-layer
  • joints between segments may be gasketed, or O-ring
  • polymers such as ethylene propylene diene monomer rubber and/or
  • zone 1 is schematically realized by layers 3, 3a,
  • zone 1 a concrete mix of, for example, ordinary Portland cement, 30% fly
  • stainless steel fibre is advantageously used. Mild steel reinforcement bars with a 6 cm protective concrete cover are preferred.
  • zone 2 a concrete mix of, for
  • circumferential groups of prestressed tendons 5 may be advantageously applied to
  • prestressed tendons may be unbonded, so that they may be replaced during the 30-
  • the tendons may
  • Typical reinforced mass concrete 11, 11a may be
  • the insulation material 10, 10a preferably used to contain the insulation material 10, 10a, and the layers 3 to 4f.
  • Main process ports 12, 13 are also shown in FIG.l , and additional process ports
  • FIG.2 there is shown a cross-sectional plan view along line 2-2 in
  • FIG. 1 of that part of the vessel containing the pressurised process of zone 2.
  • Layer 4e is schematically shown to be comprised of four interlocking segments
  • Ceramic based or stainless steel based anchor 5a, and buttresses 5b are also known.
  • interlocking segments are further axially prestressed by the
  • prestressing tendons 6 These segments are insulated by the low-density
  • insulation such as the foam concrete 10.
  • FIG.3 shows in detail a method of realizing the functional grading of, for
  • zone 1 is realized by layers 14 and 14a, zone 2 by layers 15 and 15a,
  • the pressures may range from 40 mbar(abs)
  • pressures may range from 200 mbar(abs) to 1 bar(abs), and temperatures from
  • zone 2 is typically 67 m. The conditions found in zone 2 are more severe, in terms of
  • zone 3 the pressures may range from 1 bar(abs) to 1.7
  • the interlocking segments may be precast or cast at site.
  • the segments may be precast or cast at site.
  • interlocking layers 14 to 16 are cast as integral rings, only
  • the layers may only need to be prestressed axially to be structurally sound.
  • ethylene propylene diene monomer rubber 20 or O-ring sealed may be
  • joints may be cast in place.
  • cover of at least 6 cm 18 are preferred.
  • layer 16 of zone 3 for example, the
  • FIG. 4 it is shown that the concept of functional grading as has been first
  • FIG .1 schematically demonstrated in FIG .1 can also be realized by means of jump-
  • layer and/or multi-segment construction method is that the former method shown
  • zone 1 (1) and zone 2 (2) having a mixed property associated with the
  • integral process containment vessel may be any integral process containment vessel. It will also be understood that the integral process containment vessel may be any integral process containment vessel.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne un procédé de construction mettant en oeuvre du béton appliqué à une enceinte de procédé intégral dans laquelle sont réalisés des procédés complets ou des parties de procédés de distillation et/ou de séparation à effets multiples, à empilement vertical, à grande échelle, et en particulier des procédés de dessalement par distillation à multiples effets, à empilement vertical. Selon l'invention, une telle enceinte en béton de procédé intégral est divisée au moins en deux zones différentes de procédé, chaque zone de procédé se réfère à un degré différent de sévérité d'attaque dans les conditions de procédé respectives. Dans chacune de ces zones, la partie de l'enceinte qui est en contact direct avec les conditions de procédé est construite au moyen d'un mélange de béton correspondant aux conditions de procédé de cette zone. Ainsi, l'enceinte résultante précontrainte de procédé intégral, construite au moyen de procédé à couches multiples et/ou à segments multiples ou au moyen de coffrage sautant, glissant, grimpant ou du même type, ce qui la dote fonctionnellement d'au moins deux mélanges de béton différents possédant des propriétés notablement différentes, avec par conséquent des coûts différents, l'ensemble résultant en un procédé de construction économique et durable.
PCT/SG2000/000024 2000-02-16 2000-02-16 Enceinte pour procedes de distillation de separation a effets multiples WO2001061709A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW089102632A TW495366B (en) 2000-02-16 2000-02-16 A vessel for use in multi-effect distillation and/or separation processes
PCT/SG2000/000024 WO2001061709A1 (fr) 2000-02-16 2000-02-16 Enceinte pour procedes de distillation de separation a effets multiples
AU2000228417A AU2000228417A1 (en) 2000-02-16 2000-02-16 A vessel for use in multi-effect distillation and/or separation processes
GCP20011154 GC0000269A (en) 2000-02-16 2001-01-24 A vessel for use in multi-effect distillation and /or separation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SG2000/000024 WO2001061709A1 (fr) 2000-02-16 2000-02-16 Enceinte pour procedes de distillation de separation a effets multiples

Publications (1)

Publication Number Publication Date
WO2001061709A1 true WO2001061709A1 (fr) 2001-08-23

Family

ID=20428790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SG2000/000024 WO2001061709A1 (fr) 2000-02-16 2000-02-16 Enceinte pour procedes de distillation de separation a effets multiples

Country Status (4)

Country Link
AU (1) AU2000228417A1 (fr)
GC (1) GC0000269A (fr)
TW (1) TW495366B (fr)
WO (1) WO2001061709A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012092979A1 (fr) * 2011-01-07 2012-07-12 Avure Technologies Ab Étanchéité de récipient sous pression
CN111348869A (zh) * 2020-03-12 2020-06-30 中交武汉港湾工程设计研究院有限公司 多层梯度抗裂水泥基材料的成型方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683574A (en) * 1969-08-09 1972-08-15 Hocktief Ag Fur Hoch Und Tiefb Cylindrical tank for containing high-pressure fluids
US3893508A (en) * 1971-07-30 1975-07-08 Reaktorbau Forschungs & Bau Pressure vessel
US4265066A (en) * 1977-04-21 1981-05-05 T. Y. Lin International Prestressed concrete pressure vessels
DE3526454C2 (fr) * 1985-07-24 1991-05-23 Hochtemperatur-Reaktorbau Gmbh, 4600 Dortmund, De

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683574A (en) * 1969-08-09 1972-08-15 Hocktief Ag Fur Hoch Und Tiefb Cylindrical tank for containing high-pressure fluids
US3893508A (en) * 1971-07-30 1975-07-08 Reaktorbau Forschungs & Bau Pressure vessel
US4265066A (en) * 1977-04-21 1981-05-05 T. Y. Lin International Prestressed concrete pressure vessels
DE3526454C2 (fr) * 1985-07-24 1991-05-23 Hochtemperatur-Reaktorbau Gmbh, 4600 Dortmund, De

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012092979A1 (fr) * 2011-01-07 2012-07-12 Avure Technologies Ab Étanchéité de récipient sous pression
CN103402749A (zh) * 2011-01-07 2013-11-20 艾维尔技术公司 压力容器密封
CN111348869A (zh) * 2020-03-12 2020-06-30 中交武汉港湾工程设计研究院有限公司 多层梯度抗裂水泥基材料的成型方法
CN111348869B (zh) * 2020-03-12 2021-07-30 中交武汉港湾工程设计研究院有限公司 多层梯度抗裂水泥基材料的成型方法

Also Published As

Publication number Publication date
AU2000228417A1 (en) 2001-08-27
GC0000269A (en) 2006-11-01
TW495366B (en) 2002-07-21

Similar Documents

Publication Publication Date Title
Schmidt et al. Ultra-high-performance concrete: research, development and application in Europe
Hobbs Concrete deterioration: causes, diagnosis, and minimising risk
Morgan Compatibility of concrete repair materials and systems
Hedayati et al. A comprehensive review of spalling and fire performance of concrete members
De la Varga et al. Performance of grouted connections for prefabricated bridge elements—Part I: Material-level investigation on shrinkage and bond
WO2001061709A1 (fr) Enceinte pour procedes de distillation de separation a effets multiples
CN113565264A (zh) 一种frp-uhpfrc-混凝土复合柱
WO2016064325A1 (fr) Mélange de béton et ses applications
CN106122616A (zh) 内衬式预应力钢筒混凝土管的一种长效防腐蚀方法
Bickley et al. A state-of-the-art review of high performance concrete structures built in Canada: 1990-2000
Comité euro-international du béton Durable Concrete Structures: Design Guide
Lorman Engineering properties of shotcrete
Wang Corrosion Behavior of Corrosion-Resistant Steel Reinforcements in High and Ultra-High Performance Concrete in Chloride Attack Environments
CN206018048U (zh) 长效防腐蚀埋置式预应力钢筒混凝土管
Alexander The durability of ferrocement and fibrous ferrocement in aggressive environments
CN106287008A (zh) 埋置式预应力钢筒混凝土管的一种长效防腐蚀方法
Sarma Analysis, Design and Construction of Ferrocement Structural Components
Malik et al. REINFORCED CEMENT CONCRETE PIPELINES FOR DESALINATED WATER TRANSMISSION-A CRITICAL REVIEW AND SOME FAILURE ANALYSIS1
Reza et al. Review on Corrosive Behavior and Possible Protective Measures for Reinforcing Bars
GERWICK JR Concrete Marine Structures
Kukachka The Applicability of Concrete Polymer Materials for Use in Geothermal Environments
Grigorean et al. Consideration on the Correct Execution of the Concrete Reservoires
Wilson Concrete for Large Floating Structures
WO2023172853A2 (fr) Matériaux cimentaires et structures produites à partir de ceux-ci
Jeedigunta Accelerated durability testing of reinforced and unreinforced concretes in a simulated marine environment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase