WO2001061700A1 - Information reproducing device - Google Patents
Information reproducing device Download PDFInfo
- Publication number
- WO2001061700A1 WO2001061700A1 PCT/JP2000/000890 JP0000890W WO0161700A1 WO 2001061700 A1 WO2001061700 A1 WO 2001061700A1 JP 0000890 W JP0000890 W JP 0000890W WO 0161700 A1 WO0161700 A1 WO 0161700A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- pulse
- ideal waveform
- signal
- waveform
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/10009—Improvement or modification of read or write signals
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/14—Digital recording or reproducing using self-clocking codes
- G11B20/1403—Digital recording or reproducing using self-clocking codes characterised by the use of two levels
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/012—Recording on, or reproducing or erasing from, magnetic disks
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/02—Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
- G11B5/09—Digital recording
Definitions
- the present invention relates to an information reproducing apparatus or a disk drive apparatus that reproduces information from a signal indicating the alternating property of a rising polarity pulse and a falling polarity pulse.
- the present invention relates to a method for recording run-length encoded channel data in a magnetic storage device.
- user data is encoded into channel data as run-length encoded data and recorded on the disk as magnetic transitions.
- the run length is specified using a fixed frequency clock signal period.
- the read signal of the recorded information by the magnetic head is a signal having alternating polarity of a rising polarity pulse and a falling polarity pulse having several kinds of pulse intervals defined in advance.
- the clock signal is reproduced based on the read signal, and the channel data is reproduced based on the relationship between the phase of the reproduced clock signal and the pulse width of the read signal. To play.
- a PLL circuit can be used to reproduce the clock signal. That is, a read signal by the magnetic head is supplied to the PLL circuit to reproduce the clock signal. For example, in a magnetic storage device, a PLL pull-in pattern such as 101010 ... is written at the head in several bytes for each sector (unit of read data block of 512 bytes). Phase lock It is designed so that it can be easily performed.
- the noise resistance of the PLL circuit is limited, and the PLL circuit is unlocked in a noisy signal state. Loss of lock of the PLL circuit is called a burst error, and the read channel will output all incorrect data from the time of the burst error.
- ECC Error Check and Correct
- the data output from the read channel can be corrected by an ECC (Error Check and Correct) circuit, but this can only correct a few bytes of errors in one sector, and the There is no function to correct the de-evening that caused the problem. For this reason, the section in which the burst error occurred must be read again by retry, which degrades the data access performance of the hard disk drive.
- Japanese Patent Application Laid-Open No. 9-120464 discloses a data recovery circuit with improved resistance to jitter.
- peak detection is performed on a signal, the interval between peaks is measured, 1, 0 patterns corresponding to the measured values are obtained from a look-up table, and run-length encoded data is reproduced. Also It is.
- this technology does not use a PLL circuit, it must detect the peak of the signal to be reproduced. In this peak detection, noise is likely to be regarded as a peak if the signal frequency is high, and in this regard, noise immunity is considered to be limited.
- Another object of the present invention is to improve the noise immunity of the information reproducing device that “reports” from the ⁇ signal, which makes the exchange between the rising polarity pulse and the falling polarity pulse.
- Another II aspect of the present invention is to capture the S that can reliably generate run-length coded channel data for a high data rate i. .
- Another purpose of the present invention is to provide an ecology report that is less likely to cause a burst error.
- the information generator or the semiconductor device is configured such that a rising polarity pulse and a falling polarity pulse are alternated, and a channel of a bit train corresponding to the pulse interval is obtained from an information signal having a plurality of types of pulse intervals.
- This information reproducing apparatus has ideal waveform data output means for outputting ideal waveform data for representing an ideal waveform relating to the rising polarity pulse and an ideal waveform relating to the falling polarity pulse for each pulse interval. Sampling or quantizing the signal
- the clock signal for sampling by the converting means is, for example, a clock signal having a cycle corresponding to the sampling point pitch of the ideal waveform data.
- This clock signal may be asynchronous with the information signal, does not need to be a clock signal recovered from the information signal, and does not require a PLL circuit for clock recovery.
- the pulse interval of the alternating pulse included in the information signal is detected by selecting the ideal waveform closest to the waveform of the information signal. That is, based on a difference between the data converted by the conversion means and each ideal waveform data output from the ideal waveform data output means, a waveform of an ideal waveform approximate to a pulse waveform or a pulse interval of the information signal is detected. It will be determined sequentially by means. Therefore, peak detection of the information signal is not required.
- a bit string corresponding to the pulse interval of the ideal waveform determined sequentially is output. This bit string is cut out into channel data of a predetermined number of bits by channel data output means and output to the subsequent stage.
- the force required to increase the sampling point by a PLL circuit is required. Since the pulse interval of the alternate pulse included in the information signal is detected by the vehicle that selects the processing waveform that approximates the pulse interval, it is not essential to increase the sampling point accuracy. Therefore, it is not necessary to use a PLL circuit for reproducing the synchronization clock from the information signal.
- a clock signal that is asynchronous with the information signal is different from a reproduced clock signal reproduced from the information signal in that the waveform detection means is configured to compensate for the effect of causing an error in frequency and phase in terms of frequency and phase. It is desirable to
- the waveform detection means can be constituted by a data input buffer, a calculation means, a correlation buffer, and a tracking control means.
- One The evening input buffer has in series latch circuits of two or more stages larger than the maximum number of pulse intervals, and each latch circuit performs a latch operation in synchronization with a clock signal and is converted to the first stage by the conversion means. Enter the date. If the number of stages of the latch circuit is larger than the maximum number of pulse intervals by two or more, the sampling data that is continuous over the range in which the pulse polarity can be determined for the input data of the maximum pulse interval. Can be latched to a plurality of latch circuits of the data input buffer and output in parallel.
- the arithmetic means is configured to calculate each ideal waveform for the pulse waveform of the information signal based on a difference between data of each ideal waveform output from the ideal waveform data output means and latch data output in parallel from the plurality of latch circuits. Is calculated in synchronization with the clock signal.
- the correlation buffer can sequentially shift and hold the correlation data calculated by the calculation means by at least the number of clock signal cycles corresponding to the maximum value of the pulse interval. For example, if the maximum value of the pulse interval is m, the correlation data buffer having m consecutive correlation data for each ideal waveform will have a similarity for each pulse interval held by the information signal. A state censorship will appear.
- the tracking control means extracts the correlation data indicating the most similar state among the correlation data relating to the pulse of one polarity held in the correlation data buffer, and extracts Waiting for the correlation data buffer to be shifted in the correlation data buffer by the pulse interval of the ideal waveform corresponding to the calculated correlation data, the state of the correlation data that most closely approximates the pulse of the other polarity is determined. And the process of extracting the correlation data shown in FIG. Since the extraction of the correlation data by the tracking control means can be performed within a predetermined range that is temporally before and after in the correlation data buffer, the frequency error between the asynchronous clock signal and the reproduced clock signal is obtained. However, there is no substantial effect on the extraction of the closest ideal waveform data.
- the ideal waveform data output means separately outputs data in which the sampling points of the ideal waveform data are shifted by half a bit from each other at every pulse interval of the rising polarity and the falling polarity. Since the phase difference of the asynchronous clock signal with respect to the reproduced clock signal is 180 ° at the maximum, if the ideal waveform data is prepared in consideration of this, the reproduced clock signal is converted into an asynchronous clock signal. Even if a phase difference occurs with the clock signal, it does not substantially affect the extraction of the closest ideal waveform data.
- the conversion means includes an A / D conversion circuit that converts the information signal into a digital signal in synchronization with a clock signal, or a sample and hold circuit that samples and holds the information signal in synchronization with a clock signal.
- the waveform detection means may be constituted by a digital circuit.
- a digital signal processor may be used as the digital circuit.
- the waveform detecting means may be constituted by an analog circuit.
- the information signal is a read signal from a disk
- a frequency synthesizer for generating a synchronization signal of information to be written to the disk it is preferable to use a signal output from the frequency synthesizer as the clock signal. This makes it possible to easily reduce the frequency error between the asynchronous clock signal and the regenerated clock signal.
- the information reproducing device can be applied not only to a device for reproducing a read signal from a disk, such as a hard disk device, but also to a communication control device for receiving the information signal from a transmission medium. As one means for reducing the error rate of information reproduction, it is preferable to provide an ECC circuit that enables error checking and correction for the channel data output from the channel data output means.
- the conversion means asynchronously samples the information signal, even if the data converted by the conversion means is stored in the buffer memory in a relatively large unit such as one sector, the data is not wasted later. Absent. When using a PLL circuit, if the lock of the PLL circuit comes off, even if the data is stored in a buffer, the data cannot be used later.
- a buffer memory for storing the data converted by the conversion means is provided and the data extracted from the buffer memory is supplied to the waveform detection means, the processing conditions in the waveform detection means can be changed. By performing the processing a plurality of times, the error i correction ability can be improved.
- Waveform detection ⁇ ⁇ stages are provided in several stages, these are operated in parallel in advance, and output is performed according to error conditions. You just have to select That is, at least a plurality of sets of processing means including the ideal waveform data output stage, the 3 ⁇ 4 ⁇ means, the data buffer, the tracking control means, and the channel data output means are provided so as to operate in parallel.
- An ECC circuit is provided to enable error checking and correction for channel data. The selector switches the selection state when an uncorrectable error in the channel by the ECC circuit is detected. Made interchangeable.
- the ideal waveforms output by the ideal waveform data output means included in each of the processing means are different data determined under the assumption of different use conditions relating to, for example, use atmosphere temperature and pressure.
- FIG. 1 is a block diagram illustrating a read channel of a hard disk device to which an information reproducing apparatus according to the present invention is applied.
- FIG. 2 is a logic circuit diagram showing a specific example of the detection gate circuit.
- FIG. 3 is an explanatory diagram showing an example of ideal waveform data together with FIG.
- FIG. 4 is an explanatory diagram showing an example of ideal waveform data together with FIG.
- FIG. 5 is a logic circuit diagram showing a specific example of a decoder receiving the output of the detection gate.
- FIG. 6 is an explanatory diagram illustrating an expression format of the correlation data held in the correlation buffer.
- FIG. 7 is a flowchart schematically showing a processing procedure by the minimum path tracking control circuit.
- FIG. 8 is a flowchart showing a specific example of processing by the minimum path tracking control circuit.
- FIG. 9 is an explanatory diagram showing an operation example of the channel data output circuit.
- FIG. 10 is a block diagram showing an example in which a channel data reproducing circuit is mainly composed of an analog circuit.
- FIG. 11 is a block diagram showing an example in which a channel data reproducing circuit is configured to be capable of performing software processing.
- FIG. 12 is a block diagram showing an example having a buffer memory for storing quantized data.
- FIG. 13 is a block diagram showing an example in which the present invention is applied to a communication control device that receives an information signal from a transmission medium.
- FIG. 1 illustrates a hard disk device to which the information reproducing apparatus according to the present invention is applied and its read channel.
- the hard disk drive includes: a magnetic disk 1 on which ti information is recorded; a head 2 for writing / reading to / from the magnetic disk 1; and a semiconductor for controlling a signal from the head 2 and a signal to the head 2.
- An integrated read / write amplifier 3, a semiconductor integrated read / write channel 4 that performs write and read signal processing, and an error check and error correction of data reproduced in the read channel 4 are possible.
- the user data output from the hard disk controller 6 is encoded into the channel data as run-length encoded data by the encoding circuit 13 of the read channel 4, and the read amplifier 3 And via the head 2 to the magnetic disk 1 as magnetic transitions.
- the run length is specified using a clock signal cycle of a fixed frequency, and the clock signal is a synchronization signal of the coding circuit 13. For example, if the frequency synthesizer 14 of read channel 4 is used as the clock signal 24, Use the one generated by
- the read waveform is read from the disk 1 by the head 2 and amplified by the read-amplifier 3, converted by the read channel 4 into the original data and output to the hard disk controller 6. That is, the read signal of the recording information by the head 2 has a rising polarity (hereinafter referred to as positive polarity) pulse and a falling polarity (hereinafter also referred to as negative polarity) having a plurality of types of pulse intervals defined in advance.
- Read channel 4 reproduces the channel data from the read signal. At this time, read channel 4 uses a PLL circuit to reproduce the clock signal from the read signal.) No.
- the error generated in the read channel 4 can be corrected by the ECC circuit 5.
- the drive system control circuit 8 controls the rotation of the magnetic disk 1 and the position of the head 2.
- the read channel 4 includes an automatic gain controller (AGC) 16, a filter 17, and an A / D conversion circuit (ADC) 18 in addition to the coding circuit 13 and the frequency synthesizer 14. , A detection gate circuit 19, a decoder 20, a code decoding circuit 21, and a servo circuit 22.
- AGC automatic gain controller
- ADC A / D conversion circuit
- the AGC 16 controls the amplitude of the reproduced waveform signal output from the read-write amplifier 3 at a constant level, and the filter 17 narrows down the frequency spectrum to within the Nyquist frequency and reduces the frequency noise component. Perform cutting, etc.
- the ADC 18 asynchronously samples and quantizes the output of the filter.
- the number of quantization bits is, for example, 6 bits.
- “asynchronous” means that a clock signal is not reproduced from a signal input to the ADC 18 using a PLL circuit or the like, and sampling is not performed in synchronization with the reproduced clock signal.
- the sampling clock signal of the ADC 18 is, for example, the clock signal 24 generated by the frequency synthesizer 14 and the same as the clock signal used for the conversion.
- the output data 27 of the ADC 18 quantized by the asynchronous sampling is a data train whose value rises and falls for each pulse. Become.
- the detection gate circuit 19 detects and analyzes the vertical relationship of the data train, and does not perform processing for accurately determining the position of a pulse by detecting the peak of each pulse.
- the detection gate 19 and the decoder 20 perform the above-mentioned reporting based on the difference between the data sampled and converted by the ADC 18 and the ideal waveform data of the positive pulse and the negative pulse.
- the pulse waveform (or pulse interval) of 26 is ideally determined to be the closest approximation to the ideal waveform, and the determined ideal It implements waveform detection means that forms a bit string that corresponds to the pulse interval of the waveform. That is, the waveform detection stage detects the pulse interval of the alternating ⁇ pulse included in the 'report ⁇ 26' by a car that selects the ideal waveform closest to the waveform of the report 26.
- the detection gate 19 synchronizes the clock signal 24 with the clock signal 24 as a scale to indicate whether the pulse waveform or pulse interval of the signal signal 26 or the pulse interval is close to any desired waveform. Generated every cycle.
- the decoder 20 holds the correlation data for a plurality of cycles of the clock signal 24 in the correlation buffer while shifting the correlation data for each ideal waveform, and pulses the held correlation data in a pulse. The smallest one is extracted for each polarity of, and a bit string corresponding to the pulse interval of the sequentially extracted ideal waveform is output as channel data (decoder output) 28.
- the code decoding circuit 21 converts the channel data 28 supplied from the decoder 20 into a user data format.
- FIG. 2 shows a specific example of the detection gate circuit 19.
- the pulse interval included in the information signal 26 is 1 to 5 for each polarity, There are 0 types. This is assumed in the following specific examples.
- the detection gate circuit 19 has a data input buffer 30 and waveform detection circuits WD1 to WD10.
- data 27 is 6 bits, and it should be understood that each component has a configuration corresponding to 6-bit parallel processing.
- the waveform detection circuits WD1 to WD10 are connected to ideal waveform data buffers DB1a to DB10a, DB1b to DB1Ob as ideal waveform data output means, and arithmetic circuits EX1 to EX10. Have.
- the ideal waveform data buffers 081 & to 0810 &, 0811) to 0810b store the ideal waveform data of the positive polarity pulse and the negative polarity pulse at every pulse interval and half-bit the sample points of the ideal waveform data with each other. Stagger and hold separately.
- the sampling point pitch of each ideal waveform is almost coincident with the period of the peak signal 24.
- the ADC 18 is The information signal 26 is quantized in synchronization with a clock signal 24 having a cycle corresponding to the sampling point pitch of the ideal waveform.
- FIGS. 3 and 4 An example of the ideal waveform data is shown in FIGS. 3 and 4, in which (A) to (E) show an ideal waveform with a pulse interval of 1 to 5 and its sequence.
- the points marked with ⁇ discretely on the ideal waveform mean the ideal waveform data.
- the left column of each of the above (A;) to (E) shows the data of the positive polarity pulse, the right column shows the data of the 13 ⁇ 4 polarity pulse, and the sample pitches in the upper and lower columns of (A) to (E) respectively. It is shifted by a half pitch (180 °).
- Pit shown in FIGS. 3 and 4 is the pulse interval.
- each ideal waveform is considered to be data having two sampling points before and after a point included in a pulse interval, and an ideal waveform related to an ideal waveform with a pulse interval of 1.
- the data has four data points, and each time the pulse interval increases, the data point increases by one.
- a sample pitch shifted by a half pitch is prepared as ideal waveform data. Since the phase difference of the asynchronous clock signal 24 with respect to the reproduced clock signal reproducible from the broadcast signal is a maximum of 180 °, if the ideal waveform data is prepared in consideration of this, the asynchronous This is because even if a phase difference occurs between the clock signal 24 and the raw clock signal, it does not substantially affect the extraction of the most similar ideal waveform data.
- the ideal waveform data buffer DB1a outputs the ideal waveform data D1 to D4 in parallel as illustrated in FIG. 2 and FIG.
- the arithmetic circuits EX 1 to EX 10 are provided with the ideal waveform data buffers DB 1 a to D
- Each ideal waveform output from B 10a, DB lb to DB 10 b Correlation data S (1) indicating the approximate state of each ideal waveform with respect to the pulse waveform of the information signal based on the difference from the latch data output in parallel from the latch circuits FF1 to FF8 of the data input buffer 30.
- ⁇ S (10) For example, in the arithmetic circuit EX 1 whose details are exemplified, the ideal waveform data buffer DB 1 a has four arithmetic circuits each for calculating the difference between its output and the corresponding latch circuits FF 1 to FF 4.
- the three adders ADDa for sequentially adding the outputs of the four squarers MULa and the squarer MULa for squaring the output of the subtractor SUBa.
- the outputs of the four subtractors SUB b and S UB b that calculate the difference between the output of the ideal waveform data buffer DB 1 b and the outputs of the corresponding latch circuits FF 1 to FF 4 are provided on the side of the ideal waveform data buffer DB 1 b.
- the conversion result obtained by the adder ADDa and the addition result obtained by the adder ADDb are compared by a comparator CMP, and the smaller addition result is selected by the selector SEL based on the comparison result, and is selected.
- the added result is output as correlation data S (1).
- the input from the data input buffer 30 is sequentially increased one by one with respect to the arithmetic circuit EX1, and the subtraction circuit SUB a , SUBb, squarers MULa, MULb, and adders ADDa, ADDb are sequentially increased in pairs.
- FIG. 5 shows a detailed example of the decoder 20.
- the decoder 20 has a correlation data buffer RDB, a minimum path tracking control circuit LPS, and a channel data output circuit SRB.
- the correlation data buffer RDB stores the correlation data calculated in the detection gate 19. Evening S (1) to S (10) are input to the first stage, and sequentially shifted in synchronization with the clock signal 24 to be held while being shifted. It has a book shift registry.
- the correlation buffer RDB calculates the correlation data S (1) to S (10) calculated by the detection gate 19 by using the clock signal 24 corresponding to the maximum value 5 of the pulse interval. It can be shifted and held sequentially for five cycles.
- the correlation data held in the correlation data buffer RDB is represented as S (1,1) to S (10,5) as illustrated in FIG.
- the correlation buffer RDB outputs five correlation data that last for five cycles of the clock signal 24 to each ideal waveform ⁇ , so the pulse of the ⁇ ffi signal at that time is stored in the data buffer RDB. Depending on the interval, data that takes a small value 13 ⁇ 4] will always appear. In short, since the S value of the pulse interval of the signal is 5, the correlation data S (l, 1) to S (10, 5) for 5 clock cycles is always one small. There is a time to become, and this is held by the correlation data buffer RDB.
- the S small path tracking control circuit LPS calculates the correlation data—the 50-phase of the chest held by the buffer RDB
- Fig. 2 shows the processing procedure of the minimum path tracking control circuit LPS in a categorical manner.
- the minimum path tracking control circuit LPS extracts the ritual data showing the smallest value among the correlation data of the pulses of one polarity held in the correlation data buffer RDB. For example, the correlation data S (m, n) in FIG. 7 is extracted. Since the ideal waveform corresponding to the extracted correlation data S (m, n) can be considered to be included in the ⁇ , report signal at that time, the pulse interval (detection After several clock cycles, the ideal pulse for the next polarity reversal This makes it possible to specify a loose waveform.
- the pulse of the other polarity is waited.
- a process is performed to extract the correlation data S (i, j) having the smallest value in the correlation data for.
- the minimum correlation data is obtained. Since the extraction of the correlation data by the minimum path tracking control circuit LPS is performed within a data range of three clock cycles (3 cyc) that is temporally successive in the correlation data buffer RDB, the asynchronous clock signal and the reproduced clock signal are used. Even if the frequency error exists between the two, it does not substantially affect the extraction of the most approximated ideal waveform data.
- the minimum path tracking control circuit LPS outputs a bit string corresponding to the pulse interval of the ideal waveform sequentially determined as described above.
- the bit string is determined in advance in accordance with the pulse interval of the ideal waveform, and is not particularly limited. However, as illustrated in FIGS. 3 and 4, when the pulse interval is 1, "1" "2" is “0 1", “Pulse interval 3" is “00 1”, “Pulse interval” 4 is “000 1", and "Pulse interval 5" is "0000 1". You. In short, the number of logical values "0" inserted before the logical value "1" is determined according to the pulse interval.
- FIG. 8 shows a specific example of the processing by the minimum path tracking control circuit LPS.
- the minimum path tracking control circuit LPS First, there is no previous value in the initial state, so you have to decide where to start. For this reason, the smallest one of the 5 ⁇ 10 correlation data stored in the correlation data buffer RDB is searched.
- correlation data 1 (S (2, 2) in FIG. 6) is extracted as illustrated in (A). Since the correlation data 1 is the correlation data with the pulse interval 2 of the positive polarity, the corresponding bit string "0 1" is output, and the correlation data is further shifted rightward. Wait for the shift operation to be performed twice (B, C).
- the correlation data 2 (No. This is S (3, 2)) in Fig. 6. Since the correlation data 2 is the correlation data of the pulse interval 3 of the positive polarity, the corresponding bit string “001” is output.
- illustration is omitted, the same processing as above is repeated to continue the extraction of the minimum correlation data.
- FIG. 9 shows an operation example of the channel data output circuit SRB.
- the channel data output circuit SRB is composed of a shift register that sequentially shifts the bit string output from the minimum path tracking control circuit LPS according to the pulse interval of the ideal waveform, right-justified, and has an 8-bit input. When the number of bits exceeds the limit, 8 bits are cut out and output as channel data, and the remaining bits are right-justified.
- the minimum path tracking control circuit LPS sequentially outputs bit strings “01”, “00001”, “1”, “01”, and serially outputs them.
- the shift-input channel data output circuit SRB cuts out the 8-bit bit string "0 1 0 0 0 1 1 0", and the surplus bit "1" becomes the beginning of the next channel data output It is shifted as follows.
- the presence / absence of a pulse per unit time or per bit for the pulse In order to judge, the force required to increase the accuracy of the sampling point by the PLL circuit s.
- the information signal 26 is included in the information signal 26 by selecting the pulse waveform of the information signal or the ideal waveform closest to the pulse interval. It is not an essential condition to improve the accuracy of sampling points because it detects the pulse interval of alternating pulses. For this reason, it is not necessary to use a PLL circuit for reproducing the synchronous clock from the information signal 26.
- [2] In the pulse interval, input the data converted into the S-child by the ADC 18 into a data input buffer having two or more latch stages in series which are larger than the human interval by at least two. Since the number of latch stages is larger than the ig large interval of the pulse question by two or more, the range ffl where the pulse polarity can be determined even for human-powered data of 1 large pulse It is possible to latch the continuous sampling data to multiple latch circuits in the data input buffer and output them in parallel.
- Data buffer RDB is before, ⁇ Waveform detection circuit W D1 to W D
- the data detected at 10 can be sequentially shifted and held by at least the number of clock signal cycles corresponding to the s large value of the pulse interval, for example, the maximum value of the pulse interval is 5. Then, the correlation data in the correlation data buffer RDB that develops five consecutive censor data for each ideal waveform appears in the RDB in the most approximate state for each pulse interval held by the information signal Therefore, the processing of extracting the correlation data by the minimum path tracking control circuit LPS which inputs all the correlation data held in the correlation data buffer RDB in parallel is performed by the time of the RDB in the correlation data buffer RDB. It can be carried out within a predetermined range that can be changed before and after. Therefore, the asynchronous clock signal Even if there is the frequency error between the clock signal and the reproduced clock signal, the extraction of the most approximated ideal waveform data does not have a substantial effect.
- the ideal waveform data buffer DB la to DB 10b separates the data in which the sample points of the ideal waveform data are shifted by half a pitch from each other at every positive and negative pulse interval. Considering that the phase difference between the asynchronous clock signal and the reproduced clock signal is 180 ° at the maximum, even if the asynchronous clock signal has a phase difference with the reproduced clock signal, However, there is no substantial effect on the extraction of the closest ideal waveform data.
- the clock signal 24 asynchronous with the information signal 26 is a reproduction clock signal reproducible from the information signal 26 and a force causing an error in frequency and phase. s , the effect of the error can be compensated, and relatively high accuracy can be realized in reproducing channel data.
- FIG. 10 shows an example in which a channel data reproducing circuit portion is mainly composed of an analog circuit.
- a sample-and-hold circuit 18A that samples and holds the information signal 26 in synchronization with a clock signal 24 is employed.
- an analog detection gate 19A and an analog decoder 20A constituted by an analog circuit are arranged.
- the analog detection gate 19A and the analog decoder 20A reproduce the channel data by the same algorithm as the detection gate 19 and the decoder 20.
- This example is an example in which power consumption can be reduced when the power consumption of the ADC 18 is particularly large.
- FIG. 11 shows an example in which the reproducing circuit portion of the channel device is configured to be capable of performing software processing.
- a digital signal processing processor (DSP) 40 that executes a digital signal processing program provides a detection gate function 19 B and a decoder function 2 by the same processing algorithm as the detection gate 19 and the decoder 20. 0 B You. Although not shown, the function of the code decoding circuit 21 is also realized by the DSP 40.
- a buffer memory 41 for storing the data 27 converted by the ADC 18 is provided, and the data read from the buffer memory 41 is supplied to the DSP 40.
- the error correction capability using the ECC circuit 5 can be improved.
- the ideal waveform data buffer is provided with a plurality of types of ideal waveform data determined assuming different use conditions, and an uncorrectable error in the channel data is detected by the ECC circuit, Enables to switch the seed of the ideal waveform output. Switching can be performed by software processing.
- the plurality of types of ideal waveforms are different data determined under the assumption of different use conditions, such as the use atmosphere temperature and pressure.
- FIG. 12 shows still another example having a buffer memory.
- a pair of DSPs 40A and 40B similar to the DSP 40 is provided, and they are operated in parallel in advance.
- the output can be selected according to the error situation. That is, a selector 42 is provided for selecting the outputs of the DSPs 40A and 40B and supplying the outputs to the ECC circuit 5A.
- the selector 42 switches its selection state when an uncorrectable error in the channel data by the ECC circuit 5A is detected.
- FIG. 13 shows an example in which the configuration for reproducing the channel data is applied to a communication control device that receives the information signal from a transmission medium.
- the major difference from FIG. 1 is that the input of the reproduced waveform is supplied from the transmission medium 46.
- the transmission data is supplied to the AGC 16 via the code conversion circuit 44, the transmitter 45, and the transmission medium 46.
- the clock signal 24 is generated by a frequency synthesizer or a reference clock generation circuit 14A. In this case as well, it is not necessary to generate a reproduced clock signal synchronized with the data by the PLL circuit and quantize the transmission signal as in the hard disk device.
- Other configurations are the same as those in FIG. 1 and the like, and detailed description thereof is omitted.
- the type of the pulse interval included in the information signal is not limited to the above example, and can be appropriately changed. According to this, the type of the ideal waveform data and the number of data in the ideal waveform data can be changed. Also, the number of latch stages O of the data input buffer 30 and the correlation data buffer RDB can be appropriately changed as long as the necessary conditions are satisfied.
- the calculation for detecting the minimum value of the correlation data is not limited to the sum of squares of the difference. Industrial applicability
- the present invention can be widely applied to reproduction of run-length encoded channel data in a magnetic storage device such as a hard disk device or a communication control device.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
Abstract
When, from an information signal (26) including alternating pulses of positive and negative polarities and of multiple kinds of pulse spacing, channel data (28) on a bit stream corresponding to the pulse spacings is reproduced, a detecting gate (19) and a decoder (20) detect the ideal waveform most approximate to the pulse waveform or pulse spacing of the information signal based on the difference between the quantized data quantized by an ADC (18) and ideal waveform information with respect to the positive- and negative-polarity pulses. That is, the pulse spacings of the alternating pulses in the information signal are detected by selecting the ideal waveform most approximate to the waveform of the information signal. Bit streams conforming to the detected ideal waveform are sequentially converted into a predetermined format and outputted as channel data. Therefore, detecting the peak of the information signal is not required. Further no PLL circuit for reproducing a synchronizing clock from the information signal (26) is required. Thus, any burst error caused by an increase in recording density and track density of a magnetic disk and an increase in data transfer rate due to high speed access is prevented.
Description
明 細 書 情報再生装置 技術分野 Description Information playback device Technical field
本 ¾明は立ち上がり極性パルスと立ち下がり極性パルスの交番性を 冇する信号から情報を再生する情報再生装置若しくはディスク ドライ ブ装^に関し、 例えば、 磁気記憶装置においてランレングス符号化され たチャネルデータの再生に適用して有効な技術に関する。 景技術 The present invention relates to an information reproducing apparatus or a disk drive apparatus that reproduces information from a signal indicating the alternating property of a rising polarity pulse and a falling polarity pulse. For example, the present invention relates to a method for recording run-length encoded channel data in a magnetic storage device. Regarding effective technology applied to reproduction. Landscape technology
ハードディスク ドライブ装置などの磁気記憶装置では、ユーザデータ はランレングス符'号化データとしてのチャネルデータに符号化され、デ イスク上に磁気遷移 (magnetic transitions) として記録される。 磁気 遷移の記録に際してランレングスは固定周波数のクロック信号周期を 用いて規定される。磁気へッ ドによる記録情報の読み取り信号は、 予め 規定された ¾数種類のパルス問隔をもった立ち上がり極性パルス及び 立ち下がり極性パルスの交番性を有する信号とされる。この読み取り信 号からチャネルデータを再生するには、読み取り信号に基づいて前記ク ロック信号を再生し、再生されたクロック信号の位相と前記読み取り信 号のパルス幅との関係などに基づいてチャネルデータを再生する。 In magnetic storage devices such as hard disk drives, user data is encoded into channel data as run-length encoded data and recorded on the disk as magnetic transitions. When recording a magnetic transition, the run length is specified using a fixed frequency clock signal period. The read signal of the recorded information by the magnetic head is a signal having alternating polarity of a rising polarity pulse and a falling polarity pulse having several kinds of pulse intervals defined in advance. To reproduce channel data from the read signal, the clock signal is reproduced based on the read signal, and the channel data is reproduced based on the relationship between the phase of the reproduced clock signal and the pulse width of the read signal. To play.
前記クロック信号の再生には P L L回路を用いることができる。即ち、 磁気へッ ドによる読取り信号を P L L回路に供給して前記クロック信 号を再生する。例えば磁気記憶装置では 1セクタ ( 5 1 2バイ 卜の読み 出しデータプロヅク単位)毎に数バイ 卜に 1 0 1 0 1 0…のような P L L引き込みパターンが先頭に書込まれており、 P L L回路の位相引き込
みを容易に行えるように工夫されている。 A PLL circuit can be used to reproduce the clock signal. That is, a read signal by the magnetic head is supplied to the PLL circuit to reproduce the clock signal. For example, in a magnetic storage device, a PLL pull-in pattern such as 101010 ... is written at the head in several bytes for each sector (unit of read data block of 512 bytes). Phase lock It is designed so that it can be easily performed.
しかしながら、 P L L回路のノイズ耐性には限界があり、 ノイズの多 い信号状態では P L L回路のロックが外れてしまう。 P L L回路のロッ クはずれはバース トエラーと呼ばれ、 リードチャネルはバース トエラ一 の時点から全て間違ったデータを出力することになる。通常、 ハードデ イスク装置ではリードチャネルから出力されるデ一夕を E C C ( Error Check and Correct) 回路によって訂正可能であるが、 これは 1セクタ 中の数バイ 卜のエラーを訂正可能なだけで、バース 卜エラ一を生じたデ —夕を訂正する機能はない。 このため、 バース トエラ一を起こしたセク 夕はリ トライにより再度読み直さなければならず、ハードディスク装置 におけるデータアクセスのパフォーマンスを劣化させてしまう。 However, the noise resistance of the PLL circuit is limited, and the PLL circuit is unlocked in a noisy signal state. Loss of lock of the PLL circuit is called a burst error, and the read channel will output all incorrect data from the time of the burst error. Normally, in a hard disk device, the data output from the read channel can be corrected by an ECC (Error Check and Correct) circuit, but this can only correct a few bytes of errors in one sector, and the There is no function to correct the de-evening that caused the problem. For this reason, the section in which the burst error occurred must be read again by retry, which degrades the data access performance of the hard disk drive.
また、ハードディスク装置などの情報再生装置における記録ディスク の情報記録密度及びトラック密度が増し、それを高速アクセスすること を考慮すれば、今後 5 0 0 M H zから 1 G H z以上で動作する P L L回 路が必要と考えられるが、そのような高速の P L L回路を設計すること 自体困難になると予想される。 In addition, considering that the information recording density and track density of a recording disk in an information reproducing device such as a hard disk device increase and that high-speed access is considered, a PLL circuit operating from 500 MHz to 1 GHz or more in the future will be considered. However, it is expected that designing such a high-speed PLL circuit itself will be difficult.
P L L回路のノィズ耐性が低ければ、その後段でクロック信号に同期 してサンプリングデ一夕の論理値 1 / 0を判定する P R M L ( Partial If the noise resistance of the PLL circuit is low, the logical value of the sampling data is determined 1/0 in synchronization with the clock signal at the subsequent stage.PRM L (Partial
Response Maximum Likel ihood ) 形式の ビ夕 ビデコーダが S / N ( Signal/Noise)の悪い条件でもデータを正しく判定できるという高性 能化が実現されていても、大きなノィズを伴ったデ一夕入力によるバー ス 卜エラー発生の虞は回避することができない。 Response Maximum Likelihood (Bi-Decoder) format Even if the decoder is capable of correctly judging data even under conditions of poor S / N (Signal / Noise), it is possible to input data with large noise. The possibility of burst error cannot be avoided.
特開平 9 - 1 2 0 6 4 3号公報にはジッ夕に対する耐性を向上した データ回復回路が示される。 これは、 信号に对してピーク検出を行い、 ピーク間の間隔を測定し、 その測定値に応じた 1 , 0パターンをルック ァップテ一ブルから取得して、ランレングス符号化デ一夕を再生するも
のである。 この技術は P L L回路を利用していないが、 再生すべき信号 に対してピーク検出を行わなければならない。 このピーク検出では、 信 ^周波数が高ければノイズもピークと見なされ易く、 この点で、 ノイズ 耐性には限界があると考えられる。 Japanese Patent Application Laid-Open No. 9-120464 discloses a data recovery circuit with improved resistance to jitter. In this method, peak detection is performed on a signal, the interval between peaks is measured, 1, 0 patterns corresponding to the measured values are obtained from a look-up table, and run-length encoded data is reproduced. Also It is. Although this technology does not use a PLL circuit, it must detect the peak of the signal to be reproduced. In this peak detection, noise is likely to be regarded as a peak if the signal frequency is high, and in this regard, noise immunity is considered to be limited.
本発明の目的は、 P L L回路による再生クロック信号を用いる事なく、 また、 人力信号に対するピーク検出を行う Φなく、 入力信号のパルス間 隔を検出する事ができる^報再生装 Eを提供する寧にある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an information reproducing apparatus E capable of detecting a pulse interval of an input signal without using a reproduced clock signal by a PLL circuit and without detecting a peak for a human input signal. It is in.
本発明の別の 的は、立ち上がり極性パルスと立ち下がり極性パルス の交 ¾性を^する β号から ' 報を する' 報再生装 のノイズ耐性 を向上させる にある。 Another object of the present invention is to improve the noise immunity of the information reproducing device that “reports” from the β signal, which makes the exchange between the rising polarity pulse and the falling polarity pulse.
本発明の^に別の I I的は、データレートの^い i ¾に対してランレン グス符 化されたチャネルデータを i 確に 生する 35が可能な 再 生装; Sを捉供することにある。 Another II aspect of the present invention is to capture the S that can reliably generate run-length coded channel data for a high data rate i. .
本発叨のその他の Π的は、バース トエラーを生じ難い怙報 Pl i装 [tを 提供することにある。 Another purpose of the present invention is to provide an ecology report that is less likely to cause a burst error.
本允叨の上 並びにその他の Ώ的と新規な特徴は本明細 の以下の 述と添付図而から明らかにされるであろう。 The above and other objective and novel features of the present invention will be apparent from the following description of this specification and the accompanying drawings.
発明の問示 Inquiry of invention
本発明に係る情報 ΡΪ生装 若しくは半導体装置は、立ち上がり極性パ ルスと立ち下がり極性パルスが交番され複数嵇類のパルス問隔を有す る情報信号からそのパルス問隔に応ずるビッ ト列のチヤネルデータを 再生する装置である。 この' 報再生装置は、 パルス間隔別に前記立ち上 がり極性パルスに関する理想波形及び立ち下がり極性パルスに関する 理想波形を表すための理想波形データを出力する理想波形データ出力 手段を有する。前記佶報信号をサンプリングして標本化若しくは量子化
する変換手段のサンプリングのためのクロック信号は、例えば前記理想 波形データの標本点ピッチに応ずる周期のクロック信号である。このク 口ック信号は情報信号とは非同期であってよく、情報信号から再生した クロック信号である必要はなく、クロック再生のための P L L回路を必 要としない。情報信号に含まれる交番パルスのパルス間隔は、 情報信号 の波形に最も近い理想波形を選ぶ事によって検出する。即ち、 前記変換 手段で変換されたデータと前記理想波形データ出力手段から出力され る各理想波形データとの差分に基づいて前記情報信号のパルス波形若 しくはパルス間隔に近似する理想波形を波形検出手段で順次決定して いく。 したがって、 情報信号のピーク検出を要しない。 前記波形検出手 段では、順次決定された理想波形のパルス問隔に応ずるビッ ト列を出力 する。 このビヅ ト列は、 チャネルデータ出力手段で所定ビッ ト数のチヤ ネルデータに切出され、 後段に出力される。 The information generator or the semiconductor device according to the present invention is configured such that a rising polarity pulse and a falling polarity pulse are alternated, and a channel of a bit train corresponding to the pulse interval is obtained from an information signal having a plurality of types of pulse intervals. A device that reproduces data. This information reproducing apparatus has ideal waveform data output means for outputting ideal waveform data for representing an ideal waveform relating to the rising polarity pulse and an ideal waveform relating to the falling polarity pulse for each pulse interval. Sampling or quantizing the signal The clock signal for sampling by the converting means is, for example, a clock signal having a cycle corresponding to the sampling point pitch of the ideal waveform data. This clock signal may be asynchronous with the information signal, does not need to be a clock signal recovered from the information signal, and does not require a PLL circuit for clock recovery. The pulse interval of the alternating pulse included in the information signal is detected by selecting the ideal waveform closest to the waveform of the information signal. That is, based on a difference between the data converted by the conversion means and each ideal waveform data output from the ideal waveform data output means, a waveform of an ideal waveform approximate to a pulse waveform or a pulse interval of the information signal is detected. It will be determined sequentially by means. Therefore, peak detection of the information signal is not required. In the waveform detection means, a bit string corresponding to the pulse interval of the ideal waveform determined sequentially is output. This bit string is cut out into channel data of a predetermined number of bits by channel data output means and output to the subsequent stage.
パルスに対して単位時問毎若しくは 1 ビッ ト毎にパルスの有無を判 定する場合には P L L回路によってサンプリ ングポイン 卜の結度を上 げる必要がある力 上記手段では情報信号のパルス波形若しくはパルス 問隔に近似する理恕波形を選ぶ車によって情報信号に含まれる交 ¾パ ルスのパルス間隔を検出するものであるから、サンプリングポィン卜の 精度を上げる事は必須条件ではない。 このため、 情報信号から同期クロ ックを再生するための P L L回路を特に用いる必要はない。 When determining the presence or absence of a pulse at every unit time or one bit for a pulse, the force required to increase the sampling point by a PLL circuit is required. Since the pulse interval of the alternate pulse included in the information signal is detected by the vehicle that selects the processing waveform that approximates the pulse interval, it is not essential to increase the sampling point accuracy. Therefore, it is not necessary to use a PLL circuit for reproducing the synchronization clock from the information signal.
前記情報信号とは非同期のクロック信号は情報信号から再生する再 生ク口ック信号とは周波数及び位相の点で誤差を生ずる力 その誤差に よる影響を補償するように前記波形検出手段を構成することが望まし い A clock signal that is asynchronous with the information signal is different from a reproduced clock signal reproduced from the information signal in that the waveform detection means is configured to compensate for the effect of causing an error in frequency and phase in terms of frequency and phase. It is desirable to
先ず第 1 に、 前記波形検出手段は、 データ入力バッファ、 演算手段、 相関デ一夕バッファ、 及び追跡制御手段によって構成可能である。デ一
夕入力バッファは、前記パルス間隔の最大間隔数よりも 2以上大きな段 数のラツチ回路を直列に有し各ラツチ回路はクロック信号に同期して ラツチ動作を行い初段に前記変換手段で変換されたデ一夕を入力する。 ラツチ回路の段数が前記パルス間隔の最大間隔数よりも 2以上大きけ れば、 最大パルス間隔の入力データに対しても、 パルス極性をも判定可 能な範囲に亘つて連続するサンプリングデ一夕をデータ入力バッファ の複数個のラツチ回路にラツチして並列出力することが可能になる。前 記演算手段は、前記理想波形データ出力手段から出力される各理想波形 のデータと前記複数のラツチ回路から並列出力されるラツチデータと の差分に基づいて前記情報信号のパルス波形に対する夫々の理想波形 の近似の状態を示す相関データを前記クロック信号に同期して演算す る。相関デ一夕バッファは、 前記演算手段で演算された相関データを少 なく とも前記パルス問隔の最大値に相当する前記クロック信号サイク ル数分順次シフ 卜 して保持可能である。例えば、 パルス間隔の最大値が mであるならば、各理想波形に対して連続する m個の相関デ一夕を有す る相関データバッファ内には情報信号が保有するパルス間隔毎に最近 似状態の相閲デ一夕が出現することになる。 この観点より、 前記追跡制 御手段は、前記相関データバッファに保持されている一方の極性のパル スに関する相関データの中で最も近似する状態を示す相関デ一夕を抽 出する処理と、抽出した相関デ一夕に対応する理想波形のパルス間隔分 だけ相関データバッファ内で相関デ一夕がシフ 卜されるのを待って他 方の極性のパルスに関する相関データの中で最も近似する状態を示す 相関データを抽出する処理とを行って最も近似する状態の相関データ を迪つていく。前記追跡制御手段による相関データの抽出は相関データ バッファ内の時間的に前後する所定範囲内で行うことができるから、非 同期のクロック信号と前記再生クロック信号との間に前記周波数誤差
があっても最も近似する理想波形データの抽出には実質的な影響を与 えない。 First, the waveform detection means can be constituted by a data input buffer, a calculation means, a correlation buffer, and a tracking control means. One The evening input buffer has in series latch circuits of two or more stages larger than the maximum number of pulse intervals, and each latch circuit performs a latch operation in synchronization with a clock signal and is converted to the first stage by the conversion means. Enter the date. If the number of stages of the latch circuit is larger than the maximum number of pulse intervals by two or more, the sampling data that is continuous over the range in which the pulse polarity can be determined for the input data of the maximum pulse interval. Can be latched to a plurality of latch circuits of the data input buffer and output in parallel. The arithmetic means is configured to calculate each ideal waveform for the pulse waveform of the information signal based on a difference between data of each ideal waveform output from the ideal waveform data output means and latch data output in parallel from the plurality of latch circuits. Is calculated in synchronization with the clock signal. The correlation buffer can sequentially shift and hold the correlation data calculated by the calculation means by at least the number of clock signal cycles corresponding to the maximum value of the pulse interval. For example, if the maximum value of the pulse interval is m, the correlation data buffer having m consecutive correlation data for each ideal waveform will have a similarity for each pulse interval held by the information signal. A state censorship will appear. From this viewpoint, the tracking control means extracts the correlation data indicating the most similar state among the correlation data relating to the pulse of one polarity held in the correlation data buffer, and extracts Waiting for the correlation data buffer to be shifted in the correlation data buffer by the pulse interval of the ideal waveform corresponding to the calculated correlation data, the state of the correlation data that most closely approximates the pulse of the other polarity is determined. And the process of extracting the correlation data shown in FIG. Since the extraction of the correlation data by the tracking control means can be performed within a predetermined range that is temporally before and after in the correlation data buffer, the frequency error between the asynchronous clock signal and the reproduced clock signal is obtained. However, there is no substantial effect on the extraction of the closest ideal waveform data.
第 2に、 前記理想波形データ出力手段には、 立ち上がり極性及び立ち 下がり極性のパルス間隔毎に、理想波形データの標本点が相互に半ビッ チずれたデータを別々に出力させる。前記再生ク口ック信号に対する非 同期のクロック信号の位相差は最大で 1 8 0 ° であるから、これを考慮 して理想波形のデータを用意しておけば、非同期のクロック信号に前記 再生クロック信号と位相差を生じても、最も近似する理想波形データの 抽出には実質的な影響を与えない。 Secondly, the ideal waveform data output means separately outputs data in which the sampling points of the ideal waveform data are shifted by half a bit from each other at every pulse interval of the rising polarity and the falling polarity. Since the phase difference of the asynchronous clock signal with respect to the reproduced clock signal is 180 ° at the maximum, if the ideal waveform data is prepared in consideration of this, the reproduced clock signal is converted into an asynchronous clock signal. Even if a phase difference occurs with the clock signal, it does not substantially affect the extraction of the closest ideal waveform data.
前記変換手段は、 クロック信号に同期して前記情報信号をデイジ夕 ル信号に変換する A / D変換回路、又はクロック信号に同期して前記情 報信号をサンプリングしてホールドするサンプル 'ホールド回路である < 前者の場合には前記波形検出手段をディジ夕ル回路で構成すればよい。 ディジ夕ル回路としてディジ夕ル信号処理プロセッサを用いてもよい。 後者の場合には前記波形検出手段をアナログ回路で構成してよい。 The conversion means includes an A / D conversion circuit that converts the information signal into a digital signal in synchronization with a clock signal, or a sample and hold circuit that samples and holds the information signal in synchronization with a clock signal. In the former case, the waveform detection means may be constituted by a digital circuit. A digital signal processor may be used as the digital circuit. In the latter case, the waveform detecting means may be constituted by an analog circuit.
前記情報信号がディスクからの読取り信号であるとき、前記ディスク へ書込む情報の同期信号を生成する周波数シンセサイザを有するなら ば、前記クロック信号として前記周波数シンセサイザから出力されるも のを利用するとよい。 これにより、 前記非同期のクロック信号と前記再 生クロック信号との間の周波数誤差を簡単に小さくすることができる。 情報再生装置はハードディスク装置などの様にディスクからの読取 り信号を再生する装置に適用できるだけでなく、前記情報信号を伝送媒 体から受け取るような通信制御用の装置にも適用することができる。 情報再生のエラ一レートを低減する一つ 手段として、前記チャネル デ一夕出力手段から出力されるチャネルデ一 に対してエラーチエツ ク及び訂正を可能にする E C C回路を設けると よい。
変換手段は、 情報信号を非同期サンプリングするから、 前記変換手段 で変換されたデ一夕を 1セクタのような比較的大きな単位でバッファ メモリに蓄えても、 後からそれらデータが無駄になることはない。 P L L回路を用いる場合には P L L回路の口ックがはずれると、デ一夕をバ ッファに蓄えても、 後からそのデ一夕は全く使えない。 When the information signal is a read signal from a disk, if a frequency synthesizer for generating a synchronization signal of information to be written to the disk is provided, it is preferable to use a signal output from the frequency synthesizer as the clock signal. This makes it possible to easily reduce the frequency error between the asynchronous clock signal and the regenerated clock signal. The information reproducing device can be applied not only to a device for reproducing a read signal from a disk, such as a hard disk device, but also to a communication control device for receiving the information signal from a transmission medium. As one means for reducing the error rate of information reproduction, it is preferable to provide an ECC circuit that enables error checking and correction for the channel data output from the channel data output means. Since the conversion means asynchronously samples the information signal, even if the data converted by the conversion means is stored in the buffer memory in a relatively large unit such as one sector, the data is not wasted later. Absent. When using a PLL circuit, if the lock of the PLL circuit comes off, even if the data is stored in a buffer, the data cannot be used later.
前記変換手段で変換されたデータを蓄えるバッファメモリを設け、前 ¾バッファメモリから^み出されたデ一夕を前記波形検出手段に供給 するようにすれば、前記波形検出手段における処理条件を変えて複数回 処理を行う ϊによってエラー i仃正能力を向上させることができる。例え ば、 ι)ίί記理恕波形デ一夕出力 段は、 ¾なる使川条件を想定して決めら れた浚数極類の理想波形データを有し、出力される理想波形データの種 類は、 E C C回路によりチャネルデ一夕に対する訂正不能なエラーが検 出されたとき切り換え可能にしておく。 このとき、 ディスクから佶報信 号を洱^ み込みしなくも済み、バッファメモリに対するメモリサクセス を行えばよく、 Ρ処理時 ;]を短縮することができる。 If a buffer memory for storing the data converted by the conversion means is provided and the data extracted from the buffer memory is supplied to the waveform detection means, the processing conditions in the waveform detection means can be changed. By performing the processing a plurality of times, the error i correction ability can be improved. For example, ι) 恕 恕 波形 波形 段 段 段 有 し 段 有 し 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段Classes shall be switchable when the ECC circuit detects an uncorrectable error for the channel data. At this time, it is not necessary to read the giant signal from the disk, and it is sufficient to perform the memory access to the buffer memory.
その時のメモリアクセス時問もキャンセルするには、理想波形データ などの条件が予め札]違された波形検出 τ·段を ¾数髓設け、それらを予め 並列動作させ、 エラ一状況に応じて出力を選択すればよい。 即ち、 少な く とも前記理想波形データ出力 段、 ¾ϊ ί手段、 データノ ッファ、 追跡 制御手段、及びチャネルデ一夕出力手段を含む処理手段を並列動作可能 に複数組設ける。更に、 | 記夬々の処理 段に含まれるチャネルデ一夕 出力手段を選択し選択したチヤネルデ一夕出力手段の出力を選択する セレクタと、前記セレクタで選択されたチャネルデ一夕出力手段から出 力されるチャネルデータに対してエラーチェック及び訂正を可能にす ると E C C回路とを設ける。 前記セレクタは、 E C C回路によるチヤネ ルデ一夕に対する訂正不能なエラーが検出されたとき選択状態が切り
換え可能にされる。 In order to cancel the memory access time at that time, ideal waveform data and other conditions are preliminarily changed. Waveform detection τ · stages are provided in several stages, these are operated in parallel in advance, and output is performed according to error conditions. You just have to select That is, at least a plurality of sets of processing means including the ideal waveform data output stage, the ¾ϊ means, the data buffer, the tracking control means, and the channel data output means are provided so as to operate in parallel. In addition, a selector for selecting the channel data output means included in the processing stages of each of the following and selecting the output of the selected channel data output means, and the output from the channel data output means selected by the selector. An ECC circuit is provided to enable error checking and correction for channel data. The selector switches the selection state when an uncorrectable error in the channel by the ECC circuit is detected. Made interchangeable.
前記夫々の処理手段に含まれる理想波形データ出力手段が出力する 理想波形は、 例えば、 使用雰囲気温度や圧力等に関する相違した使用条 件の想定の下で決められる異なったデ一夕である。 図面の簡単な説明 The ideal waveforms output by the ideal waveform data output means included in each of the processing means are different data determined under the assumption of different use conditions relating to, for example, use atmosphere temperature and pressure. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明に係る情報再生装置を適用したハードディスク装置 のリードチャネルを例示したプロック図である。 FIG. 1 is a block diagram illustrating a read channel of a hard disk device to which an information reproducing apparatus according to the present invention is applied.
第 2図は検出ゲ一ト回路の具体例を示す論理回路図である。 FIG. 2 is a logic circuit diagram showing a specific example of the detection gate circuit.
第 3図は理想波形データの一例を第 4図と共に示す説明図である。 FIG. 3 is an explanatory diagram showing an example of ideal waveform data together with FIG.
第 4図は理想波形デー夕の一例を第 3図と共に示す説明図である。 FIG. 4 is an explanatory diagram showing an example of ideal waveform data together with FIG.
第 5図は検出ゲ一卜の出力を受けるデコーダの具体例を示す論理回 路図である。 FIG. 5 is a logic circuit diagram showing a specific example of a decoder receiving the output of the detection gate.
第 6図は相関デ一夕バッファに保持された相関データの表現形式を 例示する説明図である。 FIG. 6 is an explanatory diagram illustrating an expression format of the correlation data held in the correlation buffer.
第 7図は最小パス追跡制御回路による処理手順を模式的に示すフ口 一チヤ一トである。 FIG. 7 is a flowchart schematically showing a processing procedure by the minimum path tracking control circuit.
第 8図は最小パス追跡制御回路による処理の具体例を示すフローチヤ 一卜である。 FIG. 8 is a flowchart showing a specific example of processing by the minimum path tracking control circuit.
第 9図はチャネルデータ出力回路の動作例を示す説明図である。 第 1 0図はチャネルデータの再生回路部分をアナログ回路を主体に 構成した例を示すプロック図である。 FIG. 9 is an explanatory diagram showing an operation example of the channel data output circuit. FIG. 10 is a block diagram showing an example in which a channel data reproducing circuit is mainly composed of an analog circuit.
第 1 1図はチャネルデータの再生回路部分をソフ トウェア処理可能 に構成した例を示すブロック図である。 FIG. 11 is a block diagram showing an example in which a channel data reproducing circuit is configured to be capable of performing software processing.
第 1 2図は量子化データを蓄えるバッファメモリを有する例を示す プロック図である。
第 1 3図は情報信号を伝送媒体から受け取るような通信制御用の装 置に適用した例を示すプロック図である。 発明を実施するための最良の形態 FIG. 12 is a block diagram showing an example having a buffer memory for storing quantized data. FIG. 13 is a block diagram showing an example in which the present invention is applied to a communication control device that receives an information signal from a transmission medium. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図には本発明に係る情報再生装置を適用したハードディスク装 置とそのリードチャネルが例示される。 FIG. 1 illustrates a hard disk device to which the information reproducing apparatus according to the present invention is applied and its read channel.
ハードディスク装置は、 ti 報が記録される磁気ディスク 1、 前記磁気 ディスク 1への書き込み ·読み出しを行うへッ ド 2、 前記へッ ド 2から の信 及びへッ ド 2への信号を制御する半導体集積回路化されたリー ドライ トアンプ 3、 き込み及び読み出しの信号処理を行う半導体集積 回路化されたリードチャンネル 4、前記リードチャンネル 4で再生され たデ一夕のエラーチェックとエラ一訂正が可能な E C C回路 5を内蔵 した卡¾体 回路化されたハ一ドディスクコン トローラ (H D C ) 6 、 ワークメモリ 7、 駆動系制御回路 8、 及び前記駆動系制御回路 8の制御 でディスクモー夕 9やへッ ド組み立て体のへッ ドモ一夕 1 0等を駆動 するパワートランジスタ回路 ( C〇Μ Β〇) 1 1等によって構成される ( ハードディスクコン トローラ 6は図示を省略するホス ト装置とイン夕 フエースされる。 The hard disk drive includes: a magnetic disk 1 on which ti information is recorded; a head 2 for writing / reading to / from the magnetic disk 1; and a semiconductor for controlling a signal from the head 2 and a signal to the head 2. An integrated read / write amplifier 3, a semiconductor integrated read / write channel 4 that performs write and read signal processing, and an error check and error correction of data reproduced in the read channel 4 are possible. A hard disk controller (HDC) 6 with a built-in ECC circuit 5, work memory 7, drive system control circuit 8, and a disk drive 9 under the control of the drive system control circuit 8 It consists of a power transistor circuit (C〇Μ Β〇) 11 etc. that drives the head module 10 etc. of the head assembly (the hard disk controller 6 is not shown) Interfaced with host device.
磁気ディスク 1への書き込み時にはハードディスクコン トロ一ラ 6 から出力されたユーザデ一夕がリードチャネル 4のコード化回路 1 3 でランレングス符号化データとしてのチャネルデ一夕に符号化され、 リ ー ドアンプ 3 及びへッ ド 2 を介 して磁気ディ スク 1 に磁気遷移 (magnetic trans itions) として書き込まれる。 磁気遷移の書き込みに 際してランレングスは固定周波数のクロック信号周期を用いて規定さ れ、 そのクロック信号はコ一ド化回路 1 3の同期信号である。例えば、 リードチャネル 4の周波数シンセサイザ 1 4でクロック信号 2 4とし
て生成されるものを禾 I用する。 When writing to the magnetic disk 1, the user data output from the hard disk controller 6 is encoded into the channel data as run-length encoded data by the encoding circuit 13 of the read channel 4, and the read amplifier 3 And via the head 2 to the magnetic disk 1 as magnetic transitions. When writing the magnetic transition, the run length is specified using a clock signal cycle of a fixed frequency, and the clock signal is a synchronization signal of the coding circuit 13. For example, if the frequency synthesizer 14 of read channel 4 is used as the clock signal 24, Use the one generated by
読み出し時にはデ スク 1からへッ ド 2で読取つてリードライ 卜ァ ンプ 3で増幅された再生波形信号をリードチャネル 4が元のデ一夕に 変換してハードディスクコン トローラ 6に出力する。即ち、 へッ ド 2に よる記録情報の読み取り信号は、予め規定された複数種類のパルス間隔 を持った立ち上がり極性(以下正極性との称する)パルス及び立ち下が り極性 (以下負極性とも称する)パルスの交番性を有する信号とされる ( リードチャンネル 4はその読み取り信号からチャネルデ一夕を再生す る。 このとき、 リードチャンネル 4は P L L回路を用いて読み取り信号 からクロック信号を再生することをしない。リードチャンネル 4で生じ たエラーは E C C回路 5で訂正可能にされる。駆動系制御回路 8は磁気 ディスク 1の回転やへッ ド 2の位置を制御する。 At the time of reading, the read waveform is read from the disk 1 by the head 2 and amplified by the read-amplifier 3, converted by the read channel 4 into the original data and output to the hard disk controller 6. That is, the read signal of the recording information by the head 2 has a rising polarity (hereinafter referred to as positive polarity) pulse and a falling polarity (hereinafter also referred to as negative polarity) having a plurality of types of pulse intervals defined in advance. ( Read channel 4 reproduces the channel data from the read signal. At this time, read channel 4 uses a PLL circuit to reproduce the clock signal from the read signal.) No. The error generated in the read channel 4 can be corrected by the ECC circuit 5. The drive system control circuit 8 controls the rotation of the magnetic disk 1 and the position of the head 2.
前記り一ドチャンネル 4は、前記コード化回路 1 3及び周波数シンセ サイザ 1 4の他に、 ォ一卜ゲインコントローラ (A G C ) 1 6、 フィル 夕 1 7、 A / D変換回路 (A D C ) 1 8、 検出ゲート回路 1 9、 デコー ダ 2 0、 コード復号回路 2 1、 及びサーボ回路 2 2を有する。 The read channel 4 includes an automatic gain controller (AGC) 16, a filter 17, and an A / D conversion circuit (ADC) 18 in addition to the coding circuit 13 and the frequency synthesizer 14. , A detection gate circuit 19, a decoder 20, a code decoding circuit 21, and a servo circuit 22.
前記 A G C 1 6はリードライ トアンプ 3から出力される再生波形信 号の振幅を一定に制御し、前記フィル夕 1 7は周波数スべク トルのナイ キス ト周波数内への絞り込みと、高周波ノイズ成分のカツ 卜等を行う。 A D C 1 8は前記フィル夕の出力を非同期でサンプリングして量子化 する。 量子化ビッ 卜数は例えば 6ビッ トである。 ここで非同期とは、 A D C 1 8に入力される信号から P L L回路などを用いてクロック信号 を再生せず、その再生クロック信号に同期してサンプリングしないとい うことである。 A D C 1 8のサンプリングク口ック信号は、 例えば、 前 記周波数シンセサイザ 1 4で生成されるコ一 ;'化のために用いられる クロック信号と同じクロック信号 2 4とされる。
前記再生波形信号は正極性パルスと負極性パルスの交番波形信号で あるから、前記非同期サンプリングで量子化された A D C 1 8の出力デ 一夕 2 7は前記パルス毎に値が上下するデータ列となる。前記検出ゲ一 ト回路 1 9は前記データ列の上下関係を検出して解析するものであり、 各パルスのピーク検出等によってパルスの位置を正確に求める処理を 行うものではない。 The AGC 16 controls the amplitude of the reproduced waveform signal output from the read-write amplifier 3 at a constant level, and the filter 17 narrows down the frequency spectrum to within the Nyquist frequency and reduces the frequency noise component. Perform cutting, etc. The ADC 18 asynchronously samples and quantizes the output of the filter. The number of quantization bits is, for example, 6 bits. Here, “asynchronous” means that a clock signal is not reproduced from a signal input to the ADC 18 using a PLL circuit or the like, and sampling is not performed in synchronization with the reproduced clock signal. The sampling clock signal of the ADC 18 is, for example, the clock signal 24 generated by the frequency synthesizer 14 and the same as the clock signal used for the conversion. Since the reproduced waveform signal is an alternating waveform signal of a positive polarity pulse and a negative polarity pulse, the output data 27 of the ADC 18 quantized by the asynchronous sampling is a data train whose value rises and falls for each pulse. Become. The detection gate circuit 19 detects and analyzes the vertical relationship of the data train, and does not perform processing for accurately determining the position of a pulse by detecting the peak of each pulse.
前記検出ゲート 1 9及びデコーダ 2 0は、 A D C 1 8でサンプリング されて ^子化されたデータと、前記正極性パルス及び負極性パルスの理 想波形のデータとの差分に^づいて前記^報信号(ここでは A D C 1 8 に入力されるフ ィル夕出力波形を意味する) 2 6のパルス波形(もしく はパルス問隔) が最も近似する理想波形を顺次決定し、 決定された理想 波形のパルス問隔に応ずるビッ ト列を形成していく、波形検出手段を実 現する。 即ち、 波形検出 段は、 ½報信 2 6の波形に最も近い理想波 形を選ぶ車によって、' 報信^ 2 6に含まれる交 Φパルスのパルス間隔 を検出する。前記検出ゲート 1 9では佶報信 2 6のパルス波形若しく はパルス問隔がどの理恕波形に Sも近いか示すための尺度として祀関 デ一夕を前記クロック信 2 4に同期して 1サイクル毎に生成する。前 記デコーダ 2 0は、 クロック信 ¾ 2 4の複数サイクル分、 ¾想波形毎の 前記相関データをシフ トしながら相関デ一夕バッファに保持し、保持さ れている相関デ一夕をパルスの極性毎に迪りながら最小のものを抽出 し、順次抽出された理想波形のパルス問隔に応ずるビッ ト列をチャネル データ (デコーダ出力) 2 8として出力する。 前記コード復号回路 2 1 はデコーダ 2 0から供給されるチャネルデータ 2 8をユーザデータ形 式に俊号する。 The detection gate 19 and the decoder 20 perform the above-mentioned reporting based on the difference between the data sampled and converted by the ADC 18 and the ideal waveform data of the positive pulse and the negative pulse. Signal (meaning the filter output waveform input to ADC 18 here) 26 The pulse waveform (or pulse interval) of 26 is ideally determined to be the closest approximation to the ideal waveform, and the determined ideal It implements waveform detection means that forms a bit string that corresponds to the pulse interval of the waveform. That is, the waveform detection stage detects the pulse interval of the alternating Φ pulse included in the 'report ^ 26' by a car that selects the ideal waveform closest to the waveform of the report 26. The detection gate 19 synchronizes the clock signal 24 with the clock signal 24 as a scale to indicate whether the pulse waveform or pulse interval of the signal signal 26 or the pulse interval is close to any desired waveform. Generated every cycle. The decoder 20 holds the correlation data for a plurality of cycles of the clock signal 24 in the correlation buffer while shifting the correlation data for each ideal waveform, and pulses the held correlation data in a pulse. The smallest one is extracted for each polarity of, and a bit string corresponding to the pulse interval of the sequentially extracted ideal waveform is output as channel data (decoder output) 28. The code decoding circuit 21 converts the channel data 28 supplied from the decoder 20 into a user data format.
第 2図には前記検出ゲ一卜回路 1 9の具体例が示される。ここでは、 情報信号 2 6が含むパルス間隔は、 各極性において 1〜 5の、 全体で 1
0種類とする。以下の具体例ではこれを前提とする。前記検出ゲート回 路 19は、デ一夕入力バッファ 30及び波形検出回路 WD 1〜WD 10 を有する。 FIG. 2 shows a specific example of the detection gate circuit 19. Here, the pulse interval included in the information signal 26 is 1 to 5 for each polarity, There are 0 types. This is assumed in the following specific examples. The detection gate circuit 19 has a data input buffer 30 and waveform detection circuits WD1 to WD10.
前記データ入力バッファ 30は、 前記パルス間隔の最大間隔数 (= 5 ) よりも 2以上大きな段数、 例えば 8段のラッチ F F 1〜F F 8を直 列に有し、各ラッチ F F 1〜F F 8はクロック信号 24に同期してラッ チ動作を行い、初段に前記 AD C 18で変換されたデータ 27を入力す る。 図ではデータが 1ビッ 卜のように示されているが、 前述の如くデ一 夕 27は 6ビッ トであり、各構成要素は 6ビッ 卜並列処理に対応する構 成であると理解されたい。 ここで、 前記ラツチ回路 F F 1〜F F 8の段 数は前記パルス間隔の最大問隔数(= 5 ) よりも 3大きい 8段である。 これは、 パルス間隔 5の理想波形デ一夕のデータ数(理想波形に対する 標本点の数) が 8個であることに対応させてある。 ラッチ回路 F F 1〜 F F 8の段数が前記パルス間隔の最大間隔数(= 5 ) よりも 2以上大き ければ、 最大パルス間隔の入力データに対しても、 パルス極性をも判定 可能な範囲に亘つて連続するサンプリングデ一夕をデータ入力バッフ ァ 30の複数個のラツチ回路にラツチして並列出力することが可能に なるからである。 The data input buffer 30 has two or more stages, for example, eight stages of latches FF1 to FF8 larger than the maximum number of pulse intervals (= 5) in series, and each of the latches FF1 to FF8 has The latch operation is performed in synchronization with the clock signal 24, and the data 27 converted by the ADC 18 is input to the first stage. Although the data is shown as one bit in the figure, as described above, data 27 is 6 bits, and it should be understood that each component has a configuration corresponding to 6-bit parallel processing. . Here, the number of stages of the latch circuits F F1 to F F8 is eight, which is three times larger than the maximum inter-pulse interval (= 5). This corresponds to the fact that the number of data (the number of sampling points for the ideal waveform) in the ideal waveform with pulse interval 5 is eight. If the number of stages of the latch circuits FF1 to FF8 is at least two times greater than the maximum number of pulse intervals (= 5), the pulse polarity can be determined for input data at the maximum pulse interval. This is because continuous sampling data can be latched to a plurality of latch circuits of the data input buffer 30 and output in parallel.
前記波形検出回路 WD 1〜WD 10は、理想波形データ出力手段とし ての理想波形データバッファ DB 1 a〜DB 10 a、 D B 1 b〜DB 1 O bと、 演算回路 EX 1〜EX 10とを有する。 The waveform detection circuits WD1 to WD10 are connected to ideal waveform data buffers DB1a to DB10a, DB1b to DB1Ob as ideal waveform data output means, and arithmetic circuits EX1 to EX10. Have.
前記理想波形データバッファ081 &〜0810 &、0811)〜08 10 bは、前記正極性パルス及び負極性パルスの理想波形のデータをパ ルス間隔毎に且つ理想波形データの標本点を相互に半ビツチずらして 別々に保有する。各理想波形デ一夕の標本点ピッチは前記ク口ック信号 24の周期にほぼ一致されている。換言すれば、 前記 AD C 18は前記
理想波形のデ一夕の標本点ピッチに応ずる周期のクロック信号 24に 同期して前記情報信号 26を量子化する。 The ideal waveform data buffers 081 & to 0810 &, 0811) to 0810b store the ideal waveform data of the positive polarity pulse and the negative polarity pulse at every pulse interval and half-bit the sample points of the ideal waveform data with each other. Stagger and hold separately. The sampling point pitch of each ideal waveform is almost coincident with the period of the peak signal 24. In other words, the ADC 18 is The information signal 26 is quantized in synchronization with a clock signal 24 having a cycle corresponding to the sampling point pitch of the ideal waveform.
前記理想波形データの一例は第 3図及び第 4図に示され、 同図の ( A)〜 (E)はパルス間隔が 1〜 5の理想波形及びそのデ一夕を順次 示している。理想波形上に離散的に示された〇印の点が理想波形データ を意味する。 前記 (A;) 〜 (E) の夫々の左欄が正極性パルス、 右欄が 1¾極性パルスのデータを示し、 (A) ~ (E) の夫々の上欄と下欄で標 本ピッチが半ピッチ ( 180° ) ずらされている。 第 3図及び第 4図に 示される p i tがパルス問隔である。特に制限されないが、 各理想波形 デ一夕はパルス問隔の筛囲に含まれる地点とその前後に 2点のサンプ リングボイン 卜を有するデータとされ、パルス間隔 1の理想波形に関す る理想波形データは 4点のデータを有し、順次パルス間隔がーつ増える 毎にデータ点が一つ増えるようになつている。 An example of the ideal waveform data is shown in FIGS. 3 and 4, in which (A) to (E) show an ideal waveform with a pulse interval of 1 to 5 and its sequence. The points marked with 〇 discretely on the ideal waveform mean the ideal waveform data. The left column of each of the above (A;) to (E) shows the data of the positive polarity pulse, the right column shows the data of the 1¾ polarity pulse, and the sample pitches in the upper and lower columns of (A) to (E) respectively. It is shifted by a half pitch (180 °). Pit shown in FIGS. 3 and 4 is the pulse interval. Although not particularly limited, each ideal waveform is considered to be data having two sampling points before and after a point included in a pulse interval, and an ideal waveform related to an ideal waveform with a pulse interval of 1. The data has four data points, and each time the pulse interval increases, the data point increases by one.
理想波形データとして標本ピッチが半ピッチずれたデ一夕を用意す るのは次の理由による。^報信号から再生可能な再生クロック信号に対 する前記非同期のクロック信号 24の位相差は最大で 1 80 ° である から、 これを考慮して上記理想波形データを用意しておけば、 非同期の クロック信号 24に前記洱生ク口ック信号と位相差を生じても、最も近 似する理想波形デ一夕の抽出には実質的な影響を与えないからである。 前記理想波形データバッファ DB l a〜DB l 0 a、 DB l b〜DB The reason why a sample pitch shifted by a half pitch is prepared as ideal waveform data is as follows. Since the phase difference of the asynchronous clock signal 24 with respect to the reproduced clock signal reproducible from the broadcast signal is a maximum of 180 °, if the ideal waveform data is prepared in consideration of this, the asynchronous This is because even if a phase difference occurs between the clock signal 24 and the raw clock signal, it does not substantially affect the extraction of the most similar ideal waveform data. The ideal waveform data buffer DBla to DB10a, DBlb to DB
10 bは、第 3図及び第 4図に示された対応する理想波形データを各サ ンプリングボイン卜の並びで並列出力する。例えば理想波形デ一夕バッ ファ D B 1 aは第 2図及び第 3図に例示されるように理想波形デ一夕 D 1〜D 4を並列出力する。 10b outputs the corresponding ideal waveform data shown in FIG. 3 and FIG. 4 in parallel with the arrangement of each sampling point. For example, the ideal waveform data buffer DB1a outputs the ideal waveform data D1 to D4 in parallel as illustrated in FIG. 2 and FIG.
演算回路 EX 1〜EX 10は、 前記理想波形データバッファ DB 1 a〜D The arithmetic circuits EX 1 to EX 10 are provided with the ideal waveform data buffers DB 1 a to D
B 10a、 DB lb〜DB 10 bから出力される各理想波形デ一夕と前記
データ入力バッファ 30のラツチ回路 F F 1〜F F 8から並列出力さ れるラッチデータとの差分に基づいて前記情報信号のパルス波形に対 する夫々の理想波形の近似の状態を示す相関データ S ( 1 )〜 S ( 10 ) を演算する。例えばその詳細が例示される演算回路 EX 1において、 理 想波形デ一夕バッファ DB 1 a側にはその出力と対応するラツチ回路 F F 1〜: F F 4の出力との差分を夫々演算する 4個の減算器 S UB a、 減算器 S UB aの出力を自乗する 4個の自乗器 MU L a及び自乗器 M UL aの出力を順次加算する 3個の加算器 ADD aを有する。同様に理 想波形データバッファ D B 1 b側にはその出力と対応するラツチ回路 F F 1〜FF 4の出力との差分を夫々演算する 4個の減算器 SUB b、 減算器 S UB bの出力を自乗する 4個の自乗器 MU L b及び自乗器 M U L bの出力を順次加算する 3個の加算器 A D D bを有する。この例に よれば、 前記加算器 ADD a, AD D bによる加算結果の値が小さいほ ど入力が理想波形に近似していることを意味する。加算器 A D D aによ る換算結果と前記加算器 AD D bによる加算結果とはコンパレー夕 C MPで比較され、その比較結果に基づいて小さい方の加算結果がセレク 夕 S E Lで選択され、 選択された加算結果が相関デ一夕 S ( 1 ) として 出力される。 その他の演算回路 EX 2〜EX 10の詳細は、 特に図示は しないが、演算回路 EX 1に対してデ一夕入力バッファ 30からの入力 が順次一つずつ増え、 これに応じて減算回路 SUB a, SUBb、 自乗 器 MULa, MU L b及び加算回路 AD D a、 ADD bが順次一対ずつ 増加した構成を有する。 Each ideal waveform output from B 10a, DB lb to DB 10 b Correlation data S (1) indicating the approximate state of each ideal waveform with respect to the pulse waveform of the information signal based on the difference from the latch data output in parallel from the latch circuits FF1 to FF8 of the data input buffer 30. Calculate ~ S (10). For example, in the arithmetic circuit EX 1 whose details are exemplified, the ideal waveform data buffer DB 1 a has four arithmetic circuits each for calculating the difference between its output and the corresponding latch circuits FF 1 to FF 4. And the three adders ADDa for sequentially adding the outputs of the four squarers MULa and the squarer MULa for squaring the output of the subtractor SUBa. Similarly, the outputs of the four subtractors SUB b and S UB b that calculate the difference between the output of the ideal waveform data buffer DB 1 b and the outputs of the corresponding latch circuits FF 1 to FF 4 are provided on the side of the ideal waveform data buffer DB 1 b. It has three adders ADDb for sequentially adding the outputs of the four squarers MULb and MULb squared. According to this example, the smaller the value of the addition result by the adders ADDa and ADDb, the closer the input is to the ideal waveform. The conversion result obtained by the adder ADDa and the addition result obtained by the adder ADDb are compared by a comparator CMP, and the smaller addition result is selected by the selector SEL based on the comparison result, and is selected. The added result is output as correlation data S (1). Although the details of the other arithmetic circuits EX2 to EX10 are not particularly shown, the input from the data input buffer 30 is sequentially increased one by one with respect to the arithmetic circuit EX1, and the subtraction circuit SUB a , SUBb, squarers MULa, MULb, and adders ADDa, ADDb are sequentially increased in pairs.
第 5図には前記デコーダ 20の詳細な一例が示される。デコーダ 20 は、 相関デ一夕バッファ RD B、 最小パス追跡制御回路 L P S、 及びチ ャネルデ一夕出力回路 S RBを有する。 FIG. 5 shows a detailed example of the decoder 20. The decoder 20 has a correlation data buffer RDB, a minimum path tracking control circuit LPS, and a channel data output circuit SRB.
相関データバッファ R D Bは、検出ゲ一ト 1 9で演算された相関デー
夕 S ( 1 ) ~S ( 1 0 ) を初段に入力して順次クロック信号 2 4に同期 しながらシフ 卜 して保持する直列 5段のラッチ回路 f f 1〜 f f 5に よって構成された 1 0本のシフ 卜レジス夕を有する。この相関デ一夕バ ッファ RD Bは、 検出ゲート 1 9で演算された相関デ一夕 S ( 1 ) 〜S ( 1 0 )を前記パルス問隔の最大値 5に相当する前記クロック信号 2 4 の 5サイクル分順次シフ トして保持することができる。 The correlation data buffer RDB stores the correlation data calculated in the detection gate 19. Evening S (1) to S (10) are input to the first stage, and sequentially shifted in synchronization with the clock signal 24 to be held while being shifted. It has a book shift registry. The correlation buffer RDB calculates the correlation data S (1) to S (10) calculated by the detection gate 19 by using the clock signal 24 corresponding to the maximum value 5 of the pulse interval. It can be shifted and held sequentially for five cycles.
相関データバッフ ァ R D Bに保持された相関データは第 6図に例示 するように、 S ( 1 , 1 ) 〜S ( 1 0 , 5 ) と 現する。 相関デ一夕バ ッファ R D Bは、クロック信号 2 4の 5サイクル分速続する 5個の相関 データを各理想波形 ©に冇するから、 データバッファ RD B内には そのときの^ ffi信 のパルス問隔に応じて^小値を採る相 1¾]データが 必ず出現することになる。 ¾するに、 ½裉信 のパルス問隔の S大値が 5なので、 5クロックサイクル分の相関デ一夕 S ( l、 1 ) 〜S ( 1 0、 5 ) の中には必ず 1つ 小になるべきデ一夕があり、 それを相関データ ノ ッ フ ァ R D Bが保持する。 The correlation data held in the correlation data buffer RDB is represented as S (1,1) to S (10,5) as illustrated in FIG. The correlation buffer RDB outputs five correlation data that last for five cycles of the clock signal 24 to each ideal waveform ©, so the pulse of the ^ ffi signal at that time is stored in the data buffer RDB. Depending on the interval, data that takes a small value 1¾] will always appear. In short, since the S value of the pulse interval of the signal is 5, the correlation data S (l, 1) to S (10, 5) for 5 clock cycles is always one small. There is a time to become, and this is held by the correlation data buffer RDB.
S小パス追跡制御回路 L P Sは^ 5図に示されるように、前記相関デ —夕バッファ RD Bが保 している 5 0胸の相| デ一夕 S ( 1 , 1 ) 〜 S ( 1 0 , 5 ) を並列的に人力する。 As shown in Fig. 5, the S small path tracking control circuit LPS calculates the correlation data—the 50-phase of the chest held by the buffer RDB | the data S (1, 1) to S (1 0 , 5) in parallel.
第 Ί図には最小パス追跡制御回路 L P Sによる処理手順が校式的に 示される。最小パス追跡制御回路 L P Sは、 前記相関データバッファ R D Bに保持されている一方の極性のパルスに関する相関データの中で 最も小さい値を示す祀関デ一夕を抽出する。例えば第 7図の相関データ S (m, n) を抽出する。 抽出された相関データ S (m, n) に対応す る理想波形がそのときの†,報信号に含まれていると見なすことができ るから、 当該相関データ対応の理想波形のパルス間隔 (検出パルス間 隔) 数分のクロックサイクルを経れば、 その次の極性逆転に係る理想パ
ルス波形を特定可能になる。したがって、前記抽出した相関データ S (m, n)に対応する理想波形の検出パルス間隔分だけ相関デ一夕バッファ R D B内で相関デ一夕がシフ トされるのを待って他方の極性のパルスに 関する相関デ一夕の中で最も値に小さな相関データ S ( i, j ) を抽出 する処理を行う。上記最小値の相関デ一夕を抽出する処理を繰り返すこ とによって最小値の相関データを迪つていく。最小パス追跡制御回路 L P Sによる相関データの抽出は相関データバッファ RD B内の時間的 に前後する 3クロックサイクル ( 3 c y c )分のデータ範囲内で行うか ら、非同期のクロック信号と前記再生クロック信号との間に前記周波数 誤差があっても最も近似する理想波形データの抽出には実質的な影響 を与えない。 Fig. 2 shows the processing procedure of the minimum path tracking control circuit LPS in a categorical manner. The minimum path tracking control circuit LPS extracts the ritual data showing the smallest value among the correlation data of the pulses of one polarity held in the correlation data buffer RDB. For example, the correlation data S (m, n) in FIG. 7 is extracted. Since the ideal waveform corresponding to the extracted correlation data S (m, n) can be considered to be included in the †, report signal at that time, the pulse interval (detection After several clock cycles, the ideal pulse for the next polarity reversal This makes it possible to specify a loose waveform. Therefore, after the correlation data is shifted in the correlation data buffer RDB by the detection pulse interval of the ideal waveform corresponding to the extracted correlation data S (m, n), the pulse of the other polarity is waited. A process is performed to extract the correlation data S (i, j) having the smallest value in the correlation data for. By repeating the process of extracting the minimum correlation data, the minimum correlation data is obtained. Since the extraction of the correlation data by the minimum path tracking control circuit LPS is performed within a data range of three clock cycles (3 cyc) that is temporally successive in the correlation data buffer RDB, the asynchronous clock signal and the reproduced clock signal are used. Even if the frequency error exists between the two, it does not substantially affect the extraction of the most approximated ideal waveform data.
最小パス追跡制御回路 L P Sは上述のように順次決定された理想波 形のパルス間隔に応ずるビッ ト列を出力する。前記ビッ ト列は理想波形 のパルス間隔に従って予め決定してあり、 特に制限されないが、 第 3図、 第 4図に例示されるように、 パルス間隔 1の場合には " 1 "、 パルス問 隔 2の場合には "0 1"、 パルス問隔 3の場合には "00 1"、 パルス 】隔 4の場合には "000 1"、 パルス問隔 5の場合には "0000 1" とされる。 要するに、 パルス問隔に応じて論理値 " 1 "の前に挿入され る論理値 "0"の個数が決定される。 The minimum path tracking control circuit LPS outputs a bit string corresponding to the pulse interval of the ideal waveform sequentially determined as described above. The bit string is determined in advance in accordance with the pulse interval of the ideal waveform, and is not particularly limited. However, as illustrated in FIGS. 3 and 4, when the pulse interval is 1, "1" "2" is "0 1", "Pulse interval 3" is "00 1", "Pulse interval" 4 is "000 1", and "Pulse interval 5" is "0000 1". You. In short, the number of logical values "0" inserted before the logical value "1" is determined according to the pulse interval.
第 8図には最小パス追跡制御回路 L P Sによる処理の具体例が示され る。先ず、 初期状態では前の値が無いのでどこから始めるのかを決めな ければならない。このため相関データバッファ RD Bに格納された 5 X 10状態の相関デ一夕の内、 最小のものを探す。 第 8図の例では (A) に例示されるように相関データ 1 (第 6図の S (2 , 2 ) ) が抽出され る。この相関デ一夕 1は正極性のパルス間隔 2の相関データであるから、 これ応ずるビッ ト列 "0 1 " が出力され、 更に、 相関データが右方向に
2回シフ ト動作されるのを待つ (B, C) 。 FIG. 8 shows a specific example of the processing by the minimum path tracking control circuit LPS. First, there is no previous value in the initial state, so you have to decide where to start. For this reason, the smallest one of the 5 × 10 correlation data stored in the correlation data buffer RDB is searched. In the example of FIG. 8, correlation data 1 (S (2, 2) in FIG. 6) is extracted as illustrated in (A). Since the correlation data 1 is the correlation data with the pulse interval 2 of the positive polarity, the corresponding bit string "0 1" is output, and the correlation data is further shifted rightward. Wait for the shift operation to be performed twice (B, C).
次に、 第 8図の (C) に例示されるように、 パルス間隔 2だけずれた 相関データ S ( X , 2 ) の列の前後 1列ずつを含めた負極性側の 1 5個 の相関データの中から最小値を選ぶ。前述のように ± 1クロックの誤差 を許すため、当該ビッ 卜の前後 1ビッ 卜の相関データについても最小デ —夕の探索対象にされる。 図の例では、 相関デ一夕 3 (第 6図の S ( 9 : 2 ) ) が抽出される。 抽出された位置が次のビッ 卜の起点になる。 抽出 された相関データ 3は負極性のパルス問隔 4の相関デ一夕であるから、 これ応ずるビッ ト列 " 000 1 " が出力される。 更に、 次の相関データ を抽出するために、 先ず、 相関データが右方向に 4回シフ 卜動作される のを待つ (D, E, F , G) 。 Next, as illustrated in (C) of FIG. 8, 15 correlations on the negative polarity side, including each row before and after the row of correlation data S (X, 2) shifted by pulse interval 2 Select the minimum value from the data. As described above, in order to allow an error of ± 1 clock, the correlation data of one bit before and after the bit is also searched for the minimum data. In the example of the figure, correlation data 3 (S (9: 2) in FIG. 6) is extracted. The extracted position becomes the starting point of the next bit. Since the extracted correlation data 3 is the correlation data of the pulse interval 4 of the negative polarity, the corresponding bit string “000 1” is output. Furthermore, to extract the next correlation data, first wait for the correlation data to be shifted right four times (D, E, F, G).
次に、 第 8図の (G) に例示されるように、 パルス間隔 4だけずれた 相関デ一夕 S (X, 2 ) の列の前後 1列ずつを含めた正極性側の 1 5個 の相閱デ一夕の中から最小値を選ぶ。 図の例では、 相関デ一夕 2 (第 6 図の S ( l , 2 ) ) である。 この相関デ一夕 2は正極性のパルス問隔 1 の相関デ一夕であるから、 これ応ずるビッ ト列 " 1 " が出力され、 更に、 相関データが右方向に 1回シフ ト勁作されるのを待つ (H) 。 Next, as shown in (G) of Fig. 8, 15 positive-side signals including one row before and after each row of correlation data S (X, 2) shifted by 4 pulse intervals Choose the minimum value from the list. In the example shown in the figure, the correlation data is 2 (S (l, 2) in FIG. 6). Since the correlation data 2 is the correlation data of the pulse interval 1 of the positive polarity, the corresponding bit string “1” is output, and the correlation data is shifted once to the right. (H).
次に、 第 8図の (H) に例示されるように、 パルス間隔 1だけずれた 相関データ S (x, 2 ) の列の前後 1列ずつを含めた負極性側の 1 5個 の相関デ一夕の中から最小値を選ぶ。 図の例では、 相関データ 3 (第 6 図の S ( 6, 2 ) ) である。 この相関デ一夕 3は負極性のパルス間隔 2 の相関デ一夕であるから、 これ応ずるビッ ト列 " 0 1 " が出力され、 更 に、 相関データが右方向に 2回シフ ト動作されるのを待つ ( I , J ) 。 そして、 第 8図の (J) に例示されるように、 パルス間隔 2だけずれ た相関データ S ( X, 2 ) の列の前後 1列ずつを含めた正極性側の 1 5 個の相関データの中から最小値を選ぶ。 図の例では、 相関データ 2 (第
6図の S ( 3 , 2 ) ) である。 この相関デ一夕 2は正極性のパルス間隔 3の相関データであるから、 これ応ずるビッ ト列 " 0 0 1 "が出力され る。 以下、 図示は省略するが、 上記同様の処理を繰り返して最小相関デ 一夕の抽出が継続される。 Next, as illustrated in (H) of Fig. 8, 15 correlations on the negative polarity side, including each row before and after the row of correlation data S (x, 2) shifted by 1 pulse interval, are shown. Choose the minimum value from the night. In the example shown in the figure, the correlation data is 3 (S (6, 2) in FIG. 6). Since the correlation data 3 is a correlation data with the pulse interval 2 of the negative polarity, the corresponding bit string “0 1” is output, and the correlation data is shifted twice to the right. Wait for it to go (I, J). Then, as illustrated in (J) of FIG. 8, 15 correlation data on the positive polarity side including each row before and after the row of correlation data S (X, 2) shifted by pulse interval 2 Choose the minimum value from. In the example shown, the correlation data 2 (No. This is S (3, 2)) in Fig. 6. Since the correlation data 2 is the correlation data of the pulse interval 3 of the positive polarity, the corresponding bit string “001” is output. Hereinafter, although illustration is omitted, the same processing as above is repeated to continue the extraction of the minimum correlation data.
第 9図には前記チャネルデータ出力回路 S R Bの動作例が示される。 チャネルデータ出力回路 S R Bは、最小パス追跡制御回路 L P Sから理 想波形のパルス間隔に応じて出力されるビッ ト列を、右詰めで順次シフ ト入力するシフ トレジス夕によって構成され、入力が 8ビッ ト以上にな つたところで 8ビッ トを切り出してチャネルデータとして出力し、残り のビッ トを右詰めにする。 第 8図の例に従えば、 最小パス追跡制御回路 L P Sは、 順次ビッ ト列 " 0 1 " 、 " 0 0 0 1 " 、 " 1 "、 " 0 1,, を 出力し、 これをシリアル ·シフ ト入力するチャネルデータ出力回路 S R Bは、 8ビッ トのビッ ト列 " 0 1 0 0 0 1 1 0 " を切り出し、 余ったビ ッ ト " 1 "は次回出力するチャネルデ一夕の先頭になるようにシフ 卜さ れる。 FIG. 9 shows an operation example of the channel data output circuit SRB. The channel data output circuit SRB is composed of a shift register that sequentially shifts the bit string output from the minimum path tracking control circuit LPS according to the pulse interval of the ideal waveform, right-justified, and has an 8-bit input. When the number of bits exceeds the limit, 8 bits are cut out and output as channel data, and the remaining bits are right-justified. According to the example of FIG. 8, the minimum path tracking control circuit LPS sequentially outputs bit strings “01”, “00001”, “1”, “01”, and serially outputs them. The shift-input channel data output circuit SRB cuts out the 8-bit bit string "0 1 0 0 0 1 1 0", and the surplus bit "1" becomes the beginning of the next channel data output It is shifted as follows.
以上説明したリ一ドチャネル 4によれば以下の作用効果を得る事が できる。 According to the lead channel 4 described above, the following operation and effect can be obtained.
〔 1〕正極性パルスと負極性パルスが交番され複数種類のパルス間隔を 有する情報信号 2 6からそのパルス間隔に応ずるビッ ト列のチャネル データ 2 8を再生するとき、 A D C 1 8で量子化されたデータと前記理 想波形データ出力手段から出力される各理想波形デ一夕との差分に基 づいて前記情報信号のパルス波形若しくはパルス間隔に最も近似する 理想波形を検出して行く。即ち、 情報信号に含まれる交番パルスのパル ス間隔を、情報信号の波形に最も近い理想波^を選ぶ事によって検出す る。 したがって、 情報信号のピーク検出を行う事を要しない。 [1] When the positive polarity pulse and the negative polarity pulse are alternated and the channel data 28 of the bit string corresponding to the pulse interval is reproduced from the information signal 26 having a plurality of types of pulse intervals, it is quantized by the ADC 18. An ideal waveform closest to the pulse waveform or pulse interval of the information signal is detected based on the difference between the obtained data and each ideal waveform data output from the ideal waveform data output means. That is, the pulse interval of the alternating pulse included in the information signal is detected by selecting the ideal wave ^ closest to the waveform of the information signal. Therefore, it is not necessary to detect the peak of the information signal.
更に、パルスに対して単位時間毎若しくは 1 ビッ ト毎にパルスの有無
を判定する場合には P L L回路によってサンプリングポイン 卜の精度 を上げる必要がある力 s、上記手段では情報信号のパルス波形若しくはパ ルス間隔に最も近い理想波形を選ぶ事によって情報信号 2 6に含まれ る交番パルスのパルス問隔を検出するものであるから、サンプリングポ イン 卜の精度を上げる事は必須条件ではない。 このため、 情報信号 2 6 から同期クロックを再生するための P L L回路を用いる必要はない。 In addition, the presence / absence of a pulse per unit time or per bit for the pulse In order to judge, the force required to increase the accuracy of the sampling point by the PLL circuit s.In the above means, the information signal 26 is included in the information signal 26 by selecting the pulse waveform of the information signal or the ideal waveform closest to the pulse interval. It is not an essential condition to improve the accuracy of sampling points because it detects the pulse interval of alternating pulses. For this reason, it is not necessary to use a PLL circuit for reproducing the synchronous clock from the information signal 26.
P L L回路を川いる必要がないから、磁気ディスクへの記録密度及び トラック密度 '大、 ^速アクセスによるデ一夕転送レ一卜の高速化に対 し、 バース トエラ一を生ずる處を^然に防止する:' Jiができる。 Since there is no need to use a PLL circuit, the recording density and track density of the magnetic disk are high, and the need for a high-speed access to speed up the data transfer rate, while avoiding the occurrence of a burst error. Prevent: 'Ji can.
〔2〕¾記パルス問隔の ^人問隔数よりも 2以上大きな段数のラツチ段 を直列に有するデータ入力バッファに前記 A D C 1 8で S子化された データを入力する。ラツチ段の段数は前,记パルス問 Ρ の ig大^隔数より も 2以上大きいから、 1¾大パルス ίίί]隔の人力データに対しても、 パルス 極性をも判定可能な範 fflに Πつて速続するサンプリ ングデ一夕をデー 夕入力バッファの複数 lのラツチ回路にラツチして並列出力すること が可能になる。 [2] (1) In the pulse interval, input the data converted into the S-child by the ADC 18 into a data input buffer having two or more latch stages in series which are larger than the human interval by at least two. Since the number of latch stages is larger than the ig large interval of the pulse question by two or more, the range ffl where the pulse polarity can be determined even for human-powered data of 1 large pulse It is possible to latch the continuous sampling data to multiple latch circuits in the data input buffer and output them in parallel.
〔 3〕 データバッファ R D Bは前,记波形検出回路 W D 1〜W D [3] Data buffer RDB is before, 记 Waveform detection circuit W D1 to W D
1 0で検出された データを少なく とも前記パルス問隔の s大値に 相当する前記クロック信号サイクル数分順次シフ ト して保持可能であ り、 例えば、 パルス問隔の最大値が 5であるならば、 各理想波形に対し て連続する 5個の相閲デ一夕を苻する相関デ一夕バッファ R D B内に は情報信号が保有するパルス問隔毎に最近似状態の相関データが出現 することになるから、前記相関デ一夕バッファ R D Bに保持されている 相関デ一夕を全て並列入力する最小パス追跡制御回路 L P Sによる相 関データの抽出処理は、相関デ一夕バッファ内 R D Bの時間的に前後す る所定範囲内で行うことができる。 したがって、 非同期のクロック信号
と前記再生クロック信号との間に前記周波数誤差があっても最も近似 する理想波形データの抽出には実質的な影響を与えない。 The data detected at 10 can be sequentially shifted and held by at least the number of clock signal cycles corresponding to the s large value of the pulse interval, for example, the maximum value of the pulse interval is 5. Then, the correlation data in the correlation data buffer RDB that develops five consecutive censor data for each ideal waveform appears in the RDB in the most approximate state for each pulse interval held by the information signal Therefore, the processing of extracting the correlation data by the minimum path tracking control circuit LPS which inputs all the correlation data held in the correlation data buffer RDB in parallel is performed by the time of the RDB in the correlation data buffer RDB. It can be carried out within a predetermined range that can be changed before and after. Therefore, the asynchronous clock signal Even if there is the frequency error between the clock signal and the reproduced clock signal, the extraction of the most approximated ideal waveform data does not have a substantial effect.
〔4〕前記理想波形デ一夕バヅファ D B l a〜D B 1 0 bは正極性及び 負極性のパルス間隔毎に、理想波形デ一夕の標本点が相互に半ピッチず れたデ一夕を別々に出力するから、前記再生クロック信号に対する非同 期のクロック信号の位相差が最大で 1 8 0 ° であることを考慮すれば、 非同期のクロック信号に前記再生クロック信号と位相差を生じても、最 も近似する理想波形データの抽出には実質的な影響を与えない。 [4] The ideal waveform data buffer DB la to DB 10b separates the data in which the sample points of the ideal waveform data are shifted by half a pitch from each other at every positive and negative pulse interval. Considering that the phase difference between the asynchronous clock signal and the reproduced clock signal is 180 ° at the maximum, even if the asynchronous clock signal has a phase difference with the reproduced clock signal, However, there is no substantial effect on the extraction of the closest ideal waveform data.
〔 5〕 上記 〔3〕 〜 〔 4〕 によれば、 情報信号 2 6と非同期のクロック 信号 2 4は情報信号 2 6から再生可能な再生クロック信号と周波数及 び位相の点で誤差を生ずる力 s、その誤差による影響を補償することがで き、 チャネルデータの再生に比較的高い精度を実現できる。 [5] According to the above [3] to [4], the clock signal 24 asynchronous with the information signal 26 is a reproduction clock signal reproducible from the information signal 26 and a force causing an error in frequency and phase. s , the effect of the error can be compensated, and relatively high accuracy can be realized in reproducing channel data.
第 1 0図にはチャネルデータの再生回路部分をアナログ回路を主体 に構成したときの例が示される。前記 A D C 1 8の代わりに、 クロック 信号 2 4に同期して前記情報信号 2 6をサンプリングしてホールドす るサンプル■ホールド回路 1 8 Aを採用する。 その後段には、 アナログ 回路によって構成されたアナログ検出ゲート 1 9 A及びアナログデコ —ダ 2 0 Aが配置される。アナログ検出ゲ一ト 1 9 A及びアナログデコ —ダ 2 0 Aは、前記検出ゲート 1 9及びデコーダ 2 0と同様のァルゴリ ズムによってチャネルデ一夕を再生する。 この例は、 A D C 1 8の電力 消費が特に多い場合等に、 電力消費を低減可能にする一例である。 第 1 1図にはチャネルデ一夕の再生回路部分をソフ トウェア処理可 能に構成したときの例が示される。即ち、 ディジタル信号処理プログラ ムを実行するディジ夕ル信号処理プロセッサ (D S P ) 4 0によって、 前記検出ゲート 1 9及びデコーダ 2 0と同様の処理アルゴリズムによ る検出ゲート機能 1 9 B及びデコーダ機能 2 0 Bを実現するものであ
る。特に図示はしないがコ一ド復号回路 2 1の機能も D S P 4 0で実現 されている。 FIG. 10 shows an example in which a channel data reproducing circuit portion is mainly composed of an analog circuit. Instead of the ADC 18, a sample-and-hold circuit 18A that samples and holds the information signal 26 in synchronization with a clock signal 24 is employed. In the subsequent stage, an analog detection gate 19A and an analog decoder 20A constituted by an analog circuit are arranged. The analog detection gate 19A and the analog decoder 20A reproduce the channel data by the same algorithm as the detection gate 19 and the decoder 20. This example is an example in which power consumption can be reduced when the power consumption of the ADC 18 is particularly large. FIG. 11 shows an example in which the reproducing circuit portion of the channel device is configured to be capable of performing software processing. That is, a digital signal processing processor (DSP) 40 that executes a digital signal processing program provides a detection gate function 19 B and a decoder function 2 by the same processing algorithm as the detection gate 19 and the decoder 20. 0 B You. Although not shown, the function of the code decoding circuit 21 is also realized by the DSP 40.
このとき、 A D C 1 8で変換されたデ一夕 2 7を蓄えるバッファメモ リ 4 1を設け、前記バッファメモリ 4 1から読み出されたデ一夕を D S P 4 0に供給する。 これによれば、 前記検出ゲート機能 1 9 Bに含まれ る処理条件を変えて複数回再生処理を行う事によって、前記 E C C回路 5を利用したエラー訂正能力を向上させることができる。 例えば、 前記 理想波形デ一夕バッファに、異なる使用条件を想定して決められた複数 極類の理想波形データを設け、 E C C回路によりチャネルデータに対す る訂正不能なエラ一が検出されたとき、出力される理想波形デ一夕の種 を切り換え可能にする。切り換えはソフ トウェア処理で行えば良い。 このとき、 磁気ディスク 1から情報信号を再読み込みしなくも済み、 バ ッファメモリ 4 1に対するメモリサクセスを行えばよく、再処理時問を 短縮することができる。 前記複数種類の理想波形は、 例えば、 使用雰囲 気温度や圧力等に関する相違した使用条件の想定の下で決められる異 なったデータである。 At this time, a buffer memory 41 for storing the data 27 converted by the ADC 18 is provided, and the data read from the buffer memory 41 is supplied to the DSP 40. According to this, by performing the reproduction process a plurality of times while changing the processing conditions included in the detection gate function 19 B, the error correction capability using the ECC circuit 5 can be improved. For example, when the ideal waveform data buffer is provided with a plurality of types of ideal waveform data determined assuming different use conditions, and an uncorrectable error in the channel data is detected by the ECC circuit, Enables to switch the seed of the ideal waveform output. Switching can be performed by software processing. At this time, it is not necessary to reread the information signal from the magnetic disk 1, and it is sufficient to perform the memory access to the buffer memory 41, so that the reprocessing time can be reduced. The plurality of types of ideal waveforms are different data determined under the assumption of different use conditions, such as the use atmosphere temperature and pressure.
前記バッファメモリ 4 1の効率的な利 fflはチャネルデ一夕の洱生の The efficient use of the buffer memory 41 is ffl
P L L回路を用いない事によって保証される。即ち、 情報信号 2 6を非 同期サンプリングするから、サンプリングされたデータを 1セクタのよ うな比較的大きな単位でバッファメモリ 4 1に蓄えても、後からそれら データが無駄になることはない。 p L L回路を用いる場合には P L L回 路のロックがはずれると、 デ一夕をバッファに蓄えても、 後からそのデ 一夕は全く使えない。 Guaranteed by not using PLL circuit. That is, since the information signal 26 is asynchronously sampled, even if the sampled data is stored in the buffer memory 41 in a relatively large unit such as one sector, the data is not wasted later. If the PLL circuit is unlocked when using the pLL circuit, even if the data is stored in the buffer, the data cannot be used at all later.
前記バッファメモリを有する構成は D S P 4 0を用いた場合だけに 限定されるものではない。第 1図などに基いて今まで説明した構成にも 当然適用可能である。
第 1 2図にはバッファメモリを有する更に別の例を示す。第 1 1図の 構成において、再処理に際してバヅファメモリ 4 1のメモリアクセス時 間もキャンセルするには、 前記 D S P 4 0と同様の D S P 4 0 A , 4 0 Bを一対設け、 それらを予め並列動作させ、 エラー状況に応じて出力を 選択すればよい。 即ち、 前記 D S P 4 0 A , 4 0 Bの出力を選択して E C C回路 5 Aに供給するセレクタ 4 2を設ける。前記セレクタ 4 2は、 E C C回路 5 Aによるチャネルデ一夕に対する訂正不能なエラ一が検 出されたとき選択状態が切り換えられる。 The configuration having the buffer memory is not limited to the case where the DSP 40 is used. Naturally, the configuration described so far based on FIG. 1 and the like is also applicable. FIG. 12 shows still another example having a buffer memory. In the configuration of FIG. 11, in order to cancel the memory access time of the buffer memory 41 at the time of reprocessing, a pair of DSPs 40A and 40B similar to the DSP 40 is provided, and they are operated in parallel in advance. The output can be selected according to the error situation. That is, a selector 42 is provided for selecting the outputs of the DSPs 40A and 40B and supplying the outputs to the ECC circuit 5A. The selector 42 switches its selection state when an uncorrectable error in the channel data by the ECC circuit 5A is detected.
第 1 3図には前記チャネルデータ再生のための構成を前記情報信号 を伝送媒体から受け取るような通信制御用の装置に適用した例が示さ れる。第 1図との大きな相違点は再生波形の入力が伝送媒体 4 6から供 給されている点である。送信データはコード変換回路 4 4、 送信器 4 5 、 伝送媒体 4 6を介して A G C 1 6に供給される。クロック信号 2 4は周 波数シンセサイザ又は基準クロック発生回路 1 4 Aで生成される。この 場合も、ハ一ドディスク装置と同様に P L L回路でデータに同期した再 生クロック信号を生成して送信信号を量子化する必要はない。その他の 構成は第 1図等と同様ではその詳細な説明は省略する。 FIG. 13 shows an example in which the configuration for reproducing the channel data is applied to a communication control device that receives the information signal from a transmission medium. The major difference from FIG. 1 is that the input of the reproduced waveform is supplied from the transmission medium 46. The transmission data is supplied to the AGC 16 via the code conversion circuit 44, the transmitter 45, and the transmission medium 46. The clock signal 24 is generated by a frequency synthesizer or a reference clock generation circuit 14A. In this case as well, it is not necessary to generate a reproduced clock signal synchronized with the data by the PLL circuit and quantize the transmission signal as in the hard disk device. Other configurations are the same as those in FIG. 1 and the like, and detailed description thereof is omitted.
以上本発明者によってなされた発明を実施例に基づいて具体的に説 明したが本発明はそれに限定されるものではなく、その要旨を逸脱しな い範囲において種々変更可能である。 The invention made by the present inventor has been specifically described based on the embodiments, but the present invention is not limited thereto, and can be variously modified without departing from the gist thereof.
例えば、情報信号が有するパルス間隔の種類は上記の例に限定されず 適宜変更可能である。 これに応じて理想波形デ一夕の種類、 理想波形デ 一夕のデータ数なども変更可能である。 また、 データ入力バッファ 3 0 や相関データバッファ R D Bのラツチ段数 O数も必要条件を満たす範 囲で適宜変更可能である。 また、 相関データの最小値検出のための演算 は差分の自乗和に限定されない。
産業上の利用可能性 For example, the type of the pulse interval included in the information signal is not limited to the above example, and can be appropriately changed. According to this, the type of the ideal waveform data and the number of data in the ideal waveform data can be changed. Also, the number of latch stages O of the data input buffer 30 and the correlation data buffer RDB can be appropriately changed as long as the necessary conditions are satisfied. The calculation for detecting the minimum value of the correlation data is not limited to the sum of squares of the difference. Industrial applicability
本発明は、ハードディスク装置などの磁気記憶装置や通信制御装置に おいてランレングス符号化されたチャネルデ一夕の再生に広く適用す ることができる。
INDUSTRIAL APPLICABILITY The present invention can be widely applied to reproduction of run-length encoded channel data in a magnetic storage device such as a hard disk device or a communication control device.
Claims
請 求 の 範 囲 .立ち上がり極性パルスと立ち下がり極性パルスが交番され複数種類 のパルス間隔を有する倩報信号からそのパルス間隔に応ずるビッ 卜 列のチャネルデータを再生する情報再生装置であって、 An information reproducing apparatus for reproducing channel data of a bit train corresponding to a pulse interval from a signal signal in which a rising polarity pulse and a falling polarity pulse are alternated and having a plurality of types of pulse intervals.
パルス間隔別に前記立ち上がり極性パルスに関する理想波形及び 立ち下がり極性パルスに関する理想波形を表すための理想波形デー 夕を出力する理想波形データ出力手段と、 Ideal waveform data output means for outputting ideal waveform data for representing an ideal waveform related to the rising polarity pulse and an ideal waveform related to the falling polarity pulse for each pulse interval;
前記理想波形デ一夕の標本点ビツチに応ずる周期のクロ ック信号 に同期して前記情報信号を標本化若しくは量子化する変換手段と、 前記変換手段で変換されたデータと前記出力手段から出力される 各理想波形データとの差分に基づいて前記情報信号のパルス波形に 近似する理想波形を順次決定していく波形検出手段と、 Conversion means for sampling or quantizing the information signal in synchronization with a clock signal having a cycle corresponding to the sampling point bit of the ideal waveform data; data converted by the conversion means and output from the output means A waveform detecting means for sequentially determining an ideal waveform approximating the pulse waveform of the information signal based on a difference from each ideal waveform data;
前記波形検出手段で順次决定された理想波形のパルス間隔に応ず るビッ 卜列を形成し前記チヤネルデータとして出力するチャネルデ 一夕出力手段と、 を含んで成るものであることを特徴とする情報再生 . 前記波形検出手段は、 Information reproducing means for forming a bit train corresponding to a pulse interval of an ideal waveform sequentially determined by the waveform detecting means and outputting the channel data as channel data; The waveform detecting means includes:
前記パルス間隔の最大問隔数よりも 2以上大きな段数のラツチ回 路を直列に有し各ラッチ回路はクロック信号に同期してラッチ動作 を行い初段に前記変換手段で変換されたデータを入力するデータ入 力バッファと、 A latch circuit having two or more stages larger than the maximum interpulse interval of the pulse interval is provided in series, and each latch circuit performs a latch operation in synchronization with a clock signal and inputs data converted by the conversion means to a first stage. A data input buffer,
前記理想波形データ出力手段から出力される各理想波形データと 前記複数のラツチ回路のラツチデータとの差分に基づいて前記情報 信号のパルス波形に対する夫々の理想波形の近似の状態を示す相関 データを前記ク口ック信号に同期して演算する演算手段と、
前記演算手段で演算された相関データを少なく とも前記パルス間 隔の最大値に相当する前記クロック信号サイクル数分順次シフ ト し て保持可能な相関デ一夕バッファと、 Based on a difference between each ideal waveform data output from the ideal waveform data output means and the latch data of the plurality of latch circuits, correlation data indicating a state of approximation of each ideal waveform with respect to the pulse waveform of the information signal is obtained. Calculating means for calculating in synchronization with the lip signal; A correlation data buffer capable of sequentially shifting and holding the correlation data calculated by the calculation means by at least the number of clock signal cycles corresponding to the maximum value of the pulse interval;
前記相関データバッファに保持されている一方の極性のパルスに 関する相関データの中で最も近似する状態を示す相関データを抽出 する処理と、抽出した相関デ一夕に対応する理想波形のパルス間隔分 だけ相関データバッファ内で相関デ一夕がシフ トされるのを待って 他方の極性のパルスに関する相関データの中で最も近似する状態を 示す相関データを抽出する処理とを行って最も近似する状態の相関 データを迪つていく追跡制御手段と、 を含んで成るものであることを 特徴とする請求項 1記載の情報再生装置。 A process of extracting correlation data indicating the state of closest approximation among the correlation data of one polarity pulse held in the correlation data buffer; and a process of extracting an ideal waveform pulse interval corresponding to the extracted correlation data. Waits for the correlation data to be shifted in the correlation data buffer and extracts the correlation data that indicates the state that is the most similar among the correlation data for the pulse of the other polarity, and then performs the processing that is the most similar 2. The information reproducing apparatus according to claim 1, further comprising: a tracking control unit that obtains the correlation data.
3 . 前記理想波形データ出力手段は、 立ち上がり極性及び立ち下がり極 性のパルス間隔毎に、理想波形データの標本点が相互に半ピッチずれ たデータを別々に出力するものであることを特徴とする請求項 1又 は 2記載の情報再生装置。 3. The ideal waveform data output means outputs data in which sampling points of the ideal waveform data are shifted from each other by a half pitch for each pulse interval of rising polarity and falling polarity. The information reproducing apparatus according to claim 1 or 2.
4 . 前記変換手段は、 クロック信号に同期して前記情報信号をデイジ夕 ル信号に変換する A / D変換回路、又はクロック信号に同期して前記 十 ft報信号をサンプリングしてホールドするサンプル'ホールド回路で あることを特徴とする請求項 1又は 2記載の情報再生装置。 4. The conversion means includes an A / D conversion circuit that converts the information signal into a digital signal in synchronization with a clock signal, or a sampler that samples and holds the 10-ft information signal in synchronization with a clock signal. 3. The information reproducing apparatus according to claim 1, wherein the information reproducing apparatus is a hold circuit.
5 . 前記情報信号はディスクからの読取り信号であり、 前記ディスクへ 書込む情報の同期信号を生成する周波数シンセサイザを有し、前記ク 口ック信号は前記周波数シンセサイザから出力されるものであるこ とを特徴とする請求項 1又は 2記載の情報再生装置。 5. The information signal is a read signal from a disk, and has a frequency synthesizer for generating a synchronization signal of information to be written on the disk, and the clip signal is output from the frequency synthesizer. 3. The information reproducing apparatus according to claim 1, wherein:
6 .前記情報信号を伝送媒体から受け取るものであることを特徴とする 請求項 1又は 2記載の情報再生装置。 6. The information reproducing apparatus according to claim 1, wherein the information signal is received from a transmission medium.
7 .前記チャネルデ一夕出力手段から出力されるチャネルデ一夕に対し
てエラーチェック及び訂正を可能にする E C C回路を更に有して成 るものであることを特徴とする請求項 1又は 2記載の情報再生装置。 . 前記変換手段で変換されたデータを蓄えるバッファメモリを有し、 前記バッファメモリから読み出されたデータが前記波形検出手段に 供給されるものであることを特徴とする請求項 7記載の情報再生装 . 前記理想波形データ出力手段は、 異なる使用条件を想定して決めら れた複数種類の理想波形データを有し、出力される理想波形データの 種類は、 E C C回路によりチャネルデータに対する訂正不能なエラー が検出されたとき切り換え可能にされるものであることを特徴とす る請求項 8記載の情報再生装置。 7. For the channel data output from the channel data output means, 3. The information reproducing apparatus according to claim 1, further comprising an ECC circuit that enables error checking and correction. 8. The information reproducing apparatus according to claim 7, further comprising: a buffer memory for storing the data converted by the conversion means, wherein the data read from the buffer memory is supplied to the waveform detection means. The ideal waveform data output means has a plurality of types of ideal waveform data determined by assuming different use conditions, and the type of the output ideal waveform data cannot be corrected by the ECC circuit for the channel data. 9. The information reproducing apparatus according to claim 8, wherein switching is possible when an error is detected.
0 . 少なく とも前記理想波形データ出力手段、 演算手段、 データバッ ファ、 追跡制御手段、 及びチャネルデータ出力手段を含む処理手段を 並列動作可能に複数組有し、 0. At least a plurality of sets of processing means including the ideal waveform data output means, calculation means, data buffer, tracking control means, and channel data output means are provided so as to operate in parallel,
前記夫々の処理手段に含まれるチャネルデ一夕出力手段を選択し 選択したチャネルデ一夕出力手段の出力を選択するセレクタと、 前記セレクタで選択されたチャネルデータ出力手段から出力され るチャネルデータに対してエラ一チヱック及び訂正を可能にすると E C C回路とを設け、 A selector for selecting the channel data output means included in each of the processing means and selecting an output of the selected channel data output means; and a channel data output from the channel data output means selected by the selector. When an error and correction are enabled, an ECC circuit is provided.
前記セレクタは、 E C C回路によるチャネルデ一夕に対する訂正不 能なエラーが検出されたとき選択状態が切り換え可能にされるもの であることを特徴とする請求項 2記載の情報再生装置。 3. The information reproducing apparatus according to claim 2, wherein the selector is configured to be able to switch a selection state when an uncorrectable error in the channel data by the ECC circuit is detected.
1 .前記夫々の処理手段に含まれる理想波形デ一夕出力手段が出力す る理想波形は異なる使用条件の想定の下で決められた異なるデータ であることを特徴とする請求項 1 0記載の情報再生装置。 10. The method according to claim 10, wherein the ideal waveforms outputted by the ideal waveform data output means included in the respective processing means are different data determined under the assumption of different use conditions. Information playback device.
2 .立ち上がり極性パルスと立ち下がり極性 ルスが交番され複数種
類のパルス間隔を有する情報信号からそのパルス間隔に応ずるビッ 卜列のチャネルデータを再生する半導体装置であって、 2. Rising polarity pulse and falling polarity A semiconductor device that reproduces channel data of a bit train corresponding to a pulse interval from an information signal having a similar pulse interval,
パルス問隔別に前記立ち上がり極性パルスに関する理想波形及び 立ち下がり極性パルスに ί する理想波形を表すための理想波形デー 夕であって理想波形デー夕の標本点ピッチが半ピッチずれたデ一夕 を別々に出力する理想波形データ出力手段と、 Separate the ideal waveform data for representing the ideal waveform related to the rising polarity pulse and the ideal waveform corresponding to the falling polarity pulse for each pulse interval, in which the sampling point pitch of the ideal waveform data is shifted by half a pitch. Means for outputting ideal waveform data to
前記標本点ピッチに応ずる周期のク口ック信号に同期して前記情 報信 を^本化若しくは S子化する変換 ΐ段と、 A conversion unit for synthesizing the information signal or synthesizing the information signal in synchronization with a periodic signal having a cycle corresponding to the sampling point pitch;
前記変換 段で変換されたデータと前記出力手段から出力される 各理想波形データとの 分に^づいて前記' 報^ のパルス問隔に 近似する理想波 J ^を顺次決定していく波形検出手段と、 A waveform for sequentially determining an ideal wave J that approximates the pulse interval of the report based on a portion between the data converted by the conversion stage and each ideal waveform data output from the output means. Detecting means;
mi記波形検出 Τ·段で顺次決定された J1想波形のパルス問隔に応ず るビッ ト列を形成し 了記チャネルデータとして出力するチャネルデ 一夕出力手段と、 を含んで成るものであることを特徴とする半導体装 置。 and a channel data output means for forming a bit train corresponding to the pulse interval of the J1 pseudo waveform determined in the first step and outputting the data as end channel data. A semiconductor device characterized by the above-mentioned.
3 .立ち上がり極性パルスと立ち下がり極性パルスが交 φされ複数極 類のパルス 1 5]隔を■{]する ι,'ί ^からそのパルス問隔に応ずるビッ 卜列のチヤネルデータを P I する半導休装 isであって、 3. A rising polarity pulse and a falling polarity pulse are intersected and a multi-polarity pulse 15) is separated from ι, 'す る ^ by the ι,' ί ^, and the channel data of the bit train corresponding to the pulse interval is PI It ’s a holiday rest is
パルス問隔別に前記立ち上がり極性パルスに関する理想波形及び 立ち下がり極性パルスに (¾する理想波形を表すための理想波形デー 夕を出力する理想波形データ出力手段と、 An ideal waveform data output means for outputting an ideal waveform data for representing an ideal waveform corresponding to the rising polarity pulse and a falling polarity pulse for each pulse interval.
ク口ック信号に同期して前記 ' 報信号を標本化若しくは量子化す る変換手段と、 Conversion means for sampling or quantizing the broadcast signal in synchronization with the clock signal;
前記パルス間隔の最大問隔数よりも 2以上大きな段数のラツチ回 路を直列に有し各ラッチ回路はクロック信号に同期してラツチ動作 を行い初段に前記変換手段で変換されたデータを入力するデータ入
力バッファと、 A latch circuit having two or more stages greater than the maximum inter-pulse interval of the pulse interval is provided in series, and each latch circuit performs a latch operation in synchronization with a clock signal and inputs data converted by the conversion means to a first stage. With data A force buffer,
前記出力手段から出力される各理想波形データと前記複数のラッ チ回路のラツチデータとの差分に基づいて前記情報信号のパルス間 隔に対する夫々の理想波形の近似の状態を示す相関データを前記ク 口ック信号に同期して演算する演算手段と、 Based on a difference between each ideal waveform data output from the output means and the latch data of the plurality of latch circuits, correlation data indicating an approximate state of each ideal waveform with respect to a pulse interval of the information signal is used as the cross-section. Calculating means for calculating in synchronization with a clock signal;
前記演算手段で演算された相関データを少なく とも前記パルス間 隔の最大値に相当するク口ック信号サイクル数分順次シフ ト して保 持可能な相関データバッファと、 A correlation data buffer capable of sequentially shifting and holding the correlation data calculated by the calculation means by at least the number of click signal cycles corresponding to the maximum value of the pulse interval;
前記相関データバッファに保持されている一方の極性のパルスに 関する相関データの中で最も近似する状態を示す相関データを抽出 する処理と、抽出した相関デ一夕に対応する理想波形のパルス問隔分 だけ相関データバッファ内で相関データがシフ トされるのを って 他方の極性のパルスに関する相関デ一夕の中で最も近似する状態を 示す相関データを抽出する処理とを行って最も近似する状態の相関 データを迪つていく追跡制御手段と、 A process of extracting correlation data indicating the state of closest approximation among correlation data of one polarity pulse held in the correlation data buffer; and a pulse interval of an ideal waveform corresponding to the extracted correlation data. The correlation data is shifted in the correlation data buffer by a certain amount, and the process of extracting the correlation data that indicates the state that is the closest in the correlation data for the pulse of the other polarity is performed. A tracking control means for collecting state correlation data;
前記追跡制御手段で順次抽出された相関データに応ずる理想波形 のパルス問隔に応ずるビッ ト列を所定のビッ ト フォ一マツ 卜に変換 して前記チャネルデ一夕として出力するチャネルデータ出力 段と、 が半導体チップに形成されて成るものであることを特徴とする情報 再生装置。
A channel data output stage for converting a bit train corresponding to a pulse interval of an ideal waveform corresponding to correlation data sequentially extracted by the tracking control means into a predetermined bit format and outputting the converted data as the channel data; An information reproducing apparatus characterized in that is formed on a semiconductor chip.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2000/000890 WO2001061700A1 (en) | 2000-02-17 | 2000-02-17 | Information reproducing device |
JP2001560400A JP3841683B2 (en) | 2000-02-17 | 2000-02-17 | Information playback device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2000/000890 WO2001061700A1 (en) | 2000-02-17 | 2000-02-17 | Information reproducing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001061700A1 true WO2001061700A1 (en) | 2001-08-23 |
Family
ID=11735693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/000890 WO2001061700A1 (en) | 2000-02-17 | 2000-02-17 | Information reproducing device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3841683B2 (en) |
WO (1) | WO2001061700A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59203209A (en) * | 1983-04-30 | 1984-11-17 | Matsushita Electric Ind Co Ltd | Digital signal detector |
JPH02235263A (en) * | 1989-03-08 | 1990-09-18 | Fuji Xerox Co Ltd | Demodulating device for signal recorded in disk |
EP0464477A2 (en) * | 1990-06-29 | 1992-01-08 | Digital Equipment International GmbH | Process and circuit arrangement for converting analogue read signals into digital signals |
JPH10276125A (en) * | 1997-03-28 | 1998-10-13 | Matsushita Electric Ind Co Ltd | Mobile radio receiver |
-
2000
- 2000-02-17 JP JP2001560400A patent/JP3841683B2/en not_active Expired - Fee Related
- 2000-02-17 WO PCT/JP2000/000890 patent/WO2001061700A1/en active Search and Examination
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59203209A (en) * | 1983-04-30 | 1984-11-17 | Matsushita Electric Ind Co Ltd | Digital signal detector |
JPH02235263A (en) * | 1989-03-08 | 1990-09-18 | Fuji Xerox Co Ltd | Demodulating device for signal recorded in disk |
EP0464477A2 (en) * | 1990-06-29 | 1992-01-08 | Digital Equipment International GmbH | Process and circuit arrangement for converting analogue read signals into digital signals |
JPH10276125A (en) * | 1997-03-28 | 1998-10-13 | Matsushita Electric Ind Co Ltd | Mobile radio receiver |
Also Published As
Publication number | Publication date |
---|---|
JP3841683B2 (en) | 2006-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7203017B1 (en) | Timing recovery for data storage channels with buffered sectors | |
US7035029B2 (en) | Method of and apparatus for recording/reading information, circuit for recording/reading signal | |
CA1318004C (en) | Single track orthogonal error correction system | |
JPH10502205A (en) | Recording medium, data transmission method and apparatus, and data reproduction method and apparatus | |
US7038600B2 (en) | Method and device for adding or extracting a secondary information signal to/from a RLL code sequence | |
US5774286A (en) | Magnetic disk drive in which read data is demodulated using maximum likelihood detection method | |
US20050129133A1 (en) | Method and apparatus for rll code encoding and decoding | |
JPH07326139A (en) | Recorded and coded digital-signal reproducing apparatus | |
US5625505A (en) | Method of and apparatus for regenerating partial-response record signal | |
KR20070054245A (en) | Method of converting a user bitstream into coded bitstream, method for detecting a synchronization pattern in a signal, a record carrier, a signal, a recording device and a playback device | |
US6930619B2 (en) | Data modulation method, and recording and reproducing apparatuses and methods adopting the data modulation method | |
JP3717024B2 (en) | Demodulator and method | |
CN100405498C (en) | Method and apparatus for detecting SYNC mark in a disk drive | |
WO2001061700A1 (en) | Information reproducing device | |
EP0903864A2 (en) | Demodulating device, demodulating method and transmission medium | |
JP4826888B2 (en) | DEMODULATION TABLE, DEMODULATION DEVICE, DEMODULATION METHOD, PROGRAM, AND RECORDING MEDIUM | |
JP4983032B2 (en) | DEMODULATION TABLE, DEMODULATION DEVICE AND METHOD, PROGRAM, AND RECORDING MEDIUM | |
JP3714301B2 (en) | Recording apparatus, recording method, reproducing apparatus, reproducing method, and recording medium | |
JPH1074367A (en) | Clock combine circuit | |
JPH10233690A (en) | Code modulation circuit | |
US8874410B2 (en) | Systems and methods for pattern detection | |
JP2597732B2 (en) | Address mark writing control method for data recording device | |
JPH10233064A (en) | Information reproducing device | |
KR100739792B1 (en) | Viterbi decoder and viterbi decoding method | |
JP2002184127A (en) | Synchronizing signal generating method and information storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR SG US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) |