WO2001061607A1 - Computerized modeling system and method - Google Patents
Computerized modeling system and method Download PDFInfo
- Publication number
- WO2001061607A1 WO2001061607A1 PCT/US2001/005132 US0105132W WO0161607A1 WO 2001061607 A1 WO2001061607 A1 WO 2001061607A1 US 0105132 W US0105132 W US 0105132W WO 0161607 A1 WO0161607 A1 WO 0161607A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- database
- travel
- data
- airport
- service
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
Definitions
- the present invention relates in general to the field of modeling large volume purchasing of services and predicting shifts in service supplier market shares that would result if particular changes in the volumes of purchases were to be made, and, more particularly, to computer systems and methods usable by corporate travel department managers for predicting effects on separate airline market shares caused by shifts between airlines in the volume of airline tickets purchased by the corporation.
- Travel management is a discipline practiced over a very broad range of sophistication.
- the individual planning a trip who needs to have airline schedules searched to learn which flights might be taken to make a trip, and who has to inquire as to the prices for airline tickets for flights that might be taken.
- a trip can be planned, tickets purchased and the trip taken.
- groups including businesses, that employ managers to project, recommend and implement multi-trip travel cost budgets .
- Such groups can negotiate with airlines for contracts including provisions granting them ticket price discounts, some of which discounts being tied to the numbers of tickets the group buys.
- the travel managers of such groups e . g. , corporations, are supposed to develop, recommend and then implement long term plans including strategies for negotiation of contracts with airlines .
- 5,832,453 is supposed to be usable to develop a model to represent a group's travel requirements in order to optimize selection of multiple itineraries purchased from airlines.
- Inputs for this computer system and method include existing airline flight schedules, fares, the discounts that the group has available from airline databases, and the trips that the group's members have to make.
- the described computer system and method is supposed to construct an objective function that represents a travel cost to the group to purchase travel trips for a plurality of travelers who would take various specified trips, and the computer system and method also is supposed to construct constraints from input trip demand and airline flight data, including any airline utilization goal data for the group. Then the constraints are applied to the objective function, according to the description set out in the 5,832,453 patent using linear programming, to determine a solution for the objective function that satisfies the constraints and thereby identifies minimized travel costs for the group.
- the present invention provides a method and apparatus for corporate travel managers to use computers to develop models of the airline markets in which their corporations buy tickets. Then, using the present invention, a corporate travel manager can vary the model defining parameters so as to predict shifts in separate airline market shares. Developing air travel models and calculating predictions using the present invention enables corporate travel managers to investigate different situations and forecast how best to negotiate contracts with airlines for the purchase of tickets, including how to evaluate offered airline contract terms, how to more accurately develop travel budgets and manage travel expenditures. By being able to forecast future air travel market situations with calculated predictions, the present invention provides corporate travel managers with information not previously available. Instead of only calculating a single optimal solution, that may or may not realistically be achievable, the present invention permits calculations of predictions for multiple models controlled by the corporate travel manager so that a preferred option or a range of options can be evaluated for implementation.
- the present invention is provided with airline schedules, airline ticket fares, ticket discount rates, corporate travel projections by city and airport pairs from and to which trips are expected to be made, and other data described below. Utilizing this data under a set of rules described below, the present invention calculates by a series of multiplications quantities labeled quality of service indices that are percentage numbers representative of airline service between cities and airports. Then, inputting additional data such as airline contract data, preference data for airlines, and other travel specific data, the corporate travel manager using the present invention constructs travel scenarios. These defined travel scenarios in combination with the calculated quality of service index values are used to determine predicted market shares for specific airlines providing flight services between cities and airports. It is the sensitivity of the determined airline market share values to variations in input parameter values such as corporate preference levels for specific airlines that corporate travel managers can use to forecast what travel management plans would or would not be best for their corporations .
- Software to implement the present invention can be loaded on a server connected to the Internet so that corporate travel managers, for a license fee, can access the software using their corporate personal computers to run computerized simulations of travel scenarios and predict resulting air travel scenario details.
- the software can be licensed or sold to corporate customers so that corporate travel managers can load the software on corporate computers for use.
- Fig. 1 illustrates a schematic view of one apparatus embodiment of the present invention
- Figs . 2 through 6 show block diagrams for an embodiment of the present invention in serial order with data input steps, databases, calculation steps and outputs identified.
- FIG. 1 a preferred embodiment for an apparatus of the present invention, which is implemented as an Internet based system, is shown in Figure 1, and this Internet-based apparatus is generally designated by reference numeral 10. More specifically, the apparatus 10 includes a modeling server 12, the Internet 14, and multiple individual customer personal computers 16. This embodiment for the present invention uses unmodified commercially available equipment for all of the modeling server 12 and customer personal computers 16. Software to execute the method of the present invention, which is described in detail below, is loaded in the modeling server 12, and the Internet-based apparatus 10 shown in Figure 1 is preferably implemented to operate compatibly using 3.X browsers, e.g., Microsoft Internet Explorer ® and Netscape Navigator ® software loaded in the customer personal computers 16.
- 3.X browsers e.g., Microsoft Internet Explorer ® and Netscape Navigator ® software loaded in the customer personal computers 16.
- HTML Hyper Text Markup Language
- Data identified below is collected in order to make calculations, using the method of the present invention, whereby values for travel scenario parameters resulting from input data are calculated. Additionally, some of the collected data is input to calculate intermediate parameter values that are then used for making further calculations according to the method of the present invention to predict final parameter values for resulting travel scenarios.
- geographic, airline, and airline commission rate data is input at a Maintain System Reference Tables 200 step.
- the geographic and airline data is then input into a System
- the geographic data includes specific identifications of continents, countries or regions, through the levels of states, cities and specific airports, e . g. , North America and Europe, and the included countries, cities and airports that are relevant to corporate clients who use the present invention to analyze travel scenarios.
- the input airline data includes (a) the names of airlines or carriers providing service between airports in the selected geographic database, and (b) the classes of service provided by each included airline on its specific flights, e . g. , first, business or coach classes which are usually respectively designated as F, C, Y, as well as additional classes including various discounted classes, such as B, M, Q, K, etc.
- the data in the System Reference Tables 210 database is updated as changes in facts warrant (e . g. , opening of a new airport, introduction of a new airline service, or termination of a prior airline service) .
- Standard airline commission rate data is also collated and input at the Maintain System Reference 200 step, and is then input to a Standard Airline Commission Rates 220 database.
- Such data includes airline specified standard commission rates credited for tickets purchased at various locations for travel between locations included in the System Reference Tables 210 database and also input are the maximum commission rate amounts, i.e., segment caps. For example, if tickets are issued in the U.S. for travel on a carrier within the U.S., then that carrier may offer a commission rate of 5% but this standard commission rate may be segment-capped at $25.00, and, in such a case, the data for that carrier would be collated at the Maintain System Reference Tables 200 step and input to the Standard Airline Commission Rates 220 database.
- This data for a preferred embodiment can be directly loaded into the Flight Table 230 database from compact discs ("CD's") that are sold by suppliers known in the travel industry.
- CD's compact discs
- Several sets of factors labeled quality of service indices are calculated at a Generate Quality of Service Index 240 step and are stored at a Quality of Service Index 250 database, e . g. , for a preferred embodiment, three sets of quality of service indices would be generated; namely, one set for each airline that operates between city pairs, a second set of quality of service indices for each airline that operates between specific airport pairs, and a third set of quality of service indices associated with each pair of airports serviced by each airline that operates between two cities.
- Such sets of quality of service indices are all calculated using data from the System Reference Tables 210, Flight Table 230, and Airport Pairs 260 databases.
- Quality of service indices are calculated percentage parameters that are intended to be representative of available air travel services provided between city/airport pairs by carriers. The sum of all calculated quality of service indices for each of the types of quality of service indices, e . g. , all carriers providing service between a pair of cities, is adjusted to have a fixed value of 100%.
- Data stored in the Airport Pairs 260 database is provided with identifications of the actual pairs of airports and associated cities that are to be used for calculating predictions for travel scenarios between the included airport pairs and associated cities.
- Carrier flights for which quality of service indices are to be calculated are categorized according to routings as follows (the examples set out below are for airport pairs; variations required for city pairs are direct and self- evident extensions) :
- a category of non-stop routing flights are identified as those flights for which the Flight Table 230 and the Airport Pairs 260 databases specify that the locations of each flight's origin and destination airports are the same as those for which quality of service indices are to be calculated.
- a category of one-stop routing flights are identified as those flights for which the Flight Table 230 and the Airport Pairs 260 databases specify that an included flight's origin airport is the same as that for which quality of service indices are to be 5 calculated and the destination airport of this first flight is an airport other than the second airport of the specified pair of airports but such first destination airport is also the origin airport of a second flight
- the location of the destination airport for the second flight is the same as the second airport in the specified pair of airports. • A category of two-stop routing flights are
- Flight Table 230 and the Airport Pairs 260 databases specify that a flight's origin airport is that for which quality of service indices are to be calculated.
- the destination airport of the second flight must be the origin airport of a third flight, but the destination airport of the third flight must be the same airport as that of the latter of the pair of specified airports.
- the one- and two-stop routings are then evaluated by applying the following rules to determine those that are legitimate connecting flights:
- the flights for each routing operate on the same days of the week, except when one or more flights may arrive on a day earlier or later than when it departed due to operating over the International Dateline or operating past midnight.
- the flights for each routing must have connecting times for either domestic or international flights, depending on the situation, that are equal to or greater than minimum connecting times which are pre-set for periods officially specified for the relevant airports or are set at essentially optimal periods of time that are determined from previously using the method of the present invention, e . g. , for a preferred embodiment minimum connecting times of 1.0 hour for domestic flights and 1.5 hours for international flights were effectively utilized.
- Maximum connecting times are preset for periods customary within the industry, e . g. , for a preferred embodiment maximum connecting times of 4.0 hours for domestic flights and 6.0 hours for international flights, not counting the hours between 10:00 p.m. and 6:00 a.m., were effectively used.
- Routings for the preferred embodiment are excluded if they originate and terminate within the same country but have connections through airports in a second country.
- a primary carrier is specified for each routing by identifying the carrier that operated (or code shared, as is known in the travel industry) on the longest flight within the routing as determined by mileage.
- Initial raw quality of service index values now are calculated for each non-stop routing and legitimate connecting routing by calculating the product of all the following factors: (a) One-half the least number of seats on each airplane for the routing in the travel service category, e.g., F, C, Y, etc., for which quality of service indices are being calculated.
- the flight seats are divided evenly between each of the listed code-share flights. An exemplary value for this factor would be 62.5 for the situation where the number of seats on an airplane is
- Aircraft type factor determined from a previously loaded table of pre-set values which for a preferred embodiment have a range of values from 0.5 (for helicopters, and propeller aircraft with 50 or fewer seats) , 0.7 (for propeller aircraft with 70 or fewer seats), 0.8 (for propeller aircraft with more than 70 seats), 0.9 (for narrow bodied jet with 70 or fewer seats), 0.95 (for narrow bodied jets with more than 70 seats), 1.0 (for narrow bodied jets with 100 or more seats), to 1.1 (for wide bodied jets), e . g.
- a connection penalty factor is determined from a previously loaded table of pre-set values, which for a preferred embodiment have a range of values from 0.06 to 0.75, e . g. , a connecting flight in an airport pair where the minimum elapsed time is one hour could have a factor value of 0.06.
- (d) Departure time factor determined from a previously loaded table of pre-set values, which for a preferred embodiment in value from 0.5 (for 11 p.m. to 4 a.m.), 0.7 (for 8 a.m. to noon), to 1.0 (for 6 a.m. to 8 a.m. and for 4 p.m. to 6 p.m.), e . g. , 7:30 a.m. could have a value of 1.0.
- Arrival time factor determined from a previously loaded table of pre-set values which for a preferred embodiment range in value from 0.5 (for 11 p.m. to 4 a.m.), 0.7 (for 8 a.m. to noon), to 1.0 (for 6 a.m. to 9 a.m. and for 4 p.m. to 6 p.m.), e . g. , 6:00 p.m. could have a value of 1.0.
- Factor value for the number of days per month that a selected flight route is made by a carrier is set at the actual number of days per month that the airline provides such service.
- This factor is adjusted in value according to which day or days of the week the flight is made. Specifically, for the preferred embodiment, the factor is retained at its full value if the flights are made on any of Monday through Friday. Whereas, if the flights are made on Saturday or Sunday, the factor is multiplied by 0.25, and if the flights depart on Friday and arrive on
- a summation of all the initial raw quality of service index values for non-stop and legitimate connecting routings made by an actual or code-share carrier servicing a pair of airports is determined and the value of that summation is then divided by the summation of all the initial raw quality of service index values for non-stop and legitimate connecting routings for all the carriers servicing that airport pair.
- the below threshold values are deleted to provide an intermediate set of quality of service index values and the intermediate quality of service index values for the carrier servicing the airport pair are redistributed so that the sum of all the values for all the carriers providing service between each included airport pair is 100%.
- redistribution is effected, for a preferred embodiment, by first calculating the ratio of one divided by the summation of all the intermediate quality of service index values and then multiplying that value by the individual quality of service index values to calculate the final individual redistributed quality of service index values.
- the final individual calculated quality of service index values are input to the Quality of Service Index 250 database.
- computerized data for the corporate client using the present invention to calculate travel scenario parameter values that is available from travel agencies (e.g. , from computerized databases such as those known as Global Max ® , ADS/X, Sabre Travel Base ® , and others) and from the cor- porate client's own in-house computerized databases (e . g. , from computerized database systems such as those known as GEMS, ISP, VantagePoint ® , and others) is directly input to a Back Office Data 270 database.
- travel agencies e.g. , from computerized databases such as those known as Global Max ® , ADS/X, Sabre Travel Base ® , and others
- cor- porate client's own in-house computerized databases e . g. , from computerized database systems such as those known as GEMS, ISP, VantagePoint ® , and others
- Data for the corporate client is also output from the System Reference Tables 210, Back Office Data 270 and the Back Office Numbers 280 databases and is input to the Standardized Back Office Data 290 step where the input data for the corporate client is transformed into a common format for use in the method of the present invention. (Identifications of the travel agencies, the types of data systems the agencies use and their assigned client numbers are stored in the Back Office Numbers 280 database.) Additionally, specific customer identification numbers are set at unique values and are assigned to each of the individual data sets for the individual corporate clients. The transformed data is then output from the Standardized Back Office Data 290 step and is input to the Standardized Back Office Data 300 database.
- Airline Contracts 320 database (see Fig. 3) .
- This contract data is updated as is necessary to keep the data in the system current for that corporate client.
- Specifically entered into the Airline Contracts 320 database are (a) airline identifications, (b) contract effective dates, (c) point-of-sale discounts (including applicable geography --origin and destination airport, city, state, country and/or regions) , (d) applicable classes of service, (e) types of discount (e . g.
- Data identifying corporate preferred carriers and the level of corporate influence used to affect preference decisions is also input at the Corporate Travel Department 310 step and is entered into the Historical Preferred Carriers and Influence 330 database.
- the entered preference and influence data is generated from interviews with the corporate travel manager (s) and, as appropriate, other corporate travel management executives.
- Carrier preferences are segmented historically, e. g. , on a month-by-month basis, and, therefore, those carriers, during the associated time periods, that are identified by corporate travel management executives as being preferred carriers are so designated, depending on the travel management executive's preference, to specific airports, cities, states, countries, regions or, even, system-wide.
- Influence levels which also are segmented on a month-by-month basis, are digitized to represent the overall level of corporate travel compliance influence -- a combination of policy, communication, and point of sale effectiveness (for a preferred embodiment this data is specified on a scale of values ranging from 0 to 5, with 0 being used for no influence, 1 being used for a mild corporate influence, and 5 being used for a corporate mandate with the values 2 through 4 being used for the respective intermediate levels of influence) .
- the corporate client may also enter digitized values to represent overriding influence levels for specified carriers serving specific airport pairs that are identified in the Historical Preferred Carriers and Influence 330 database. Again the overriding influence levels are assigned values for a preferred embodiment that range from 0 to 5.
- Nonstandard Airline Commission and Override Rates 350 step Data from a Standard Airline Commission Rates 340 database, which include information on the commission rates and segment caps for travel between pairs of countries or regions for tickets issued in specified countries by a carrier, is input to a Nonstandard Airline Commission and Override Rates 350 step.
- a Standard Airline Commission Rates 340 database which include information on the commission rates and segment caps for travel between pairs of countries or regions for tickets issued in specified countries by a carrier, is input to a Nonstandard Airline Commission and Override Rates 350 step.
- the commission rate can be 5% with a cap of $25.00 per segment.
- the data from the Standard Airline Commission Rates 340 database is now compared at the Nonstandard Airline Commission and Override Rates 350 step to the corporate client's data available at the Corporate Travel Department 310 step to extract nonstandard airline commission rates and override rates that are input to the separate Nonstandard Airline Commission Rates 360 database and the Override Rates 370 database.
- Override rates are additional earnings returned to the corporate client under contract specified conditions for travel with the identified carriers.
- subsets may be selected by the corporate client based on a range of variables, such as invoice dates (i.e., tickets issued between certain dates), geography (i.e., tickets issued in certain countries or tickets issued for travel from, to or through certain airports, cities, countries or regions, or excepting travel from, to or through certain airports, cities, countries or regions) , or travel characteristics (i.e., minimum or maximum distance, minimum or maximum fare).
- invoice dates i.e., tickets issued between certain dates
- geography i.e., tickets issued in certain countries or tickets issued for travel from, to or through certain airports, cities, countries or regions, or excepting travel from, to or through certain airports, cities, countries or regions
- travel characteristics i.e., minimum or maximum distance, minimum or maximum fare
- the corporate client's analysis elections are exercised at the Enter Analysis Data Selection Parameters 400 step and the selected data is input to the Analysis Data Selection Parameter 410 database.
- the data stored in the Analysis Data Selection Parameters 410 database is combined with data from the Standardized Back Office Data 300, Standard Airline Commission Rates 340, Nonstandard Airline Commission Rates 360, and Override Rates 370 databases to:
- a segment is the movement of one passenger on a flight from one airport to another. If a traveler flies from Washington to Chicago, the trip is one segment.
- the total Washington-Seattle trip consists of two segments. If a person flies from Washington to Chicago, stops over for a night, and flies to Seattle the next day, the two days of travel are two segments. A round trip from Washington to Chicago is two segments.);
- the resulting data at this point is then filtered using the information stored in the Analysis Data Selection Parameters 410 database to identify the data relevant to the scenario being analyzed.
- the data from Summarized Airport Pair Data 450 database is presented to the corporate client, who selects the number of airport pairs to include in the analysis, i.e., see Select Airport Pairs for Analysis 470 step.
- the number of airport pairs is determined outside the system by the corporate client, based on that corporate client's expectation of the number of airport pairs that will cover a sufficient portion of the travel data for the desired travel scenario, e . g. , 75% of the corporation's travel budget for a specified time period.
- the list of selected specific airport pairs is that stored in the Airport Pairs 260 database which served as input for calculating quality of service indices for each of the selected airport pairs. Average non-discounted fares are determined for each ticketing country, airport pair and fare category and these are stored in an Average Fares 490 database.
- the data for airport pairs stored in the Summarized Baseline Data 500 database is the same as that stored in the Summarized Back Office Data 430 database except those airport pairs not included in the Summarized Airport Pairs 260 database have been explicitly identified as being summarized in total.
- the data for city pairs stored in the Summarized Baseline Data 500 database is the same as that stored in the Summarized Back Office Data 430 database except those city pairs not included in the Summarized City Pair Data 450 database have been explicitly identified as being summarized in total.
- the corporate client utilizing a preferred embodiment for the present invention, now uses the data collected at the Corporate Travel Department 310 step to directly enter at the Setup Simulation Scenario 510 step of one of three types of data sets into the Simulation Scenario Parameters 520 database (see Fig. 5) .
- the first type called a "blank slate”
- the second type called a "current actual environment”
- the last type called "existing scenario” maintains the data already stored in the Simulation Scenario Parameters 520 database without addition or deletion.
- the corporate client enters estimated share numbers for each included carrier servicing the selected airport pairs into the User Defined Trip Distribution 580 database. To do this the corporate client defines trip distributions to specify desired results for a particular airport pair. Alternatively, if at the Setup Airport Pair User Defined Trip Distribution 570 step, the corporate client desires to make data modifications, such modifications are made and the altered predicted share numbers are entered into the User Defined Distribution 580 database.
- the preferred and non-preferred carriers are identified for the specified airport pairs using the Preferred Carrier Scenario 560 database.
- a raw predicted share is determined for the preferred carriers as a group using the sum of the quality of service index values for each of those carriers.
- a predicted share also is determined for the non-preferred carriers as a group using the sum of the quality of service index values for each of those carriers.
- a predicted share value is determined from one of multiple curves defined by formulae incorporated and utilized at the Run Scenario Simulation 610 step.
- the two straight line curves include initial straight line segments that linearly run from the origin point (0%quality of service index value, 0% predicted share value) to initial inflection points, and second straight line segments that run from the first inflection points to the final point (100% quality of service index value, 100% predicted share value) .
- an initial straight line segment runs from an origin point (0% quality of service index value, 0% predicted share value) to a first inflection point
- a second straight line segment runs from the first inflection point to a second inflection point
- a third straight line segment runs from the second inflection point to the final point (100%quality of service index value, 100% predicted share value)
- Other embodiments of the invention can use curves having other numbers of straight line segments, non-linear curves, or combinations of straight line segments and nonlinear curves adjusted to fit real world or extrapolated data.
- the predicted share value curves have single inflection points, but in the case of a non- preferred carrier with an influence level value of 5 the predicted share value curve has two inflection points.
- the inflection point values for these curves are set out in Table II below:
- predicted share values are calculated for the input airport pairs and months .
- the predicted share values for each carrier that have quality of service index scores above a threshold level that is set by the corporate client are calculated for the input airport pairs and months .
- the predicted share values are next multiplied by the corresponding segment total values and average fare amounts (incorporating point-of-sale discounts, contract discounts, commission discounts and override amounts) stored in the Summarized Baseline Data 500 database.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Educational Administration (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001238437A AU2001238437A1 (en) | 2000-02-18 | 2001-02-16 | Computerized modeling system and method |
CA002404518A CA2404518A1 (en) | 2000-02-18 | 2001-02-16 | Computerized modeling system and method |
EP01910876A EP1281139A4 (en) | 2000-02-18 | 2001-02-16 | Computerized modeling system and method |
HK03105142.3A HK1053370A1 (en) | 2000-02-18 | 2003-07-16 | Computerized modeling system and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US50690000A | 2000-02-18 | 2000-02-18 | |
US09/506,900 | 2000-02-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001061607A1 true WO2001061607A1 (en) | 2001-08-23 |
WO2001061607A8 WO2001061607A8 (en) | 2002-03-21 |
Family
ID=24016386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/005132 WO2001061607A1 (en) | 2000-02-18 | 2001-02-16 | Computerized modeling system and method |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1281139A4 (en) |
AU (1) | AU2001238437A1 (en) |
CA (1) | CA2404518A1 (en) |
HK (1) | HK1053370A1 (en) |
WO (1) | WO2001061607A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001061609A2 (en) * | 2000-02-16 | 2001-08-23 | Travel Analytics, Inc. | Tool for analyzing corporate airline bids |
US7286998B2 (en) * | 2001-04-20 | 2007-10-23 | American Express Travel Related Services Company, Inc. | System and method for travel carrier contract management and optimization using spend analysis |
US9665888B2 (en) | 2010-10-21 | 2017-05-30 | Concur Technologies, Inc. | Method and systems for distributing targeted merchant messages |
US9691037B2 (en) | 2012-09-07 | 2017-06-27 | Concur Technologies, Inc. | Methods and systems for processing schedule data |
US9779384B2 (en) | 2004-06-23 | 2017-10-03 | Concur Technologies, Inc. | Methods and systems for expense management |
WO2018053206A1 (en) * | 2015-09-15 | 2018-03-22 | Decision8, LLC | System and method for heuristic predictive and nonpredictive modeling |
CN118628191A (en) * | 2024-08-12 | 2024-09-10 | 南京贝特威信息技术有限公司 | Civil aviation ticket global fuel cost and airport tax real-time calculation method and system based on micro-service group structure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9400959B2 (en) | 2011-08-31 | 2016-07-26 | Concur Technologies, Inc. | Method and system for detecting duplicate travel path information |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5832453A (en) * | 1994-03-22 | 1998-11-03 | Rosenbluth, Inc. | Computer system and method for determining a travel scheme minimizing travel costs for an organization |
-
2001
- 2001-02-16 AU AU2001238437A patent/AU2001238437A1/en not_active Abandoned
- 2001-02-16 EP EP01910876A patent/EP1281139A4/en not_active Withdrawn
- 2001-02-16 WO PCT/US2001/005132 patent/WO2001061607A1/en not_active Application Discontinuation
- 2001-02-16 CA CA002404518A patent/CA2404518A1/en not_active Abandoned
-
2003
- 2003-07-16 HK HK03105142.3A patent/HK1053370A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5832453A (en) * | 1994-03-22 | 1998-11-03 | Rosenbluth, Inc. | Computer system and method for determining a travel scheme minimizing travel costs for an organization |
Non-Patent Citations (1)
Title |
---|
See also references of EP1281139A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001061609A2 (en) * | 2000-02-16 | 2001-08-23 | Travel Analytics, Inc. | Tool for analyzing corporate airline bids |
WO2001061609A3 (en) * | 2000-02-16 | 2002-10-03 | Travel Analytics Inc | Tool for analyzing corporate airline bids |
US7401029B2 (en) | 2000-02-16 | 2008-07-15 | Trx, Inc. | Tool for analyzing corporate airline bids |
US7286998B2 (en) * | 2001-04-20 | 2007-10-23 | American Express Travel Related Services Company, Inc. | System and method for travel carrier contract management and optimization using spend analysis |
US9779384B2 (en) | 2004-06-23 | 2017-10-03 | Concur Technologies, Inc. | Methods and systems for expense management |
US10565558B2 (en) | 2004-06-23 | 2020-02-18 | Concur Technologies | Methods and systems for expense management |
US11361281B2 (en) | 2004-06-23 | 2022-06-14 | Sap Se | Methods and systems for expense management |
US9665888B2 (en) | 2010-10-21 | 2017-05-30 | Concur Technologies, Inc. | Method and systems for distributing targeted merchant messages |
US10115128B2 (en) | 2010-10-21 | 2018-10-30 | Concur Technologies, Inc. | Method and system for targeting messages to travelers |
US9691037B2 (en) | 2012-09-07 | 2017-06-27 | Concur Technologies, Inc. | Methods and systems for processing schedule data |
US9928470B2 (en) | 2012-09-07 | 2018-03-27 | Concur Technologies, Inc. | Methods and systems for generating and sending representation data |
WO2018053206A1 (en) * | 2015-09-15 | 2018-03-22 | Decision8, LLC | System and method for heuristic predictive and nonpredictive modeling |
CN118628191A (en) * | 2024-08-12 | 2024-09-10 | 南京贝特威信息技术有限公司 | Civil aviation ticket global fuel cost and airport tax real-time calculation method and system based on micro-service group structure |
Also Published As
Publication number | Publication date |
---|---|
CA2404518A1 (en) | 2001-08-23 |
HK1053370A1 (en) | 2003-10-17 |
EP1281139A4 (en) | 2005-08-31 |
AU2001238437A1 (en) | 2001-08-27 |
WO2001061607A8 (en) | 2002-03-21 |
EP1281139A1 (en) | 2003-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Côté et al. | A bilevel modelling approach to pricing and fare optimisation in the airline industry | |
Andersson | Passenger choice analysis for seat capacity control: A pilot project in Scandinavian Airlines | |
US7711586B2 (en) | Method and system for unused ticket management | |
US20070192229A1 (en) | Transaction management system and method | |
Wickham | Evaluation of forecasting techniques for short-term demand of air transportation | |
US20070168217A1 (en) | Method And System For Improved User Management Of A Fleet Of Vehicles | |
US20060074707A1 (en) | Method and system for user management of a fleet of vehicles including long term fleet planning | |
Jacobs et al. | Airline planning and schedule development | |
US20030110062A1 (en) | System and method for airline purchasing program management | |
Bandalouski et al. | An overview of revenue management and dynamic pricing models in hotel business | |
Hohberger | Dynamic pricing under customer choice behavior for revenue management in passenger railway networks | |
EP1281139A1 (en) | Computerized modeling system and method | |
Cramer et al. | Airline Revenue Management | |
de Jesus et al. | An integrated frequency assignment and fleet assignment model: A strategic application in the Brazilian regional aviation market | |
Ahmed et al. | An overview of the issues in the airline industry and the role of optimization models and algorithms | |
Urban et al. | Mapping causalities of airline dynamics in long-haul air transport markets | |
Schwieterman | A hedonic price assessment of airline service quality in the US | |
Gökşen | Implementing Revenue Management | |
Yirgu | Long-distance airport choices, and their implications for aviation emissions and price-based environmental policies | |
Erie et al. | A New Orange County Airport at El Toro: An Economic Benefits Study | |
Tirumalachetty et al. | Unlocking the value from origin and destination revenue management | |
EP2541482A1 (en) | System and method to combine redemption and converted commercial fares | |
Vinod | Hotel Pricing | |
Zivcic | Applicability of Dynamic Pricing Concept for Air Cargo | |
Isaev | Management of marketing activity of Islam Karimov Tashkent International Airport |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA CN HU IL IN JP KR MX NZ PL RU SG US ZA |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WD | Withdrawal of designations after international publication |
Free format text: US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: C1 Designated state(s): AU CA CN HU IL IN JP KR MX NZ PL RU SG ZA |
|
AL | Designated countries for regional patents |
Kind code of ref document: C1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
CFP | Corrected version of a pamphlet front page | ||
CR1 | Correction of entry in section i | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001910876 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2404518 Country of ref document: CA |
|
WWP | Wipo information: published in national office |
Ref document number: 2001910876 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001910876 Country of ref document: EP |