WO2001059082A1 - 27802, an adenylate kinase - Google Patents

27802, an adenylate kinase Download PDF

Info

Publication number
WO2001059082A1
WO2001059082A1 PCT/US2001/004573 US0104573W WO0159082A1 WO 2001059082 A1 WO2001059082 A1 WO 2001059082A1 US 0104573 W US0104573 W US 0104573W WO 0159082 A1 WO0159082 A1 WO 0159082A1
Authority
WO
WIPO (PCT)
Prior art keywords
adenylate kinase
nucleic acid
polypeptide
amino acid
seq
Prior art date
Application number
PCT/US2001/004573
Other languages
French (fr)
Other versions
WO2001059082A9 (en
Inventor
Rosana Kapeller-Libermann
Miyoung Chun
Original Assignee
Millennium Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Millennium Pharmaceuticals, Inc. filed Critical Millennium Pharmaceuticals, Inc.
Priority to AU2001238193A priority Critical patent/AU2001238193A1/en
Publication of WO2001059082A1 publication Critical patent/WO2001059082A1/en
Publication of WO2001059082A9 publication Critical patent/WO2001059082A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1229Phosphotransferases with a phosphate group as acceptor (2.7.4)

Definitions

  • the invention relates to novel adenylate kinase nucleic acid sequences and proteins. Also provided are vectors, host cells, and recombinant methods for making and using the novel molecules.
  • Adenylate kinases play a key role in the regulation of energy balance within cells, particularly maintenance of the ratio of ATP with its diphosphate (ADP) and monophosphate forms (AMP).
  • ATP serves as the primary source of energy for biochemical reactions in cells and is also a key precursor in DNA and RNA synthesis during cellular growth and replication.
  • the energy associated with the terminal phosphate bonds of ATP may be transferred to other nucleotides using a nucleoside monophosphate kinase such as adenylate kinase.
  • the terminal energy- rich phosphate bonds of ATP may be transferred to the appropriate nucleotides for use in a variety of biosynthetic and energy-requiring processes, such as biosynthesis of macromolecules, active ion transport, muscle contraction, thermogenesis, etc.
  • a number of these energy-requiring biosynthetic reactions hydrolyze ATP into AMP plus pyrophosphate. Reutilization of the resulting AMP requires conversion back into the triphosphate form following conversion to ADP.
  • Various nucleotide monophosphate kinases carry out the first step of phosphorylating AMP to its diphosphate form at the expense of ATP. In the case of adenylate kinase, this reversible reaction is given as AMP + ATP ⁇ 2 ADP.
  • Adenylate kinases also play a role in regulating the flow of carbon between net accumulation of glucose via the gluconeogenesis pathway and its subsequent catabolism via the glycolytic pathway by way of their control over the ratio of AMP to ATP.
  • AMP is a positive allosteric effector of the enzyme 6-phophofructo-l -kinase, which shifts, and a negative allosteric effector for the enzyme fructose- 1, 6- bisphosphatase.
  • the first of these enzymes is activated, carbon flow is shifted in the direction of glycolysis; when the second of these enzymes is activated, carbon flow shifts in the direction of gluconeogenesis.
  • increases in the ratio of AMP to ATP shift carbon flow toward glycolysis, while decreases in the ratio of AMP to ATP shift carbon flow toward glucose formation.
  • Adenylate kinase isoforms in humans are sequence related and also related to UMP/CMP kinases from several species. See Rompay et al. (1999) Ewr. J. Biochem. 267:509-516, and the references cited therein.
  • AK1 (or myokinase), which is a cytosolic enzyme present in brain, skeletal muscle, and erythrocytes
  • AK2 which is associated with the mitochondrial membrane in liver, spleen, heart, and kidney
  • AK3 (or GTP:AMP phosphotransferase) is located in the mitochondrial matrix, primarily in heart and liver cells, and uses MgGTP instead of MgATP.
  • AK4 and AK5 are both localized in brain tissue.
  • AK family enzymes are well conserved, including the nucleoside triphosphate binding glycine-rich region, the nucleoside monophosphate binding site, and the lid domain that closes over the substrate upon binding (.see Schulz (1987) Cold Spring Harbor Symp. Quant. Biol. 52:429-439).
  • adenylate kinase deficiency has been linked to hemolytic anemia and neurological disorders such as neurofibromatosis (Xu et al. (1992) Genomics 13:537-542.
  • targeting regulation of ATP synthesis has been the basis of antiproliferative drugs for treatment of viral infections and cancer.
  • Adenylate kinases are also useful for activating nucleoside analogues used as pharmaceuticals, especially for cancer and viral infection. Most of these analogues must be phosphorylated to the triphosphate form in order to be pharmaceutically active. The first phosphorylation step in the activation of nucleoside analogs is catalyzed by deoxyribonucleoside kinases. Phosphorylation to the di- and triphosphates are then required. Accordingly, adenylate kinases are a major target for drug action and development. Thus, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown adenylate kinases. The present invention advances the state of the art by providing a previously unidentified human adenylate kinase.
  • Isolated nucleic acid molecules corresponding to adenylate kinase nucleic acid sequences are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
  • the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO: 2 or the nucleotide sequences encoding the DNA sequence deposited in a bacterial host with the Patent Depository of the American
  • ATCC Type Culture Collection
  • adenylate kinase polypeptides having an amino acid sequence encoded by a nucleic acid molecule described herein.
  • the present invention also provides vectors and host cells for recombinant expression of the nucleic acid molecules described herein, as well as methods of making such vectors and host cells and for using them for production of the polypeptides or peptides of the invention by recombinant techniques.
  • adenylate kinase molecules of the present invention are useful for modulating cellular growth and/or cellular metabolic pathways particularly for regulating one or more proteins involved in growth and metabolism. Accordingly, in one aspect, this invention provides isolated nucleic acid molecules encoding adenylate kinase proteins or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection of adenylate kinase-encoding nucleic acids.
  • Another aspect of this invention features isolated or recombinant adenylate kinase proteins and polypeptides.
  • Preferred adenylate kinase proteins and polypeptides possess at least one biological activity possessed by naturally occurring adenylate kinase proteins.
  • nucleic acid molecules and polypeptides substantially homologous to the nucleotide and amino acid sequences set forth in the sequence listings are encompassed by the present invention. Additionally, fragments and substantially homologous fragments of the nucleotide and amino acid sequences are provided.
  • Antibodies and antibody fragments that selectively bind the adenylate kinase polypeptides and fragments are provided. Such antibodies are useful in detecting the adenylate kinase polypeptides as well as in regulating the T-cell immune response and cellular activity, particularly growth and proliferation.
  • the present invention provides a method for detecting the presence of adenylate kinase activity or expression in a biological sample by contacting the biological sample with an agent capable of detecting an indicator of adenylate kinase activity such that the presence of adenylate kinase activity is detected in the biological sample.
  • the invention provides a method for modulating adenylate kinase activity comprising contacting a cell with an agent that modulates (inhibits or stimulates) adenylate kinase activity or expression such that adenylate kinase activity or expression in the cell is modulated.
  • the agent is an antibody that specifically binds to adenylate kinase protein.
  • the agent modulates expression of adenylate kinase protein by modulating transcription of an adenylate kinase gene, splicing of an adenylate kinase mRNA, or translation of an adenylate kinase mRNA.
  • the agent is a nucleic acid molecule having a nucleotide sequence that is antisense to the coding strand of the adenylate kinase mRNA or the adenylate kinase gene.
  • the methods of the present invention are used to treat a subject having a disorder characterized by aberrant adenylate kinase protein activity or nucleic acid expression by administering an agent that is an adenylate kinase modulator to the subject.
  • the adenylate kinase modulator is an adenylate kinase protein.
  • the adenylate kinase modulator is an adenylate kinase nucleic acid molecule.
  • the adenylate kinase modulator is a peptide, peptidomimetic, or other small molecule.
  • the present invention also provides a diagnostic assay for identifying the presence or absence of a genetic lesion or mutation characterized by at least one of the following: (1) aberrant modification or mutation of a gene encoding an adenylate kinase protein; (2) misregulation of a gene encoding an adenylate kinase protein; and (3) aberrant post-translational modification of an adenylate kinase protein, wherein a wild-type form of the gene encodes a protein with an adenylate kinase activity.
  • the invention provides a method for identifying a compound that binds to or modulates the activity of an adenylate kinase protein.
  • such methods entail measuring a biological activity of an adenylate kinase protein in the presence and absence of a test compound and identifying those compounds that alter the activity of the adenylate kinase protein.
  • the invention also features methods for identifying a compound that modulates the expression of adenylate kinase genes by measuring the expression of the adenylate kinase sequences in the presence and absence of the compound.
  • Figure 1 shows the 27802 nucleotide sequence (SEQ ID NO:l) and the deduced amino acid sequence (SEQ ID NO:2).
  • Figure 2 shows an analysis of the 27802 amino acid sequence: ⁇ turn and coil regions; hydrophilicity; amphipathic regions; flexible regions; antigenic index; and surface probability plot.
  • Figure 3 shows a 27802 receptor hydrophobicity plot. Relative hydrophobic residues are shown above the dashed horizontal line, and relative hydrophilic residues are below the dashed horizontal line.
  • the cysteine residues (cys) and N glycosylation site (Ngly) are indicated by short vertical lines just below the hydropathy trace.
  • the numbers corresponding to the amino acid sequence (shown in SEQ ID NO:2) of human 27802 are indicated .
  • Polypeptides of the invention include fragments which include: all or a part of a hydrophobic sequence (a sequence above the dashed line); or all or part of a hydrophilic fragment (a sequence below the dashed line). Other fragments include a cysteine residue or an N-glycosylation site.
  • Figure 4 shows an analysis of the 27802 open reading frame for amino acids corresponding to specific functional sites. These sites are relevant with regard to providing fragments of the 27802 nucleic acid or peptide as disclosed herein.
  • Figure 5 shows PSORT prediction of protein localization showing a high score in the cytoplasm and significant scores in other cellular locations.
  • Figure 6 shows a description of ProDom matches for the 27802 protein.
  • Figure 7 depicts an alignment of the adenylate kinase domains of human
  • the upper sequence for domain 1 is the consensus amino acid sequence (SEQ ID NO:4) and the lower amino acid sequence corresponds to amino acids 41- 120 of SEQ ID NO:2.
  • the upper sequence for domain 2 is the consensus amino acid sequence (SEQ ID NO: 5) and the lower amino acid sequence corresponds to amino acids 201-251 of SEQ ID NO:2.
  • Figure 8 displays the expression levels of 27802 in various tissues determined by quantitative PCR.
  • the highest levels of expression of 27802 were observed in artery, kidney, brain cortex and brain hypothalamus, ovary, lung (tumor), and tonsil.
  • the tissue types are as follows from left to right: Artery Normal, Aorta Diseased, Vein Normal, Coronary SMC, HUVEC, Hemangioma, Heart Normal, Heart CHF, Kidney, Skeletal Muscle, Adipose Normal, Pancreas, Primary Osteoblasts, Osteoclasts (diff), Skin Normal, Spinal Cord Normal, Brain Cortex Normal, Brain Hypothalamus Normal, Nerve, DRG (Dorsal Root Ganglion), Breast Normal, Breast Tumor, Ovary Normal, Ovary Tumor, Prostate Normal, Prostate Tumor, Salivary Glands, Colon Normal, Colon Tumor, Lung Normal, Lung Tumor, Lung COPD, Colon IBD, Liver Normal, Liver Fibrosis,
  • the present invention is based, at least in part, on the identification of novel molecules, referred to herein as adenylate kinase nucleic acid and polypeptide molecules, which play a role in, or function in, numerous biochemical pathways associated with cellular growth and/or cellular metabolic activity. These growth and metabolic pathways are described in Lodish et al. (1995) Molecular Cell Biology (Scientific American Books Inc., New York, NY) and Devlin (1997) Textbook of Biochemistry with Clinical Correlations (Wiley-Liss, Inc., New York, NY), the contents of which are incorporated herein by reference.
  • the present invention provides isolated nucleic acid molecules comprising nucleotide sequences encoding the adenylate kinase polypeptide whose amino acid sequence is given in SEQ ID NO:2, or a variant or fragment of the polypeptides.
  • a plasmid containing the h27802 cDNA insert was deposited with the Patent Depository of the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Virginia, on , and assigned Patent Deposit Number . This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. ⁇ 112.
  • a novel human gene termed clone h27802 is provided. This sequence, and complements thereof, are referred to as "adenylate kinase " indicating that the gene sequences share sequence similarity to adenylate kinase genes.
  • the novel h27802 adenylate kinase gene encodes an approximately 1.45 Kb mRNA transcript having the corresponding cDNA set forth in SEQ ID NO:l .
  • This transcript encodes a 258 amino acid protein (SEQ ID NO:2).
  • SEQ ID NO:2 An analysis of the full- length h27802 polypeptide predicts that the N-terminal 56 amino acids may represent a region comprising a signal peptide. Prosite program analysis was used to predict various sites within the h27802 protein. See Figure 4.
  • the h27802 adenylate kinase protein possesses adenylate kinase domain sequences, as shown in Figure 7.
  • nucleoside monophosphate kinases There are three functional subdomains common to nucleoside monophosphate kinases: the nucleoside triphosphate binding glycine-rich region, the nucleoside monophosphate binding site, and the lid domain that closes over the substrate upon binding (see Schulz (1987) Cold Spring Harbor Symp. Quant. Biol. 52:429-439).
  • Human 27802 was aligned with two consensus amino acid sequences for adenylate kinase domains derived from hidden Markov models.
  • PS prefix and PF prefix domain identification numbers refer to Sonnhammer et al. (1997) Protein 28:405-420 and http//www.psc.edu/general/software/packages/pfam/pfam.html.
  • the first adenylate kinase domain (SEQ ID NO:4) aligns with amino acids 41-120 of SEQ ID NO:2 and the second adenylate kinase domain (SEQ ID NO:5) aligns with amino acids 201-251 of SEQ ID NO:2 (see Figure 7).
  • adenylate kinase domain includes an amino acid sequence of about 30-200 amino acid residues in length and having a bit score for the alignment of the sequence to the adenylate kinase domain (HMM) of at least 8.
  • an adenylate kinase domain includes at least about 40-150 amino acids, more preferably about 50-100 amino acid residues, or about 50-80 amino acids and has a bit score for the alignment of the sequence to the adenylate kinase domain (HMM) of at least 16 or greater.
  • the adenylate kinase domain (HMM) has been assigned the PFAM Accession PF00406 (http;//pfam.wustl.edu/).
  • a 27802-like polypeptide or protein has "adenylate kinase domains" or regions which include at least about 30-200, more preferably about 40-100, or 50-80 amino acid residues and has at least about 60%, 70%, 80%, 85%, 90%, 95%, 99%, or 100% sequence identity with an "adenylate kinase domain,” e.g., the adenylate kinase domain of human 27802-like (e.g., amino acid residues 41- 120 and 201-251 of SEQ ID NO.2).
  • the amino acid sequence of the protein can be searched against a database of HMMs (e.g., the Pfam database, release 2.1) using the default parameters (http://www.sanger.ac.uk/Software/Pfam/HMM_search).
  • HMMs e.g., the Pfam database, release 2.1
  • the default parameters http://www.sanger.ac.uk/Software/Pfam/HMM_search.
  • the hmmsf program which is available as part of the HMMER package of search programs, is a family specific default program for MILPAT0063 and a score of 15 is the default threshold score for determining a hit.
  • the threshold score for determining a hit can be lowered (e.g., to 8 bits).
  • a description of the Pfam database can be found in Sonhammer et al. (1997) Proteins 28(3):4Q5-42Q and a detailed description of HMMs can be found, for example, in Gribskov et al. (1990) Meth. Enzymol. 183:146-159; Gribskov et al. (1987) Proc. Natl. Acad. Sci. USA 84:4355- 4358; Krogh et ⁇ /. (1994) J Mol. Biol. 255:1501-1531; and Stultz et ⁇ /. (1993) Protein Sci.
  • the expression levels of 27802 were determined in various tissues by quantitative PCR (Figure 8). The highest levels of expression of 27802 were observed in artery, kidney, brain cortex and brain hypothalamus, ovary, lung (tumor), and tonsil. The expression of 27802 in a tissue indicates that modulation of the expression or activity of 27802 in that tissue may be used in the treatment of disorders involving such a tissue.
  • the adenylate kinase molecules modulate the activity of one or more proteins involved in cellular growth or differentiation, e.g., cardiac, epithelial, or neuronal cell growth or differentiation.
  • the adenylate kinase molecules of the present invention are capable of modulating the phosphorylation state of a nucleoside mono-, di-, or triphosphate molecule or the phosphorylation state of one or more proteins involved in cellular growth or differentiation, e.g., cardiac, epithelial, or neuronal cell growth or differentiation, as described in, for example, Lodish et al. (1995) and Devlin (1997), supra.
  • the adenylate kinase of the present invention are targets of drugs described in Goodman and Gilman (1996), The Pharmacological Basis of Therapeutics (9 th ed.) Hartman & Limbard Editors, the contents of which are incorporated herein by reference.
  • the adenylate kinases of the invention may modulate phosphorylation activity in tissues and cells including, but not limited to, human brain.
  • expression of the gene is also observed in lymphoma.
  • the adenylate kinase sequences of the invention are used to manipulate the nucleoside mono-, di-, and triphosphate pool to alter cellular metabolic pathways, such as glycolysis and gluconeogenesis.
  • Adenylate kinases play an important role in the regulation of energy balance within cells and in energy-requiring biochemical processes associated with cellular growth and development. Inhibition or over-stimulation of the activity of adenylate kinases affects the cellular equilibrium between nucleoside mono-, di-, and triphosphates, particularly AMP, ADP, and ATP, all of which are integrally involved in energy-requiring biochemical processes associated with cellular growth and development. Disruption or modulation of this equilibrium can lead to perturbed cellular growth, which can in turn lead to cellular growth related-disorders.
  • a "cellular growth-related disorder” includes a disorder, disease, or condition characterized by a deregulation, e.g., an upregulation or a downregulation, of cellular growth.
  • a deregulation e.g., an upregulation or a downregulation
  • Cellular growth deregulation may be due to a deregulation of cellular proliferation, cell cycle progression, cellular differentiation and/or cellular hypertrophy.
  • cardiovascular disorders such as heart failure, hypertension, atrial fibrillation, dilated cardiomyopathy, idiopathic cardiomyopathy, or angina
  • proliferative disorders or differentiative disorders such as cancer, e.g., lymphoma, melanoma, prostate cancer, cervical cancer, breast cancer, colon cancer, or sarcoma.
  • adenylate kinase activity increases in cerebrospinal fluid at the acute onset of ischemic brain damage and is correlated with the severity of the lesion (Buttner et al. (1986) J Neurol. 255:297-303). Adenyl kinase activity also increases in cerebrospinal fluid in some brain tumors (Ronquist et al. (1977) Lancet t:1284- 1286). Further, adenylate kinase may be expressed in damaged tissue and therefore is a useful target to measure tissue damage. Finally, deletions at lp31 locus in many tumors is associated with hemolytic anemia (Matsuura et al. (1989) J. Biol. Chem.
  • compositions are also useful for treatment and diagnosis related to these disorders.
  • the disclosed invention relates to methods and compositions for the modulation, diagnosis, and treatment of cellular proliferative and/or differentiative, neurological, immune, inflammatory, lymphatic, cardiovascular, respiratory, and hematological disorders.
  • Immune disorders include, but are not limited to, chronic inflammatory diseases and disorders, such as Crohn's disease, reactive arthritis, including Lyme disease, insulin-dependent diabetes, organ-specific autoimmunity, including multiple sclerosis, Hashimoto's thyroiditis and Grave's disease, contact dermatitis, psoriasis, graft rejection, graft versus host disease, sarcoidosis, atopic conditions, such as asthma and allergy, including allergic rhinitis, gastrointestinal allergies, including food allergies, eosinophilia, conjunctivitis, glomerular nephritis, certain pathogen susceptibilities such as helminthic (e.g., leishmaniasis), certain viral infections, including HIV, and bacterial infections, including tuberculosis and lepromatous leprosy.
  • chronic inflammatory diseases and disorders such as Crohn's disease, reactive arthritis, including Lyme disease, insulin-dependent diabetes, organ-specific autoimmunity, including multiple s
  • disorders involving blood vessels include, but are not limited to, responses of vascular cell walls to injury, such as endothelial dysfunction and endothelial activation and intimal thickening; vascular diseases including, but not limited to, congenital anomalies, such as arteriovenous fistula, atherosclerosis, and hypertensive vascular disease, such as hypertension; inflammatory disease—the vasculitides, such as giant cell (temporal) arteritis, Takayasu arteritis, polyarteritis nodosa (classic), Kawasaki syndrome (mucocutaneous lymph node syndrome), microscopic polyanglitis (microscopic polyarteritis, hypersensitivity or leukocytoclastic anglitis), Wegener granulomatosis, thromboanglitis obliterans (Buerger disease), vasculitis associated with other disorders, and infectious arteritis; Raynaud disease; aneurysms and dissection, such as abdominal aortic aneurysms
  • disorders involving red cells include, but are not limited to, anemias, such as hemolytic anemias, including hereditary spherocytosis, hemolytic disease due to erythrocyte enzyme defects: glucose-6-phosphate dehydrogenase deficiency, sickle cell disease, thalassemia syndromes, paroxysmal nocturnal hemoglobinuria, immunohemolytic anemia, and hemolytic anemia resulting from trauma to red cells; and anemias of diminished erythropoiesis, including megaloblastic anemias, such as anemias of vitamin B12 deficiency: pernicious anemia, and anemia of folate deficiency, iron deficiency anemia, anemia of chronic disease, aplastic anemia, pure red cell aplasia, and other forms of marrow failure.
  • anemias such as hemolytic anemias, including hereditary spherocytosis, hemolytic disease due to erythrocyte enzyme defects: glucose-6-phosphate dehydrogena
  • Hematologic disorders include but are not limited to anemias including sickle cell and hemolytic anemia, hemophilias including types A and B, leukemias, thalassemias, spherocytosis, Von Willebrand disease, chronic granulomatous disease, glucose-6-phosphate dehydrogenase deficiency, thrombosis, clotting factor abnormalities and deficiencies including factor VIII and IX deficiencies, hemarthrosis, hematemesis, hematomas, hematuria, hemochromatosis, hemoglobinuria, hemolytic-uremic syndrome, thrombocytopenias including HIV- associated thrombocytopenia, hemorrhagic telangiectasia, idiopathic thrombocytopenic purpura, thrombotic microangiopathy, hemosiderosis.
  • anemias including sickle cell and hemolytic anemia, hemophilias including types A and B, leukemias, thalassemias, spher
  • Respiratory disorders include, but are not limited to, apnea, asthma, particularly bronchial asthma, berillium disease, bronchiectasis, bronchitis, bronchopneumonia, cystic fibrosis, diphtheria, dyspnea, emphysema, chronic obstructive pulmonary disease, allergic bronchopulmonary aspergillosis, pneumonia, acute pulmonary edema, pertussis, pharyngitis, atelectasis, Wegener's granulomatosis, Legionnaires disease, pleurisy, rheumatic fever, and sinusitis.
  • apnea asthma, particularly bronchial asthma, berillium disease, bronchiectasis, bronchitis, bronchopneumonia, cystic fibrosis, diphtheria, dyspnea, emphysema, chronic obstructive pulmonary disease, allergic
  • Preferred disorders include, but are not limited to disorders of brain and lymph node, especially lymphoma.
  • the disclosed invention also relates to methods and compositions for the modulation, diagnosis, and treatment of disorders involving the brain and lymph nodes.
  • Disorders involving the brain include, but are limited to, disorders involving neurons, and disorders involving glia, such as astrocytes, oligodendrocytes, ependymal cells, and microglia; cerebral edema, raised intracranial pressure and herniation, and hydrocephalus; malformations and developmental diseases, such as neural tube defects, forebrain anomalies, posterior fossa anomalies, and syringomyelia and hydromyelia; perinatal brain injury; cerebrovascular diseases, such as those related to hypoxia, ischemia, and infarction, including hypotension, hypoperfusion, and low-flow states—global cerebral ischemia and focal cerebral ischemia— infarction from obstruction of local blood supply, intracranial hemorrhage, including intracerebral (intraparenchymal) hemorrhage, subarachnoid hemorrhage and ruptured berry aneurysms, and vascular malformations, hypertensive cerebrovascular disease, including lacun
  • T-cells disorders involving T-cells include, but are not limited to, cell-mediated hypersensitivity, such as delayed type hypersensitivity and T-cell-mediated cytotoxicity, and transplant rejection; autoimmune diseases, such as systemic lupus erythematosus, Sjogren syndrome, systemic sclerosis, inflammatory myopathies, mixed connective tissue disease, and polyarteritis nodosa and other vasculitides; immunologic deficiency syndromes, including but not limited to, primary immunodeficiencies, such as thymic hypoplasia, severe combined immunodeficiency diseases, and AIDS; leukopenia; reactive (inflammatory) proliferations of white cells, including but not limited to, leukocytosis, acute nonspecific lymphadenitis, and chronic nonspecific lymphadenitis; neoplastic proliferations of white cells, including but not limited to lymphoid neoplasms, such as precursor T-cell neoplasms, such as acute lymphoblastic leukemia/lymp
  • the myelocytic series (polymorphoneuclear cells) make up approximately 60% of the cellular elements, and the erythrocytic series, 20- 30%. Lymphocytes, monocytes, reticular cells, plasma cells and megakaryocytes together constitute 10-20%. Lymphocytes make up 5-15% of normal adult marrow.
  • cell types are add mixed so that precursors of red blood cells (erythroblasts), macrophages (monoblasts), platelets (megakaryocytes), polymorphoneuclear leucocytes (myeloblasts), and lymphocytes (lymphoblasts) can be visible in one microscopic field.
  • stem cells exist for the different cell lineages, as well as a precursor stem cell for the committed progenitor cells of the different lineages.
  • the various types of cells and stages of each would be known to the person of ordinary skill in the art and are found, for example, on page 42 ( Figure 2-8) of Immunology, Imunopathology and Immunity, Fifth Edition, Sell et al. Simon and Schuster (1996), inco ⁇ orated by reference for its teaching of cell types found in the bone marrow. According, the invention is directed to disorders arising from these cells.
  • disorders include but are not limited to the following: diseases involving hematopoeitic stem cells; committed lymphoid progenitor cells; lymphoid cells including B and T-cells; committed myeloid progenitors, including monocytes, granulocytes, and megakaryocytes; and committed erythroid progenitors.
  • leukemias include B-lymphoid leukemias, T- lymphoid leukemias, undifferentiated leukemias; erythroleukemia, megakaryoblastic leukemia, monocytic; [leukemias are encompassed with and without differentiation]; chronic and acute lymphoblastic leukemia, chronic and acute lymphocytic leukemia, chronic and acute myelogenous leukemia, lymphoma, myelo dysplastic syndrome, chronic and acute myeloid leukemia, myelomonocytic leukemia; chronic and acute myeloblastic leukemia, chronic and acute myelogenous leukemia, chronic and acute promyelocytic leukemia, chronic and acute myelocytic leukemia, hematologic malignancies of monocyte-macrophage lineage, such as juvenile chronic myelogenous leukemia; secondary AML, antecedent hematological disorder; refractory anemia;
  • B-cells include, but are not limited to precursor B-cell neoplasms, such as lymphoblastic leukemia/lymphoma.
  • Peripheral B-cell neoplasms include, but are not limited to, chronic lymphocytic leukemia/small lymphocytic lymphoma, follicular lymphoma, diffuse large B-cell lymphoma, Burkitt lymphoma, plasma cell neoplasms, multiple myeloma, and related entities, lymphoplasmacytic lymphoma (Waldenstr ⁇ m macroglobulinemia), mantle cell lymphoma, marginal zone lymphoma (MALToma), and hairy cell leukemia.
  • disorders involving precursor T-cell neoplasms include precursor T lymphoblastic leukemia/lymphoma.
  • Disorders involving peripheral T-cell and natural killer cell neoplasms include T-cell chronic lymphocytic leukemia, large granular lymphocytic leukemia, mycosis fungoides and Sezary syndrome, peripheral T-cell lymphoma, unspecified, angioimmunoblastic T-cell lymphoma, angiocentric lymphoma (NK/T-cell lymphoma 43 ), intestinal T-cell lymphoma, adult T-cell leukemia/lymphoma, and anaplastic large cell lymphoma.
  • the adenylate kinase sequences of the invention are members of a family of molecules having conserved functional features.
  • family when referring to the proteins and nucleic acid molecules of the invention is intended to mean two or more proteins or nucleic acid molecules having sufficient amino acid or nucleotide sequence identity as defined herein.
  • family members can be naturally occurring and can be from either the same or different species.
  • a family can contain a first protein of murine origin and a homologue of that protein of human origin, as well as a second, distinct protein of human origin and a murine homologue of that protein.
  • Members of a family may also have common functional characteristics.
  • Preferred adenylate kinase polypeptides of the present invention have an amino acid sequence sufficiently identical to the amino acid sequence of SEQ ID NO:2.
  • the term "sufficiently identical" is used herein to refer to a first amino acid or nucleotide sequence that contains a sufficient or minimum number of identical or equivalent (e.g., with a similar side chain) amino acid residues or nucleotides to a second amino acid or nucleotide sequence such that the first and second amino acid or nucleotide sequences have a common structural domain and/or common functional activity.
  • amino acid or nucleotide sequences that contain a common structural domain having at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identity are defined herein as sufficiently identical.
  • the sequences are aligned for optimal comparison pu ⁇ oses (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison pu ⁇ oses).
  • the length of a reference sequence aligned for comparison pu ⁇ oses is at least 30%, preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, 90%, 100% of the length of the reference sequence.
  • the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology").
  • the percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
  • the comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
  • the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (1970) J. Mol. Biol. 5:444-453 algorithm which has been inco ⁇ orated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.
  • the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6.
  • a particularly preferred set of parameters is using a Blossum 62 scoring matrix with a gap open penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.
  • the percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of E. Meyers and W. Miller (1989) CABIOS 4:11-11 which has been inco ⁇ orated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
  • nucleic acid and protein sequences described herein can be used as a "query sequence" to perform a search against public databases to, for example, identify other family members or related sequences.
  • Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 275:403-10.
  • Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25(17 :3389- 3402.
  • the default parameters of the respective programs e.g., XBLAST and NBLAST
  • XBLAST and NBLAST See http://www.ncbi.nlm.nih.gov.
  • an "adenylate kinase protein activity", “biological activity of an adenylate kinase protein”, or “functional activity of an adenylate kinase protein” refers to an activity exerted by an adenylate kinase protein, polypeptide, or nucleic acid molecule on an adenylate kinase responsive cell as determined in vivo, or in vitro, according to standard assay techniques.
  • An adenylate kinase activity can be a direct activity, such as an association with or an enzymatic activity on a second protein, or an indirect activity, such as a cellular activity mediated by interaction of the adenylate kinase protein with a second protein.
  • an adenylate kinase activity includes at least one or more of the following activities: (1) modulating (stimulating and/or enhancing or inhibiting) cellular proliferation, differentiation, and/or function, particularly in cells in which the sequences are expressed, for example, cells of the lymph node, including Thl, Th2, T cells, natural killer T cells, lymphocytes, leukocytes, etc., and brain, such as glial cells and neurons; (2) modulating a target cell's energy balance, particularly the ratio between AMP and ATP; (3) modulating the glycolytic pathway; (4) modulating the gluconeogenesis pathway; (4) modulating cell growth; (5) modulating the entry of cells into mitosis; (6) modulating cellular differentiation; (7) modulating cell death; and (8) modulating an immune response.
  • an “isolated” or “purified” adenylate kinase nucleic acid molecule or protein, or biologically active portion thereof is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.
  • an “isolated” nucleic acid is free of sequences (preferably protein encoding sequences) that naturally flank the nucleic acid (i.e., sequences located at the 5N and 3N ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
  • isolated when used to refer to nucleic acid molecules excludes isolated chromosomes.
  • the isolated adenylate kinase nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived.
  • An adenylate kinase protein that is substantially free of cellular material includes preparations of adenylate kinase protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of non-adenylate kinase protein (also referred to herein as a "contaminating protein").
  • culture medium represents less than about 30%, 20%, 10%, or 5% of the volume of the protein preparation.
  • adenylate kinase protein is produced by chemical synthesis, preferably the protein preparations have less than about 30%, 20%, 10%, or 5% (by dry weight) of chemical precursors or non-adenylate kinase chemicals.
  • One aspect of the invention pertains to isolated nucleic acid molecules comprising nucleotide sequences encoding adenylate kinase proteins and polypeptides or biologically active portions thereof, as well as nucleic acid molecules sufficient for use as hybridization probes to identify adenylate kinase-encoding nucleic acids (e.g., adenylate kinase mRNA) and fragments for use as PCR primers for the amplification or mutation of adenylate kinase nucleic acid molecules.
  • adenylate kinase-encoding nucleic acids e.g., adenylate kinase mRNA
  • nucleic acid molecule is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs.
  • the nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.
  • Nucleotide sequences encoding the adenylate kinase proteins of the present invention include sequences set forth in SEQ ID NO:l, the nucleotide sequence of the cDNA insert of the plasmid deposited with the ATCC as Patent Deposit Number (the "cDNA of Patent Deposit Number "), and complements thereof.
  • complement is intended a nucleotide sequence that is sufficiently complementary to a given nucleotide sequence such that it can hybridize to the given nucleotide sequence to thereby form a stable duplex.
  • the corresponding amino acid sequence for the adenylate kinase protein encoded by these nucleotide sequences is set forth in SEQ ID NO:2.
  • Nucleic acid molecules that are fragments of these adenylate kinase nucleotide sequences are also encompassed by the present invention.
  • fragment is intended a portion of the nucleotide sequence encoding an adenylate kinase protein.
  • a fragment of an adenylate kinase nucleotide sequence may encode a biologically active portion of an adenylate kinase protein, or it may be a fragment that can be used as a hybridization probe or PCR primer using methods disclosed below.
  • a biologically active portion of an adenylate kinase protein can be prepared by isolating a portion of one of the adenylate kinase nucleotide sequences of the invention, expressing the encoded portion of the adenylate kinase protein (e.g., by recombinant expression in vitro), and assessing the activity of the encoded portion of the adenylate kinase protein.
  • Nucleic acid molecules that are fragments of an adenylate kinase nucleotide sequence comprise at least 15, 20, 50, 75, 100, 200, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400 nucleotides, or up to the number of nucleotides present in a full-length adenylate kinase nucleotide sequence disclosed herein (for example, 1452 nucleotides for SEQ ID NO:l) depending upon the intended use.
  • a nucleic acid molecule that is a fragment of an 27802-like nucleotide sequence of the present invention comprises a nucleotide sequence consisting of at least 5, 10, 15, 20, 25, 30, 35, or 40 contiguous nucleotides of nucleotides 215-370, or nucleotides 843-941 of SEQ ID NO:l .
  • a fragment of a nucleotide sequence of the present invention comprises a nucleotide sequence consisting of nucleotides 215-300, 300-370, 843-900, 900-941 of SEQ ID NO:l .
  • isolated fragments include any contiguous sequence not disclosed prior to the invention as well as sequences that are substantially the same and which are not disclosed. Accordingly, if an isolated fragment is disclosed prior to the present invention, that fragment is not intended to be encompassed by the invention.
  • an isolated nucleic acid fragment is at least about 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, 45-50, 50-75, 75-100 or more contiguous nucleotides.
  • Other regions of the nucleotide sequence may comprise fragments of various sizes, depending upon potential homology with previously disclosed sequences.
  • a fragment of an adenylate kinase nucleotide sequence that encodes a biologically active portion of an adenylate kinase protein of the invention will encode at least 15, 25, 30, 50, 75, 100, 125, 150, 175, 200, or 225 contiguous amino acids, or up to the total number of amino acids present in a full-length adenylate kinase protein of the invention (for example, 258 amino acids for SEQ ID NO:2).
  • a nucleic acid molecule that is a fragment of an 27802-like nucleotide sequence of the present invention comprises a nucleotide sequence encoding at least 15, 20, 25, 30, 35, or 40 contiguous amino acids of amino acids 1-51, or 209-241 of SEQ ID NO:2.
  • a fragment of a nucleotide sequence of the present invention comprises a nucleotide sequence encoding amino acids 1-25, 25-51, 209-241 of SEQ ID NO:2.
  • Fragments of an adenylate kinase nucleotide sequence that are useful as hybridization probes for PCR primers generally need not encode a biologically active portion of an adenylate kinase protein.
  • Nucleic acid molecules that are variants of the adenylate kinase nucleotide sequences disclosed herein are also encompassed by the present invention.
  • "Variants" of the adenylate kinase nucleotide sequences include those sequences that encode the adenylate kinase proteins disclosed herein but that differ conservatively because of the degeneracy of the genetic code. These naturally occurring allelic variants can be identified with the use of well-known molecular biology techniques, such as polymerase chain reaction (PCR) and hybridization techniques as outlined below.
  • PCR polymerase chain reaction
  • Variant nucleotide sequences also include synthetically derived nucleotide sequences that have been generated, for example, by using site-directed mutagenesis but which still encode the adenylate kinase proteins disclosed in the present invention as discussed below.
  • nucleotide sequence variants of the invention with have at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the nucleotide sequence disclosed herein.
  • a variant adenylate kinase nucleotide sequence will encode an adenylate kinase protein that has an amino acid sequence having at least 45%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of an adenylate kinase protein disclosed herein.
  • Such variants retain the functional activity (e.g. the adenylate kinase activity) of the polypeptide set forth in SEQ ID NO:2.
  • DNA sequence polymo ⁇ hisms that lead to changes in the amino acid sequences of adenylate kinase proteins may exist within a population (e.g., the human population).
  • Such genetic polymo ⁇ hism in an adenylate kinase gene may exist among individuals within a population due to natural allelic variation.
  • An allele is one of a group of genes that occur alternatively at a given genetic locus.
  • the terms “gene” and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame encoding an adenylate kinase protein, preferably a mammalian adenylate kinase protein.
  • the phrase “allelic variant” refers to a nucleotide sequence that occurs at an adenylate kinase locus or to a polypeptide encoded by the nucleotide sequence. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the adenylate kinase gene.
  • nucleotide variations and resulting amino acid polymo ⁇ hisms or variations in an adenylate kinase sequence that are the result of natural allelic variation and that do not alter the functional activity of adenylate kinase proteins are intended to be within the scope of the invention.
  • nucleic acid molecules encoding adenylate kinase proteins from other species are intended to be within the scope of the invention.
  • nucleic acid molecules corresponding to natural allelic variants and homologs of the human adenylate kinase cDNA of the invention can be isolated based on their identity to the human adenylate kinase nucleic acid disclosed herein using the human cDNA, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions as disclosed below.
  • allelic variants of the adenylate kinase sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences of the invention thereby leading to changes in the amino acid sequence of the encoded adenylate kinase proteins, without altering the biological activity of the adenylate kinase proteins.
  • an isolated nucleic acid molecule encoding an adenylate kinase protein having a sequence that differs from that of SEQ ID NO:2 can be created by introducing one or more nucleotide substitutions, additions, or deletions into the corresponding nucleotide sequence disclosed herein, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Such variant nucleotide sequences are also encompassed by the present invention. For example, preferably, conservative amino acid substitutions may be made at one or more predicted, preferably nonessential amino acid residues.
  • a “nonessential” amino acid residue is a residue that can be altered from the wild-type sequence of an adenylate kinase protein (e.g., the sequence of SEQ ID NO:2) without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity.
  • a “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
  • amino acids with basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic acid, glutamic acid
  • uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • beta-branched side chains e.g., threonine, valine, isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
  • substitutions would not be made for conserved amino acid residues, or for amino acid residues residing within a conserved motif, such as the adenylate kinase domain sequence of SEQ ID NO:2 (see Figure 3), where such residues are essential for protein activity.
  • variant adenylate kinase nucleotide sequences can be made by introducing mutations randomly along all or part of an adenylate kinase coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for adenylate kinase biological activity to identify mutants that retain activity.
  • the encoded protein can be expressed recombinantly, and the activity of the protein can be determined using standard assay techniques.
  • nucleotide sequence of the invention includes the sequence disclosed herein as well as fragments and variants thereof.
  • the adenylate kinase nucleotide sequence of the invention, and fragments and variants thereof, can be used as probes and/or primers to identify and/or clone adenylate kinase homologs in other cell types, e.g., from other tissues, as well as adenylate kinase homologs from other mammals.
  • probes can be used to detect transcripts or genomic sequences encoding the same or identical proteins.
  • probes can be used as part of a diagnostic test kit for identifying cells or tissues that misexpress an adenylate kinase protein, such as by measuring levels of an adenylate kinase-encoding nucleic acid in a sample of cells from a subject, e.g., detecting adenylate kinase mRNA levels or determining whether a genomic adenylate kinase gene has been mutated or deleted.
  • hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group such as P, or any other detectable marker, such as other radioisotopes, a fluorescent compound, an enzyme, or an enzyme co-factor.
  • Probes for hybridization can be made by labeling synthetic oligonucleotides based on the known adenylate kinase nucleotide sequence disclosed herein. Degenerate primers designed on the basis of conserved nucleotides or amino acid residues in a known adenylate kinase nucleotide sequence or encoded amino acid sequence can additionally be used.
  • the probe typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, or 400 consecutive nucleotides of an adenylate kinase nucleotide sequence of the invention or a fragment or variant thereof.
  • a previously unidentified adenylate kinase nucleic acid molecule hybridizes under stringent conditions to a probe that is a nucleic acid molecule comprising the adenylate kinase nucleotide sequence of the invention or a fragment thereof.
  • the previously unknown adenylate kinase nucleic acid molecule is at least 300, 325, 350, 375, 400, 425, 450, 500, 550, 600, 650, 700, 800, 900, 1000, 2,000, 3,000, 4,000 or 5,000 nucleotides in length and hybridizes under stringent conditions to a probe that is a nucleic acid molecule comprising the adenylate kinase nucleotide sequence disclosed herein or a fragment thereof.
  • an isolated previously unknown adenylate kinase nucleic acid molecule of the invention is at least 300, 325, 350, 375, 400, 425, 450, 500, 550, 600, 650, 700, 800, 900, 1000, 1,100, 1,200, 1,300, or 1,400 nucleotides in length and hybridizes under stringent conditions to a probe that is a nucleic acid molecule comprising the nucleotide sequence of the invention, preferably the coding sequence set forth in SEQ ID NO:l, the cDNA of Patent Deposit Number , or a complement, fragment, or variant thereof.
  • the term "hybridizes under stringent conditions" describes conditions for hybridization and washing.
  • Stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Aqueous and nonaqueous methods are described in that reference and either can be used.
  • a preferred, example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 50°C.
  • Another example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 55°C.
  • a further example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about
  • stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 65 °C.
  • SSC 6X sodium chloride/sodium citrate
  • Particularly preferred stringency conditions are 0.5M
  • an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequence of SEQ ID NO:l, or SEQ ID NO:3, corresponds to a naturally-occurring nucleic acid molecule.
  • a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).
  • the isolated nucleic acid molecules of the invention also encompass homologous DNA sequences identified and isolated from other cells and/or organisms by hybridization with entire or partial sequences obtained from the adenylate kinase nucleotide sequences disclosed herein or variants and fragments thereof.
  • the present invention also encompasses antisense nucleic acid molecules, i.e., molecules that are complementary to a sense nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule, or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid.
  • the antisense nucleic acid can be complementary to an entire adenylate kinase coding strand, or to only a portion thereof, e.g., all or part of the protein coding region (or open reading frame).
  • An antisense nucleic acid molecule can be antisense to a noncoding region of the coding strand of a nucleotide sequence encoding an adenylate kinase protein.
  • the noncoding regions are the 5' and 3' sequences that flank the coding region and are not translated into amino acids.
  • antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing.
  • the antisense nucleic acid molecule can be complementary to the entire coding region of adenylate kinase mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of adenylate kinase mRNA.
  • the antisense oligonucleotide can be complementary to the region surrounding the translation start site of adenylate kinase mRNA.
  • An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides in length.
  • An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation procedures known in the art.
  • an antisense nucleic acid e.g., an antisense oligonucleotide
  • an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, including, but not limited to, for example e.g., phosphorothioate derivatives and acridine substituted nucleotides.
  • the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
  • the antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an adenylate kinase protein to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation.
  • An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site.
  • antisense nucleic acid molecules can be modified to target selected cells and then administered systemically.
  • antisense molecules can be linked to peptides or antibodies to form a complex that specifically binds to receptors or antigens expressed on a selected cell surface.
  • the antisense nucleic acid molecules can also be delivered to cells using the vectors described herein.
  • vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.
  • An antisense nucleic acid molecule of the invention can be an ⁇ -anomeric nucleic acid molecule.
  • An ⁇ -anomeric nucleic acid molecule forms specific double- stranded hybrids with complementary RNA in which, contrary to the usual ⁇ -units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids Res. 15:6625-6641).
  • the antisense nucleic acid molecule can also comprise a 2'-o- methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).
  • the invention also encompasses ribozymes, which are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region.
  • Ribozymes e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)
  • Ribozymes can be used to catalytically cleave adenylate kinase mRNA transcripts to thereby inhibit translation of adenylate kinase mRNA.
  • a ribozyme having specificity for an adenylate kinase-encoding nucleic acid can be designed based upon the nucleotide sequence of an adenylate kinase cDNA disclosed herein (e.g., SEQ ID NO:l). See, e.g., Cech et al, U.S. Patent No. 4,987,071; and Cech et al., U.S. Patent No. 5,116,742.
  • adenylate kinase mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel and Szostak (1993) Science 261 :1411-1418.
  • the invention also encompasses nucleic acid molecules that form triple helical structures.
  • adenylate kinase gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the adenylate kinase protein (e.g., the adenylate kinase promoter and/or enhancers) to form triple helical structures that prevent transcription of the adenylate kinase gene in target cells.
  • nucleotide sequences complementary to the regulatory region of the adenylate kinase protein e.g., the adenylate kinase promoter and/or enhancers
  • the nucleic acid molecules of the invention can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule.
  • the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorganic & Medicinal Chemistry 4:5).
  • the terms "peptide nucleic acids” or "PNAs” refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained.
  • PNAs The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength.
  • the synthesis of PNA oligomers can be performed using standard solid-phase peptide synthesis protocols as described in Hyrup et al. (1 96), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93:14670.
  • PNAs of an adenylate kinase molecule can be used in therapeutic and diagnostic applications.
  • PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.
  • PNAs of the invention can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA-directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., SI nucleases (Hyrup (1996), supra; or as probes or primers for DNA sequence and hybridization (Hyrup (1996), supra; Perry- O'Keefe et al. (1996), supra).
  • PNAs of an adenylate kinase molecule can be modified, e.g., to enhance their stability, specificity, or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art.
  • the synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996), supra; Finn et al. (1996) Nucleic Acids Res. 24(17):3357-63; Mag et al. (1989) Nucleic Acids Res. 17:5973; and Peterson et al. (1975) Bioorganic Med. Chem. Lett. 5:1119.
  • Adenylate kinase proteins are also encompassed within the present invention.
  • adenylate kinase protein is intended a protein having the amino acid sequence set forth in SEQ ID NO: 2, as well as fragments, biologically active portions, and variants thereof.
  • Fragments or “biologically active portions” include polypeptide fragments suitable for use as immunogens to raise anti-adenylate kinase antibodies. Fragments include peptides comprising amino acid sequences sufficiently identical to or derived from the amino acid sequence of an adenylate kinase protein of the invention and exhibiting at least one activity of an adenylate kinase protein, but which include fewer amino acids than the full-length (SEQ ID NO:2) adenylate kinase protein disclosed herein.
  • biologically active portions comprise a domain or motif with at least one activity of the adenylate kinase protein.
  • a biologically active portion of an adenylate kinase protein can be a polypeptide that is, for example, 10-15, 15-20, 20- 25, 25-30, 30-35, 35-40, 40-45, 45-50, 50-55, 55-60, 70, 80, 90, 100 or more amino acids in length.
  • Such biologically active portions can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native adenylate kinase protein.
  • a fragment comprises at least 5 contiguous amino acids of SEQ ID NO:2.
  • the invention encompasses other fragments, however, such as any fragment in the protein greater than 5 amino acids, depending upon the intended use.
  • variants proteins or polypeptides having an amino acid sequence that is at least about 45%, 55%, 65%, preferably about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:2.
  • Variants also include polypeptides encoded by the cDNA insert of the plasmid deposited with ATCC as Accession Number , or polypeptides encoded by a nucleic acid molecule that hybridizes to the nucleic acid molecule of SEQ ID NO: 1 , or a complement thereof, under stringent conditions.
  • a variant of an isolated polypeptide of the present invention differs, by at least 1, but less than 5, 10, 20, 50, or 100 amino acid residues from the sequence shown in SEQ ID NO:2. If alignment is needed for this comparison the sequences should be aligned for maximum identity. "Looped" out sequences from deletions or insertions, or mismatches, are considered differences. Such variants generally retain the functional activity of the 27802-like proteins of the invention. Variants include polypeptides that differ in amino acid sequence due to natural allelic variation or mutagenesis.
  • the invention also provides adenylate kinase chimeric or fusion proteins.
  • the encoded polypeptide is herein defined as a "heterologous polypeptide” or a “chimeric polypeptide” or a "fusion polypeptide”.
  • an adenylate kinase "heterologous protein” or “chimeric protein” or “fusion protein” comprises an adenylate kinase polypeptide operably linked to a non-adenylate kinase polypeptide.
  • an “adenylate kinase polypeptide” refers to a polypeptide having an amino acid sequence corresponding to an adenylate kinase protein
  • a “non-adenylate kinase polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially identical to the adenylate kinase protein, e.g., a protein that is different from the adenylate kinase protein and which is derived from the same or a different organism.
  • the adenylate kinase polypeptide can correspond to all or a portion of an adenylate kinase protein, preferably at least one biologically active portion of an adenylate kinase protein.
  • the term "operably linked" is intended to indicate that the adenylate kinase polypeptide and the non-adenylate kinase polypeptide are fused in- frame to each other.
  • the non-adenylate kinase polypeptide can be fused to the N- terminus or C-terminus of the adenylate kinase polypeptide.
  • One useful fusion protein is a GST-adenylate kinase fusion protein in which the adenylate kinase sequences are fused to the C-terminus of the GST sequences.
  • Such fusion proteins can facilitate the purification of recombinant adenylate kinase proteins.
  • the fusion protein is an adenylate kinase- immunoglobulin fusion protein in which all or part of an adenylate kinase protein is fused to sequences derived from a member of the immunoglobulin protein family.
  • the adenylate kinase-immunoglobulin fusion proteins of the invention can be inco ⁇ orated into pharmaceutical compositions and administered to a subject to inhibit an interaction between an adenylate kinase ligand and an adenylate kinase protein on the surface of a cell, thereby suppressing adenylate kinase-mediated signal transduction in vivo.
  • the adenylate kinase-immunoglobulin fusion proteins can be used to affect the bioavailability of an adenylate kinase cognate ligand. Inhibition of the adenylate kinase ligand/adenylate kinase interaction may be useful therapeutically, both for treating proliferative and differentiative disorders and for modulating (e.g., promoting or inhibiting) cell survival.
  • the adenylate kinase- immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-adenylate kinase antibodies in a subject, to purify adenylate kinase ligands, and in screening assays to identify molecules that inhibit the interaction of an adenylate kinase protein with an adenylate kinase ligand.
  • an adenylate kinase chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques.
  • DNA fragments coding for the different polypeptide sequences may be ligated together in-frame, or the fusion gene can be synthesized, such as with automated DNA synthesizers.
  • PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments, which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel et al., eds. (1995) Current Protocols in Molecular Biology) (Greene Publishing and Wiley-Interscience, NY).
  • an adenylate kinase-encoding nucleic acid can be cloned into a commercially available expression vector such that it is linked in-frame to an existing fusion moiety.
  • Variants of the adenylate kinase proteins can function as either adenylate kinase agonists (mimetics) or as adenylate kinase antagonists. Variants of the adenylate kinase protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the adenylate kinase protein. An agonist of the adenylate kinase protein can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the adenylate kinase protein.
  • An antagonist of the adenylate kinase protein can inhibit one or more of the activities of the naturally occurring form of the adenylate kinase protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade that includes the adenylate kinase protein.
  • specific biological effects can be elicited by treatment with a variant of limited function.
  • Treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein can have fewer side effects in a subject relative to treatment with the naturally occurring form of the adenylate kinase proteins.
  • Variants of the adenylate kinase proteins can function as either adenylate kinase agonists (mimetics) or as adenylate kinase antagonists. Variants of the adenylate kinase protein can be generated by mutagenesis, e.g. discrete point mutation or truncation of the adenylate kinase protein. An agonist of the adenylate kinase protein can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the adenylate kinase protein.
  • An antagonist of the adenylate kinase protein can inhibit one or more of the activities of the naturally occurring form of the adenylate kinase protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade that includes the adenylate kinase protein.
  • specific biological effects can be elicited by treatment with a variant of limited function.
  • Treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein can have fewer side effects in a subject relative to treatment with the naturally occurring form of the adenylate kinase proteins.
  • Variants of an adenylate kinase protein that function as either adenylate kinase agonists or as adenylate kinase antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of an adenylate kinase protein for adenylate kinase protein agonist or antagonist activity.
  • a variegated library of adenylate kinase variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library.
  • a variegated library of adenylate kinase variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential adenylate kinase sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of adenylate kinase sequences therein.
  • fusion proteins e.g., for phage display
  • Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector.
  • Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential adenylate kinase sequences.
  • Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang (1983) Tetrahedron 39:3; Itakura et o/. (19%4) Annu. Rev. Biochem. 53:323; Itakura et ⁇ /. (1984) Science 198:1056; Ike et ⁇ /. (1983) Nucleic Acid Res. 11 :477).
  • libraries of fragments of an adenylate kinase protein coding sequence can be used to generate a variegated population of adenylate kinase fragments for screening and subsequent selection of variants of an adenylate kinase protein.
  • a library of coding sequence fragments can be generated by treating a double-stranded PCR fragment of an adenylate kinase coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double-stranded DNA, renaturing the DNA to form double- stranded DNA which can include sense/antisense pairs from different nicked products, removing single-stranded portions from reformed duplexes by treatment with SI nuclease, and ligating the resulting fragment library into an expression vector.
  • this method one can derive an expression library that encodes N-terminal and internal fragments of various sizes of the adenylate kinase protein.
  • REM Recursive ensemble mutagenesis
  • An isolated adenylate kinase polypeptide of the invention can be used as an immunogen to generate antibodies that bind adenylate kinase proteins using standard techniques for polyclonal and monoclonal antibody preparation.
  • the full-length adenylate kinase protein can be used or, alternatively, the invention provides antigenic peptide fragments of adenylate kinase proteins for use as immunogens.
  • the antigenic peptide of an adenylate kinase protein comprises at least 8, preferably 10-15, 15-20, 20-25, or 30 or more amino acid residues of the amino acid sequence shown in SEQ ID NO: 2 and encompasses an epitope of an adenylate kinase protein such that an antibody raised against the peptide forms a specific immune complex with the adenylate kinase protein.
  • Preferred epitopes encompassed by the antigenic peptide are regions of a adenylate kinase protein that are located on the surface of the protein, e.g., hydrophilic regions.
  • another aspect of the invention pertains to anti-adenylate kinase polyclonal and monoclonal antibodies that bind an adenylate kinase protein.
  • Polyclonal anti-adenylate kinase antibodies can be prepared by immunizing a suitable subject (e.g., rabbit, goat, mouse, or other mammal) with an adenylate kinase immunogen.
  • a suitable subject e.g., rabbit, goat, mouse, or other mammal
  • the anti-adenylate kinase antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized adenylate kinase protein.
  • ELISA enzyme linked immunosorbent assay
  • antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein (1975) Nature 256:495-497, the human B cell hybridoma technique (Kozbor et al. (1983) Immunol. Today 4:72), the EBV-hybridoma technique (Cole et al. (1985) in Monoclonal Antibodies and Cancer Therapy, ed. Reisfeld and Sell (Alan R. Liss, Inc., New York, NY), pp. 77-96) or trioma techniques.
  • standard techniques such as the hybridoma technique originally described by Kohler and Milstein (1975) Nature 256:495-497, the human B cell hybridoma technique (Kozbor et al. (1983) Immunol. Today 4:72), the EBV-hybridoma technique (Cole et al. (1985) in Monoclonal Antibodies and Cancer Therapy, ed. Re
  • hybridomas The technology for producing hybridomas is well known (see generally Coligan et al., eds. (1994) Current Protocols in Immunology (John Wiley & Sons, Inc., New York, NY); Galfre et al. (1977) Nature 266:55052; Kenneth (1980) in Monoclonal Antibodies: A New Dimension In Biological Analyses (Plenum Publishing Co ⁇ ., NY; and Lerner (1981) Yale J. Biol. Med., 54:387-402).
  • a monoclonal anti-adenylate kinase antibody can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with an adenylate kinase protein to thereby isolate immunoglobulin library members that bind the adenylate kinase protein.
  • Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01 ; and the Stratagene Sur ⁇ APS Phage Display Kit, Catalog No. 240612).
  • recombinant anti-adenylate kinase antibodies such as chimeric and humanized monoclonal antibodies, comprising both human and nonhuman portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention.
  • chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT Publication Nos. WO 86101533 and WO 87/02671; European Patent Application Nos. 184,187, 171,496, 125,023, and 173,494; U.S.
  • An anti-adenylate kinase antibody (e.g., monoclonal antibody) can be used to isolate adenylate kinase proteins by standard techniques, such as affinity chromatography or immunoprecipitation.
  • An anti-adenylate kinase antibody can facilitate the purification of natural adenylate kinase protein from cells and of recombinantly produced adenylate kinase protein expressed in host cells.
  • an anti-adenylate kinase antibody can be used to detect adenylate kinase protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the adenylate kinase protein.
  • Anti-adenylate kinase antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.
  • suitable enzymes include horseradish peroxidase, alkaline phosphatase, ⁇ -galactosidase, or acetylcholinesterase;
  • suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin;
  • suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin;
  • an example of a luminescent material includes luminol;
  • examples of bioluminescent materials include luciferase, luciferin, and aequorin;
  • suitable radioactive material include I, I, S, or H.
  • an antibody may be conjugated to a therapeutic moiety such as a cytotoxin, a therapeutic agent or a radioactive metal ion.
  • a cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1 - dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
  • Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis- dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g.,
  • the drug moiety can be used for modifying a given biological response, the drug moiety is not to be construed as limited to classical chemical therapeutic agents.
  • the drug moiety may be a protein or polypeptide possessing a desired biological activity.
  • proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, .alpha.-interferon, .beta.- interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1 "), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophase colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors.
  • IL-1 interleukin-1
  • IL-2 interle
  • an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980.
  • vectors preferably expression vectors, containing a nucleic acid encoding an adenylate kinase protein (or a portion thereof).
  • Vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked, such as a "plasmid", a circular double- stranded DNA loop into which additional DNA segments can be ligated, or a viral vector, where additional DNA segments can be ligated into the viral genome.
  • the vectors are useful for autonomous replication in a host cell or may be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome (e.g., nonepisomal mammalian vectors).
  • Expression vectors are capable of directing the expression of genes to which they are operably linked.
  • expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors).
  • the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses, and adeno-associated viruses), that serve equivalent functions.
  • the recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell.
  • the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, operably linked to the nucleic acid sequence to be expressed.
  • "Operably linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription translation system or in a host cell when the vector is introduced into the host cell).
  • regulatory sequence is intended to include promoters, enhancers, and other expression control elements (e.g., polyadenylation signals). See, for example, Goeddel (1990) in Gene Expression Technology: Methods in Enzymology 185 (Academic Press, San Diego, CA). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.
  • the expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., adenylate kinase proteins, mutant forms of adenylate kinase proteins, fusion proteins, etc.).
  • proteins or peptides including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., adenylate kinase proteins, mutant forms of adenylate kinase proteins, fusion proteins, etc.).
  • nucleic acid sequences of the invention can be altered to contain codons, which are preferred, or non preferred, for a particular expression system.
  • the nucleic acid can be one in which at least one altered codon, and preferably at least 10%, or 20% of the codons have been altered such that the sequence is optimized for expression in E. coli, yeast, human, insect, or CHO cells. Methods for determining such codon usage are well known in the art.
  • the recombinant expression vectors of the invention can be designed for expression of adenylate kinase protein in prokaryotic or eukaryotic host cells. Expression of proteins in prokaryotes is most often carried out in E.
  • Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein.
  • Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA), and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible nonfusion E.
  • coli expression vectors include pTrc (Amann et al. (1988) Gene 69:301-315) and pET 1 Id (Studier et al. (1990) in Gene Expression Technology: Methods in Enzymology 185 (Academic Press, San Diego, CA), pp. 60-89). Strategies to maximize recombinant protein expression in E. coli can be found in Gottesman (1990) in Gene Expression Technology: Methods in Enzymology 185 (Academic Press, CA), pp. 119-128 and Wada et al. (1992) Nucleic Acids Res. 20:2111-2118. Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid t ⁇ -lac fusion promoter.
  • Suitable eukaryotic host cells include insect cells (examples of Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39)); yeast cells (examples of vectors for expression in yeast S. cereivisiae include pYepSecl (Baldari et al. (1987) EMBO J.
  • mammalian expression vectors include pCDM8 (Seed (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) E 75O J. 6: 187: 195)).
  • Suitable mammalian cells include Chinese hamster ovary cells (CH ⁇ ) or COS cells.
  • the expression vector's control functions are often provided by viral regulatory elements.
  • promoters are derived from polyoma, Adenovirus 2, cytomegalovirus, and Simian Virus 40.
  • suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook et al. (1989) Molecular cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, NY). See, Goeddel (1990) in Gene Expression Technology: Methods in Enzymology 185 (Academic Press, San Diego, CA).
  • the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
  • host cell and "recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell but are still included within the scope of the term as used herein.
  • a “purified preparation of cells”, as used herein, refers to, in the case of plant or animal cells, an in vitro preparation of cells and not an entire intact plant or animal. In the case of cultured cells or microbial cells, it consists of a preparation of at least 10% and more preferably 50% of the subject cells.
  • the expression vector is a recombinant mammalian expression vector that comprises tissue-specific regulatory elements that direct expression of the nucleic acid preferentially in a particular cell type.
  • tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1 :268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al.
  • promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379), the ⁇ -fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546), and the like.
  • the invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operably linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to adenylate kinase mRNA. Regulatory sequences operably linked to a nucleic acid cloned in the antisense orientation can be chosen to direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen to direct constitutive, tissue-specific, or cell-type-specific expression of antisense RNA.
  • the antisense expression vector can be in the form of a recombinant plasmid, phagemid, or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced.
  • Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques.
  • transformation and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook et al. (1989) Molecular Cloning: A Labor aty Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, NY) and other laboratory manuals.
  • a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest.
  • selectable markers include those which confer resistance to drugs, such as G418, hygromycin, and methotrexate.
  • Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding an adenylate kinase protein or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have inco ⁇ orated the selectable marker gene will survive, while the other cells die).
  • a host cell of the invention such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) adenylate kinase protein.
  • the invention further provides methods for producing adenylate kinase protein using the host cells of the invention.
  • the method comprises culturing the host cell of the invention, into which a recombinant expression vector encoding an adenylate kinase protein has been introduced, in a suitable medium such that adenylate kinase protein is produced.
  • the method further comprises isolating adenylate kinase protein from the medium or the host cell.
  • the host cells of the invention can also be used to produce nonhuman transgenic animals.
  • methods for producing transgenic animals include introducing a nucleic acid sequence according to the present invention, the nucleic acid sequence capable of expressing the receptor protein in a transgenic animal, into a cell in culture or in vivo.
  • the nucleic acid is introduced into an intact organism such that one or more cell types and, accordingly, one or more tissue types, express the nucleic acid encoding the receptor protein.
  • the nucleic acid can be introduced into virtually all cells in an organism by transfecting a cell in culture, such as an embryonic stem cell, as described herein for the production of transgenic animals, and this cell can be used to produce an entire transgenic organism.
  • the host cell can be a fertilized oocyte. Such cells are then allowed to develop in a female foster animal to produce the transgenic organism.
  • a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which adenylate kinase-coding sequences have been introduced.
  • Such host cells can then be used to create nonhuman transgenic animals in which exogenous adenylate kinase sequences have been introduced into their genome or homologous recombinant animals in which endogenous adenylate kinase sequences have been altered.
  • Such animals are useful for studying the function and/or activity of adenylate kinase genes and proteins and for identifying and/or evaluating modulators of adenylate kinase activity.
  • a "transgenic animal” is a nonhuman animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene.
  • Other examples of transgenic animals include nonhuman primates, sheep, dogs, cows, goats, chickens, amphibians, etc.
  • a transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal.
  • a "homologous recombinant animal” is a nonhuman animal, preferably a mammal, more preferably a mouse, in which an endogenous adenylate kinase gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.
  • a transgenic animal of the invention can be created by introducing adenylate kinase-encoding nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal.
  • the adenylate kinase cDNA sequence can be introduced as a transgene into the genome of a nonhuman animal.
  • a homolog of the mouse adenylate kinase gene can be isolated based on hybridization and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene.
  • a tissue-specific regulatory sequence(s) can be operably linked to the adenylate kinase transgene to direct expression of adenylate kinase protein to particular cells.
  • Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866, 4,870,009, and 4,873,191 and in Hogan (1986) Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1986). Similar methods are used for production of other transgenic animals.
  • a transgenic founder animal can be identified based upon the presence of the adenylate kinase transgene in its genome and/or expression of adenylate kinase mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene encoding adenylate kinase gene can further be bred to other transgenic animals carrying other transgenes.
  • the vector is designed such that, upon homologous recombination, the endogenous adenylate kinase gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector).
  • the vector can be designed such that, upon homologous recombination, the endogenous adenylate kinase gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous adenylate kinase protein).
  • the altered portion of the adenylate kinase gene is flanked at its 5' and 3' ends by additional nucleic acid of the adenylate kinase gene to allow for homologous recombination to occur between the exogenous adenylate kinase gene carried by the vector and an endogenous adenylate kinase gene in an embryonic stem cell.
  • the additional flanking adenylate kinase nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene.
  • flanking DNA both at the 5' and 3' ends
  • flanking DNA both at the 5' and 3' ends
  • the vector is introduced into an embryonic stem cell line (e.g., by electroporation), and cells in which the introduced adenylate kinase gene has homologously recombined with the endogenous adenylate kinase gene are selected (see, e.g., Li et al. (1992) Cell 69:915).
  • the selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras (see, e.g., Bradley (1987) in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, ed. Robertson (IRL, Oxford), pp. 113-152).
  • a chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term.
  • Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene.
  • transgenic nonhuman animals containing selected systems that allow for regulated expression of the transgene can be produced.
  • a system is the cre/loxP recombinase system of bacteriophage PI .
  • cre/loxP recombinase system see, e.g., Lakso et al. (1992) Proc. Natl. Acad. Sci. USA 89:6232-6236.
  • FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251 :1351-1355).
  • mice containing transgenes encoding both the Cre recombinase and a selected protein are required.
  • Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
  • Clones of the nonhuman transgenic animals described herein can also be produced according to the methods described in Wilmut et al. (1997) Nature 385:810- 813 and PCT Publication Nos. WO 97/07668 and WO 97/07669.
  • compositions suitable for administration can be inco ⁇ orated into pharmaceutical compositions suitable for administration.
  • Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and abso ⁇ tion delaying agents, and the like, compatible with pharmaceutical administration.
  • the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be inco ⁇ orated into the compositions.
  • compositions of the invention are useful to treat any of the disorders discussed herein.
  • the compositions are provided in therapeutically effective amounts.
  • therapeutically effective amounts is intended an amount sufficient to modulate the desired response.
  • a therapeutically effective amount of protein or polypeptide ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight.
  • treatment of a subject with a therapeutically effective amount of a protein, polypeptide, or antibody can include a single treatment or, preferably, can include a series of treatments.
  • a subject is treated with antibody, protein, or polypeptide in the range of between about 0.1 to 20 mg/kg body weight, one time per week for between about 1 to 10 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7 weeks, and even more preferably for about 4, 5, or 6 weeks.
  • an agent may, for example, be a small molecule.
  • small molecules include, but are not limited to, peptides, peptidomimetics, amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e,.
  • heteroorganic and organometallic compounds having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1 ,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.
  • doses of small molecule agents depends upon a number of factors within the ken of the ordinarily skilled physician, veterinarian, or researcher.
  • the dose(s) of the small molecule will vary, for example, depending upon the identity, size, and condition of the subject or sample being treated, further depending upon the route by which the composition is to be administered, if applicable, and the effect which the practitioner desires the small molecule to have upon the nucleic acid or polypeptide of the invention.
  • Exemplary doses include milligram or microgram amounts of the small molecule per kilogram of subject or sample weight (e.g., about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram. It is furthermore understood that appropriate doses of a small molecule depend upon the potency of the small molecule with respect to the expression or activity to be modulated. Such appropriate doses may be determined using the assays described herein.
  • a physician, veterinarian, or researcher may, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained.
  • the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.
  • a pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration.
  • routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration.
  • Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
  • the parenteral preparation can be enclosed in ampoules, disposable syringes, or multiple dose vials made of glass or plastic.
  • compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
  • suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF; Parsippany, NJ), or phosphate buffered saline (PBS).
  • the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof.
  • the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion, and by the use of surfactants.
  • Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
  • isotonic agents for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride, in the composition.
  • Prolonged abso ⁇ tion of the injectable compositions can be brought about by including in the composition an agent that delays abso ⁇ tion, for example, aluminum monostearate and gelatin.
  • Sterile injectable solutions can be prepared by inco ⁇ orating the active compound (e.g., an adenylate kinase protein or anti-adenylate kinase antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
  • dispersions are prepared by inco ⁇ orating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
  • sterile powders for the preparation of sterile injectable solutions the preferred methods of preparation are vacuum drying and freeze-drying, which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
  • Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the pu ⁇ ose of oral therapeutic administration, the active compound can be inco ⁇ orated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
  • the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth, or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
  • a suitable propellant e.g., a gas such as carbon dioxide, or a nebulizer.
  • Systemic administration can also be by transmucosal or transdermal means.
  • penetrants appropriate to the barrier to be permeated are used in the formulation.
  • penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
  • Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
  • the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
  • the compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
  • the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
  • a controlled release formulation including implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
  • the materials can also be obtained commercially from Alza Co ⁇ oration and Nova Pharmaceuticals, Inc.
  • Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.
  • Dosage unit form refers to physically discrete units suited as unitary dosages for the subject to be treated with each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • about 1 ⁇ g/kg to about 15 mg/kg (e.g., 0.1 to 20 mg/kg) of antibody is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion.
  • a typical daily dosage might range from about 1 ⁇ g/kg to about 100 mg/kg or more, depending on the factors mentioned above.
  • the treatment is sustained until a desired suppression of disease symptoms occurs.
  • other dosage regimens may be useful.
  • the progress of this therapy is easily monitored by conventional techniques and assays.
  • An exemplary dosing regimen is disclosed in WO 94/04188.
  • the specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
  • the nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors.
  • Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S.
  • the pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded.
  • the pharmaceutical preparation can include one or more cells which produce the gene delivery system.
  • the pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.
  • a therapeutically effective amount of protein or polypeptide ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight.
  • treatment of a subject with a therapeutically effective amount of a protein, polypeptide, or antibody can include a single treatment or, preferably, can include a series of treatments.
  • a subject is treated with antibody, protein, or polypeptide in the range of between about 0.1 to 20 mg/kg body weight, one time per week for between about 1 to 10 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7 weeks, and even more preferably for about 4, 5, or 6 weeks.
  • the effective dosage of antibody, protein, or polypeptide used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result and become apparent from the results of diagnostic assays as described herein.
  • An agent may, for example, be a small molecule.
  • small molecules include, but are not limited to, peptides, peptidomimetics, amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1 ,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.
  • doses of small molecule agents depends upon a number of factors within the ken of the ordinarily skilled physician, veterinarian, or researcher.
  • the dose(s) of the small molecule will vary, for example, depending upon the identity, size, and condition of the subject or sample being treated, further depending upon the route by which the composition is to be administered, if applicable, and the effect which the practitioner desires the small molecule to have upon the nucleic acid or polypeptide of the invention.
  • Exemplary doses include milligram or microgram amounts of the small molecule per kilogram of subject or sample weight (e.g., about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram. It is furthermore understood that appropriate doses of a small molecule depend upon the potency of the small molecule with respect to the expression or activity to be modulated. Such appropriate doses may be determined using the assays described herein.
  • a physician, veterinarian, or researcher may, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained.
  • the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.
  • nucleotide or amino acid sequences of the invention are also provided in a variety of mediums to facilitate use thereof.
  • "provided” refers to a manufacture, other than an isolated nucleic acid or amino acid molecule, which contains a nucleotide or amino acid sequence of the present invention.
  • Such a manufacture provides the nucleotide or amino acid sequences, or a subset thereof (e.g., a subset of open reading frames (ORFs)) in a form which allows a skilled artisan to examine the manufacture using means not directly applicable to examining the nucleotide or amino acid sequences, or a subset thereof, as they exists in nature or in purified form.
  • ORFs open reading frames
  • a nucleotide or amino acid sequence of the present invention can be recorded on computer readable media.
  • computer readable media refers to any medium that can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.
  • magnetic storage media such as floppy discs, hard disc storage medium, and magnetic tape
  • optical storage media such as CD-ROM
  • electrical storage media such as RAM and ROM
  • hybrids of these categories such as magnetic/optical storage media.
  • recorded refers to a process for storing information on computer readable medium.
  • the skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide or amino acid sequence information of the present invention.
  • a variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide or amino acid sequence of the present invention.
  • the choice of the data storage structure will generally be based on the means chosen to access the stored information.
  • a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium.
  • the sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like.
  • the skilled artisan can readily adapt any number of dataprocessor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.
  • nucleotide or amino acid sequences of the invention can routinely access the sequence information for a variety of pu ⁇ oses.
  • one skilled in the art can use the nucleotide or amino acid sequences of the invention in computer readable form to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the sequences of the invention which match a particular target sequence or target motif.
  • a "target sequence” can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids.
  • a skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database.
  • the most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues.
  • commercially important fragments such as sequence fragments involved in gene expression and protein processing, may be of shorter length.
  • a target structural motif refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif.
  • target motifs include, but are not limited to, enzyme active sites and signal sequences.
  • Nucleic acid target motifs include, but are not limited to, promoter sequences, hai ⁇ in structures and inducible expression elements (protein binding sequences).
  • Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium for analysis and comparison to other sequences.
  • a variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA).
  • ORFs open reading frames
  • Such ORFs are protein encoding fragments and are useful in producing commercially important proteins such as enzymes used in various reactions and in the production of commercially useful metabolites.
  • the nucleic acid molecules, proteins, protein homologs, and antibodies described herein can be used in one or more of the following methods: (a) screening assays; (b) detection assays (e.g., chromosomal mapping, tissue typing, forensic biology); (c) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenomics); and (d) methods of treatment (e.g., therapeutic and prophylactic).
  • the uses and methods of the invention are particularly relevant in tissues and cells in which the adenylate kinase is expressed and especially where expression differs from that in a normal tissue or cell.
  • the uses and methods are also particularly relevant in disorders involving such tissues and cells.
  • the isolated nucleic acid molecules of the invention can be used to express adenylate kinase protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect adenylate kinase mRNA (e.g., in a biological sample) or a genetic lesion in an adenylate kinase gene, and to modulate adenylate kinase activity.
  • the adenylate kinase proteins can be used to screen drugs or compounds that modulate the immune response as well as to treat disorders characterized by insufficient or excessive production of adenylate kinase protein or production of adenylate kinase protein forms that have decreased or aberrant activity compared to adenylate kinase wild type protein.
  • the anti-adenylate kinase antibodies of the invention can be used to detect and isolate adenylate kinase proteins and modulate adenylate kinase activity.
  • the invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules, or other drugs) that bind to adenylate kinase proteins or have a stimulatory or inhibitory effect on, for example, adenylate kinase expression or adenylate kinase activity.
  • modulators i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules, or other drugs) that bind to adenylate kinase proteins or have a stimulatory or inhibitory effect on, for example, adenylate kinase expression or adenylate kinase activity.
  • test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including biological libraries, spatially addressable parallel solid phase or solution phase libraries, synthetic library methods requiring deconvolution, the "one-bead one- compound” library method, and synthetic library methods using affinity chromatography selection.
  • biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, nonpeptide oligomer, or small molecule libraries of compounds (Lam (1997) Anticancer Drug Des. 12:145).
  • Determining the ability of the test compound to bind to the adenylate kinase protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the adenylate kinase protein or biologically active portion thereof can be determined by detecting the labeled compound in a complex.
  • test compounds can be labeled with 125 1, 35 S, 14 C, or 3 H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting.
  • test compounds can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.
  • target molecule is intended a molecule with which an adenylate kinase protein binds or interacts in nature.
  • the ability of the adenylate kinase protein to bind to or interact with an adenylate kinase target molecule can be determined by monitoring the activity of the target molecule.
  • the activity of the target molecule can be monitored by detecting induction of a cellular second messenger of the target (e.g., intracellular Ca 2+ , diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target on an appropriate substrate, detecting the induction of a reporter gene (e.g., an adenylate kinase-responsive regulatory element operably linked to a nucleic acid encoding a detectable marker, e.g. luciferase), or detecting a cellular response, for example, cellular differentiation or cell proliferation.
  • a reporter gene e.g., an adenylate kinase-responsive regulatory element operably linked to a nucleic acid encoding a detectable marker, e.g. luciferase
  • detecting a cellular response for example, cellular differentiation or cell proliferation.
  • an assay of the present invention is a cell-free assay comprising contacting an adenylate kinase protein or biologically active portion thereof with a test compound and determining the ability of the test compound to bind to the adenylate kinase protein or biologically active portion thereof. Binding of the test compound to the adenylate kinase protein can be determined either directly or indirectly as described above.
  • the assay includes contacting the adenylate kinase protein or biologically active portion thereof with a known compound that binds adenylate kinase protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to preferentially bind to adenylate kinase protein or biologically active portion thereof as compared to the known compound.
  • an assay is a cell-free assay comprising contacting adenylate kinase protein or biologically active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the adenylate kinase protein or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of an adenylate kinase protein can be accomplished, for example, by determining the ability of the adenylate kinase protein to bind to an adenylate kinase target molecule as described above for determining direct binding.
  • determining the ability of the test compound to modulate the activity of an adenylate kinase protein can be accomplished by determining the ability of the adenylate kinase protein to further modulate an adenylate kinase target molecule.
  • the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as previously described.
  • the cell-free assay comprises contacting the adenylate kinase protein or biologically active portion thereof with a known compound that binds an adenylate kinase protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to preferentially bind to or modulate the activity of an adenylate kinase target molecule.
  • a test compound e.g., it may be desirable to immobilize either an adenylate kinase protein or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.
  • a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix.
  • glutathione-S-transferase/adenylate kinase fusion proteins or glutathione-S- transferase/target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione-derivatized microtitre plates, which are then combined with the test compound or the test compound and either the nonadsorbed target protein or adenylate kinase protein, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH).
  • the beads or microtitre plate wells are washed to remove any unbound components and complex formation is measured either directly or indirectly, for example, as described above.
  • the complexes can be dissociated from the matrix, and the level of adenylate kinase binding or activity determined using standard techniques.
  • adenylate kinase protein or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin.
  • Biotinylated adenylate kinase molecules or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, IL), and immobilized in the wells of streptavidin-coated 96-well plates (Pierce Chemicals).
  • antibodies reactive with an adenylate kinase protein or target molecules but which do not interfere with binding of the adenylate kinase protein to its target molecule can be derivatized to the wells of the plate, and unbound target or adenylate kinase protein trapped in the wells by antibody conjugation.
  • Methods for detecting such complexes include immunodetection of complexes using antibodies reactive with the adenylate kinase protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the adenylate kinase protein or target molecule.
  • modulators of adenylate kinase expression are identified in a method in which a cell is contacted with a candidate compound and the expression of adenylate kinase mRNA or protein in the cell is determined relative to expression of adenylate kinase mRNA or protein in a cell in the absence of the candidate compound.
  • expression is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of adenylate kinase mRNA or protein expression.
  • the candidate compound when expression is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of adenylate kinase mRNA or protein expression.
  • the level of adenylate kinase mRNA or protein expression in the cells can be determined by methods described herein for detecting adenylate kinase mRNA or protein.
  • the adenylate kinase proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Bio/Techniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and PCT Publication No. WO
  • adenylate kinase-binding proteins or "adenylate kinase-bp"
  • adenylate kinase-binding proteins are also likely to be involved in the propagation of signals by the adenylate kinase proteins as, for example, upstream or downstream elements of the adenylate kinase pathway.
  • This invention further pertains to novel agents identified by the above- described screening assays and uses thereof for treatments as described herein.
  • the invention is directed to agents that modulate the level or activity of the polypeptide or nucleic acid of the invention, the agents being identified by screening cells, tissues, cell extracts, or tissue extracts with the agents. Agents that alter the level or activity can then be tested further for clinical diagnostic or therapeutic use. Any method of screening that allows expression to be measured, such as those disclosed herein, are relevant to produce the identification of these agents.
  • the invention is directed to agents identified by the screening processes involving measuring or detecting expression (level or activity) of the polypeptides or nucleic acids of the invention. It is understood that agents affecting the ability of the protein or nucleic acid to interact with a cellular component, as in competition binding, would be construed as affecting expression. Accordingly, screening processes also include assays for agents that themselves bind to the protein or nucleic acid of the invention, such as those disclosed herein.
  • Detection Assays Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. For example, these sequences can be used to: (1) map their respective genes on a chromosome; (2) identify an individual from a minute biological sample (tissue typing); and (3) aid in forensic identification of a biological sample. These applications are described in the subsections below.
  • the isolated complete or partial adenylate kinase gene sequences of the invention can be used to map their respective adenylate kinase genes on a chromosome, thereby facilitating the location of gene regions associated with genetic disease.
  • Computer analysis of adenylate kinase sequences can be used to rapidly select PCR primers (preferably 15-25 bp in length) that do not span more than one exon in the genomic DNA, thereby simplifying the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the adenylate kinase sequences will yield an amplified fragment.
  • Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow (because they lack a particular enzyme), but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established.
  • Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes (D'Eustachio et al. (1983) Science 220:919-924). Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.
  • mapping strategies that can similarly be used to map an adenylate kinase sequence to its chromosome include in situ hybridization (described in Fan et al. (1990) Proc. Natl. Acad. Sci. USA 87:6223-27), pre-screening with labeled flow- sorted chromosomes, and pre-selection by hybridization to chromosome specific cDNA libraries. Furthermore, fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step. For a review of this technique, see Verma eta a.
  • FISH fluorescence in situ hybridization
  • the FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1 ,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases will suffice to get good results in a reasonable amount of time.
  • Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping pu ⁇ oses. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.
  • differences in the DNA sequences between individuals affected and unaffected with a disease associated with the adenylate kinase gene can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymo ⁇ hisms.
  • the adenylate kinase sequences of the present invention can also be used to identify individuals from minute biological samples.
  • the United States military for example, is considering the use of restriction fragment length polymo ⁇ hism (RFLP) for identification of its personnel.
  • RFLP restriction fragment length polymo ⁇ hism
  • an individual's genomic DNA is digested with one or more restriction enzymes and probed on a Southern blot to yield unique bands for identification.
  • the sequences of the present invention are useful as additional DNA markers for RFLP (described in U.S. Patent 5,272,057).
  • sequences of the present invention can be used to provide an alternative technique for determining the actual base-by-base DNA sequence of selected portions of an individual's genome.
  • the adenylate kinase sequences of the invention can be used to prepare two PCR primers from the 5N and 3N ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.
  • Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences.
  • the adenylate kinase sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases.
  • Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification pu ⁇ oses.
  • the noncoding sequences of SEQ ID NO:l can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If a predicted coding sequence, such as that in SEQ ID NO: 1 , is used, a more appropriate number of primers for positive individual identification would be 500 to 2,000.
  • DNA-based identification techniques can also be used in forensic biology.
  • PCR technology can be used to amplify DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, or semen found at a crime scene.
  • the amplified sequence can then be compared to a standard, thereby allowing identification of the origin of the biological sample.
  • sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification marker" that is unique to a particular individual.
  • actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments.
  • Sequences targeted to noncoding regions of SEQ ID NO:l are particularly appropriate for this use as greater numbers of polymo ⁇ hisms occur in the noncoding regions, making it easier to differentiate individuals using this technique.
  • polynucleotide reagents include the adenylate kinase sequences or portions thereof, e.g., fragments derived from the noncoding regions of SEQ ID NO:l having a length of at least 20 or 30 bases.
  • adenylate kinase sequences described herein can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes that can be used in, for example, an in situ hybridization technique, to identify a specific tissue. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such adenylate kinase probes, can be used to identify tissue by species and/or by organ type.
  • these reagents e.g., adenylate kinase primers or probes can be used to screen tissue culture for contamination (i.e., screen for the presence of a mixture of different types of cells in a culture).
  • adenylate kinase primers or probes can be used to screen tissue culture for contamination (i.e., screen for the presence of a mixture of different types of cells in a culture).
  • the present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trails are used for prognostic (predictive) pu ⁇ oses to thereby treat an individual prophylactically.
  • One aspect of the present invention relates to diagnostic assays for detecting adenylate kinase protein and/or nucleic acid expression as well as adenylate kinase activity, in the context of a biological sample.
  • An exemplary method for detecting the presence or absence of adenylate kinase proteins in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting adenylate kinase protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes adenylate kinase protein such that the presence of adenylate kinase protein is detected in the biological sample.
  • adenylate kinase protein or nucleic acid e.g., mRNA, genomic DNA
  • Results obtained with a biological sample from the test subject may be compared to results obtained with a biological sample from a control subject.
  • “Misexpression or aberrant expression”, as used herein, refers to a non-wild type pattern of gene expression, at the RNA or protein level.
  • It includes: expression at non-wild type levels; i.e., over or under expression; a pattern of expression that differs from wild type in terms of the time or stage at which the gene is expressed, e.g., increased or decreased expression (as compared with wild type) at a predetermined developmental period or stage; a pattern of expression that differs from wild type in terms of decreased expression (as compared with wild type) in a predetermined cell type or tissue type; a pattern of expression that differs from wild type in terms, of the splicing size, amino acid sequence, post-transitional modification, or biological activity of the expressed polypeptide; a pattern of expression that differs from wild type in terms of the effect of an environmental stimulus or extracellular stimulus on expression of the gene, e.g., a pattern of increased or decreased expression (as compared with wild type) in the presence of an increase or decrease in the strength of the stimulus.
  • a preferred agent for detecting adenylate kinase mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to adenylate kinase mRNA or genomic DNA.
  • the nucleic acid probe can be, for example, a full-length adenylate kinase nucleic acid, such as the nucleic acid of SEQ ID NO:l, or a portion thereof, such as a nucleic acid molecule of at least about 15, 30, 50, 100, 250, or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to adenylate kinase mRNA or genomic DNA.
  • Other suitable probes for use in the diagnostic assays of the invention are described herein.
  • a preferred agent for detecting adenylate kinase protein is an antibody capable of binding to adenylate kinase protein, preferably an antibody with a detectable label.
  • Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(abN) 2 )can be used.
  • the term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled.
  • Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin.
  • biological sample is intended to include tissues, cells, and biological fluids isolated from a subject, as well as tissues, cells, and fluids present within a subject. That is, the detection method of the invention can be used to detect adenylate kinase mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo.
  • in vitro techniques for detection of adenylate kinase mRNA include Northern hybridizations and in situ hybridizations.
  • In vitro techniques for detection of adenylate kinase protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence.
  • In vitro techniques for detection of adenylate kinase genomic DNA include Southern hybridizations.
  • in vivo techniques for detection of adenylate kinase protein include introducing into a subject a labeled anti-adenylate kinase antibody.
  • the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
  • the biological sample contains protein molecules from the test subject.
  • the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject.
  • a preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.
  • kits for detecting the presence of adenylate kinase proteins in a biological sample can be used to determine if a subject is suffering from or is at increased risk of developing a disorder associated with aberrant expression of adenylate kinase protein (e.g., an immunological disorder).
  • the kit can comprise a labeled compound or agent capable of detecting adenylate kinase protein or mRNA in a biological sample and means for determining the amount of an adenylate kinase protein in the sample (e.g., an anti-adenylate kinase antibody or an oligonucleotide probe that binds to DNA encoding an adenylate kinase protein, e.g., SEQ ID NO:l).
  • a labeled compound or agent capable of detecting adenylate kinase protein or mRNA in a biological sample and means for determining the amount of an adenylate kinase protein in the sample (e.g., an anti-adenylate kinase antibody or an oligonucleotide probe that binds to DNA encoding an adenylate kinase protein, e.g., SEQ ID NO:l).
  • Kits can also include instructions for observing that the tested subject is suffering from or is at risk of developing a disorder associated with aberrant expression of adenylate kinase sequences if the amount of adenylate kinase protein or mRNA is above or below a normal level.
  • the kit can comprise, for example: (1) a first antibody (e.g., attached to a solid support) that binds to adenylate kinase protein; and, optionally, (2) a second, different antibody that binds to adenylate kinase protein or the first antibody and is conjugated to a detectable agent.
  • a first antibody e.g., attached to a solid support
  • a second, different antibody that binds to adenylate kinase protein or the first antibody and is conjugated to a detectable agent.
  • the kit can comprise, for example: (1) an oligonucleotide, e.g., a detectably labeled oligonucleotide, that hybridizes to an adenylate kinase nucleic acid sequence or (2) a pair of primers useful for amplifying an adenylate kinase nucleic acid molecule.
  • an oligonucleotide e.g., a detectably labeled oligonucleotide, that hybridizes to an adenylate kinase nucleic acid sequence
  • a pair of primers useful for amplifying an adenylate kinase nucleic acid molecule.
  • the kit can also comprise, e.g., a buffering agent, a preservative, or a protein stabilizing agent.
  • the kit can also comprise components necessary for detecting the detectable agent (e.g., an enzyme or a substrate).
  • the kit can also contain a control sample or a series of control samples that can be assayed and compared to the test sample contained.
  • Each component of the kit is usually enclosed within an individual container, and all of the various containers are within a single package along with instructions for observing whether the tested subject is suffering from or is at risk of developing a disorder associated with aberrant expression of adenylate kinase proteins.
  • Prognostic Assays The methods described herein can furthermore be utilized as diagnostic or prognostic assays to identify subjects having or at risk of developing a disease or disorder associated with adenylate kinase protein, adenylate kinase nucleic acid expression, or adenylate kinase activity.
  • Prognostic assays can be used for prognostic or predictive pu ⁇ oses to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with adenylate kinase protein, adenylate kinase nucleic acid expression, or adenylate kinase activity.
  • test sample refers to a biological sample obtained from a subject of interest.
  • a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.
  • the present invention provides methods for determining whether a subject can be administered a specific agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) or class of agents (e.g., agents of a type that decrease adenylate kinase activity) to effectively treat a disease or disorder associated with aberrant adenylate kinase expression or activity.
  • a test sample is obtained and adenylate kinase protein or nucleic acid is detected.
  • adenylate kinase protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant adenylate kinase expression or activity.
  • the methods of the invention can also be used to detect genetic lesions or mutations in an adenylate kinase gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation.
  • the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion or mutation characterized by at least one of an alteration affecting the integrity of a gene encoding an adenylate kinase-protein, or the misexpression of the adenylate kinase gene.
  • such genetic lesions or mutations can be detected by ascertaining the existence of at least one of: (1) a deletion of one or more nucleotides from an adenylate kinase gene; (2) an addition of one or more nucleotides to an adenylate kinase gene; (3) a substitution of one or more nucleotides of an adenylate kinase gene; (4) a chromosomal rearrangement of an adenylate kinase gene; (5) an alteration in the level of a messenger RNA transcript of an adenylate kinase gene; (6) an aberrant modification of an adenylate kinase gene, such as of the methylation pattern of the genomic DNA; (7) the presence of a non- wild-type splicing pattern of a messenger RNA transcript of an adenylate kinase gene; (8) a non-wild-type level of an adenylate kinase-protein
  • adenylate kinase gene there are a large number of assay techniques known in the art that can be used for detecting lesions in an adenylate kinase gene. Any cell type or tissue, preferably peripheral blood leukocytes, in which adenylate kinase proteins are expressed may be utilized in the prognostic assays described herein.
  • detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Patent Nos.
  • PCR polymerase chain reaction
  • Alternative amplification methods include self sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
  • mutations in an adenylate kinase gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns of isolated test sample and control DNA digested with one or more restriction endonucleases.
  • sequence specific ribozymes see, e.g., U.S. Patent No. 5,498,531 can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.
  • genetic mutations in an adenylate kinase molecule can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotides probes (Cronin et al. (1996) Human Mutation 7:244-255; Kozal et al. (1996) Nature Medicine 2:753-759).
  • any of a variety of sequencing reactions known in the art can be used to directly sequence the adenylate kinase gene and detect mutations by comparing the sequence of the sample adenylate kinase gene with the corresponding wild-type (control) sequence.
  • sequencing reactions include those based on techniques developed by Maxim and Gilbert ((1977) Proc. Natl. Acad. Sci. USA 74:560) or Sanger ((1977) Proc. Natl. Acad. Sci. USA 74:5463). It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays ((1995) Bio/Techniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT Publication No. WO 94/16101; Cohen et al. (1996) Adv. Chromatogr. 36:127-162; and Griffin et al. (1993) Appl. Biochem. Biotechnol. 38:147-159).
  • control DNA or RNA can be labeled for detection.
  • the mismatch cleavage reaction employs one or more "DNA mismatch repair" enzymes that recognize mismatched base pairs in double-stranded DNA in defined systems for detecting and mapping point mutations in adenylate kinase cDNAs obtained from samples of cells. See, e.g., Hsu et al. (1994) Carcinogenesis 15:1657-1662.
  • a probe based on an adenylate kinase sequence e.g., a wild-type adenylate kinase sequence
  • the duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g., U.S. Patent No. 5,459,039.
  • alterations in electrophoretic mobility will be used to identify mutations in adenylate kinase genes.
  • single-strand conformation polymo ⁇ hism may be used to detect differences in electrophoretic mobility between mutant and wild-type nucleic acids (Orita et al. (1989) Proc. Natl. Acad. Sci. USA 86:2766; see also Cotton (1993) Mutat. Res. 285:125-144; Hayashi (1992) Genet. Anal. Tech. Appl. 9:73-79).
  • the sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence.
  • the subject method utilizes heteroduplex analysis to separate double-stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet. 7:5).
  • the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495).
  • DGGE denaturing gradient gel electrophoresis
  • DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR.
  • a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys. Chem. 265:12753).
  • oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163); Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230).
  • Such allele-specific oligonucleotides are hybridized to PCR-amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.
  • allele-specific amplification technology which depends on selective PCR amplification, may be used in conjunction with the instant invention.
  • Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule so that amplification depends on differential hybridization (Gibbs et al. (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3N end of one primer where, under appropriate conditions, mismatch can prevent or reduce polymerase extension (Prossner (1993) Tibtech 11 :238).
  • amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci. USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3N end of the 5N sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
  • the methods described herein may be performed, for example, by utilizing prepackaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnosed patients exhibiting symptoms or family history of a disease or illness involving an adenylate kinase gene.
  • Pharmacogenomics Agents or modulators that have a stimulatory or inhibitory effect on adenylate kinase activity can be administered to individuals to treat (prophylactically or therapeutically) disorders associated with aberrant adenylate kinase activity.
  • the pharmacogenomics i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug
  • Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug.
  • the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of adenylate kinase protein, expression of adenylate kinase nucleic acid, or mutation content of adenylate kinase genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.
  • Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Linder (1997) Clin. Chem. 43(2):254-266.
  • two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body are referred to as “altered drug action.” Genetic conditions transmitted as single factors altering the way the body acts on drugs are referred to as "altered drug metabolism”. These pharmacogenetic conditions can occur either as rare defects or as polymo ⁇ hisms.
  • G6PD glucose-6-phosphate dehydrogenase deficiency
  • oxidant drugs antimalarials, sulfonamides, analgesics, nitrofurans
  • the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action.
  • drug metabolizing enzymes e.g., N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19
  • NAT 2 N-acetyltransferase 2
  • CYP2D6 and CYP2C19 cytochrome P450 enzymes
  • the gene coding for CYP2D6 is highly polymo ⁇ hic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, a PM will show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite mo ⁇ hine. The other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to C YP2D6 gene amplification.
  • the activity of adenylate kinase protein, expression of adenylate kinase nucleic acid, or mutation content of adenylate kinase genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.
  • pharmacogenetic studies can be used to apply genotyping of polymo ⁇ hic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype.
  • adenylate kinase genes e.g., the ability to modulate aberrant cell proliferation and/or differentiation
  • agents e.g., drugs, compounds
  • the effectiveness of an agent, as determined by a screening assay as described herein, to increase or decrease adenylate kinase gene expression, protein levels, or protein activity can be monitored in clinical trials of subjects exhibiting decreased or increased adenylate kinase gene expression, protein levels, or protein activity.
  • adenylate kinase expression or activity and preferably that of other genes that have been implicated in for example, a cellular proliferation disorder can be used as a marker of the responsiveness of a particular cell.
  • genes that are modulated in cells by treatment with an agent e.g., compound, drug, or small molecule
  • an agent e.g., compound, drug, or small molecule
  • adenylate kinase activity e.g., as identified in a screening assay described herein
  • cells can be isolated and RNA prepared and analyzed for the levels of expression of adenylate kinase genes and other genes implicated in the disorder.
  • the levels of gene expression can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of adenylate kinase genes or other genes.
  • the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.
  • the present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant adenylate kinase expression or activity. Additionally, the compositions of the invention find use in the treatment of disorders described herein. Treatment is defined as the application or administration of a therapeutic agent to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has a disease, a symptom of disease or a predisposition toward a disease, with the pu ⁇ ose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease, the symptoms of disease or the predisposition toward disease.
  • Subject can refer to a mammal, e.g. a human, or to an experimental or animal or disease model.
  • the subject can also be a non-human animal, e.g. a horse, cow, goat, or other domestic animal.
  • a therapeutic agent includes, but is not limited to, small molecules, peptides, antibodies, ribozymes and antisense oligonucleotides.
  • therapies for disorders associated with adenylate kinase expression are encompassed herein.
  • the invention provides a method for preventing in a subject a disease or condition associated with an aberrant adenylate kinase expression or activity by administering to the subject an agent that modulates adenylate kinase expression or at least one adenylate kinase gene activity.
  • Subjects at risk for a disease that is caused, or contributed to, by aberrant adenylate kinase expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein.
  • Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the adenylate kinase aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression.
  • an adenylate kinase agonist or adenylate kinase antagonist agent can be used for treating the subject.
  • the appropriate agent can be determined based on screening assays described herein.
  • the modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of adenylate kinase protein activity associated with the cell.
  • An agent that modulates adenylate kinase protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of an adenylate kinase protein, a peptide, an adenylate kinase peptidomimetic, or other small molecule.
  • the agent stimulates one or more of the biological activities of adenylate kinase protein.
  • stimulatory agents include active adenylate kinase protein and a nucleic acid molecule encoding an adenylate kinase protein that has been introduced into the cell.
  • the agent inhibits one or more of the biological activities of adenylate kinase protein.
  • inhibitory agents include antisense adenylate kinase nucleic acid molecules and anti-adenylate kinase antibodies.
  • the present invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of an adenylate kinase protein or nucleic acid molecule.
  • the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or a combination of agents, that modulates (e.g., upregulates or downregulates) adenylate kinase expression or activity.
  • the method involves administering an adenylate kinase protein or nucleic acid molecule as therapy to compensate for reduced or aberrant adenylate kinase expression or activity.
  • Stimulation of adenylate kinase activity is desirable in situations in which an adenylate kinase protein is abnormally downregulated and/or in which increased adenylate kinase activity is likely to have a beneficial effect.
  • inhibition of adenylate kinase activity is desirable in situations in which adenylate kinase activity is abnormally upregulated and/or in which decreased adenylate kinase activity is likely to have a beneficial effect.
  • the invention features, a method of analyzing a plurality of capture probes.
  • the method can be used, e.g., to analyze gene expression.
  • the method includes: providing a two dimensional array having a plurality of addresses, each address of the plurality being positionally distinguishable from each other address of the plurality, and each address of the plurality having a unique capture probe, e.g., a nucleic acid or peptide sequence; contacting the array with a 27802, preferably purified, nucleic acid, preferably purified, polypeptide, preferably purified, or antibody, and thereby evaluating the plurality of capture probes.
  • Binding e.g., in the case of a nucleic acid, hybridization with a capture probe at an address of the plurality, is detected, e.g., by signal generated from a label attached to the 27802 nucleic acid, polypeptide, or antibody.
  • the capture probes can be a set of nucleic acids from a selected sample, e.g., a sample of nucleic acids derived from a control or non-stimulated tissue or cell.
  • the method can include contacting the 27802 nucleic acid, polypeptide, or antibody with a first array having a plurality of capture probes and a second array having a different plurality of capture probes. The results of each hybridization can be compared, e.g., to analyze differences in expression between a first and second sample.
  • the first plurality of capture probes can be from a control sample, e.g., a wild type, normal, or non-diseased, non-stimulated, sample, e.g., a biological fluid, tissue, or cell sample.
  • the second plurality of capture probes can be from an experimental sample, e.g., a mutant type, at risk, disease-state or disorder-state, or stimulated, sample, e.g., a biological fluid, tissue, or cell sample.
  • the plurality of capture probes can be a plurality of nucleic acid probes each of which specifically hybridizes, with an allele of 27802.
  • Such methods can be used to diagnose a subject, e.g., to evaluate risk for a disease or disorder, to evaluate suitability of a selected treatment for a subject, to evaluate whether a subject has a disease or disorder.
  • 27802 is associated with adenylate kinase activity, thus it is useful for disorders associated with abnormal cellular growth and/or metabolism.
  • the method can be used to detect SNPs, as described above.
  • the invention features, a method of analyzing a plurality of probes.
  • the method is useful, e.g., for analyzing gene expression.
  • the method includes: providing a two dimensional array having a plurality of addresses, each address of the plurality being positionally distinguishable from each other address of the plurality having a unique capture probe, e.g., wherein the capture probes are from a cell or subject which express or misexpress 27802 or from a cell or subject in which a 27802 mediated response has been elicited, e.g., by contact of the cell with 27802 nucleic acid or protein, or administration to the cell or subject 27802 nucleic acid or protein; contacting the array with one or more inquiry probe, wherein an inquiry probe can be a nucleic acid, polypeptide, or antibody (which is preferably other than 27802 nucleic acid, polypeptide, or antibody); providing a two dimensional array having a plurality of addresses, each address of the plurality being positionally distinguish
  • Binding e.g., in the case of a nucleic acid, hybridization with a capture probe at an address of the plurality, is detected, e.g., by signal generated from a label attached to the nucleic acid, polypeptide, or antibody.
  • the invention features, a method of analyzing 27802, e.g., analyzing structure, function, or relatedness to other nucleic acid or amino acid sequences.
  • the method includes: providing a 27802 nucleic acid or amino acid sequence; comparing the 27802 sequence with one or more preferably a plurality of sequences from a collection of sequences, e.g., a nucleic acid or protein sequence database; to thereby analyze 27802.
  • Preferred databases include GenBankTM.
  • the method can include evaluating the sequence identity between a 27802 sequence and a database sequence.
  • the method can be performed by accessing the database at a second site, e.g., over the internet.
  • the invention features, a set of oligonucleotides, useful, e.g., for identifying SNP's, or identifying specific alleles of 27802.
  • the set includes a plurality of oligonucleotides, each of which has a different nucleotide at an interrogation position, e.g., an SNP or the site of a mutation.
  • the oligonucleotides of the plurality are identical in sequence with one another (except for differences in length).
  • the oligonucleotides can be provided with different labels, such that an oligonucleotide that hybridizes to one allele provides a signal that is distinguishable from an oligonucleotide which hybridizes to a second allele.
  • Example 1 Identification and Characterization of Human 27802 cDNAs
  • the human 27802 sequence ( Figure 1 ; SEQ ID NO:l), which is approximately 1452 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 774 nucleotides (nucleotides 219-992 of SEQ ID NO:l; SEQ ID NO:3).
  • the coding sequence encodes a 258 amino acid protein (SEQ ID NO:2).
  • Example 2 Tissue Distribution of 27802 mRNA Northern blot hybridizations with various RNA samples are performed under standard conditions and washed under stringent conditions, i.e., 0.2 X SSC at 65°C.
  • a DNA probe corresponding to all or a portion of the 27802 cDNA can be used.
  • the DNA is radioactively labeled with 32 P-dCTP using the Prime-It Kit (Stratagene, La Jolla, CA) according to the instructions of the supplier.
  • Filters containing mRNA from mouse hematopoietic and endocrine tissues, and cancer cell lines are probed in ExpressHyb hybridization solution (Clontech) and washed at high stringency according to manufacturer's recommendations.
  • Expression levels were determined by quantitative PCR (Taqman® brand quantitative PCR kit, Applied Biosystems). The quantitative PCR reactions were performed according to the kit manufacturer's instructions. The highest levels of expression of 27802 were observed in artery, kidney, brain cortex and brain hypothalamus, ovary, lung (tumor), and tonsil (see Figure 8).
  • 27802 polypeptide is expressed as a recombinant glutathione- S-transferase (GST) fusion polypeptide in E. coli and the fusion polypeptide is isolated and characterized.
  • GST glutathione- S-transferase
  • 27802 is fused to GST and this fusion polypeptide is expressed in E. coli, e.g., strain PEB199.
  • Expression of the GST-27802 fusion protein in PEB199 is induced with IPTG.
  • the recombinant fusion polypeptide is purified from crude bacterial lysates of the induced PEB199 strain by affinity chromatography on glutathione beads. Using polyacrylamide gel electrophoretic analysis of the polypeptide purified from the bacterial lysates, the molecular weight of the resultant fusion polypeptide is determined.
  • Example 4 Expression of Recombinant 27802 Protein in COS Cells
  • the pcDNA/Amp vector by Invitrogen Co ⁇ oration (San Diego, CA) is used. This vector contains an SV40 origin of replication, an ampicillin resistance gene, an E. coli replication origin, a CMV promoter followed by a polylinker region, and an SV40 intron and polyadenylation site.
  • a DNA fragment encoding the entire 27802 protein and an HA tag Wang et al.
  • the 27802 DNA sequence is amplified by PCR using two primers.
  • the 5' primer contains the restriction site of interest followed by approximately twenty nucleotides of the 27802 coding sequence starting from the initiation codon; the 3' end sequence contains complementary sequences to the other restriction site of interest, a translation stop codon, the HA tag or FLAG tag and the last 20 nucleotides of the 27802 coding sequence.
  • the PCR amplified fragment and the pCDNA/Amp vector are digested with the appropriate restriction enzymes and the vector is dephosphorylated using the CIAP enzyme (New England Biolabs, Beverly, MA).
  • the two restriction sites chosen are different so that the 27802 gene is inserted in the correct orientation.
  • the ligation mixture is transformed into E. coli cells (strains HB101, DH5 ⁇ , SURE, available from Stratagene Cloning Systems, La Jolla, C A, can be used), the transformed culture is plated on ampicillin media plates, and resistant colonies are selected. Plasmid DNA is isolated from transformants and examined by restriction analysis for the presence of the correct fragment.
  • COS cells are subsequently transfected with the 27802-pcDNA/Amp plasmid DNA using the calcium phosphate or calcium chloride co-precipitation methods, DEAE-dextran-mediated transfection, lipofection, or electroporation.
  • Other suitable methods for transfecting host cells can be found in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
  • the expression of the 27802 polypeptide is detected by radiolabelling ( 35 S- methionine or 35 S-cysteine available from NEN, Boston, MA, can be used) and immunoprecipitation (Harlow, E. and Lane, D. Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1988) using an HA specific monoclonal antibody. Briefly, the cells are labeled for 8 hours with 35 S- methionine (or 35 S-cysteine). The culture media are then collected and the cells are lysed using detergents (RIPA buffer, 150 mM NaCl, 1 % NP-40, 0.1 % SDS, 0.5% DOC, 50 mM Tris, pH 7.5). Both the cell lysate and the culture media are precipitated with an HA specific monoclonal antibody. Precipitated polypeptides are then analyzed by SDS-PAGE.
  • DNA containing the 27802 coding sequence is cloned directly into the polylinker of the pCDNA/Amp vector using the appropriate restriction sites.
  • the resulting plasmid is transfected into COS cells in the manner described above, and the expression of the 27802 polypeptide is detected by radiolabelling and immunoprecipitation using a 27802 specific monoclonal antibody.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Novel adenylate kinase polypeptides, proteins, and nucleic acid molecules are disclosed. In addition to isolated, full-length adenylate kinase proteins, the invention further provides isolated adenylate kinase fusion proteins, antigenic peptides, and anti-adenylate kinase antibodies. The invention also provides adenylate kinase nucleic acid molecules, recombinant expression vectors containing a nucleic acid molecule of the invention, host cells into which the expression vectors have been introduced, and nonhuman transgenic animals in which an adenylate kinase gene has been introduced or disrupted. Diagnostic, screening, and therapeutic methods utilizing compositions of the invention are also provided.

Description

27802, AN ADEYLATE KINASE
FIELD OF THE INVENTION The invention relates to novel adenylate kinase nucleic acid sequences and proteins. Also provided are vectors, host cells, and recombinant methods for making and using the novel molecules.
BACKGROUND OF THE INVENTION
Adenylate kinases play a key role in the regulation of energy balance within cells, particularly maintenance of the ratio of ATP with its diphosphate (ADP) and monophosphate forms (AMP). ATP serves as the primary source of energy for biochemical reactions in cells and is also a key precursor in DNA and RNA synthesis during cellular growth and replication. The energy associated with the terminal phosphate bonds of ATP may be transferred to other nucleotides using a nucleoside monophosphate kinase such as adenylate kinase. In this manner, the terminal energy- rich phosphate bonds of ATP may be transferred to the appropriate nucleotides for use in a variety of biosynthetic and energy-requiring processes, such as biosynthesis of macromolecules, active ion transport, muscle contraction, thermogenesis, etc. A number of these energy-requiring biosynthetic reactions hydrolyze ATP into AMP plus pyrophosphate. Reutilization of the resulting AMP requires conversion back into the triphosphate form following conversion to ADP. Various nucleotide monophosphate kinases carry out the first step of phosphorylating AMP to its diphosphate form at the expense of ATP. In the case of adenylate kinase, this reversible reaction is given as AMP + ATP ≡ 2 ADP.
Adenylate kinases also play a role in regulating the flow of carbon between net accumulation of glucose via the gluconeogenesis pathway and its subsequent catabolism via the glycolytic pathway by way of their control over the ratio of AMP to ATP. AMP is a positive allosteric effector of the enzyme 6-phophofructo-l -kinase, which shifts, and a negative allosteric effector for the enzyme fructose- 1, 6- bisphosphatase. When the first of these enzymes is activated, carbon flow is shifted in the direction of glycolysis; when the second of these enzymes is activated, carbon flow shifts in the direction of gluconeogenesis. Thus, increases in the ratio of AMP to ATP shift carbon flow toward glycolysis, while decreases in the ratio of AMP to ATP shift carbon flow toward glucose formation.
These enzymes have been studied in a number of mammals, including rat, porcine, chicken, bovine, rabbit, and humans. Evidence from biochemical studies suggests that human tissues have five adenylate kinase isozymes, AK1-AK5. Thus far the cDNAs of human AK1, AK2, AK4, and AK5 have been cloned. Adenylate kinase isoforms in humans are sequence related and also related to UMP/CMP kinases from several species. See Rompay et al. (1999) Ewr. J. Biochem. 267:509-516, and the references cited therein. The adenylate kinase isozymes AK1 (or myokinase), which is a cytosolic enzyme present in brain, skeletal muscle, and erythrocytes, and AK2, which is associated with the mitochondrial membrane in liver, spleen, heart, and kidney, both utilize ATP as their nucleoside triphosphate donor substrate. AK3 (or GTP:AMP phosphotransferase) is located in the mitochondrial matrix, primarily in heart and liver cells, and uses MgGTP instead of MgATP. AK4 and AK5 are both localized in brain tissue.
Several regions of AK family enzymes are well conserved, including the nucleoside triphosphate binding glycine-rich region, the nucleoside monophosphate binding site, and the lid domain that closes over the substrate upon binding (.see Schulz (1987) Cold Spring Harbor Symp. Quant. Biol. 52:429-439).
These enzymes assist with maintenance of energy production and utilization within cells, particularly in cells having high rates of growth and metabolic activity such as in heart, skeletal muscle, and liver. In fact, adenylate kinase deficiency has been linked to hemolytic anemia and neurological disorders such as neurofibromatosis (Xu et al. (1992) Genomics 13:537-542. In addition, targeting regulation of ATP synthesis has been the basis of antiproliferative drugs for treatment of viral infections and cancer.
Adenylate kinases are also useful for activating nucleoside analogues used as pharmaceuticals, especially for cancer and viral infection. Most of these analogues must be phosphorylated to the triphosphate form in order to be pharmaceutically active. The first phosphorylation step in the activation of nucleoside analogs is catalyzed by deoxyribonucleoside kinases. Phosphorylation to the di- and triphosphates are then required. Accordingly, adenylate kinases are a major target for drug action and development. Thus, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown adenylate kinases. The present invention advances the state of the art by providing a previously unidentified human adenylate kinase.
SUMMARY OF THE INVENTION
Isolated nucleic acid molecules corresponding to adenylate kinase nucleic acid sequences are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO: 2 or the nucleotide sequences encoding the DNA sequence deposited in a bacterial host with the Patent Depository of the American
Type Culture Collection (ATCC) as Patent Deposit Number . Further provided are adenylate kinase polypeptides having an amino acid sequence encoded by a nucleic acid molecule described herein.
The present invention also provides vectors and host cells for recombinant expression of the nucleic acid molecules described herein, as well as methods of making such vectors and host cells and for using them for production of the polypeptides or peptides of the invention by recombinant techniques.
The adenylate kinase molecules of the present invention are useful for modulating cellular growth and/or cellular metabolic pathways particularly for regulating one or more proteins involved in growth and metabolism. Accordingly, in one aspect, this invention provides isolated nucleic acid molecules encoding adenylate kinase proteins or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection of adenylate kinase-encoding nucleic acids.
Another aspect of this invention features isolated or recombinant adenylate kinase proteins and polypeptides. Preferred adenylate kinase proteins and polypeptides possess at least one biological activity possessed by naturally occurring adenylate kinase proteins.
Variant nucleic acid molecules and polypeptides substantially homologous to the nucleotide and amino acid sequences set forth in the sequence listings are encompassed by the present invention. Additionally, fragments and substantially homologous fragments of the nucleotide and amino acid sequences are provided.
Antibodies and antibody fragments that selectively bind the adenylate kinase polypeptides and fragments are provided. Such antibodies are useful in detecting the adenylate kinase polypeptides as well as in regulating the T-cell immune response and cellular activity, particularly growth and proliferation.
In another aspect, the present invention provides a method for detecting the presence of adenylate kinase activity or expression in a biological sample by contacting the biological sample with an agent capable of detecting an indicator of adenylate kinase activity such that the presence of adenylate kinase activity is detected in the biological sample.
In yet another aspect, the invention provides a method for modulating adenylate kinase activity comprising contacting a cell with an agent that modulates (inhibits or stimulates) adenylate kinase activity or expression such that adenylate kinase activity or expression in the cell is modulated. In one embodiment, the agent is an antibody that specifically binds to adenylate kinase protein. In another embodiment, the agent modulates expression of adenylate kinase protein by modulating transcription of an adenylate kinase gene, splicing of an adenylate kinase mRNA, or translation of an adenylate kinase mRNA. In yet another embodiment, the agent is a nucleic acid molecule having a nucleotide sequence that is antisense to the coding strand of the adenylate kinase mRNA or the adenylate kinase gene.
In one embodiment, the methods of the present invention are used to treat a subject having a disorder characterized by aberrant adenylate kinase protein activity or nucleic acid expression by administering an agent that is an adenylate kinase modulator to the subject. In one embodiment, the adenylate kinase modulator is an adenylate kinase protein. In another embodiment, the adenylate kinase modulator is an adenylate kinase nucleic acid molecule. In other embodiments, the adenylate kinase modulator is a peptide, peptidomimetic, or other small molecule.
The present invention also provides a diagnostic assay for identifying the presence or absence of a genetic lesion or mutation characterized by at least one of the following: (1) aberrant modification or mutation of a gene encoding an adenylate kinase protein; (2) misregulation of a gene encoding an adenylate kinase protein; and (3) aberrant post-translational modification of an adenylate kinase protein, wherein a wild-type form of the gene encodes a protein with an adenylate kinase activity.
In another aspect, the invention provides a method for identifying a compound that binds to or modulates the activity of an adenylate kinase protein. In general, such methods entail measuring a biological activity of an adenylate kinase protein in the presence and absence of a test compound and identifying those compounds that alter the activity of the adenylate kinase protein.
The invention also features methods for identifying a compound that modulates the expression of adenylate kinase genes by measuring the expression of the adenylate kinase sequences in the presence and absence of the compound.
Other features and advantages of the invention will be apparent from the following detailed description and claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows the 27802 nucleotide sequence (SEQ ID NO:l) and the deduced amino acid sequence (SEQ ID NO:2).
Figure 2 shows an analysis of the 27802 amino acid sequence: αβ turn and coil regions; hydrophilicity; amphipathic regions; flexible regions; antigenic index; and surface probability plot.
Figure 3 shows a 27802 receptor hydrophobicity plot. Relative hydrophobic residues are shown above the dashed horizontal line, and relative hydrophilic residues are below the dashed horizontal line. The cysteine residues (cys) and N glycosylation site (Ngly) are indicated by short vertical lines just below the hydropathy trace. The numbers corresponding to the amino acid sequence (shown in SEQ ID NO:2) of human 27802 are indicated . Polypeptides of the invention include fragments which include: all or a part of a hydrophobic sequence (a sequence above the dashed line); or all or part of a hydrophilic fragment (a sequence below the dashed line). Other fragments include a cysteine residue or an N-glycosylation site. Figure 4 shows an analysis of the 27802 open reading frame for amino acids corresponding to specific functional sites. These sites are relevant with regard to providing fragments of the 27802 nucleic acid or peptide as disclosed herein.
Figure 5 shows PSORT prediction of protein localization showing a high score in the cytoplasm and significant scores in other cellular locations.
Figure 6 shows a description of ProDom matches for the 27802 protein.
Figure 7 depicts an alignment of the adenylate kinase domains of human
27802 with two consensus amino acid sequences derived from hidden Markov models. The upper sequence for domain 1 is the consensus amino acid sequence (SEQ ID NO:4) and the lower amino acid sequence corresponds to amino acids 41- 120 of SEQ ID NO:2. The upper sequence for domain 2 is the consensus amino acid sequence (SEQ ID NO: 5) and the lower amino acid sequence corresponds to amino acids 201-251 of SEQ ID NO:2.
Figure 8 displays the expression levels of 27802 in various tissues determined by quantitative PCR. The highest levels of expression of 27802 were observed in artery, kidney, brain cortex and brain hypothalamus, ovary, lung (tumor), and tonsil. The tissue types are as follows from left to right: Artery Normal, Aorta Diseased, Vein Normal, Coronary SMC, HUVEC, Hemangioma, Heart Normal, Heart CHF, Kidney, Skeletal Muscle, Adipose Normal, Pancreas, Primary Osteoblasts, Osteoclasts (diff), Skin Normal, Spinal Cord Normal, Brain Cortex Normal, Brain Hypothalamus Normal, Nerve, DRG (Dorsal Root Ganglion), Breast Normal, Breast Tumor, Ovary Normal, Ovary Tumor, Prostate Normal, Prostate Tumor, Salivary Glands, Colon Normal, Colon Tumor, Lung Normal, Lung Tumor, Lung COPD, Colon IBD, Liver Normal, Liver Fibrosis, Spleen Normal, Tonsil Normal, Lymph Node Normal, Small Intestine Normal, Macrophages, Synovium, BM-MNC, Activated PBMC, Neutrophils, Megakaryocytes, Erythroid, Positive Control. DETAILED DESCRIPTION OF THE INVENTION
The present invention is based, at least in part, on the identification of novel molecules, referred to herein as adenylate kinase nucleic acid and polypeptide molecules, which play a role in, or function in, numerous biochemical pathways associated with cellular growth and/or cellular metabolic activity. These growth and metabolic pathways are described in Lodish et al. (1995) Molecular Cell Biology (Scientific American Books Inc., New York, NY) and Devlin (1997) Textbook of Biochemistry with Clinical Correlations (Wiley-Liss, Inc., New York, NY), the contents of which are incorporated herein by reference.
Specifically, the present invention provides isolated nucleic acid molecules comprising nucleotide sequences encoding the adenylate kinase polypeptide whose amino acid sequence is given in SEQ ID NO:2, or a variant or fragment of the polypeptides. A nucleotide sequence encoding an adenylate kinase polypeptide of the invention, more particularly the polypeptide of SEQ ID NO:2, is set forth in SEQ ID NO:l.
A plasmid containing the h27802 cDNA insert was deposited with the Patent Depository of the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Virginia, on , and assigned Patent Deposit Number . This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. § 112.
A novel human gene, termed clone h27802 is provided. This sequence, and complements thereof, are referred to as "adenylate kinase " indicating that the gene sequences share sequence similarity to adenylate kinase genes.
The novel h27802 adenylate kinase gene encodes an approximately 1.45 Kb mRNA transcript having the corresponding cDNA set forth in SEQ ID NO:l . This transcript encodes a 258 amino acid protein (SEQ ID NO:2). An analysis of the full- length h27802 polypeptide predicts that the N-terminal 56 amino acids may represent a region comprising a signal peptide. Prosite program analysis was used to predict various sites within the h27802 protein. See Figure 4. The h27802 adenylate kinase protein possesses adenylate kinase domain sequences, as shown in Figure 7. There are three functional subdomains common to nucleoside monophosphate kinases: the nucleoside triphosphate binding glycine-rich region, the nucleoside monophosphate binding site, and the lid domain that closes over the substrate upon binding (see Schulz (1987) Cold Spring Harbor Symp. Quant. Biol. 52:429-439).
Human 27802 was aligned with two consensus amino acid sequences for adenylate kinase domains derived from hidden Markov models. For general information regarding PFAM identifiers, PS prefix and PF prefix domain identification numbers, refer to Sonnhammer et al. (1997) Protein 28:405-420 and http//www.psc.edu/general/software/packages/pfam/pfam.html. The first adenylate kinase domain (SEQ ID NO:4) aligns with amino acids 41-120 of SEQ ID NO:2 and the second adenylate kinase domain (SEQ ID NO:5) aligns with amino acids 201-251 of SEQ ID NO:2 (see Figure 7). As used herein, the term "adenylate kinase domain" includes an amino acid sequence of about 30-200 amino acid residues in length and having a bit score for the alignment of the sequence to the adenylate kinase domain (HMM) of at least 8. Preferably, an adenylate kinase domain includes at least about 40-150 amino acids, more preferably about 50-100 amino acid residues, or about 50-80 amino acids and has a bit score for the alignment of the sequence to the adenylate kinase domain (HMM) of at least 16 or greater. The adenylate kinase domain (HMM) has been assigned the PFAM Accession PF00406 (http;//pfam.wustl.edu/).
In a preferred embodiment a 27802-like polypeptide or protein has "adenylate kinase domains" or regions which include at least about 30-200, more preferably about 40-100, or 50-80 amino acid residues and has at least about 60%, 70%, 80%, 85%, 90%, 95%, 99%, or 100% sequence identity with an "adenylate kinase domain," e.g., the adenylate kinase domain of human 27802-like (e.g., amino acid residues 41- 120 and 201-251 of SEQ ID NO.2).
To identify the presence of an adenylate kinase domain in a 27802-like protein sequence, and make the determination that a polypeptide or protein of interest has a particular profile, the amino acid sequence of the protein can be searched against a database of HMMs (e.g., the Pfam database, release 2.1) using the default parameters (http://www.sanger.ac.uk/Software/Pfam/HMM_search). For example, the hmmsf program, which is available as part of the HMMER package of search programs, is a family specific default program for MILPAT0063 and a score of 15 is the default threshold score for determining a hit. Alternatively, the threshold score for determining a hit can be lowered (e.g., to 8 bits). A description of the Pfam database can be found in Sonhammer et al. (1997) Proteins 28(3):4Q5-42Q and a detailed description of HMMs can be found, for example, in Gribskov et al. (1990) Meth. Enzymol. 183:146-159; Gribskov et al. (1987) Proc. Natl. Acad. Sci. USA 84:4355- 4358; Krogh et α/. (1994) J Mol. Biol. 255:1501-1531; and Stultz et α/. (1993) Protein Sci. 2:305-314, the contents of which are incorporated herein by reference. A BLASTN search using the 27802 cDNA clone of the invention as the subject was performed. The 27802 clone shares 97% to 100% identity to the top five search hits. These hits are 1) a partial cDNA clone isolated from a brain glioblastoma (Accession No: AI359456) with homology to maize adenylate kinase; 2) a partial 3' cDNA clone isolated from Jia bone marrow stroma (Accession No: A W069362); 3) a partial cDNA clone isolated from a brain glioblastoma (Accession No: AI362274) with homology to maize adenylate kinase; 4) a partial cDNA clone isolated from a brain anaplastic oligodendroglioma (Accession No: AI826091) with homology to maize adenylate kinase; and 5) a partial cDNA clone isolated from adult heart (Accession No: C03497). The expression levels of 27802 were determined in various tissues by quantitative PCR (Figure 8). The highest levels of expression of 27802 were observed in artery, kidney, brain cortex and brain hypothalamus, ovary, lung (tumor), and tonsil. The expression of 27802 in a tissue indicates that modulation of the expression or activity of 27802 in that tissue may be used in the treatment of disorders involving such a tissue.
In one embodiment, the adenylate kinase molecules modulate the activity of one or more proteins involved in cellular growth or differentiation, e.g., cardiac, epithelial, or neuronal cell growth or differentiation. In another embodiment, the adenylate kinase molecules of the present invention are capable of modulating the phosphorylation state of a nucleoside mono-, di-, or triphosphate molecule or the phosphorylation state of one or more proteins involved in cellular growth or differentiation, e.g., cardiac, epithelial, or neuronal cell growth or differentiation, as described in, for example, Lodish et al. (1995) and Devlin (1997), supra. In addition, the adenylate kinase of the present invention are targets of drugs described in Goodman and Gilman (1996), The Pharmacological Basis of Therapeutics (9th ed.) Hartman & Limbard Editors, the contents of which are incorporated herein by reference. Particularly, the adenylate kinases of the invention may modulate phosphorylation activity in tissues and cells including, but not limited to, human brain. In addition, expression of the gene is also observed in lymphoma. In one embodiment, the adenylate kinase sequences of the invention are used to manipulate the nucleoside mono-, di-, and triphosphate pool to alter cellular metabolic pathways, such as glycolysis and gluconeogenesis. Adenylate kinases play an important role in the regulation of energy balance within cells and in energy-requiring biochemical processes associated with cellular growth and development. Inhibition or over-stimulation of the activity of adenylate kinases affects the cellular equilibrium between nucleoside mono-, di-, and triphosphates, particularly AMP, ADP, and ATP, all of which are integrally involved in energy-requiring biochemical processes associated with cellular growth and development. Disruption or modulation of this equilibrium can lead to perturbed cellular growth, which can in turn lead to cellular growth related-disorders. As used herein, a "cellular growth-related disorder" includes a disorder, disease, or condition characterized by a deregulation, e.g., an upregulation or a downregulation, of cellular growth. Cellular growth deregulation may be due to a deregulation of cellular proliferation, cell cycle progression, cellular differentiation and/or cellular hypertrophy.
Examples of cellular growth related disorders include cardiovascular disorders such as heart failure, hypertension, atrial fibrillation, dilated cardiomyopathy, idiopathic cardiomyopathy, or angina; proliferative disorders or differentiative disorders such as cancer, e.g., lymphoma, melanoma, prostate cancer, cervical cancer, breast cancer, colon cancer, or sarcoma.
Furthermore, adenylate kinase activity increases in cerebrospinal fluid at the acute onset of ischemic brain damage and is correlated with the severity of the lesion (Buttner et al. (1986) J Neurol. 255:297-303). Adenyl kinase activity also increases in cerebrospinal fluid in some brain tumors (Ronquist et al. (1977) Lancet t:1284- 1286). Further, adenylate kinase may be expressed in damaged tissue and therefore is a useful target to measure tissue damage. Finally, deletions at lp31 locus in many tumors is associated with hemolytic anemia (Matsuura et al. (1989) J. Biol. Chem. 264:10148-10155 and Mitelman et al. (1997) Nature Genet. 15:411-414). Accordingly, the compositions are also useful for treatment and diagnosis related to these disorders. The disclosed invention relates to methods and compositions for the modulation, diagnosis, and treatment of cellular proliferative and/or differentiative, neurological, immune, inflammatory, lymphatic, cardiovascular, respiratory, and hematological disorders.
Immune disorders include, but are not limited to, chronic inflammatory diseases and disorders, such as Crohn's disease, reactive arthritis, including Lyme disease, insulin-dependent diabetes, organ-specific autoimmunity, including multiple sclerosis, Hashimoto's thyroiditis and Grave's disease, contact dermatitis, psoriasis, graft rejection, graft versus host disease, sarcoidosis, atopic conditions, such as asthma and allergy, including allergic rhinitis, gastrointestinal allergies, including food allergies, eosinophilia, conjunctivitis, glomerular nephritis, certain pathogen susceptibilities such as helminthic (e.g., leishmaniasis), certain viral infections, including HIV, and bacterial infections, including tuberculosis and lepromatous leprosy.
Disorders involving blood vessels include, but are not limited to, responses of vascular cell walls to injury, such as endothelial dysfunction and endothelial activation and intimal thickening; vascular diseases including, but not limited to, congenital anomalies, such as arteriovenous fistula, atherosclerosis, and hypertensive vascular disease, such as hypertension; inflammatory disease—the vasculitides, such as giant cell (temporal) arteritis, Takayasu arteritis, polyarteritis nodosa (classic), Kawasaki syndrome (mucocutaneous lymph node syndrome), microscopic polyanglitis (microscopic polyarteritis, hypersensitivity or leukocytoclastic anglitis), Wegener granulomatosis, thromboanglitis obliterans (Buerger disease), vasculitis associated with other disorders, and infectious arteritis; Raynaud disease; aneurysms and dissection, such as abdominal aortic aneurysms, syphilitic (luetic) aneurysms, and aortic dissection (dissecting hematoma); disorders of veins and lymphatics, such as varicose veins, thrombophlebitis and phlebothrombosis, obstruction of superior vena cava (superior vena cava syndrome), obstruction of inferior vena cava (inferior vena cava syndrome), and lymphangitis and lymphedema; tumors, including benign tumors and tumor-like conditions, such as hemangioma, lymphangioma, glomus tumor (glomangioma), vascular ectasias, and bacillary angiomatosis, and intermediate-grade (borderline low-grade malignant) tumors, such as Kaposi sarcoma and hemangloendothelioma, and malignant tumors, such as angiosarcoma and hemangiopericytoma; and pathology of therapeutic interventions in vascular disease, such as balloon angioplasty and related techniques and vascular replacement, such as coronary artery bypass graft surgery.
Disorders involving red cells include, but are not limited to, anemias, such as hemolytic anemias, including hereditary spherocytosis, hemolytic disease due to erythrocyte enzyme defects: glucose-6-phosphate dehydrogenase deficiency, sickle cell disease, thalassemia syndromes, paroxysmal nocturnal hemoglobinuria, immunohemolytic anemia, and hemolytic anemia resulting from trauma to red cells; and anemias of diminished erythropoiesis, including megaloblastic anemias, such as anemias of vitamin B12 deficiency: pernicious anemia, and anemia of folate deficiency, iron deficiency anemia, anemia of chronic disease, aplastic anemia, pure red cell aplasia, and other forms of marrow failure.
Hematologic disorders include but are not limited to anemias including sickle cell and hemolytic anemia, hemophilias including types A and B, leukemias, thalassemias, spherocytosis, Von Willebrand disease, chronic granulomatous disease, glucose-6-phosphate dehydrogenase deficiency, thrombosis, clotting factor abnormalities and deficiencies including factor VIII and IX deficiencies, hemarthrosis, hematemesis, hematomas, hematuria, hemochromatosis, hemoglobinuria, hemolytic-uremic syndrome, thrombocytopenias including HIV- associated thrombocytopenia, hemorrhagic telangiectasia, idiopathic thrombocytopenic purpura, thrombotic microangiopathy, hemosiderosis.
Respiratory disorders include, but are not limited to, apnea, asthma, particularly bronchial asthma, berillium disease, bronchiectasis, bronchitis, bronchopneumonia, cystic fibrosis, diphtheria, dyspnea, emphysema, chronic obstructive pulmonary disease, allergic bronchopulmonary aspergillosis, pneumonia, acute pulmonary edema, pertussis, pharyngitis, atelectasis, Wegener's granulomatosis, Legionnaires disease, pleurisy, rheumatic fever, and sinusitis.
Preferred disorders include, but are not limited to disorders of brain and lymph node, especially lymphoma. The disclosed invention also relates to methods and compositions for the modulation, diagnosis, and treatment of disorders involving the brain and lymph nodes.
Disorders involving the brain include, but are limited to, disorders involving neurons, and disorders involving glia, such as astrocytes, oligodendrocytes, ependymal cells, and microglia; cerebral edema, raised intracranial pressure and herniation, and hydrocephalus; malformations and developmental diseases, such as neural tube defects, forebrain anomalies, posterior fossa anomalies, and syringomyelia and hydromyelia; perinatal brain injury; cerebrovascular diseases, such as those related to hypoxia, ischemia, and infarction, including hypotension, hypoperfusion, and low-flow states—global cerebral ischemia and focal cerebral ischemia— infarction from obstruction of local blood supply, intracranial hemorrhage, including intracerebral (intraparenchymal) hemorrhage, subarachnoid hemorrhage and ruptured berry aneurysms, and vascular malformations, hypertensive cerebrovascular disease, including lacunar infarcts, slit hemorrhages, and hypertensive encephalopathy; infections, such as acute meningitis, including acute pyogenic (bacterial) meningitis and acute aseptic (viral) meningitis, acute focal suppurative infections, including brain abscess, subdural empyema, and extradural abscess, chronic bacterial meningoencephalitis, including tuberculosis and mycobacterioses, neurosyphilis, and neuroborreliosis (Lyme disease), viral meningoencephalitis, including arthropod- borne (Arbo) viral encephalitis, Herpes simplex virus Type 1 , Herpes simplex virus Type 2, Varicalla-zoster virus (Herpes zoster), cytomegalovirus, poliomyelitis, rabies, and human immunodeficiency virus 1, including HIV-1 meningoencephalitis (subacute encephalitis), vacuolar myelopathy, AIDS-associated myopathy, peripheral neuropathy, and AIDS in children, progressive multifocal leukoencephalopathy, subacute sclerosing panencephalitis, fungal meningoencephalitis, other infectious diseases of the nervous system; transmissible spongiform encephalopathies (prion diseases); demyelinating diseases, including multiple sclerosis, multiple sclerosis variants, acute disseminated encephalomyelitis and acute necrotizing hemorrhagic encephalomyelitis, and other diseases with demyelination; degenerative diseases, such as degenerative diseases affecting the cerebral cortex, including Alzheimer disease and Pick disease, degenerative diseases of basal ganglia and brain stem, including Parkinsonism, idiopathic Parkinson disease (paralysis agitans), progressive supranuclear palsy, corticobasal degenration, multiple system atrophy, including striatonigral degenration, Shy-Drager syndrome, and olivopontocerebellar atrophy, and Huntington disease; spinocerebellar degenerations, including spinocerebellar ataxias, including Friedreich ataxia, and ataxia-telanglectasia, degenerative diseases affecting motor neurons, including amyotrophic lateral sclerosis (motor neuron disease), bulbospinal atrophy (Kennedy syndrome), and spinal muscular atrophy; inborn errors of metabolism, such as leukodystrophies, including Krabbe disease, metachromatic leukodystrophy, adrenoleukodystrophy, Pelizaeus-Merzbacher disease, and Canavan disease, mitochondrial encephalomyopathies, including Leigh disease and other mitochondrial encephalomyopathies; toxic and acquired metabolic diseases, including vitamin deficiencies such as thiamine (vitamin Bi) deficiency and vitamin Bι2 deficiency, neurologic sequelae of metabolic disturbances, including hypoglycemia, hyperglycemia, and hepatic encephatopathy, toxic disorders, including carbon monoxide, methanol, ethanol, and radiation, including combined methotrexate and radiation-induced injury; tumors, such as gliomas, including astrocytoma, including fibrillary (diffuse) astrocytoma and glioblastoma multiforme, pilocytic astrocytoma, pleomorphic xanthoastrocytoma, and brain stem glioma, oligodendroglioma, and ependymoma and related paraventricular mass lesions, neuronal tumors, poorly differentiated neoplasms, including medulloblastoma, other parenchymal tumors, including primary brain lymphoma, germ cell tumors, and pineal parenchymal tumors, meningiomas, metastatic tumors, paraneoplastic syndromes, peripheral nerve sheath tumors, including schwannoma, neurofibroma, and malignant peripheral nerve sheath tumor (malignant schwannoma), and neurocutaneous syndromes (phakomatoses), including neurofibromotosis, including Type 1 neurofibromatosis (NFl) and TYPE 2 neurofibromatosis (NF2), tuberous sclerosis, and Von Hippel-Lindau disease.
Disorders involving T-cells include, but are not limited to, cell-mediated hypersensitivity, such as delayed type hypersensitivity and T-cell-mediated cytotoxicity, and transplant rejection; autoimmune diseases, such as systemic lupus erythematosus, Sjogren syndrome, systemic sclerosis, inflammatory myopathies, mixed connective tissue disease, and polyarteritis nodosa and other vasculitides; immunologic deficiency syndromes, including but not limited to, primary immunodeficiencies, such as thymic hypoplasia, severe combined immunodeficiency diseases, and AIDS; leukopenia; reactive (inflammatory) proliferations of white cells, including but not limited to, leukocytosis, acute nonspecific lymphadenitis, and chronic nonspecific lymphadenitis; neoplastic proliferations of white cells, including but not limited to lymphoid neoplasms, such as precursor T-cell neoplasms, such as acute lymphoblastic leukemia/lymphoma, peripheral T-cell and natural killer cell neoplasms that include peripheral T-cell lymphoma, unspecified, adult T-cell leukemia/lymphoma, mycosis fungoides and Sezary syndrome, and Hodgkin disease.
In normal bone marrow, the myelocytic series (polymorphoneuclear cells) make up approximately 60% of the cellular elements, and the erythrocytic series, 20- 30%. Lymphocytes, monocytes, reticular cells, plasma cells and megakaryocytes together constitute 10-20%. Lymphocytes make up 5-15% of normal adult marrow. In the bone marrow, cell types are add mixed so that precursors of red blood cells (erythroblasts), macrophages (monoblasts), platelets (megakaryocytes), polymorphoneuclear leucocytes (myeloblasts), and lymphocytes (lymphoblasts) can be visible in one microscopic field. In addition, stem cells exist for the different cell lineages, as well as a precursor stem cell for the committed progenitor cells of the different lineages. The various types of cells and stages of each would be known to the person of ordinary skill in the art and are found, for example, on page 42 (Figure 2-8) of Immunology, Imunopathology and Immunity, Fifth Edition, Sell et al. Simon and Schuster (1996), incoφorated by reference for its teaching of cell types found in the bone marrow. According, the invention is directed to disorders arising from these cells. These disorders include but are not limited to the following: diseases involving hematopoeitic stem cells; committed lymphoid progenitor cells; lymphoid cells including B and T-cells; committed myeloid progenitors, including monocytes, granulocytes, and megakaryocytes; and committed erythroid progenitors. These include but are not limited to the leukemias, including B-lymphoid leukemias, T- lymphoid leukemias, undifferentiated leukemias; erythroleukemia, megakaryoblastic leukemia, monocytic; [leukemias are encompassed with and without differentiation]; chronic and acute lymphoblastic leukemia, chronic and acute lymphocytic leukemia, chronic and acute myelogenous leukemia, lymphoma, myelo dysplastic syndrome, chronic and acute myeloid leukemia, myelomonocytic leukemia; chronic and acute myeloblastic leukemia, chronic and acute myelogenous leukemia, chronic and acute promyelocytic leukemia, chronic and acute myelocytic leukemia, hematologic malignancies of monocyte-macrophage lineage, such as juvenile chronic myelogenous leukemia; secondary AML, antecedent hematological disorder; refractory anemia; aplastic anemia; reactive cutaneous angioendotheliomatosis; fibrosing disorders involving altered expression in dendritic cells, disorders including systemic sclerosis, E-M syndrome, epidemic toxic oil syndrome, eosinophilic fasciitis localized forms of scleroderma, keloid, and fibrosing colonopathy; angiomatoid malignant fibrous histiocytoma; carcinoma, including primary head and neck squamous cell carcinoma; sarcoma, including kaposi's sarcoma; fibroadanoma and phyllodes tumors, including mammary fibroadenoma; stromal tumors; phyllodes tumors, including histiocytoma; erythroblastosis; neurofibromatosis; diseases of the vascular endothelium; demyelinating, particularly in old lesions; gliosis, vasogenic edema, vascular disease, Alzheimer's and Parkinson's disease; T-cell lymphomas; B- cell lymphomas.
Disorders involving B-cells include, but are not limited to precursor B-cell neoplasms, such as lymphoblastic leukemia/lymphoma. Peripheral B-cell neoplasms include, but are not limited to, chronic lymphocytic leukemia/small lymphocytic lymphoma, follicular lymphoma, diffuse large B-cell lymphoma, Burkitt lymphoma, plasma cell neoplasms, multiple myeloma, and related entities, lymphoplasmacytic lymphoma (Waldenstrόm macroglobulinemia), mantle cell lymphoma, marginal zone lymphoma (MALToma), and hairy cell leukemia.
Disorders involving precursor T-cell neoplasms include precursor T lymphoblastic leukemia/lymphoma. Disorders involving peripheral T-cell and natural killer cell neoplasms include T-cell chronic lymphocytic leukemia, large granular lymphocytic leukemia, mycosis fungoides and Sezary syndrome, peripheral T-cell lymphoma, unspecified, angioimmunoblastic T-cell lymphoma, angiocentric lymphoma (NK/T-cell lymphoma43), intestinal T-cell lymphoma, adult T-cell leukemia/lymphoma, and anaplastic large cell lymphoma.
The adenylate kinase sequences of the invention are members of a family of molecules having conserved functional features. The term "family" when referring to the proteins and nucleic acid molecules of the invention is intended to mean two or more proteins or nucleic acid molecules having sufficient amino acid or nucleotide sequence identity as defined herein. Such family members can be naturally occurring and can be from either the same or different species. For example, a family can contain a first protein of murine origin and a homologue of that protein of human origin, as well as a second, distinct protein of human origin and a murine homologue of that protein. Members of a family may also have common functional characteristics. Preferred adenylate kinase polypeptides of the present invention have an amino acid sequence sufficiently identical to the amino acid sequence of SEQ ID NO:2. The term "sufficiently identical" is used herein to refer to a first amino acid or nucleotide sequence that contains a sufficient or minimum number of identical or equivalent (e.g., with a similar side chain) amino acid residues or nucleotides to a second amino acid or nucleotide sequence such that the first and second amino acid or nucleotide sequences have a common structural domain and/or common functional activity. For example, amino acid or nucleotide sequences that contain a common structural domain having at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identity are defined herein as sufficiently identical. To determine the percent identity of two amino acid sequences, or of two nucleic acid sequences, the sequences are aligned for optimal comparison puφoses (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison puφoses). In a preferred embodiment, the length of a reference sequence aligned for comparison puφoses is at least 30%, preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, 90%, 100% of the length of the reference sequence. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (1970) J. Mol. Biol. 5:444-453 algorithm which has been incoφorated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A particularly preferred set of parameters (and the one that should be used if the practitioner is uncertain about what parameters should be applied to determine if a molecule is within a sequence identity or homology limitation of the invention) is using a Blossum 62 scoring matrix with a gap open penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5. The percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of E. Meyers and W. Miller (1989) CABIOS 4:11-11 which has been incoφorated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
The nucleic acid and protein sequences described herein can be used as a "query sequence" to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 275:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to 27802 nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to 27802 protein molecules of the invention. To obtain gapped alignments for comparison puφoses, Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25(17 :3389- 3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov.
Accordingly, another embodiment of the invention features isolated adenylate kinase proteins and polypeptides having an adenylate kinase protein activity. As used interchangeably herein, an "adenylate kinase protein activity", "biological activity of an adenylate kinase protein", or "functional activity of an adenylate kinase protein" refers to an activity exerted by an adenylate kinase protein, polypeptide, or nucleic acid molecule on an adenylate kinase responsive cell as determined in vivo, or in vitro, according to standard assay techniques. An adenylate kinase activity can be a direct activity, such as an association with or an enzymatic activity on a second protein, or an indirect activity, such as a cellular activity mediated by interaction of the adenylate kinase protein with a second protein. In a preferred embodiment, an adenylate kinase activity includes at least one or more of the following activities: (1) modulating (stimulating and/or enhancing or inhibiting) cellular proliferation, differentiation, and/or function, particularly in cells in which the sequences are expressed, for example, cells of the lymph node, including Thl, Th2, T cells, natural killer T cells, lymphocytes, leukocytes, etc., and brain, such as glial cells and neurons; (2) modulating a target cell's energy balance, particularly the ratio between AMP and ATP; (3) modulating the glycolytic pathway; (4) modulating the gluconeogenesis pathway; (4) modulating cell growth; (5) modulating the entry of cells into mitosis; (6) modulating cellular differentiation; (7) modulating cell death; and (8) modulating an immune response.
An "isolated" or "purified" adenylate kinase nucleic acid molecule or protein, or biologically active portion thereof, is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. Preferably, an "isolated" nucleic acid is free of sequences (preferably protein encoding sequences) that naturally flank the nucleic acid (i.e., sequences located at the 5N and 3N ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For puφoses of the invention, "isolated" when used to refer to nucleic acid molecules excludes isolated chromosomes. For example, in various embodiments, the isolated adenylate kinase nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. An adenylate kinase protein that is substantially free of cellular material includes preparations of adenylate kinase protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of non-adenylate kinase protein (also referred to herein as a "contaminating protein"). When the adenylate kinase protein or biologically active portion thereof is recombinantly produced, preferably, culture medium represents less than about 30%, 20%, 10%, or 5% of the volume of the protein preparation. When adenylate kinase protein is produced by chemical synthesis, preferably the protein preparations have less than about 30%, 20%, 10%, or 5% (by dry weight) of chemical precursors or non-adenylate kinase chemicals.
Various aspects of the invention are described in further detail in the following subsections.
I. Isolated Nucleic Acid Molecules
One aspect of the invention pertains to isolated nucleic acid molecules comprising nucleotide sequences encoding adenylate kinase proteins and polypeptides or biologically active portions thereof, as well as nucleic acid molecules sufficient for use as hybridization probes to identify adenylate kinase-encoding nucleic acids (e.g., adenylate kinase mRNA) and fragments for use as PCR primers for the amplification or mutation of adenylate kinase nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.
Nucleotide sequences encoding the adenylate kinase proteins of the present invention include sequences set forth in SEQ ID NO:l, the nucleotide sequence of the cDNA insert of the plasmid deposited with the ATCC as Patent Deposit Number (the "cDNA of Patent Deposit Number "), and complements thereof. By "complement" is intended a nucleotide sequence that is sufficiently complementary to a given nucleotide sequence such that it can hybridize to the given nucleotide sequence to thereby form a stable duplex. The corresponding amino acid sequence for the adenylate kinase protein encoded by these nucleotide sequences is set forth in SEQ ID NO:2. Nucleic acid molecules that are fragments of these adenylate kinase nucleotide sequences are also encompassed by the present invention. By "fragment" is intended a portion of the nucleotide sequence encoding an adenylate kinase protein. A fragment of an adenylate kinase nucleotide sequence may encode a biologically active portion of an adenylate kinase protein, or it may be a fragment that can be used as a hybridization probe or PCR primer using methods disclosed below. A biologically active portion of an adenylate kinase protein can be prepared by isolating a portion of one of the adenylate kinase nucleotide sequences of the invention, expressing the encoded portion of the adenylate kinase protein (e.g., by recombinant expression in vitro), and assessing the activity of the encoded portion of the adenylate kinase protein. Nucleic acid molecules that are fragments of an adenylate kinase nucleotide sequence comprise at least 15, 20, 50, 75, 100, 200, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400 nucleotides, or up to the number of nucleotides present in a full-length adenylate kinase nucleotide sequence disclosed herein (for example, 1452 nucleotides for SEQ ID NO:l) depending upon the intended use.
Alternatively, a nucleic acid molecule that is a fragment of an 27802-like nucleotide sequence of the present invention comprises a nucleotide sequence consisting of at least 5, 10, 15, 20, 25, 30, 35, or 40 contiguous nucleotides of nucleotides 215-370, or nucleotides 843-941 of SEQ ID NO:l . A fragment of a nucleotide sequence of the present invention comprises a nucleotide sequence consisting of nucleotides 215-300, 300-370, 843-900, 900-941 of SEQ ID NO:l .
It is understood that isolated fragments include any contiguous sequence not disclosed prior to the invention as well as sequences that are substantially the same and which are not disclosed. Accordingly, if an isolated fragment is disclosed prior to the present invention, that fragment is not intended to be encompassed by the invention. When a sequence is not disclosed prior to the present invention, an isolated nucleic acid fragment is at least about 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, 45-50, 50-75, 75-100 or more contiguous nucleotides. Other regions of the nucleotide sequence may comprise fragments of various sizes, depending upon potential homology with previously disclosed sequences.
A fragment of an adenylate kinase nucleotide sequence that encodes a biologically active portion of an adenylate kinase protein of the invention will encode at least 15, 25, 30, 50, 75, 100, 125, 150, 175, 200, or 225 contiguous amino acids, or up to the total number of amino acids present in a full-length adenylate kinase protein of the invention (for example, 258 amino acids for SEQ ID NO:2). A nucleic acid molecule that is a fragment of an 27802-like nucleotide sequence of the present invention comprises a nucleotide sequence encoding at least 15, 20, 25, 30, 35, or 40 contiguous amino acids of amino acids 1-51, or 209-241 of SEQ ID NO:2. A fragment of a nucleotide sequence of the present invention comprises a nucleotide sequence encoding amino acids 1-25, 25-51, 209-241 of SEQ ID NO:2. Fragments of an adenylate kinase nucleotide sequence that are useful as hybridization probes for PCR primers generally need not encode a biologically active portion of an adenylate kinase protein.
Nucleic acid molecules that are variants of the adenylate kinase nucleotide sequences disclosed herein are also encompassed by the present invention. "Variants" of the adenylate kinase nucleotide sequences include those sequences that encode the adenylate kinase proteins disclosed herein but that differ conservatively because of the degeneracy of the genetic code. These naturally occurring allelic variants can be identified with the use of well-known molecular biology techniques, such as polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant nucleotide sequences also include synthetically derived nucleotide sequences that have been generated, for example, by using site-directed mutagenesis but which still encode the adenylate kinase proteins disclosed in the present invention as discussed below. Generally, nucleotide sequence variants of the invention with have at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the nucleotide sequence disclosed herein. A variant adenylate kinase nucleotide sequence will encode an adenylate kinase protein that has an amino acid sequence having at least 45%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of an adenylate kinase protein disclosed herein. Such variants retain the functional activity (e.g. the adenylate kinase activity) of the polypeptide set forth in SEQ ID NO:2.
In addition to the adenylate kinase nucleotide sequence shown in SEQ ID
NO:l, and the nucleotide sequence of the cDNA of Patent Deposit Number , it will be appreciated by those skilled in the art that DNA sequence polymoφhisms that lead to changes in the amino acid sequences of adenylate kinase proteins may exist within a population (e.g., the human population). Such genetic polymoφhism in an adenylate kinase gene may exist among individuals within a population due to natural allelic variation. An allele is one of a group of genes that occur alternatively at a given genetic locus. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding an adenylate kinase protein, preferably a mammalian adenylate kinase protein. As used herein, the phrase "allelic variant" refers to a nucleotide sequence that occurs at an adenylate kinase locus or to a polypeptide encoded by the nucleotide sequence. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the adenylate kinase gene. Any and all such nucleotide variations and resulting amino acid polymoφhisms or variations in an adenylate kinase sequence that are the result of natural allelic variation and that do not alter the functional activity of adenylate kinase proteins are intended to be within the scope of the invention.
Moreover, nucleic acid molecules encoding adenylate kinase proteins from other species (adenylate kinase homologs), which have a nucleotide sequence differing from that of the adenylate kinase sequence disclosed herein, are intended to be within the scope of the invention. For example, nucleic acid molecules corresponding to natural allelic variants and homologs of the human adenylate kinase cDNA of the invention can be isolated based on their identity to the human adenylate kinase nucleic acid disclosed herein using the human cDNA, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions as disclosed below. In addition to naturally-occurring allelic variants of the adenylate kinase sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences of the invention thereby leading to changes in the amino acid sequence of the encoded adenylate kinase proteins, without altering the biological activity of the adenylate kinase proteins. Thus, an isolated nucleic acid molecule encoding an adenylate kinase protein having a sequence that differs from that of SEQ ID NO:2 can be created by introducing one or more nucleotide substitutions, additions, or deletions into the corresponding nucleotide sequence disclosed herein, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Such variant nucleotide sequences are also encompassed by the present invention. For example, preferably, conservative amino acid substitutions may be made at one or more predicted, preferably nonessential amino acid residues. A "nonessential" amino acid residue is a residue that can be altered from the wild-type sequence of an adenylate kinase protein (e.g., the sequence of SEQ ID NO:2) without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Such substitutions would not be made for conserved amino acid residues, or for amino acid residues residing within a conserved motif, such as the adenylate kinase domain sequence of SEQ ID NO:2 (see Figure 3), where such residues are essential for protein activity.
Alternatively, variant adenylate kinase nucleotide sequences can be made by introducing mutations randomly along all or part of an adenylate kinase coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for adenylate kinase biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed recombinantly, and the activity of the protein can be determined using standard assay techniques.
Thus the nucleotide sequence of the invention includes the sequence disclosed herein as well as fragments and variants thereof. The adenylate kinase nucleotide sequence of the invention, and fragments and variants thereof, can be used as probes and/or primers to identify and/or clone adenylate kinase homologs in other cell types, e.g., from other tissues, as well as adenylate kinase homologs from other mammals. Such probes can be used to detect transcripts or genomic sequences encoding the same or identical proteins. These probes can be used as part of a diagnostic test kit for identifying cells or tissues that misexpress an adenylate kinase protein, such as by measuring levels of an adenylate kinase-encoding nucleic acid in a sample of cells from a subject, e.g., detecting adenylate kinase mRNA levels or determining whether a genomic adenylate kinase gene has been mutated or deleted.
In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences having substantial identity to the sequences of the invention. See, for example, Sambrook et al. (1989) Molecular Cloning: Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, NY) and Innis, et al. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, NY). Adenylate kinase nucleotide sequences isolated based on their sequence identity to the adenylate kinase nucleotide sequence set forth herein or to fragments and variants thereof are encompassed by the present invention.
In a hybridization method, all or part of a known adenylate kinase nucleotide sequence can be used to screen cDNA or genomic libraries. Methods for construction of such cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, NY). The so-called hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group such as P, or any other detectable marker, such as other radioisotopes, a fluorescent compound, an enzyme, or an enzyme co-factor. Probes for hybridization can be made by labeling synthetic oligonucleotides based on the known adenylate kinase nucleotide sequence disclosed herein. Degenerate primers designed on the basis of conserved nucleotides or amino acid residues in a known adenylate kinase nucleotide sequence or encoded amino acid sequence can additionally be used. The probe typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, or 400 consecutive nucleotides of an adenylate kinase nucleotide sequence of the invention or a fragment or variant thereof. Preparation of probes for hybridization is generally known in the art and is disclosed in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York), herein incoφorated by reference.
For example, in one embodiment, a previously unidentified adenylate kinase nucleic acid molecule hybridizes under stringent conditions to a probe that is a nucleic acid molecule comprising the adenylate kinase nucleotide sequence of the invention or a fragment thereof. In another embodiment, the previously unknown adenylate kinase nucleic acid molecule is at least 300, 325, 350, 375, 400, 425, 450, 500, 550, 600, 650, 700, 800, 900, 1000, 2,000, 3,000, 4,000 or 5,000 nucleotides in length and hybridizes under stringent conditions to a probe that is a nucleic acid molecule comprising the adenylate kinase nucleotide sequence disclosed herein or a fragment thereof.
Accordingly, in another embodiment, an isolated previously unknown adenylate kinase nucleic acid molecule of the invention is at least 300, 325, 350, 375, 400, 425, 450, 500, 550, 600, 650, 700, 800, 900, 1000, 1,100, 1,200, 1,300, or 1,400 nucleotides in length and hybridizes under stringent conditions to a probe that is a nucleic acid molecule comprising the nucleotide sequence of the invention, preferably the coding sequence set forth in SEQ ID NO:l, the cDNA of Patent Deposit Number , or a complement, fragment, or variant thereof. As used herein, the term "hybridizes under stringent conditions" describes conditions for hybridization and washing. Stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Aqueous and nonaqueous methods are described in that reference and either can be used. A preferred, example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 50°C. Another example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 55°C. A further example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about
45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 60°C. Preferably, stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 65 °C. Particularly preferred stringency conditions (and the conditions that should be used if the practitioner is uncertain about what conditions should be applied to determine if a molecule is within a hybridization limitation of the invention) are 0.5M
Sodium Phosphate, 7% SDS at 65°C, followed by one or more washes at 0.2X SSC,
1% SDS at 65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequence of SEQ ID NO:l, or SEQ ID NO:3, corresponds to a naturally-occurring nucleic acid molecule.
As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).
Thus, in addition to the adenylate kinase nucleotide sequences disclosed herein and fragments and variants thereof, the isolated nucleic acid molecules of the invention also encompass homologous DNA sequences identified and isolated from other cells and/or organisms by hybridization with entire or partial sequences obtained from the adenylate kinase nucleotide sequences disclosed herein or variants and fragments thereof.
The present invention also encompasses antisense nucleic acid molecules, i.e., molecules that are complementary to a sense nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule, or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire adenylate kinase coding strand, or to only a portion thereof, e.g., all or part of the protein coding region (or open reading frame). An antisense nucleic acid molecule can be antisense to a noncoding region of the coding strand of a nucleotide sequence encoding an adenylate kinase protein. The noncoding regions are the 5' and 3' sequences that flank the coding region and are not translated into amino acids.
Given the coding-strand sequence encoding an adenylate kinase protein disclosed herein (SEQ ID NO:l), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of adenylate kinase mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of adenylate kinase mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of adenylate kinase mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, including, but not limited to, for example e.g., phosphorothioate derivatives and acridine substituted nucleotides. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an adenylate kinase protein to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, antisense molecules can be linked to peptides or antibodies to form a complex that specifically binds to receptors or antigens expressed on a selected cell surface. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred. An antisense nucleic acid molecule of the invention can be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double- stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o- methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).
The invention also encompasses ribozymes, which are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave adenylate kinase mRNA transcripts to thereby inhibit translation of adenylate kinase mRNA. A ribozyme having specificity for an adenylate kinase-encoding nucleic acid can be designed based upon the nucleotide sequence of an adenylate kinase cDNA disclosed herein (e.g., SEQ ID NO:l). See, e.g., Cech et al, U.S. Patent No. 4,987,071; and Cech et al., U.S. Patent No. 5,116,742. Alternatively, adenylate kinase mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel and Szostak (1993) Science 261 :1411-1418.
The invention also encompasses nucleic acid molecules that form triple helical structures. For example, adenylate kinase gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the adenylate kinase protein (e.g., the adenylate kinase promoter and/or enhancers) to form triple helical structures that prevent transcription of the adenylate kinase gene in target cells. See generally Helene (1991) Anticancer Drug Des. 6(6):569; Helene (1992) Ann. N. Y. Acad. Sci. 660:27; and Maher (1992) Bioassays 14(12):807.
In preferred embodiments, the nucleic acid molecules of the invention can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorganic & Medicinal Chemistry 4:5). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid-phase peptide synthesis protocols as described in Hyrup et al. (1 96), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93:14670.
PNAs of an adenylate kinase molecule can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of the invention can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA-directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., SI nucleases (Hyrup (1996), supra; or as probes or primers for DNA sequence and hybridization (Hyrup (1996), supra; Perry- O'Keefe et al. (1996), supra).
In another embodiment, PNAs of an adenylate kinase molecule can be modified, e.g., to enhance their stability, specificity, or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996), supra; Finn et al. (1996) Nucleic Acids Res. 24(17):3357-63; Mag et al. (1989) Nucleic Acids Res. 17:5973; and Peterson et al. (1975) Bioorganic Med. Chem. Lett. 5:1119.
II. Isolated Adenylate Kinase Proteins and Anti-adenylate Kinase Antibodies
Adenylate kinase proteins are also encompassed within the present invention. By "adenylate kinase protein" is intended a protein having the amino acid sequence set forth in SEQ ID NO: 2, as well as fragments, biologically active portions, and variants thereof.
"Fragments" or "biologically active portions" include polypeptide fragments suitable for use as immunogens to raise anti-adenylate kinase antibodies. Fragments include peptides comprising amino acid sequences sufficiently identical to or derived from the amino acid sequence of an adenylate kinase protein of the invention and exhibiting at least one activity of an adenylate kinase protein, but which include fewer amino acids than the full-length (SEQ ID NO:2) adenylate kinase protein disclosed herein. Typically, biologically active portions comprise a domain or motif with at least one activity of the adenylate kinase protein. A biologically active portion of an adenylate kinase protein can be a polypeptide that is, for example, 10-15, 15-20, 20- 25, 25-30, 30-35, 35-40, 40-45, 45-50, 50-55, 55-60, 70, 80, 90, 100 or more amino acids in length. Such biologically active portions can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native adenylate kinase protein. As used here, a fragment comprises at least 5 contiguous amino acids of SEQ ID NO:2. The invention encompasses other fragments, however, such as any fragment in the protein greater than 5 amino acids, depending upon the intended use.
By "variants" is intended proteins or polypeptides having an amino acid sequence that is at least about 45%, 55%, 65%, preferably about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:2. Variants also include polypeptides encoded by the cDNA insert of the plasmid deposited with ATCC as Accession Number , or polypeptides encoded by a nucleic acid molecule that hybridizes to the nucleic acid molecule of SEQ ID NO: 1 , or a complement thereof, under stringent conditions. In another embodiment, a variant of an isolated polypeptide of the present invention differs, by at least 1, but less than 5, 10, 20, 50, or 100 amino acid residues from the sequence shown in SEQ ID NO:2. If alignment is needed for this comparison the sequences should be aligned for maximum identity. "Looped" out sequences from deletions or insertions, or mismatches, are considered differences. Such variants generally retain the functional activity of the 27802-like proteins of the invention. Variants include polypeptides that differ in amino acid sequence due to natural allelic variation or mutagenesis.
The invention also provides adenylate kinase chimeric or fusion proteins. In the case where an expression cassette contains two protein coding regions joined in a contiguous manner in the same reading frame, the encoded polypeptide is herein defined as a "heterologous polypeptide" or a "chimeric polypeptide" or a "fusion polypeptide". As used herein, an adenylate kinase "heterologous protein" or "chimeric protein" or "fusion protein" comprises an adenylate kinase polypeptide operably linked to a non-adenylate kinase polypeptide. An "adenylate kinase polypeptide" refers to a polypeptide having an amino acid sequence corresponding to an adenylate kinase protein, whereas a "non-adenylate kinase polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially identical to the adenylate kinase protein, e.g., a protein that is different from the adenylate kinase protein and which is derived from the same or a different organism. Within an adenylate kinase fusion protein, the adenylate kinase polypeptide can correspond to all or a portion of an adenylate kinase protein, preferably at least one biologically active portion of an adenylate kinase protein. Within the fusion protein, the term "operably linked" is intended to indicate that the adenylate kinase polypeptide and the non-adenylate kinase polypeptide are fused in- frame to each other. The non-adenylate kinase polypeptide can be fused to the N- terminus or C-terminus of the adenylate kinase polypeptide. One useful fusion protein is a GST-adenylate kinase fusion protein in which the adenylate kinase sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant adenylate kinase proteins.
In yet another embodiment, the fusion protein is an adenylate kinase- immunoglobulin fusion protein in which all or part of an adenylate kinase protein is fused to sequences derived from a member of the immunoglobulin protein family. The adenylate kinase-immunoglobulin fusion proteins of the invention can be incoφorated into pharmaceutical compositions and administered to a subject to inhibit an interaction between an adenylate kinase ligand and an adenylate kinase protein on the surface of a cell, thereby suppressing adenylate kinase-mediated signal transduction in vivo. The adenylate kinase-immunoglobulin fusion proteins can be used to affect the bioavailability of an adenylate kinase cognate ligand. Inhibition of the adenylate kinase ligand/adenylate kinase interaction may be useful therapeutically, both for treating proliferative and differentiative disorders and for modulating (e.g., promoting or inhibiting) cell survival. Moreover, the adenylate kinase- immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-adenylate kinase antibodies in a subject, to purify adenylate kinase ligands, and in screening assays to identify molecules that inhibit the interaction of an adenylate kinase protein with an adenylate kinase ligand. Preferably, an adenylate kinase chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences may be ligated together in-frame, or the fusion gene can be synthesized, such as with automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments, which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel et al., eds. (1995) Current Protocols in Molecular Biology) (Greene Publishing and Wiley-Interscience, NY). Moreover, an adenylate kinase-encoding nucleic acid can be cloned into a commercially available expression vector such that it is linked in-frame to an existing fusion moiety.
Variants of the adenylate kinase proteins can function as either adenylate kinase agonists (mimetics) or as adenylate kinase antagonists. Variants of the adenylate kinase protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the adenylate kinase protein. An agonist of the adenylate kinase protein can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the adenylate kinase protein. An antagonist of the adenylate kinase protein can inhibit one or more of the activities of the naturally occurring form of the adenylate kinase protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade that includes the adenylate kinase protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. Treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein can have fewer side effects in a subject relative to treatment with the naturally occurring form of the adenylate kinase proteins.
Variants of the adenylate kinase proteins can function as either adenylate kinase agonists (mimetics) or as adenylate kinase antagonists. Variants of the adenylate kinase protein can be generated by mutagenesis, e.g. discrete point mutation or truncation of the adenylate kinase protein. An agonist of the adenylate kinase protein can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the adenylate kinase protein. An antagonist of the adenylate kinase protein can inhibit one or more of the activities of the naturally occurring form of the adenylate kinase protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade that includes the adenylate kinase protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. Treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein can have fewer side effects in a subject relative to treatment with the naturally occurring form of the adenylate kinase proteins.
Variants of an adenylate kinase protein that function as either adenylate kinase agonists or as adenylate kinase antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of an adenylate kinase protein for adenylate kinase protein agonist or antagonist activity. In one embodiment, a variegated library of adenylate kinase variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of adenylate kinase variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential adenylate kinase sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of adenylate kinase sequences therein. There are a variety of methods that can be used to produce libraries of potential adenylate kinase variants from a degenerate oligonucleotide sequence.
Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential adenylate kinase sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang (1983) Tetrahedron 39:3; Itakura et o/. (19%4) Annu. Rev. Biochem. 53:323; Itakura et α/. (1984) Science 198:1056; Ike et α/. (1983) Nucleic Acid Res. 11 :477).
In addition, libraries of fragments of an adenylate kinase protein coding sequence can be used to generate a variegated population of adenylate kinase fragments for screening and subsequent selection of variants of an adenylate kinase protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double-stranded PCR fragment of an adenylate kinase coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double-stranded DNA, renaturing the DNA to form double- stranded DNA which can include sense/antisense pairs from different nicked products, removing single-stranded portions from reformed duplexes by treatment with SI nuclease, and ligating the resulting fragment library into an expression vector. By this method, one can derive an expression library that encodes N-terminal and internal fragments of various sizes of the adenylate kinase protein. Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of adenylate kinase proteins. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify adenylate kinase variants (Arkin and Yourvan (1992) Proc. Natl. Acad. Sci. USA 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6(3):327- 331).
An isolated adenylate kinase polypeptide of the invention can be used as an immunogen to generate antibodies that bind adenylate kinase proteins using standard techniques for polyclonal and monoclonal antibody preparation. The full-length adenylate kinase protein can be used or, alternatively, the invention provides antigenic peptide fragments of adenylate kinase proteins for use as immunogens. The antigenic peptide of an adenylate kinase protein comprises at least 8, preferably 10-15, 15-20, 20-25, or 30 or more amino acid residues of the amino acid sequence shown in SEQ ID NO: 2 and encompasses an epitope of an adenylate kinase protein such that an antibody raised against the peptide forms a specific immune complex with the adenylate kinase protein. Preferred epitopes encompassed by the antigenic peptide are regions of a adenylate kinase protein that are located on the surface of the protein, e.g., hydrophilic regions.
Accordingly, another aspect of the invention pertains to anti-adenylate kinase polyclonal and monoclonal antibodies that bind an adenylate kinase protein.
Polyclonal anti-adenylate kinase antibodies can be prepared by immunizing a suitable subject (e.g., rabbit, goat, mouse, or other mammal) with an adenylate kinase immunogen. The anti-adenylate kinase antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized adenylate kinase protein. At an appropriate time after immunization, e.g., when the anti-adenylate kinase antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein (1975) Nature 256:495-497, the human B cell hybridoma technique (Kozbor et al. (1983) Immunol. Today 4:72), the EBV-hybridoma technique (Cole et al. (1985) in Monoclonal Antibodies and Cancer Therapy, ed. Reisfeld and Sell (Alan R. Liss, Inc., New York, NY), pp. 77-96) or trioma techniques. The technology for producing hybridomas is well known (see generally Coligan et al., eds. (1994) Current Protocols in Immunology (John Wiley & Sons, Inc., New York, NY); Galfre et al. (1977) Nature 266:55052; Kenneth (1980) in Monoclonal Antibodies: A New Dimension In Biological Analyses (Plenum Publishing Coφ., NY; and Lerner (1981) Yale J. Biol. Med., 54:387-402). Alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal anti-adenylate kinase antibody can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with an adenylate kinase protein to thereby isolate immunoglobulin library members that bind the adenylate kinase protein. Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01 ; and the Stratagene SurβAPS Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Patent No. 5,223,409; PCT Publication Nos. WO 92/18619; WO 91/17271; WO 92/20791; WO 92/15679; 93/01288; WO
92/01047; 92/09690; and 90/02809; Fuchs et al. (1991) Bio/Technology 9:1370-1372; Hay et al. (1992) Hum. Antibod. Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; Griffiths et al. (1993) EMBO J. 12:725-734.
Additionally, recombinant anti-adenylate kinase antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and nonhuman portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT Publication Nos. WO 86101533 and WO 87/02671; European Patent Application Nos. 184,187, 171,496, 125,023, and 173,494; U.S.
Patent Nos. 4,816,567 and 5,225,539; European Patent Application 125,023; Better et al. (1988) Science 240:1041-1043; Liu et al. (1987) Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al. (1987) J Immunol. 139:3521-3526; Sun et α/. (1987) Proc. Natl. Acad. Sci. USA 84:214-218; Nishimura et al. (1987) Cane. Res. 47:999-1005; Wood et al. (1985) Nature 314:446-449; Shaw et al. (1988) J. Natl. Cancer Inst. 80:1553-1559); Morrison (1985) Science 229:1202-1207; Oi et α/. (1986) Bio/Techniques 4:214; Jones et al. (1986) Nature 321 :552-525; Verhoeyan et al. (1988) Science 239: 1534; and Beidler et α/. (1988) J. Immunol. 141 :4053-4060. Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Such antibodies can be produced using transgenic mice that are incapable of expressing endogenous immunoglobulin heavy and light chains genes, but which can express human heavy and light chain genes. See, for example, Lonberg and Huszar (1995) Int. Rev. Immunol. 13:65-93); and U.S. Patent Nos.
5,625,126; 5,633,425; 5,569,825; 5,661,016; and 5,545,806. In addition, companies such as Abgenix, Inc. (Freemont, CA), can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above. Completely human antibodies that recognize a selected epitope can be generated using a technique referred to as "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a murine antibody, is used to guide the selection of a completely human antibody recognizing the same epitope. This technology is described by Jespers et al. (1994) Bio/Technology 12:899-903).
An anti-adenylate kinase antibody (e.g., monoclonal antibody) can be used to isolate adenylate kinase proteins by standard techniques, such as affinity chromatography or immunoprecipitation. An anti-adenylate kinase antibody can facilitate the purification of natural adenylate kinase protein from cells and of recombinantly produced adenylate kinase protein expressed in host cells. Moreover, an anti-adenylate kinase antibody can be used to detect adenylate kinase protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the adenylate kinase protein. Anti-adenylate kinase antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include I, I, S, or H.
Further, an antibody (or fragment thereof) may be conjugated to a therapeutic moiety such as a cytotoxin, a therapeutic agent or a radioactive metal ion. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1 - dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis- dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine). The conjugates of the invention can be used for modifying a given biological response, the drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, .alpha.-interferon, .beta.- interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1 "), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophase colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors. Techniques for conjugating such therapeutic moiety to antibodies are well known, see, e.g., Arnon et α/.(1985) "Monoclonal Antibodies for Immunotargeting of Drugs in Cancer Therapy," in Monoclonal Antibodies And Cancer Therapy, ed. Reisfeld et al. (Alan R. Liss, Inc.), pp. 243-56); Hellstrom et al. (1987) "Antibodies for Drug Delivery," in Controlled Drug Delivery, ed. Robinson et al. (2d ed., Marcel Dekker, Inc.), pp. 623-53; Thoφe (1985) "Antibody Carriers of Cytotoxic Agents in Cancer Therapy: A Review", in Monoclonal Antibodies '84:Biological And Clinical Applications, ed. Pinchera et al., pp. 475-506; "Analysis, Results, and Future Prospective of the Therapeutic Use of Radiolabeled Antibody in Cancer Therapy," in Monoclonal Antibodies For Cancer Detection And Therapy, ed. Baldwin et al.
(Academic Press, NY), pp. 303-316; and Thoφe et al. (1982) Immunol. Rev. 62:119- 58. Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980.
III. Recombinant Expression Vectors and Host Cells
Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an adenylate kinase protein (or a portion thereof). "Vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked, such as a "plasmid", a circular double- stranded DNA loop into which additional DNA segments can be ligated, or a viral vector, where additional DNA segments can be ligated into the viral genome. The vectors are useful for autonomous replication in a host cell or may be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome (e.g., nonepisomal mammalian vectors). Expression vectors are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors). However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses, and adeno-associated viruses), that serve equivalent functions.
The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell. This means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, operably linked to the nucleic acid sequence to be expressed. "Operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers, and other expression control elements (e.g., polyadenylation signals). See, for example, Goeddel (1990) in Gene Expression Technology: Methods in Enzymology 185 (Academic Press, San Diego, CA). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., adenylate kinase proteins, mutant forms of adenylate kinase proteins, fusion proteins, etc.).
It is further recognized that the nucleic acid sequences of the invention can be altered to contain codons, which are preferred, or non preferred, for a particular expression system. For example, the nucleic acid can be one in which at least one altered codon, and preferably at least 10%, or 20% of the codons have been altered such that the sequence is optimized for expression in E. coli, yeast, human, insect, or CHO cells. Methods for determining such codon usage are well known in the art. The recombinant expression vectors of the invention can be designed for expression of adenylate kinase protein in prokaryotic or eukaryotic host cells. Expression of proteins in prokaryotes is most often carried out in E. coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or nonfusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA), and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible nonfusion E. coli expression vectors include pTrc (Amann et al. (1988) Gene 69:301-315) and pET 1 Id (Studier et al. (1990) in Gene Expression Technology: Methods in Enzymology 185 (Academic Press, San Diego, CA), pp. 60-89). Strategies to maximize recombinant protein expression in E. coli can be found in Gottesman (1990) in Gene Expression Technology: Methods in Enzymology 185 (Academic Press, CA), pp. 119-128 and Wada et al. (1992) Nucleic Acids Res. 20:2111-2118. Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid tφ-lac fusion promoter. Suitable eukaryotic host cells include insect cells (examples of Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39)); yeast cells (examples of vectors for expression in yeast S. cereivisiae include pYepSecl (Baldari et al. (1987) EMBO J. 6:229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123), pYES2 (Invitrogen Coφoration, San Diego, CA), and pPicZ (Invitrogen Coφoration, San Diego, CA)); or mammalian cells (mammalian expression vectors include pCDM8 (Seed (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) E 75O J. 6: 187: 195)). Suitable mammalian cells include Chinese hamster ovary cells (CHΟ) or COS cells. In mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus, and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells, see chapters 16 and 17 of Sambrook et al. (1989) Molecular cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, NY). See, Goeddel (1990) in Gene Expression Technology: Methods in Enzymology 185 (Academic Press, San Diego, CA). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell but are still included within the scope of the term as used herein. A "purified preparation of cells", as used herein, refers to, in the case of plant or animal cells, an in vitro preparation of cells and not an entire intact plant or animal. In the case of cultured cells or microbial cells, it consists of a preparation of at least 10% and more preferably 50% of the subject cells.
In one embodiment, the expression vector is a recombinant mammalian expression vector that comprises tissue-specific regulatory elements that direct expression of the nucleic acid preferentially in a particular cell type. Suitable tissue- specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1 :268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) Proc. Natl. Acad. Sci. USA 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Patent Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379), the α-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546), and the like.
The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operably linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to adenylate kinase mRNA. Regulatory sequences operably linked to a nucleic acid cloned in the antisense orientation can be chosen to direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen to direct constitutive, tissue-specific, or cell-type-specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid, or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub et al. (1986) Reviews - Trends in Genetics, Vol. 1(1).
Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook et al. (1989) Molecular Cloning: A Labor aty Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, NY) and other laboratory manuals. For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin, and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding an adenylate kinase protein or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incoφorated the selectable marker gene will survive, while the other cells die).
A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) adenylate kinase protein. Accordingly, the invention further provides methods for producing adenylate kinase protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of the invention, into which a recombinant expression vector encoding an adenylate kinase protein has been introduced, in a suitable medium such that adenylate kinase protein is produced. In another embodiment, the method further comprises isolating adenylate kinase protein from the medium or the host cell. The host cells of the invention can also be used to produce nonhuman transgenic animals. In general, methods for producing transgenic animals include introducing a nucleic acid sequence according to the present invention, the nucleic acid sequence capable of expressing the receptor protein in a transgenic animal, into a cell in culture or in vivo. When introduced in vivo, the nucleic acid is introduced into an intact organism such that one or more cell types and, accordingly, one or more tissue types, express the nucleic acid encoding the receptor protein. Alternatively, the nucleic acid can be introduced into virtually all cells in an organism by transfecting a cell in culture, such as an embryonic stem cell, as described herein for the production of transgenic animals, and this cell can be used to produce an entire transgenic organism. As described, in a further embodiment, the host cell can be a fertilized oocyte. Such cells are then allowed to develop in a female foster animal to produce the transgenic organism.
For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which adenylate kinase-coding sequences have been introduced. Such host cells can then be used to create nonhuman transgenic animals in which exogenous adenylate kinase sequences have been introduced into their genome or homologous recombinant animals in which endogenous adenylate kinase sequences have been altered. Such animals are useful for studying the function and/or activity of adenylate kinase genes and proteins and for identifying and/or evaluating modulators of adenylate kinase activity. As used herein, a "transgenic animal" is a nonhuman animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include nonhuman primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a "homologous recombinant animal" is a nonhuman animal, preferably a mammal, more preferably a mouse, in which an endogenous adenylate kinase gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal. A transgenic animal of the invention can be created by introducing adenylate kinase-encoding nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. The adenylate kinase cDNA sequence can be introduced as a transgene into the genome of a nonhuman animal. Alternatively, a homolog of the mouse adenylate kinase gene can be isolated based on hybridization and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably linked to the adenylate kinase transgene to direct expression of adenylate kinase protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866, 4,870,009, and 4,873,191 and in Hogan (1986) Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the adenylate kinase transgene in its genome and/or expression of adenylate kinase mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene encoding adenylate kinase gene can further be bred to other transgenic animals carrying other transgenes.
To create a homologous recombinant animal, one prepares a vector containing at least a portion of an adenylate kinase gene or a homolog of the gene into which a deletion, addition, or substitution has been introduced to thereby alter, e.g., functionally disrupt, the adenylate kinase gene. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous adenylate kinase gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous adenylate kinase gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous adenylate kinase protein). In the homologous recombination vector, the altered portion of the adenylate kinase gene is flanked at its 5' and 3' ends by additional nucleic acid of the adenylate kinase gene to allow for homologous recombination to occur between the exogenous adenylate kinase gene carried by the vector and an endogenous adenylate kinase gene in an embryonic stem cell. The additional flanking adenylate kinase nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see, e.g., Thomas and Capecchi (1987) Cell 51 :503 for a description of homologous recombination vectors). The vector is introduced into an embryonic stem cell line (e.g., by electroporation), and cells in which the introduced adenylate kinase gene has homologously recombined with the endogenous adenylate kinase gene are selected (see, e.g., Li et al. (1992) Cell 69:915). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras (see, e.g., Bradley (1987) in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, ed. Robertson (IRL, Oxford), pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley (1991) Current Opinion in Bio/Technology 2:823-829 and in PCT Publication Nos. WO 90/11354, WO 91/01140, WO 92/0968, and WO 93/04169.
In another embodiment, transgenic nonhuman animals containing selected systems that allow for regulated expression of the transgene can be produced. One example of such a system is the cre/loxP recombinase system of bacteriophage PI . For a description of the cre/loxP recombinase system, see, e.g., Lakso et al. (1992) Proc. Natl. Acad. Sci. USA 89:6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251 :1351-1355). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
Clones of the nonhuman transgenic animals described herein can also be produced according to the methods described in Wilmut et al. (1997) Nature 385:810- 813 and PCT Publication Nos. WO 97/07668 and WO 97/07669.
IV. Pharmaceutical Compositions
The adenylate kinase nucleic acid molecules, adenylate kinase proteins, and anti-adenylate kinase antibodies (also referred to herein as "active compounds") of the invention can be incoφorated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein the language "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absoφtion delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incoφorated into the compositions.
The compositions of the invention are useful to treat any of the disorders discussed herein. The compositions are provided in therapeutically effective amounts. By "therapeutically effective amounts" is intended an amount sufficient to modulate the desired response. As defined herein, a therapeutically effective amount of protein or polypeptide (i.e., an effective dosage) ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight.
The skilled artisan will appreciate that certain factors may influence the dosage required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a protein, polypeptide, or antibody can include a single treatment or, preferably, can include a series of treatments. In a preferred example, a subject is treated with antibody, protein, or polypeptide in the range of between about 0.1 to 20 mg/kg body weight, one time per week for between about 1 to 10 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7 weeks, and even more preferably for about 4, 5, or 6 weeks. It will also be appreciated that the effective dosage of antibody, protein, or polypeptide used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result and become apparent from the results of diagnostic assays as described herein. The present invention encompasses agents that modulate expression or activity. An agent may, for example, be a small molecule. For example, such small molecules include, but are not limited to, peptides, peptidomimetics, amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e,. including heteroorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1 ,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.
It is understood that appropriate doses of small molecule agents depends upon a number of factors within the ken of the ordinarily skilled physician, veterinarian, or researcher. The dose(s) of the small molecule will vary, for example, depending upon the identity, size, and condition of the subject or sample being treated, further depending upon the route by which the composition is to be administered, if applicable, and the effect which the practitioner desires the small molecule to have upon the nucleic acid or polypeptide of the invention. Exemplary doses include milligram or microgram amounts of the small molecule per kilogram of subject or sample weight (e.g., about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram. It is furthermore understood that appropriate doses of a small molecule depend upon the potency of the small molecule with respect to the expression or activity to be modulated. Such appropriate doses may be determined using the assays described herein. When one or more of these small molecules is to be administered to an animal (e.g., a human) in order to modulate expression or activity of a polypeptide or nucleic acid of the invention, a physician, veterinarian, or researcher may, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained. In addition, it is understood that the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.
A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes, or multiple dose vials made of glass or plastic.
Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF; Parsippany, NJ), or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion, and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride, in the composition. Prolonged absoφtion of the injectable compositions can be brought about by including in the composition an agent that delays absoφtion, for example, aluminum monostearate and gelatin. Sterile injectable solutions can be prepared by incoφorating the active compound (e.g., an adenylate kinase protein or anti-adenylate kinase antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incoφorating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying, which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the puφose of oral therapeutic administration, the active compound can be incoφorated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth, or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring. For administration by inhalation, the compounds are delivered in the form of an aerosol spray from a pressurized container or dispenser that contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art. The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Coφoration and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.
It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated with each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Depending on the type and severity of the disease, about 1 μg/kg to about 15 mg/kg (e.g., 0.1 to 20 mg/kg) of antibody is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. A typical daily dosage might range from about 1 μg/kg to about 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays. An exemplary dosing regimen is disclosed in WO 94/04188. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals. The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S. Patent 5,328,470), or by stereotactic injection (see, e.g., Chen et al. (1994) Proc. Natl. Acad. Sci. USA 91 :3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system. The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.
As defined herein, a therapeutically effective amount of protein or polypeptide (i.e., an effective dosage) ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight.
The skilled artisan will appreciate that certain factors may influence the dosage required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a protein, polypeptide, or antibody can include a single treatment or, preferably, can include a series of treatments. In a preferred example, a subject is treated with antibody, protein, or polypeptide in the range of between about 0.1 to 20 mg/kg body weight, one time per week for between about 1 to 10 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7 weeks, and even more preferably for about 4, 5, or 6 weeks. It will also be appreciated that the effective dosage of antibody, protein, or polypeptide used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result and become apparent from the results of diagnostic assays as described herein.
The present invention encompasses agents which modulate expression or activity. An agent may, for example, be a small molecule. For example, such small molecules include, but are not limited to, peptides, peptidomimetics, amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1 ,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.
It is understood that appropriate doses of small molecule agents depends upon a number of factors within the ken of the ordinarily skilled physician, veterinarian, or researcher. The dose(s) of the small molecule will vary, for example, depending upon the identity, size, and condition of the subject or sample being treated, further depending upon the route by which the composition is to be administered, if applicable, and the effect which the practitioner desires the small molecule to have upon the nucleic acid or polypeptide of the invention. Exemplary doses include milligram or microgram amounts of the small molecule per kilogram of subject or sample weight (e.g., about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram. It is furthermore understood that appropriate doses of a small molecule depend upon the potency of the small molecule with respect to the expression or activity to be modulated. Such appropriate doses may be determined using the assays described herein. When one or more of these small molecules is to be administered to an animal (e.g., a human) in order to modulate expression or activity of a polypeptide or nucleic acid of the invention, a physician, veterinarian, or researcher may, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained. In addition, it is understood that the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.
Computer Readable Means
The nucleotide or amino acid sequences of the invention are also provided in a variety of mediums to facilitate use thereof. As used herein, "provided" refers to a manufacture, other than an isolated nucleic acid or amino acid molecule, which contains a nucleotide or amino acid sequence of the present invention. Such a manufacture provides the nucleotide or amino acid sequences, or a subset thereof (e.g., a subset of open reading frames (ORFs)) in a form which allows a skilled artisan to examine the manufacture using means not directly applicable to examining the nucleotide or amino acid sequences, or a subset thereof, as they exists in nature or in purified form.
In one application of this embodiment, a nucleotide or amino acid sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium that can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. The skilled artisan will readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide or amino acid sequence of the present invention.
As used herein, "recorded" refers to a process for storing information on computer readable medium. The skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide or amino acid sequence information of the present invention.
A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide or amino acid sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. The skilled artisan can readily adapt any number of dataprocessor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.
By providing the nucleotide or amino acid sequences of the invention in computer readable form, the skilled artisan can routinely access the sequence information for a variety of puφoses. For example, one skilled in the art can use the nucleotide or amino acid sequences of the invention in computer readable form to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the sequences of the invention which match a particular target sequence or target motif.
As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.
As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, haiφin structures and inducible expression elements (protein binding sequences).
Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium for analysis and comparison to other sequences. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA).
For example, software which implements the BLAST (Altschul et al. (1990) J Mol. Biol. 275:403-410) and BLAZE (Brutlag et al. (1993) Comp. Chem. 77:203-207) search algorithms on a Sybase system can be used to identify open reading frames (ORFs) of the sequences of the invention which contain homology to ORFs or proteins from other libraries. Such ORFs are protein encoding fragments and are useful in producing commercially important proteins such as enzymes used in various reactions and in the production of commercially useful metabolites.
V. Uses and Methods of the Invention
The nucleic acid molecules, proteins, protein homologs, and antibodies described herein can be used in one or more of the following methods: (a) screening assays; (b) detection assays (e.g., chromosomal mapping, tissue typing, forensic biology); (c) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenomics); and (d) methods of treatment (e.g., therapeutic and prophylactic). The uses and methods of the invention are particularly relevant in tissues and cells in which the adenylate kinase is expressed and especially where expression differs from that in a normal tissue or cell. The uses and methods are also particularly relevant in disorders involving such tissues and cells. Accordingly, the uses and methods are particularly relevant for disorders involving expression of the adenylate kinase of the invention. The isolated nucleic acid molecules of the invention can be used to express adenylate kinase protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect adenylate kinase mRNA (e.g., in a biological sample) or a genetic lesion in an adenylate kinase gene, and to modulate adenylate kinase activity. In addition, the adenylate kinase proteins can be used to screen drugs or compounds that modulate the immune response as well as to treat disorders characterized by insufficient or excessive production of adenylate kinase protein or production of adenylate kinase protein forms that have decreased or aberrant activity compared to adenylate kinase wild type protein. In addition, the anti-adenylate kinase antibodies of the invention can be used to detect and isolate adenylate kinase proteins and modulate adenylate kinase activity.
A. Screening Assays
The invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules, or other drugs) that bind to adenylate kinase proteins or have a stimulatory or inhibitory effect on, for example, adenylate kinase expression or adenylate kinase activity.
The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including biological libraries, spatially addressable parallel solid phase or solution phase libraries, synthetic library methods requiring deconvolution, the "one-bead one- compound" library method, and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, nonpeptide oligomer, or small molecule libraries of compounds (Lam (1997) Anticancer Drug Des. 12:145).
Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA 90:6909; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91 :11422; Zuckermann et al. (1994). J. Med. Chem. 37:2678; Cho et al. (1993) Science 261 :1303; Carrell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2061 ; and Gallop et al. (1994) J. Med. Chem. 37:1233. Libraries of compounds may be presented in solution (e.g., Houghten (1992)
Bio/Techniques 13:412-421), or on beads (Lam (1991) Nature 354:82-84), chips (Fodor (1993) Nαtwre 364:555-556), bacteria (U.S. Patent No. 5,223,409), spores (U.S. Patent Nos. 5,571,698; 5,403,484; and 5,223,409), plasmids (Cull et al. (1992) Proc. Natl. Acad. Sci. USA 89:1865-1869), or phage (Scott and Smith (1990) Science 249:386-390; Devlin (1990) Science 249:404-406; Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87:6378-6382; and Felici (1991) J Mol. Biol. 222:301-310).
Determining the ability of the test compound to bind to the adenylate kinase protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the adenylate kinase protein or biologically active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with 1251, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting. Alternatively, test compounds can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.
In a similar manner, one may determine the ability of the adenylate kinase protein to bind to or interact with an adenylate kinase target molecule. By "target molecule" is intended a molecule with which an adenylate kinase protein binds or interacts in nature. In a preferred embodiment, the ability of the adenylate kinase protein to bind to or interact with an adenylate kinase target molecule can be determined by monitoring the activity of the target molecule. For example, the activity of the target molecule can be monitored by detecting induction of a cellular second messenger of the target (e.g., intracellular Ca2+, diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target on an appropriate substrate, detecting the induction of a reporter gene (e.g., an adenylate kinase-responsive regulatory element operably linked to a nucleic acid encoding a detectable marker, e.g. luciferase), or detecting a cellular response, for example, cellular differentiation or cell proliferation.
In yet another embodiment, an assay of the present invention is a cell-free assay comprising contacting an adenylate kinase protein or biologically active portion thereof with a test compound and determining the ability of the test compound to bind to the adenylate kinase protein or biologically active portion thereof. Binding of the test compound to the adenylate kinase protein can be determined either directly or indirectly as described above. In a preferred embodiment, the assay includes contacting the adenylate kinase protein or biologically active portion thereof with a known compound that binds adenylate kinase protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to preferentially bind to adenylate kinase protein or biologically active portion thereof as compared to the known compound.
In another embodiment, an assay is a cell-free assay comprising contacting adenylate kinase protein or biologically active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the adenylate kinase protein or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of an adenylate kinase protein can be accomplished, for example, by determining the ability of the adenylate kinase protein to bind to an adenylate kinase target molecule as described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of an adenylate kinase protein can be accomplished by determining the ability of the adenylate kinase protein to further modulate an adenylate kinase target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as previously described.
In yet another embodiment, the cell-free assay comprises contacting the adenylate kinase protein or biologically active portion thereof with a known compound that binds an adenylate kinase protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to preferentially bind to or modulate the activity of an adenylate kinase target molecule. In the above-mentioned assays, it may be desirable to immobilize either an adenylate kinase protein or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, glutathione-S-transferase/adenylate kinase fusion proteins or glutathione-S- transferase/target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione-derivatized microtitre plates, which are then combined with the test compound or the test compound and either the nonadsorbed target protein or adenylate kinase protein, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtitre plate wells are washed to remove any unbound components and complex formation is measured either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of adenylate kinase binding or activity determined using standard techniques.
Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either adenylate kinase protein or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated adenylate kinase molecules or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, IL), and immobilized in the wells of streptavidin-coated 96-well plates (Pierce Chemicals). Alternatively, antibodies reactive with an adenylate kinase protein or target molecules but which do not interfere with binding of the adenylate kinase protein to its target molecule can be derivatized to the wells of the plate, and unbound target or adenylate kinase protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the adenylate kinase protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the adenylate kinase protein or target molecule.
In another embodiment, modulators of adenylate kinase expression are identified in a method in which a cell is contacted with a candidate compound and the expression of adenylate kinase mRNA or protein in the cell is determined relative to expression of adenylate kinase mRNA or protein in a cell in the absence of the candidate compound. When expression is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of adenylate kinase mRNA or protein expression. Alternatively, when expression is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of adenylate kinase mRNA or protein expression. The level of adenylate kinase mRNA or protein expression in the cells can be determined by methods described herein for detecting adenylate kinase mRNA or protein.
In yet another aspect of the invention, the adenylate kinase proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Bio/Techniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and PCT Publication No. WO
94/10300), to identify other proteins, which bind to or interact with adenylate kinase protein ("adenylate kinase-binding proteins" or "adenylate kinase-bp") and modulate adenylate kinase activity. Such adenylate kinase-binding proteins are also likely to be involved in the propagation of signals by the adenylate kinase proteins as, for example, upstream or downstream elements of the adenylate kinase pathway. This invention further pertains to novel agents identified by the above- described screening assays and uses thereof for treatments as described herein. Accordingly the invention is directed to agents that modulate the level or activity of the polypeptide or nucleic acid of the invention, the agents being identified by screening cells, tissues, cell extracts, or tissue extracts with the agents. Agents that alter the level or activity can then be tested further for clinical diagnostic or therapeutic use. Any method of screening that allows expression to be measured, such as those disclosed herein, are relevant to produce the identification of these agents. Thus, the invention is directed to agents identified by the screening processes involving measuring or detecting expression (level or activity) of the polypeptides or nucleic acids of the invention. It is understood that agents affecting the ability of the protein or nucleic acid to interact with a cellular component, as in competition binding, would be construed as affecting expression. Accordingly, screening processes also include assays for agents that themselves bind to the protein or nucleic acid of the invention, such as those disclosed herein.
B. Detection Assays Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. For example, these sequences can be used to: (1) map their respective genes on a chromosome; (2) identify an individual from a minute biological sample (tissue typing); and (3) aid in forensic identification of a biological sample. These applications are described in the subsections below.
1. Chromosome Mapping
The isolated complete or partial adenylate kinase gene sequences of the invention can be used to map their respective adenylate kinase genes on a chromosome, thereby facilitating the location of gene regions associated with genetic disease. Computer analysis of adenylate kinase sequences can be used to rapidly select PCR primers (preferably 15-25 bp in length) that do not span more than one exon in the genomic DNA, thereby simplifying the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the adenylate kinase sequences will yield an amplified fragment.
Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow (because they lack a particular enzyme), but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes (D'Eustachio et al. (1983) Science 220:919-924). Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.
Other mapping strategies that can similarly be used to map an adenylate kinase sequence to its chromosome include in situ hybridization (described in Fan et al. (1990) Proc. Natl. Acad. Sci. USA 87:6223-27), pre-screening with labeled flow- sorted chromosomes, and pre-selection by hybridization to chromosome specific cDNA libraries. Furthermore, fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step. For a review of this technique, see Verma eta a. (1988) Human Chromosomes: A Manual of Basic Techniques (Pergamon Press, NY). The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1 ,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases will suffice to get good results in a reasonable amount of time.
Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping puφoses. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.
Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. (Such data are found, for example, in V. McKusick, Mendeliαn Inheritance in Man, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland et al. (1987) Nature 325:783-787.
Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the adenylate kinase gene can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymoφhisms.
2. Tissue Typing
The adenylate kinase sequences of the present invention can also be used to identify individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymoφhism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes and probed on a Southern blot to yield unique bands for identification. The sequences of the present invention are useful as additional DNA markers for RFLP (described in U.S. Patent 5,272,057).
Furthermore, the sequences of the present invention can be used to provide an alternative technique for determining the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the adenylate kinase sequences of the invention can be used to prepare two PCR primers from the 5N and 3N ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.
Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The adenylate kinase sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification puφoses. The noncoding sequences of SEQ ID NO:l can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If a predicted coding sequence, such as that in SEQ ID NO: 1 , is used, a more appropriate number of primers for positive individual identification would be 500 to 2,000.
3. Use of Partial Adenylate Kinase Sequences in Forensic Biology DNA-based identification techniques can also be used in forensic biology. In this manner, PCR technology can be used to amplify DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, or semen found at a crime scene. The amplified sequence can then be compared to a standard, thereby allowing identification of the origin of the biological sample.
The sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification marker" that is unique to a particular individual. As mentioned above, actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments. Sequences targeted to noncoding regions of SEQ ID NO:l are particularly appropriate for this use as greater numbers of polymoφhisms occur in the noncoding regions, making it easier to differentiate individuals using this technique. Examples of polynucleotide reagents include the adenylate kinase sequences or portions thereof, e.g., fragments derived from the noncoding regions of SEQ ID NO:l having a length of at least 20 or 30 bases.
The adenylate kinase sequences described herein can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes that can be used in, for example, an in situ hybridization technique, to identify a specific tissue. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such adenylate kinase probes, can be used to identify tissue by species and/or by organ type.
In a similar fashion, these reagents, e.g., adenylate kinase primers or probes can be used to screen tissue culture for contamination (i.e., screen for the presence of a mixture of different types of cells in a culture). C. Predictive Medicine
The present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trails are used for prognostic (predictive) puφoses to thereby treat an individual prophylactically. These applications are described in the subsections below.
1. Diagnostic Assays
One aspect of the present invention relates to diagnostic assays for detecting adenylate kinase protein and/or nucleic acid expression as well as adenylate kinase activity, in the context of a biological sample. An exemplary method for detecting the presence or absence of adenylate kinase proteins in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting adenylate kinase protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes adenylate kinase protein such that the presence of adenylate kinase protein is detected in the biological sample. Results obtained with a biological sample from the test subject may be compared to results obtained with a biological sample from a control subject. "Misexpression or aberrant expression", as used herein, refers to a non-wild type pattern of gene expression, at the RNA or protein level. It includes: expression at non-wild type levels; i.e., over or under expression; a pattern of expression that differs from wild type in terms of the time or stage at which the gene is expressed, e.g., increased or decreased expression (as compared with wild type) at a predetermined developmental period or stage; a pattern of expression that differs from wild type in terms of decreased expression (as compared with wild type) in a predetermined cell type or tissue type; a pattern of expression that differs from wild type in terms, of the splicing size, amino acid sequence, post-transitional modification, or biological activity of the expressed polypeptide; a pattern of expression that differs from wild type in terms of the effect of an environmental stimulus or extracellular stimulus on expression of the gene, e.g., a pattern of increased or decreased expression (as compared with wild type) in the presence of an increase or decrease in the strength of the stimulus. A preferred agent for detecting adenylate kinase mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to adenylate kinase mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length adenylate kinase nucleic acid, such as the nucleic acid of SEQ ID NO:l, or a portion thereof, such as a nucleic acid molecule of at least about 15, 30, 50, 100, 250, or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to adenylate kinase mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.
A preferred agent for detecting adenylate kinase protein is an antibody capable of binding to adenylate kinase protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(abN)2 )can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin. The term "biological sample" is intended to include tissues, cells, and biological fluids isolated from a subject, as well as tissues, cells, and fluids present within a subject. That is, the detection method of the invention can be used to detect adenylate kinase mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of adenylate kinase mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of adenylate kinase protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of adenylate kinase genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of adenylate kinase protein include introducing into a subject a labeled anti-adenylate kinase antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.
The invention also encompasses kits for detecting the presence of adenylate kinase proteins in a biological sample (a test sample). Such kits can be used to determine if a subject is suffering from or is at increased risk of developing a disorder associated with aberrant expression of adenylate kinase protein (e.g., an immunological disorder). For example, the kit can comprise a labeled compound or agent capable of detecting adenylate kinase protein or mRNA in a biological sample and means for determining the amount of an adenylate kinase protein in the sample (e.g., an anti-adenylate kinase antibody or an oligonucleotide probe that binds to DNA encoding an adenylate kinase protein, e.g., SEQ ID NO:l). Kits can also include instructions for observing that the tested subject is suffering from or is at risk of developing a disorder associated with aberrant expression of adenylate kinase sequences if the amount of adenylate kinase protein or mRNA is above or below a normal level.
For antibody-based kits, the kit can comprise, for example: (1) a first antibody (e.g., attached to a solid support) that binds to adenylate kinase protein; and, optionally, (2) a second, different antibody that binds to adenylate kinase protein or the first antibody and is conjugated to a detectable agent. For oligonucleoti de-based kits, the kit can comprise, for example: (1) an oligonucleotide, e.g., a detectably labeled oligonucleotide, that hybridizes to an adenylate kinase nucleic acid sequence or (2) a pair of primers useful for amplifying an adenylate kinase nucleic acid molecule.
The kit can also comprise, e.g., a buffering agent, a preservative, or a protein stabilizing agent. The kit can also comprise components necessary for detecting the detectable agent (e.g., an enzyme or a substrate). The kit can also contain a control sample or a series of control samples that can be assayed and compared to the test sample contained. Each component of the kit is usually enclosed within an individual container, and all of the various containers are within a single package along with instructions for observing whether the tested subject is suffering from or is at risk of developing a disorder associated with aberrant expression of adenylate kinase proteins.
2. Prognostic Assays The methods described herein can furthermore be utilized as diagnostic or prognostic assays to identify subjects having or at risk of developing a disease or disorder associated with adenylate kinase protein, adenylate kinase nucleic acid expression, or adenylate kinase activity. Prognostic assays can be used for prognostic or predictive puφoses to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with adenylate kinase protein, adenylate kinase nucleic acid expression, or adenylate kinase activity.
Thus, the present invention provides a method in which a test sample is obtained from a subject, and adenylate kinase protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of adenylate kinase protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant adenylate kinase expression or activity. As used herein, a "test sample" refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue. Furthermore, using the prognostic assays described herein, the present invention provides methods for determining whether a subject can be administered a specific agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) or class of agents (e.g., agents of a type that decrease adenylate kinase activity) to effectively treat a disease or disorder associated with aberrant adenylate kinase expression or activity. In this manner, a test sample is obtained and adenylate kinase protein or nucleic acid is detected. The presence of adenylate kinase protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant adenylate kinase expression or activity. The methods of the invention can also be used to detect genetic lesions or mutations in an adenylate kinase gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation. In preferred embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion or mutation characterized by at least one of an alteration affecting the integrity of a gene encoding an adenylate kinase-protein, or the misexpression of the adenylate kinase gene. For example, such genetic lesions or mutations can be detected by ascertaining the existence of at least one of: (1) a deletion of one or more nucleotides from an adenylate kinase gene; (2) an addition of one or more nucleotides to an adenylate kinase gene; (3) a substitution of one or more nucleotides of an adenylate kinase gene; (4) a chromosomal rearrangement of an adenylate kinase gene; (5) an alteration in the level of a messenger RNA transcript of an adenylate kinase gene; (6) an aberrant modification of an adenylate kinase gene, such as of the methylation pattern of the genomic DNA; (7) the presence of a non- wild-type splicing pattern of a messenger RNA transcript of an adenylate kinase gene; (8) a non-wild-type level of an adenylate kinase-protein; (9) an allelic loss of an adenylate kinase gene; and (10) an inappropriate post-translational modification of an adenylate kinase-protein. As described herein, there are a large number of assay techniques known in the art that can be used for detecting lesions in an adenylate kinase gene. Any cell type or tissue, preferably peripheral blood leukocytes, in which adenylate kinase proteins are expressed may be utilized in the prognostic assays described herein.
In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Patent Nos.
4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988) Science 241:1077- 1080; and Nakazawa et al. (1994) Proc. Natl. Acad. Sci. USA 91 :360-364), the latter of which can be particularly useful for detecting point mutations in the adenylate kinase gene (see, e.g., Abravaya et al. (1995) Nucleic Acids Res. 23:675-682). It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.
Alternative amplification methods include self sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
In an alternative embodiment, mutations in an adenylate kinase gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns of isolated test sample and control DNA digested with one or more restriction endonucleases. Moreover, the use of sequence specific ribozymes (see, e.g., U.S. Patent No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site. In other embodiments, genetic mutations in an adenylate kinase molecule can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotides probes (Cronin et al. (1996) Human Mutation 7:244-255; Kozal et al. (1996) Nature Medicine 2:753-759). In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the adenylate kinase gene and detect mutations by comparing the sequence of the sample adenylate kinase gene with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert ((1977) Proc. Natl. Acad. Sci. USA 74:560) or Sanger ((1977) Proc. Natl. Acad. Sci. USA 74:5463). It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays ((1995) Bio/Techniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT Publication No. WO 94/16101; Cohen et al. (1996) Adv. Chromatogr. 36:127-162; and Griffin et al. (1993) Appl. Biochem. Biotechnol. 38:147-159). Other methods for detecting mutations in the adenylate kinase gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230:1242). See, also Cotton et al. (1988) Proc. Natl. Acad. Sci. USA 85:4397; Saleeba et al. (1992) Methods Enzymol. 217:286-295. In a preferred embodiment, the control DNA or RNA can be labeled for detection.
In still another embodiment, the mismatch cleavage reaction employs one or more "DNA mismatch repair" enzymes that recognize mismatched base pairs in double-stranded DNA in defined systems for detecting and mapping point mutations in adenylate kinase cDNAs obtained from samples of cells. See, e.g., Hsu et al. (1994) Carcinogenesis 15:1657-1662. According to an exemplary embodiment, a probe based on an adenylate kinase sequence, e.g., a wild-type adenylate kinase sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g., U.S. Patent No. 5,459,039.
In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in adenylate kinase genes. For example, single-strand conformation polymoφhism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild-type nucleic acids (Orita et al. (1989) Proc. Natl. Acad. Sci. USA 86:2766; see also Cotton (1993) Mutat. Res. 285:125-144; Hayashi (1992) Genet. Anal. Tech. Appl. 9:73-79). The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the subject method utilizes heteroduplex analysis to separate double-stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet. 7:5).
In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495). When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys. Chem. 265:12753).
Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163); Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230). Such allele-specific oligonucleotides are hybridized to PCR-amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.
Alternatively, allele-specific amplification technology, which depends on selective PCR amplification, may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule so that amplification depends on differential hybridization (Gibbs et al. (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3N end of one primer where, under appropriate conditions, mismatch can prevent or reduce polymerase extension (Prossner (1993) Tibtech 11 :238). In addition, it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al. (1992) Mol. Cell Probes 6:1). It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci. USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3N end of the 5N sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
The methods described herein may be performed, for example, by utilizing prepackaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnosed patients exhibiting symptoms or family history of a disease or illness involving an adenylate kinase gene.
3. Pharmacogenomics Agents or modulators that have a stimulatory or inhibitory effect on adenylate kinase activity (e.g., adenylate kinase gene expression) as identified by a screening assay described herein, can be administered to individuals to treat (prophylactically or therapeutically) disorders associated with aberrant adenylate kinase activity. In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of adenylate kinase protein, expression of adenylate kinase nucleic acid, or mutation content of adenylate kinase genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.
Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Linder (1997) Clin. Chem. 43(2):254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body are referred to as "altered drug action." Genetic conditions transmitted as single factors altering the way the body acts on drugs are referred to as "altered drug metabolism". These pharmacogenetic conditions can occur either as rare defects or as polymoφhisms. For example, glucose-6-phosphate dehydrogenase deficiency (G6PD) is a common inherited enzymopathy in which the main clinical complication is haemolysis after ingestion of oxidant drugs (antimalarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.
As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymoφhisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymoφhisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymoφhic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, a PM will show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite moφhine. The other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to C YP2D6 gene amplification.
Thus, the activity of adenylate kinase protein, expression of adenylate kinase nucleic acid, or mutation content of adenylate kinase genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymoφhic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with an adenylate kinase modulator, such as a modulator identified by one of the exemplary screening assays described herein.
4. Monitoring of Effects During Clinical Trials
Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of adenylate kinase genes (e.g., the ability to modulate aberrant cell proliferation and/or differentiation) can be applied not only in basic drug screening but also in clinical trials. For example, the effectiveness of an agent, as determined by a screening assay as described herein, to increase or decrease adenylate kinase gene expression, protein levels, or protein activity, can be monitored in clinical trials of subjects exhibiting decreased or increased adenylate kinase gene expression, protein levels, or protein activity. In such clinical trials, adenylate kinase expression or activity and preferably that of other genes that have been implicated in for example, a cellular proliferation disorder, can be used as a marker of the responsiveness of a particular cell.
For example, and not by way of limitation, genes that are modulated in cells by treatment with an agent (e.g., compound, drug, or small molecule) that modulates adenylate kinase activity (e.g., as identified in a screening assay described herein) can be identified. Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of adenylate kinase genes and other genes implicated in the disorder. The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of adenylate kinase genes or other genes. In this way, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent. In a preferred embodiment, the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (1) obtaining a preadministration sample from a subject prior to administration of the agent; (2) detecting the level of expression of an adenylate kinase protein, mRNA, or genomic DNA in the preadministration sample; (3) obtaining one or more postadministration samples from the subject; (4) detecting the level of expression or activity of the adenylate kinase protein, mRNA, or genomic DNA in the postadministration samples; (5) comparing the level of expression or activity of the adenylate kinase protein, mRNA, or genomic DNA in the preadministration sample with the adenylate kinase protein, mRNA, or genomic DNA in the postadministration sample or samples; and (vi) altering the administration of the agent to the subject accordingly to bring about the desired effect, i.e., for example, an increase or a decrease in the expression or activity of an adenylate kinase protein.
Methods of Treatment
The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant adenylate kinase expression or activity. Additionally, the compositions of the invention find use in the treatment of disorders described herein. Treatment is defined as the application or administration of a therapeutic agent to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has a disease, a symptom of disease or a predisposition toward a disease, with the puφose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease, the symptoms of disease or the predisposition toward disease. "Subject", as used herein, can refer to a mammal, e.g. a human, or to an experimental or animal or disease model. The subject can also be a non-human animal, e.g. a horse, cow, goat, or other domestic animal. A therapeutic agent includes, but is not limited to, small molecules, peptides, antibodies, ribozymes and antisense oligonucleotides. Thus, therapies for disorders associated with adenylate kinase expression are encompassed herein.
1. Prophylactic Methods
In one aspect, the invention provides a method for preventing in a subject a disease or condition associated with an aberrant adenylate kinase expression or activity by administering to the subject an agent that modulates adenylate kinase expression or at least one adenylate kinase gene activity. Subjects at risk for a disease that is caused, or contributed to, by aberrant adenylate kinase expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the adenylate kinase aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of adenylate kinase aberrancy, for example, an adenylate kinase agonist or adenylate kinase antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein.
2. Therapeutic Methods
Another aspect of the invention pertains to methods of modulating adenylate kinase expression or activity for therapeutic puφoses. The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of adenylate kinase protein activity associated with the cell. An agent that modulates adenylate kinase protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of an adenylate kinase protein, a peptide, an adenylate kinase peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more of the biological activities of adenylate kinase protein. Examples of such stimulatory agents include active adenylate kinase protein and a nucleic acid molecule encoding an adenylate kinase protein that has been introduced into the cell. In another embodiment, the agent inhibits one or more of the biological activities of adenylate kinase protein. Examples of such inhibitory agents include antisense adenylate kinase nucleic acid molecules and anti-adenylate kinase antibodies.
These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g, by administering the agent to a subject). As such, the present invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of an adenylate kinase protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or a combination of agents, that modulates (e.g., upregulates or downregulates) adenylate kinase expression or activity. In another embodiment, the method involves administering an adenylate kinase protein or nucleic acid molecule as therapy to compensate for reduced or aberrant adenylate kinase expression or activity.
Stimulation of adenylate kinase activity is desirable in situations in which an adenylate kinase protein is abnormally downregulated and/or in which increased adenylate kinase activity is likely to have a beneficial effect. Conversely, inhibition of adenylate kinase activity is desirable in situations in which adenylate kinase activity is abnormally upregulated and/or in which decreased adenylate kinase activity is likely to have a beneficial effect.
This invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will fully convey the invention to those skilled in the art. Many modifications and other embodiments of the invention will come to mind in one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing description. Although specific terms are employed, they are used as in the art unless otherwise indicated. Other Embodiments
In another aspect, the invention features, a method of analyzing a plurality of capture probes. The method can be used, e.g., to analyze gene expression. The method includes: providing a two dimensional array having a plurality of addresses, each address of the plurality being positionally distinguishable from each other address of the plurality, and each address of the plurality having a unique capture probe, e.g., a nucleic acid or peptide sequence; contacting the array with a 27802, preferably purified, nucleic acid, preferably purified, polypeptide, preferably purified, or antibody, and thereby evaluating the plurality of capture probes. Binding, e.g., in the case of a nucleic acid, hybridization with a capture probe at an address of the plurality, is detected, e.g., by signal generated from a label attached to the 27802 nucleic acid, polypeptide, or antibody.
The capture probes can be a set of nucleic acids from a selected sample, e.g., a sample of nucleic acids derived from a control or non-stimulated tissue or cell. The method can include contacting the 27802 nucleic acid, polypeptide, or antibody with a first array having a plurality of capture probes and a second array having a different plurality of capture probes. The results of each hybridization can be compared, e.g., to analyze differences in expression between a first and second sample. The first plurality of capture probes can be from a control sample, e.g., a wild type, normal, or non-diseased, non-stimulated, sample, e.g., a biological fluid, tissue, or cell sample. The second plurality of capture probes can be from an experimental sample, e.g., a mutant type, at risk, disease-state or disorder-state, or stimulated, sample, e.g., a biological fluid, tissue, or cell sample.
The plurality of capture probes can be a plurality of nucleic acid probes each of which specifically hybridizes, with an allele of 27802. Such methods can be used to diagnose a subject, e.g., to evaluate risk for a disease or disorder, to evaluate suitability of a selected treatment for a subject, to evaluate whether a subject has a disease or disorder. 27802 is associated with adenylate kinase activity, thus it is useful for disorders associated with abnormal cellular growth and/or metabolism. The method can be used to detect SNPs, as described above.
In another aspect, the invention features, a method of analyzing a plurality of probes. The method is useful, e.g., for analyzing gene expression. The method includes: providing a two dimensional array having a plurality of addresses, each address of the plurality being positionally distinguishable from each other address of the plurality having a unique capture probe, e.g., wherein the capture probes are from a cell or subject which express or misexpress 27802 or from a cell or subject in which a 27802 mediated response has been elicited, e.g., by contact of the cell with 27802 nucleic acid or protein, or administration to the cell or subject 27802 nucleic acid or protein; contacting the array with one or more inquiry probe, wherein an inquiry probe can be a nucleic acid, polypeptide, or antibody (which is preferably other than 27802 nucleic acid, polypeptide, or antibody); providing a two dimensional array having a plurality of addresses, each address of the plurality being positionally distinguishable from each other address of the plurality, and each address of the plurality having a unique capture probe, e.g., wherein the capture probes are from a cell or subject which does not express 27802 (or does not express as highly as in the case of the 27802 positive plurality of capture probes) or from a cell or subject which in which a 27802 mediated response has not been elicited (or has been elicited to a lesser extent than in the first sample); contacting the array with one or more inquiry probes (which is preferably other than a 27802 nucleic acid, polypeptide, or antibody), and thereby evaluating the plurality of capture probes. Binding, e.g., in the case of a nucleic acid, hybridization with a capture probe at an address of the plurality, is detected, e.g., by signal generated from a label attached to the nucleic acid, polypeptide, or antibody.
In another aspect, the invention features, a method of analyzing 27802, e.g., analyzing structure, function, or relatedness to other nucleic acid or amino acid sequences. The method includes: providing a 27802 nucleic acid or amino acid sequence; comparing the 27802 sequence with one or more preferably a plurality of sequences from a collection of sequences, e.g., a nucleic acid or protein sequence database; to thereby analyze 27802.
Preferred databases include GenBank™. The method can include evaluating the sequence identity between a 27802 sequence and a database sequence. The method can be performed by accessing the database at a second site, e.g., over the internet.
In another aspect, the invention features, a set of oligonucleotides, useful, e.g., for identifying SNP's, or identifying specific alleles of 27802. The set includes a plurality of oligonucleotides, each of which has a different nucleotide at an interrogation position, e.g., an SNP or the site of a mutation. In a preferred embodiment, the oligonucleotides of the plurality are identical in sequence with one another (except for differences in length). The oligonucleotides can be provided with different labels, such that an oligonucleotide that hybridizes to one allele provides a signal that is distinguishable from an oligonucleotide which hybridizes to a second allele.
This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application are incoφorated herein by reference.
All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All publications and patent applications are herein incoφorated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incoφorated by reference.
Although the foregoing invention has been described in some detail by way of illustration and example for puφoses of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims. EXPERIMENTAL
Example 1 : Identification and Characterization of Human 27802 cDNAs The human 27802 sequence (Figure 1 ; SEQ ID NO:l), which is approximately 1452 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 774 nucleotides (nucleotides 219-992 of SEQ ID NO:l; SEQ ID NO:3). The coding sequence encodes a 258 amino acid protein (SEQ ID NO:2).
Example 2: Tissue Distribution of 27802 mRNA Northern blot hybridizations with various RNA samples are performed under standard conditions and washed under stringent conditions, i.e., 0.2 X SSC at 65°C. A DNA probe corresponding to all or a portion of the 27802 cDNA (SEQ ID NO: 1) can be used. The DNA is radioactively labeled with 32P-dCTP using the Prime-It Kit (Stratagene, La Jolla, CA) according to the instructions of the supplier. Filters containing mRNA from mouse hematopoietic and endocrine tissues, and cancer cell lines (Clontech, Palo Alto, CA) are probed in ExpressHyb hybridization solution (Clontech) and washed at high stringency according to manufacturer's recommendations.
Expression levels were determined by quantitative PCR (Taqman® brand quantitative PCR kit, Applied Biosystems). The quantitative PCR reactions were performed according to the kit manufacturer's instructions. The highest levels of expression of 27802 were observed in artery, kidney, brain cortex and brain hypothalamus, ovary, lung (tumor), and tonsil (see Figure 8).
Example 3: Recombinant Expression of 27802 in Bacterial Cells In this example, 27802 polypeptide is expressed as a recombinant glutathione- S-transferase (GST) fusion polypeptide in E. coli and the fusion polypeptide is isolated and characterized. Specifically, 27802 is fused to GST and this fusion polypeptide is expressed in E. coli, e.g., strain PEB199. Expression of the GST-27802 fusion protein in PEB199 is induced with IPTG. The recombinant fusion polypeptide is purified from crude bacterial lysates of the induced PEB199 strain by affinity chromatography on glutathione beads. Using polyacrylamide gel electrophoretic analysis of the polypeptide purified from the bacterial lysates, the molecular weight of the resultant fusion polypeptide is determined.
Example 4: Expression of Recombinant 27802 Protein in COS Cells To express the 27802 gene in COS cells, the pcDNA/Amp vector by Invitrogen Coφoration (San Diego, CA) is used. This vector contains an SV40 origin of replication, an ampicillin resistance gene, an E. coli replication origin, a CMV promoter followed by a polylinker region, and an SV40 intron and polyadenylation site. A DNA fragment encoding the entire 27802 protein and an HA tag (Wilson et al. (1984) Cell 37:767) or a FLAG tag fused in-frame to its 3' end of the fragment is cloned into the polylinker region of the vector, thereby placing the expression of the recombinant protein under the control of the CMV promoter.
To construct the plasmid, the 27802 DNA sequence is amplified by PCR using two primers. The 5' primer contains the restriction site of interest followed by approximately twenty nucleotides of the 27802 coding sequence starting from the initiation codon; the 3' end sequence contains complementary sequences to the other restriction site of interest, a translation stop codon, the HA tag or FLAG tag and the last 20 nucleotides of the 27802 coding sequence. The PCR amplified fragment and the pCDNA/Amp vector are digested with the appropriate restriction enzymes and the vector is dephosphorylated using the CIAP enzyme (New England Biolabs, Beverly, MA). Preferably the two restriction sites chosen are different so that the 27802 gene is inserted in the correct orientation. The ligation mixture is transformed into E. coli cells (strains HB101, DH5α, SURE, available from Stratagene Cloning Systems, La Jolla, C A, can be used), the transformed culture is plated on ampicillin media plates, and resistant colonies are selected. Plasmid DNA is isolated from transformants and examined by restriction analysis for the presence of the correct fragment.
COS cells are subsequently transfected with the 27802-pcDNA/Amp plasmid DNA using the calcium phosphate or calcium chloride co-precipitation methods, DEAE-dextran-mediated transfection, lipofection, or electroporation. Other suitable methods for transfecting host cells can be found in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989. The expression of the 27802 polypeptide is detected by radiolabelling (35S- methionine or 35S-cysteine available from NEN, Boston, MA, can be used) and immunoprecipitation (Harlow, E. and Lane, D. Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1988) using an HA specific monoclonal antibody. Briefly, the cells are labeled for 8 hours with 35S- methionine (or 35S-cysteine). The culture media are then collected and the cells are lysed using detergents (RIPA buffer, 150 mM NaCl, 1 % NP-40, 0.1 % SDS, 0.5% DOC, 50 mM Tris, pH 7.5). Both the cell lysate and the culture media are precipitated with an HA specific monoclonal antibody. Precipitated polypeptides are then analyzed by SDS-PAGE.
Alternatively, DNA containing the 27802 coding sequence is cloned directly into the polylinker of the pCDNA/Amp vector using the appropriate restriction sites.
The resulting plasmid is transfected into COS cells in the manner described above, and the expression of the 27802 polypeptide is detected by radiolabelling and immunoprecipitation using a 27802 specific monoclonal antibody. Applicant's or agent's International application No. file reference 35800/209005 PCT/US01/
INDICATIONS RELATING TO DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL
(PCT Rule 13Ws)
A. The indications made below relate to the deposited microorganism or other biological material referred to in the description on page 3, line 14
B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet O
Name of depository institution
American Type Culture Collection
Address of depositary institution (including postal code and country)
10801 University Blvd. Manassa. VA 20110-2209 USA
Date of deposit Accession Number
PTA-
C ADDITIONAL INDICATIONS (leave blank if not applicable) This information is continued on an additional sheet d
Page 7, line 19; page 20, line 24; page 22, line 28; page 26, line 13; page 31 , line 8; page 85, lines 7, 13, 16, 19, 23 and 27; page 86, lines 5, 8, 28 and 32; page 87, lines 5, 8, 25, 28 and 31 ; page 88, line 3.
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indicators are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit")
Date of Deposit and Accession Number of Deposit
Figure imgf000086_0001

Claims

THAT WHICH IS CLAIMED:
1. An isolated nucleic acid molecule selected from the group consisting of: a) a nucleic acid molecule comprising a nucleotide sequence that is at least 80% identical to the nucleotide sequence of SEQ ID NO: 1 or the nucleotide sequence of the cDNA insert of the plasmid deposited with ATCC as Accession
Number , wherein said nucleotide sequence encodes a polypeptide having biological activity; b) a nucleic acid molecule comprising a fragment of at least 20 nucleotide residues of nucleotides 215-370 or nucleotides 843-941 of the nucleotide sequence set forth in SEQ ID NO:l or of the nucleotide sequence of the cDNA insert of the plasmid deposited with ATCC as Accession Number ; c) a nucleic acid molecule that encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ; d) a nucleic acid molecule that encodes a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number , wherein the fragment comprises at least 15 contiguous amino acids of amino acids 1-51 or amino acids 209-241 of the amino acid sequence set forth in SEQ ID NO:2, or of the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ; e) a nucleic acid molecule that encodes a naturally occurring allelic variant of a biologically active polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number , wherein the nucleic acid molecule hybridizes to a nucleic acid molecule comprising the complement of SEQ ID NO:l or SEQ ID NO:3 under stringent conditions; and f) a nucleic acid molecule comprising the complement of a), b), c), d), or e).
2. The isolated nucleic acid molecule of claim 1, selected from the group consisting of: a) a nucleic acid comprising the nucleotide sequence of SEQ ID NO:l, SEQ ID NO:3, the nucleotide sequence of the cDNA insert of the plasmid deposited with ATCC as Accession Number , or a complement thereof; and b) a nucleic acid molecule that encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number , or a complement thereof.
3. The nucleic acid molecule of claim 1 further comprising vector nucleic acid sequences.
4. The nucleic acid molecule of claim 1 further comprising nucleic acid sequences encoding a heterologous polypeptide.
5. A host cell that contains the nucleic acid molecule of claim 1.
6. The host cell of claim 5 that is a mammalian host cell.
7. A non-human mammalian host cell containing the nucleic acid molecule of claim 1.
8. An isolated polypeptide selected from the group consisting of: a) a biological active polypeptide that is encoded by a nucleic acid molecule comprising a nucleotide sequence that is at least 80% identical to a nucleic acid comprising the nucleotide sequence of SEQ ID NO:l or the nucleotide sequence of the cDNA insert of the plasmid deposited with ATCC as Accession Number
b) a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number , wherein the polypeptide is encoded by a nucleic acid molecule that hybridizes to a nucleic acid molecule comprising the complement of SEQ ID NO:l or SEQ ID NO:3 under stringent conditions; c) a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number , wherein the fragment comprises at least 15 contiguous amino acids of amino acids 1-51 or amino acids 209-241 of the amino acid sequence set forth in SEQ ID NO:2, or of the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ; and d) a polypeptide having at least 80% sequence identity to the amino acid sequence SEQ ID NO:2, wherein the polypeptide has biological activity.
9. The isolated polypeptide of claim 8 comprising the amino acid sequence of SEQ ID NO:2.
10. The polypeptide of claim 8 further comprising heterologous amino acid sequences.
11. An antibody that selectively binds to a polypeptide of claim 8.
12. A method for producing a polypeptide selected from the group consisting of: a) a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ; b) a polypeptide comprising a fragment of the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number , wherein the fragment comprises at least 15 contiguous amino acids of amino acids 1-51 or amino acids 209-241 of the amino acid sequence set forth in SEQ ID NO:2, or of the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ; c) a biologically active naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number , wherein the polypeptide is encoded by a nucleic acid molecule that hybridizes to a nucleic acid molecule comprising the complement of SEQ ID NO:l or SEQ ID NO:3; and d) a polypeptide having at least 80% sequence identity to the amino acid sequence of SEQ ID NO:2, wherein said polypeptide has biological activity; comprising culturing the host cell of claim 5 under conditions in which the nucleic acid molecule is expressed.
13. A method for detecting the presence of a polypeptide of claim 8 in a sample, comprising: a) contacting the sample with a compound that selectively binds to a polypeptide of claim 8; and b) determining whether the compound binds to the polypeptide in the sample.
14. The method of claim 13, wherein the compound that binds to the polypeptide is an antibody.
15. A kit comprising a compound that selectively binds to a polypeptide of claim 8 and instructions for use.
16. A method for detecting the presence of a nucleic acid molecule of claim 1 in a sample, comprising the steps of: a) contacting the sample with a nucleic acid probe or primer that selectively hybridizes to the nucleic acid molecule; and b) determining whether the nucleic acid probe or primer binds to a nucleic acid molecule in the sample.
17. The method of claim 16, wherein the sample comprises mRNA molecules and is contacted with a nucleic acid probe.
18. A kit comprising a compound that selectively hybridizes to a nucleic acid molecule of claim 1 and instructions for use.
19. A method for identifying a compound that binds to a polypeptide of claim 8 comprising the steps of: a) contacting a polypeptide, or a cell expressing a polypeptide of claim 8 with a test compound; and b) determining whether the polypeptide binds to the test compound.
20. The method of claim 19, wherein the binding of the test compound to the polypeptide is detected by a method selected from the group consisting of: a) detection of binding by direct detecting of test compound/polypeptide binding; b) detection of binding using a competition binding assay; and c) detection of binding using an assay for 27802-like mediated reversible catalysis of the transfer of ATP to AMP (ATP + AMP = ADP + ADP).
21. A method for modulating the activity of a polypeptide of claim 8 comprising contacting a polypeptide or a cell expressing a polypeptide of claim 8 with a compound that binds to the polypeptide in a sufficient concentration to modulate the activity of the polypeptide.
22. The method of claim 19 wherein said cell is a cell from a tissue selected from the group consisting of brain, lung, cardiovascular, hematologic, and lymphatic.
23. The method of claim 21 wherein said cell is a cell from a tissue selected from the group consisting of brain, lung, cardiovascular, hematologic, and lymphatic.
24. A method for identifying a compound that modulates the activity of a polypeptide of claim 8, comprising: a) contacting a polypeptide of claim 8 with a test compound; and b) determining the effect of the test compound on the activity of the polypeptide to thereby identify a compound that modulates the activity of the polypeptide.
25. The method of claim 24 wherein said modulation is in cells derived from tissue selected from the group consisting of brain, lung, cardiovascular, hematologic, and lymphatic.
26. The method of claim 24 wherein said modulation is in a patient having or predisposed to having a disorder involving the brain, the lung, the cardiovascular system, the hematologic system, or the lymphatic system.
PCT/US2001/004573 2000-02-10 2001-02-12 27802, an adenylate kinase WO2001059082A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001238193A AU2001238193A1 (en) 2000-02-10 2001-02-12 27802, an adenylate kinase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18170500P 2000-02-10 2000-02-10
US60/181,705 2000-02-10

Publications (2)

Publication Number Publication Date
WO2001059082A1 true WO2001059082A1 (en) 2001-08-16
WO2001059082A9 WO2001059082A9 (en) 2002-10-10

Family

ID=22665430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/004573 WO2001059082A1 (en) 2000-02-10 2001-02-12 27802, an adenylate kinase

Country Status (2)

Country Link
AU (1) AU2001238193A1 (en)
WO (1) WO2001059082A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1451364A2 (en) * 2001-11-07 2004-09-01 Millennium Pharmaceuticals, Inc. Methods and compositions for treating hematological disorders using 232, 2059, 10630, 12848, 13875, 14395, 14618, 17692 or 58874
EP1455580A2 (en) * 2001-12-17 2004-09-15 Millennium Pharmaceuticals, Inc. METHODS AND COMPOSITIONS FOR TREATING HEMATOLOGICAL DISORDERS USING 252, 304, 19870, 14717, 9941, 19310 and 17832
WO2005073400A2 (en) * 2004-01-26 2005-08-11 University Of Massachusetts Method of identifying amp- activated protein kinase (ampk) modulators and uses therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044124A1 (en) * 1997-03-31 1998-10-08 Incyte Pharmaceuticals, Inc. Human mitochondrial adenylate kinase similar to gtp:amp phosphotransferase derivable from bovine or rat

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044124A1 (en) * 1997-03-31 1998-10-08 Incyte Pharmaceuticals, Inc. Human mitochondrial adenylate kinase similar to gtp:amp phosphotransferase derivable from bovine or rat

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE EMBL [online] 18 October 1999 (1999-10-18), JIA L.B. ET AL.: "SGAP: The Skeletal Genome Anatomy Project", XP002171008, Database accession no. AW069362 *
DATABASE EMBL [online] 7 January 1999 (1999-01-07), STRAUSBERG R.: "qy31g07 .x1 NCI_CGAP_Brn23 Homo sapiens cDNA clone", XP002171007, Database accession no. AI359456 *
VAN ROMPAY AN R ET AL: "Identification of a novel human adenylate kinase: cDNA cloning, expression analysis, chromosome localization and characterization of the recombinant protein.", EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 261, no. 2, April 1999 (1999-04-01), pages 509 - 516, XP002171006, ISSN: 0014-2956 *
XU G ET AL: "CHARACTERIZATION OF HUMAN ADENYLATE KINASE 3 (AK3) CDNA AND MAPPING OF THE AK3 PSEUDOGENE TO AN INTRON OF THE NF1 GENE", GENOMICS,US,ACADEMIC PRESS, SAN DIEGO, vol. 13, 1992, pages 537 - 542, XP000764030, ISSN: 0888-7543 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1451364A2 (en) * 2001-11-07 2004-09-01 Millennium Pharmaceuticals, Inc. Methods and compositions for treating hematological disorders using 232, 2059, 10630, 12848, 13875, 14395, 14618, 17692 or 58874
EP1451364A4 (en) * 2001-11-07 2007-08-22 Millennium Pharm Inc Methods and compositions for treating hematological disorders using 232, 2059, 10630, 12848, 13875, 14395, 14618, 17692 or 58874
EP1455580A2 (en) * 2001-12-17 2004-09-15 Millennium Pharmaceuticals, Inc. METHODS AND COMPOSITIONS FOR TREATING HEMATOLOGICAL DISORDERS USING 252, 304, 19870, 14717, 9941, 19310 and 17832
EP1455580A4 (en) * 2001-12-17 2005-08-10 Millennium Pharm Inc METHODS AND COMPOSITIONS FOR TREATING HEMATOLOGICAL DISORDERS USING 252, 304, 19870, 14717, 9941, 19310 and 17832
WO2005073400A2 (en) * 2004-01-26 2005-08-11 University Of Massachusetts Method of identifying amp- activated protein kinase (ampk) modulators and uses therefor
WO2005073400A3 (en) * 2004-01-26 2006-02-09 Univ Massachusetts Method of identifying amp- activated protein kinase (ampk) modulators and uses therefor

Also Published As

Publication number Publication date
AU2001238193A1 (en) 2001-08-20
WO2001059082A9 (en) 2002-10-10

Similar Documents

Publication Publication Date Title
US6586205B1 (en) 43239 a novel GPCR-like molecule and uses thereof
US20060141524A1 (en) Novel kinases and uses thereof
US20060014244A1 (en) Novel nucleic acid sequences encoding adenylate kinase, phospholipid scramblase-like, DNA fragmentation factor-like, phosphatidylserine synthase-like, and ATPase-like molecules and uses therefor
US6638721B2 (en) Human protein kinases and uses therefor
WO2001025448A9 (en) Adenylate cyclase
WO2001059082A1 (en) 27802, an adenylate kinase
US7329529B2 (en) Ubiqutin proteases
US6479268B1 (en) 7970, a novel ATPase-like molecule and uses thereof
US6489152B1 (en) 32670, novel human phosphatidylserine synthase-like molecules and uses thereof
US20020081698A1 (en) 32621, novel human phospholipid scramblase-like molecules and uses thereof
WO2001060987A1 (en) A human pyridoxal-phosphate dependent enzyme family member and uses therefor
WO2001094412A2 (en) 56201, a novel human sodium ion channel family member and uses thereof
US6723533B2 (en) 26934, a novel cytidine deaminase-like molecule and uses thereof
US20030166222A1 (en) 39267, human kinase family members and uses therefor
WO2001000879A9 (en) Novel kinases and uses thereof
EP1238984A1 (en) 54498, an amino acid transporter and uses therefor
US20020164746A1 (en) 47174, a novel human glycosyltransferase and uses thereof
US20020127568A1 (en) 47324, a novel human G-protein and uses therefor
US20020150916A1 (en) 43716, a novel human G-protein and uses thereof
US20020168742A1 (en) 59079 and 12599, protein kinase family members and uses therefor
JP2005504538A (en) Methods of using the novel human Na / Ca exchanger family member 69039
US20030165883A1 (en) 27091, a phospholipid transporting ATPase molecule and uses therefor
US20020061575A1 (en) 27803, a novel human adenylate kinase family member and uses therefor
WO2001073043A2 (en) 32451, a human ubiquitin conjugating enzyme-like molecule and uses thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: C2

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGES 1/8-8/8, DRAWINGS, REPLACED BY NEW PAGES 1/9-9/9; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP