WO2001058255A1 - Chimeric animal containing human blood - Google Patents
Chimeric animal containing human blood Download PDFInfo
- Publication number
- WO2001058255A1 WO2001058255A1 PCT/JP2001/000961 JP0100961W WO0158255A1 WO 2001058255 A1 WO2001058255 A1 WO 2001058255A1 JP 0100961 W JP0100961 W JP 0100961W WO 0158255 A1 WO0158255 A1 WO 0158255A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- human
- transplantation
- blood
- bone marrow
- Prior art date
Links
- 241001465754 Metazoa Species 0.000 title claims abstract description 43
- 210000004369 blood Anatomy 0.000 title claims abstract description 38
- 239000008280 blood Substances 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 29
- 210000001161 mammalian embryo Anatomy 0.000 claims abstract 2
- 210000003754 fetus Anatomy 0.000 claims description 52
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims description 43
- 230000035935 pregnancy Effects 0.000 claims description 39
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 210000004185 liver Anatomy 0.000 abstract description 10
- 230000003394 haemopoietic effect Effects 0.000 abstract description 9
- 210000000130 stem cell Anatomy 0.000 abstract description 9
- 210000004027 cell Anatomy 0.000 description 110
- 238000002054 transplantation Methods 0.000 description 74
- 210000001185 bone marrow Anatomy 0.000 description 48
- 210000000601 blood cell Anatomy 0.000 description 36
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 34
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 34
- 230000001605 fetal effect Effects 0.000 description 27
- 210000001744 T-lymphocyte Anatomy 0.000 description 24
- 210000005260 human cell Anatomy 0.000 description 24
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 23
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 23
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 17
- 210000004291 uterus Anatomy 0.000 description 17
- 101100220044 Homo sapiens CD34 gene Proteins 0.000 description 16
- 241000699666 Mus <mouse, genus> Species 0.000 description 16
- 210000001541 thymus gland Anatomy 0.000 description 16
- 206010068051 Chimerism Diseases 0.000 description 14
- 241000282898 Sus scrofa Species 0.000 description 14
- 210000000056 organ Anatomy 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 12
- 210000004700 fetal blood Anatomy 0.000 description 12
- 239000002953 phosphate buffered saline Substances 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 11
- 239000003550 marker Substances 0.000 description 11
- 238000011579 SCID mouse model Methods 0.000 description 10
- 230000007774 longterm Effects 0.000 description 10
- 210000005259 peripheral blood Anatomy 0.000 description 10
- 239000011886 peripheral blood Substances 0.000 description 10
- 206010002091 Anaesthesia Diseases 0.000 description 8
- 241000282887 Suidae Species 0.000 description 8
- 230000037005 anaesthesia Effects 0.000 description 8
- 230000001332 colony forming effect Effects 0.000 description 8
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 description 8
- 238000002604 ultrasonography Methods 0.000 description 8
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 7
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 7
- 239000000427 antigen Substances 0.000 description 7
- 102000036639 antigens Human genes 0.000 description 7
- 108091007433 antigens Proteins 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 210000000952 spleen Anatomy 0.000 description 7
- 230000004083 survival effect Effects 0.000 description 7
- 210000001015 abdomen Anatomy 0.000 description 6
- 239000003242 anti bacterial agent Substances 0.000 description 6
- 229940088710 antibiotic agent Drugs 0.000 description 6
- 210000003995 blood forming stem cell Anatomy 0.000 description 6
- 238000010322 bone marrow transplantation Methods 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 5
- 210000003719 b-lymphocyte Anatomy 0.000 description 5
- 230000004069 differentiation Effects 0.000 description 5
- 238000000684 flow cytometry Methods 0.000 description 5
- 244000144972 livestock Species 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 208000009329 Graft vs Host Disease Diseases 0.000 description 4
- 108091008874 T cell receptors Proteins 0.000 description 4
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 4
- 238000010171 animal model Methods 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 208000024908 graft versus host disease Diseases 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 238000002350 laparotomy Methods 0.000 description 4
- 210000003200 peritoneal cavity Anatomy 0.000 description 4
- 102100022749 Aminopeptidase N Human genes 0.000 description 3
- 101000757160 Homo sapiens Aminopeptidase N Proteins 0.000 description 3
- 230000000735 allogeneic effect Effects 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 210000002798 bone marrow cell Anatomy 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 210000003743 erythrocyte Anatomy 0.000 description 3
- 210000000777 hematopoietic system Anatomy 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 3
- 210000000066 myeloid cell Anatomy 0.000 description 3
- 210000000822 natural killer cell Anatomy 0.000 description 3
- 238000003793 prenatal diagnosis Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 208000002491 severe combined immunodeficiency Diseases 0.000 description 3
- 210000003954 umbilical cord Anatomy 0.000 description 3
- CPKVUHPKYQGHMW-UHFFFAOYSA-N 1-ethenylpyrrolidin-2-one;molecular iodine Chemical compound II.C=CN1CCCC1=O CPKVUHPKYQGHMW-UHFFFAOYSA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 206010000234 Abortion spontaneous Diseases 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 208000034423 Delivery Diseases 0.000 description 2
- 206010015548 Euthanasia Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000980898 Homo sapiens Cell division cycle-associated protein 4 Proteins 0.000 description 2
- 101001015004 Homo sapiens Integrin beta-3 Proteins 0.000 description 2
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 2
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 2
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 2
- 206010062016 Immunosuppression Diseases 0.000 description 2
- 102100032999 Integrin beta-3 Human genes 0.000 description 2
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 2
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 2
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 241000282520 Papio Species 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 210000000683 abdominal cavity Anatomy 0.000 description 2
- 210000003815 abdominal wall Anatomy 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 210000004381 amniotic fluid Anatomy 0.000 description 2
- 208000007502 anemia Diseases 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- XTKDAFGWCDAMPY-UHFFFAOYSA-N azaperone Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CCN(C=2N=CC=CC=2)CC1 XTKDAFGWCDAMPY-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 238000002695 general anesthesia Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 102000044493 human CDCA4 Human genes 0.000 description 2
- 238000012744 immunostaining Methods 0.000 description 2
- 230000001506 immunosuppresive effect Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000009027 insemination Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- 230000000998 lymphohematopoietic effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 210000003593 megakaryocyte Anatomy 0.000 description 2
- 208000015994 miscarriage Diseases 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 230000002629 repopulating effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 208000000995 spontaneous abortion Diseases 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 208000002254 stillbirth Diseases 0.000 description 2
- 231100000537 stillbirth Toxicity 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000003325 tomography Methods 0.000 description 2
- 230000009677 vaginal delivery Effects 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 238000002689 xenotransplantation Methods 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical group OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- 206010003445 Ascites Diseases 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 1
- 101100346189 Caenorhabditis elegans mpc-1 gene Proteins 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 208000001951 Fetal Death Diseases 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 206010055690 Foetal death Diseases 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 102100035716 Glycophorin-A Human genes 0.000 description 1
- 108091005250 Glycophorins Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 1
- 101000987586 Homo sapiens Eosinophil peroxidase Proteins 0.000 description 1
- 101000920686 Homo sapiens Erythropoietin Proteins 0.000 description 1
- 101001078143 Homo sapiens Integrin alpha-IIb Proteins 0.000 description 1
- 101001033279 Homo sapiens Interleukin-3 Proteins 0.000 description 1
- 102100025306 Integrin alpha-IIb Human genes 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 102000000646 Interleukin-3 Human genes 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- 241000581650 Ivesia Species 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 206010025421 Macule Diseases 0.000 description 1
- 208000034702 Multiple pregnancies Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241001504519 Papio ursinus Species 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 241000255969 Pieris brassicae Species 0.000 description 1
- 229920000153 Povidone-iodine Polymers 0.000 description 1
- 208000005107 Premature Birth Diseases 0.000 description 1
- 206010036590 Premature baby Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 208000012827 T-B+ severe combined immunodeficiency due to gamma chain deficiency Diseases 0.000 description 1
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 1
- 208000023940 X-Linked Combined Immunodeficiency disease Diseases 0.000 description 1
- 201000007146 X-linked severe combined immunodeficiency Diseases 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 238000002669 amniocentesis Methods 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000004159 blood analysis Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 210000004970 cd4 cell Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 210000004252 chorionic villi Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000012631 diagnostic technique Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000925 erythroid effect Effects 0.000 description 1
- 231100000479 fetal death Toxicity 0.000 description 1
- 230000008175 fetal development Effects 0.000 description 1
- 210000002458 fetal heart Anatomy 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 210000004524 haematopoietic cell Anatomy 0.000 description 1
- ZYCMDWDFIQDPLP-UHFFFAOYSA-N hbr bromine Chemical compound Br.Br ZYCMDWDFIQDPLP-UHFFFAOYSA-N 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 230000002607 hemopoietic effect Effects 0.000 description 1
- 102000044890 human EPO Human genes 0.000 description 1
- 210000001621 ilium bone Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000006058 immune tolerance Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 210000004731 jugular vein Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000003169 placental effect Effects 0.000 description 1
- 229960001621 povidone-iodine Drugs 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- YEENEYXBHNNNGV-XEHWZWQGSA-M sodium;3-acetamido-5-[acetyl(methyl)amino]-2,4,6-triiodobenzoate;(2r,3r,4s,5s,6r)-2-[(2r,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound [Na+].CC(=O)N(C)C1=C(I)C(NC(C)=O)=C(I)C(C([O-])=O)=C1I.O[C@H]1[C@H](O)[C@@H](CO)O[C@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 YEENEYXBHNNNGV-XEHWZWQGSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000002474 sphenoid bone Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0271—Chimeric vertebrates, e.g. comprising exogenous cells
Definitions
- the present invention relates to a chimeric animal containing human blood and a method for producing the same.
- Hematopoietic stem cell activity in mice is measured by an in 'FO experimental system, a long term marrow repopulation method. It is considered that mouse hematopoietic stem cells have been almost purified by using this method, and this can be used as a material for further research >>.
- a method M for measuring colony forming ability by in F / 0 bone marrow culture was generally used.
- colony-forming cells (CFCs) and long-term culture-initiating cells (LTC-IC) that are observed in colony forming cells 'TO bone marrow reconstruction
- An object of the present invention is to provide a chimeric animal containing human blood.
- the present inventors have conducted intensive studies to solve the above problems, and as a result, succeeded in producing an animal in which human blood circulates by transplanting human blood stem cells into the fetus of the animal.
- the invention has been completed.
- the present invention is a chimeric animal containing human blood.
- the animal include livestock animals such as bushu.
- the present invention is a method for producing a chimera animal, which comprises transplanting hematopoietic stem cells into a fetus of the animal.
- fetuses include those from 30 to 60 days of gestation.
- This technique is not limited to hematopoietic stem cell technology, but can be used in a variety of other applications. Improved rapid prenatal diagnostic techniques in recent obstetrics area, at present 2fl is becoming possible to identify fetal abnormalities life pregnant ⁇ - immediately after birth for certain diseases with 2 genetic background Bone marrow transplantation is effective for treatment, but it requires treatment to abolish bone marrow function (mye loabration), strong immunosuppression, and the problem of matching donors. Miscellaneous questions There is a title. On the other hand, if the method of bone marrow transplantation by intrauterine transplantation is completed, such a problem may be solved.
- the present invention relates to chimeric animals capable of circulating human blood in the body, and particularly to livestock or non-human primates.
- Hematopoietic stem cells to be transplanted in the present invention include those derived from human umbilical cord blood or bone marrow. Hematopoietic stem cells from umbilical cord blood and bone marrow can be collected by a commonly used method such as a specific gravity centrifugation method (for example, a method using Ficoil or Lymphoprep), a Banning method, or the like.
- a specific gravity centrifugation method for example, a method using Ficoil or Lymphoprep
- Banning method or the like.
- CD34 positive and CD3 negative nucleated cells MNCs
- CD34-positive nucleated cells can be collected by labeling the collected cells with an anti-human CD34 monoclonal antibody, and using a MACS or FACS device.
- CD3-negative nucleated cells are bound by reacting the collected cells with an anti-CD3 monoclonal antibody conjugated with biotin, and the resulting complex is labeled with streptavidin. Then, by removing the above complex with magnetic beads, CD3-negative nucleated cells can be obtained. Can be.
- Hematopoietic stem cells for transplantation are used after dilution in an appropriate buffer (eg, PBS).
- an appropriate buffer eg, PBS.
- the cell concentration 3. 9xl0 5 ⁇ l. 5xl0 6 carbon atoms, preferably lxlO 6 pieces ⁇ 1. 5xl0 6 per one animal.
- the hematopoietic stem cells obtained as described above are transplanted into the fetus of an animal (an experimental animal other than a human).
- animals relatively large livestock animals such as horses, bushes, wild boars, donkeys, and goats, and non-human primates such as monkeys can be used. Busu is preferred in that respect.
- the varieties of puyu are not particularly limited, such as black varieties such as Meishan, Mongkai, Yucatan Microbuyu, brown varieties called Rokuwaku, brown varieties such as Duroc, and white varieties such as Great Yorkshire and Landrace. Varieties. Transplantation is performed as follows.
- domestic animals are pregnant by artificial insemination or natural pregnancy by mating.
- the diagnosis of pregnancy can be made by ultrasound after artificial insemination.
- the date of transplantation is 30 to 81 days after pregnancy, preferably 30 to 60 days, and more preferably 35 to 52 days.
- the cells are transplanted into the fetus using an ultrasonic tomography device while observing the image projected on the monitor.
- the cells are implanted with a syringe needle or a puncture needle, and the injection is performed by injecting hematopoietic stem cells suspended in 0.2 ml of physiological saline per fetus through the puncture needle.
- the thickness of the puncture needle used for implantation is 22 to 23 gauge, preferably gauge.
- the cells are injected into the peritoneal cavity of the fetus.
- it is preferable to insert a marker identified by X-ray for the purpose of identifying the transplanted fetus at birth. Then, if necessary, antibiotics are injected to complete the cell transplantation.
- antibiotics eg, mesilin, chenum, etc.
- the fetus after transplantation is allowed to grow in the mother, and a chimeric animal can be obtained usually by delivery or cesarean section. Since the obtained animal circulates human blood, it is useful as an experimental animal or the like for developing a medicament for treating human diseases.
- the present invention is used as a proliferation system for human blood cells (or hematopoietic stem cells). This is useful for producing blood for transfusion and bone marrow for bone marrow transplantation.
- autologous transplantation can be performed on leukemia patients by collecting their hematopoietic stem cells from the bone marrow of bush.
- the chimeric animal of the present invention induces immune tolerance in humans, the chimeric animal can be used as a place for maintaining and regenerating organs when transplanting human organs.
- FIG. 1 is a diagram showing an actual hematopoietic stem cell transplantation operation.
- FIG. 2 is a diagram showing the abilities of the transplanted offspring.
- FIG. 3 is a view showing the results of analysis of the liver of a fetal rat transplanted with CD3-depleted cells from which CD3 human T cells have been partially removed.
- FIG. 4 is a diagram showing the results of analysis of the surface antigen of human T cells in the thymus of chimera.
- FIG. 5 is a diagram showing that human CD34-positive cells differentiate into various lineage blood cells in the human body.
- FIG. 6 is a diagram showing the distribution of human blood cells in tissues.
- FIG. 7 is a diagram showing the results of bone marrow analysis of offspring born after transplantation of human CD34-positive cells.
- FIG. 8 is a diagram showing the relationship between the number of days after gestation and the graft survival rate.
- FIG. 9 is a graph showing the hematopoietic activity of human CD34-positive cells engrafted in bush bone marrow (colony forming ability, xenogeneic bone marrow reconstruction ability).
- Human cord blood and bone marrow were used as sources of hematopoietic stem cells.
- Human cord blood is more vaginal than normal pregnant women with informed consent Collected at the time of delivery. After delivery of the baby, the umbilical cord was cut, and the umbilical cord venous blood remaining in the umbilical cord on the placental side was aseptically collected by heparinization in a 50-ml syringe, and stored at room temperature or 4 ° C.
- Human bone marrow was collected from human ribs. That is, the ribs are aseptically minced, the exposed bone marrow tissue is separated by pipetting in PBS (Phosphate-buffered saline), and a single cell suspension is prepared using a 25G needle, and then bone fragments, etc. The waste was removed through a nylon mesh to obtain a bone marrow cell suspension.
- PBS Phosphate-buffered saline
- the ⁇ Cs obtained as described above was diluted and stained with a Turk solution. After counting the number of cells, the cells were washed again with PBS, suspended in PBS, and used as ⁇ Cs for transplantation.
- Nucleated cells were labeled with an anti-human CD34 monoclonal antibody. Fluorescent dyes or magnetic beads were used for labeling. To purify human CD34-positive cells from nucleated cells, MACS (Direct CD34 isolat ion kit mlentyi Biotec Bergisch Gladbach, Germany) or FACS Vantage (Becton Dickinson, San Jose, CA) was used. Further, after counting the number of cells, the cells were washed with PBS and used for transplantation.
- MACS Direct CD34 isolat ion kit mlentyi Biotec Bergisch Gladbach, Germany
- FACS Vantage Becton Dickinson, San Jose, CA
- CD3 positive cells (CD3 + cells) were separated and removed by a magnetic bead method in order to mainly remove only T lymphocytes.
- a biotinylated anti-CD3 monoclonal antibody (PharMingen, San Diego, CA) was added to ⁇ Cs, left on ice for 30 minutes, and then washed once with SM (staining medium).
- SM staining medium
- BioMags treptavidin ultra-load part icles PerSeptive Biosystems, Inc., Framinghani, Mass. Washed with SM was added, and the mixture was similarly left on ice for 30 minutes to magnetize CD3 + cells. The gas beads were bound.
- CD3 + cells were separated by magnetic force, and nucleated blood cells (T-deplete) from which CD3 was partially removed were collected. After counting the number of cells, the cells were washed with PBS and used for transplantation.
- CD34 + cells and CD3 + cells contained in each were evaluated by FACS. Fluorescent immunostaining of the cells used for transplantation was performed using anti-human CD34-FITC and CD3-PE monoclonal antibody (mAbs), and the frequencies of CD34 + cells and CD3 + cells contained here were determined by flow cytometry. It was measured.
- nucleated cells All nucleated cells, CD34-positive cells, and CD3-negative nucleated cells were used as fractions for hematopoietic stem cell transplantation.
- azaperon 2.5 mg / kg (Stresnil; Sankyo Co., Ltd., Tokyo, Japan) was injected intramuscularly into pregnancy to induce anesthesia, followed by 3% isoflurane + laughter with a face mask (N 2 0) performs the inhalation anesthesia with +0 2, was subjected to general anesthesia. Thereafter, the pig was fixed in the supine position on the operating table.
- Transplantation was performed percutaneously using the ultrasound tomography device Aloka ultrasound diagnostic equipment SSD-1000 (ALOKA CO., LTD Tokyo, Japan) for cell transplantation into the fetus.
- the ultrasonic probe used was a 7.5 MHz electronic convex sector probe (Aloka; UST-987-7-5) equipped with a sterile cover.
- the probe was equipped with a puncture adapter (Aloka MP-2458), and the fetus was drawn on the monitor.
- the puncture needle used to introduce human hematopoietic stem cells into the fetus was a 22-gauge, 150 nmi percutaneous transhepatic bile duct drainage (P.T.C.D .; Percutaneous Transepatic Cholangio Drainage) needle (Top Tokyo, Japan).
- Cells were injected intraperitoneally into the fetus (described later), and at that time, a marker identified by radiography was inserted for the purpose of identifying the transplanted fetus at birth.
- the marker was prepared by cutting a P. T. C.D. needle needle into a 3 mm length and sterilizing it with an autoclave. At the time of fetal puncture, the P.T.C.D.D.
- $ 21 stylet was removed, this sterile marker was inserted into the outer cylinder, and the fetal abdominal cavity was punctured. Thereafter, the stylet was inserted and pressed out to insert the marker into the peritoneal cavity of the fetus.
- the stylet was removed again, and hematopoietic stem cells suspended in 0.2 ml of physiological saline per fetus were injected into the fetus's peritoneal cavity through a PTCDD needle. Thereafter, 0.2 U of amniotic fluid was injected into the fetal abdominal cavity with 0.3 ml of antibiotic (5 mg / ml Metacilin; Takeda chemical industries, Ltd., Osaka, Japan), and the puncture needle was removed.
- IPM / CS lg was intramuscularly injected on the day of transplantation, and antibiotics were administered for 2 days thereafter. On pregnancy, antibiotics were administered intramuscularly over the next two days. This procedure allowed the transplantation of cells into up to four fetuses.
- (3-6) Delivery Delivery was by spontaneous vaginal delivery or cesarean delivery. The evening pregnancy period is usually 114 days. Natural vaginal delivery was at term. Some pigs exceeded the expected delivery date and were given a delivery inducer. At the time of delivery, the total number of offspring, the number of offspring, the number of stillbirths at the time of delivery, and the number of mummy offspring (in-utero fetal death during the first trimester) were recorded, and the newborns were labeled by ear stamping (numbering). X-rays of some live pups, stillborn pups and mummy pups were taken to identify markers present in the abdomen, and the recipients (transplanted pups) of the pups and dead pups were identified.
- the offspring were heparinized from their peripheral blood and bone marrow blood within the first few days of birth and at about one month after birth.
- Peripheral blood was collected from the jugular vein of Buena fixed in the supine position, and bone marrow blood was collected by suction from the iliac bone.
- hematopoietic tissues such as liver, spleen, and thymus were collected after euthanasia. Liver, spleen, thymus, etc. were collected from freshly collected pups that could be identified as recipients by markers. Analysis was not performed on bushus, which were stillborn as mummies, because it was difficult to collect organs.
- peripheral blood was collected from the vein and bone marrow cells were collected from the pelvic sphenoid bone. After euthanasia under anesthesia, various organs were collected.
- Peripheral blood and bone marrow blood collected from buses were lysed with 0.1% sodium bicarbonate added 0.83% ammonium chloride (pH 7.0) to remove red blood cells, and washed with PBS. Later, nucleated cells (Marshal Cs) were obtained.
- the collected organs were minced from the organ pieces, squeezed in PBS using a slide glass, and passed through a nylon mesh filter to remove contaminating foreign substances and obtain MNCs.
- Human blood cells were identified by analyzing ⁇ Cs obtained from these porcine hematopoietic tissues by FACS and PCR.
- the obtained nucleated cells were labeled with an anti-human CD45 antibody and an anti-pig pan-t issue antibody.
- Cells that are anti-human CD45 antibody positive and anti-negative pan-tissue antibody negative are determined to be human blood cells. Details are as follows.
- An anti-human CD45-FITC (fluorescence isothiocyanate) monoclonal antibody (m Ab) was used as a marker for human blood cells.
- mouse anti-human CD3, CD13, CD14, CD33, CD34, CD4K CD56, CD61 and glycophorin-A mAbs labeled with PE (Phycoerythrin) were used.
- An anti-porcine pan-tissue mAb (clone 1030h-l-19) was used as a marker for blood cells.
- the purified anti-butane antibody is labeled with biotin using the ECL protein biotinylation module (Amersham International pic, Buckinghamshire, Engl and) and detected by secondary staining with streptavidin-APC (a11 ophycocyanin). did.
- Genomic DNA was collected from the obtained nucleated cells using SepaGene (Sanko-jyunyaku Tokyo, Japan). The identification of the human genome was performed by designing a sequence-specific primer and amplifying it by PCR.
- the primers are the following two types.
- Primer 1 5, -CTGGGCGCAAGAACGAGATTCTAT-3, (SEQ ID NO: 1)
- Primer 2 5'-CTCACTACTTTGTGACAGGTTCA-3 '(SEQ ID NO: 2)
- reaction liquid composition The following reaction mixture was prepared so that the total amount was 50 ⁇ , and DNA was amplified using Gene Amp PCR System 9600 (Perkin Elmer). Reaction liquid composition:
- human blood cells could be identified in the bone marrow by FACS analysis. After removing erythrocytes by hemolysis, porcine bone marrow nucleated blood cells were washed twice with SM. Human CD34 + cells were collected using the MACS method. Further, the obtained cells are fluorescently stained with anti-human CD34-PE, anti-human CD45-FITC and anti-butane pan-tissue-biotin mAbs, and human hematopoietic progenitor cells showing the surface antigen of CD34 + CD45 + Pig "using FACS Vantage. Fractions were sorted and collected.
- pig bone marrow fraction Cs was labeled with anti-human CD34 antibody and anti-human CD45 antibody, and the double positive cells were separated and recovered by FACS.
- the cells were cultured on a soft agar medium containing human blood growth factor (Methocult GF H4434; StemCell Technologies Inc. Vancouver, B.C.), and the colony forming ability after 2 weeks was observed.
- human blood growth factor Methodoult GF H4434; StemCell Technologies Inc. Vancouver, B.C.
- the proliferation ability was observed by culturing 700 CD34 + CD45 + Pig-cells collected from pig bone marrow on a methylcellulose semi-solid medium (Methocult GF H4434; StemCell Technologies Inc., Vancouver, B.).
- Medium is 2-mercaptoethanol 1 (T 4 M, L- glutamine 2 mM, ⁇ Shi bovine serum (FBS) 30%, ⁇ shea serum albumin 1% containing Muhoka, recombinant human erythropoietin (rh-EP0), recombinant human stem It contains cellular factor (rh SCF), recombinant human granulocyte macula phage colony stimulating factor (rh GM-CSF) and recombinant human interleukin 3 (rh IL-3) cells are making it possible to form various colonies scratch.
- rh SCF cellular factor
- GM-CSF recombinant human granulocyte macula phage colony stimulating factor
- N0D / SCID mice immunodeficient mouse bone marrow reconstruction was performed.
- N0D / SCID mice an 8-week-old male mouse was used for the experiment. From the mouse tail vein pretreated with ⁇ ray whole body irradiation sublethal dose (300 cGy), were transplanted CD34 + CD45 + Pig- cells recovered from blanking evening by 6. 7 X 10 4 cells / mouse. Five weeks after transplantation, mouse peripheral blood was collected, erythrocytes were lysed, and nucleated blood cells were subjected to fluorescent immunostaining with anti-human CD45-FITC mAb, and human cells were identified by FACS.
- the transplantation method reported in Higgie and Dog was adopted.
- the laparotomy was performed under anesthesia using 7 minibu mice on the 48th to 55th days of gestation, and human HSCs were implanted into the fetuses under direct observation of the uterus.
- the advantage of this method is that cell transplantation can be performed on all pregnant fetuses.
- this method resulted in miscarriage in 5 of 7 cases (71.4%) within 5 days after surgery, which appeared to be due to infection. Therefore, the present inventor has adopted a more non-invasive method, and has developed a method of performing transplantation from outside the mother's body to the fetus under ultrasound guidance without performing laparotomy. Transdermal human HSCs transplantation was performed.
- Busu is a multiple pregnancy animal, averaging 10-14 fetuses at a time. Only some pigs can be transplanted, and if stillbirth occurs, it is difficult to identify the recipient. Therefore, in order to identify and distinguish several recipients at birth, we attempted to distinguish the recipient from the other by soft X-ray imaging by implanting the marker with the cells in the recipient. For this reason, microwires were inserted into the fetal peritoneal cavity at the same time as cell injection, and radiographs were taken after birth. Human cells were identified by FACS and PCR. The detection sensitivity was 0.005% for FACS and 0.0005% for PCR, obtained by artificially mixing human and Buyotsu blood cells.
- Human HSCs were transplanted to 96 fetuses in 37 pregnant women. Pregnancy was interrupted by cesarean section for the analysis of the two pregnancies, and the presence or absence of transplanted cells during pregnancy was confirmed. As a result, all of the three transplanted fetuses showed engraftment of human cells at 100 W.
- human HSCs were transplanted into five fetuses out of three pregnant females. Immediately after this, five newborns died, and the presence of human cells in the dead transplanted newborns was analyzed, and three (60.0%) found engraftment of human cells.
- “Number of pregnant women” means the total number of pregnant women who had a transplanted fetus in each item.
- An anti-porcine pan-tissue antibody was used to efficiently identify low frequency human cells by flow cytometry. Since this antibody reacts with almost all blood cells of the septate blood cells, excluding the labeled cells by computer analysis results in good separation from human blood and a frequency of 0.01%. Even so, human cells have been accurately identified. PCR was also used as a method for identifying human cells in the case of lower chimerism. This detection sensitivity was possible when the frequency of human cells was 0.0001% or more.
- Table 2 shows the relationship between the pregnancy time at the time of transplantation and the establishment of the chimera.
- CD3 removal About 70% of CD3 positive cells were removed from umbilical cord blood band Cs.
- BM bone marrow
- % Indicates the percentage of human cells in the blood by FACS.
- Table 2 shows the transplantation timing (days after pregnancy), transplanted cell type, number of transplanted cells (cells), period until transplantation analysis (engraftment period), and analysis results (chimerism) for successful transplantation cases . All those that survived for a long time after transplantation were transplanted before 52 days of gestation, and chimerism was particularly high when CD34-positive cells were transplanted between days 35 and 37 of gestation.
- % Indicates the percentage of human cells in the blood of the blood by FACS, and PCR indicates that human cells were identified by PCR with chimerism below the FACS sensitivity.
- transplant survival rate (survival rate, number of blood chimera pups / transplanted fetuses) on pregnancy 32-52 days was 22/40 (55.0%) (FIG. 8).
- Table 3 shows examples of engraftment.
- Human blood cells were identified in various organs of the fetus, and up to 315 days after transplantation, human cells were identified. Successful transplantation was observed in both ⁇ Cs CD3 depleted ⁇ Cs and CD34 + cells, but chimerism at a level that could be analyzed by long-term FACS was observed only in the case of CD34 + cell transplantation. On the other hand, the frequency of human cells in the blood could be detected by PCR (Table 2).
- W1048 in Table 2 was obtained by suspending pregnancy by cesarean section on day 47 after transplantation of CD34 + cells and analyzing the fetuses.
- human blood cells were identified in fetal peripheral blood, bone marrow, liver, and spleen by FACS, and the presence of all blood cells (B cells, NK cells, myeloid cells, and megakaryocytes) except human T cells was confirmed. .
- human T cells were identified in the thymus that were not present in other organs, while no cells with other surface antigens were present (Figure 5, right column).
- W549 pups contained 0.58% human blood cells in their bone marrow.
- CM5 + cells Survived human blood Analysis of the differentiation antigens in the spheres revealed that 6.53 ⁇ 4 was CD19 + (B cell lineage) and 96.5% was CD13, 14, 33+ (myeloid lineage). No cells were present.
- CD34 a marker for human hematopoietic progenitor cells, was expressed in 21.0% of human blood cells, confirming that human HSCs had engrafted and differentiated in human bone marrow (Fig. 7).
- 1.1 x 10 s human CD34-positive cells were transplanted, and fetal thymus was analyzed by FACS 46 to 47 days after the transplantation. Engrafted human cells were found in all analyzed organs of peripheral blood, bone marrow, thymus, liver, and spleen (Fig. 6). Human CD3-positive T cells were identified in the thymus. The surface antigen was CD4 or CD8 single positive and had a Q! I3 TCR. This indicates that human CD34-positive cells can migrate to the thymus and differentiate into human T cells (Fig. 4).
- CD34-positive cells differentiate and engraft into the myeloid lineage (CD13, CD14, CD33), B lymphocyte lineage (CD19), NK cell lineage (CD56), platelet lineage (CD41, CD61) and nmlUlineage. did. Bone marrow progenitor cells (CD34) were also observed, indicating that CD34-positive cells were self-replicating or maintained in pig blood. CD3-positive cells were found in the thymus, indicating that CD34-positive cells could differentiate into human T cells in pigs ( Figure 5).
- FIG. 7 shows the results of bone marrow analysis of offspring born after transplantation of human CD34-positive cells.
- human CD34-positive cells On transplantation of human CD34-positive cells on the 35th day of gestation, chimeras were born. Chimerism was 0.6% in bone marrow (88 days after transplantation). The pig then developed normally. Human cells differentiated into both myeloid and B cell lines as well as CD34-positive myeloid progenitors.
- T cells in the bone marrow and liver, all lineages of human blood cells except B cells, myeloid cells, NK cells, megakaryocytes, and T cells were identified.
- B cells myeloid cells
- NK cells NK cells
- megakaryocytes and T cells were identified.
- CD3-positive human T cells were identified in the thymus, and no cells expressing other lineage human blood cell antigens were found.
- the T cells present in the thymus were CD3-positive and CM-positive, and were T cells with ai8 T-cell receptor (TCR).
- CD45 + CD34 + Pig— cells were collected from the bone marrow by FACS sorting ( Figure 9A).
- the colony forming ability and the SCID mouse bone marrow reconstruction ability were confirmed.
- a method has been developed in which hematopoietic stem cell transplantation into a fetus is performed non-invasively under ultrasound guidance without laparotomy of pregnant pigs, and a chimera is established even in xenotransplantation.
- Human CD34-positive cells engrafted in many blood-based tissues, and colony-forming cells were also maintained in the bone marrow.
- human T cells differentiated from CD34-positive cells were accumulated.
- the transplantation period was before 52 days of gestation. This indicates that it is important to transplant before the immune system develops.
- lymphocytes were identified from day 28 onward, and T cells were found around day 50 in spleen and peripheral blood. slgM-positive cells are first identified in the liver on day 44 ( 42 ). This report is consistent with the timing of transplantation in this experiment.
- the transplanted human CD34-positive cells were shown to differentiate into multilineage blood cells including T cells in the fetus. In the system using SCID mice, differentiation into T cells is not generally observed. This indicates that the large animal system, Busu, is useful for assessing the differentiation of human T cells by Ww. Human blood cells that migrated to the thymus may have been educated in pigs thymus 43 - 45).
- fetuses were suspected of having graft-versus-host disease (GvHD) by intrauterine transplantation of human blood cells. Markers were confirmed in fetuses that had already passed long after birth at birth, and in one case, a large amount of ascites was present at birth and died. Analysis of pregnancy revealed that T cells predominantly proliferated in ⁇ ⁇ Cs-transplanted cells (Table 2; D3585) Therefore, it may be desirable to remove T cells from transplanted cells. Alternatively, by using this in reverse, it may be possible to use it as a GvHD model.
- GvHD graft-versus-host disease
- the presence of T cells is said to have both an effect of promoting the engraftment of human cells and an effect of causing GvHD46 ) .
- the method of the present invention is characterized in that it is non-invasive by not performing laparotomy, unlike the system using a sheep or dog.
- Wero transplantation can safely produce neonatal chimera without bone marrow abolition treatment. This point is also considered important in considering clinical applications.
- the creation of chimeras is simpler than that of neonatal bone marrow transplantation, which requires strict postnatal care. In transplantation experiments, microchimerism at the PCR level is also effective for immunological tolerance.
- Eaves CJ The human hematopoietic stem cell in vitro and in vivo [see comments] .Blood Cells 18: 301-7, 1992
- Bosma GC, Custer RP, Bosma MJ A severe combined immunodeficiency mutation in the mouse.Nature 301: 527-30, 1983
- Zanjani ED Almeida-Porada G, Livingston AG, Flake AW, Ogawa M: Human bone marrow CD34- cells engraft in vivo and undergo multilineage
- Croible olme TM, Harrison MR, Zanjani ED In utero transplantation of hematopoietic stem cells in sheep: the role of T cells in engraf tinent and graft-versus-host disease.J Pediatr Surg 25: 885-92, 1990 Industrial Availability of
- the present invention provides a chimeric livestock animal containing human blood and a method for producing the same.
- the animal of the present invention is useful as an experimental animal or the like for developing a drug or the like for a human disease.
- Sequence Listing Free Text SEQ ID NO: 1: Synthetic DNA
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Cell Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Zoology (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
A method of constructing a chimeric animal characterized in that hematopoietic liver stem cells are transplanted into an animal embryo; and a chimeric animal containing human blood.
Description
明 細 ヒト血液を含有するキメラ動物 技術分野 Description Chimera animal containing human blood
本発明は、 ヒト血液を含有するキメラ動物及びその製造方法に関する。 背景技術 The present invention relates to a chimeric animal containing human blood and a method for producing the same. Background art
マウスにおいて造血幹細胞活性は in 'FOの実験系、長期骨髄再建法(Long term marrow repopulation 法) によって測定される。 この方法を用いることで、 マウ ス造血幹細胞はほぼ純化されたと考えられ、 これを材料として更なる研究が行え るようになっている 》。 ヒト造血幹細胞のアツセィとしては最近まで適当な動物 モデルが存在せず、 in F/ 0の骨髄培養によりコロニー形成能を測定する方法 M が一般的であった。 しかし、 コロニー形成細胞 (colony- forming cells (CFCs)) や長期培養可能なコロニ一形成細胞 (long-term culture-initiating cells (LTC-IC) ) で観察されるコロニー形成能を持つ細胞の in W'TO 骨髄再建能Hematopoietic stem cell activity in mice is measured by an in 'FO experimental system, a long term marrow repopulation method. It is considered that mouse hematopoietic stem cells have been almost purified by using this method, and this can be used as a material for further research >>. Until recently, there was no suitable animal model for human hematopoietic stem cells, and a method M for measuring colony forming ability by in F / 0 bone marrow culture was generally used. However, colony-forming cells (CFCs) and long-term culture-initiating cells (LTC-IC) that are observed in colony forming cells 'TO bone marrow reconstruction
(repopurating capasity) については不明確である。 1983 年の SCID (severe combined immune deficiency;重症複合型免疫不全) マウスの発見 5)により、 ヒ 卜の造血系を in /TOで再構築できることが示され、 以後その研究法は急速に普 及した。 造血幹細胞の検出には長期間にわたり多系列の血球細胞を供給する能力(repopurating capasity) is unclear. 1983 SCID; by (severe combined immune deficiency severe combined immunodeficiency) discovery of the mouse 5), it is shown that can reconstruct the hematopoietic system of human Bok in in / TO, hereafter the study method was rapidly widespread . Ability to supply multilineage blood cells over long periods of time to detect hematopoietic stem cells
(long term multilineage engraf tment) を測定する必要がある。 最近ではより 効率よくヒト造血系を再構築させうる N0D/SCIDマウスが開発6)され、アツセィに 頻用されるようになった 7— 11))。 このマウスを用いたシステムはヒト血液細胞が容 易に生着する点で優れた系といえるが、 放射線照射により移植を成立させること によるストロマ細胞など周辺組織への影響が生じること、 小動物の限界としてヒ ト血液をアツセィするには寿命が短いこと、 ヒ卜造血幹細胞 OiematopoieUc stem cell, 以下 HSC)の増殖能をみるのにもスケールが小さいこと、 一般に T細胞系へ の分化は観察できない】i—13)ことなどが問題点としてあげられる。
発明の開示 (long term multilineage engraftment) needs to be measured. Recently more efficiently capable of reconstructing the human hematopoietic system N0D / SCID mice have been developed 6) is, 7 was to be frequently used in Atsusi - 11)). This mouse-based system is an excellent system in that human blood cells can easily engraft it.However, the effect of transplantation by irradiation on peripheral tissues such as stromal cells will be affected, and the limitations of small animals. As a result, the life span is short for human blood to be assayed, the scale of the proliferation of human hematopoietic stem cells (OSC) is small, and differentiation into T cell lines cannot be generally observed. I — 13) There are problems. Disclosure of the invention
本発明は、 ヒトの血液を含有するキメラ動物を提供することを目的とする。 本発明者は、 上記課題を解決するため鋭意研究を行った結果、 動物の胎仔にヒ トの血液幹細胞を移植することにより、 ヒトの血液が循環する動物を作製するこ とに成功し、 本発明を完成するに至った。 An object of the present invention is to provide a chimeric animal containing human blood. The present inventors have conducted intensive studies to solve the above problems, and as a result, succeeded in producing an animal in which human blood circulates by transplanting human blood stem cells into the fetus of the animal. The invention has been completed.
すなわち、 本発明は、 ヒト血液を含有するキメラ動物である。 該動物としては、 例えばブ夕などの家畜動物が挙げられる。 That is, the present invention is a chimeric animal containing human blood. Examples of the animal include livestock animals such as bushu.
さらに、 本発明は、 造血幹細胞を動物の胎仔に移植することを特徴とするキメ ラ動物の製造方法である。 ここで、 胎仔としては妊娠 3 0日から 6 0日のものが 挙げられる。 Furthermore, the present invention is a method for producing a chimera animal, which comprises transplanting hematopoietic stem cells into a fetus of the animal. Here, fetuses include those from 30 to 60 days of gestation.
以下、 本発明を詳細に説明する。 本明細書は、 本願の優先権の基礎である日本 国特許出願 2000- 34276号の明細書及び/又は図面に記載される内容を包含する。 ヒト造血幹細胞をアツセィするために大動物を用いることができれば、 さらに ヒ卜造血系を正確にアツセィすることが可能となると考えられるが、 これまでヒ ト血液系を導入できるような免疫不全を持つ大動物は知られていない。 Zanj an i らはこの問題を子宮内 in utero) 移植により解決した 14)。 免疫系が成熟する以 前の時期の胎仔期であれば異種移植片;ゼノグラフト (xenograf t) を拒絶できな い可能性があり、 大動物に異種移植を行える可能性がある。 彼らはヒト造血細胞 をヒッジ胎仔に移植することにより異種移植にもかかわらずキメラを作出し、 ヒ ト造血幹細胞に関する優れた研究を行っている 15— 18)。 最近では N0D/SCIDマウス 13)ゃィヌ胎仔 19)に同様の手法で in Weroヒト造血幹細胞移植を行い、 キメラを 作出したとする報告もなされている。 Hereinafter, the present invention will be described in detail. This description includes part or all of the contents as disclosed in the description and / or drawings of Japanese Patent Application No. 2000-34276, which is a priority document of the present application. If large animals could be used to obtain human hematopoietic stem cells, it would be possible to more accurately assimilate the human hematopoietic system. Large animals are not known. Zanj an i et al. Have this problem solved by the intrauterine in utero) transplantation 14). Xenografts may not be rejected during the fetal stage before the immune system matures, and xenografts may be performed in large animals. They are out of work a xenograft despite chimera by transplanting human hematopoietic cells in Hijji fetal, human hematopoietic stem cells for excellent doing the research 15 - 18). Recently performs in Wero human hematopoietic stem cell transplantation in a similar manner to N0D / SCID mouse 13) Ya I j fetal 19), have been reported also made that it was to produce a chimera.
この手法は、 造血幹細胞のアツセィにとどまらず、 さまざまな応用が可能であ る。 近年の産科学領域における急速な出生前診断技術の向上により、 現在では妊 娠早期に胎児異常を同定することも可能となりつつある 2fl— 2 遺伝的背景を持つ ある種の疾患については出生直後の骨髄移植が治療に有効であるが、 これには骨 髄機能を廃絶する処置(mye loabrat ion) が必要であること、 強力な免疫抑制がか かること、 適合ドナーの問題が生じることなど、 解決されていないさまざまな問
題がある。 一方、 子宮内移植により骨髄移植を行う方法が完成すれば、 このよう な問題が解決される可能性がある。 同種異型の子宮内造血幹細胞移植の実験は、 げっ歯動物 24)、 ャギ 25- 28)、 非ヒト霊長類 29-32)で検討され、 ヒトでも臨床で数例 行われるようになった33—34)。 さらに、 移植造血幹細胞に治療用遺伝子を導入して おくことにより、 子宮内胎児遺伝子治療の可能性も期待できる 35)。 This technique is not limited to hematopoietic stem cell technology, but can be used in a variety of other applications. Improved rapid prenatal diagnostic techniques in recent obstetrics area, at present 2fl is becoming possible to identify fetal abnormalities life pregnant娠早- immediately after birth for certain diseases with 2 genetic background Bone marrow transplantation is effective for treatment, but it requires treatment to abolish bone marrow function (mye loabration), strong immunosuppression, and the problem of matching donors. Miscellaneous questions There is a title. On the other hand, if the method of bone marrow transplantation by intrauterine transplantation is completed, such a problem may be solved. Experimental intrauterine hematopoietic stem cell transplantation allogeneic the rodent 24), catcher formate 25 - 28), a non-human primate 29 - is discussed 32), it was to be performed two of clinical in humans 33 — 34 ). Furthermore, by introducing a therapeutic gene into transplanted hematopoietic stem cells, the possibility of intrauterine fetal gene therapy can be expected35 ) .
また、 動物実験や様々な臨床報告によると、 血液キメラ (キメラとは、 異なる 個体に由来する細胞が一つの個体に同時に存在している状態) の達成は移植免疫 の寛容をもたらすことが知られている 36— 39)。 この手法により大動物にマイクロキ メラ (マイクロキメラとは、キメラの状態がかすかに検出される程度に低いもの) が達成されると、 その動物はヒト臓器に関して免疫寛容がもたらされている可能 性があり、 ヒト臓器のインキュべ一夕一のように用いることもできるかもしれな い气 本発明者は、 ヒ卜造血幹細胞をブ夕胎仔に移植する異種移植の実験系でヒ卜血 液キメラを作出できるかを調べる実験を行い、 造血幹細胞が多系列の血球細胞に 分化し、 マイクロキメラを長期にわたって維持できることを明らかにした。 According to animal experiments and various clinical reports, achievement of blood chimeras (chimeras in which cells from different individuals are present in one individual at the same time) is known to result in tolerance of transplant immunity. and have 36 - 39). If this technique achieves micro-chimera in a large animal (a micro-chimera is so low that the state of the chimera is faintly detectable), the animal may have been tolerant to human organs. The present inventor has proposed that human blood chimeras can be used as an incubator for human organs in a xenotransplantation experimental system in which human hematopoietic stem cells are transplanted into fetuses. An experiment was conducted to determine whether or not it could be produced, and it was shown that hematopoietic stem cells can differentiate into multilineage blood cells and maintain the microchimera for a long time.
本発明は、 ヒ卜型の血液を体内で循環し得るキメラ動物に関するものであり、 特に家畜又は非ヒト霊長類を対象とするものである。 The present invention relates to chimeric animals capable of circulating human blood in the body, and particularly to livestock or non-human primates.
本発明において移植する造血幹細胞としては、 ヒト臍帯血又は骨髄由来のもの が挙げられる。臍帯血及び骨髄からの造血幹細胞は、比重遠心法(例えば Ficoi l、 Lymphoprepなどを用いた方法) 、 バニング法などの一般に行われている手法によ り採取することができる。 Hematopoietic stem cells to be transplanted in the present invention include those derived from human umbilical cord blood or bone marrow. Hematopoietic stem cells from umbilical cord blood and bone marrow can be collected by a commonly used method such as a specific gravity centrifugation method (for example, a method using Ficoil or Lymphoprep), a Banning method, or the like.
上記の通り採取されたヒト造血幹細胞のうち、 本発明では CD34 陽性かつ CD3 陰性の有核細胞 (MNCs)を使用することが好ましい。 Among the human hematopoietic stem cells collected as described above, it is preferable to use CD34 positive and CD3 negative nucleated cells (MNCs) in the present invention.
CD34陽性有核細胞は、 採取された細胞を抗ヒト CD34モノクローナル抗体で標 識し、 MACS又は FACS装置を用いて選別することができる。 一方、 CD3陰性有核細 胞は、 採取された細胞に、 ピオチンを結合した抗 -CD3モノクローナル抗体を反応 させて結合し、 得られる複合体にストレプトアビジンを結合させて標識する。 そ して磁気ビーズで上記複合体を除去することにより、 CD3 陰性有核細胞を得るこ
とができる。 CD34-positive nucleated cells can be collected by labeling the collected cells with an anti-human CD34 monoclonal antibody, and using a MACS or FACS device. On the other hand, CD3-negative nucleated cells are bound by reacting the collected cells with an anti-CD3 monoclonal antibody conjugated with biotin, and the resulting complex is labeled with streptavidin. Then, by removing the above complex with magnetic beads, CD3-negative nucleated cells can be obtained. Can be.
移植するための造血幹細胞は、 適当な緩衝液 (例えば PBS) に希釈して使用す る。 細胞濃度は 3. 9xl05〜l. 5xl06個、 好ましくは一匹あたり lxlO6個〜 1. 5xl06個 である。 Hematopoietic stem cells for transplantation are used after dilution in an appropriate buffer (eg, PBS). The cell concentration 3. 9xl0 5 ~l. 5xl0 6 carbon atoms, preferably lxlO 6 pieces ~ 1. 5xl0 6 per one animal.
上記の通り得られた造血幹細胞を動物 (ヒトを除く実験動物) の胎仔に移植す る。 動物としては、 ゥマ、 ブ夕、 イノシシ、 ロバ、 ャギなどの比較的大型の家畜 動物と、 サルのような非ヒト霊長類を使用することができるが、 大型である点、 多胎である点でブ夕が好ましい。 プ夕の品種は特に限定されるものではなく、 メ イシヤン、 モンカイ、 ユカタンマイクロブ夕などの黒色品種、 六白と呼ばれるバ 一クシヤー種、 デュロックなどの茶色品種、 大ヨークシャー、 ランドレースなど の白色品種が挙げられる。 移植は以下の通り行う。 The hematopoietic stem cells obtained as described above are transplanted into the fetus of an animal (an experimental animal other than a human). As animals, relatively large livestock animals such as horses, bushes, wild boars, donkeys, and goats, and non-human primates such as monkeys can be used. Busu is preferred in that respect. The varieties of puyu are not particularly limited, such as black varieties such as Meishan, Mongkai, Yucatan Microbuyu, brown varieties called Rokuwaku, brown varieties such as Duroc, and white varieties such as Great Yorkshire and Landrace. Varieties. Transplantation is performed as follows.
まず、 家畜動物を人工授精もしくは交配による自然妊娠により妊娠させる。 妊 娠の診断は人工授精後超音波により行うことができる。移植日は、妊娠後 30日〜 81日、 好ましくは 30〜60日、 さらに好ましくは 35日〜 52日である。 First, domestic animals are pregnant by artificial insemination or natural pregnancy by mating. The diagnosis of pregnancy can be made by ultrasound after artificial insemination. The date of transplantation is 30 to 81 days after pregnancy, preferably 30 to 60 days, and more preferably 35 to 52 days.
移植当日、 妊娠動物に麻酔導入後、 腹部を剃毛し充分に石鹼水等で腹部を洗浄 及び消毒する。 On the day of transplantation, after anesthesia is introduced into the pregnant animal, the abdomen is shaved, and the abdomen is thoroughly washed and disinfected with stone water.
細胞は、 超音波断層装置を用いて、 モニター上に写し出される映像を観察しな がら胎仔に移植する。 細胞の移植は注射針又は穿刺針により行い、 その注入は、 胎仔一匹あたり 0. 2mlの生理食塩水に懸濁した造血幹細胞を穿刺針を通じて注入 する。 移植に使用される穿刺針の太さは、 22〜23ゲージ、 好ましくは ゲージ である。 細胞は胎仔腹腔内に注入されるが、 これと同時に被移植胎仔を生下時に 同定する目的で、 レントゲンで同定されるマーカーを揷入することが好ましい。 その後、 必要により抗生物質を注入し、 細胞の移植が完了する。 The cells are transplanted into the fetus using an ultrasonic tomography device while observing the image projected on the monitor. The cells are implanted with a syringe needle or a puncture needle, and the injection is performed by injecting hematopoietic stem cells suspended in 0.2 ml of physiological saline per fetus through the puncture needle. The thickness of the puncture needle used for implantation is 22 to 23 gauge, preferably gauge. The cells are injected into the peritoneal cavity of the fetus. At the same time, it is preferable to insert a marker identified by X-ray for the purpose of identifying the transplanted fetus at birth. Then, if necessary, antibiotics are injected to complete the cell transplantation.
術後は、 感染症を予防する目的で抗生物質 (例えばメ夕シリン、 チェナム等) を投与することが好ましい。 After surgery, it is preferable to administer antibiotics (eg, mesilin, chenum, etc.) for the purpose of preventing infection.
移植後の胎仔を母体内で生育させ、 通常分娩又は帝王切開によりキメラ動物を 得ることができる。 得られた動物にはヒトの血液が循環しているため、 ヒト疾患 の治療用医薬を開発するための実験動物等として有用である。 The fetus after transplantation is allowed to grow in the mother, and a chimeric animal can be obtained usually by delivery or cesarean section. Since the obtained animal circulates human blood, it is useful as an experimental animal or the like for developing a medicament for treating human diseases.
また、 本発明は、 ヒトの血液細胞 (あるいは造血幹細胞) の増殖系として利用
できるため、 輸血用血液、 骨髄移植用骨髄を生産するために有用である。例えば、 白血病患者に対し、 ブ夕の骨髄から当該患者の造血幹細胞を回収して自家移植を 行うことが可能である。 Further, the present invention is used as a proliferation system for human blood cells (or hematopoietic stem cells). This is useful for producing blood for transfusion and bone marrow for bone marrow transplantation. For example, autologous transplantation can be performed on leukemia patients by collecting their hematopoietic stem cells from the bone marrow of bush.
さらに、 本発明のキメラ動物は、 ヒ卜に対して免疫寛容が誘導されるため、 ヒ トの臓器移植を行うにあたり、 臓器の維持 ·再生の場所としてキメラブ夕を使う ことができる。 図面の簡単な説明 Furthermore, since the chimeric animal of the present invention induces immune tolerance in humans, the chimeric animal can be used as a place for maintaining and regenerating organs when transplanting human organs. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実際の造血幹細胞移植操作を示す図である。 FIG. 1 is a diagram showing an actual hematopoietic stem cell transplantation operation.
図 2は、 被移植仔中のマ一力一を示す図である。 FIG. 2 is a diagram showing the abilities of the transplanted offspring.
図 3は、 CD3ヒト T細胞を部分的に除いた CD3 除去細胞を移植したブ夕胎仔の 肝臓の解析結果を示す図である。 FIG. 3 is a view showing the results of analysis of the liver of a fetal rat transplanted with CD3-depleted cells from which CD3 human T cells have been partially removed.
図 4は、キメラブ夕の胸腺中ヒト T細胞の表面抗原の解析結果を示す図である。 図 5は、ヒト CD34陽性細胞がブ夕の体内で多様な系列の血球細胞に分化するこ とを示す図である。 FIG. 4 is a diagram showing the results of analysis of the surface antigen of human T cells in the thymus of chimera. FIG. 5 is a diagram showing that human CD34-positive cells differentiate into various lineage blood cells in the human body.
図 6は、 ヒト血球の組織での分布を示す図である。 FIG. 6 is a diagram showing the distribution of human blood cells in tissues.
図 7は、ヒト CD34陽性細胞移植後出生した仔の骨髄の解析結果を示す図である 図 8は、 妊娠後日数と移植片の生着率との関係を示す図である。 FIG. 7 is a diagram showing the results of bone marrow analysis of offspring born after transplantation of human CD34-positive cells. FIG. 8 is a diagram showing the relationship between the number of days after gestation and the graft survival rate.
図 9は、ブ夕骨髄において生着したヒト CD34陽性細胞の造血活性(コロニー形 成能、 異種骨髄再建能) を示す図である。 発明を実施するための最良の形態 FIG. 9 is a graph showing the hematopoietic activity of human CD34-positive cells engrafted in bush bone marrow (colony forming ability, xenogeneic bone marrow reconstruction ability). BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例により本発明をさらに具体的に説明する。 但し、 本発明はこれら 実施例にその技術的範囲が限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these Examples.
〔実施例 1〕 ヒ卜血液キメラブ夕の作製 [Example 1] Preparation of human blood chimera
(1) 造血幹細胞の調製 (1) Preparation of hematopoietic stem cells
(1-1) 臍帯血及び骨髄浮遊液の調製 (1-1) Preparation of cord blood and bone marrow suspension
造血幹細胞の供給源としてヒト臍帯血及び骨髄を用いた。 Human cord blood and bone marrow were used as sources of hematopoietic stem cells.
ヒト臍帯血は、 インフォームドコンセントの得られた妊婦より、 満期正常経膣
分娩の際に採取した。 児の娩出後臍帯を切断し、 胎盤側の臍帯に残存している臍 帯静脈血を無菌的に 50mlシリンジにへパリン加採血し、 これを室温又は 4°Cにて 保存した。 Human cord blood is more vaginal than normal pregnant women with informed consent Collected at the time of delivery. After delivery of the baby, the umbilical cord was cut, and the umbilical cord venous blood remaining in the umbilical cord on the placental side was aseptically collected by heparinization in a 50-ml syringe, and stored at room temperature or 4 ° C.
ヒト骨髄は、 ヒトの肋骨から採取した。 すなわち、 肋骨を無菌的に細切し、 露 出した骨髄組織をピペッティングにより PBS (Phosphate-buf f ered sal ine)中で 分離し、 25G針を用いて単細胞浮遊液とした後、 骨片等のゴミをナイロンメッシ ュを通して除き、 骨髄細胞浮遊液とした。 Human bone marrow was collected from human ribs. That is, the ribs are aseptically minced, the exposed bone marrow tissue is separated by pipetting in PBS (Phosphate-buffered saline), and a single cell suspension is prepared using a 25G needle, and then bone fragments, etc. The waste was removed through a nylon mesh to obtain a bone marrow cell suspension.
(1-2) 有核血球の回収 (1-2) Collection of nucleated blood cells
ヒト臍帯血及び骨髄細胞浮遊液をそれぞれ PBS にて 3倍に希釈し、 これらを Lymp opre に静かに重層して遠心し、比重 1. 077g/mlで分離される単核球層を回 収し、 PBSにて 2回洗浄した。 これにより骨髄(bonemarrow; BM)及び臍帯血(cord blood ; CB) の有核細胞 (MNCs) を分離した。 Human cord blood and bone marrow cell suspensions were each diluted 3-fold with PBS, gently layered on Lymphopre, and centrifuged.The mononuclear cell layer separated at a specific gravity of 1.077 g / ml was collected. Then, the plate was washed twice with PBS. As a result, nucleated cells (MNCs) of bone marrow (bonemarrow; BM) and cord blood (CB) were separated.
上記の通り得られた丽 Csを Turk液で希釈染色し、 細胞数をカウント後、 これ を PBSで再度洗浄、 PBSに懸濁し、 これを移植用丽 Csとして用いた。 The ΔCs obtained as described above was diluted and stained with a Turk solution. After counting the number of cells, the cells were washed again with PBS, suspended in PBS, and used as ΔCs for transplantation.
(2) 移植ヒト造血幹細胞画分の分離、 濃縮 (2) Separation and concentration of transplanted human hematopoietic stem cell fraction
(2-1) CD34陽性細胞の純化 (2-1) Purification of CD34 positive cells
有核細胞を抗ヒト CD34モノクローナル抗体で標識した。標識には蛍光色素又は 磁気ビーズを用いた。 有核細胞からヒト CD34 陽性細胞を純化するために、 MACS (Direc t CD34 isolat ion ki t Mi l tenyi B iotec Bergisch Gladbach, Germany) 又は FACS Vantage (Bec ton Dickinson, San Jose, CA)を用いた。 更に、 細胞数力 ゥント後 PBSで洗浄し、 移植に用いた。 Nucleated cells were labeled with an anti-human CD34 monoclonal antibody. Fluorescent dyes or magnetic beads were used for labeling. To purify human CD34-positive cells from nucleated cells, MACS (Direct CD34 isolat ion kit mlentyi Biotec Bergisch Gladbach, Germany) or FACS Vantage (Becton Dickinson, San Jose, CA) was used. Further, after counting the number of cells, the cells were washed with PBS and used for transplantation.
(2-2) CD3陰性有核細胞の純化 (2-2) Purification of CD3-negative nucleated cells
上記の通り得られた丽 Csより、 おもに Tリンパ球のみを除去する目的で、 CD3 陽性細胞 (CD3+細胞) を磁気ビーズ法により分離除去した。 ピオチン化標識した 抗 CD3モノクローナル抗体(PharMingen, San Diego, CA)を丽 Csに加え、 氷上で 30分静置した後、 SM (s taining medium)を加えて 1回洗浄した。 これに、 SMで洗 净した BioMag s treptavidin ul tra-load part ic les (PerSept ive B iosys tems, Inc. , Framinghani, MA)を加え、 同様に氷上で 30分静置することで CD3+細胞に磁
気ビーズを結合させた。 これを Magne t ic Part ic le Concent rator (Dynal MPC-1, Os lo, Norway)を用いることで CD3+細胞を磁力により分離し、 CD3部分除去有核血 球 (T- deple te) を回収した。 細胞数カウント後、 PBSで洗浄し、 これを移植に用 いた。 From the ΔCs obtained as described above, CD3 positive cells (CD3 + cells) were separated and removed by a magnetic bead method in order to mainly remove only T lymphocytes. A biotinylated anti-CD3 monoclonal antibody (PharMingen, San Diego, CA) was added to 丽 Cs, left on ice for 30 minutes, and then washed once with SM (staining medium). To this, BioMags treptavidin ultra-load part icles (PerSeptive Biosystems, Inc., Framinghani, Mass.) Washed with SM was added, and the mixture was similarly left on ice for 30 minutes to magnetize CD3 + cells. The gas beads were bound. Using a magnetic part concentrator (Dynal MPC-1, Oslo, Norway), CD3 + cells were separated by magnetic force, and nucleated blood cells (T-deplete) from which CD3 was partially removed were collected. After counting the number of cells, the cells were washed with PBS and used for transplantation.
(2-3) 純度チェック (2-3) Purity check
以上の手技で回収した移植血球細胞の一部を用い、 それぞれに含まれる CD34+ 細胞、 CD3+細胞の頻度を FACSで評価した。 抗ヒト CD34- FITC及び CD3- PEモノク ローナル抗体 (mAbs) を用いて、 移植に用いた細胞を蛍光免疫染色し、 ここに含 まれる CD34+細胞、 CD3+細胞の頻度をそれぞれフローサイトメトリ一により測定し た。 Using a portion of the transplanted blood cells collected by the above procedure, the frequency of CD34 + cells and CD3 + cells contained in each was evaluated by FACS. Fluorescent immunostaining of the cells used for transplantation was performed using anti-human CD34-FITC and CD3-PE monoclonal antibody (mAbs), and the frequencies of CD34 + cells and CD3 + cells contained here were determined by flow cytometry. It was measured.
造血幹細胞移植のための分画として、 有核細胞全て、 CD34陽性細胞、 CD3陰性 有核細胞をそれぞれ用いた。 All nucleated cells, CD34-positive cells, and CD3-negative nucleated cells were used as fractions for hematopoietic stem cell transplantation.
(3) ブタ胎仔へのヒト造血幹細胞移植 (3) Transplantation of human hematopoietic stem cells into pig fetus
実験には全国農業協同組合連合会 (JA全農) 飼料畜産中央研究所 (茨城県つく ば市) において飼育されているブ夕 (デュロック種、 Durok ; D、 又は大ヨーク シャ一種、 Large Whi te ; W) を用いた。 これらプタは実験を通じて SPF環境下に おいて繁殖、 管理した。 交配日の明らかなブ夕について、 妊娠 25-30日の間に超 音波診断装置 (Aloka SSD-500 ; Aloka Co. , Ltd. , Tokyo, Japan)を用いて妊娠診 断を行った。 胎仔心拍動が確認されたプ夕を妊娠したものと診断し、 この妊娠診 断したブタを移植実験に供した。実験には妊娠 31日から 78日齢のものを用いた。 The experiment was conducted by the National Agricultural Cooperative Federation (JA All Agriculture) Feed and Livestock Central Research Institute (Tsukuba City, Ibaraki Prefecture), where bushus (Durok, Durok; D, or Large Yorkshire, Large White; W) was used. These stags were propagated and managed in an SPF environment through experiments. Pregnancy diagnosis was carried out on the apparent mating day using an ultrasonic diagnostic apparatus (Aloka SSD-500; Aloka Co., Ltd., Tokyo, Japan) between 25 and 30 days of gestation. The mother whose fetal heartbeat was confirmed was diagnosed as pregnant, and the pigs diagnosed with pregnancy were subjected to transplantation experiments. The experiments used were 31 to 78 days of gestation.
(3-1) 麻酔 (3-1) Anesthesia
移植当日、 麻酔導入のため azaperon 2. 5 mg/kg (Stresni l ; Sankyo Co., Ltd. , Tokyo, Japan) を妊娠ブ夕に筋注し、 続いてフェースマスクにより 3%イソフルレ ン +笑気 (N20) +02による吸入麻酔を行い、 全身麻酔を行った。 その後、 ブタを 手術台に仰臥位固定した。 On the day of transplantation, azaperon 2.5 mg / kg (Stresnil; Sankyo Co., Ltd., Tokyo, Japan) was injected intramuscularly into pregnancy to induce anesthesia, followed by 3% isoflurane + laughter with a face mask (N 2 0) performs the inhalation anesthesia with +0 2, was subjected to general anesthesia. Thereafter, the pig was fixed in the supine position on the operating table.
(3-2) 消毒 (3-2) Disinfection
妊娠ブ夕に麻酔導入後、 ブタ腹部の体毛を剃毛し、 皮膚をブラシを用いて洗浄
した。 その後、 Povidone - Iodine (Isodine solution; Meiji seika kaisha, Ltd. , Tokyo, Japan)にて十分に消毒した。 After induction of anesthesia during pregnancy, the pig's abdomen is shaved and the skin is washed with a brush did. Then, it was sufficiently disinfected with Povidone-Iodine (Isodine solution; Meiji seika kaisha, Ltd., Tokyo, Japan).
(3-3) 超音波によるプ夕胎仔の描出 (3-3) Ultrasound imaging of fetuses
ブ夕胎仔への細胞移植には、 超音波断層装置 Aloka ultrasound diagnostic e uipment SSD-1000 (ALOKA CO. , LTD Tokyo, Japan)を用い、 経皮的に移植を行つ た。超音波プローブには、滅菌カバーを装着した 7.5MHz electronic convex sector probe (Aloka; UST-987- 7- 5)を使用した。 プローブに穿刺用ガイ ド (puncture adapter; Aloka MP- 2458)を装着し、 胎仔をモニタ一上に描出した。 Transplantation was performed percutaneously using the ultrasound tomography device Aloka ultrasound diagnostic equipment SSD-1000 (ALOKA CO., LTD Tokyo, Japan) for cell transplantation into the fetus. The ultrasonic probe used was a 7.5 MHz electronic convex sector probe (Aloka; UST-987-7-5) equipped with a sterile cover. The probe was equipped with a puncture adapter (Aloka MP-2458), and the fetus was drawn on the monitor.
(3-4) 穿刺針 (3-4) Puncture needle
胎仔へのヒト造血幹細胞導入のために用いた穿刺針は 22 -ゲージ, 150nmi経皮経 肝胆管ドレナージ (P. T. C. D. ; Percutaneous Trans epat ic Cholangio Drainage) 針(Top Tokyo, Japan)である。 細胞は胎仔腹腔内に注入し (後述) 、 その際、 被 移植胎仔を生下時に同定する目的で、 レントゲンで同定されるマーカーを挿入し た。 マーカーは、 P. T. C.D.針のス夕ィレットを 3mmの長さに細切し、 オートクレ —ブにて滅菌することにより作成した。胎仔穿剌時には P. T. C. D.二一ドルのスタ ィレットを抜去し、 この無菌マーカーを外筒内に挿入後、 胎仔腹腔を穿刺した。 その後スタイレツトを挿入圧出することでマーカ一を胎仔腹腔内に挿入した。 The puncture needle used to introduce human hematopoietic stem cells into the fetus was a 22-gauge, 150 nmi percutaneous transhepatic bile duct drainage (P.T.C.D .; Percutaneous Transepatic Cholangio Drainage) needle (Top Tokyo, Japan). Cells were injected intraperitoneally into the fetus (described later), and at that time, a marker identified by radiography was inserted for the purpose of identifying the transplanted fetus at birth. The marker was prepared by cutting a P. T. C.D. needle needle into a 3 mm length and sterilizing it with an autoclave. At the time of fetal puncture, the P.T.C.D.D. $ 21 stylet was removed, this sterile marker was inserted into the outer cylinder, and the fetal abdominal cavity was punctured. Thereafter, the stylet was inserted and pressed out to insert the marker into the peritoneal cavity of the fetus.
(3-5) 細胞の注入及び抗生物質の投与 (3-5) injection of cells and administration of antibiotics
再度スタイレットを抜去し、 胎仔一匹あたり 0.2mlの生理食塩水に懸濁した造 血幹細胞を P. T. C. D.ニードルを通じて胎仔の腹腔内に注入した。その後胎仔腹腔 内に 0.2 U 羊水腔内に 0.3mlの抗生物質 (5mg/ml Metacilin; Takeda chemical industries, Ltd. , Osaka, Japan) を注入し、 穿刺針を抜去した。 妊娠プ夕には 移植当日に IPM/CS lgを筋注し、 以後 2日間抗生物質を投与した。 妊娠ブ夕には その後 2日間にわたり抗生物質を筋注により投与した。 この手技により最大 4胎 仔に細胞の移植が可能であった。 The stylet was removed again, and hematopoietic stem cells suspended in 0.2 ml of physiological saline per fetus were injected into the fetus's peritoneal cavity through a PTCDD needle. Thereafter, 0.2 U of amniotic fluid was injected into the fetal abdominal cavity with 0.3 ml of antibiotic (5 mg / ml Metacilin; Takeda chemical industries, Ltd., Osaka, Japan), and the puncture needle was removed. On the day of pregnancy, IPM / CS lg was intramuscularly injected on the day of transplantation, and antibiotics were administered for 2 days thereafter. On pregnancy, antibiotics were administered intramuscularly over the next two days. This procedure allowed the transplantation of cells into up to four fetuses.
なお、移植は多くは超音波ガイド下に行ったが、一部では全身麻酔下に開腹し、 子宮を直視下に胎仔を同定し、 胎仔腹部に細胞移植を行った。 Most of the transplants were performed under ultrasound guidance, but in some cases the abdomen was opened under general anesthesia, the fetus was identified directly under the uterus, and cell transplantation was performed on the abdomen of the fetus.
(3-6) 分娩
分娩は自然経膣分娩又は帝王切開分娩により行った。 なお、 ブ夕妊娠期間は通 常 114日である。 自然経膣分娩は満期に行った。 一部のブタでは分娩予定日を超 過したため、 分娩誘発剤を投与した。 分娩に際し、 分娩仔総数、 生仔数、 分娩時 死産数、 ミイラ仔 (妊娠前期での子宮内胎仔死亡) 数を記録し、 新生仔を耳刻に より標識 (ナンバリング) した。 一部の生仔並びに死産仔及びミイラ仔をレント ゲン撮影し、 腹部に存在するマーカーを同定することで、 生産仔、 死仔でのレシ ピエント (被移植仔) を同定した。 (3-6) Delivery Delivery was by spontaneous vaginal delivery or cesarean delivery. The evening pregnancy period is usually 114 days. Natural vaginal delivery was at term. Some pigs exceeded the expected delivery date and were given a delivery inducer. At the time of delivery, the total number of offspring, the number of offspring, the number of stillbirths at the time of delivery, and the number of mummy offspring (in-utero fetal death during the first trimester) were recorded, and the newborns were labeled by ear stamping (numbering). X-rays of some live pups, stillborn pups and mummy pups were taken to identify markers present in the abdomen, and the recipients (transplanted pups) of the pups and dead pups were identified.
〔実施例 2〕 出生仔の解析 [Example 2] Analysis of offspring
1 . 材料と方法 1. Materials and Methods
(1) ヒト造血幹細胞移植を受けた新生仔の末梢血、 骨髄、 臓器の採取 (1) Collection of peripheral blood, bone marrow, and organs of newborns that have undergone human hematopoietic stem cell transplantation
出生した仔は、生後数日以内及び生後約 1ヶ月の時点でその末梢血及び骨髄血 をへパリン加採取した。 末梢血は仰臥位に固定したブ夕の頸静脈より採取し、 骨 髄血は腸骨より吸引することで採取した。 また、一部のブタでは安楽死後に肝臓、 脾臓、 胸腺等の造血組織を採取した。 マーカーによりレシピエントであることを 同定できた死産仔 (分娩時死亡) については、 新鮮な状態で採取できた仔から肝 臓、 脾臓、 胸腺等を採取した。 ミイラ仔として死産したブ夕については臓器採取 が困難であったため、 解析は行わなかった。 The offspring were heparinized from their peripheral blood and bone marrow blood within the first few days of birth and at about one month after birth. Peripheral blood was collected from the jugular vein of Buena fixed in the supine position, and bone marrow blood was collected by suction from the iliac bone. In some pigs, hematopoietic tissues such as liver, spleen, and thymus were collected after euthanasia. Liver, spleen, thymus, etc. were collected from freshly collected pups that could be identified as recipients by markers. Analysis was not performed on bushus, which were stillborn as mummies, because it was difficult to collect organs.
ケタラ一ルによる麻酔下に経静脈より末梢血を、骨盤蝶形骨より骨髄細胞を採取 した。 また麻酔下に安楽死させた後ブ夕各種臓器を採取した。 Under anesthesia with Ketalal, peripheral blood was collected from the vein and bone marrow cells were collected from the pelvic sphenoid bone. After euthanasia under anesthesia, various organs were collected.
(2) 有核血球細胞の分離 (2) Separation of nucleated blood cells
ブ夕より採取した末梢血及び骨髄血を、 0. 1% 重炭酸ナトリウム添加 0. 83% 塩 化アンモニゥム(pH7. 0)を用いて溶血することにより赤血球を除去し、 PBSにて洗 浄した後、 有核細胞 (匪 Cs) を得た。 採取した臓器については、 臓器片を細切後 スライドガラスを用いて PBS中で圧搾し、 これをナイロンメッシュフィルターに 通すことで、 混入した異物を除去し MNCs とした。 これらブタ造血組織より得た 丽 Csを FACS法及び PCR法で解析することで、 ヒト血液細胞の同定を行った。 Peripheral blood and bone marrow blood collected from buses were lysed with 0.1% sodium bicarbonate added 0.83% ammonium chloride (pH 7.0) to remove red blood cells, and washed with PBS. Later, nucleated cells (Marshal Cs) were obtained. The collected organs were minced from the organ pieces, squeezed in PBS using a slide glass, and passed through a nylon mesh filter to remove contaminating foreign substances and obtain MNCs. Human blood cells were identified by analyzing 丽 Cs obtained from these porcine hematopoietic tissues by FACS and PCR.
(3) 有核細胞中のヒト血液細胞の同定 (3) Identification of human blood cells in nucleated cells
ヒト血液細胞の同定にはフローサイトメトリー及び PCR法を用いた。
(3-1) フローサイトメトリー Human blood cells were identified by flow cytometry and PCR. (3-1) Flow cytometry
得られた有核細胞を、 抗ヒト CD45抗体、 抗ブタ汎組織(ant i- pig pan-t issue) 抗体で標識した。抗ヒト CD45抗体陽性であり、かつ抗ブ夕汎組織抗体陰性の細胞 がヒト血液細胞であると判定される。 詳細は、 以下の通りである。 The obtained nucleated cells were labeled with an anti-human CD45 antibody and an anti-pig pan-t issue antibody. Cells that are anti-human CD45 antibody positive and anti-negative pan-tissue antibody negative are determined to be human blood cells. Details are as follows.
ヒト血球のマ一カーとして抗ヒト CD45- FITC (f luorescence i sothiocyanate) モノクローナル抗体(mAb) を用いた。 またヒト血球細胞の分化抗原を確認するた め、 PE (Phycoerythrin) 標識したマウス抗ヒト CD3、 CD13、 CD14、 、 CD33、 CD34、 CD4K CD56, CD61及びグリコフォリン- A mAbsを用いた。 ブ夕血球のマ一 カーとして抗ブタ汎組織 mAb (c lone 1030h-l- 19)を用いた。 抗ブ夕精製抗体は、 ECL タ ンパク質ピオチン化モジュール (Amersham Internat ional pic, Buckinghamshi re, Engl and) を用いてピオチン標識し、 これをストレプトアビジン - APC (a 11 ophycocyanin)による二次染色により検出した。 An anti-human CD45-FITC (fluorescence isothiocyanate) monoclonal antibody ( m Ab) was used as a marker for human blood cells. In order to confirm the differentiation antigen of human blood cells, mouse anti-human CD3, CD13, CD14, CD33, CD34, CD4K CD56, CD61 and glycophorin-A mAbs labeled with PE (Phycoerythrin) were used. An anti-porcine pan-tissue mAb (clone 1030h-l-19) was used as a marker for blood cells. The purified anti-butane antibody is labeled with biotin using the ECL protein biotinylation module (Amersham International pic, Buckinghamshire, Engl and) and detected by secondary staining with streptavidin-APC (a11 ophycocyanin). did.
ブ夕より回収した血球細胞を PBS+0. 5%ゥシ胎仔血清 +0. 05% sodium az ide (s t aining med ium: SM)で 2回洗浄後、 抗ヒト CD45-FITC, 抗ヒト 1 ineages - PE、 抗ブタ汎組織 -ピオチンを混和し、 氷上に 30分静置した。その後 SMで 1回洗浄し、 さらにストレブトアビジン -APCを混和して氷上に 30分静置した。続いて SMで 2 回洗浄後、 ヨウ化プロピジゥム(2 g/ml)加 SMに懸濁し、 死細胞を染色した。 フ ローサイトメトリー解析は FACS Vantage SE (Bec ton Dickinson, San Jose, CA) を用いて 4カラーで行い、 デ一夕は少なくとも 200, 000個の細胞より採取した。 Blood cells collected from the mouse were washed twice with PBS + 0.5% ゥ fetal serum + 0.05% sodium azide (st aining medium: SM), then anti-human CD45-FITC, anti-human 1 ineages -PE and anti-porcine pan-tissue-Piotin was mixed and left on ice for 30 minutes. Thereafter, the cells were washed once with SM, mixed with streptavidin-APC, and allowed to stand on ice for 30 minutes. Subsequently, after washing twice with SM, the cells were suspended in SM with propidium iodide (2 g / ml), and the dead cells were stained. Flow cytometric analysis was performed in four colors using FACS Vantage SE (Becton Dickinson, San Jose, CA), and samples were collected from at least 200,000 cells overnight.
② PCR ② PCR
得られた有核細胞よりゲノム DNAを SepaGene (Sanko-jyunyaku Tokyo, Japan) により回収した。ヒトゲノムの同定には 配列に特異的なプライマ一を設計し、 PCRにより増幅することで行った。 Genomic DNA was collected from the obtained nucleated cells using SepaGene (Sanko-jyunyaku Tokyo, Japan). The identification of the human genome was performed by designing a sequence-specific primer and amplifying it by PCR.
プライマ一は以下の 2種である。 The primers are the following two types.
プライマー 1 : 5,-CTGGGCGCAAGAACGAGATTCTAT-3, (配列番号 1 ) Primer 1: 5, -CTGGGCGCAAGAACGAGATTCTAT-3, (SEQ ID NO: 1)
プライマー 2 : 5'-CTCACTACTTTGTGACAGGTTCA-3' (配列番号 2 ) Primer 2: 5'-CTCACTACTTTGTGACAGGTTCA-3 '(SEQ ID NO: 2)
総量 50 \ になるように以下の反応液を作製し、 Gene Amp PCR Sys tem 9600 (Perkin Elmer) で DNAの増幅を行った。
反応液組成: The following reaction mixture was prepared so that the total amount was 50 \, and DNA was amplified using Gene Amp PCR System 9600 (Perkin Elmer). Reaction liquid composition:
DNA: DNA:
- 1 -1
プライマー 2 1 xl Primer 2 1 xl
ポリメラーゼ 0.5 1 Polymerase 0.5 1
緩衝液: 10 l Buffer: 10 l
dNTP: 8 1 dNTP: 8 1
蒸留水: 24.5 1 Distilled water: 24.5 1
50/xl 50 / xl
PGRは、 94°C60秒の反応後、 94°C20秒 + 58°C20秒 + 72°C30秒の反応を 43サイ クル行い、 最後に 72°C 7分の反応後終了した。 得られた PCR産物はァガ口一スゲ ル上で臭化プロマイドに対する紫外線照射で観察した。 In the PGR, after a reaction at 94 ° C for 60 seconds, 43 cycles of a reaction at 94 ° C for 20 seconds + 58 ° C for 20 seconds + 72 ° C for 30 seconds were performed, and finally the reaction was completed after a reaction at 72 ° C for 7 minutes. The obtained PCR product was observed by ultraviolet irradiation on bromide bromide on an agar mouth.
(4) ブタ胎仔中に存在するヒト造血幹細胞のコロニー形成能の測定 (4) Measurement of colony forming ability of human hematopoietic stem cells in pig fetus
ブ夕骨髄に移植後 3ヶ月以上にわたり定着したヒト CD34+細胞の機能を評価す る目的で、 その増殖能を測定した。 To evaluate the function of human CD34 + cells established over 3 months after transplantation into the bone marrow, their proliferative potential was measured.
FACSを用いた解析により、移植後 3ヶ月以上の時点で骨髄中にヒト血液細胞を 同定できたブ夕の骨髄を 20mlへパリン加採取した。赤血球を溶血により除去した のち、 ブタ骨髄有核血球を SMにより 2回洗浄した。 MACS法を用いてヒト CD34+ 細胞を回収した。 さらに得られた細胞を抗ヒト CD34-PE、 抗ヒト CD45 - FITC 及び 抗ブ夕汎組織 -ピオチン mAbsで蛍光染色し、 FACS Vantageを用いて CD34+ CD45+ Pig" の表面抗原を示すヒ卜造血前駆細胞の画分をソーティングし回収した。 At least 3 months after transplantation, human blood cells could be identified in the bone marrow by FACS analysis. After removing erythrocytes by hemolysis, porcine bone marrow nucleated blood cells were washed twice with SM. Human CD34 + cells were collected using the MACS method. Further, the obtained cells are fluorescently stained with anti-human CD34-PE, anti-human CD45-FITC and anti-butane pan-tissue-biotin mAbs, and human hematopoietic progenitor cells showing the surface antigen of CD34 + CD45 + Pig "using FACS Vantage. Fractions were sorted and collected.
その後、 抗ヒト CD34抗体、 抗ヒト CD45抗体でブタ骨髄画 Csを標識し、 そのダ ブルポジティブ細胞を FACSにより分離回収した。同細胞をヒト血液増殖因子を含 む軟寒天培地(Methocult GF H4434; StemCell Technologies Inc. Vancouver, B. C.)上で培養し、 2週間後のコロニー形成能を観察した。 Thereafter, pig bone marrow fraction Cs was labeled with anti-human CD34 antibody and anti-human CD45 antibody, and the double positive cells were separated and recovered by FACS. The cells were cultured on a soft agar medium containing human blood growth factor (Methocult GF H4434; StemCell Technologies Inc. Vancouver, B.C.), and the colony forming ability after 2 weeks was observed.
(5) CFU-Cアツセィ (5) CFU-C Atsushi
ブタ骨髄より回収した CD34+ CD45+ Pig—細胞 700個をメチルセルロース半固形 培地(Methocult GF H4434; StemCell Technologies Inc. , Vancouver, B. )上で 培養することにより、 その増殖能を観察した。 培地には 2-メルカプトエタノール
1(T4M、 L-グルタミン 2mM、 ゥシ胎仔血清(FBS) 30%、 ゥシ血清アルブミン 1%を含 むほか、 遺伝子組換え型ヒトエリスロポエチン(rh-EP0)、 遺伝子組換え型ヒト幹 細胞因子(rh SCF)、 遺伝子組換え型ヒト顆粒球マク口ファージコロニー刺激因子 (rh GM-CSF) 及び遺伝子組換え型ヒトインターロイキン 3 (rh IL-3) が含まれ ており、 ヒト造血前駆細胞が多様なコロニ一を形成することを可能にしている。 培養は 37°Cで加湿された 5% C02環境下で、 14 日間行った。 生じたコロニーは実 体顕微鏡によりその数及び形態を観察した。 また、 形成されたコロニーがヒト細 胞由来であることを確認するため、 これを回収しゲノム DNAを抽出した後、 前記 (3)で行った PCR法及びァガロースゲル電気泳動法と同様にしてヒトゲノムを確 認した。 The proliferation ability was observed by culturing 700 CD34 + CD45 + Pig-cells collected from pig bone marrow on a methylcellulose semi-solid medium (Methocult GF H4434; StemCell Technologies Inc., Vancouver, B.). Medium is 2-mercaptoethanol 1 (T 4 M, L- glutamine 2 mM, © Shi bovine serum (FBS) 30%, © shea serum albumin 1% containing Muhoka, recombinant human erythropoietin (rh-EP0), recombinant human stem It contains cellular factor (rh SCF), recombinant human granulocyte macula phage colony stimulating factor (rh GM-CSF) and recombinant human interleukin 3 (rh IL-3) cells are making it possible to form various colonies scratch. culture 5% C0 2 in an environment humidified by 37 ° C, was carried out 14 days. the resulting colonies the number and form by entity microscope In order to confirm that the formed colonies were derived from human cells, the collected colonies were collected and genomic DNA was extracted. Then, the same procedures as in the PCR method and agarose gel electrophoresis performed in (3) above were performed. Then, the human genome was confirmed.
(6) 免疫不全マウス骨髄再建(SCID re- populat ion)アツセィ (6) Immunodeficient mouse bone marrow reconstruction (SCID repopulation)
N0D/SCID マウスを用い、 免疫不全マウス骨髄再建アツセィを行った。 N0D/SM scid-J ic マウスは 8週齢の雄マウスを実験に用いた。 亜致死線量 (300 cGy) の ァ線全身照射で前処置したマウスの尾静脈より、 ブ夕から回収した CD34+ CD45+ Pig—細胞を 6. 7 X 104個/匹ずつ移植した。 移植 5週後にマウス末梢血を採取、 赤 血球を溶血した後、 抗ヒト CD45- FITC mAbで有核血球を蛍光免疫染色し、 FACSで ヒ卜細胞の同定を行った。 Using N0D / SCID mice, immunodeficient mouse bone marrow reconstruction was performed. As the N0D / SM scid-Jic mouse, an 8-week-old male mouse was used for the experiment. From the mouse tail vein pretreated with § ray whole body irradiation sublethal dose (300 cGy), were transplanted CD34 + CD45 + Pig- cells recovered from blanking evening by 6. 7 X 10 4 cells / mouse. Five weeks after transplantation, mouse peripheral blood was collected, erythrocytes were lysed, and nucleated blood cells were subjected to fluorescent immunostaining with anti-human CD45-FITC mAb, and human cells were identified by FACS.
2 . 結果 2. Result
(1) 移植と解析 (1) Transplant and analysis
予備実験として、 ヒッジやィヌで報告されている移植方法を採用した。 まず、 妊娠 48日- 55日のミニブ夕 7匹を用いて麻酔下に開腹し、子宮を直視下にブ夕胎 仔へのヒト HSCs移植を行った。 この方法のメリットは、全妊娠胎仔に細胞移植を 行いうることである。 しかし、 この方法では 7例中 5例 (71. 4%) が術後 5日以内 に感染によると思われる流産に至った。 そこで本発明者は、 更に非侵襲的な方法 を採用することとし、 開腹術を施行せず、 超音波ガイド下で母体の体外から胎仔 に移植を行う方法を開発し、 ブ夕胎仔への経皮的ヒト HSCs移植を行った。 As a preliminary experiment, the transplantation method reported in Higgie and Dog was adopted. First, the laparotomy was performed under anesthesia using 7 minibu mice on the 48th to 55th days of gestation, and human HSCs were implanted into the fetuses under direct observation of the uterus. The advantage of this method is that cell transplantation can be performed on all pregnant fetuses. However, this method resulted in miscarriage in 5 of 7 cases (71.4%) within 5 days after surgery, which appeared to be due to infection. Therefore, the present inventor has adopted a more non-invasive method, and has developed a method of performing transplantation from outside the mother's body to the fetus under ultrasound guidance without performing laparotomy. Transdermal human HSCs transplantation was performed.
ブ夕胎仔は妊娠 25 日ごろより胎仔心拍を確認することが可能であり、 妊娠 30
日以降に胎仔の大きさが 20 X 10 X 10腿(体長 20πιιη) となる。 本発明の方法で技術 的に移植が可能となるのはこの時期からであり、妊娠 40日以降は腹部前後径、左 右径が約 20mm となるため容易に超音波ガイド下の穿刺腹腔穿刺を施行すること ができる(図 1 )。 但し、 この時期でも心腔内や臍帯血管等、 血中に移植を行うこ とは困難であった。 この手技を用いた場合、 母プ夕の腸管ガスにより超音波で確 認できる胎仔数は数匹であった。ブタ腹壁は非常に細菌が多いと考えられるため、 腹壁の消毒を十分に行った後に移植を行い、 更に胎仔、 羊水腔、 母体に抗生物質 を投与することで流産を防止した。 It is possible to check the fetal heart rate of the fetus from around 25 days of pregnancy. After the day, the size of the fetus will be 20 X 10 X 10 thighs (20πιιη in length). It is from this time that transplantation is technically possible with the method of the present invention, and since the abdominal anterior-posterior diameter and left and right diameters are about 20 mm after 40 days of gestation, it is easy to perform puncture peritoneal puncture under ultrasound guidance. It can be enforced (Figure 1). However, even at this time, it was difficult to perform transplantation into the blood, such as in the heart cavity and umbilical cord blood vessels. When this technique was used, the number of fetuses that could be confirmed by ultrasound with intestinal gas from the mother and mother was several. Since the pig abdominal wall is considered to be extremely rich in bacteria, transplantation was carried out after sufficient disinfection of the abdominal wall, and miscarriage was prevented by administering antibiotics to the fetus, amniotic fluid, and the mother.
ブ夕は多胎妊娠動物であり、 平均 10-14匹の胎仔を一度に妊娠する。 移植を行 いうるブタはそのうちの一部であり、 死産が生じた場合には被移植仔の同定が困 難となる。 そこで、 生下時に数匹のレシピエントを同定、 区別するため、 被移植 仔に細胞とともにマーカ一を移植することで、 被移植仔を軟 X線撮影によって他 から区別することを試みた。 このため、 細胞注入と同時に微小なワイアを胎仔腹 腔に挿入し、 生後にレントゲン撮影を行った。 ヒト細胞の同定は、 FACS及び PCR で行った。 ヒトとブ夕の血球を人為的に混和し、 求めた検出感度は、 FACS では 0. 005%、 PCRでは 0. 0005%であった。 Busu is a multiple pregnancy animal, averaging 10-14 fetuses at a time. Only some pigs can be transplanted, and if stillbirth occurs, it is difficult to identify the recipient. Therefore, in order to identify and distinguish several recipients at birth, we attempted to distinguish the recipient from the other by soft X-ray imaging by implanting the marker with the cells in the recipient. For this reason, microwires were inserted into the fetal peritoneal cavity at the same time as cell injection, and radiographs were taken after birth. Human cells were identified by FACS and PCR. The detection sensitivity was 0.005% for FACS and 0.0005% for PCR, obtained by artificially mixing human and Buyotsu blood cells.
その結果、 新生児にマーカーが同定され (図 2 ) 、 このマーカーがあっても胎 仔発育に影響のないことも確認された。 As a result, a marker was identified in neonates (Fig. 2), and it was confirmed that the presence of this marker did not affect fetal development.
(2) ヒト細胞の生着 (2) Engraftment of human cells
37匹の妊娠ブ夕の中の 96胎仔へヒト HSCs移植を行つた。 2匹の妊娠ブ夕は、 解析のため帝王切開により妊娠を中断し、 妊娠中における移植細胞の生着の有無 を確認した。その結果、 3匹の移植胎仔は全て(100Wにヒト細胞の生着を認めた。 また、 3匹の妊娠ブ夕の中の 5匹の胎仔にヒト HSCsを移植したが、 早産のため、 生まれた直後に 5匹の新生仔は死亡した。 この死亡した被移植新生仔中のヒト細 胞の存在を解析したところ、 3匹(60. 0%)にヒト細胞の生着を認めた。 Human HSCs were transplanted to 96 fetuses in 37 pregnant women. Pregnancy was interrupted by cesarean section for the analysis of the two pregnancies, and the presence or absence of transplanted cells during pregnancy was confirmed. As a result, all of the three transplanted fetuses showed engraftment of human cells at 100 W. In addition, human HSCs were transplanted into five fetuses out of three pregnant females. Immediately after this, five newborns died, and the presence of human cells in the dead transplanted newborns was analyzed, and three (60.0%) found engraftment of human cells.
これより、 超音波ガイド下での細胞移植の確実性は少なくとも 60%であった。 22匹の妊娠ブ夕が満期分娩となり、 44匹の移植胎仔のうち 18匹の仔 (40. 9%)に ヒト細胞の生着を認めた (表 1 ) 。 子宮内 Un uter ) 移植の結果のまとめを表
1に示す。 Thus, the reliability of ultrasound-guided cell transplantation was at least 60%. Twenty-two pregnancies delivered at term, and 18 of the 44 transplanted fetuses (40.9%) showed engraftment of human cells (Table 1). Summary of intrauterine transplantation results Shown in 1.
表 1 子宮内プタ胎仔へのヒト造血幹細胞実験のまとめ Table 1.Summary of human hematopoietic stem cell experiments on intrauterine fetal fetuses
項目 妊娠プタ数 被移植胎仔 Item Number of pregnancies Fetal recipient
移植数 35 91 Number of transplants 35 91
実施不可 * 10 35 Impossible * 10 35
2 4 twenty four
移植生着 2 3 Transplant survival 2 3
早産 3 6 Premature birth 3 6
移植生着 3 3 Transplant survival 3 3
満期分娩 20 52 Maturity delivery 20 52
移植生着 10 14 Transplant survival 10 14
*:移植後 5日以内に死亡 *: Died within 5 days after transplantation
表 1において、 「妊娠ブ夕数」 は、 各項目における被移植胎仔を有していた妊 娠ブ夕の総数を意味する。 In Table 1, “Number of pregnant women” means the total number of pregnant women who had a transplanted fetus in each item.
少ない頻度のヒト細胞を効率よくフローサイトメトリーで同定するために、抗- ブタ汎組織抗体を使用した。 この抗体はプタ血球のほぼ全ての血液細胞と反応す るため、これに標識されるブ夕細胞をコンピューター解析により除外することで、 ヒト血液との分離が良好となり、 0. 01%の頻度であっても正確にヒト細胞を同定で きた。 さらに低いキメリズムの場合のヒト細胞の同定法として PCRも併用した。 この検出感度はヒト細胞の存在頻度が 0. 0001 %以上で可能であった。 An anti-porcine pan-tissue antibody was used to efficiently identify low frequency human cells by flow cytometry. Since this antibody reacts with almost all blood cells of the septate blood cells, excluding the labeled cells by computer analysis results in good separation from human blood and a frequency of 0.01%. Even so, human cells have been accurately identified. PCR was also used as a method for identifying human cells in the case of lower chimerism. This detection sensitivity was possible when the frequency of human cells was 0.0001% or more.
移植時の妊娠時期とキメラ成立の関係を表 2に示した。
Table 2 shows the relationship between the pregnancy time at the time of transplantation and the establishment of the chimera.
表 2 臍帯血移植生着例のまとめ Table 2.Summary of cord blood transplant survival cases
ヒト細胞の 識別記号 移植時期 移植細胞のタイプ 移植細胞数 生着期間 最大キメリズム Human cell identification symbol Transplant timing Transplant cell type Transplant cell number Engraftment period Maximum chimerism
(日) (陽性器官) (Day) (positive organ)
D3585 45 CD3除去 3.0X10Y 38 5.1% (FL)D3585 45 CD3 removal 3.0X10 Y 38 5.1% (FL)
D3433 45 CD3除去 2.4X108 81 PCR (BM)D3433 45 CD3 removal 2.4X10 8 81 PCR (BM)
D3585 44 CD 3除去 1.0X108 110 PCR (BM) 冊 41 35 CD3除去 1. ox 82 PCR (BM)D3585 44 CD3 removal 1.0X10 8 110 PCR (BM) Volume 41 35 CD3 removal 1.ox 82 PCR (BM)
W502 42 CD3除去 4.4X107 82 PCR (BM)W502 42 CD3 removal 4.4X10 7 82 PCR (BM)
W393 45 CD34 1.0X106 111 PCR (BM)W393 45 CD34 1.0X10 6 111 PCR (BM)
D3476 46 CD34 1.5X106 123 PCR (BM)D3476 46 CD34 1.5X10 6 123 PCR (BM)
D3584 43 CD34 3.9X105 123 PCR (BM)D3584 43 CD34 3.9X10 5 123 PCR (BM)
D3571 42 CD34 6.0X105 57 PCR (BM) 1048 37 CD34 1.1X106 47 0.04% (BM)D3571 42 CD34 6.0X10 5 57 PCR (BM) 1048 37 CD34 1.1X10 6 47 0.04% (BM)
W549 35 CD34 7.0X105 142 0.58% (BM)W549 35 CD34 7.0X10 5 142 0.58% (BM)
D3735 52 CD34 1.0X106 103 PCR (PBL)D3735 52 CD34 1.0X10 6 103 PCR (PBL)
D3461 43 MNCs 3.5X107 62 PCR (脾臓)D3461 43 MNCs 3.5X10 7 62 PCR (spleen)
W502 45 丽 Cs 4.0X107 85 PCR (脾臓)W502 45 丽 Cs 4.0X10 7 85 PCR (spleen)
CD3除去:約 70%の CD3陽性細胞を臍帯血匪 Csから除去した。 CD3 removal: About 70% of CD3 positive cells were removed from umbilical cord blood band Cs.
丽 Cs:未精製の臍帯血丽 Cs 丽 Cs: unpurified cord blood 丽 Cs
PCR: PCIUこよってヒト細胞を検出した。 PCR: Human cells were detected by PCIU.
FL:胎仔肝臓 FL: fetal liver
BM:骨髄 BM: bone marrow
%は、 FACSでのヒト細胞のブ夕血液に占める割合を示す。 表 2は、 移植成功例の移植時期 (妊娠後日数) 、 移植細胞タイプ、 移植細胞数 (個) 、 移植後解析までの期間 (生着期間) 、 解析結果 (キメリズム) について 示したものである。 移植後長期にわたり生着が認められたものはすべて妊娠 52 日以前に移植を行ったものであり、特に妊娠 35日から 37日に CD34陽性細胞を移 植した場合にキメリズムは高かった。%は FACSでのヒト細胞のブ夕血液に占める 割合を示し、 PCRはヒト細胞は FACS感度以下のキメリズムで、 PCRにてヒト細胞 が同定されたことを示している。
(3) ヒト造血幹細胞移植成立への移植時期の関与 % Indicates the percentage of human cells in the blood by FACS. Table 2 shows the transplantation timing (days after pregnancy), transplanted cell type, number of transplanted cells (cells), period until transplantation analysis (engraftment period), and analysis results (chimerism) for successful transplantation cases . All those that survived for a long time after transplantation were transplanted before 52 days of gestation, and chimerism was particularly high when CD34-positive cells were transplanted between days 35 and 37 of gestation. % Indicates the percentage of human cells in the blood of the blood by FACS, and PCR indicates that human cells were identified by PCR with chimerism below the FACS sensitivity. (3) Involvement of transplantation time in the establishment of human hematopoietic stem cell transplantation
ヒト HSCsの子宮内移植成立に適切な妊娠時期を検討した結果、ヒト血液細胞の 生着は妊娠 33日から 52日までの移植で確認された。妊娠 31 日以前の移植は胎仔 が小さく、移植は不確実であった。妊娠 35日の移植ではヒト細胞の高いキメリズ ム(〉0· 1¾) が得られた。 妊娠 32- 52日での移植生着率 (生着率 血液キメラ仔数/ 移植胎仔数 )) は 22/40 (55. 0%) であった (図 8 )。 As a result of examining the appropriate pregnancy time for human HSCs in utero transplantation, engraftment of human blood cells was confirmed in transplants between 33 and 52 days of gestation. Transplants prior to 31st gestation had small fetuses and the transplant was uncertain. Transplantation on the 35th day of pregnancy resulted in high chimerism (> 0.1 ·) of human cells. The transplant survival rate (survival rate, number of blood chimera pups / transplanted fetuses) on pregnancy 32-52 days was 22/40 (55.0%) (FIG. 8).
これより異種動物胎仔への子宮内ヒト造血幹細胞移植が可能となるのはブ夕胎 仔の場合妊娠 33 52日が好ましいと考えられる。 From this, it is considered that the possibility of transplantation of human hematopoietic stem cells in utero to xenogeneic fetuses is preferable in the case of a fetus in the 33rd day of pregnancy.
生着例を表 3にまとめた。 Table 3 shows examples of engraftment.
表 3 生着と移植時期との関係 Table 3 Relationship between engraftment and transplantation time
移植時期 被移植仔数 キメラ新生仔数 Transplant period Number of offspring Number of chimeric neonates
(妊娠後日数) (Days after pregnancy)
31-39 10 3 31-39 10 3
40-49 30 8 40-49 30 8
50-78 12 3* 50-78 12 3 *
* :移植は、 全て 52日目に行った t *: Transplantation, went to all 52 day t
(4) 移植成立例の検討 (4) Examination of transplantation success cases
ヒト血球はブ夕胎仔の様々な臓器で確認され、 最長では移植後 315日間にわた りヒト細胞が確認できた。 移植の成立は、 丽 Cs CD3除去丽 Cs及び CD34+細胞の いずれでも認められたが、 長期間 FACSで解析できるレベルのキメリズムは CD34+ 細胞の移植の場合のみに認められた。 一方、 ブ夕血液中に占めるヒト細胞の頻度 は、 PCR法によって検出することができた (表 2 ) Human blood cells were identified in various organs of the fetus, and up to 315 days after transplantation, human cells were identified. Successful transplantation was observed in both 丽 Cs CD3 depleted 丽 Cs and CD34 + cells, but chimerism at a level that could be analyzed by long-term FACS was observed only in the case of CD34 + cell transplantation. On the other hand, the frequency of human cells in the blood could be detected by PCR (Table 2).
表 2の W1048は、 CD34+細胞の移植後 47 日目に帝王切開により妊娠を中断し、 その胎仔を解析したものである。その結果、 ヒト血液細胞は胎仔の末梢血、 骨髄、 肝臓、 脾臓に FACSで同定され、 ヒト T細胞を除く全ての血球 (B細胞、 NK細胞、 骨髄球、 巨核球) の存在が確認された。 興味深いことに、 胸腺においては他の臓 器に存在しないヒト T細胞が同定され、 一方、 他の表面抗原を持つ細胞は存在し なかった (図 5右列) 。 W1048 in Table 2 was obtained by suspending pregnancy by cesarean section on day 47 after transplantation of CD34 + cells and analyzing the fetuses. As a result, human blood cells were identified in fetal peripheral blood, bone marrow, liver, and spleen by FACS, and the presence of all blood cells (B cells, NK cells, myeloid cells, and megakaryocytes) except human T cells was confirmed. . Interestingly, human T cells were identified in the thymus that were not present in other organs, while no cells with other surface antigens were present (Figure 5, right column).
W549の仔はその骨髄中にヒト血球が 0. 58%の頻度で存在した。 生着したヒト血
球(CM5+細胞)に占める分化抗原の解析では、その 6. 5¾が CD19+ (B細胞系)、 96. 5% が CD13, 14, 33+ (骨髄球系) であり、 このプ夕にも T細胞は存在していなかった。 ヒト造血前駆細胞のマーカーである CD34はヒト血球の 21. 0%に発現しており、 ブ 夕骨髄中でヒト HSCsが生着、 分化していることが確認できた (図 7) 。 W549 pups contained 0.58% human blood cells in their bone marrow. Survived human blood Analysis of the differentiation antigens in the spheres (CM5 + cells) revealed that 6.5¾ was CD19 + (B cell lineage) and 96.5% was CD13, 14, 33+ (myeloid lineage). No cells were present. CD34, a marker for human hematopoietic progenitor cells, was expressed in 21.0% of human blood cells, confirming that human HSCs had engrafted and differentiated in human bone marrow (Fig. 7).
(5) ブ夕骨髄に存在するヒ卜 CD34陽性細胞の機能解析 (5) Functional analysis of human CD34-positive cells present in bone marrow
妊娠 37日にヒト CD34陽性細胞を 1. 1x10s個移植し、 移植後 46〜47日に胎仔胸 腺を FACSで解析した。 生着したヒト細胞は末梢血、 骨髄、 胸腺、 肝臓、 脾臓の全 ての解析臓器に認められた (図 6) 。 胸腺中にはヒト CD3陽性 T細胞が同定され た。 その表面抗原は CD4又は CD8のシングルポジティブであり、 Q! i3 TCRをもつ ていた。 このことは、 ヒト CD34陽性細胞がブ夕胸腺に移動し、 ヒト T細胞に分化. し得ることを示している (図 4 ) 。 ヒ卜 CD34陽性細胞は骨髄球系 (CD13、 CD 14, CD33) 、 Bリンパ球系 (CD19) 、 NK細胞系 (CD56) 、 血小板系 (CD41、 CD61) と nml U l ineageに分化し生着した。 また骨髄前駆細胞 (CD34) も認め、 このことは CD34 陽性細胞がブタ血中で自己複製又は維持されていることを示す。 胸腺には CD3陽性細胞を認め、ブタ体内で CD34陽性細胞がヒト T細胞に分化し得ることを 示している (図 5 ) 。 On the 37th day of gestation, 1.1 x 10 s human CD34-positive cells were transplanted, and fetal thymus was analyzed by FACS 46 to 47 days after the transplantation. Engrafted human cells were found in all analyzed organs of peripheral blood, bone marrow, thymus, liver, and spleen (Fig. 6). Human CD3-positive T cells were identified in the thymus. The surface antigen was CD4 or CD8 single positive and had a Q! I3 TCR. This indicates that human CD34-positive cells can migrate to the thymus and differentiate into human T cells (Fig. 4). Human CD34-positive cells differentiate and engraft into the myeloid lineage (CD13, CD14, CD33), B lymphocyte lineage (CD19), NK cell lineage (CD56), platelet lineage (CD41, CD61) and nmlUlineage. did. Bone marrow progenitor cells (CD34) were also observed, indicating that CD34-positive cells were self-replicating or maintained in pig blood. CD3-positive cells were found in the thymus, indicating that CD34-positive cells could differentiate into human T cells in pigs (Figure 5).
図 7は、ヒト CD34陽性細胞移植後出生した仔の骨髄の解析結果を示す図である。 妊娠 35日にヒト CD34陽性細胞を移植したところ、 キメラブ夕が出生した。 キメ リズムは骨髄で 0. 6 % (移植後 88日目) であった。 このブタはその後正常に発育 した。 ヒト細胞は骨髄系、 B細胞系の両者とともに、 CD34陽性の骨髄前駆細胞に も分化していた。 FIG. 7 shows the results of bone marrow analysis of offspring born after transplantation of human CD34-positive cells. On transplantation of human CD34-positive cells on the 35th day of gestation, chimeras were born. Chimerism was 0.6% in bone marrow (88 days after transplantation). The pig then developed normally. Human cells differentiated into both myeloid and B cell lines as well as CD34-positive myeloid progenitors.
以上をまとめると、 骨髄と肝臓では、 B細胞、 骨髄球系細胞、 NK細胞、 巨核球、 及び T細胞を除く全ての系列のヒト血球細胞が同定された。 一方、 胸腺では CD3 陽性のヒト T細胞のみが同定され、 他の系列のヒ卜血球細胞抗原を発現している 細胞は認めなかった。 この胸腺中に存在する T細胞は CD3陽性、 CM陽性であり、 a i8 T細胞レセプ夕一 (TCR) をもつ T細胞であった。 In summary, in the bone marrow and liver, all lineages of human blood cells except B cells, myeloid cells, NK cells, megakaryocytes, and T cells were identified. On the other hand, only CD3-positive human T cells were identified in the thymus, and no cells expressing other lineage human blood cell antigens were found. The T cells present in the thymus were CD3-positive and CM-positive, and were T cells with ai8 T-cell receptor (TCR).
更にブタ (W549の仔) の骨髄中に存在するヒト CD34+細胞の機能解析を行つ た。 CD45+ CD34+ Pig—細胞をプ夕骨髄から FACSソーティングにより回収し (図 9A) 、
そのコロニー形成能と SCIDマウス骨髄再建能を確認した。その結果、 この細胞は 骨髄球系、 赤血球系のいずれのコロニーも形成する能力を持ち (図 9C,D) 、 また 亜致死線量放射線照射した N0D/SCIDマウスの骨髄に、少なくとも移植後 5週間に わたり生着する (末梢血キメリズム : 0. 17± 0. 23%, n=3) ことを確認した (図 9B) 。 Furthermore, the function of human CD34 + cells present in the bone marrow of pigs (W549 pups) was analyzed. CD45 + CD34 + Pig— cells were collected from the bone marrow by FACS sorting (Figure 9A). The colony forming ability and the SCID mouse bone marrow reconstruction ability were confirmed. As a result, these cells have the ability to form both myeloid and erythroid colonies (Fig. 9C, D), and have been transplanted into the bone marrow of sublethal irradiated N0D / SCID mice at least 5 weeks after transplantation. It survived (peripheral blood chimerism: 0.17 ± 0.23%, n = 3) (Fig. 9B).
3 . 考察 3 Discussion
本発明により、 妊娠ブタを開腹することなく非侵襲的に、 超音波ガイド下にブ 夕胎仔への造血幹細胞移植を行い、 異種移植であってもキメラが成立する方法を 開発した。 ヒト CD34陽性細胞は多くの血液系組織に生着し、 またコロニー形成能 を持つ細胞もブ夕骨髄中に維持されていた。ブタ胸腺では CD34陽性細胞から分化 したヒト T細胞が集積していた。 According to the present invention, a method has been developed in which hematopoietic stem cell transplantation into a fetus is performed non-invasively under ultrasound guidance without laparotomy of pregnant pigs, and a chimera is established even in xenotransplantation. Human CD34-positive cells engrafted in many blood-based tissues, and colony-forming cells were also maintained in the bone marrow. In the porcine thymus, human T cells differentiated from CD34-positive cells were accumulated.
ブ夕胎仔への // eroヒト造血幹細胞移植により、免疫抑制や骨髄機能廃絶処 置なしにヒト血液キメラを作成できることが明らかとなった。 キメラ状態は最長 で移植後 142日まで持続しており、 長期生着が確認された。 It has been clarified that transplantation of // ero human hematopoietic stem cells into fetuses can produce human blood chimeras without immunosuppression or bone marrow abolition treatment. The chimera state lasted up to 142 days after transplantation, confirming long-term engraftment.
ヒト細胞が長期に生着した例の移植時期は妊娠 52日以前であった。このことは 免疫系が発育する前に移植をすることが重要であることを示している。 ブ夕免疫 系について検討した報告では41)、 リンパ球は 28日目以降に同定され、 T細胞とし て認められるのは脾臓や末梢血では 50日目頃とされている。 slgM陽性細胞は 44 日に最初に肝臓に同定される 42)。 この報告は本実験の移植成立時期と矛盾しない。 移植したヒト CD34陽性細胞はブ夕胎仔の中で T細胞を含む多系列の血球細胞に 分化することが示された。 SCIDマウスを用いた系では一般的には T細胞への分化 は認められない。 このことは、 ブ夕という大動物の系は、 ヒト T細胞の分化を W wでアツセィする上で有用であることを示している。胸腺に移動したヒト血液 細胞はブタ胸腺で教育されている可能性がある 43— 45)。 In the case of long-term engraftment of human cells, the transplantation period was before 52 days of gestation. This indicates that it is important to transplant before the immune system develops. According to a report examining the immune system 41 ), lymphocytes were identified from day 28 onward, and T cells were found around day 50 in spleen and peripheral blood. slgM-positive cells are first identified in the liver on day 44 ( 42 ). This report is consistent with the timing of transplantation in this experiment. The transplanted human CD34-positive cells were shown to differentiate into multilineage blood cells including T cells in the fetus. In the system using SCID mice, differentiation into T cells is not generally observed. This indicates that the large animal system, Busu, is useful for assessing the differentiation of human T cells by Ww. Human blood cells that migrated to the thymus may have been educated in pigs thymus 43 - 45).
一方、 ヒト血液細胞の子宮内移植を行うことで、 移植片対宿主病 (GvHD) が疑 われる胎仔も存在した。 出産時すでに死後長期経過している胎仔にマーカーが確 認される例があり、 また一例では出産時に大量の腹水が存在し死亡した例があつ た。妊娠中の解析では丽 Csを移植したブ夕では T細胞が優勢に増殖しており (表
2; D3585) 、 これらのことから、 移植細胞から T細胞を除くことが望ましいかも しれない。 又はこれを逆に利用することにより、 GvHDモデルとして利用できる可 能性もある。 On the other hand, some fetuses were suspected of having graft-versus-host disease (GvHD) by intrauterine transplantation of human blood cells. Markers were confirmed in fetuses that had already passed long after birth at birth, and in one case, a large amount of ascites was present at birth and died. Analysis of pregnancy revealed that T cells predominantly proliferated in し た Cs-transplanted cells (Table 2; D3585) Therefore, it may be desirable to remove T cells from transplanted cells. Alternatively, by using this in reverse, it may be possible to use it as a GvHD model.
ヒッジの系では、 T細胞の存在はヒト細胞の生着を促進する作用と、 GvHDをも たらす作用の両者があるとされている 46)。 しかしながら、 本発明の方法において は、 ヒッジやィヌを用いた系と異なり、 開腹しないことにより非侵襲的である点 が特徴的である。 また、 Wero移植は、 骨髄機能廃絶処置なしに安全に新生仔 キメラを作出する事ができる。この点も臨床応用を考える上で重要と考えられる。 キメラの作成は、 生後の厳重な管理を必要とする新生児期骨髄移植と比較し簡便 である。 移植実験系に於いては、 PCR レベルでのマイクロキメリズムでも免疫寛 容に有効とされている。 そのため、 ヒト血液キメラになった動物はヒト移植臓器 にも寛容となっている可能性があり、 将来的な応用も可能である。 ブ夕は多胎動 物であるため、 様々な細胞をマーカーを変えて移植することで同時に様々なアツ セィを行い得るメリッ卜がある。 本明細書で引用した全ての刊行物、 特許及び特許出願は、 そのまま参考として 本明細書に取り入れるものとする。 参考文献 In the Higgies system, the presence of T cells is said to have both an effect of promoting the engraftment of human cells and an effect of causing GvHD46 ) . However, the method of the present invention is characterized in that it is non-invasive by not performing laparotomy, unlike the system using a sheep or dog. In addition, Wero transplantation can safely produce neonatal chimera without bone marrow abolition treatment. This point is also considered important in considering clinical applications. The creation of chimeras is simpler than that of neonatal bone marrow transplantation, which requires strict postnatal care. In transplantation experiments, microchimerism at the PCR level is also effective for immunological tolerance. Therefore, animals that have become human blood chimeras may be tolerant to human transplant organs, and future applications are possible. Since Buyu is a multi-fetal animal, there is an advantage that various assays can be performed simultaneously by transplanting various cells with different markers. All publications, patents, and patent applications cited in this specification are incorporated herein by reference in their entirety. References
1. Osawa M, Hanada K, Hamada H, Nakauchi H: Long-term lymphohematopoietic reconstitution by a single CD34- low/negative hematopoietic stem cell. Science 273:242-5, 1996 1. Osawa M, Hanada K, Hamada H, Nakauchi H: Long-term lymphohematopoietic reconstitution by a single CD34- low / negative hematopoietic stem cell. Science 273: 242-5, 1996
2. Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdorp PM: Characterization and partial purification of human marrow cells capable of initiating long-term ematopoiesis in vitro. Blood 74: 1563-70, 1989 2. Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdorp PM: Characterization and partial purification of human marrow cells capable of initiating long-term ematopoiesis in vitro.Blood 74: 1563-70, 1989
3. Breems DA, Blokland EA, Neben S, Ploemacher RE: Freauency analysis of human primitive haematopoietic stem cell subsets using a cobblestone area forming cell assay. Leukemia 8: 1095-104, 1994 3. Breems DA, Blokland EA, Neben S, Ploemacher RE: Freauency analysis of human primitive haematopoietic stem cell subsets using a cobblestone area forming cell assay.Leukemia 8: 1095-104, 1994
4. Eaves CJ, Sutherland HJ, Udomsakdi C, Lansdorp PM, Szilvassy
SJ, Fraser CC, Humphries RK, Barnett MJ, Phillips GL, Eaves AC: The human hematopoietic stem cell in vitro and in vivo [see comments] . Blood Cells 18:301-7, 1992 4. Eaves CJ, Sutherland HJ, Udomsakdi C, Lansdorp PM, Szilvassy SJ, Fraser CC, Humphries RK, Barnett MJ, Phillips GL, Eaves AC: The human hematopoietic stem cell in vitro and in vivo [see comments] .Blood Cells 18: 301-7, 1992
5. Bosma GC, Custer RP, Bosma MJ: A severe combined immunodeficiency mutation in the mouse. Nature 301:527-30, 1983 5. Bosma GC, Custer RP, Bosma MJ: A severe combined immunodeficiency mutation in the mouse.Nature 301: 527-30, 1983
6. Shultz LD, Schweitzer PA, Christ ianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Raj an TV, Greiner DL, et al.: Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J I匪 unol 154:180-91, 1995 6. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL, et al .: Multiple defects in innate and adaptive immunologic function in NOD / LtSz -scid mice.JI marauder unol 154: 180-91, 1995
7. Ziegler BL, Valtieri M, Porada GA, De Maria , Muller R, Masella B, Gabbianelli M, Casella I, Pelosi E, Bock T, Zanjani ED, Pesc le C: KDR receptor: a key marker defining hematopoietic stem cells. Science 285:1553-8, 1999 7. Ziegler BL, Valtieri M, Porada GA, De Maria, Muller R, Masella B, Gabbianelli M, Casella I, Pelosi E, Bock T, Zanjani ED, Pesc le C: KDR receptor: a key marker defining hematopoietic stem cells. Science 285: 1553-8, 1999
8. Peled A, Petit I, Kollet 0, MagidM, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider 0, Alon R, Zipori D, Lapidot T: Dependence of human stem cell engraf tment and re卿 ulation of NOD/SCID mice on CXCR4. Science 283:845-8, 1999 8. Peled A, Petit I, Kollet 0, MagidM, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider 0, Alon R, Zipori D, Lapidot T: Dependence of human stem cell engraf tment and re lord of NOD / SCID mice on CXCR4.Science 283: 845-8, 1999
9. Miyos i H, Smith KA, Mosier DE, Vernia IM, Torbett BE: Transduction of human CD34+ cells that mediate long-term engraf tment of NOD/SCID mice by HIV vectors. Science 283:682-6, 1999 9. Miyos i H, Smith KA, Mosier DE, Vernia IM, Torbett BE: Transduction of human CD34 + cells that mediate long-term engraftment of NOD / SCID mice by HIV vectors.Science 283: 682-6, 1999
10. Bhatia M, Bonnet D, Murdoch B, Gan 01, Dick JE: A newly discovered class of human hematopoietic cells with SCID- repopulating activity [see comments] . Nat Med 4: 1038-45, 1998 10. Bhatia M, Bonnet D, Murdoch B, Gan 01, Dick JE: A newly discovered class of human hematopoietic cells with SCID- repopulating activity [see comments]. Nat Med 4: 1038-45, 1998
11. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T, Moritz T, Murdoch B, Xiao XL, Kato I, Williams DA, Dick JE: Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene t erapy. Nat Med 2:1329-37, 1996 11. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T, Moritz T, Murdoch B, Xiao XL, Kato I, Williams DA, Dick JE: Identification of primitive human hematopoietic cells capable of repopulating NOD / SCID. mouse bone marrow: implications for gene t erapy.Nat Med 2: 1329-37, 1996
12. C ashman JD, Eaves CJ: Human growth factor-enhanced
regeneration of transplantable human hematopoietic stem cells in nonobese diabetic/severe combined immunodef icient mice. Blood 93:481-7, 1999 12. C ashman JD, Eaves CJ: Human growth factor-enhanced regeneration of transplantable human hematopoietic stem cells in nonobese diabetic / severe combined immunodef icient mice.Blood 93: 481-7, 1999
13. Turner CW, Archer肌 Wong J, Yeager AM, Fleming WH: In utero transplantation of human fetal haemopoietic cells in NOD/SCID mice. Br J Haematol 103:326-34, 1998 13. Turner CW, Archer skin Wong J, Yeager AM, Fleming WH: In utero transplantation of human fetal haemopoietic cells in NOD / SCID mice. Br J Haematol 103: 326-34, 1998
14. Flake AW, Harrison MR, Adzick NS, Zanjani ED: Transplantation of fetal hematopoietic stem cells in utero: the creation of hematopoietic chimeras. Science 233:776-8, 1986 14. Flake AW, Harrison MR, Adzick NS, Zanjani ED: Transplantation of fetal hematopoietic stem cells in utero: the creation of hematopoietic chimeras. Science 233: 776-8, 1986
15. Zanjani ED, Almeida - Porada G, Livingston AG, Porada CD, Ogawa M: Engraf tment and multilineage expression of human bone marrow CD 34- cells in vivo. Ann N Y Acad Sci 872:220-31; discussion 231-2, 1999 15. Zanjani ED, Almeida-Porada G, Livingston AG, Porada CD, Ogawa M: Engraftment and multilineage expression of human bone marrow CD 34- cells in vivo.Ann NY Acad Sci 872: 220-31; discussion 231-2, 1999
16. Kawashima I, Zanjani ED, Almaida-Porada G, Flake AW, Zeng H, Ogawa M: CD34+ human marrow cells that express low levels of Kit protein are enriched for long-term marrow-engrafting cells. Blood 87:4136-42, 1996 16.Kawashima I, Zanjani ED, Almaida-Porada G, Flake AW, Zeng H, Ogawa M: CD34 + human marrow cells that express low levels of Kit protein are enriched for long-term marrow-engrafting cells.Blood 87: 4136-42 , 1996
17. Zanjani ED, Almeida - Porada G, Livingston AG, Flake AW, Ogawa M: Human bone marrow CD34- cells engraft in vivo and undergo multilineage 17. Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M: Human bone marrow CD34- cells engraft in vivo and undergo multilineage
o o
expression that includes giving rise to CD34+ cells [see comments] . Exp Hematol 26:353-60, 1998 expression that includes giving rise to CD34 + cells [see comments]. Exp Hematol 26: 353-60, 1998
18. Shimizu Y, Ogawa M, Kobayashi M, Almeida - Porada G, Zanjani ED: Engraf tment of cultured human hematopoietic cells in sheep. Blood 91 :3688-92, 1998 18. Shimizu Y, Ogawa M, Kobayashi M, Almeida-Porada G, Zanjani ED: Engraftment of cultured human hematopoietic cells in sheep. Blood 91: 3688-92, 1998
19. Omori F, Lutzko C, Abrams-Ogg A, Lau K, Gar t ley C, Dobson H, Nanj i S, Ruedy C, Singaraja , Li L, Stewart AK, Kruth S, Dube ID: Adoptive transfer of genetically modified human hematopoietic stem cells into pre immune canine fetuses. Exp Hematol 27:242-9, 1999 19. Omori F, Lutzko C, Abrams-Ogg A, Lau K, Gartley C, Dobson H, Nanj i S, Ruedy C, Singaraja, Li L, Stewart AK, Kruth S, Dube ID: Adoptive transfer of genetically modified human hematopoietic stem cells into pre immune canine fetuses.Exp Hematol 27: 242-9, 1999
20. Reece EA: First trimester prenatal diagnosis: embryoscopy and fetoscopy. Semin Perinatol 23:424-33, 1999 20. Reece EA: First trimester prenatal diagnosis: embryoscopy and fetoscopy. Semin Perinatol 23: 424-33, 1999
21. Delisle MF, Wilson RD: First trimester prenatal diagnosis: amniocentesis. Semin Perinatol 23:414-23, 1999
22. Jenkins TM, Wapner RJ: First trimester prenatal diagnosis : chorionic villus sampling. Semin Perinatol 23:403-13, 1999 21. Delisle MF, Wilson RD: First trimester prenatal diagnosis: amniocentesis. Semin Perinatol 23: 414-23, 1999 22. Jenkins TM, Wapner RJ: First trimester prenatal diagnosis: chorionic villus sampling.Semin Perinatol 23: 403-13, 1999
23. Pertl B, Bianchi DW: First trimester prenatal diagnosis: fetal cells in the maternal circulation. Semin Perinatol 23 :393-402, 1999 23.Pertl B, Bianchi DW: First trimester prenatal diagnosis: fetal cells in the maternal circulation.Semin Perinatol 23: 393-402, 1999
24. Pallavicini MG, Flake AW, Madden D, Bethel C, Duncan B, Gonzalgo ML, Haendel S, Montoya T, Roberts L: Hemopoietic chimerism in rodents transplanted in utero with, fetal human hemopoietic cells. Transplant Proc 24:542-3, 1992 24. Pallavicini MG, Flake AW, Madden D, Bethel C, Duncan B, Gonzalgo ML, Haendel S, Montoya T, Roberts L: Hemopoietic chimerism in rodents transplanted in utero with, fetal human hemopoietic cells. Transplant Proc 24: 542-3 , 1992
25. Pearce RD, Kiehm D, Armstrong DT, Little PB, Callahan JW, Klunder LR, Clarke JT: Induction of hemopoietic chimerism in the caprine fetus by intraperitoneal injection of fetal liver cells. Experienti'a 45:307-8, 1989 25. Pearce RD, Kiehm D, Armstrong DT, Little PB, Callahan JW, Klunder LR, Clarke JT: Induction of hemopoietic chimerism in the caprine fetus by intraperitoneal injection of fetal liver cells. Experienti'a 45: 307-8, 1989
26. Archer DR, Turner CW, Yeager AM, Fleming WH: Sustained multilineage engraf tment of allogeneic hematopoietic stem cells in NOD/SCID mice after in utero transplantation. Blood 90:3222-9, 1997 26. Archer DR, Turner CW, Yeager AM, Fleming WH: Sustained multilineage engraftment of allogeneic hematopoietic stem cells in NOD / SCID mice after in utero transplantation. Blood 90: 3222-9, 1997
27. Howson-Jan K, Matloub YH, Vallera DA, Blazar BR: In utero engraf tment of fully H - 2 - incompatible versus congenic adult bone marrow transferred into 謹 anemic or anemic murine fetal recipients. Transplantation 56:709-16, 1993 27. Howson-Jan K, Matloub YH, Vallera DA, Blazar BR: In utero engraftment of fully H-2-incompatible versus congenic adult bone marrow transferred into graceful anemic or anemic murine fetal recipients.Transplantation 56: 709-16, 1993
28. Carrier E, Lee TH, Busch MP, Cowan MJ: Induction of tolerance in nondefective mice after in utero transplantation of major histocompatibility complex-mismatched fetal hematopoietic stem cells. Blood 86:4681-90, 1995 28. Carrier E, Lee TH, Busch MP, Cowan MJ: Induction of tolerance in nondefective mice after in utero transplantation of major histocompatibility complex-mismatched fetal hematopoietic stem cells. Blood 86: 4681-90, 1995
29. Harrison MR, SlotnickRN, Crombleholme TM, Golbus MS, Tarantal AF, Zanjani ED: In - utero transplantation of fetal liver haemopoietic stem cells in monkeys. Lancet 2: 1425-7, 1989 29. Harrison MR, SlotnickRN, Crombleholme TM, Golbus MS, Tarantal AF, Zanjani ED: In-utero transplantation of fetal liver haemopoietic stem cells in monkeys. Lancet 2: 1425-7, 1989
30. Rood賺 GD, Kuehl TJ, Vandeberg JL, Muirhead DY: In utero bone marrow transplantation of fetal baboons with mismatched adult baboon marrow. Blood Cells 17:367-75, 1991
31. Cowan MJ, Tarantal AF, Capper J, Harrison M, Garovoy M: Long-term engraf tment following in utero T cell-depleted parental marrow transplantation into fetal rhesus monkeys. Bone Marrow Transplant 17: 1157-65, 1996 30.Rood Note GD, Kuehl TJ, Vandeberg JL, Muirhead DY: In utero bone marrow transplantation of fetal baboons with mismatched adult baboon marrow. Blood Cells 17: 367-75, 1991 31. Cowan MJ, Tarantal AF, Capper J, Harrison M, Garovoy M: Long-term engraftment following in utero T cell-depleted parental marrow transplantation into fetal rhesus monkeys.Bone Marrow Transplant 17: 1157-65, 1996
32. Shields LE, Bryant EM, Easterling TR, Andrews RG: Fetal liver cell transplantation for the creation of lymphohematopoietic chimerism in fetal baboons. Am J Obstet Gynecol 173:1157-60, 1995 32. Shields LE, Bryant EM, Easterling TR, Andrews RG: Fetal liver cell transplantation for the creation of lymphohematopoietic chimerism in fetal baboons. Am J Obstet Gynecol 173: 1157-60, 1995
33. Wengler GS, Lanfranchi A, Frusca T, Verardi R, Neva A, Brugnoni D, Giliani S, Fiorini M, Mel la P, Guandalini F, Mazzolari E, Pecorelli S, Notarangelo LD, Porta F, Ugazio AG: In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X- linked severe combined immunodeficiency (SCIDXI). Lancet 348:1484-7, 1996 33. Wengler GS, Lanfranchi A, Frusca T, Verardi R, Neva A, Brugnoni D, Giliani S, Fiorini M, Mel la P, Guandalini F, Mazzolari E, Pecorelli S, Notarangelo LD, Porta F, Ugazio AG: In- utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X- linked severe combined immunodeficiency (SCIDXI) .Lancet 348: 1484-7, 1996
34. Flake AW, Zanjani ED: In utero hematopoietic stem cell transplantation. A status report. Jama 278:932-7, 1997 34. Flake AW, Zanjani ED: In utero hematopoietic stem cell transplantation. A status report.Jama 278: 932-7, 1997
35. Zanjani ED, Anderson WF: Prospects for in utero human gene therapy [see comments] - Science 285:2084-8, 1999 35. Zanjani ED, Anderson WF: Prospects for in utero human gene therapy [see comments]-Science 285: 2084-8, 1999
36. Morita H, Sugiura K, Inaba M, Jin T, Ishikawa J, Lian Z, Adachi Y, Sogo S, Yamanishi K, Taki H, Adachi M, Noumi T, Kamiyama Y, Good RA, Ikehara S: A strategy for organ allografts without using immunosuppressants or irradiation. Proc Natl Acad Sci U S A 95:6947-52, 1998 36. Morita H, Sugiura K, Inaba M, Jin T, Ishikawa J, Lian Z, Adachi Y, Sogo S, Yamanishi K, Taki H, Adachi M, Noumi T, Kamiyama Y, Good RA, Ikehara S: A strategy for organ allografts without using immunosuppressants or irradiation.Proc Natl Acad Sci USA 95: 6947-52, 1998
37. Kim HB, Shaaban AF, Yang EY, Liechty KW, Flake AW: Microchimerism and tolerance after in utero bone marrow transplantation in mice. J Surg Res 77:1-5, 1998 37. Kim HB, Shaaban AF, Yang EY, Liechty KW, Flake AW: Microchimerism and tolerance after in utero bone marrow transplantation in mice.J Surg Res 77: 1-5, 1998
38. I(o S, Deiwick A, Jager MD, Dinkel A, Rohde F, Fischer R, Tsui TY, ittmann KL, Wonigeit K, Sc litt HJ: The functional relevance of passenger leukocytes and microchimerism for heart allograft acceptance in the rat. Nat Med 5:1292-7, 1999 38.I (o S, Deiwick A, Jager MD, Dinkel A, Rohde F, Fischer R, Tsui TY, ittmann KL, Wonigeit K, Sc litt HJ: The functional relevance of passenger leukocytes and microchimerism for heart allograft acceptance in the rat . Nat Med 5: 1292-7, 1999
39. Sykes M, Szot GL, Swenson KA, Pearson DA: Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific
tolerance without myelos卿 ressive conditioning. Nat Med 3:783-7, 199739. Sykes M, Szot GL, Swenson KA, Pearson DA: Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelos ressive conditioning.Nat Med 3: 783-7, 1997
40. Sykes M: Hematopoietic cell trans lantation for the induction of alio- and xeno tolerance. Clin Transplant 10:357-63, 1996 40.Sykes M: Hematopoietic cell trans lantation for the induction of alio- and xeno tolerance.Clin Transplant 10: 357-63, 1996
41. Trebic avsky I, Tlaskalova H, Cukrowska B, Splichal I, Sinkora J, Oe akova Z, Sinkora M, Pospisil , Kovaou F, Charley B, Binns R, White A: Early ontogeny of imiune cells and their functions in the fetal ig. Vet Immunol Im匪 opathol 54:75-81, 1996 41. Trebic avsky I, Tlaskalova H, Cukrowska B, Splichal I, Sinkora J, Oe akova Z, Sinkora M, Pospisil, Kovaou F, Charley B, Binns R, White A: Early ontogeny of imiune cells and their functions in the fetal ig. Vet Immunol Im mardal opathol 54: 75-81, 1996
42. Tlaskalova-Hogenova H, Mandel L, Trebichavsky I, Kovaru F, Barot R, Sterzl J: Development of immune responses in early pig ontogeny. Vet I匪 imol Immimopathol 43:135-42, 1994 42. Tlaskalova-Hogenova H, Mandel L, Trebichavsky I, Kovaru F, Barot R, Sterzl J: Development of immune responses in early pig ontogeny. Vet I marauding imol Immimopathol 43: 135-42, 1994
43. Zhao Y, Fishman J A, Sergio JJ, Oliveros JL, Pearson DA, Szot GL, Wilkinson RA, Arn JS, Sachs DH, Sykes M: Immune restoration by fetal pig t ymus grafts in T cell-depleted, thymectomized mice. J Immunol 158 : 1641-9, 1997 43. Zhao Y, Fishman JA, Sergio JJ, Oliveros JL, Pearson DA, Szot GL, Wilkinson RA, Arn JS, Sachs DH, Sykes M: Immune restoration by fetal pig t ymus grafts in T cell-depleted, thymectomized mice. J Immunol 158: 1641-9, 1997
44. Zhao Y, Sergio JJ, Swenson K, Arn JS, Sachs DH, Sykes M: Positive and negative selection of functional mouse CD4 cells by porcine MHC in pig thymus grafts. J Immunol 159:2100-7, 1997 44. Zhao Y, Sergio JJ, Swenson K, Arn JS, Sachs DH, Sykes M: Positive and negative selection of functional mouse CD4 cells by porcine MHC in pig thymus grafts. J Immunol 159: 2100-7, 1997
45. Zhao Y, Swenson K, Sergio JJ, Sykes M: Pig MHC mediates positive selection of mouse CD4+ T cells with a mouse MHC - res trie ted TCR in pig thymus grafts. J Immunol 161:1320-6, 1998 45. Zhao Y, Swenson K, Sergio JJ, Sykes M: Pig MHC mediates positive selection of mouse CD4 + T cells with a mouse MHC-res trieted TCR in pig thymus grafts. J Immunol 161: 1320-6, 1998
46. Croible olme TM, Harrison MR, Zanjani ED: In utero transplantation of hematopoietic stem cells in sheep: the role of T cells in engraf tinent and graft - versus - host disease. J Pediatr Surg 25:885-92, 1990 産業上の利用可能性 46. Croible olme TM, Harrison MR, Zanjani ED: In utero transplantation of hematopoietic stem cells in sheep: the role of T cells in engraf tinent and graft-versus-host disease.J Pediatr Surg 25: 885-92, 1990 Industrial Availability of
本発明により、 ヒト血液を含有するキメラ家畜動物及びその製造方法が提供さ れる。 本発明の動物は、 ヒトの疾患に対する医薬等を開発するための実験動物等 として有用である。
配列表フリーテキス卜 配列番号 1 :合成 DNA 配列番号 2 :合成 DNA
The present invention provides a chimeric livestock animal containing human blood and a method for producing the same. The animal of the present invention is useful as an experimental animal or the like for developing a drug or the like for a human disease. Sequence Listing Free Text SEQ ID NO: 1: Synthetic DNA SEQ ID NO: 2: Synthetic DNA
Claims
1 . ヒト血液を含有するキメラ動物。 1. Chimeric animals containing human blood.
2 . 動物がブタである請求項 1記載のキメラ動物。 2. The chimeric animal according to claim 1, wherein the animal is a pig.
3 . 造血幹細胞を動物の胎仔に移植することを特徴とするキメラ動物の製造方法。 3. A method for producing a chimeric animal, which comprises transplanting hematopoietic stem cells into an embryo of the animal.
4 . 胎仔が妊娠 30日〜 60日のものである請求項 3記載の製造方法。
4. The method according to claim 3, wherein the fetus is from 30 to 60 days of gestation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU32264/01A AU3226401A (en) | 2000-02-10 | 2001-02-09 | Chimeric animal containing human blood |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-34276 | 2000-02-10 | ||
JP2000034276A JP2005229802A (en) | 2000-02-10 | 2000-02-10 | Chimeric animal containing human blood |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001058255A1 true WO2001058255A1 (en) | 2001-08-16 |
Family
ID=18558640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/000961 WO2001058255A1 (en) | 2000-02-10 | 2001-02-09 | Chimeric animal containing human blood |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2005229802A (en) |
AU (1) | AU3226401A (en) |
WO (1) | WO2001058255A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107920499A (en) * | 2015-06-22 | 2018-04-17 | 全国农业协同组合连合会 | The production method of blood chimerism animal |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5841322B2 (en) * | 2010-04-22 | 2016-01-13 | オレゴン ヘルス アンド サイエンス ユニバーシティ | Fumaryl acetoacetate hydrolase (FAH) deficient pig and use thereof |
JP6124348B2 (en) * | 2011-09-27 | 2017-05-10 | 公立大学法人横浜市立大学 | Tissue and organ production methods |
EP3712266A4 (en) * | 2017-11-17 | 2021-08-18 | University of Tsukuba | Non-human animal and method for producing same |
-
2000
- 2000-02-10 JP JP2000034276A patent/JP2005229802A/en active Pending
-
2001
- 2001-02-09 AU AU32264/01A patent/AU3226401A/en not_active Abandoned
- 2001-02-09 WO PCT/JP2001/000961 patent/WO2001058255A1/en active Application Filing
Non-Patent Citations (3)
Title |
---|
COLAS G. ET AL., TRANSPLANTATION, vol. 67, no. 7, 1999, pages 984 - 990, XP002941586 * |
PIXLY J.S. ET AL., PATHOBIOLOGY, vol. 66, 1998, pages 230 - 239, XP002941584 * |
SHIMIZU Y. ET AL., BLOOD, vol. 91, no. 10, 1998, pages 3688 - 3692, XP002941585 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107920499A (en) * | 2015-06-22 | 2018-04-17 | 全国农业协同组合连合会 | The production method of blood chimerism animal |
EP3311660A4 (en) * | 2015-06-22 | 2018-11-14 | National Federation of Agricultural Cooperative Associations | Method for producing blood chimeric animal |
US11432537B2 (en) | 2015-06-22 | 2022-09-06 | The University Of Tokyo | Method for producing blood chimeric animal |
Also Published As
Publication number | Publication date |
---|---|
JP2005229802A (en) | 2005-09-02 |
AU3226401A (en) | 2001-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Andrews et al. | CD34+ marrow cells, devoid of T and B lymphocytes, reconstitute stable lymphopoiesis and myelopoiesis in lethally irradiated allogeneic baboons | |
Reisner et al. | Transplantation for acute leukaemia with HLA-A and B nonidentical parental marrow cells fractionated with soybean agglutinin and sheep red blood cells | |
Vormoor et al. | Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice | |
Fukushi et al. | Thymus: a direct target tissue in graft-versus-host reaction after allogeneic bone marrow transplantation that results in abrogation of induction of self-tolerance. | |
Chen et al. | Engraftment of human hematopoietic precursor cells with secondary transfer potential in SCID-hu mice | |
Peranteau et al. | CD26 inhibition enhances allogeneic donor-cell homing and engraftment after in utero hematopoietic-cell transplantation | |
Peranteau et al. | High-level allogeneic chimerism achieved by prenatal tolerance induction and postnatal nonmyeloablative bone marrow transplantation | |
Derderian et al. | In utero depletion of fetal hematopoietic stem cells improves engraftment after neonatal transplantation in mice | |
Bárcena et al. | Human placenta and chorion: potential additional sources of hematopoietic stem cells for transplantation | |
Paterson et al. | The MRC OX-44 antigen marks a functionally relevant subset among rat thymocytes. | |
STEEN et al. | Comparison of the phenotype and clonogenicity of normal CD34+ cells from umbilical cord blood, granulocyte colony-stimulating factor-mobilized peripheral blood, and adult human bone marrow | |
Gandy et al. | Tolerance of allogeneic heart grafts in mice simultaneously reconstituted with purified allogeneic hematopoietic stem CELLS1 | |
Archer et al. | Sustained multilineage engraftment of allogeneic hematopoietic stem cells in NOD/SCID mice after in utero transplantation | |
Fujiki et al. | Successful multilineage engraftment of human cord blood cells in pigs after in utero transplantation | |
Fraser et al. | Human allogeneic stem cell maintenance and differentiation in a long-term multilineage SCID-hu graft | |
de La Selle et al. | Newborn blood can engraft adult mice without inducing graft-versus-host disease across non H-2 antigens | |
Shields et al. | In utero hematopoietic stem cell transplantation in nonhuman primates: the role of T cells | |
Bachar-Lustig et al. | Anti–third-party veto CTLs overcome rejection of hematopoietic allografts: synergism with rapamycin and BM cell dose | |
US20010053362A1 (en) | Applications of immune system tolerance to treatment of various diseases | |
Alegre et al. | Severe combined immunodeficient mice engrafted with human splenocytes have functional human T cells and reject human allografts. | |
Mahajan et al. | A quantitative assessment of the content of hematopoietic stem cells in mouse and human endosteal-bone marrow: a simple and rapid method for the isolation of mouse central bone marrow | |
Antica et al. | Intrathymic lymphoid precursor cells during fetal thymus development. | |
Shields et al. | Fetal liver cell transplantation for the creation of lymphohematopoietic chimerism in fetal baboons | |
Blakemore et al. | In utero hematopoietic stem cell transplantation with haploidentical donor adult bone marrow in a canine model | |
Lee et al. | Stable multilineage chimerism across full MHC barriers without graft-versus-host disease following in utero bone marrow transplantation in pigs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |