WO2001052471A1 - Production d'une nouvelle boite noire pour systeme electronique de droits intellectuels - Google Patents

Production d'une nouvelle boite noire pour systeme electronique de droits intellectuels Download PDF

Info

Publication number
WO2001052471A1
WO2001052471A1 PCT/US2000/023106 US0023106W WO0152471A1 WO 2001052471 A1 WO2001052471 A1 WO 2001052471A1 US 0023106 W US0023106 W US 0023106W WO 0152471 A1 WO0152471 A1 WO 0152471A1
Authority
WO
WIPO (PCT)
Prior art keywords
black box
executable
secret
key file
license
Prior art date
Application number
PCT/US2000/023106
Other languages
English (en)
Inventor
Marcus Peinado
Ramarathnam Venkatesan
Malcolm Davis
Original Assignee
Microsoft Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/525,509 external-priority patent/US7319759B1/en
Application filed by Microsoft Corporation filed Critical Microsoft Corporation
Priority to AU2000269279A priority Critical patent/AU2000269279A1/en
Publication of WO2001052471A1 publication Critical patent/WO2001052471A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/10Protecting distributed programs or content, e.g. vending or licensing of copyrighted material ; Digital rights management [DRM]

Definitions

  • MSFT-0135 / 147325.1 entitled “RELEASING DECRYPTED DIGITAL CONTENT TO AN AUTHENTICATED PATH”
  • U.S. Patent Application No. 09/526,290 Attorney Docket No. MSFT-0136 / 147326.1, entitled “DIGITAL RIGHTS MANAGEMENT SYSTEM OPERATING ON COMPUTING DEVICE AND HAVING BLACK BOX TIED TO COMPUTING DEVICE", each of which is hereby incorporated by reference.
  • the present invention relates to an architecture for enforcing rights in digital content. More specifically, the present invention relates to such an enforcement architecture that allows access to encrypted digital content only in accordance with parameters specified by license rights acquired by a user of the digital content.
  • Digital rights management and enforcement is highly desirable in connection with digital content such as digital audio, digital video, digital text, digital data, digital multimedia, etc., where such digital content is to be distributed to users.
  • Typical modes of distribution include tangible devices such as a magnetic (floppy) disk, a magnetic tape, an optical (compact) disk (CD), etc., and intangible media such as an electronic bulletin board, an electronic network, the Internet, etc.
  • Upon being received by the user such user renders or 'plays' the digital content with the aid of an appropriate rendering device such as a media player on a personal computer or the like.
  • a content owner or rights-owner such as an author, a publisher, a broadcaster, etc.
  • content owner wishes to distribute such digital content to a user or recipient in exchange for a license fee or some other consideration.
  • Such content owner would likely wish to restrict what the user can do with such distributed digital content.
  • the content owner would like to restrict the user from copying and re-distributing such content to a second user, at least in a manner that denies the content owner a license fee from such second user.
  • the content owner may wish to provide the user with the flexibility to purchase different types of use licenses at different license fees, while at the same time holding the user to the terms of whatever type of license is in fact purchased.
  • the content owner may wish to allow distributed digital content to be played only a limited number of times, only for a certain total time, only on a certain type of machine, only on a certain type of media player, only by a certain type of user, etc.
  • the content owner may require the user of the digital content to promise not to re-distribute such digital content.
  • a promise is easily made and easily broken.
  • a content owner may attempt to prevent such re-distribution through any of several known security devices, usually involving encryption and decryption.
  • encryption and decryption there is likely very little that prevents a mildly determined user from decrypting encrypted digital content, saving such digital content in an un-encrypted form, and then re-distributing same.
  • Such controlled rendering environment allows that the digital content will only be rendered as specified by the content owner, even though the digital content is to be rendered on a computing device which is not under the control of the content owner.
  • a trusted software component prevents a user of the computing device from making a copy of such digital content, except as otherwise allowed for by the content owner thereof.
  • the architecture and method enforce rights in protected (secure) digital content available on a medium such as the Internet, an optical disk, etc.
  • the architecture includes a content server from which the digital content is accessible over the Internet or the like in an encrypted form.
  • the content server may also supply the encrypted digital content for recording on an optical disk or the like, wherein the encrypted digital content may be distributed on the optical disk itself.
  • the digital content is encrypted using an encryption key, and public / private key techniques are employed to bind the digital content with a digital license at the user's computing device or client machine.
  • the rendering application invokes a Digital Rights Management (DRM) system on such user's computing device. If the user is attempting to render the digital content for the first time, the DRM system either directs the user to a license server to obtain a license to render such digital content in the manner sought, or transparently obtains such license from such license server without any action necessary on the part of the user.
  • DRM Digital Rights Management
  • KD decryption key
  • the user cannot decrypt and render the encrypted digital content without obtaining such a license from the license server.
  • the obtained license is stored in a license store in the user's computing device.
  • the license server only issues a license to a DRM system that is 'trusted' (i.e., that can authenticate itself).
  • the DRM system is equipped with a 'black box' that performs decryption and encryption functions for such DRM system.
  • the black box includes a public / private key pair, a version number and a unique signature, all as provided by an approved certifying authority.
  • the public key is made available to the license server for purposes of encrypting portions of the issued license, thereby binding such license to such black box.
  • the private key is available to the black box only, and not to the user or anyone else, for purposes of decrypting information encrypted with the corresponding public key.
  • the DRM system is initially provided with a black box with a public / private key pair, and the user is prompted to download from a black box server an updated secure black box when the user first requests a license.
  • the black box server provides the updated black box, along with a unique public/private key pair.
  • Such updated black box is written in unique executable code that will run only on the user's computing device, and is re-updated on a regular basis.
  • a license request also includes an identification of the digital content for which a license is requested and a key ID that identifies the decryption key associated with the requested digital content.
  • the license server uses the black box public key to encrypt the decryption key, and the decryption key to encrypt the license terms, then downloads the encrypted decryption key and encrypted license terms to the user's computing device along with a license signature.
  • the user can render the digital content according to the rights conferred by the license and specified in the license terms.
  • the black box is caused to decrypt the decryption key and license terms, and a DRM system license evaluator evaluates such license terms.
  • the black box decrypts the encrypted digital content only if the license evaluation results in a decision that the requestor is allowed to play such content.
  • the decrypted content is provided to the rendering application for rendering.
  • Fig. 1 is a block diagram showing an enforcement architecture in accordance with one embodiment of the present invention
  • Fig. 2 is a block diagram of the authoring tool of the architecture of Fig. 1 in accordance with one embodiment of the present invention
  • Fig. 3 is a block diagram of a digital content package having digital content for use in connection with the architecture of Fig. 1 in accordance with one embodiment of the present invention
  • Fig. 4 is a block diagram of the user's computing device of Fig. 1 in accordance with one embodiment of the present invention
  • Figs. 5A and 5B are flow diagrams showing the steps performed in connection with the Digital Rights Management (DRM) system of the computing device of Fig. 4 to render content in accordance with one embodiment of the present invention
  • Fig. 6 is a flow diagram showing the steps performed in connection with the DRM system of Fig. 4 to determine whether any valid, enabling licenses are present in accordance with one embodiment of the present invention
  • Fig. 7 is a flow diagram showing the steps performed in connection with the DRM system of Fig. 4 to obtain a license in accordance with one embodiment of the present invention
  • Fig. 8 is a block diagram of a digital license for use in connection with the architecture of Fig. 1 in accordance with one embodiment of the present invention
  • Fig. 9 is a flow diagram showing the steps performed in connection with the DRM system of Fig. 4 to obtain a new black box in accordance with one embodiment of the present invention.
  • Fig. 10 is a flow diagram showing the key transaction steps performed in connection with the DRM system of Fig. 4 to validate a license and a piece of digital content and render the content in accordance with one embodiment of the present invention
  • Fig. 11 is a block diagram showing the license evaluator of Fig. 4 along with a Digital Rights License (DRL) of a license and a language engine for interpreting the DRL in accordance with one embodiment of the present invention
  • Fig. 12 is a block diagram representing a general purpose computer system in which aspects of the present invention and/or portions thereof may be incorporated;
  • Fig. 13 is a block diagram showing a representative path between a rendering application and an ultimate destination
  • Figs. 14-16 are flow diagrams showing various steps performed during authentication of the path of Fig. 13 ;
  • Fig. 17 is a flow diagrams showing various steps performed during security approval of the rendering application or a path module of Fig. 13;
  • Fig. 18 is a flow diagram showing various steps performed during derivation of a decryption key (KD) from a key ID);
  • Fig. 19 is a block diagram showing apparatus employed to produce a new individualized bb.dll and a new key file for a black box in one embodiment of the present invention;
  • Figs. 20A-20D are flow diagrams showing various steps performed in connection with the apparatus shown in Fig. 19;
  • Fig. 21 is a flow diagram showing various steps performed during backup
  • Fig. 22 is a flow diagram showing various steps performed during backup / restore of a digital license.
  • Fig. 1 an enforcement architecture 10 in accordance with one embodiment of the present invention.
  • the enforcement architecture 10 allows an owner of digital content 12 to specify license rules that must be satisfied before such digital content 12 is allowed to be rendered on a user's computing device 14.
  • license rules are embodied within a digital license 16 that the user / user's computing device 14 (hereinafter, such terms are interchangeable unless circumstances require otherwise) must obtain from the content owner or an agent thereof.
  • the digital content 12 is distributed in an encrypted form, and may be distributed freely and widely.
  • the decrypting key (KD) for decrypting the digital content 12 is included with the license 16.
  • Fig. 12 and the following discussion are intended to provide a brief general description of a suitable computing environment in which the present invention and/or portions thereof may be implemented.
  • the invention is described in the general context of computer-executable instructions, such as program modules, being executed by a computer, such as a client workstation or a server.
  • program modules include routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types.
  • the invention and/or portions thereof may be practiced with other computer system configurations, including hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers and the like.
  • the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote memory storage devices.
  • an exemplary general purpose computing system includes a conventional personal computer 120 or the like, including a processing unit 121, a system memory 122, and a system bus 123 that couples various system components including the system memory to the processing unit 121.
  • the system bus 123 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures.
  • the system memory includes read-only memory (ROM) 124 and random access memory (RAM) 125.
  • ROM read-only memory
  • RAM random access memory
  • a basic input/output system 126 (BIOS) containing the basic routines that help to transfer information between elements within the personal computer 120, such as during start-up, is stored in ROM 124.
  • the personal computer 120 may further include a hard disk drive 127 for reading from and writing to a hard disk (not shown), a magnetic disk drive 128 for reading from or writing to a removable magnetic disk 129, and an optical disk drive 130 for reading from or writing to a removable optical disk 131 such as a CD-ROM or other optical media.
  • the hard disk drive 127, magnetic disk drive 128, and optical disk drive 130 are connected to the system bus 123 by a hard disk drive interface 132, a magnetic disk drive interface 133, and an optical drive interface 134, respectively.
  • the drives and their associated computer-readable media provide non- volatile storage of computer readable instructions, data structures, program modules and other data for the personal computer 20.
  • exemplary environment described herein employs a hard disk, a removable magnetic disk 129, and a removable optical disk 131
  • other types of computer readable media which can store data that is accessible by a computer may also be used in the exemplary operating environment.
  • Such other types of media include a magnetic cassette, a flash memory card, a digital video disk, a Bernoulli cartridge, a random access memory (RAM), a read-only memory (ROM), and the like.
  • a number of program modules may be stored on the hard disk, magnetic disk 129, optical disk 131, ROM 124 or RAM 125, including an operating system 135, one or more application programs 136, other program modules 137 and program data 138.
  • a user may enter commands and information into the personal computer 120 through input devices such as a keyboard 140 and pointing device 142.
  • Other input devices may include a microphone, joystick, game pad, satellite disk, scanner, or the like.
  • serial port interface 146 that is coupled to the system bus, but may be connected by other interfaces, such as a parallel port, game port, or universal serial bus (USB).
  • a monitor 147 or other type of display device is also connected to the system bus 123 via an interface, such as a video adapter 148.
  • a personal computer typically includes other peripheral output devices (not shown), such as speakers and printers.
  • the exemplary system of Fig. 12 also includes a host adapter 155, a Small Computer System Interface (SCSI) bus 156, and an external storage device 162 connected to the SCSI bus 156.
  • SCSI Small Computer System Interface
  • the personal computer 120 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 149.
  • the remote computer 149 may be another personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the personal computer 120, although only a memory storage device 150 has been illustrated in Fig. 12.
  • the logical connections depicted in Fig. 12 include a local area network (LAN) 151 and a wide area network (WAN) 152.
  • LAN local area network
  • WAN wide area network
  • Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.
  • the personal computer 120 When used in a LAN networking environment, the personal computer 120 is connected to the LAN 151 through a network interface or adapter 153. When used in a WAN networking environment, the personal computer 120 typically includes a modem 154 or other means for establishing communications over the wide area network 152, such as the Internet.
  • the modem 154 which may be internal or external, is connected to the system bus 123 via the serial port interface 146.
  • program modules depicted relative to the personal computer 120, or portions thereof may be stored in the remote memory storage device. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.
  • the architecture 10 includes an authoring tool 18, a content-key database 20, a content server 22, a license server 24, and a black box server 26, as well as the aforementioned user's computing device 14.
  • the authoring tool 18 is employed by a content owner to package a piece of digital content 12 into a form that is amenable for use in connection with the architecture 10 of the present invention.
  • the content owner provides the authoring tool 18 with the digital content 12, instructions and/or rules that are to accompany the digital content 12, and instructions and/or rules as to how the digital content 12 is to be packaged.
  • the authoring tool 18 then produces a digital content package 12p having the digital content 12 encrypted according to an encryption / decryption key, and the instructions and/or rules that accompany the digital content 12.
  • the authoring tool 18 is instructed to serially produce several different digital content 12 packages 12p, each having the same digital content 12 encrypted according to a different encryption / decryption key.
  • digital content 12 As should be understood, having several different packages 12p with the same digital content 12 may be useful for tracking the distribution of such packages 12p / content 12 (hereinafter simply "digital content 12", unless circumstances require otherwise). Such distribution tracking is not ordinarily necessary, but may be used by an investigative authority in cases where the digital content 12 has been illegally sold or broadcast.
  • the encryption / decryption key that encrypts the digital content 12 is a symmetric key, in that the encryption key is also the decryption key (KD).
  • KD decryption key
  • such decryption key (KD) is delivered to a user's computing device 14 in a hidden form as part of a license 16 for such digital content 12.
  • each piece of digital content 12 is provided with a content ID (or each package 12p is provided with a package ID), each decryption key (KD) has a key ID, and the authoring tool 18 causes the decryption key f (KD), key ID, and content ID (or package ID) for each piece of digital content 12 (or each package 12p) to be stored in the content-key database 20.
  • license data regarding the types of licenses 16 to be issued for the digital content 12 and the terms and conditions for each type of license 16 may be stored in the content-key database 20, or else in another database (not shown).
  • the license data can be modified by the content owner at a later time as circumstances and market conditions may require.
  • the authoring tool 18 is supplied with information including, among other things:
  • a watermark is a hidden, computer-readable signal that is added to the digital content 12 as an identifier.
  • a fingerprint is a watermark that is different for each instance.
  • an instance is a version of the digital content 12 that is unique. Multiple copies of any instance may be made, and any copy is of a particular instance.
  • an investigative authority can perhaps identify suspects according to the watermark / fingerprint added to such digital content 12.
  • Data compression may be performed according to any appropriate compression algorithm without departing from the spirit and scope of the present invention.
  • the .mp3 or .wav compression algorithm may be employed.
  • the digital content 12 may already be in a compressed state, in which case no additional compression is necessary.
  • the instructions and/or rules that are to accompany the digital content 12 may include practically any appropriate instructions, rules, or other information without departing from the spirit and scope of the present invention. As will be discussed below, such accompanying instructions / rules / information are primarily employed by the user and the user's computing device 14 to obtain a license 16 to render the digital content 12.
  • accompanying instructions / rules / information may include an appropriately formatted license acquisition script or the like, as will be described in more detail below.
  • accompanying instructions / rules / information may include 'preview' information designed to provide a user with a preview of the digital content 12.
  • the authoring tool 18 then produces one or more packages 12p corresponding to the digital content 12. Each package 12p may then be stored on the content server 22 for distribution to the world.
  • the authoring tool 18 is a dynamic authoring tool 18 that receives input parameters which can be specified and operated on. Accordingly, such authoring tool 18 can rapidly produce multiple variations of package 12p for multiple pieces of digital content 12.
  • the input parameters are embodied in the form of a dictionary 28, as shown, where the dictionary 28 includes such parameters as:
  • the authoring tool 18 includes an operator interface (not shown) displayable on a computer screen to a human operator. Accordingly, such operator may modify the dictionary 28 by way of the interface, and further may be appropriately aided and/or restricted in modifying the dictionary 28 by way of the interface.
  • a source filter 18a receives the name of the input file 29a having the digital content 12 from the dictionary 28, and retrieves such digital content 12 from such input file and places the digital content 12 into a memory 29c such as a RAM or the like.
  • An encoding filter 18b then performs encoding on the digital content 12 in the memory 29c to transfer the file from the input format to the output format according to the type of encoding specified in the dictionary 28 (i.e., .wav to .asp, .mp3 to .asp, etc.), and places the encoded digital content 12 in the memory 29c.
  • the digital content 12 to be packaged (music, e.g.) is received in a compressed format such as the .wav or .mp3 format, and is transformed into a format such as the .asp (active streaming protocol) format.
  • a compressed format such as the .wav or .mp3 format
  • a format such as the .asp (active streaming protocol) format.
  • .asp active streaming protocol
  • an encryption filter 18c encrypts the encoded digital content 12 in the memory 29c according to the encryption / decryption key (KD) specified in the dictionary 28, and places the encrypted digital content 12 in the memory 29c.
  • a header filter 18d then adds the header information specified in the dictionary 28 to the encrypted digital content 12 in the memory 29c.
  • the package 12p may include multiple streams of temporally aligned digital content 12 (one stream being shown in Fig. 2), where such multiple streams are multiplexed (i.e., 'muxed').
  • a mux filter 18e performs muxing on the header information and encrypted digital content 12 in the memory 29c according to the type of muxing specified in the dictionary 28, and places the result in the memory 29c.
  • a file writer filter 18f then retrieves the result from the memory 29c and writes such result to the output file 29b specified in the dictionary 28 as the package 12p.
  • the type of encoding to be performed will not normally change. Since the type of muxing typically is based on the type of encoding, it is likewise the case that the type of muxing will not normally change, either. If this is in fact the case, the dictionary 28 need not include parameters on the type of encoding and/or the type of muxing. Instead, it is only necessary that the type of encoding be 'hardwired' into the encoding filter and/or that the type of muxing be 'hardwired' into the mux filter.
  • the authoring tool 18 may not include all of the aforementioned filters, or may include other filters, and any included filter may be hardwired or may perform its function according to parameters specified in the dictionary 28, all without departing from the spirit and scope of the present invention.
  • the authoring tool 18 is implemented on an appropriate computer, processor, or other computing machine by way of appropriate software. The structure and operation of such machine and such software should be apparent based on the disclosure herein and therefore do not require any detailed discussion in the present disclosure.
  • the content server 22 distributes or otherwise makes available for retrieval the packages 12p produced by the authoring tool 18.
  • packages 12p may be distributed as requested by the content server 22 by way of any appropriate distribution channel without departing from the spirit and scope of the present invention.
  • distribution channel may be the Internet or another network, an electronic bulletin board, electronic mail, or the like.
  • the content server 22 may be employed to copy the packages 12p onto magnetic or optical disks or other storage devices, and such storage devices may then be distributed. It will be appreciated that the content server 22 distributes packages 12p without regard to any trust or security issues. As discussed below, such issues are dealt with in connection with the license server 24 and the relationship between such license server 24 and the user's computing device 14.
  • the content server 22 freely releases and distributes packages 12p having digital content 12 to any distributee requesting same.
  • the content server 22 may also release and distribute such packages 12p in a restricted manner without departing from the spirit and scope of the present invention.
  • the content server 22 may first require payment of a pre-determined distribution fee prior to distribution, or may require that a distributee identify itself, or may indeed make a determination of whether distribution is to occur based on an identification of the distributee.
  • the content server 22 may be employed to perform inventory management by controlling the authoring tool 18 to generate a number of different packages 12p in advance to meet an anticipated demand. For example, the server could generate 100 packages 12p based on the same digital content 12, and serve each package 12p 10 times. As supplies of packages 12p dwindle to 20, for example, the content server 22 may then direct the authoring tool 18 to generate 80 additional packages 12p, again for example.
  • the content server 22 in the architecture 10 has a unique public / private key pair (PU-CS, PR-CS) that is employed as part of the process of evaluating a license 16 and obtaining a decryption key (KD) for decrypting corresponding digital content 12, as will be explained in more detail below.
  • a public / private key pair is an asymmetric key, in that what is encrypted in one of the keys in the key pair can only be decrypted by the other of the keys in the key pair.
  • the public key may be made known to the world, but the private key should always be held in confidence by the owner of such private key.
  • the content server 22 encrypts data with its private key (PR-CS), it can send the encrypted data out into the world with its public key (PU-CS) for decryption purposes.
  • PR-CS public key
  • an external device wants to send data to the content server 22 so that only such content server 22 can decrypt such data, such external device must first obtain the public key of the content server 22 (PU-CS) and then must encrypt the data with such public key. Accordingly, the content server 22 (and only the content server 22) can then employ its private key (PR-CS) to decrypt such encrypted data.
  • the content server 22 is implemented on an appropriate computer, processor, or other computing machine by way of appropriate software.
  • the structure and operation of such machine and such software should be apparent based on the disclosure herein and therefore do not require any detailed discussion in the present disclosure.
  • the authoring tool 18 and the content server 22 may reside on a single computer, processor, or other computing machine, each in a separate work space. It should be recognized, moreover, that the content server 22 may in certain circumstances include the authoring tool 18 and/or perform the functions of the authoring tool 18, as discussed above.
  • the digital content package 12p as distributed by the content server 22 includes:
  • KD encryption / decryption key
  • KD encrypting the content server 22 public key (PU-CS), signed by the content server 22 private key (PR-CS) (i.e., (KD (PU-CS) S (PR- CS))).
  • KD (PU-CS) S (PR-CS) KD (PU-CS) S (PR-CS)
  • PU-CS key (PU-CS) is not necessary to get at (KD (PU-CS)). Instead, the key (PU-CS) is obtained merely by applying the decryption key (KD). Once so obtained, such key (PU- CS) may be employed to test the validity of the signature (S (PR-CS)).
  • the license server 24 performs the functions of receiving a request for a license 16 from a user's computing device 14 in connection with a piece of digital content 12, determining whether the user's computing device 14 can be trusted to honor an issued license 16, negotiating such a license 16, constructing such license 16, and transmitting such license 16 to the user's computing device 14.
  • such transmitted license 16 includes the decryption key (KD) for decrypting the digital content 12.
  • KD decryption key
  • the license server 24 in the architecture 10 has a unique public / private key pair (PU-LS, PR-LS) that is employed as part of the process of evaluating a license 16 and obtaining a decryption key (KD) for decrypting corresponding digital content 12, as will be explained in more detail below.
  • PU-LS, PR-LS public / private key pair
  • KD decryption key
  • the license server 24 is implemented on an appropriate computer, processor, or other computing machine by way of appropriate software.
  • the structure and operation of such machine and such software should be apparent based on the disclosure herein and therefore do not require any detailed discussion in the present disclosure.
  • the authoring tool 18 and/or the content server 22 may reside on a single computer, processor, or other computing machine together with the license server 24, each in a separate work space.
  • the license server 24 and the content server 22 prior to issuance of a license 16, enter into an agency agreement or the like, wherein the license server 24 in effect agrees to be the licensing authority for at least a portion of the digital content 12 distributed by the content server 22.
  • the license server 24 may enter into an agency agreement or the like with several license servers 24, and/or one license server 24 may enter into an agency agreement or the like with several content servers 22, all without departing from the spirit and scope of the present invention.
  • the license server 24 can show to the world that it does in fact have the authority to issue a license 16 for digital content 12 distributed by the content server 22.
  • the license server 24 send to the content server 22 the license server 24 public key (PU-LS), and that the content server 22 then send to the license server 24 a digital certificate containing PU-LS as the contents signed by the content server 22 private key (CERT (PU-LS) S (PR-CS)).
  • CERT PU-LS
  • PR-CS PR-CS
  • the contents (PU-LS) in such certificate can only be accessed with the content server 22 public key (PU-CS).
  • a digital signature of underlying data is an encrypted form of such data, and will not match such data when decrypted if such data has been adulterated or otherwise modified.
  • license server 24 As a licensing authority in connection with a piece of digital content 12, and as part of the licensing function, the license server 24 must have access to the decryption key (KD) for such digital content 12. Accordingly, it is preferable that license server 24 have access to the content-key database 20 that has the decryption key (KD), key ID, and content ID (or package ID) for such digital content 12 (or package 12p).
  • KD decryption key
  • key ID key ID
  • content ID or package ID
  • the black box server 26 performs the functions of installing and/or upgrading a new black box 30 in a user's computing device 14.
  • the black box 30 performs encryption and decryption functions for the user's computing device 14.
  • the black box 30 is intended to be secure and protected from attack. Such security and protection is provided, at least in part, by upgrading the black box 30 to a new version as necessary by way of the black box server 26, as will be explained in more detail below.
  • the black box server 26 is implemented on an appropriate computer, processor, or other computing machine by way of appropriate software.
  • the license server 24, the authoring tool 18, and/or the content server 22 may reside on a single computer, processor, or other computing machine together with the black box server 26, each in a separate work space. Note, though, that for security purposes, it may be wise to have the black box server 26 on a separate machine.
  • the user's computing device 14 is a personal computer or the like, having elements including a keyboard, a mouse, a screen, a processor, RAM, ROM, a hard drive, a floppy drive, a CD player, and/or the like.
  • the user's computing device 14 may also be a dedicated viewing device such as a television or monitor, a dedicated audio device such as a stereo or other music player, a dedicated printer, or the like, among other things, all without departing from the spirit and scope of the present invention.
  • the content owner for a piece of digital content 12 must trust that the user's computing device 14 will abide by the rules specified by such content owner, i.e. that the digital content 12 will not be rendered unless the user obtains a license 16 that permits the rendering in the manner sought.
  • the user's computing device 14 must provide a trusted component or mechanism 32 that can satisfy to the content owner that such computing device 14 will not render the digital content 12 except according to the license rules embodied in the license 16 associated with the digital content 12 and obtained by the user.
  • the trusted mechanism 32 is a Digital Rights Management (DRM) system 32 that is enabled when a user requests that a piece of digital content 12 be rendered, that determines whether the user has a license 16 to render the digital content 12 in the manner sought, that effectuates obtaining such a license 16 if necessary, that determines whether the user has the right to play the digital content 12 according to the license 16, and that decrypts the digital content 12 for rendering purposes if in fact the user has such right according to such license 16.
  • DRM Digital Rights Management
  • the DRM system 32 performs four main functions with the architecture 10 disclosed herein: (1) content acquisition, (2) license acquisition, (3) content rendering, and (4) black box 30 installation / update. Preferably, any of the functions can be performed at any time, although it is recognized that some of the functions already require that digital content 12 be acquired. DRM SYSTEM 32 - Content Acquisition
  • Acquisition of digital content 12 by a user and/or the user's computing device 14 is typically a relatively straight- forward matter and generally involves placing a file having encrypted digital content 12 on the user's computing device 14.
  • the encrypted digital content 12 be in a form that is amenable to such architecture 10 and DRM system 32, such as the digital package 12p as will be described below.
  • the digital content 12 may be obtained in any manner from a content server 22, either directly or indirectly, without departing from the spirit and scope of the present invention.
  • a content server 22 may be downloaded from a network such as the Internet, located on an obtained optical or magnetic disk or the like, received as part of an E-mail message or the like, or downloaded from an electronic bulletin board or the like.
  • Such digital content 12 is preferably stored in a manner such that the obtained digital content 12 is accessible by a rendering application 34 (to be described below) running on the computing device 14, and by the DRM system 32.
  • the digital content 12 may be placed as a file on a hard drive (not shown) of the user's computing device 14, or on a network server (not shown) accessible to the computing device 14.
  • a rendering application 34 to be described below
  • the digital content 12 may be placed as a file on a hard drive (not shown) of the user's computing device 14, or on a network server (not shown) accessible to the computing device 14.
  • the digital content 12 is obtained on an optical or magnetic disk or the like, it may only be necessary that such disk be present in an appropriate drive (not shown) coupled to the user's computing device 14.
  • the DRM system 32 and/or the rendering application 34 may include an interface (not shown) designed to assist the user in obtaining digital content 12 .
  • the interface may include a web browser especially designed to search for digital content 12, links to pre-defined Internet web sites that are known to be sources of digital content 12, and the like.
  • a render command may be embodied as a request to 'play' or 'open' the digital content 12.
  • a render command may be embodied as a request to 'play' or 'open' the digital content 12.
  • MICROSOFT WINDOWS distributed by MICROSOFT Corporation of Redmond, Washington
  • play or open command may be as simple as 'clicking' on an icon representative of the digital content 12.
  • render command may be considered to be executed whenever a user directs that a file having digital content 12 be opened, run, executed, and/or the like.
  • render command may be embodied as a request to copy the digital content 12 to another form, such as to a printed form, a visual form, an audio form, etc.
  • the same digital content 12 may be rendered in one form, such as on a computer screen, and then in another form, such as a printed document.
  • each type of rendering is performed only if the user has the right to do so, as will be explained below.
  • the digital content 12 is in the form of a digital file having a file name ending with an extension
  • the computing device 14 can determine based on such extension to start a particular kind of rendering application 34.
  • the rendering application 34 is some form of word processor such as the "MICROSOFT WORD", distributed by MICROSOFT Corporation of Redmond, Washington.
  • the rendering application 34 is some form of multimedia player, such as "MICROSOFT MEDIA PLAYER", also distributed by MICROSOFT Corporation of Redmond, Washington.
  • the digital content 12 may contain meta-data in an un-encrypted form (i.e., the aforementioned header information), where the meta-data includes information on the type of rendering application 34 necessary to render such digital content 12.
  • such rendering application 34 examines the digital content 12 associated with the file name and determines whether such digital content 12 is encrypted in a rights-protected form (steps 503, 505). If not protected, the digital content 12 may be rendered without further ado (step 507). If protected, the rendering application 34 determines from the encrypted digital content 12 that the DRM system 32 is necessary to play such digital content 12. Accordingly, such rendering application 34 directs the user's computing device 14 to run the DRM system 32 thereon (step 509). Such rendering application 34 then calls such DRM system 32 to decrypt the digital content 12 (step 511).
  • the DRM system 32 in fact decrypts the digital content 12 only if the user has a valid license 16 for such digital content 12 and the right to play the digital content 12 according to the license rules in the valid license 16.
  • the DRM system 32 assumes control from the rendering application 34, at least for purposes of determining whether the user has a right to play such digital content 12 (step 513).
  • the DRM system 32 includes a license evaluator 36, the black box 30, a license store 38, and a state store 40.
  • DRM System 32 Components - License Evaluator 36
  • the license evaluator 36 locates one or more licenses 16 that correspond to the requested digital content 12, determines whether such licenses 16 are valid, reviews the license rules in such valid licenses 16, and determines based on the reviewed license rules whether the requesting user has the right to render the requested digital content 12 in the manner sought, among other things.
  • the license evaluator 36 is a trusted component in the DRM system 32.
  • to be 'trusted' means that the license server 24 (or any other trusting element) is satisfied that the trusted element will carry out the wishes of the owner of the digital content 12 according to the rights description in the license 16, and that a user cannot easily alter such trusted element for any purpose, nefarious or otherwise.
  • the license evaluator 36 has to be trusted in order to ensure that such license evaluator 36 will in fact evaluate a license 16 properly, and to ensure that such license evaluator 36 has not been adulterated or otherwise modified by a user for the purpose of bypassing actual evaluation of a license 16. Accordingly, the license evaluator 36 is run in a protected or shrouded environment such that the user is denied access to such license evaluator 36. Other protective measures may of course be employed in connection with the license evaluator 36 without departing from the spirit and scope of the present invention.
  • DRM System 32 Components - Black Box 30 Primarily, and as was discussed above, the black box 30 performs encryption and decryption functions in the DRM system 32.
  • the black box 30 works in conjunction with the license evaluator 36 to decrypt and encrypt certain information as part of the license evaluation function.
  • the black box 30 is provided with a decryption key (KD) for such digital content 12, and performs the function of decrypting such digital content 12 based on such decryption key (KD).
  • KD decryption key
  • the black box 30 is also a trusted component in the DRM system 32.
  • the license server 24 must trust that the black box 30 will perform the decryption function only in accordance with the license rules in the license 16, and also trust that such black box 30 will not operate should it become adulterated or otherwise modified by a user for the nefarious purpose of bypassing actual evaluation of a license 16.
  • the black box 30 is also run in a protected or shrouded environment such that the user is denied access to such black box 30. Again, other protective measures may be employed in connection with the black box 30 without departing from the spirit and scope of the present invention.
  • the black box 30 in the DRM system 32 has a unique public / private key pair (PU-BB, PR-BB) that is employed as part of the process of evaluating the license 16 and obtaining a decryption key (KD) for decrypting the digital content 12, as will be described in more detail below.
  • PU-BB, PR-BB public / private key pair
  • KD decryption key
  • the license store 38 stores licenses 16 received by the DRM system 32 for corresponding digital content 12.
  • the license store 38 itself need not be trusted since the license store 38 merely stores licenses 16, each of which already has trust components built thereinto, as will be described below.
  • the license store 38 is merely a sub-directory of a drive such as a hard disk drive or a network drive.
  • the license store 38 may be embodied in any other form without departing from the spirit and scope of the present invention, so long as such license store 38 performs the function of storing licenses 16 in a location relatively convenient to the DRM system 32.
  • DRM System 32 Components - State Store 40
  • the state store 40 performs the function of maintaining state information corresponding to licenses 16 presently or formerly in the license store 38. Such state information is created by the DRM system 32 and stored in the state store 40 as necessary. For example, if a particular license 16 only allows a pre-determined number of renderings of a piece of corresponding digital content 12, the state store 40 maintains state information on how many renderings have in fact taken place in connection with such license 16. The state store 40 continues to maintain state information on licenses 16 that are no longer in the license store 38 to avoid the situation where it would otherwise be advantageous to delete a license 16 from the license store 38 and then obtain an identical license 16 in an attempt to delete the corresponding state information from the state store 40.
  • the state store 40 also has to be trusted in order to ensure that the information stored therein is not reset to a state more favorable to a user. Accordingly, the state store 40 is likewise run in a protected or shrouded environment such that the user is denied access to such state store 40.
  • the state store 40 may be stored by the DRM system 32 on the computing device 14 in an encrypted form. DRM SYSTEM 32 - Content Rendering, Part 2
  • the DRM system 32 begins the process of determining whether the user has a right to render the requested digital content 12 in the manner sought.
  • the DRM system 32 either locates a valid, enabling license 16 in the license store (steps 515, 517) or attempts to acquire a valid, enabling license 16 from the license server 24 (i.e. performs the license acquisition function as discussed below and as shown in Fig. 7).
  • the license evaluator 36 of such DRM system 32 checks the license store 38 for the presence of one or more received licenses 16 that correspond to the digital content 12 (step 601).
  • the license 16 is in the form of a digital file, as will be discussed below, although it will be recognized that the license 16 may also be in other forms without departing from the spirit and scope of the present invention.
  • the user will receive the digital content 12 without such license 16, although it will likewise be recognized that the digital content 12 may be received with a corresponding license 16 without departing from the spirit and scope of the present invention.
  • each piece of digital content 12 is in a package 12p with a content ID (or package ID) identifying such digital content 12 (or package 12p), and a key ID identifying the decryption key (KD) that will decrypt the encrypted digital content 12.
  • the content ID (or package ID) and the key ID are in an un-encrypted form. Accordingly, and in particular, based on the content ID of the digital content 12, the license evaluator 36 looks for any license 16 in the license store 38 that contains an identification of applicability to such content ID.
  • licenses 16 may be found, especially if the owner of the digital content 12 has specified several different kinds of licenses 16 for such digital content 12, and the user has obtained multiple ones of such licenses 16. If in fact the license evaluator 36 does not find in the license store 38 any license 16 corresponding to the requested digital content 12, the DRM system 32 may then perform the function of license acquisition (step 519 of Fig. 5), to be described below.
  • each license 16 includes a digital signature 26 based on the content 28 of the license 16. As should be understood, the digital signature 26 will not match the license 16 if the content 28 has been adulterated or otherwise modified.
  • the license evaluator 36 can determine based on the digital signature 26 whether the content 28 is in the form that it was received from the license server 24 (i.e., is valid). If no valid license 16 is found in the license store 38, the DRM system 32 may then perform the license acquisition function described below to obtain such a valid license 16.
  • the license evaluator 36 of the DRM system 32 next determines whether such valid license 16 gives the user the right to render the corresponding digital content 12 in the manner desired (i.e., is enabling) (steps 607 and 609).
  • the license evaluator 36 determines whether the requesting user has the right to play the requested digital content 12 based on the rights description in each license 16 and based on what the user is attempting to do with the digital content 12. For example, such rights description may allow the user to render the digital content 12 into a sound, but not into a decrypted digital copy.
  • each license 16 specifies whether the user has rights to play the digital content 12 based on any of several factors, including who the user is, where the user is located, what type of computing device 14 the user is using, what rendering application 34 is calling the DRM system 32, the date, the time, etc.
  • the rights description may limit the license 16 to a pre-determined number of plays, or pre-determined play time, for example.
  • the DRM system 32 must refer to any state information with regard to the license 16, (i.e., how many times the digital content 12 has been rendered, the total amount of time the digital content 12 has been rendered, etc.), where such state information is stored in the state store 40 of the DRM system 32 on the user's computing device 14.
  • the license evaluator 36 of the DRM system 32 reviews the rights description of each valid license 16 to determine whether such valid license 16 confers the rights sought to the user. In doing so, the license evaluator 36 may have to refer to other data local to the user's computing device 14 to perform a determination of whether the user has the rights sought. As seen in Fig. 4, such data may include an identification 42 of the user's computing device (machine) 14 and particular aspects thereof, an identification 44 of the user and particular aspects thereof, an identification of the rendering application 34 and particular aspects thereof, a system clock 46, and the like. If no valid license 16 is found that provides the user with the right to render the digital content 12 in the manner sought, the DRM system 32 may then perform the license acquisition function described below to obtain such a license 16, if in fact such a license 16 is obtainable.
  • the user cannot obtain the right to render the digital content 12 in the manner requested, because the content owner of such digital content 12 has in effect directed that such right not be granted.
  • the content owner of such digital content 12 may have directed that no license 16 be granted to allow a user to print a text document, or to copy a multimedia presentation into an unencrypted form.
  • the digital content 12 includes data on what rights are available upon purchase of a license 16, and types of licenses 16 available.
  • the content owner of a piece of digital content 12 may at any time change the rights currently available for such digital content 12 by changing the licenses 16 available for such digital content 12.
  • DRM SYSTEM 32 - License Acquisition Referring now to Fig.
  • each piece of digital content 12 is packaged with information in an unencrypted form regarding how to obtain a license 16 for rendering such digital content 12 (i.e., license acquisition information) .
  • such license acquisition information may include (among other things) types of licenses 16 available, and one or more Internet web sites or other site information at which one or more appropriate license servers 24 may be accessed, where each such license server 24 is in fact capable of issuing a license 16 corresponding to the digital content 12.
  • the license 16 may be obtained in other manners without departing from the spirit and scope of the present invention.
  • the license 16 may be obtained from a license server 24 at an electronic bulletin board, or even in person or via regular mail in the form of a file on a magnetic or optical disk or the like.
  • the license evaluator 36 then establishes a network connection to such license server 24 based on the web site or other site information, and then sends a request for a license 16 from such connected license server 24 (steps 701, 703).
  • the DRM system 32 once the DRM system 32 has contacted the license server 24, such DRM system 32 transmits appropriate license request information 36 to such license server 24.
  • license 16 request information 36 may include:
  • the version number of the black box 30 of the DRM system 32 - the version number of the black box 30 of the DRM system 32; - a certificate with a digital signature from a certifying authority certifying the black box 30 (where the certificate may in fact include the aforementioned public key and version number of the black box 30);
  • license 16 request information 36 may be transmitted to the license server 24 by the DRM system 32 without departing from the spirit and scope of the present invention.
  • information on the type of rendering application 34 may not be necessary, while additional information about the user and/or the user's computing device 14 may be necessary.
  • the license server 24 may then perform several checks for trust / authentication and for other purposes.
  • such license server 24 checks the certificate with the digital signature of the certifying authority to determine whether such has been adulterated or otherwise modified (steps 705, 707). If so, the license server 24 refuses to grant any license 16 based on the request information 36.
  • the license server 24 may also maintain a list of known 'bad' users and/or user's computing devices 14, and may refuse to grant any license 16 based on a request from any such bad user and/or bad user's computing device 14 on the list. Such 'bad' list may be compiled in any appropriate manner without departing from the spirit and scope of the present invention.
  • the license server 24 can interrogate the content-key database 20 (Fig. 1 ) and locate a record corresponding to the digital content 12 (or package 12p) that is the basis of the request.
  • a record contains the decryption key (KD), key ID, and content ID for such digital content 12.
  • KD decryption key
  • such record may contain license data regarding the types of licenses 16 to be issued for the digital content 12 and the terms and conditions for each type of license 16.
  • such record may include a pointer, link, or reference to a location having such additional information.
  • multiple types of licenses 16 may be available.
  • a license 16 allowing a limited number of renderings may be available for a relatively small license fee.
  • a license 16 allowing unlimited renderings until an expiration date may be available for a relatively greater license fee.
  • a license 16 allowing unlimited renderings without any expiration date may be available for a relatively smaller license fee.
  • Practically any type of license 16 having any kind of license terms may be devised and issued by the license server 24 without departing from the spirit and scope of the present invention.
  • the request for a license 16 is accomplished with the aid of a web page or the like as transmitted from the license server 24 to the user's computing device 14.
  • a web page or the like as transmitted from the license server 24 to the user's computing device 14.
  • such web page includes information on all types of licenses 16 available from the license server 24 for the digital content 12 that is the basis of the license 16 request.
  • the license server 24 prior to issuing a license 16, the license server 24 checks the version number of the black box 30 to determine whether such black box 30 is relatively current (steps 709, 711).
  • the black box 30 is intended to be secure and protected from attacks from a user with nefarious purposes (i.e., to improperly render digital content 12 without a license 16, or outside the terms of a corresponding license 16).
  • no system and no software device is in fact totally secure from such an attack.
  • the black box 30 is relatively current, i.e., has been obtained or updated relatively recently, it is less likely that such black box 30 has been successfully attacked by such a nefarious user.
  • the license server 24 receives a license request with request information 36 including a black box 30 version number that is not relatively current, such license server 24 refuses to issue the requested license 16 until the corresponding black box 30 is upgraded to a current version, as will be described below. Put simply, the license server 24 will not trust such black box 30 unless such black box 30 is relatively current.
  • the term 'current' or 'relatively current' may have any appropriate meaning without departing from the spirit and scope of the present invention, consistent with the function of providing trust in the black box 30 based on the age or use thereof. For example, 'current' may be defined according to age (i.e., less than one month old).
  • 'current' may be defined based on a number of times that the black box 30 has decrypted digital content 12 (i.e., less than 200 instances of decryption). Moreover, 'current' may be based on policy as set by each license server 24, where one license server 24 may define 'current' differently from another license server 24, and a license server 24 may further define 'current' differently depending on the digital content 12 for which a license 16 is requested, or depending on the type of license 16 requested, among other things.
  • the license server 24 then proceeds to negotiate terms and conditions for the license 16 with the user (step 713).
  • the license server 24 negotiates the license 16 with the user, then satisfies itself from the version number of the black box 30 that such black box 30 is current (i.e., performs step 713, then step 711).
  • the amount of negotiation varies depending on the type of license 16 to be issued, and other factors. For example, if the license server 24 is merely issuing a paid-up unlimited use license 16, very little need be negotiated.
  • the license 16 is to be based on such items as varying values, sliding scales, break points, and other details, such items and details may need to be worked out between the license server 24 and the user before the license 16 can be issued.
  • the license negotiation may require that the user provide further information to the license server 24 (for example, information on the user, the user's computing device 14, etc.).
  • the license negotiation may also require that the user and the license server 24 determine a mutually acceptable payment instrument (a credit account, a debit account, a mailed check, etc.) and/or payment method (paid-up immediately, spread over a period of time, etc.), among other things.
  • a digital license 16 is generated by the license server 24 (step 719), where such generated license 16 is based at least in part on the license request, the black box 30 public key (PU-BB), and the decryption key (KD) for the digital content 12 that is the basis of the request as obtained from the content-key database 20.
  • the generated license 16 includes:
  • DRL Digital Rights License
  • KD decryption key
  • KD decryption key
  • PU-BB public key
  • PR-LS license server 24 private key
  • the certificate that the license server 24 obtained previously from the content server 22 such certificate indicating that the license server 24 has the authority from the content server 22 to issue the license 16 (i.e., (CERT (PU-LS) S (PR-CS))).
  • CERT (PU-LS) S (PR-CS) the authority from the content server 22 to issue the license 16
  • the aforementioned elements and perhaps others are packaged into a digital file or some other appropriate form.
  • the digital signature (S (PR-LS)) in the license 16 will not match and therefore will not validate such license 16.
  • the DRL 48 need not necessarily be in an encrypted form (i.e., (KD(DRL)) as mentioned above), although such encrypted form may in some instances be desirable and therefore may be employed without departing from the spirit and scope of the present invention.
  • KD(DRL) the digital license 16
  • the requestor i.e., the DRM system 32 on the user's computing device 14
  • the license 16 is transmitted over the same path through which the request therefor was made (i.e., the Internet or another network), although another path may be employed without departing from the spirit and scope of the present invention.
  • the requesting DRM system 32 preferably automatically places the received digital license 16 in the license store 38 (step 721).
  • a user's computing device 14 may on occasion malfunction, and licenses 16 stored in the license store 38 of the DRM system 32 on such user's computing device 14 may become irretrievably lost. Accordingly, it is preferable that the license server 24 maintain a database 50 of issued licenses 16 (Fig. 1), and that such license server 24 provide a user with a copy or re-issue (hereinafter 're-issue') of an issued license 16 if the user is in fact entitled to such re-issue. In the aforementioned case where licenses 16 are irretrievably lost, it is also likely the case that state information stored in the state store 40 and corresponding to such licenses 16 is also lost.
  • Such lost state information should be taken into account when re-issuing a license 16.
  • a fixed number of renderings license 16 might legitimately be re-issued in a pro-rated form after a relatively short period of time, and not re-issued at all after a relatively longer period of time.
  • DRM SYSTEM 32 - Installation/Upgrade of Black Box 30 As was discussed above, as part of the function of acquiring a license 16, the license server 24 may deny a request for a license 16 from a user if the user's computing device 14 has a DRM system 32 with a black box 30 that is not relatively current, i.e., has a relatively old version number. In such case, it is preferable that the black box 30 of such DRM system 32 be upgraded so that the license acquisition function can then proceed. Of course, the black box 30 may be upgraded at other times without departing from the spirit and scope of the present invention.
  • a non-unique 'lite' version of a black box 30 is provided. Such 'lite' black box 30 is then upgraded to a unique regular version prior to rendering a piece of digital content 12.
  • a security breach into one black box 30 cannot easily be replicated with any other black box 30.
  • the DRM system 32 obtains the unique black box 30 by requesting same from a black box server 26 or the like (as was discussed above and as shown in Fig. 1) (step 901). Typically, such request is made by way of the
  • connection to a black box server 26 may be a direct connection, either locally or remotely.
  • An upgrade from one unique non-lite black box 30 to another unique non-lite black box 30 may also be requested by the DRM system 32 at any time, such as for example a time when a license server 24 deems the black box 30 not current, as was discussed above.
  • each new black box 30 is provided with a version number and a certificate with a digital signature from a certifying authority.
  • the version number of the black box 30 indicates the relative age and/or use thereof.
  • the certificate with the digital signature from the certifying authority is a proffer or vouching mechanism from the certifying authority that a license server 24 should trust the black box 30.
  • the license server 24 must trust the certifying authority to issue such a certificate for a black box 30 that is in fact trustworthy.
  • the license server 24 does not trust a particular certifying authority, and refuses to honor any certificate issued by such certifying authority. Trust may not occur, for example, if a particular certifying authority is found to be engaging in a pattern of improperly issuing certificates.
  • the black box server 26 includes a new unique public / private key pair (PU-BB, PR-BB) with the newly generated unique black box 30 (step 903 of Fig. 9).
  • the private key for the black box 30 PR- BB
  • PR- BB is accessible only to such black box 30, and is hidden from and inaccessible by the remainder of the world, including the computing device 14 having the DRM system 32 with such black box 30, and the user thereof.
  • any hiding scheme may be employed without departing from the spirit and scope of the present invention, so long as such hiding scheme in fact performs the function of hiding the private key (PR-BB) from the world.
  • the private key (PR-BB) may be split into several sub-components, and each sub-component may be encrypted uniquely and stored in a different location. In such a situation, it is preferable that such sub-components are never assembled in full to produce the entire private key (PR-BB).
  • such private key is encrypted according to code-based encryption techniques.
  • the actual software code of the black box 30 (or other software code) is employed as encrypting key(s). Accordingly, if the code of the black box 30 (or the other software code) becomes adulterated or otherwise modified, for example by a user with nefarious purposes, such private key (PR-BB) cannot be decrypted.
  • each new black box 30 is delivered with a new public / private key pair (PU-BB, PR-BB), such new black box 30 is also preferably given access to old public / private key pairs from old black boxes 30 previously delivered to the DRM system 32 on the user's computing device 14 (step 905). Accordingly, the upgraded black box 30 can still employ the old key pairs to access older digital content 12 and older corresponding licenses 16 that were generated according to such old key pairs, as will be discussed in more detail below.
  • the upgraded black box 30 delivered by the black box server 26 is tightly tied to or associated with the user's computing device 14. Accordingly, the upgraded black box 30 cannot be operably transferred among multiple computing devices 14 for nefarious purposes or otherwise.
  • the DRM system 32 provides hardware information unique to such DRM system 32 and/or unique to the user's computing device 14 to the black box server 26, and the black box server 26 generates a black box 30 for the DRM system 32 based in part on such provided hardware information.
  • Such generated upgraded black box 30 is then delivered to and installed in the DRM system 32 on the user's computing device 14 (steps 907, 909). If the upgraded black box 30 is then somehow transferred to another computing device 14, the transferred black box 30 recognizes that it is not intended for such other computing device 14, and does not allow any requested rendering to proceed on such other computing device 14.
  • the new black box 30 is installed in the DRM system 32, such DRM system 32 can proceed with a license acquisition function or with any other function.
  • the license evaluator 36 selects one of such licenses 16 for further use (step 519). Specifically, to render the requested digital content 12, the license evaluator 36 and the black box 30 in combination obtain the decryption key (KD) from such license 16, and the black box 30 employs such decryption key (KD) to decrypt the digital content 12.
  • KD decryption key
  • the decryption key (KD) as obtained from the license 16 is encrypted with the black box 30 public key (PU-BB(KD)), and the black box 30 decrypts such encrypted decryption key with its private key (PR-BB) to produce the decryption key (KD) (steps 521, 523).
  • PR-BB private key
  • other methods of obtaining the decryption key (KD) for the digital content 12 may be employed without departing from the spirit and scope of the present invention.
  • the rendering application 34 calls the DRM system 32 / black box 30 and directs at least a portion of the encrypted digital content 12 to the black box 30 for decryption according to the decryption key (KD) (step 529).
  • the black box 30 decrypts the digital content 12 based upon the decryption key (KD) for the digital content 12, and then the black box 30 returns the decrypted digital content 12 to the rendering application 34 for actual rendering (steps 533, 535).
  • the rendering application 34 may either send a portion of the encrypted digital content 12 or the entire digital content 12 to the black box 30 for decryption based on the decryption key (KD) for such digital content 12 without departing from the spirit and scope of the present invention.
  • the black box 30 and/or the DRM system 32 authenticates such rendering application 34 to ensure that it is in fact the same rendering application 34 that initially requested the DRM system 32 to run (step 531). Otherwise, the potential exists that rendering approval may be obtained improperly by basing the rendering request on one type of rendering application 34 and in fact rendering with another type of rendering application 34. Assuming the authentication is successful and the digital content 12 is decrypted by the black box 30, the rendering application 34 may then render the decrypted digital content 12 (steps 533, 535). Sequence of Key Transactions
  • a sequence of key transactions is performed to obtain the decryption key (KD) and evaluate a license 16 for a requested piece of digital content 12 (i.e., to perform steps 515-523 of Figs. 5 A and 5B).
  • the DRM system 32 obtains the decryption key (KD) from the license 16, uses information obtained from the license 16 and the digital content 12 to authenticate or ensure the validity of both, and then determines whether the license 16 in fact provides the right to render the digital content 12 in the manner sought. If so, the digital content 12 may be rendered.
  • each license 16 for the digital content 12, as seen in Fig. 8, includes:
  • DRL Digital Rights License
  • KD decryption key
  • KD decryption key for the digital content 12 encrypted with the black box 30 public key (PU-BB) (i.e.,(PU-BB (KD));
  • KD the digital content 12 encrypted by KD (i.e., (KD(CONTENT)));
  • the black box 30 could then proceed to employ KD to decrypt the digital content 12 without any further ado.
  • the license server 24 trusts the black box 30 not to do so. Such trust was established at the time such license server 24 issued the license 16 based on the certificate from the certifying authority vouching for the trustworthiness of such black box 30. Accordingly, despite the black box 30 obtaining the decryption key (KD) as an initial step rather than a final step, the DRM system 32 continues to perform all license 16 validation and evaluation functions, as described below.
  • KD decryption key
  • the black box 30 Based on (CERT (PU-LS) S (PR-CS)) from the license 16, the black box 30 applies the newly obtained content server 22 public key (PU-CS) to satisfy itself that the certificate is valid (step 1007), signifying that the license server 24 that issued the license 16 had the authority from the content server 22 to do so, and then examines the certificate contents to obtain (PU-LS) (step 1009). If not valid, the process is halted and access to the digital content 12 based on the license 16 is denied.
  • PU-CS public key
  • the black box 30 Based on (S (PR-LS)) from the license 16, the black box 30 applies the newly obtained license server 24 public key (PU-LS) to satisfy itself that the license 16 is valid (step 1011). If not valid, the process is halted and access to the digital content 12 based on the license 16 is denied.
  • the license evaluator 36 then applies the already-obtained decryption key (KD) to (KD(DRL)) as obtained from the license 16 to obtain the license terms from the license 16 (i.e., the DRL 48) (step 1013).
  • KD decryption key
  • step 1013 may be omitted.
  • the license evaluator 36 then evaluates / interrogates the DRL 48 and determines whether the user's computing device 14 has the right based on the DRL 48 in the license 16 to render the corresponding digital content 12 in the manner sought (i.e., whether the DRL 48 is enabling) (step 1015). If the license evaluator 36 determines that such right does not exist, the process is halted and access to the digital content 12 based on the license 16 is denied.
  • the license evaluator 36 informs the black box 30 that such black box 30 can render the corresponding digital content 12 according to the decryption key (KD).
  • KD decryption key
  • Such ping-ponging ensures that the digital content 12 is tightly bound to the license 16, in that the validation and evaluation process can only occur if both the digital content 12 and license 16 are present in a properly issued and valid form.
  • KD decryption key
  • PU-CS public key
  • DRL 48 license terms
  • signature verification is alternately performed as follows.
  • each license 16 has a signature encrypted by a private root key (PR-R) (not shown), where the black box 30 of each DRM system 32 includes a public root key (PU-R) (also not shown) corresponding to the private root key (PR-R).
  • PR-R private root key
  • PR-R public root key
  • PR-R The private root key (PR-R) is known only to a root entity, and a license server 24 can only issue licenses 16 if such license server 24 has arranged with the root entity to issue licenses 16.
  • the license server 24 provides its public key (PU-LS) to the root entity; 2. the root entity returns the license server public key (PU-LS) to such license server 24 encrypted with the private root key (PR-R) (i.e., (CERT (PU-LS) S (PR-R))); and 3. the license server 24 then issues a license 16 with a signature encrypted with the license server private key (S (PR-LS)), and also attaches to the license the certificate from the root entity (CERT (PU-LS)
  • a license 16 issued by the second license server would include a first certificate (CERT (PU-LS 1) S (PR-R)) and a second certificate (CERT (PU-LS2) S (PR-LSI)).
  • CERT PU-LS2 S (PR-LSI)
  • a license 16 is validated by following the chain through the first and second certificates. Of course, additional links in the chain may be added and traversed.
  • each license server 24 may be required to upgrade itself. As with the black box 30, if a license server 24 is relatively current, i.e., has been upgraded relatively recently, it is less likely that license server 24 has been successfully attacked. Accordingly, as a matter of trust, each license server 24 is preferably required to be upgraded periodically via an appropriate upgrade trigger mechanism such as the signature verification process. Of course, other upgrade mechanisms may be employed without departing from the spirit and scope of the present invention.
  • the license evaluator 36 evaluates a Digital Rights License (DRL) 48 as the rights description or terms of a license 16 to determine if such DRL 48 allows rendering of a corresponding piece of digital content 12 in the manner sought.
  • DRL Digital Rights License
  • the DRL 48 may be written by a licensor (i.e., the content owner) in any DRL language.
  • a DRL 48 there are a multitude of ways to specify a DRL 48. Accordingly, a high degree of flexibility must be allowed for in any DRL language. However, it is impractical to specify all aspects of a DRL 48 in a particular license language, and it is highly unlikely that the author of such a language can appreciate all possible licensing aspects that a particular digital licensor may desire. Moreover, a highly sophisticated license language may be unnecessary and even a hindrance for a licensor providing a relatively simple DRL 48. Nevertheless, a licensor should not be unnecessarily restricted in how to specify a DRL 48. At the same time, the license evaluator 36 should always be able to get answers from a DRL 48 regarding a number of specific license questions.
  • a DRL 48 can be specified in any license language, but includes a language identifier or tag 54.
  • license language engine 52 must be present and accessible to the license evaluator 36.
  • the language tag 54 and/or the DRL 48 preferably includes a location 56 (typically a web site) for obtaining such language engine 52.
  • the language engine 52 is in the form of an executable file or set of files that reside in a memory of the user's computing device 14, such as a hard drive.
  • the language engine 52 assists the license evaluator 36 to directly interrogate the DRL 48, the license evaluator 36 interrogates the DRL 48 indirectly via the language engine 48 acting as an intermediary, or the like.
  • the language engine 52 runs in a work space in a memory of the user's computing device 14, such as RAM.
  • any other form of language engine 52 may be employed without departing from the spirit and scope of the present invention.
  • any language engine 52 and any DRL language supports at least a number of specific license questions that the license evaluator 36 expects to be answered by any DRL 48, as will be discussed below.
  • the license evaluator 36 is not tied to any particular DRL language; a DRL 48 may be written in any appropriate DRL language; and a DRL 48 specified in a new license language can be employed by an existing license evaluator 36 by having such license evaluator 36 obtain a corresponding new language engine 52.
  • DRL Languages are not tied to any particular DRL language; a DRL 48 may be written in any appropriate DRL language; and a DRL 48 specified in a new license language can be employed by an existing license evaluator 36 by having such license evaluator 36 obtain a corresponding new language engine 52.
  • DRL languages Two examples of DRL languages, as embodied in respective DRLs 48, are provided below.
  • the first, 'simple' DRL 48 is written in a DRL language that specifies license attributes, while the second 'script' DRL 48 is written in a DRL language that can perform functions according to the script specified in the DRL 48. While written in a DRL language, the meaning of each line of code should be apparent based on the linguistics thereof and/or on the attribute description chart that follows: Simple DRL 48: ⁇ LICENSE> ⁇ DATA>
  • any language engine 52 and any DRL language support at least a number of specific license questions that the digital license evaluator 36 expects to be answered by any DRL 48. Recognizing such supported questions may include any questions without departing from the spirit and scope of the present invention, and consistent with the terminology employed in the two DRL 48 examples above, in one embodiment of the present invention, such supported questions or 'methods' include 'access methods', 'DRL methods', and 'enabling use methods', as follows:
  • Access methods are used to query a DRL 48 for top-level attributes.
  • VARIANT QueryAttribute (BSTR key) VARIANT QueryAttribute (BSTR key)
  • Valid keys include License.Name, License.Id, Content.Name, Content.Id, Content. Type, Owner.Name, Owner.Id, Owner.PublicKey, Licensee.Name, Licensee.Id, Licensee.PublicKey, Description, and Terms, each returning a BSTR variant; and Issued, Validity. Start and Validity.End, each returning a Date Variant.
  • DRL 48 The implementation of the following DRL methods varies from DRL 48 to DRL 48. Many of the DRL methods contain a variant parameter labeled 'data' which is intended for communicating more advanced information with a DRL 48. It is present largely for future expandability.
  • This method returns a Boolean indicating whether the DRL 48 / license 16 is activated.
  • An example of an activated license 16 is a limited operation license 16 that upon first play is active for only 48 hours.
  • This method is used to activate a license 16. Once a license 16 is activated, it cannot be deactivated.
  • This method is used to communicate with a more advanced DRL 48. It is largely about future expandability of the DRL 48 feature set.
  • Variant GetExpires(BSTR action, Variant data) This method returns the expiration date of a license 16 with regard to the passed-in action. If the return value is NULL, the license 16 is assumed to never expire or does not yet have an expiration date because it hasn't been activated, or the like.
  • This method returns the number of operations of the passed-in action that are left. If NULL is returned, the operation can be performed an unlimited number of times.
  • This method indicates whether the license 16 supports the requested action at the present time.
  • This method indicates whether the license 16 has been paid for.
  • a license 16 that is paid for up front would return TRUE, while a license 16 that is not paid for up front, such as a license 16 that collects payments as it is used, would return FALSE.
  • Enabling Use Methods are employed to enable a license 16 for use in decrypting content.
  • the passed-in key is the black box 30 public key (PU-BB) encrypted by the decryption key (KD) for the corresponding digital content 12 (i.e.,( KD(PU-BB))) for use in validation of the signature of the license 16.
  • KD decryption key
  • a return value of TRUE indicates that the license 16 is valid.
  • a return value of FALSE indicates invalid.
  • the passed-in key is ( KD(PU-BB)) as described above.
  • a return value of 0 indicates success.
  • Other return values can be defined.
  • This method is used to unlock access to the enabling bits for performing the passed-in action. If this is not successful for any of a number of reasons, a null string is returned.
  • the black box 30 and/or the DRM system 32 preferably authenticates that such rendering application 34 is in fact the same rendering application 34 that initially requested the DRM system 32 to run (step 531 of Fig. 5) and that the rendering application 34 itself satisfies any relevant terms in the corresponding digital license 16.
  • such authentication ensures that such rendering application 34 can be trusted to handle the decrypted or 'naked' digital content 12 in an appropriate manner, and also that the rendering application 34 can be trusted to handle other sensitive matter (i.e., keys, encrypted matter, and/or other trusted matter).
  • the digital content 12 likely will 'flow' in a path 58 from the rendering application 34 to an ultimate destination 60 by way of one or more modules 62 that define such path 58.
  • the path 58 may be any path without departing from the spirit and scope of the present invention.
  • the path 58 may include multiple branches, junctions, loops, and the like.
  • the modules 62 may be any modules without departing from the spirit and scope of the present invention, and can include software modules and hardware modules including software.
  • the modules 62 may include modules performing noise reduction, equalization, balance, and frequency filtering functions, among others.
  • the modules 62 may include the aforementioned audio-function modules as well as various video-function modules, synchronization modules, and the like.
  • the ultimate destination 60 will vary based on the digital content 12, but likely includes one or more audio output devices (a sound card, e.g.), one or more video output devices (a video card, e.g.), or the like.
  • the rendering application 34 itself may have many aspects of a path such as the path 58.
  • such application 34 may be instantiated in the form of several modules 62 defining the flow of digital content 12 therethrough. Therefore, it can at times be difficult to define where the rendering application 24 ends and where the path 58 begins. Nevertheless, for purposes of the present invention and the present disclosure, where the rendering application 24 ends and where the path 58 begins can be arbitrarily defined at any appropriate point if need be without departing from the spirit and scope of the present invention.
  • the rendering application 34 can include at least a portion of the path 58, if not the entirety thereof, and the path 58 can include at least a portion of the rendering application 34, if not the entirety thereof, without departing from the spirit and scope of the present invention.
  • the black box 30 and/or the DRM system 32 also preferably authenticates such path 58 to ensure that each constituent module 62 in the path 58 is to be trusted by the DRM system 32. Otherwise, the potential exists that one or modules 62 in the path can be employed by a nefarious entity to obtain the naked digital content 12 as such naked digital content 12 leaves the rendering application 34. Assuming the path authentication is successful, the digital content 12 may then be decrypted by the black box 30 and forwarded to the rendering application 34 for further forwarding down the path 58 to the ultimate destination 60.
  • the path 58 typically includes a user mode portion 58u and a kernel portion 58k.
  • the user mode portion 58u encompasses modules 62 that reside in a user portion 14u of the user's computing device 14, and includes functionality more specific to the user and the rendering application 34.
  • the kernel portion 58k encompasses modules 62 that reside in a kernel portion 14k of the user's computing device 14 and includes functionality more specific to the core operations of the user's computing device 14.
  • each portion 58u, 58k may include branches, junctions, loops, and the like.
  • the DRM system 32 directs the rendering application 14 to output naked digital content 12 in a scrambled form such that the scrambled digital content 12 enters the user mode portion 58u of the path 58 (step 1401).
  • Such scrambled digital content 12 is then acted upon and/or variously manipulated by the various modules 62 that define the user mode portion 58u of the path 58, and the resulting scrambled manipulated digital content 12 transits from the user mode portion 58u to the kernel portion 58k of the path 58 (step 1403).
  • the DRM system 32 also directs that upon leaving the user mode portion 58u / entering the kernel portion 58k, the scrambled manipulated digital content 12 is de-scrambled by an appropriate de-scrambling module 62, preferably in the kernel portion 58k of the path 58 (step 1405).
  • scrambling and de-scrambling can take any appropriate form without departing from the spirit and scope of the present invention.
  • the scrambling and de-scrambling elements must agree beforehand on the form and all necessary protocols.
  • appropriate encryption and decryption techniques may be employed based on a symmetric or asymmetric key.
  • each such module 62 is essentially prevented from performing any operations on such scrambled digital content 12.
  • the user mode portion 58u of the path 58 is essentially omitted or 'tunneled', whereby none of the modules 62 in such user mode portion 58u is allowed to manipulate the digital content 12 as it passes through such portion 58u of the path 58.. Nevertheless, such tunneling is not considered to be especially problematic in that the kernel portion 58k of the path 58 typically replicates most of the functions performed in the user mode portion 58u.
  • the digital content 12 is de-scrambled (i.e., again naked) in the kernel portion 58k of the path because each module in such kernel portion 58k that is in contact with / can manipulate / can 'touch' the naked digital content 12 has already authenticated itself to the DRM system 32.
  • the DRM system 32 prior to releasing the digital content 12 to the rendering application 34 and beyond, performs a traversal of the kernel portion 58k of the path 58 to in effect develop a map of each module in the path 58 and authenticate each path module 62. That is, recognizing that the kernel portion 14k of the user's computing device 14 comprises many modules 62, only a few of which actually define the kernel portion 58k of the path 58, the DRM system 32 seeks to discover and authenticate each such path-defining module 62. Correspondingly, the DRM system 32 does not bother to discover and authenticate other modules 62 that do not define the path 58 and therefore would not touch the naked digital content 12.
  • the DRM system 32 performs such traversal and authentication by starting at an initial module 62 in the kernel portion 58k of the path and authenticating such initial module 62 (step 1501), determining all possible destination modules 62 that receive data from such initial module 62 (step 1503), going to each possible destination module 62 and authenticating each such destination module 62 (step 1505), determining all possible destination modules 62 that receive data from such destination module 62 (step 1507), etc., and iteratively repeating such steps until the map of the kernel portion 58k of the path is fully defined and each module 62 in such kernel portion 58k has been authenticated (step 1509).
  • the DRM system 32 authenticates each module 62 by querying the module 62 for the path and file name of the executable file from which such module 62 arose (i.e., on a hard drive, a server, etc.), and the memory address for the module 62 as it resides in dynamic memory (i.e., RAM or the like). The DRM system 32 then locates the executable file, finds therein a signature, and checks such signature to ensure the executable file was not tampered with, among other things.
  • the DRM system 32 locates the module 62 as it resides in dynamic memory and checks to ensure that such module 62 as it resides in dynamic memory does not materially differ from the executable file to ensure that the module 62 as it resides in dynamic memory was not tampered with, among other things.
  • the DRM system 32 can look in the module 62 as it resides in dynamic memory to find all destination modules 62 arrived at from such module 62. As may be appreciated, such destination modules 62 may be explicitly stated or may be discerned relatively simply by looking for calls or the like.
  • the aforementioned initial module 62 should be the first module that sees the naked digital content 12 in the kernel portion 14k, and thus is likely to be the aforementioned de-scrambling module 62.
  • other modules 62 may be the first module that sees the naked digital content 12 without departing from the spirit and scope of the present invention, and other modules 62 other than such first module may be the initial module 62, again without departing from the spirit and scope of the present invention.
  • such initial module 62 should be chosen to be a module that will lead to fully discovering all other modules 62 that define the kernel portion 58k of the path 58.
  • the DRM system 32 may employ an appropriate database device to keep track of all modules 62 determined to be in the kernel portion 58k of the path 58, all modules 62 authenticated, etc. Accordingly, such DRM system 32 can for example recognize when a loop in such path 58 has been encountered, and can avoid endless re- authentication of each module 62 in the loop.
  • the particular sequence of determining and authenticating modules 62 may vary without departing from the spirit and scope of the present invention. For example, modules 62 may be authenticated as determined in the manner set forth above, all modules 62 may be determined first and then authenticated, or a combination thereof.
  • each path module 62 authenticates itself by proffering to the DRM system 32 upon request a proper certificate 64 (Fig. 13) as received from a certifying authority.
  • certificate 64 may be any appropriate certificate as received from an approved certifying authority without departing from the spirit and scope of the present invention.
  • the certificate 64 may include a hash of the module 62 as a verifying feature, or may include a public key for decrypting an attached verifying message.
  • each module 62 in the kernel portion 58k of the path 58 must already have such a certificate 64, or else such module 62 cannot be authenticated.
  • the DRM system 32 reviews the proffered certificate 64 upon receipt from the module 62 and determines if the received certificate 64 is acceptable for purposes of authenticating the module 62.
  • step 1511, 1513 If even a single module 62 in the kernel portion 58k of the path 58 fails to authenticate itself to the satisfaction of the DRM system 32, and the corresponding license 16 is silent on the subject, such DRM system 32 declares the path 58 suspect and refuses to release the digital content 12 to the rendering application 34 and beyond (steps 1511, 1513). Correspondingly, if all modules 62 in the kernel portion 58k of the path 58 succeed in authenticating themselves to the satisfaction of the DRM system 32, such DRM system 32 declares the path 58 trustworthy and allows the digital content 12 to be released to the rendering application 34 and beyond, subject to any and all other requirements having been met (steps 1511, 1515).
  • the traversal may be completed if for example a need exists to fully define the map of the path 58, or the traversal may be stopped without further determination of modules 62 in the path 58.
  • the corresponding license 16 may include explicit instructions as to what to do if a module 62 in the path 58 fails to authenticate itself.
  • the license 16 may allow a certain number of non- authenticating modules 62 in the path 58, or may include a function describing when to declare the path 58 suspect, or may even allow for any and all non-authenticating modules 62.
  • the DRM system 32 may include default instructions. Again, such instructions may vary in any manner without departing from the spirit and scope of the present invention.
  • each module 62 in the path 58 performs the work of authenticating the next module(s) 62 in the path.
  • each module 62 authenticating the next module(s) 62 should be a relatively simple task inasmuch as each module 62 should already have intimate knowledge of exactly which module(s) 62 are in fact the next module(s) 62.
  • the task of authentication is de-centralized, and may be performed on an on-going basis as needed.
  • certain types of scrambling may be performed that both protect the digital content 12 and allow such manipulation to take place. For example, if scrambling is performed on only a less significant portion of each piece of the digital content 12 (the less significant byte of each 2-byte piece of data, e.g.), certain types of manipulating could be performed on such digital content 12 even in the scrambled form.
  • the user mode portion 58u of the path 58 is also traversed and authenticated in the manner shown in Fig. 15 and discussed above in connection with the kernel portion 58k of the path 58.
  • To authenticate each module 62 in the user mode portion 58k of the path 58 such user mode module 62 should already have an appropriate certificate 64 as received from a certifying authority.
  • a certificate 64 is required and not present, such user mode module 62 cannot be authenticated.
  • Other authenticating measures aside from a certificate 64 may be employed without departing from the spirit and scope of the present invention.
  • traversal of the user mode portion 58u of the path 58 is likely more difficult than traversal of the kernel portion 58k of the path.
  • Reasons for such difficulty include the likelihood that the user mode portion 58u is larger than the kernel portion 58k, the likelihood that the user mode portion 58u has more complex data branching, joining and looping structures than the kernel portion 58k, and the likelihood that at least some of the modules 62 in the user mode portion 58u do not have authenticating measures such as certificates 64, among other things.
  • each such sub-portion 58s is identified by the DRM system 32 and tunneled in the manner set forth above and shown in Fig. 14. That is, at a module 62 just before such sub-portion 58s, the digital content 12 is scrambled (step 1401), and at a module 62 just after such sub-portion 58s, the scrambled digital content 12 is de-scrambled (step 1405).
  • Such tunneled sub-portion(s) 58s thus need not be authenticated by the DRM system 32.
  • the scramble / de-scramble functionality may be built into each module 62 so that the DRM system 32 can turn on / turn off such functionality as needed in any sub-portion 58s of the path 58.
  • dedicated scramble / de-scramble modules 62 may be built into the path 58 in appropriate locations beforehand without departing from the spirit and scope of the present invention.
  • the DRM system 32 can then declare the altered path 58 trustworthy and thereby release the digital content 12 to the rendering application 34.
  • tunneling a sub-portion 58s having a non-authenticated module 62 may degrade the path 58 somewhat, perhaps to an unacceptable level.
  • a certificate 64 provided by a certifying authority can and at times does become compromised in that the 'secret' of the compromised certificate 64 becomes discovered and/or public knowledge.
  • a certificate 64 can be proffered by anyone, including a nefarious entity who wishes to do a non-trustworthy act. For example, such a nefarious entity can attach a compromised certificate 64 to a nefarious module in the path 58.
  • the nefarious module 62 can proffer the compromised certificate 64 to the DRM system 32 to gain the trust of such DRM system 32, and nevertheless thereafter perform a non-trustworthy act such as storing digital content 12 in a naked and/or non-secure form.
  • a compromised certificate 64 comes to light, the certifying authority that issued such certificate 64 or another party hopefully is made aware of the compromised state thereof. Such certifying authority or other party therefore regularly issues a list of certificates 64 that are not to be trusted anymore (i.e., have been 'revoked').
  • a list 66 of revoked certificates 64 is regularly provided to the DRM system 32, and such DRM system 32 stores such revocation list 66 in a secure location such as the state store 40 (Fig. 4) to prevent tampering therewith.
  • the DRM system 32 of the present invention reviews the proffered certificate 64 upon receipt from the module 62 and determines if the received certificate 64 is acceptable for purposes of authenticating the module 62 (step 1601); and also checks the revocation list 66 to ensure that a proffered certificate from a module 62 has not been revoked (step 1603). If revoked, the module is treated by the DRM system 32 as if non- authenticated. Preferably, the DRM system 32 regularly obtains / downloads a current revocation list 66 and/or regularly update a resident revocation list 66.
  • Such objective can be fulfilled by for example obtaining / downloading of a current revocation list 66 prior to obtaining a new black box 30, a new license 16, new digital content 10, or the like.
  • Such objective can be fulfilled by for example updating of a resident revocation list 66 prior to obtaining a new black box 30, a new license 16, new digital content 10, or the like.
  • Such downloading / obtaining / updating may be performed as a requirement or may be performed automatically and/or transparently.
  • other methods of fulfilling the objective may be employed without departing from the spirit and scope of the present invention.
  • the DRM system 32 and/or the black box 30 authenticates the rendering application 34 and the path 58 to ensure that such items can be trusted to handle the decrypted or 'naked' digital content 12 in an appropriate manner.
  • the performed authentication of the rendering application 34 and/or the path 58 includes verifying that the rendering application 34 and/or each module 62 in the path 58 is of a type secure enough to be approved for use by the digital license 16.
  • the digital license 16 may appropriately specify that the rendering application 34 or module 62 must be from one or more particular sources / suppliers / developers, must be one or more particular products, must be one or more particular versions of a particular product, or the like.
  • the specifications are overly limiting in that they may unnecessarily exclude other (perhaps newer) sources / suppliers / developers, other (perhaps newer) particular products, other (perhaps newer) particular versions of a particular product, or the like.
  • a type of security of a rendering application 34 or module 62 that is to be approved for use by a digital license 16 is specified in such digital license 16 in a flexible and robust manner that is not overly limiting.
  • security type is specified in a scaled manner.
  • One preferred security scale is a numerical scale, whereby each rendering application 34 or module 62 is assigned a number representative of the relative security thereof, and the digital license specifies a range within which the number must be if the rendering application 34 or module 62 is to be approved for use.
  • other security scales may be employed without departing from the spirit and scope of the present invention.
  • Such other scales may for example include letter scales (A, A-, B+, B, etc.; AAA, NA, A, BBB, BB, etc.; e.g.), plus / minus scales ( + + +, + +, +, -, - -, etc., e.g.) or the like.
  • each rendering application 34 or module 62 be assigned a security value based on a number scale from 0 to 100, where 0 is indicative of a rendering application 34 or module 62 that has been deemed not secure, and where 100 is indicative of a rendering application 34 or module 62 that has been deemed highly secure.
  • a digital license 16 may require that each rendering application 34 or module 62 have a pre-assigned security value of at least 50, greater than 40, 20 or higher, or the like.
  • Such a security requirement 68 is shown in Fig. 8.
  • Such digital license 16 may of course specify other ranges, and may also specify different types of ranges (between 20 and 70, no greater than 60, etc.), all without departing from the spirit and scope of the present invention.
  • the security value 70 of each rendering application 34 or module 62 is specified in the form of a certificate 72 attached to the rendering application 34 (as shown in Fig. 4) or module 62.
  • certificate 72 is issued by a security value certifying authority that determines the security value 70 based on pre-determined parameters.
  • the certificate 72 is encrypted to prevent tampering therewith, and is tied to the rendering application 34 or module 62 in such a manner that the certificate 72 is inoperable with any other rendering application 34 or module 62.
  • the certificate 72 may include a hash based on the rendering application 34 or module 62, and the hash is verified when the certificate 72 is examined.
  • the security value certifying authority issuing the certificate 72 having the security value 70 may be any appropriate certifying authority. However, it is to be recognized that anyone can act as a certifying authority and issue a certificate. Thus, a nefarious entity could issue an improper certificate 72 on its own behalf, or a lax certifying authority could issue an improper certificate 72 to a nefarious entity. Accordingly, the security value certifying authority is preferably one trusted by the digital license 16. Such trust may for example be established by explicitly stating indicia of one or more such trusted security value certifying authorities 74 in the digital license 16 (Fig. 8), whereby a certificate 72 from a non-named security value certifying authority is not trusted. Such trust may alternately be established, for example, by stating indicia of such trusted security value certifying authorities in the black box 30 and/or the DRM system 32.
  • the method employed by the trusted security value certifying authority 74 to determine the security value 70 as specified in the certificate 72 may be any appropriate method without departing from the spirit and scope of the present invention. Such method may be objective, subjective, or a combination thereof, also without departing from the spirit and scope of the present invention. Factors going into a consideration of the security value 70 may include, for example, the particular source / supplier / developer of the rendering application 34 or module 62 at issue, the tamper- resistance of the rendering application 34 or module 62 at issue, whether any associated keys in the rendering application 34 or module 62 at issue are well-hidden, what kind of history of trust has been established with regard to the rendering application 34 or module 62 at issue, and the like, among other things.
  • the security value 70 as specified in the certificate 70 may instead or in addition comprise a plurality of security sub-values 70a, 70b, etc. (Fig. 4)
  • each sub-value 70a, 70b could be indicative of one factor, or a function of one or more factors.
  • the security requirement 74 of the digital license could specify required ranges for each sub-value 70a, 70b, etc., could specify required ranges for the result of functions of the sub-values 70a, 70b, etc., or the like.
  • the DRM system 32 and/or the license evaluator 36 (hereinafter 'the DRM system 32') approves a rendering application 34 or module 62 for use in accordance with the terms of a digital license 16 in the following manner.
  • the DRM system 32 examines the terms of the digital license 16 and extracts from such digital license 16 the security requirement 68 and any trusted security value certifying authority information 74, as was discussed above (step 1701).
  • the DRM system 32 also obtains from the rendering application 34 or module 62 the attached certificate 72 having the security value information 70, 70a, 70b, etc. and indicia of the security value certifying authority 76 (Fig.
  • the DRM system 32 then examines the certificate 72 in an appropriate manner to verify that such certificate 72 is indeed for such rendering application 34 or module 62 (step 1705), and obtains from the certificate 72 the security value information 70, 70a, 70b, etc. therein and the indicia of the security value certifying authority 76 that issued such certificate 72 (step 1707).
  • the DRM system 32 compares the security value 70, 70a, 70b, etc. to the security requirement 68 to appropriately determine whether such the security value 70, 70a, 70b, etc satisfies such security requirement 68 of the digital license 16 (step 1709).
  • determination may involve an appropriate consideration of any ranges specified in the security requirement 68, appropriate calculations based on any functions specified by the security requirement 68, or the like.
  • the DRM system 32 compares the indicia of the security value certifying authority 76 to the trusted security value certifying authority information 74 to appropriately determine whether such security value certifying authority 76 satisfies such trusted security value certifying authority information 74 from the digital license 16 (step 1711). Assuming that the security value 70, 70a, 70b, etc.
  • the DRM system 32 approves the rendering application 34 or module 62 and thus verifies that the rendering application 34 or module 62 meets the security criteria as set forth by the digital license 16 (steps 1713, 1715.
  • the DRM system 32 does not approve such rendering application 34 or module 62, and rendering of the corresponding digital content 10 is not permitted (step 1713, 1717).
  • the aforementioned process for approving a rendering application 34 or module 62 as is shown in Fig. 17 may be performed at any appropriate time without departing from the spirit and scope of the present invention.
  • the approval process may be performed during license evaluation as discussed above and shown in Fig. 6, or may be performed as part of path authentication as discussed above and shown in Fig. 15.
  • the approval process for the rendering application 34 may for example take place at a time different than for a module 62, if in fact any module is in fact to be approved in the manner shown in Fig. 17.
  • the decryption key (KD) and key ID (among other things) for each piece of digital content 12 (or each package 12p) is stored in the content-key database 20 (Fig. 1).
  • a license server 24 can interrogate the content-key database 20 and locate a record corresponding to the digital content 12 (or package 12p) that is the basis of the request.
  • Such content-key database 20 will likely become a mammoth size once such database 20 is loaded with information for each of a multitude of pieces of digital content 12. Such mammoth size of course increases the likelihood that the content-key database 20 will become corrupted, and accordingly a considerable amount of staff and/or resources must be dedicated to maintaining such database 20 and keeping such database 20 up and running. Moreover, such mammoth size likely will require that the database 20 reside on its own server (not shown), and will require high speed communications resources to communicate with one or more authoring tools 18, one or more content servers 22, one or more license servers 24, and the like in an efficient manner, especially if any such elements are remote from the database 20. Further, and as should be appreciated by now, the amount of communications between the one or more authoring tools 18, one or more content servers 22, one or more license servers 24, and the like will be considerable.
  • such content-key database 20 is avoided by deriving the content decryption key (KD) for a piece of digital content 12 directly from the key ID associated with such digital content 12.
  • a license server issuing a license 16 to a user's computing device 14 obtains the decryption key (KD) to be included with such license 16 from the key ID included with the license request for such license 16.
  • the authoring tool 18 authoring such digital content 12 or the content server 22 serving such digital content 12 selects a key ID for the digital content 12 (step 1801), and the content server 22 then employs the selected key ID as an input to a function f(), perhaps along with a secret 'seed' (step 1803).
  • the output of such function f() is then employed as the symmetric encryption and decryption key (KD) for the digital content 12:
  • Such digital content 12 is therefore encrypted according to such key (KD) (step 1807).
  • KD key
  • Such encrypted digital content 12 may thereafter be distributed to a user's computing device 14 (step 1809).
  • the selection of the key ID for the digital content 12 may be performed in any reasonable manner without departing from the spirit and scope of the present invention. For example, such selection may be done randomly, serially, or the like. Moreover, the key ID may be any particular length, have any particular base, be alphanumeric, or have other features, again without departing from the spirit and scope of the present invention.
  • the function f() is a one-way function.
  • deriving the output from the input(s) and the secret seed is relatively easy, but deriving the seed from the input(s) and the output is extremely difficult.
  • a nefarious entity with knowledge of the particular one-way function, a key ID inputted to the function, and the key (KD) derived from the function and the key ID cannot derive the secret seed without enormous effort.
  • KD key
  • any particular one-way function may be employed without departing from the spirit and scope of the present invention.
  • a one-way hash function such as a secure hashing algorithm (SHA) or MD5 may be employed.
  • the MD5 algorithm is marketed and/or distributed by RSA Security of Bedford, Massachusetts and/or a related entity.
  • the details of one-way functions are known or are apparent to the relevant public and therefore need not be described herein in any further detail.
  • one or more license servers 24 are authorized to issue a digital license 16 for the distributed digital content 12.
  • such authorized license servers 24 are provided with the function ⁇ ) and the seed used to produce the key (KD) that was employed to encrypt such distributed digital content 12 (step 1811). Accordingly, when a digital license 16 is requested from one of such license servers 24 (step 1813), and assuming the request has been approved, the license server 24 can obtain the decryption key (KD) to include with the requested digital license 16.
  • KD decryption key
  • such license server 24 For the license server 24 to obtain such decryption key (KD) in accordance with the embodiment presently discussed, such license server 24 must of course be supplied with the corresponding key ID (step 1815).
  • key ID is supplied as part of the license request information provided in the course of a request for a digital license 16 (step 703 of Fig. 7).
  • key ID is included with the digital content package 12p that contains the encrypted digital content 12 (step 1808), and is thus obtainable therefrom by the user's computing device 14.
  • such license server 16 obtains the key ID for the digital content 12 from the license request information (step 1817), and then employs the obtained key ID as an input to the function fi) along with the secret seed employed by the content server 22 (step 1819).
  • the license server 24 and content server 22 agree on the secret seed beforehand.
  • such function f() should of course output the appropriate decryption key (KD) for the digital content 12:
  • the license server 24 therefore appropriately packages such key (KD) in the digital license 16 that is to be sent out in response to the license request (step 1823). Such digital license 16 with such key (KD) may thereafter be so sent out to the requester's computing device 14 (step 1825).
  • the license server 24 can issue a digital license 16 for digital content 12 issued by the content server 22 because the license server 24 and the content server 22 share knowledge of the function/() and secret seed employed to produce a symmetric encryption / decryption key (KD) based on a selected key ID.
  • KD symmetric encryption / decryption key
  • the seed is changed frequently.
  • the period of such change can of be any period without departing from the spirit and scope of the present invention.
  • such period may be weekly, daily, monthly, etc.
  • such period may be irregular, again without departing from the spirit and scope of the present invention.
  • a license server 24 issuing a digital license 16 for digital content 12 issued by a content server 22 must know which seed was employed to encrypt such digital content 12.
  • the seed is identified by a seed ID, and such seed ID is included along with the key ID in the digital content package 12p that contains the encrypted digital content 12 (Fig. 3).
  • seed ID is supplied along with the key ID as part of the license request information provided in the course of a request for a digital license 16 (step 703 of Fig. 7).
  • such license server 16 obtains the key ID and seed ID for the digital content 12 from the license request information (step 1817), and then employs the obtained key ID as an input to the function f() along with the appropriate seed as previously provided to such license server 24 (step 1819).
  • the appropriate seed is selected based on the obtained seed ID.
  • such function f() should of course output the appropriate decryption key (KD) for the digital content 12, as was discussed above (step 1821).
  • the seed ID is employed as an input to the function f().
  • the authoring tool 18 authoring such digital content 12 or the content server 22 serving such digital content 12 selects a key ID for the digital content 12 (step 1801), and then employs the selected key ID as an input to a function f() along with a secret 'seed' and the seed ID for such seed (step 1803).
  • the output of such function ⁇ ) is then employed as the symmetric encryption and decryption key (KD) for the digital content 12:
  • Such digital content 12 is therefore encrypted according to such key (KD) (step 1807).
  • KD key
  • Such encrypted digital content 12 may thereafter be distributed to a user's computing device 14 (step 1809).
  • one or more license servers 24 are authorized to issue a digital license 16 for the distributed digital content 12.
  • such authorized license servers 24 are provided with the function /(), each applicable seed used to produce a key (KD), and the seed ID for each applicable seed (step 1811).
  • each license server 24 includes an appropriate seed database 24s (Fig. 1) for storing such seed and seed ID information. Accordingly, when a digital license 16 is requested from one of such license servers 24 (step 1813), and assuming the request has been approved, the license server 24 can obtain the decryption key (KD) to include with the requested digital license 16.
  • such license server 24 For the license server 24 to obtain such decryption key (KD), such license server 24 must of course be supplied with the corresponding key ID and seed ID (step 1815).
  • key ID and seed ID are supplied as part of the license request information provided in the course of a request for a digital license 16 (step 703 of Fig. 7).
  • key ID and seed ID are included with the digital content package 12p that contains the encrypted digital content 12 (step 1808), and is thus obtainable therefrom by the user's computing device 14.
  • such license server 16 obtains the key ID and seed ID for the digital content 12 from the license request information (step 1817), and then employs the obtained key ID and seed ID as inputs to the function /() along with the appropriate seed as previously provided to such license server 24 and as selected based on the seed ID from the seed database 24s (steps 1818, 1819). Based on such key ID, such seed, and such seed ID, such function/() should of course output the appropriate decryption key (KD) for the digital content 12:
  • the license server 24 therefore appropriately packages such key (KD) in the digital license 16 that is to be sent out in response to the license request (step 1823). Such digital license 16 with such key (KD) may thereafter be so sent out to the requester's computing device 14 (step 1825).
  • the DRM system 32 obtains a new and unique ('individualized') black box 30 from a black box server 26 or the like (Fig. 1), and such black box server 26 delivers the individualized black box 30 with a new public / private key pair (PU-BB, PR-BB) (and/or with other secrets and/or individualizing elements).
  • the black box server 26 individualizes each black box 30 by individualizing an executable program file that is delivered to and is resident on the DRM system 32 / the user's computing device 14.
  • Such executable program file may be a .dll (dynamically linked library) file, such as 'bb.dll', although other types of files may be employed without departing from the spirit and scope of the present invention.
  • the individualization of the bb.dll or the like is performed in a manner such that the bb.dll and DRM system 32 are BORE (Break Once Run Everywhere) -resistant in that a successful attack by a nefarious entity on one bb.dll / DRM system 32 cannot easily be replicated on any other bb.dll / DRM system 32.
  • the bb.dll executable is individualized since such executable contains the 'secret' that is the goal of such attack.
  • each operationally different version of code operates with a different program flow, among other things. Accordingly, a determination of the program flow of one version to find the secret in the one version is inapplicable to a determination of the program flow of another version to find the secret in the another version. Therefore, the 'breaking' of one version is not the breaking of any other version.
  • an individualized bb.dll 80 is produced by inputting a master bb.dll 80m and random parameters 81 to a code optimizer operating as the aforementioned code randomizer 78.
  • code randomizing agents may be employed without departing from the spirit and scope of the present invention.
  • a new individualized bb.dll 80 is requested from a black box server 26 or the like by a DRM system 32 each time a triggering event ('trigger') requires such new bb.dll (steps 2001, 2003 of Fig. 20A, step 901 of Fig. 9).
  • the triggering event may be a determination that the black box 30 / individualized bb.dll 80 is not current, or may be some other event without departing from the spirit and scope of the present invention. Such determination may be made by the license server 24, as was discussed above, or by another device, again without departing from the spirit and scope of the present invention.
  • the black box server 26 prepares such a new individualized bb.dll 80 and forwards same to the requesting DRM system 32.
  • the black box server 26 delivers the new individualized bb.dll 80 with a new public / private key pair (PU-BB, PR-BB), and perhaps other keys, as will be discussed below (collectively, a 'new key set').
  • PU-BB public / private key pair
  • PR-BB public / private key pair
  • the new individualized bb.dll 80 should still be able to employ old key sets previously delivered to the DRM system 32 on the user's computing device 14 in connection with old bb.dlls 80.
  • old key sets are still necessary to access older digital content 12 and older corresponding licenses 16 that were generated according to such old key sets.
  • such new individualized bb.dll 80 is provided with access to old key sets and old public / private key pairs.
  • the black box server 26 includes a key manager 84 (Fig.
  • Such key manager 84 of such black box server 26 then forwards the corresponding new key file 82 to the requesting DRM system 32 along with the new individualized bb.dll 80.
  • the new key set (PU-BB, PR-BB, etc.) is not included in the new key file 82, such new key set may instead be included with the new individualized bb.dll 80, preferably with at least (PR-BB) hidden.
  • the key file 82 is encrypted and the bb.dll 80 includes a 'secret' that allows it to gain access to the encrypted key file 82.
  • the secret may be the new black box private key (PR-BB) in which case the key file 82 is encrypted according to the new black box public key (PU- BB).
  • the secret may be another key, such as a symmetric key, in which case the key file 82 is encrypted according to such symmetric key.
  • the process of preparing the new individualized bb.dll 80 (i.e., the '(n)th bb.dll 80') and the new key file 82 (i.e., the '(n)th key file 82') by the key manager 84 in response to a request from a DRM system 32 may take place in the following manner. Such process may be initiated by a request from the DRM system (step 2003), or by a user request, for example.
  • such request may be accompanied by one or more pieces of information, chief among which is the old key file 82 (i.e., the '(n-l)th key file 82') (step 2005).
  • the (n-l)th key file 82 is sent to the black box server 26 along with a digital signature verifying such (n-l)th key file 82.
  • the digital signature could verify the entire request including such (n-l)th key file 82 and all other contents.
  • the key manager 84 checks the digital signature to verify same and proceeds if the verification is positive (step 2007). The key manager 84 then obtains the (n-l)th key file 82 from the request and the old / old and new key sets therein (step 2011). However, the (n-l)th key file 82 and/or the key sets therein are encrypted according to the secret of the old bb.dll 80 (i.e., the '(n-l)th bb.dll 80'), as was discussed above.
  • the DRM system 32 must include the secret of the (n-l)th bb.dll 80 with the request for the (n)th bb.dll 80.
  • this runs counter to the notion that the secret should never be revealed to the world outside the bb.dll 80, especially if the secret is PR-BB. Nevertheless, such secret must somehow be supplied to the black box server 26 and key manager 84.
  • the secret is embedded in the bb.dll 80
  • such secret may be supplied to the key manager 84 by including a copy of the entire bb.dll 80 in the request. However, doing so may be cumbersome, especially if such bb.dll 80 is relatively large.
  • the key manager 84 may employ an appropriate database to remember the secret from when the bb.dll 80 was originally issued. However, such database could become exceedingly large and therefore unwieldy.
  • the secret is preferably already present in the key file 82 that has already been delivered such that the key manager 84 can obtain the secret from such key file 82 (step 2009).
  • the key manager 84 can then employ the obtained secret to in turn obtain the (n-l)th key file 82 from the request and the old key sets therein (step 2011). Specifically, in such embodiment, when the key manager 84 prepared the (n-l)th bb.dll 80 (with an (n-l)th secret) and the (n-l)th key file 82, such key manager 84 included in such (n-l)th file 82 the (n-l)th secret, whether it be (PR-BB) or some other secret.
  • the secret is already present at the black box server 26 / key manager 84, in that an appropriate database including such secret is maintained by such black box server 26 / key manager 84.
  • this is not especially advisable, based on security reasons, the size and complexity of such a database, and difficulties in sharing such database with multiple black box servers 26 / key managers 84 if need be.
  • the (n-l)th secret is encrypted according to a 'SUPER' key known only to the black box server 26 / key manager 84 (SUPER(secret)), as is seen in Fig. 19.
  • the key sets in such (n-l)th key file 82 are encrypted according to the (n-l)th secret (secret(key sets)), and the attached digital certificate is based on both (SUPER(secret)) and (secret(key sets)).
  • the (n-l)th secret is embodied in the (n-l)th key set
  • the (n-l)th key file 82 may include (SUPER(key sets)), (secret(key sets)), and an appropriate attached digital certificate.
  • an entity other than the black box server 26 / key manager 84 may build the key file 82, in which case such other entity would not have access to the 'SUPER' key.
  • Such an instance may for example occur on an initial build of a DRM system 32 on a computing device 14, where the DRM system 32 in essence builds an initial key file 82 itself.
  • such other entity is provided with and uses a black box server public key (PU-BBS) instead of the 'SUPER' key to encrypt (key sets).
  • P-BBS black box server public key
  • PR-BBS black box server private key
  • the key manager 84 can place all appropriate key sets in the (n)th key file 82 (step 2017). Note that in doing so, the key manager 84 either selects or is provided with the new key set including the black box key pair (PU-BB, PR-BB, etc.) (step 2013), and uses the secret incumbent in such new key set to encrypt the key sets to be placed in such (n)th key file 82 (step 2015). As will be discussed below, such secret is then noted for later use (step 2019)in provided therein.
  • any particular methods and structures may be employed to place such key sets in such (n)th key file 81 without departing from the spirit and scope of the present invention as long as such (n)th key file 82 is provided with all necessary key sets in a form readable by the (n)th bb.dll 80.
  • the key manager 84 preferably obtains a hardware ID (HWID) from the (n-l)th key file 82 or from the initial black box request (step 2021), and then appropriately places such HWID in the (n)th key file 82 (as shown in Fig.
  • HWID hardware ID
  • the HWID is originally obtained from such computing device 14, and in fact may be any appropriate identification that can be obtained from an appropriate memory location on the user's computing device 14 and that in fact identifies such computing device 14.
  • the HWID may be a CPU ID on the computing device 14, an identifier hidden in a non- volatile memory on the computing device 14, an identifier developed from indicia of elements of the computing device (size of hard drive, size of RAM, etc.), or the like.
  • the HWID may be placed in the (n)th key file 82 in an encrypted form, or may be left unencrypted if verifiable by way of a digital signature or the like.
  • the code randomizer 78 of the black box server 26 is run with randomized parameters 81 and the master bb.dll 80m as the inputs to produce an individualized bb.dll 80 with space reserved for additional information (step 2025, Fig. 20B).
  • randomized parameters 81 may be selected in any appropriate manner without departing from the spirit and scope of the present invention.
  • such randomized parameters 81 may be truly random, or may include information as received in connection with the request, such as the HWID (step 2003). If the HWID is employed as a randomized parameter 81, such HWID may be obtained in connection with step 2021.
  • the code optimizer 78 notes where the reserved spaces are located in the produced individualized bb.dll 80 (step 2027), and provides such information and such produced individualized bb.dll 80 to an injector 86 (step 2029), as seen in Fig. 19.
  • the reserved spaces in the produced bb.dll 80 are for receiving the secret as saved by the key manager 84 (step 2019), and the injector 86 receives the information on the reserved spaces and the produced individualized bb.dll 80, retrieves the saved secret (step 2031), and thereafter 'injects' such secret into such received bb.dll 80 in the reserved spaces (step 2033).
  • the reserved space(s) in the bb.dll 80 may comprise any appropriate structure(s) at any appropriate location(s) without departing from the spirit and scope of the present invention, as long as the reserved space(s) are adequate for the purpose of holding the secret.
  • the secret is in fact a secret, the secret is injected into the reserved spaces in such a manner and the reserved spaces are arranged in such a manner to hide the secret to a sufficient degree such that the secret cannot be found in any practical manner by a nefarious entity. Any appropriate manner of injection may be employed without departing from the spirit and scope of the present invention.
  • the reserved spaces are varied with respect to each individualized bb.dll 80 as part of the individualization process performed by the code randomizer 78.
  • the code for the individualized bb.dll 80 is written and/or the code randomizer 78 is operated such that the bb.dll 80 can locate the secret within itself during operation thereof.
  • the injector 86 may encrypt the secret in some fashion as part of the injection process, perhaps according to the HWID of the requesting computing device 14, but appropriate decryption information must be provided to the bb.dll 80 by such injector 86 or another element to allow the bb.dll 80 to decrypt such encrypted secret.
  • the injector 86 may also inject the HWID into the received bb.dll 80 in a portion of the reserved spaces (step 2033). If the HWID is employed in connection with the injector 86 and/or step 2033, such HWID may be obtained in connection with step 2021.
  • the information provided by the code randomizer 78 to the injector 86 includes a help file or the like appropriately specifying how the secret is to be injected into the bb.dll 80. In another embodiment, such a help file or the like is embedded in the bb.dll 80 in a manner readable by the injector 86.
  • the injector 86 may inject other information into already- reserved spaces in the bb.dll 80 without departing from the spirit and scope of the present invention. For example, to tie such bb.dll 80 more closely to the user's computing device, the injector 86 may appropriately inject the HWID received as part of the request (step 2003). Likewise, if there are multiple black box servers 26, the injector 86 may appropriately inject an identifier of the black box server 26 issuing such bb.dll 80 to tie such bb.dll 80 to such black box server 26.
  • such (n)th bb.dll 80 and the corresponding (n)th key file 82 are essentially ready for delivery to the requesting computing device 14.
  • such (n)th bb.dll 80 is preferably delivered to a signature generator 88 (Fig. 19) that generates a digital signature for the bb.dll and that couples the generated digital signature to the (n)th bb.dll 80 in an appropriate manner (step 2035).
  • such digital signature is employed (for example) to assist the computing device 14 in checking such (n)th bb.dll 80 for the presence of computer viruses, but may also be employed by the DRM system 32 of the requesting computing device 14 as a tool to otherwise verify that such (n)th bb.dll 80 has not been altered.
  • the black box server 26 Prior to delivering the (n)th bb.dll 80 and the (n)th key file 82 to the requesting DRM system 32, the black box server 26 preferably prepares a digital certificate for the (n)th black box 30 (which is instantiated based on the (n)th bb.dll 80) (step 2037).
  • a digital certificate may be based on the contents of the (n)th key file 82 and/or the (n)th bb.dll 80 and is to be proffered by the black box 30 and/or the DRM system 32 upon request to certify to an inquiring entity that the black box 30 is to be trusted.
  • Such prepared digital certificate may then be added to the (n)th key file 82 (as shown in Fig.
  • step 2039 may be added to the (n)th bb.dll 80, or may be placed in another file. It is to be noted that if the digital certificate is based at least in part on the HWID, such HWID need not be encrypted in the (n)th key file 82 since an alteration thereof will cause the digital certificate to fail to verify.
  • Such (n)th bb.dll 80, (n)th key file 82, and any other appropriate files may then be delivered to the requesting DRM system 32 (step 2043).
  • a compressor 90 (Fig. 19) may be employed to compress the (n)th bb.dll 80 and/or the (n)th key file 82 prior to such delivery (step 2041).
  • the DRM system 32 must include an appropriate de-compressor (not shown) to de-compress the compressed data upon receipt (step 2045).
  • Such DRM system may then appropriately install and use such (n)th bb.dll 80, (n)th key file 82, and any other appropriate received files (step 2047).
  • Figs. 20A-20C the process as outlined in Figs. 20A-20C is fairly involved, and therefore may require a relatively long time to be performed. That is, the period of time between the trigger and request (steps 2001, 2003 of Fig. 20 A, step 901 of Fig. 9) and the receipt and installation of the new black box 30 (steps 2045, 2047 of Fig. 20C, steps 907, 909 of Fig. 9) can be considerable. Accordingly, it may be advisable to perform some of the steps in Figs. 20A-20C beforehand.
  • the code randomizer 78 is operated beforehand to produce multiple randomized bb.dll's 80, and such multiple randomized bb.dll's 80 are stored or 'placed on the shelf until needed in response to a request (step 2003).
  • code optimizer 78 produces a help file for each bb.dll 80 as was discussed above, such help file should be stored or placed on the shelf with such bb.dll or stored in some other location.
  • one of the bb.dll's 80 is 'taken from the shelf and employed as the (n)th bb.dll 80 to be delivered to the requesting user's computing device 14.
  • the process line comprising steps 2025-2035 is performed beforehand to produce multiple completed randomized bb.dll's 80 with respective secrets already injected.
  • each secret is selected and employed by the injector 86 or the like and is then saved ( a la step 2019) for later retrieval and use by the key manager 84 or the like (a la step 2031, but at or about step 2013).
  • such completed bb.dll's 80 are stored or 'placed on the shelf until needed in response to a request (step 2003).
  • one of the bb.dll's 80 is 'taken from the shelf and employed as the (n)th bb.dll 80 to be delivered to the requesting user's computing device 14.
  • the secret already pre-injected into such (n)th bb.dll 80 (step 2033) is appropriately retrieved by the key manager 84, and is then employed to produce the (n)th key file 82 in the manner discussed above.
  • the process line comprising steps 2025-2035 is performed beforehand, the (n)th bb.dll 80 cannot be produced based on any information that could be received as part of the request, such as the HWID. Again, though, none of such information is believed to be vital to the aforementioned process line.
  • the bb.dll 80 need not absolutely have the HWID injected thereinto to tie such bb.dll 80 to the user's computing device 14.
  • such bb.dll 80 is already tied to such computing device 14 because the (n)th key file 82 contains such HWID and is therefore tied to such computing device 14, and only the (n)th bb.dll 80 contains the secret that is used to access such (n)th key file 82.
  • the upgraded black box 30 which includes such (n)th key file 82 and such (n)th bb.dll 80 is tightly tied to or associated with the user's computing device 14.
  • such upgraded black box 30 cannot be operably transferred among multiple computing devices 14 for nefarious purposes or otherwise, except in the manner to be specified below.
  • such upgraded black box 30 can only be employed on the requesting user's computing device 14.
  • the transferred black box 30 recognizes that it is not intended for such other computing device 14, and does not allow any requested rendering to proceed on such other computing device 14.
  • each bb.dll 80 should be unique with a unique set of keys.
  • such bb.dll 80 is not in fact unique, but instead has a finite number of identical copies. Such number of copies should be relatively small, on the order of 2-100, for example, such that the likelihood that any two users share an identical bb.dll 80 is negligible.
  • throughput in producing such bb.dll's 80 by the black box server 36 is significantly increased, with little if any real reduction in overall security.
  • the black box 30 of the DRM system 32 includes the (n)th key file 82 and the (n)th bb.dll 80 and is tightly tied to or associated with the user's computing device 14 by including the HWID from such computing device 14.
  • each license 16 containing a decryption key (KD) encrypted according to a black box public key (PU-BB) stored in the (n)th key file 82 is also tightly tied to the computing device 14, as is the DRM system 32 itself. If the DRM system 32 senses that the HWID of the computing device 14 is not the same HWID specified in the black box 30, such DRM system 32 concludes that it is not for the computing device 14 and prohibits some if not all rendering of digital content 12 by such DRM system 12.
  • a license 16 issued to one DRM system 32 on a first user machine 14 is bound by a 'chain' to the HWID of the first user machine 14 by way of the key file 82 and cannot be employed in connection with a copied DRM client 32 on a second machine 14.
  • the HWID of the computing device 14 changes through no fault of the user and without any deceptive or nefarious intent on the part of the user.
  • the user may have acquired a different computing device 14 with a different DRM system 32 thereon.
  • the HWID may have become corrupted, may have been re-assigned, or otherwise may have changed due to a change in the computing device 14 such as a new operating system or a new piece of hardware or software. In such a situation, then, it is preferable that a mechanism be available to re-establish the chain between each license 16 and the changed HWID.
  • any such mechanism essentially contacts a backup / restore server and sends one or more files or the like to such backup / restore server, where such files existed in connection with the prior HWID and were previously saved and include important tying information.
  • Such backup / restore server then alters each file or creates new corresponding files and then returns such files to the DRM system 32, where such altered / new files appropriately re-establish the chain between each license 16 and the changed HWID of the computing device 14 upon which the DRM system 32 resides.
  • a piece of digital content 12 is encrypted according to a decryption key (KD).
  • KD decryption key
  • a corresponding license 16 issued for a DRM system 32 contains the decryption key (KD) encrypted according to a black box public key (PU-BB),
  • PU-BB black box public key
  • PU-BB if old is expected to be in the key file 82 of the black box 30 of such DRM system 32.
  • the key file 82 includes the HWID of the computing system 14 upon which the DRM system 32 resides.
  • the new key file 82 has the wrong HWID, but has the old key sets having the old keys for the older licenses 16.
  • the link in the chain between each license 16 and the computing device 14 that is missing is the correct HWID.
  • the new key file 82 has the right HWID, but does not have the old key sets having the old keys for the older licenses 16.
  • the link in the chain between each license 16 and the computing device 14 that is missing is the necessary old key sets in the old key file 82. It is necessary, then, at least in the latter case, to maintain a saved copy of the old key file 82.
  • each license 16 is re-tied to the computing device 14 by employing the aforementioned backup / restore server to appropriately alter the HWID in such old key file 82 to correspond to the current HWID of the computing device 14 upon which the DRM system 32 resides, and then by appropriately installing such old key file 82 in such DRM system 32.
  • the black box server 26 may act as the aforementioned backup / restore server, although another server such as a dedicated server may be employed without departing from the spirit and scope of the present invention.
  • the DRM system 32 sends a backup / restore request to the black box server 26 acting as the backup / restore server (step 2101).
  • a backup / restore request may be sent automatically or upon approval by the user of the computing device 14.
  • the user may also actively initiate the request without departing from the spirit and scope of the present invention.
  • the request includes the old key file 82 (i.e., the saved copy having the necessary old key sets) and the new / changed HWID (i.e., 'the new HWID').
  • the request may also include other information without departing from the spirit and scope of the present invention.
  • the backup / restore server (black box server 26) locates the HWID already present in the old key file 82 (i.e., 'the old HWID')and appropriately replaces such old HWID with the new HWID (steps 2103, 2105), and then sends the changed old key file 82 back to the DRM system 32 (step 2107).
  • the old key sets stored in such changed old key file 82 are not altered in the course of changing the HWID therein. Accordingly, such old key sets will be available to licenses 16 stored on the DRM system 32 when the changed old key file 82 is appropriately installed in the DRM system 32 residing on the computing device 14 at issue.
  • the location and replacement of the old HWID (steps 2103, 2105) is performed essentially as a standalone operation so that the old key file 82 is not otherwise modified.
  • any items in the old key file 82 that rely on such old HWID must also be altered.
  • digital certificates and/or digital signatures in the old key file 82 that are based at least in part on the old HWID must be altered or re-written based on the new HWID.
  • the bb.dll 80 corresponding to the old key file 82 must also be altered if it relies on such old HWID.
  • the old HWID may have been injected into the corresponding bb.dll 80, and may be employed as another mechanism to tie the black box 30 containing such bb.dll 80 to the computing device 14 upon which the DRM system resides.
  • the re-tying is performed as part of a black box upgrade by the structure of Fig. 19 and in the manner shown in Figs. 20A-20C.
  • a 're-tie upgrade' differs from a 'regular upgrade' in that the (n-l)th key file 82 is not forwarded to the key manager 84, as in a regular upgrade (step 2005, Fig. 20 A).
  • the aforementioned saved copy of the old key file 82 is forwarded (step 2005' of Fig. 20D).
  • such a 're-tie upgrade' differs from a 'regular upgrade' in that the HWID obtained is not the old HWID from the (n-l)th key file 92, as in a regular upgrade (step 2021, Fig. 20B). Instead, and as seen in Fig. 20D, such HWID obtained during a re-tie upgrade is the new HWID, and such new HWID is obtained from information received as part of the request (step 2021 ' of Fig. 20D). Otherwise, the re- tie upgrade in such embodiment is substantially the same as the regular upgrade. As should now be apparent, such re-tie upgrade is a relatively simple way to alter the HWID in the key file 82 since the structure of Fig.
  • a re-tie upgrade has the added benefit of providing the requesting DRM system 32 with an upgraded black box 30.
  • the changed key file 82 (or upgraded black box 30 with re- tied key file 82) is received by the DRM system 32 from the backup / restore server and appropriately installed in such DRM system 32 as part of the black box 30 (step 2109 of Fig. 21, steps 2045', 2047' of Fig. 20D).
  • the chain between each license 16 and the new HWID of the computing device 14 upon which the DRM system 32 resides is now complete.
  • each license 16 contains a decryption key (KD) encrypted according to a black box public key (PU-BB) stored in the changed key file 82 (or upgraded black box 30 with re-tied key file 82), and therefore is tied thereto.
  • KD decryption key
  • PU-BB black box public key
  • the black box 30 of the DRM system 32 includes the changed key file 82 (or upgraded black box 30 with re- tied key file 82) which now includes the new HWID of the computing device 14, and therefore is tied to such computing device 14.
  • each existing digital license 16 associated with the DRM system 32 is re-written to be tied to the black box 30. This of course assumes that such black box 30 of such DRM system 32 is tied to the proper HWID.
  • the decryption key encrypted by an old PU-BB ( PU-BB[old] (KD) ) in the license is replaced by such decryption key encrypted by the PU-BB of the properly tied black box 30 of the DRM system 32 ( PU-BB[new] (KD) ).
  • the aforementioned copy of the old key file 82 must be saved, for reasons will be explained below.
  • the DRM system 32 at issue sends the license 16 to a backup / restore server, along with the copy of the old key file 82, and a copy of ( PU-BB[new] ), perhaps in the form of an appropriate certificate (step 2201) (i.e., the same information that is normally sent to the license server 24 during a request for a license 16).
  • an appropriate certificate i.e., the same information that is normally sent to the license server 24 during a request for a license 16.
  • multiple licenses 16 may be sent to the backup / restore server for re-writing without departing from the spirit and scope of the present invention.
  • the backup / restore server may be the license server 24, the black box server 26, or another server, such as for example a dedicated server, without departing from the spirit and scope of the present invention.
  • the backup / restore server here extracts ( PU-BB [old] (KD) ) from the license 16 (step 2203), extracts the old key sets from the old key file 82 in a manner akin to that discussed above in connection with step 2011 of Fig.
  • step 2205 locates the ( PR-BB [old] ) corresponding to the ( PU-BB [old] ) of ( PU-BB [old] (KD) ) from the license 16 (step 2207), applies ( PR-BB[old] ) to ( PU-BB[old] (KD) ) to obtain (KD) (step 2209), encrypts (KD) based on (PU-BB[new]) to produce ( PU-BB[new] (KD) ) (step 2211), and then inserts such ( PU-BB [new] (KD) ) back into the license 16 (step 2213).
  • Such re-written license 16 with ( PU-BB[new] (KD) ) may then be signed and returned to the DRM system 32 at issue (step 2215) and stored in the license store 38 (Fig. 4) (step 2217).
  • the license 16 contains a decryption key (KD) encrypted according to the black box public key (PU-BB[new]) of the black box 30 of the new DRM system 32, and therefore is tied thereto.
  • the black box 30 of the new DRM system 32 includes a key file 82 which includes the new HWID of the computing device 14, and therefore is tied to such computing device 14.
  • each existing license 16 may include an option to prevent such re-issuance.
  • re-issuance cannot take place if the license server 24 no longer is able to re-issue the license 16 for any of a variety of reasons.
  • each license 16 is re-written by the DRM system 32 itself.
  • a backup / restore server is employed to extract the old key sets from the old key file 82 in a manner akin to that discussed above in connection with step 2011 of Fig. 20B. Otherwise, the DRM system 32 and the black box 30 thereof has access to all keys necessary to perform such re-writing.
  • providing the DRM system 32 with the functionality to re-write a license 16 in the manner disclosed herein must be done guardedly. Specifically a nefarious entity must not be allowed to employ such functionality to in effect issue new licenses 16.
  • a backup / restore server may be employed in any of the manners discussed above to legitimately copy a black box 30 of a DRM system 32 to other computing devices 14, or to legitimately re-write licenses 16 to work on other DRM systems 32.
  • a key file 82 from a first computing device 14 may be employed as the old key file 82 in connection with a backup / restore of a second device 14, thereby in effect allowing the second device 14 to employ licenses 16 written for the first device to render digital content 12 on such second device 14. Accordingly, a user can render digital content 12 on multiple machines 14 under his / her control.
  • the backup / restore server includes an appropriate fraud detection mechanism to prevent or at least curtail such illegitimate activities.
  • the backup / restore server may access a fraud detection database in which it notes the key sets in each backup / restore request, and may be programmed to refuse a backup / restore request if the key sets in the request show up too often, such as for example more than three times in a six month period.
  • other frequencies and periods may be employed without departing from the spirit and scope of the present invention.
  • the present invention comprises a new and useful enforcement architecture 10 that allows the controlled rendering or playing of arbitrary forms of digital content 12, where such control is flexible and definable by the content owner of such digital content 12.
  • the present invention comprises a new useful controlled rendering environment that renders digital content 12 only as specified by the content owner, even though the digital content 12 is to be rendered on a computing device 14 which is not under the control of the content owner.
  • the present invention comprises a trusted component that enforces the rights of the content owner on such computing device 14 in connection with a piece of digital content 12, even against attempts by the user of such computing device 14 to access such digital content 12 in ways not permitted by the content owner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Technology Law (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Storage Device Security (AREA)

Abstract

L'invention porte sur une nouvelle (énième) boîte noire destinée à un système électronique de droits intellectuels. Cette boîte noire prévue pour être installée dans le système électronique permet d'effectuer des fonctions de déchiffrement et de chiffrement. La boîte noire est produite et envoyée au système sur demande et comprend un nouveau (énième) code exécutable et un nouveau (énième) fichier de clés (82). Cet énième fichier de clés (82) possède un nouveau (énième) jeu de clés de boîte noire ainsi qu'une quantité d'anciens jeux de clés. La demande comprend un ancien (N° n-1) fichier de clés (82) possédant les anciens jeux de clés. Un optimiseur /randomiseur de code (78) reçoit en entrées des codes exécutables maîtres (80m) et des paramètres (81) d'optimisation randomisés et génère en sortie l'énième code exécutable. Un gestionnaire (84) de clés reçoit en entrées le fichier N° n-1 de clés (82) et l'énième jeu de clés de boîte noire, extrait les anciens jeux de clés du fichier N° n-1 de clés (82) et génère en sortie le énième fichier de clés (82) comprenant l'énième jeu de clés et les anciens jeux de clés. L'énième code exécutable et l'énième fichier de clés (82) sont envoyés au système électronique demandeur de droits intellectuels.
PCT/US2000/023106 2000-01-14 2000-08-22 Production d'une nouvelle boite noire pour systeme electronique de droits intellectuels WO2001052471A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2000269279A AU2000269279A1 (en) 2000-01-14 2000-08-22 Producing a new black box for a digital rights management (drm) system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17642500P 2000-01-14 2000-01-14
US60/176,425 2000-01-14
US09/525,509 2000-03-15
US09/525,509 US7319759B1 (en) 1999-03-27 2000-03-15 Producing a new black box for a digital rights management (DRM) system

Publications (1)

Publication Number Publication Date
WO2001052471A1 true WO2001052471A1 (fr) 2001-07-19

Family

ID=26872222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/023106 WO2001052471A1 (fr) 2000-01-14 2000-08-22 Production d'une nouvelle boite noire pour systeme electronique de droits intellectuels

Country Status (2)

Country Link
AU (1) AU2000269279A1 (fr)
WO (1) WO2001052471A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101054319B1 (ko) * 2008-01-09 2011-08-05 후지제롯쿠스 가부시끼가이샤 권한 정보 관리 장치, 정보 처리 시스템 및 컴퓨터 판독 가능한 기억 매체
US11023581B2 (en) 2016-07-28 2021-06-01 Hewlett-Packard Development Company, L.P. Code package variants

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0387599A2 (fr) * 1989-03-14 1990-09-19 Tandem Computers Incorporated Méthode de chiffrage de données transmises faisant usage d'une clé unique
EP0679978A1 (fr) * 1994-04-25 1995-11-02 International Business Machines Corporation Méthode et appareil permettant de prendre des logiciels à l'essai utilisant un stub de déchiffrement
EP0735719A2 (fr) * 1995-03-31 1996-10-02 Pitney Bowes Inc. Procédé pour fournir des boîtiers sécurisés dans un système de gestion de clés
WO1998033106A1 (fr) * 1997-01-29 1998-07-30 Shopnow.Com, Inc. Procede et systeme pour l'injection d'un nouveau code a l'interieur d'une application de code existante
US5883955A (en) * 1995-06-07 1999-03-16 Digital River, Inc. On-line try before you buy software distribution system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0387599A2 (fr) * 1989-03-14 1990-09-19 Tandem Computers Incorporated Méthode de chiffrage de données transmises faisant usage d'une clé unique
EP0679978A1 (fr) * 1994-04-25 1995-11-02 International Business Machines Corporation Méthode et appareil permettant de prendre des logiciels à l'essai utilisant un stub de déchiffrement
EP0735719A2 (fr) * 1995-03-31 1996-10-02 Pitney Bowes Inc. Procédé pour fournir des boîtiers sécurisés dans un système de gestion de clés
US5883955A (en) * 1995-06-07 1999-03-16 Digital River, Inc. On-line try before you buy software distribution system
WO1998033106A1 (fr) * 1997-01-29 1998-07-30 Shopnow.Com, Inc. Procede et systeme pour l'injection d'un nouveau code a l'interieur d'une application de code existante

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101054319B1 (ko) * 2008-01-09 2011-08-05 후지제롯쿠스 가부시끼가이샤 권한 정보 관리 장치, 정보 처리 시스템 및 컴퓨터 판독 가능한 기억 매체
US8089651B2 (en) 2008-01-09 2012-01-03 Fuji Xerox Co., Ltd. Right information managing device, information processing system, and computer readable medium
US11023581B2 (en) 2016-07-28 2021-06-01 Hewlett-Packard Development Company, L.P. Code package variants

Also Published As

Publication number Publication date
AU2000269279A1 (en) 2001-07-24

Similar Documents

Publication Publication Date Title
US7319759B1 (en) Producing a new black box for a digital rights management (DRM) system
US6772340B1 (en) Digital rights management system operating on computing device and having black box tied to computing device
US7016498B2 (en) Encrypting a digital object on a key ID selected therefor
US7529927B2 (en) Specifying security for an element by assigning a scaled value representative of the relative security thereof
US8744969B2 (en) Releasing decrypted digital content to an authenticated path
US7757077B2 (en) Specifying security for an element by assigning a scaled value representative of the relative security thereof
US7203966B2 (en) Enforcement architecture and method for digital rights management system for roaming a license to a plurality of user devices
US6775655B1 (en) Rendering digital content in an encrypted rights-protected form
US7305366B2 (en) Content revocation and license modification in a digital rights management (DRM) system on a computing device
US7383205B1 (en) Structure of a digital content package
EP1357455B1 (fr) Gestion numérique de droits dans un dispositif sans procédé d'authentification certifiée
US7024393B1 (en) Structural of digital rights management (DRM) system
US7680744B2 (en) Method for interdependently validating a digital content package and a corresponding digital license
US7051005B1 (en) Method for obtaining a black box for performing decryption and encryption functions in a digital rights management (DRM) system
US7272858B2 (en) Digital rights management (DRM) encryption and data-protection for content on a relatively simple device
WO2000058859A2 (fr) Licence numerique et procede permettant d'obtenir/fournir une licence numerique
WO2000059151A2 (fr) Restitution de contenu electronique sous forme cryptee de protection des droits
WO2001052471A1 (fr) Production d'une nouvelle boite noire pour systeme electronique de droits intellectuels

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP