WO2001052435A1 - Spread spectrum receiver - Google Patents

Spread spectrum receiver Download PDF

Info

Publication number
WO2001052435A1
WO2001052435A1 PCT/JP2001/000056 JP0100056W WO0152435A1 WO 2001052435 A1 WO2001052435 A1 WO 2001052435A1 JP 0100056 W JP0100056 W JP 0100056W WO 0152435 A1 WO0152435 A1 WO 0152435A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
section
despreading
spread spectrum
Prior art date
Application number
PCT/JP2001/000056
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiki Mamori
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU57902/01A priority Critical patent/AU5790201A/en
Publication of WO2001052435A1 publication Critical patent/WO2001052435A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation

Definitions

  • the present invention relates to a spread spectrum receiver, and more particularly to a spread spectrum receiver that demodulates a large amount of data and reduces the circuit scale by reducing the number of despreading units.
  • the spread spectrum method is a method of transmitting a signal using a signal (a spread spectrum) that has been significantly broadened compared to the information transmission rate by a code or a signal irrelevant to information. Demodulation is performed after narrowing the band (reverse spreading).
  • CDMA Code Division Multiple Access
  • a typical configuration of a receiving system is a configuration having a rake receiver in the receiving system.
  • the rake receiver has a plurality of finger circuits in it, extracts symbol signals for each system, and combines a plurality of identical signal components in a symbol combining circuit to improve communication quality.
  • FIG. 3 shows a configuration diagram of a thinning unit, a despreading unit, and a data demodulation unit in a conventional spread spectrum receiver having a finger circuit for demodulating a large amount of data.
  • the finger circuit of the conventional spread spectrum receiver has one decimation unit 301, and n despreading units 3102-10302 ⁇ from the first to the n-th.
  • FIG. 4 is a timing chart illustrating the operation of a finger circuit of a conventional spread spectrum receiver.
  • the decimation unit 301 decimates the reception signals Rxl and RxQ shown in FIG. 4C using the on-time clock OTCLK as shown in FIG. 4B, and decimates the reception signals OTCLK as shown in FIG. 4D.
  • I and OTQ are generated and output to the first to n-th despreading units 3021 to 302n.
  • the on-time clock 0 TCLK is generated based on a clock as shown in FIG.
  • the first despreading unit 3021 performs despreading with the thinned-out signal OTI: OTQ and the PN sequence codes PnWI [1] and PnWQ [1], and outputs the despread signal DO TI [ 1] and D ⁇ TQ [1] are output to the first data path demodulation unit 3051.
  • the second despreading section 3022 performs despreading with the thinned-out signals OTI and OTQ and the PN sequence codes PnWI [2] and PnWQ [2], and outputs the despread signal DOT I [2] and DOTQ [2] are output to the second data path demodulation unit 3052.
  • despreading is performed using the decimation signals 0TI and OTQ and the PN sequence codes PnWI [n] and PnWQ [n], and despreading is performed.
  • the spread signals DOT I [n] and DOTQ [n] are output to the n-th data path demodulator 302 n.
  • the number of despreading units and data demodulating units in the finger circuit should be increased.
  • the number of despreading units and data demodulation units in the finger circuit increases, which leads to an increase in the circuit scale of the entire spread spectrum receiver. there were.
  • the present invention has been made in view of the above-mentioned conventional circumstances, and in a spectrum spreading receiver for demodulating a large amount of data, the number of despreading units in a finger circuit is reduced to reduce the circuit scale.
  • the purpose is to provide a small spread spectrum receiver. Disclosure of the invention
  • a spread spectrum receiver includes: a thinning unit that samples a received signal at a predetermined thinning timing; a selector unit that selects a spread signal based on a predetermined selection signal; A despreading unit for despreading the signal sampled by the decimation unit by a correlation operation with the spread signal selected by the selector unit; and selectively despreading the signal despread by the despreading unit based on the selection signal.
  • a data latch for latching the data; and a plurality of data path demodulators for individually demodulating the signals selectively latched by the data latch.
  • the spread signal is a PN sequence code.
  • the received signal is sampled at a predetermined decimation timing by the decimation unit, and the signal sampled by the decimation unit is demultiplexed by the despreading unit at the selector unit based on a predetermined selection signal.
  • the despread signal is despread by a correlation operation with the selected spread signal, and the despread signal is selectively latched in a data latch section based on the selection signal.
  • the selectively latched signals are individually demodulated.
  • the finger circuit is composed of one decimation unit, n despreading units from 1 to n, and n data path demodulation from 1 to n.
  • the number of demodulation path demodulation units is n
  • the number of decimation units is 1
  • the number of despreading units is 1.
  • One selector for switching the spread signal to be supplied to the despreading unit one de-latching unit for latching the despread signal despread by the despreading unit, and the signal latched by the data latch unit.
  • the spread signal is a PN sequence code.
  • PN sequence code refers to “broadly-defined PN sequence code” and includes various code sequences such as an M sequence and a Go 1d sequence.
  • FIG. 1 is a configuration diagram of a spread spectrum receiver according to one embodiment of the present invention.
  • FIG. 2 is an evening chart illustrating the operation of the finger circuit of the spread spectrum receiver according to the embodiment.
  • FIG. 3 is a configuration diagram of a thinning unit, a despreading unit, and a data demodulation unit in a conventional spread spectrum receiver having a finger circuit.
  • FIG. 4 is a timing chart for explaining the operation of a finger circuit of a conventional spread spectrum receiver.
  • 101 is a decimation unit
  • 102 is a despreading unit
  • 103 is a selector unit
  • 104 is a data latch unit
  • 105 1 to 105 n are a data path demodulation unit
  • RxI and RxQ are received signals
  • OTCLK is an on-time clock
  • OTI OTI
  • ⁇ TQ is a thinning signal
  • S el [n: 1] is a selection signal
  • PnWI and PnWQ are PN sequence codes
  • PnWI [n: 1] and PnWQ [n: 1] are PN sequences DOT I and D 0 TQ are despread signals
  • DOT I [n: 1] and DOTQ [n: 1] are despread signals
  • 301 is a decimation unit
  • 3021 to 302 n are despread units
  • FIG. 1 is a configuration diagram of a spread spectrum receiver according to one embodiment of the present invention.
  • the spread spectrum receiver according to the present embodiment employs a quaternary phase modulation (QPSK) as a modulation method, and each element includes an in-phase component and a quadrature component. Will be subjected to signal processing. Further, when the configuration of the embodiment is applied to a rake receiver, it is configured in each finger circuit of the rake receiver. Also, a PN sequence code is used as the spread signal.
  • QPSK quaternary phase modulation
  • FIG. 1 shows a configuration centering on the thinning unit, despreading unit and data path demodulation unit in the spread spectrum receiver.
  • Decimation section 101 one despreading section 102, one selector section 103, one data latch section 104, and n data path demodulations from the first to the nth
  • the reception system of the spread spectrum receiver for example, an antenna, an analog front end, an A / D conversion unit, and the like are configured in front of the decimation unit 101 in FIG.
  • a symbol combining circuit, a din / leave circuit, and a video decoding circuit are configured.
  • the decimating unit 101 is supplied from the evening timing control unit (not shown) with respect to the received signal Rxl of the same phase (I phase) as the carrier received via an antenna (not shown) and the received signal RxQ of the quadrature phase (Q phase) with the carrier. Thinning (sampling) is performed at the timing of the on-time clock OT CLK.
  • the selector unit 103 selects the 1 ⁇ sequence code ⁇ 11 ⁇ 1 [n: 1], P nWQ [n: 1] based on the selection signal Se l [n: 1], and outputs the PN sequence code PnW I, P nWQ is selectively output.
  • PnWI [n: 1], PnWQ [n: 1] and Se1 [n: 1] are signals having an n-bit width.
  • the decimated signals ⁇ TI and OTQ decimated by the decimation section 101 are converted into ,
  • a despreading is performed by a correlation operation with a PN sequence code Pn WI, PnWQ as a spread signal supplied from the selector section 103, and outputs despread signals DOT I, DOTQ as correlation value data and outputs the data latch section 104. To supply.
  • the data latch section 104 selectively latches the despread signal DOTI ; DOTQ from the despread section 102 based on the selection signal Se1 [n: 1].
  • FIG. 2 is a timing chart illustrating the operation of the finger circuit of the spread spectrum receiver according to the present embodiment.
  • FIG. 2 (a) is a clock
  • FIG. 2 (b) is an on-time clock ⁇ TCLK
  • FIG. 2 (c) is a received signal Rxl
  • RxQ is a thinned signal OTI, OTQ, Fig. 2 (e) to Fig. 2
  • FIG. 2 (j) shows the despread signals DOT I [n: 1] and DO TQ [n: 1] respectively.
  • the decimation unit 301 decimates the received signals RxI and RxQ shown in FIG. 2 (c) using the on-time clock ⁇ T CLK as shown in FIG. 2 (b), and as shown in FIG. 2 (d).
  • the thinning signals OT I and OTQ are output to the despreading unit 102.
  • the on-time clock OTCLK is generated by a timing control unit (not shown) based on a clock as shown in FIG.
  • the selector 103 has a selection signal Se 1 as shown in FIGS. 2 (e) to 2 (h).
  • the PN sequence codes PnWI [n: 1] and PnWQ [n: 1] are selected based on the selection signal Se 1 [n: 1].
  • the selection operation is specifically as shown in FIG. 2 (i).
  • the selection signal Se 1 [1] is active, the PN sequence codes PnWI [1] and PnWQ [1] are selected, and the selection signal S e 1
  • the PN sequence codes PnWI [2] and PnWQ [2] are selected.
  • the selection signal Sel [n-1] is active, the PN sequence codes PnWI [n-1], PnWQ [n— 1] is selected and the selection signal S e 1 [n] is When active, the PN sequence codes PnWI [n] and PnWQ [n] are selected.
  • the despreading unit 102 performs despreading on the decimation signals OTI and OTQ decimated by the decimation unit 101 by performing a correlation operation with the PN sequence codes P nW I and PnWQ selected and output by the selector unit 103, and The despread signals DO TI and DOTQ are output to the data latch 104 as data. Further, the data latch unit 104 selectively latches the despread signal DOT I, 00,00 based on the selection signal 361 [n: 1], and furthermore, the n-th number from the first to the n-th.
  • the data-pass demodulators 1051 to 105n individually demodulate the signals selectively latched by the data latch 104.
  • the despreading section 102 performs a despread signal D 0 TI [1], DOTQ by performing a correlation operation with the PN sequence codes PnWI [1] and PnWQ [1].
  • the data latch unit 104 selects the selection signal S e 1
  • the despread signals DOT I [1] and DOTQ [1] are output to the first demodulator path demodulator 1051 and demodulated.
  • Despreading section 102 performs a despread signal D 0 T I by performing a correlation operation with PN sequence codes PnWI [2] and PnWQ [2].
  • the data latch section 104 demodulates the despread signals DOT I [2] and DOTQ [2] into the second data path according to the selection signal S e 1 [2]. The signal is output to the unit 1052 and demodulated.
  • despreading section 102 generates despread signals DOT I [n-1] and DOTQ [ ⁇ -1] by performing a correlation operation with PN sequence codes PnWI [n-1] and PnW Q [n-1]. Then, in the data latch unit 104, the despread signals DOT I [n ⁇ 1] and DOTQ [n ⁇ 1] are converted to the n ⁇ 1 th data path demodulation unit by the selection signal Se 1 [n ⁇ 1]. It is output to 105 n_1 and demodulated.
  • despreading section 102 when despread signals DOT I [n] and DOTQ [n] are generated by a correlation operation with PN sequence codes PnWI [n] and PnWQ [n], data latch section At 104, the despread signals DOT I [n] and DOTQ [n] are output to the n-th data path demodulation unit 105 n according to the selection signal S e 1 [n] and demodulated.
  • the data in the finger circuit is used.
  • the number of the overnight path demodulators is the same as the conventional one, with one despreader (101) and one selector for switching the PN sequence code PnWI and PnWQ to be supplied to the despreader 101 (103)
  • the despread signal DOT I, D • TQ despread by the despreading unit 102 is latched for each selection signal S e1 supplied from the selector unit 103.
  • the data path demodulation unit that demodulates the signal latched by the evening latch unit 104 is realized with n (1051 to 105n) configurations.
  • the thinning section 101 samples the received signals RxI and RxQ with the on-time clock 0TCLK, and the selector section 103 selects the PN sequence codes PnWI [n: 1] and PnWQ [n: 1] as selection signals Sel [n: 1], and the despreading unit 102 performs despreading with the decimation signals OT I and OT Q sampled by the decimation unit 101 and the PN sequence codes PnWI and P nWQ from the selection unit 103 to obtain the despread signal DOT.
  • I, DOTQ are supplied to the data latch section 104, and the data latch section 104 selectively latches the despread signals DOT I, DOTQ based on the selection signal Se l [n: 1].
  • the n data path demodulation sections 1051 to 105 n up to now individually demodulate the signals selectively latched by the data latch section 104, thereby realizing the same functions as in the past.
  • the number of despreading units in the finger circuit of the spread spectrum receiver can be reduced, and a spectrum spread receiver with a smaller circuit scale can be realized.
  • rake receivers have multiple finger circuits in them, so the effect of circuit size reduction is significant.
  • the number of demodulation path demodulators is n (n is a positive integer), the same number as in the past, the number of decimation sections is 1, and the despreading section is despread.
  • the demodulation path demodulator that demodulates each By configuring the circuit, the same function as in the past can be realized, so that the number of despreading units in the finger circuit can be reduced and a spectrum spreading receiver with a smaller circuit size can be provided. .

Abstract

A spread spectrum receiver the circuit scale of which is reduced by reducing the number of despreading sections. The spread spectrum receiver comprises a section (101) for decimating received signals (RxI, RxQ) with an on-time clock (OTCLK), a section (102) for delivering the decimated signals (OTI, OTQ) from the decimating section (101) to a data latch section (104), a selector section (103) for switching PN sequence codes (PnWI, PnWQ) delivered to the despreading section (102) and supplying a select signal (Sel[n:1]) to the data latch section (104), the data latch section (104) for latching despread signals (DOTI, DOTQ) from the despreading section (102) for each select signal (Sel[n:1]) from the selector section (103), and n data path demodulating sections (1051-105n) for demodulating the signal latched in the data latch section (104).

Description

明 細 書 スぺクトル拡散受信機 技術分野  Description Spread spectrum receiver Technical field
本発明はスペク トル拡散受信機に係り、 特に、 大量のデ一夕を復調するスぺク トル拡散受信機において、 逆拡散部の個数を減らして回路規模を小さくしたスぺ クトル拡散受信機に関する。 背景技術  The present invention relates to a spread spectrum receiver, and more particularly to a spread spectrum receiver that demodulates a large amount of data and reduces the circuit scale by reducing the number of despreading units. . Background art
近年、 ディジタル変復調方式としてスペク トル拡散 (S S : spread spectrum) 方式を用いた通信装置が提案されている。 スペク トル拡散方式は、 情報とは無関 係な符号や信号によって情報伝送速度と比較して大幅に広帯域化された (スぺク トル拡散された) 信号を用いて伝送する方式で、 受信側では一度狭帯域化 (逆拡 散) してから復調することとなる。  In recent years, communication devices using a spread spectrum (SS) method as a digital modulation and demodulation method have been proposed. The spread spectrum method is a method of transmitting a signal using a signal (a spread spectrum) that has been significantly broadened compared to the information transmission rate by a code or a signal irrelevant to information. Demodulation is performed after narrowing the band (reverse spreading).
また一方では、 携帯電話等の移動体通信技術では、 高通信容量、 通信データの 秘匿性や優れた妨害耐性等々の利点を持つ符号分割多元接続 ( Code Division Multiple Access; C D MA ) 通信方式が注目されている。 このような C D M A方 式の携帯電話 (C D M A携帯電話という) では、 受信系統の代表的な構成として、 その受信系統にレイク受信機を持つ構成がある。 レイク受信機は、 その中に複数 系統のフィンガ回路を持ち、 系統ごとにシンボル信号を抽出して、 シンボル合成 回路で複数の同一信号成分を合成し、 通信の品質を改善するものである。  On the other hand, in mobile communication technologies such as mobile phones, the Code Division Multiple Access (CD MA) communication system, which has advantages such as high communication capacity, confidentiality of communication data, and excellent interference resistance, attracts attention. Have been. In such a mobile phone of the CDMA type (referred to as a CDMA mobile phone), a typical configuration of a receiving system is a configuration having a rake receiver in the receiving system. The rake receiver has a plurality of finger circuits in it, extracts symbol signals for each system, and combines a plurality of identical signal components in a symbol combining circuit to improve communication quality.
特に最近では、 大量の通信デ一夕を復調するために、 フィ ンガ回路に複数の逆 拡散部とデ一夕パス復調部をそれそれ備えた構成のものが提案されている。 図 3 は、 従来の大量のデータを復調するフィンガ回路を備えたスぺク トル拡散受信機 における間引き部、 逆拡散部およびデ一夕復調部の構成図を示している。  In particular, recently, in order to demodulate a large amount of communication data, a configuration in which a finger circuit includes a plurality of despreading units and a data path demodulation unit has been proposed. FIG. 3 shows a configuration diagram of a thinning unit, a despreading unit, and a data demodulation unit in a conventional spread spectrum receiver having a finger circuit for demodulating a large amount of data.
同図において、 従来のスペク トル拡散受信機のフィ ンガ回路は、 1個の間引き 部 3 0 1と、 第 1から第 nまでの n個の逆拡散部 3 0 2 1〜 3 0 2 ηと、 第 1か ら第 nまでの n個のデータパス復調部 3051〜305 nとを備えて構成されて いる。 In the figure, the finger circuit of the conventional spread spectrum receiver has one decimation unit 301, and n despreading units 3102-10302η from the first to the n-th. The first And n data path demodulators 3051 to 305 n.
本従来例のスぺクトル拡散受信機の動作について、 図 4を参照して説明する。 図 4は、 従来のスぺク トル拡散受信機のフィンガ回路の動作を説明するタイミン グチヤートである。  The operation of the conventional spread spectrum receiver will be described with reference to FIG. FIG. 4 is a timing chart illustrating the operation of a finger circuit of a conventional spread spectrum receiver.
先ず、 間引き部 301では、 図 4 (c) に示す受信信号 Rxl, RxQを、 図 4 (b) に示すようなオンタイムクロック OTCLKで間引きし、 図 4 (d) に 示される如く間引き信号 OT I, OTQを生成し、 第 1から第 nまでの n個の逆 拡散部 3021〜 302 nに出力する。 ここで、 オンタイムクロック 0 T C L K は図 4 (a) のようなクロックに基づき生成されるものである。  First, the decimation unit 301 decimates the reception signals Rxl and RxQ shown in FIG. 4C using the on-time clock OTCLK as shown in FIG. 4B, and decimates the reception signals OTCLK as shown in FIG. 4D. I and OTQ are generated and output to the first to n-th despreading units 3021 to 302n. Here, the on-time clock 0 TCLK is generated based on a clock as shown in FIG.
第 1逆拡散部 3021では、 図 4 (e) に示されるように、 間引き信号 OT I: OTQと PN系列符号 PnWI [1] , PnWQ [1] で逆拡散を行い、 逆拡散 信号 DO T I [ 1 ] , D◦ TQ [ 1 ] を第 1データパス復調部 305 1に出力す る。  As shown in FIG. 4 (e), the first despreading unit 3021 performs despreading with the thinned-out signal OTI: OTQ and the PN sequence codes PnWI [1] and PnWQ [1], and outputs the despread signal DO TI [ 1] and D◦ TQ [1] are output to the first data path demodulation unit 3051.
また、 第 2逆拡散部 3022では、 図 4 (f ) に示されるように、 間引き信号 OT I, OTQとPN系列符号PnWI [2] , PnWQ [2] で逆拡散を行い、 逆拡散信号 DOT I [2] , DOTQ [2] を第 2データパス復調部 3052に 出力する。  Also, as shown in FIG. 4 (f), the second despreading section 3022 performs despreading with the thinned-out signals OTI and OTQ and the PN sequence codes PnWI [2] and PnWQ [2], and outputs the despread signal DOT I [2] and DOTQ [2] are output to the second data path demodulation unit 3052.
また同様にして、 第 n— 1逆拡散部 302 n- 1では、 図 4 (g) に示される ように、 間引き信号 OT I, OTQと PN系列符号 PnWI [n- 1 ] , P nW Q [n- 1] で逆拡散を行い、 逆拡散信号 DOT I [n- 1] , DOTQ [n— 1] を第 n— 1デ一夕パス復調部 305 n— 1に出力する。  Similarly, in the (n−1) th despreading unit 302 n−1, as shown in FIG. 4 (g), the decimation signals OTI and OTQ and the PN sequence codes PnWI [n−1] and PnW Q [ n-1], and outputs despread signals DOT I [n-1] and DOTQ [n-1] to the (n-1) th overnight demodulator 305 n-1.
さらに同様にして、 第 n逆拡散部 302 nでは、 図 4 (h) に示されるように、 間引き信号 0TI, OTQと PN系列符号 PnWI [n] , PnWQ [n] で逆 拡散を行い、 逆拡散信号 DOT I [n] , DOTQ [n] を第 nデ一夕パス復調 部 302 nに出力する。  Similarly, in the n-th despreading unit 302 n, as shown in FIG. 4 (h), despreading is performed using the decimation signals 0TI and OTQ and the PN sequence codes PnWI [n] and PnWQ [n], and despreading is performed. The spread signals DOT I [n] and DOTQ [n] are output to the n-th data path demodulator 302 n.
このように、 上記従来のスペク トル拡散受信機にあっては、 大量のデータを復 調するためには、 フィンガ回路内の逆拡散部とデータ復調部の個数を増やせばよ いが、 デ一夕量が増えれば増えるほどフィンガ回路内の逆拡散部とデータ復調部 の個数が増加し、 スぺク トル拡散受信機全体の回路規模を増加させてしまうとい う事倩があった。 Thus, in the above conventional spread spectrum receiver, in order to demodulate a large amount of data, the number of despreading units and data demodulating units in the finger circuit should be increased. However, as the amount of data increases, the number of despreading units and data demodulation units in the finger circuit increases, which leads to an increase in the circuit scale of the entire spread spectrum receiver. there were.
本発明は、 上記従来の事情に鑑みてなされたものであって、 大量のデータを復 調するスぺク トル拡散受信機において、 フィンガ回路内の逆拡散部の個数を減ら して回路規模を小さく したスぺク トル拡散受信機を提供することを目的としてい る。 発明の開示  The present invention has been made in view of the above-mentioned conventional circumstances, and in a spectrum spreading receiver for demodulating a large amount of data, the number of despreading units in a finger circuit is reduced to reduce the circuit scale. The purpose is to provide a small spread spectrum receiver. Disclosure of the invention
上記課題を解決するために、 本発明のスペク トル拡散受信機は、 受信信号を所 定の間引きタイミングでサンプリングする間引き手段と、 所定の選択信号に基づ き拡散信号を選択するセレクタ部と、 前記間引き部でサンプリングした信号を前 記セレクタ部で選択された拡散信号との相関操作によって逆拡散する逆拡散部と、 前記逆拡散部で逆拡散された信号を前記選択信号に基づき選択的にラッチするデ 一夕ラッチ部と、 前記デ一夕ラッチ部で選択的にラツチされた信号を個別に復調 する複数のデ一夕パス復調部とを備えたものである。  In order to solve the above problem, a spread spectrum receiver according to the present invention includes: a thinning unit that samples a received signal at a predetermined thinning timing; a selector unit that selects a spread signal based on a predetermined selection signal; A despreading unit for despreading the signal sampled by the decimation unit by a correlation operation with the spread signal selected by the selector unit; and selectively despreading the signal despread by the despreading unit based on the selection signal. A data latch for latching the data; and a plurality of data path demodulators for individually demodulating the signals selectively latched by the data latch.
また、 前記スペク トル拡散受信機において、 前記拡散信号を P N系列符号とし たものである。  In the spread spectrum receiver, the spread signal is a PN sequence code.
本発明のスぺク トル拡散受信機では、 間引き手段により受信信号を所定の間引 きタイミングでサンプリングし、 逆拡散部により、 間引き部でサンプリングした 信号を、 所定の選択信号に基づきセレクタ部で選択された拡散信号との相関操作 によって逆拡散し、 該逆拡散された信号を選択信号に基づき選択的にデータラッ チ部にラッチして、 複数のデ一夕パス復調部により、 データラッチ部で選択的に ラツチされた信号を個別に復調するようにしている。  In the spread spectrum receiver of the present invention, the received signal is sampled at a predetermined decimation timing by the decimation unit, and the signal sampled by the decimation unit is demultiplexed by the despreading unit at the selector unit based on a predetermined selection signal. The despread signal is despread by a correlation operation with the selected spread signal, and the despread signal is selectively latched in a data latch section based on the selection signal. The selectively latched signals are individually demodulated.
つまり、 従来のスペクトル拡散受信機では、 フィ ンガ回路を、 1個の間引き部 と、 第 1から第 nまでの n個の逆拡散部と、 第 1から第 nまでの n個のデータパ ス復調部とによって構成していたのに対し、 本発明のスぺク トル拡散受信機では、 デ一夕パス復調部の個数はそのまま n個とし、 間引き部を 1個、 逆拡散部を 1個、 逆拡散部に供給する拡散信号を切り替えるセレクタ部を 1個、 逆拡散部で逆拡散 された逆拡散信号をラッチするデ一夕ラッチ部を 1個、 データラッチ部でラッチ された信号をそれそれ復調するデータパス復調部を n個によりフィンガ回路を構 成することにより、 従来と同等の機能を実現できるので、 フィ ンガ回路内の逆拡 散部の個数を削減して、 回路規模をより小さく したスぺク トル拡散受信機を実現 することができる。 In other words, in the conventional spread spectrum receiver, the finger circuit is composed of one decimation unit, n despreading units from 1 to n, and n data path demodulation from 1 to n. In contrast, in the spread spectrum receiver of the present invention, the number of demodulation path demodulation units is n, the number of decimation units is 1, and the number of despreading units is 1. One selector for switching the spread signal to be supplied to the despreading unit, one de-latching unit for latching the despread signal despread by the despreading unit, and the signal latched by the data latch unit. By constructing a finger circuit with n data path demodulators for demodulation, the same function as in the past can be realized, so the number of inverse spread parts in the finger circuit is reduced and the circuit scale is reduced Thus, it is possible to realize a spread spectrum receiver.
また、 前記スペク トル拡散受信機では、 拡散信号を PN系列符号とするのが望 ましい。 なお、 「PN系列符号」 は 「広義の PN系列符号」 を指し、 M系列、 G o 1 d系列等の種々の符号系列を含むものである。 図面の簡単な説明  In the spread spectrum receiver, it is preferable that the spread signal is a PN sequence code. Note that “PN sequence code” refers to “broadly-defined PN sequence code” and includes various code sequences such as an M sequence and a Go 1d sequence. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態に係るスぺク トル拡散受信機の構成図である。 図 2は、 実施形態のスぺクトル拡散受信機のフィンガ回路の動作を説明する夕 イミングチャートである。  FIG. 1 is a configuration diagram of a spread spectrum receiver according to one embodiment of the present invention. FIG. 2 is an evening chart illustrating the operation of the finger circuit of the spread spectrum receiver according to the embodiment.
図 3は、 従来のフィンガ回路を備えたスぺク トル拡散受信機における間引き部、 逆拡散部およびデータ復調部の構成図である。  FIG. 3 is a configuration diagram of a thinning unit, a despreading unit, and a data demodulation unit in a conventional spread spectrum receiver having a finger circuit.
図 4は、 従来のスぺク トル拡散受信機のフィンガ回路の動作を説明するタイミ ングチャートである。 なお、 図中の符号、 101は間引き部、 102は逆拡散部、 103はセレクタ 部、 104はデータラッチ部、 105 1〜 105 nはデ一夕パス復調部、 Rx I, RxQは受信信号、 OTCLKはオンタイムクロック、 OT I, 〇TQは間引き 信号、 S e l [n: 1] は選択信号、 PnWI, PnWQは PN系列符号、 PnWI [n: 1 ] , PnWQ [n: 1] は PN系列符号、 DOT I , D 0 T Q は逆拡散信号、 DOT I [n: 1] , DOTQ [n: 1] は逆拡散信号、 301 は間引き部、 3021 ~302 nは逆拡散部、 3051〜 305 nはデータパス 復調部である。 発明を実施するための最良の形態 FIG. 4 is a timing chart for explaining the operation of a finger circuit of a conventional spread spectrum receiver. In addition, the code in the figure, 101 is a decimation unit, 102 is a despreading unit, 103 is a selector unit, 104 is a data latch unit, 105 1 to 105 n are a data path demodulation unit, RxI and RxQ are received signals, OTCLK is an on-time clock, OTI, 〇TQ is a thinning signal, S el [n: 1] is a selection signal, PnWI and PnWQ are PN sequence codes, PnWI [n: 1] and PnWQ [n: 1] are PN sequences DOT I and D 0 TQ are despread signals, DOT I [n: 1] and DOTQ [n: 1] are despread signals, 301 is a decimation unit, 3021 to 302 n are despread units, and 3051 to 305 n Is a data path demodulator. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明のスペク トル拡散受信機の実施の形態について、 図面を参照して 詳細に説明する。  Hereinafter, embodiments of the spread spectrum receiver of the present invention will be described in detail with reference to the drawings.
図 1は本発明の一実施形態に係るスぺクトル拡散受信機の構成図である。 なお、 本実施形態のスペクトル拡散受信機では、 変調方式として 4値位相変調方式 (Q PSK) を採用しており、 各要素では、 同相成分 (In-phase component) と直交相 成分 (Quadrature component) について信号処理がなされることとなる。 また、 実 施形態の構成がレイク受信機に適用される場合には、 該レイク受信部の各フィン ガ一回路内に構成されることとなる。 また、 拡散信号として PN系列符号を使用 している。  FIG. 1 is a configuration diagram of a spread spectrum receiver according to one embodiment of the present invention. The spread spectrum receiver according to the present embodiment employs a quaternary phase modulation (QPSK) as a modulation method, and each element includes an in-phase component and a quadrature component. Will be subjected to signal processing. Further, when the configuration of the embodiment is applied to a rake receiver, it is configured in each finger circuit of the rake receiver. Also, a PN sequence code is used as the spread signal.
つまり、 図 1の構成は、 スペク トル拡散受信機内の間引き部、 逆拡散部および データパス復調部を中心とした構成を示しており、 同図において、 本実施形態の スペクトル拡散受信機は、 1個の間引き部 101と、 1個の逆拡散部 102と、 1個のセレクタ部 103と、 1個のデ一夕ラッチ部 104と、 第 1から第 nまで の n個のデ一夕パス復調部 1051〜 105 nとを備えた構成である。 なお、 ス ぺク トル拡散受信機の受信系統の構成としては、 図 1の構成の間引き部 101の 前段には、 例えばアンテナ、 アナログフロントエンドおよび A/D変換部等が構 成され、 また、 n個のデータパス復調部 1051〜105 nの後段には、 例えば シンボル合成回路、 ディン夕リーブ回路およびビ夕ビ復号回路等が構成される。 間引き部 101は、 図示しないアンテナを介して受信した搬送波と同相 (I 相) の受信信号 Rxl、 並びに搬送波と直交相 (Q相) の受信信号 RxQ につい て、 図示しない夕イミング制御部から供給されるオンタイムクロック OT CLK のタイミングで間引き (サンプリング) を行う。  In other words, the configuration of FIG. 1 shows a configuration centering on the thinning unit, despreading unit and data path demodulation unit in the spread spectrum receiver. In FIG. Decimation section 101, one despreading section 102, one selector section 103, one data latch section 104, and n data path demodulations from the first to the nth This is a configuration including the units 1051 to 105n. As a configuration of the reception system of the spread spectrum receiver, for example, an antenna, an analog front end, an A / D conversion unit, and the like are configured in front of the decimation unit 101 in FIG. In the subsequent stage of the n data path demodulators 1051 to 105n, for example, a symbol combining circuit, a din / leave circuit, and a video decoding circuit are configured. The decimating unit 101 is supplied from the evening timing control unit (not shown) with respect to the received signal Rxl of the same phase (I phase) as the carrier received via an antenna (not shown) and the received signal RxQ of the quadrature phase (Q phase) with the carrier. Thinning (sampling) is performed at the timing of the on-time clock OT CLK.
また、 セレクタ部 103では、 1^系列符号卩11 ^1 [n: 1 ] , P nWQ [n: 1] を選択信号 Se l [n: 1] に基づき選択して、 PN系列符号 PnW I, P nWQを選択的に出力している。 ここで、 PnWI [n: 1] , PnWQ [n: 1 ] および S e 1 [n: 1 ] は nビッ トのビッ ト幅を持つ信号である。 間引き部 101で間引きされた間引き信号〇 T I, OTQは、 逆拡散部 102 において、 セレクタ部 103から供給される拡散信号としての PN系列符号 Pn WI, PnWQとの相関操作によって逆拡散が行われ、 相関値データとして逆拡 散信号 DOT I, DOTQを出力しデータラッチ部 104に供給する。 Further, the selector unit 103 selects the 1 ^ sequence code 卩 11 ^ 1 [n: 1], P nWQ [n: 1] based on the selection signal Se l [n: 1], and outputs the PN sequence code PnW I, P nWQ is selectively output. Here, PnWI [n: 1], PnWQ [n: 1] and Se1 [n: 1] are signals having an n-bit width. The decimated signals 〇 TI and OTQ decimated by the decimation section 101 are converted into , A despreading is performed by a correlation operation with a PN sequence code Pn WI, PnWQ as a spread signal supplied from the selector section 103, and outputs despread signals DOT I, DOTQ as correlation value data and outputs the data latch section 104. To supply.
また、 データラッチ部 104では、 逆拡散部 102からの逆拡散信号 D OT I ; DOTQを選択信号 S e 1 [n: 1] に基づき選択的にラッチする。 さらに、 第Further, the data latch section 104 selectively latches the despread signal DOTI ; DOTQ from the despread section 102 based on the selection signal Se1 [n: 1]. In addition,
1から第 nまでの n個のデ一夕パス復調部 1051〜 105 nでは、 データラッ チ部 104で選択的にラッチされた信号を個別に復調する。 The n data path demodulators 1051 to 105n from 1 to n individually demodulate the signals selectively latched by the data latch 104.
次に、 以上の構成を備えた本実施形態のスぺク トル拡散受信機の動作について、 図 2を参照して説明する。 図 2は、 本実施形態のスペク トル拡散受信機のフィン ガ回路の動作を説明するタイミングチャートである。 同図において、 図 2 (a) はクロック、 図 2 (b) はオンタイムクロック〇 T C L K、 図 2 ( c ) は受信信 号 Rxl, RxQ、 図 2 (d) は間引き信号 OT I, OTQ、 図 2 ( e) 〜図 2 Next, the operation of the spread spectrum receiver according to the present embodiment having the above configuration will be described with reference to FIG. FIG. 2 is a timing chart illustrating the operation of the finger circuit of the spread spectrum receiver according to the present embodiment. In the same figure, FIG. 2 (a) is a clock, FIG. 2 (b) is an on-time clock 〇 TCLK, FIG. 2 (c) is a received signal Rxl, RxQ, FIG. 2 (d) is a thinned signal OTI, OTQ, Fig. 2 (e) to Fig. 2
(h) は選択信号 Se 1 [n: 1] 、 図 2 (i) は PN系列符号 PnWI [n:(h) is the selection signal Se 1 [n: 1], and Fig. 2 (i) is the PN sequence code PnWI [n:
1] , PnWQ [n: 1] 、 図 2 (j) は逆拡散信号 DOT I [n: 1] , DO TQ [n: 1 ] をそれそれ示す。 1], PnWQ [n: 1], and FIG. 2 (j) shows the despread signals DOT I [n: 1] and DO TQ [n: 1] respectively.
先ず、 間引き部 301では、 図 2 (c) に示す受信信号 Rx I , RxQを、 図 2 (b) に示すようなオンタイムクロック〇T CLKで間引きし、 図 2 (d) に 示される如く間引き信号 OT I , OTQを逆拡散部 102に出力する。 ここで、 オンタイムクロック OTCLKは、 図 2 (a) のようなクロックに基づき図示し ないタイミング制御部により生成されるものである。  First, the decimation unit 301 decimates the received signals RxI and RxQ shown in FIG. 2 (c) using the on-time clock ΔT CLK as shown in FIG. 2 (b), and as shown in FIG. 2 (d). The thinning signals OT I and OTQ are output to the despreading unit 102. Here, the on-time clock OTCLK is generated by a timing control unit (not shown) based on a clock as shown in FIG.
セレクタ部 103には、 図 2 (e) 〜図 2 (h) に示すような選択信号 Se 1 The selector 103 has a selection signal Se 1 as shown in FIGS. 2 (e) to 2 (h).
[n: 1] が供給されており、 該選択信号 S e 1 [n: 1] に基づき PN系列符 号 PnWI [n: 1] , PnWQ [n: 1] が選択される。 選択動作は、 具体的 に図 2 (i) に示される如くであり、 選択信号 Se 1 [1] がアクティブの時に PN系列符号 PnWI [1] , PnWQ [1] が選択され、 選択信号 S e 1 [n: 1] is supplied, and the PN sequence codes PnWI [n: 1] and PnWQ [n: 1] are selected based on the selection signal Se 1 [n: 1]. The selection operation is specifically as shown in FIG. 2 (i). When the selection signal Se 1 [1] is active, the PN sequence codes PnWI [1] and PnWQ [1] are selected, and the selection signal S e 1
[2] がアクティブの時に PN系列符号 PnWI [ 2 ] , PnWQ [ 2 ] が選択 され、 同様にして、 選択信号 S e l [n- 1 ] がアクティブの時に PN系列符号 PnWI [n— 1] , PnWQ [n— 1] が選択され、 選択信号 S e 1 [n] が アクティブの時に PN系列符号 PnWI [n] , PnWQ [n] が選択される。 次に、 逆拡散部 102では、 間引き部 101で間引きした間引き信号 OTI, OTQについて、 セレクタ部 103によって選択出力された PN系列符号 P nW I, PnWQとの相関操作により逆拡散を行い、 相関値データとして逆拡散信号 DO T I , DOTQをデータラヅチ部 104に出力する。 また、 デ一夕ラッチ部 104では、 逆拡散信号 DOT I, 00丁0を選択信号361 [n: 1] に基づ き選択的にラッチし、 さらに、 第 1から第 nまでの n個のデ一夕パス復調部 10 51〜 105 nでは、 データラッチ部 104で選択的にラッチされた信号を個別 に復調する。 When [2] is active, the PN sequence codes PnWI [2] and PnWQ [2] are selected. Similarly, when the selection signal Sel [n-1] is active, the PN sequence codes PnWI [n-1], PnWQ [n— 1] is selected and the selection signal S e 1 [n] is When active, the PN sequence codes PnWI [n] and PnWQ [n] are selected. Next, the despreading unit 102 performs despreading on the decimation signals OTI and OTQ decimated by the decimation unit 101 by performing a correlation operation with the PN sequence codes P nW I and PnWQ selected and output by the selector unit 103, and The despread signals DO TI and DOTQ are output to the data latch 104 as data. Further, the data latch unit 104 selectively latches the despread signal DOT I, 00,00 based on the selection signal 361 [n: 1], and furthermore, the n-th number from the first to the n-th. The data-pass demodulators 1051 to 105n individually demodulate the signals selectively latched by the data latch 104.
具体的には、 図 2 ( j) に示すように、 逆拡散部 102において、 PN系列符 号 PnWI [1] , PnWQ [1] との相関操作で逆拡散信号 D 0 T I [1] , DOTQ [ 1 ] が生成されると、 デ一夕ラッチ部 104では、 選択信号 S e 1 More specifically, as shown in FIG. 2 (j), the despreading section 102 performs a despread signal D 0 TI [1], DOTQ by performing a correlation operation with the PN sequence codes PnWI [1] and PnWQ [1]. When [1] is generated, the data latch unit 104 selects the selection signal S e 1
[1] により逆拡散信号 DOT I [1] , DOTQ [1] が第 1デ一夕パス復調 部 1051に出力されて、 これを復調する。 また、 逆拡散部 102において、 P N系列符号 PnWI [2] , PnWQ [2] との相関操作で逆拡散信号 D 0 T IAccording to [1], the despread signals DOT I [1] and DOTQ [1] are output to the first demodulator path demodulator 1051 and demodulated. Despreading section 102 performs a despread signal D 0 T I by performing a correlation operation with PN sequence codes PnWI [2] and PnWQ [2].
[2] , DOTQ [2] が生成されると、 データラッチ部 104では、 選択信号 S e 1 [2] により逆拡散信号 DOT I [2] , DOTQ [2] が第 2デ一タパ ス復調部 1052に出力されて、 これを復調する。 When [2] and DOTQ [2] are generated, the data latch section 104 demodulates the despread signals DOT I [2] and DOTQ [2] into the second data path according to the selection signal S e 1 [2]. The signal is output to the unit 1052 and demodulated.
同様に、 逆拡散部 102において、 PN系列符号 PnWI [n— 1] , PnW Q [n— 1] との相関操作で逆拡散信号 DOT I [n- 1] , DOTQ [η- 1] が生成されると、 データラッチ部 104では、 選択信号 S e 1 [n— 1] に より逆拡散信号 DOT I [n- 1] , DOTQ [n— 1] が第 n— 1デ一夕パス 復調部 105 n_ 1に出力されて、 これを復調する。 さらに、 逆拡散部 102に おいて、 PN系列符号 PnWI [n] , PnWQ [n] との相関操作で逆拡散信 号 DOT I [n] , DOTQ [n] が生成されると、 データラッチ部 104では、 選択信号 S e 1 [n] により逆拡散信号 DOT I [n] , DOTQ [n] が第 n データパス復調部 105 nに出力されて、 これを復調する。  Similarly, despreading section 102 generates despread signals DOT I [n-1] and DOTQ [η-1] by performing a correlation operation with PN sequence codes PnWI [n-1] and PnW Q [n-1]. Then, in the data latch unit 104, the despread signals DOT I [n−1] and DOTQ [n−1] are converted to the n−1 th data path demodulation unit by the selection signal Se 1 [n−1]. It is output to 105 n_1 and demodulated. Further, in despreading section 102, when despread signals DOT I [n] and DOTQ [n] are generated by a correlation operation with PN sequence codes PnWI [n] and PnWQ [n], data latch section At 104, the despread signals DOT I [n] and DOTQ [n] are output to the n-th data path demodulation unit 105 n according to the selection signal S e 1 [n] and demodulated.
以上のように、 本実施形態のスペクトル拡散受信機では、 フィ ンガ回路内のデ 一夕パス復調部の個数はそのまま従来と同数とし、 逆拡散部を 1個 ( 101) 、 逆拡散部 101に供給する PN系列符号 PnWI, P n WQを切り替えるセレク 夕部を 1個 ( 103) 、 逆拡散部 102で逆拡散された逆拡散信号 DOT I , D ◦ TQをセレクタ部 103から供給される選択信号 S e 1ごとにラッチするデ一 夕ラッチ部を 1個 (104) 、 デ一夕ラッチ部 104でラッチされた信号をそれ それ復調するデータパス復調部を n個 ( 1051〜 105 n) の構成で実現して いる。 As described above, in the spread spectrum receiver of the present embodiment, the data in the finger circuit is used. The number of the overnight path demodulators is the same as the conventional one, with one despreader (101) and one selector for switching the PN sequence code PnWI and PnWQ to be supplied to the despreader 101 (103) The despread signal DOT I, D • TQ despread by the despreading unit 102 is latched for each selection signal S e1 supplied from the selector unit 103. One data latch unit (104) The data path demodulation unit that demodulates the signal latched by the evening latch unit 104 is realized with n (1051 to 105n) configurations.
また、 間引き部 101では受信信号 Rx I, RxQをオンタイムクロック 0T CLKでサンプリングし、 セレクタ部 103では PN系列符号 PnWI [n: 1] , PnWQ [n: 1] を選択信号 S e l [n: 1] で切り替え、 逆拡散部 1 02では間引き部 101でサンプリングした間引き信号 OT I , OT Qとセレク 夕部 103からの PN系列符号 PnWI, P nWQとで逆拡散を行って逆拡散信 号 DOT I, DO TQをデータラッチ部 104に供給し、 データラッチ部 104 では逆拡散信号 DOT I, DOTQを選択信号 Se l [n: 1] に基づき選択的 にラッチし、 さらに、 第 1から第 nまでの n個のデータパス復調部 1051〜1 05 nでは、 データラッチ部 104で選択的にラッチされた信号を個別に復調す るようにして、 従来と同等の機能を実現している。 これにより、 スペク トル拡散 受信機のフィンガ回路内の逆拡散部の個数を削減することができ、 回路規模をよ り小さく したスぺクトル拡散受信機を実現することができる。 特に、 レイク受信 機では、 その中に複数系統のフィンガ回路を持つので回路規模削減の効果は大き レ 産業上の利用可能性  The thinning section 101 samples the received signals RxI and RxQ with the on-time clock 0TCLK, and the selector section 103 selects the PN sequence codes PnWI [n: 1] and PnWQ [n: 1] as selection signals Sel [n: 1], and the despreading unit 102 performs despreading with the decimation signals OT I and OT Q sampled by the decimation unit 101 and the PN sequence codes PnWI and P nWQ from the selection unit 103 to obtain the despread signal DOT. I, DOTQ are supplied to the data latch section 104, and the data latch section 104 selectively latches the despread signals DOT I, DOTQ based on the selection signal Se l [n: 1]. The n data path demodulation sections 1051 to 105 n up to now individually demodulate the signals selectively latched by the data latch section 104, thereby realizing the same functions as in the past. As a result, the number of despreading units in the finger circuit of the spread spectrum receiver can be reduced, and a spectrum spread receiver with a smaller circuit scale can be realized. In particular, rake receivers have multiple finger circuits in them, so the effect of circuit size reduction is significant.
以上説明したように、 本発明のスペク トル拡散受信機によれば、 デ一夕パス復 調部の個数は従来と同数の n (nは正整数) 個とし、 間引き部を 1個、 逆拡散部 を 1個、 逆拡散部に供給する拡散信号を切り替えるセレクタ部を 1個、 逆拡散部 で逆拡散された逆拡散信号をラッチするデータラッチ部を 1個、 データラッチ部 でラッチされた信号をそれそれ復調するデ一夕パス復調部を n個によりフィンガ 回路を構成することで、 従来と同等の機能を実現できるので、 フィ ンガ回路内の 逆拡散部の個数を削減して、 回路規模をより小さく したスぺクトル拡散受信機を 提供することができる。 As described above, according to the spread spectrum receiver of the present invention, the number of demodulation path demodulators is n (n is a positive integer), the same number as in the past, the number of decimation sections is 1, and the despreading section is despread. 1 unit, 1 selector unit to switch the spread signal supplied to the despreading unit, 1 data latch unit to latch the despread signal despread by the despreading unit, and the signal latched by the data latch unit The demodulation path demodulator that demodulates each By configuring the circuit, the same function as in the past can be realized, so that the number of despreading units in the finger circuit can be reduced and a spectrum spreading receiver with a smaller circuit size can be provided. .

Claims

請 求 の 範 囲 The scope of the claims
1 . 受信信号を所定の間引きタイミングでサンプリングする間引き手段と、 所定の選択信号に基づき拡散信号を選択するセレクタ部と、 1. Thinning means for sampling a received signal at a predetermined thinning timing, a selector unit for selecting a spread signal based on a predetermined selection signal,
前記間引き部でサンプリングした信号を前記セレクタ部で選択された拡散信号 との相関操作によって逆拡散する逆拡散部と、  A despreading unit for despreading the signal sampled by the thinning unit by performing a correlation operation with a spread signal selected by the selector unit;
前記逆拡散部で逆拡散された信号を前記選択信号に基づき選択的にラッチする データラッチ部と、  A data latch unit that selectively latches the signal despread by the despreading unit based on the selection signal;
前記データラッチ部で選択的にラツチされた信号を個別に復調する複数のデー 夕パス復調部と、  A plurality of data path demodulators for individually demodulating the signals selectively latched by the data latch,
を有することを特徴とするスぺク トル拡散受信機。 A spread spectrum receiver comprising:
2 . 前記拡散信号は P N系列符号であることを特徴とする請求の範囲第 1 項に記載のスぺク トル拡散受信機。 2. The spectrum spread receiver according to claim 1, wherein the spread signal is a PN sequence code.
PCT/JP2001/000056 2000-01-11 2001-01-10 Spread spectrum receiver WO2001052435A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU57902/01A AU5790201A (en) 2000-01-11 2001-01-10 Spread spectrum receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000002744A JP2001196971A (en) 2000-01-11 2000-01-11 Spread spectrum receiver
JP2000-2744 2000-01-11

Publications (1)

Publication Number Publication Date
WO2001052435A1 true WO2001052435A1 (en) 2001-07-19

Family

ID=18531811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000056 WO2001052435A1 (en) 2000-01-11 2001-01-10 Spread spectrum receiver

Country Status (3)

Country Link
JP (1) JP2001196971A (en)
AU (1) AU5790201A (en)
WO (1) WO2001052435A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228170A (en) * 1995-02-22 1996-09-03 Nec Corp Receiver
JPH11154931A (en) * 1997-11-19 1999-06-08 Matsushita Electric Ind Co Ltd Rake receiver, a mobile set of portable telephone set using it and base station
JP2000134181A (en) * 1998-10-23 2000-05-12 Hitachi Ltd Communication equipment in mobile communication system adopting code division multiple access system
JP2000341172A (en) * 1999-05-28 2000-12-08 Matsushita Electric Ind Co Ltd Rake reception device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228170A (en) * 1995-02-22 1996-09-03 Nec Corp Receiver
JPH11154931A (en) * 1997-11-19 1999-06-08 Matsushita Electric Ind Co Ltd Rake receiver, a mobile set of portable telephone set using it and base station
JP2000134181A (en) * 1998-10-23 2000-05-12 Hitachi Ltd Communication equipment in mobile communication system adopting code division multiple access system
JP2000341172A (en) * 1999-05-28 2000-12-08 Matsushita Electric Ind Co Ltd Rake reception device

Also Published As

Publication number Publication date
AU5790201A (en) 2001-07-24
JP2001196971A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
US6563859B1 (en) Receiver and receiving method in multi-carrier spread-spectrum communications
KR100938022B1 (en) Method and apparatus for processing a received signal in a communications system
US6459883B2 (en) Generic finger architecture for spread spectrum applications
US7106784B2 (en) Universal rake receiver
KR100252549B1 (en) Dot product circuit for multipath receivers
KR100705064B1 (en) Combining sub-chip resolution samples in fingers of a spread-spectrum rake receiver
KR100306455B1 (en) Method and system for parallel demodulation of multiple chips of a cdma signal
JP4642264B2 (en) Correlation circuit for spread spectrum communication
US8396096B2 (en) Communication receiver with multiplexing of received signal, for receive space diversity
US6246715B1 (en) Data transmitter and receiver of a DS-CDMA communication system
US6947470B2 (en) Rake receiver for a CDMA system, in particular incorporated in a cellular mobile phone
CN1650590B (en) Flexible correlation and queuing in CDMA communication systems
KR0173904B1 (en) Rake receiver for direct spread code division multiple access system
EP0854586B1 (en) Quadrature spread spectrum signal demodulation
US7532663B2 (en) Digital correlators
US7061971B2 (en) Method and apparatus for diversity searching and demodulator assignment in a wireless communication system
US6504816B1 (en) Baseband signal demodulating apparatus and method in mobile radio communication system
US6934553B2 (en) Receiving unit, receiving method and semiconductor device
US6317454B1 (en) Rake receiver, and mobile unit and base station for portable telephone system and using the same
JP2001223611A (en) Receiver
JP3777475B2 (en) Correlation circuit, demodulation circuit and receiver for spread spectrum communication
WO2001052435A1 (en) Spread spectrum receiver
JPH08163079A (en) Spread spectrum receiver
US20040062215A1 (en) Cdma reception apparatus and cdma reception method
US6553056B1 (en) CDMA receiver with a reduced number of required high speed adders

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN KR US