WO2001052278A1 - Magnet roller - Google Patents

Magnet roller Download PDF

Info

Publication number
WO2001052278A1
WO2001052278A1 PCT/JP2000/005939 JP0005939W WO0152278A1 WO 2001052278 A1 WO2001052278 A1 WO 2001052278A1 JP 0005939 W JP0005939 W JP 0005939W WO 0152278 A1 WO0152278 A1 WO 0152278A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnet
phase
magnet roller
pole
Prior art date
Application number
PCT/JP2000/005939
Other languages
French (fr)
Japanese (ja)
Inventor
Masaharu Iwai
Original Assignee
Kaneka Corporation
Tochigi Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000000960A external-priority patent/JP2000323322A/en
Application filed by Kaneka Corporation, Tochigi Kaneka Corporation filed Critical Kaneka Corporation
Priority to EP00956861A priority Critical patent/EP1253604A4/en
Priority to US10/169,626 priority patent/US6703915B1/en
Publication of WO2001052278A1 publication Critical patent/WO2001052278A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • H01F7/0252PM holding devices
    • H01F7/0268Magnetic cylinders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/09Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush
    • G03G15/0921Details concerning the magnetic brush roller structure, e.g. magnet configuration

Definitions

  • the present invention relates to a magnet roller incorporated in an electrophotographic apparatus employing an electrophotographic process in an image forming apparatus such as a copying machine, a laser printer or a facsimile receiving apparatus.
  • a magnet roller incorporated in an electrophotographic apparatus supplies a toner to an electrostatic latent image carrier and develops the electrostatic latent image by developing the toner, and a developing roller after transferring the developed toner image onto paper. It is applied to a cleaning roller for removing residual toner on an electrostatic latent image carrier.
  • the magnet roller 31 is formed by forming a main body 33 made of a magnet material on the outer periphery of a shaft (shaft) 32. It is used by being incorporated in a hollow cylindrical sleeve 34 made of an aluminum alloy or the like. A plurality of magnetic poles are formed on the outer peripheral surface of the main body 33 of the magnet roller 31.
  • the conventional magnet roller forms a main magnetic pole (developing pole) consisting of one magnetic pole on the main body, and its surface magnetic flux density curve (magnetic force distribution curve) forms a single high peak.
  • main magnetic pole developing pole
  • surface magnetic flux density curve magnetic force distribution curve
  • W peaks two high peaks
  • strontium-based or barium-based ferrite magnetic powder rare-earth-based magnetic powder (Nd-Fe-B-based magnetic powder, Sm-Co-based magnetic powder, etc.) are formed in the main body of such a conventional magnet roller.
  • a typical example is a bonded magnet formed by kneading a resin binder such as a thermoplastic resin by means such as injection molding or extrusion molding. The magnetic properties required for the magnet roller are determined at the time of molding or after molding. Outside the body It was obtained by applying a partial magnetic field and magnetizing.
  • the conventional magnet roller has mainly the following problems (1) to (4).
  • (1) A magnet roller using ferrite-based magnetic powder could not meet the demand for high magnetic force.
  • the magnetic force of a magnet roller with an outer diameter of 13.6 mm is less than 850 G at maximum, and a high magnetic field (Approximately 30 K ⁇ e), it was difficult to obtain a high magnetic force of 850 G or more due to magnetic saturation.
  • conventional rare-earth magnetic powders have a low Curie point of about 330 ° C, so their working limit temperature is limited to about 13 O, or conventional rare-earth magnetic powders Because of the poor corrosion resistance and oxidation resistance of the steel, magnetic properties are degraded due to the formation of ⁇ , so surface coating such as plating is required to prevent the occurrence of ⁇ , etc. It was a factor of high.
  • An object of the present invention is to provide a magnet roller which can obtain a high magnetic force even when magnetized in a relatively low magnetic field and can be manufactured at low cost.
  • the magnetic force of the main pole consisting of a single magnetic pole should be set to a high magnetic force of more than 850 G even if it is magnetized at 15 K ⁇ e or less. The purpose is to make it practically sufficient.
  • the present inventor has focused on a “nanocomposite magnet” which is composed of a soft magnetic material and a hard magnetic material having a small coercive force, and the order of the crystal grain size of the soft magnetic material is nanometer. As a result of intensive studies, they have found that this nanocomposite magnet is suitable as a magnet material for a magnet roller, and have reached the present invention.
  • the present invention is a magnet roller comprising a main body portion and a shaft portion supporting both ends of the main body portion, wherein a plurality of magnetic poles are formed on an outer peripheral surface of the main body portion in a circumferential direction.
  • the whole or a part of the main body has a magnetically exchangeable interaction between a hard magnetic phase and a soft magnetic phase, and has a coercive force (iHc) of 5 K ⁇ e or less and a residual magnetic flux of 5 KG or more.
  • iHc coercive force
  • It is characterized by comprising a rare-earth bonded magnet using a rare-earth magnetic powder having a high density and a resin binder. Therefore, it is possible to obtain a magnet roller having low coercive force (iHc) due to the presence of the soft magnetic phase and high remanence (Br) magnetic properties due to magnetic exchange interaction.
  • the rare earth magnetic powder is made of exchange spring magnetic powder.
  • Exchange spring magnetism means that when a large amount of soft magnetic phase exists in a magnet, the magnetization of the crystal grains of the soft magnetic phase and the hard magnetic phase are connected to each other through exchange interaction, thereby providing a low coercive force.
  • the magnetization of the soft magnetic phase which easily reverses the magnetization in the reverse magnetic field, becomes difficult to reverse even in the reverse magnetic field, and shows a mode in which both phases are connected by a spring. Refers to magnetic properties such as
  • rare-earth magnetic powders include a rare-earth iron-boron compound phase as a hard magnetic phase, an iron phase or an iron-boron compound phase as a soft magnetic phase, or a rare-earth iron-nitrogen compound as a hard magnetic phase. Those using an iron phase as the compound phase and the soft magnetic phase are preferred. Since this kind of rare-earth magnetic powder contains a large amount of soft magnetic phase, one point of curi, which is an index of the temperature dependence of remanent magnetization, is mainly governed by the temperature dependence of the soft magnetic phase. Therefore, the Curie point of the rare earth magnetic powder is a high value of about 400 or more, and the temperature dependence of remanent magnetization is low. Can be
  • the bonded magnet made of the rare-earth magnetic powder has a higher Co content than the rare-earth Nd-Fe-B-based magnet mainly composed of the conventional hard magnetic phase, so that the corrosion resistance and the oxidation resistance are improved. And the occurrence of ⁇ can be prevented even if there is no surface coating such as plating. That is, if the content of Co is less than 1 wt%, the oxidation resistance of the bonded magnet is reduced, and the likelihood of occurrence is increased. On the other hand, if the content of Co exceeds 16 wt%, the bonded magnet is protected. The magnetic force decreases, making it difficult to secure the magnetic properties required for the magnet roller.
  • the main magnetic pole is composed of a plurality of magnetic poles
  • the magnetic polarities in the developing zone the area where the developer rises toward the photoreceptor on the main magnetic pole
  • the efficiency of supplying the developer to the photoconductor can be increased.
  • a magnet piece made of the rare earth bonded magnet is disposed in a groove formed along an axis near the main magnetic pole on the outer peripheral surface of the main body.
  • the rare earth bonded magnet can be composed of one or a plurality of magnet pieces.
  • the main magnetic pole is composed of a plurality of rare-earth bonded magnet pieces, it is desirable that adjacent rare-earth bonded magnet pieces have opposite polarities.
  • a magnet roller may be formed by attaching a plurality of magnet pieces including the rare earth bonded magnet to the outer peripheral surface of the shaft portion.
  • a magnet piece with a C-shaped cross section made of a conventional ferrite resin magnet or the like is attached to the outer peripheral surface of the shaft, and the rare-earth bonded magnet piece is placed in the C-shaped opening (near the main magnetic pole) of the magnet piece.
  • a magnet roller can be formed by fitting a plurality of magnet rollers.
  • FIG. 1 is a schematic sectional view showing one embodiment of the magnet roller according to the present invention.
  • FIG. 2 is a schematic view showing another embodiment of the magnet roller according to the present invention.
  • FIG. 3 is a schematic diagram showing still another embodiment of the magnet roller according to the present invention.
  • FIG. 4 is a schematic view showing still another embodiment of the magnet roller according to the present invention.
  • FIG. 5 is a schematic view showing still another embodiment of the magnet roller according to the present invention.
  • FIG. 6 is a schematic view showing still another embodiment of the magnet roller according to the present invention.
  • FIG. 7 is a schematic diagram illustrating a magnetic force distribution in a circumferential direction of the magnet roller of the example.
  • FIG. 8 is a schematic diagram showing a magnetic force distribution in a circumferential direction of a magnet roller of another embodiment.
  • FIG. 9 is a schematic sectional view showing a developing roller incorporated in a conventional sleeve.
  • the magnet roller 1 has a main body 3 formed on the outer periphery of a shaft 2 made of SUS, an aluminum alloy, a resin, or the like.
  • the main body 3 has a complex phase of a hard magnetic phase and a soft magnetic phase that magnetically exchange and interact with each other, and has a coercive force (iHc) of 5 KOe or less and a residual magnetic flux density (Br) of 5 KG or more. It is composed of a rare earth pound magnet formed using the rare earth magnetic powder.
  • the rare earth magnetic powder is an exchange spring magnetic powder in which the crystal grain size of the soft magnetic phase is adjusted to several tens nm in order to make the exchange interaction effective.
  • a plurality of magnetic poles are formed on the outer peripheral surface of the main body 3, and the main magnetic pole (in this embodiment, In this example, four poles were formed at equal intervals, but the present invention does not limit the number of poles and pole positions at all. The number of poles and pole positions may be appropriately set according to the desired magnetic characteristics.
  • the magnet material of the magnet roller main body 3 is mainly composed of a mixture of 50 to 95% by weight of the rare earth magnetic powder and 5 to 50% by weight of a resin binder.
  • a coupling agent described above, an amide-based lubricant as a lubricant for improving the fluidity of the molten magnet material, a stabilizer for preventing thermal decomposition of the resin binder, or a flame retardant. If the content of the rare earth magnetic powder is less than 50% by weight, the magnetic properties of the magnet roller are reduced due to insufficient magnetic powder, and a desired magnetic force (850 G or more at the main magnetic pole) cannot be obtained.
  • the binder becomes insufficient and the moldability of the main body 3 is impaired.
  • the resin binder include an ethylene-ethyl acrylate resin, a polyamide resin, a polyethylene resin, a polystyrene resin, PET (polyethylene terephthalate), PBT (polybutylene terephthalate), and PPS (polyphenylene sulfide). ), EVA (ethylene-vinyl acetate copolymer), EVOH (ethylene-vinyl alcohol copolymer), PVC (polyvinyl chloride), etc.
  • One or more types, or epoxy resin, phenol resin One or two or more of thermosetting resins such as urea resin, melamine resin, furan resin, unsaturated polyester resin, and polyimide resin can be used.
  • the rare earth magnetic powder includes a rare earth (R) —iron (Fe) —nitrogen (N) alloy or a rare earth (R) —iron (Fe) —boron (B) alloy containing a hard magnetic phase and a soft magnetic phase.
  • a spring magnetic powder is preferable, and an exchange spring magnetic powder of a rare earth (R) —iron (Fe) —cobalt (Co) alloy may be used.
  • R is Sm, Nd, or one or a combination of two or more of Pr, Dy, Tb, and the like.
  • Nd-Fe-B alloys soft magnetic phase: Fe-B alloy, aFe
  • Sm-Fe-N alloys soft magnetic phase: Fe
  • Nd-Fe- Replacement spring magnetic powders such as Co-Cu-Nb-B alloy (soft magnetic phase: Fe_B alloy, aFe), Nd—Fe—Co alloy (soft magnetic phase: aFe, etc.) are suitable.
  • Nd 4 Fe 8 especially from the viewpoint of reducing the coercive force (iHc) and increasing the residual magnetic flux density (Br).
  • B 2 () alloy Soft magnetic phase: F
  • An exchange spring magnetic powder of e 3 B, a Fe ) or Sm 2 Fe 17 N 3 alloy soft magnetic phase: aFe
  • Co to the exchange spring magnetic powder in an amount of 1 to 16 wt%, more preferably 3 to 13 wt%.
  • a high-speed quenching method, mechanical opening (mechanical alloying), or the like is used as a method for producing such an exchange spring magnetic powder. Specifically, each raw material element is weighed, a heat treatment is performed on the alloy powder obtained by mechanical alloying, and a nitriding treatment is performed as necessary. After pulverizing an alloy containing an amorphous or near-amorphous microstructure obtained by performing a rapid quenching method, a heat treatment is performed to precipitate crystals, and a nitriding treatment is performed as necessary.
  • exchange spring magnetic powder having a soft magnetic phase with a crystal grain size of several tens of nm.
  • the nitriding treatment is necessary when producing the R_Fe-N-based exchange spring magnetic powder.
  • the magnet roller according to the present invention and a magnet piece (stone piece) to be described later are pelletized after melting and kneading the magnet material, and are molded from the pellet by an extrusion molding method or an injection molding method. Further, the magnet material may be formed by a compression molding method. Magnetization of the magnet roller and magnet pieces can be performed at the same time as injection molding or extrusion molding. It is obtained by magnetizing after molding without magnetizing. Also, in forming and assembling the magnet roller, the main body and the shaft may be integrally formed, the shafts may be attached to both ends of the main body, or the shaft may be provided through the cylindrical body axis. Alternatively, a magnet piece formed in a different shape such as a camber or fan may be attached to a shaft having a circular, elliptical or polygonal cross section to form a magnet roller.
  • a magnet piece 7 (11) made of the above rare earth pound magnet in a groove 6 (10) formed along the axis near the main magnetic pole in the main body 5 (9).
  • These magnet pieces are desirably a square piece 7 having a square sectional shape as shown in FIG. 2 or a semi-segment piece 11 having a semi-fan shape as shown in FIG. This is because such a shape is easy to be shared with other magnet roller pieces, and improves moldability and sticking property (adhesive property).
  • the main magnetic pole is composed of a plurality of magnetic poles
  • a plurality of magnetic poles (N-pole, S-pole, N-pole, S-pole) are formed on the outer surface of the shaft 12 as shown in the schematic sectional view of FIG.
  • the main body 13 is formed with a groove 14 having a sectoral cross-sectional shape, and the above-mentioned rare earth pound magnet is formed in the groove 14 to form the S pole, N pole and S pole on the surface.
  • the main magnetic poles may be formed by arranging and adhering the magnet pieces 15A, 158, and 150 having the respective magnetic poles so that the magnetic polarities of the adjacent magnet pieces are opposite to each other. Or, as shown in the schematic cross-sectional view of FIG.
  • a ferrite pound magnet 17 is attached, and a magnet piece 18A made of the above-mentioned rare earth bonded magnet and having S, N, and S poles on the surface in the C-shaped opening (near the main magnetic pole) of the ferrite pound magnet 17 is attached.
  • 18B and 18C may be arranged and bonded so that the magnetic polarities of adjacent magnet pieces are opposite to each other to form a main magnetic pole.
  • magnet pieces 21 A, 21 B which are made of the above-mentioned rare earth bonded magnet on the outer peripheral surface of the shaft portion 19 and have S, N, and S poles on the surface, respectively.
  • a main magnetic pole is formed by disposing and bonding 21 C, and a ferrite bond magnet piece 2 OA, 20 B, 2 OA ′, 20 B ′ having another magnetic pole is bonded on the outer peripheral surface of the shaft portion 19, A magnet roller may be manufactured.
  • the shape of the magnet piece is not limited at all, and the shape can be appropriately changed according to desired magnetic characteristics (magnetic force, magnetic force distribution waveform, etc.).
  • a method for manufacturing such a magnet roller two injection molding machines are used, a main body is molded by a first injection molding machine, and a magnet piece is inserted into a groove by a second injection molding machine. Molding, a so-called two-color molding method, can also be adopted. This method is effective for greatly simplifying the manufacturing process.
  • the magnetic field orientation of the magnet pieces random orientation, linear orientation as shown by arrows in FIGS. 2 (b) and 3 (b), and arrows shown in FIGS.
  • a radial orientation is a typical example.
  • the magnetic flux density of the applied magnetic field is converged to control the amount of orientation magnetization from any side of the magnet piece 7 (1 1), from the back side to the front side.
  • the magnetic force distribution of the magnet roller can be controlled. This control is effective when the magnetic force distribution waveform at the main pole is made asymmetric.
  • a magnet roller may be configured by combining magnet pieces having these different orientations, and the combination may be appropriately selected according to required specifications.
  • the isotropic rare earth magnetic powder according to the present invention when used and magnetized after molding the magnet roller, it is easy to magnetize to a desired magnetic force at a desired position of the magnet roller. preferable.
  • the molding die since there is no need to construct a magnetic circuit in the molding apparatus, the molding die is inexpensive, and since the bonded magnet is not deformed by the applied magnetic field during molding, the dimensional accuracy after molding is increased, so the magnetizing is performed. And the pole position can be determined with high accuracy.
  • the magnet rollers of Examples 1 to 3 and Comparative Examples 1 to 4 described below were mixed with 10% by weight of a resin binder (nylon 12) and 90% by weight of magnetic powder, melt-kneaded, and formed into pellets. After forming a roller (diameter: 13.6 mm; total length: 320 mm) from the pellets by injection molding, an external magnetic field was applied, and a four-pole ( ⁇ ,, S 2 , N 2 , S,) It was produced by magnetizing. The magnetic force distribution of the magnet opening was measured while the magnet opening was housed in the aluminum alloy sleeve 12.
  • N and pole are main magnetic poles
  • reference numeral 13 is a shaft portion
  • 14 is a main body portion
  • 15 is a distribution waveform of magnetic force
  • point A indicates the maximum value of the magnetic force distribution at the main magnetic pole.
  • Nylon 12 as resin binder and NcLF e 8 as magnetic powder.
  • B Exchange Magnetic powder (intrinsic coercive force iHc: 3. OKOe, residual magnetic flux density Br: 12KG, Co content: 2wt%), kneaded, pelletized, and formed by injection molding to form a roller. It is a magnet roller magnetized at 8K ⁇ e to 15KOe.
  • Nd 5 F as magnetic powder A magnet roller manufactured in the same manner as in Example 1 except that ring magnetic powder (intrinsic coercive force iHc: 4.8 KOe, residual magnetic flux density Br: 5.2 KG, Co content: 6 wt%) was used. (Example 3)
  • Example 1 was the same as Example 1 except that Sm 2 Fe 17 N 3 exchange spring magnetic powder (coercive force iHc: 4.0 KOe, residual magnetic flux density Br: 7.8 KG, Co content: lwt%) was used as the magnetic powder. This is a magnet roller manufactured similarly.
  • Rare earth magnetic powder as a magnetic powder (Nd 13 5 Fe l 7 B 4 8; coercive force iHc:.. 14 kOe, residual magnetic flux density Br: 8. 4KG, Co content: 0. 5 wt%), except using, implementation
  • This is a magnet roller manufactured in the same manner as in Example 1.
  • Rare earth magnetic powder (Nd ⁇ FeuB; coercive force iHc: 14KOe, residual magnetic flux density Br: 8.4KG, Co content: 0.5wt%) was used as the magnetic powder, and the applied magnetic field strength was 20KOe to 3OKOe. Except that the magnet was manufactured in the same manner as in Example 1. Trolla.
  • the magnet apertures of Example 4 and Comparative Example 5, which will be described in detail below, are magnet pieces 29A to 29C, 28A, 28B on the outer peripheral surface of the shaft portion 26. , 28 ⁇ ', 28 B' are bonded together (diameter ⁇ 13.6 mm; overall length 320 mm). Each magnet piece is mixed with 10% by weight of a resin binder (nylon 12) and 90% by weight of magnetic powder, melt-kneaded and formed into pellets, and the pellets are shaped by injection molding using this belt. It was fabricated by applying an external magnetic field and magnetizing after molding. In Fig.
  • S, P, N, and S 2 poles are main poles
  • 26 is a shaft
  • 28A, 28B, 28A 'and 28B' are ferrite pole magnet pieces
  • 29A to 29C are rare earth elements.
  • the pound magnet piece, 30 indicates the magnetic force distribution waveform
  • points B, C, and D indicate the highest values of the magnetic force distribution at the main pole.
  • the angle (0 2 ) between the magnetic force peak position (point B) at the upstream side of the developer conveyance and the magnetic force peak position (point D) at the downstream side of the developer conveyance is 60 °.
  • the angle between the points B and C ( ⁇ is 30 °.
  • the point C is Since the brushing of the nearby developer is coarse, it does not change from the brushing state of the conventional magnet roller in the developing zone, and at the same time, the reversal (rotation) of the developer due to the change in the magnetic polarity becomes noticeable. Higher image quality cannot be achieved due to a decrease in the amount of toner supplied to the photoreceptor.
  • the gap angle (0 2 ) is less than 30 °, the rare-earth bonded magnet piece is used for the main magnetic pole. No high magnetic force could be obtained, and it was confirmed that it was difficult to achieve high image quality.
  • Ferrite magnetic powder S r ⁇ 6Fe 2 0 3 (coercive force iHc) is used as a magnetic powder for a magnet piece having N 2 poles, S 3 poles, S 4 poles, and N 3 poles constituting magnetic poles other than the main magnetic pole.
  • the main magnetic pole in the Example 4 (S, poles, N, pole, S 2-pole) the exchange spring magnetic powder used in the magnet pieces which constitute the ferrite magnetic powder S R_ ⁇ , 6 Fe 2 ⁇ 3 (coercivity iHc : 3KOe, residual magnetic flux density Br: 4.8KG, Co content: 0 wt%), mixed with nylon 12 and kneaded, pelletized, and injection molded using these pellets to form a fan-shaped cross section
  • This is a magnet roller manufactured in the same manner as in Example 4 except that the magnet piece is formed and orientation magnetization is performed simultaneously with the forming.
  • the magnetic force distributions of the above Examples and Comparative Examples were measured using a Gauss meter with a probe at a position 1.2 mm radially away from the magnet roller surface (at a position 8.0 mm radially away from the center axis of the magnet roller).
  • the magnet roller was rotated in the circumferential direction and measured.
  • Tables 1 and 2 show the magnetic properties of the magnetic powder and the magnet aperture used in the examples and comparative examples, and Table 3 shows the oxidation resistance.
  • the oxidation resistance after the produced magnet roller was left in the air for 168 hours, the presence or absence of mackerel on the surface of the magnet roller was visually checked.
  • the magnetic properties in Tables 1 and 2 are as follows: ⁇ intrinsic coercive force iHc '' and ⁇ residual magnetic flux density Br '' of the magnetic powder, magnet roller ⁇ intrinsic coercive force iHc after molding '' and ⁇ residual magnetic flux density Br '' And the "magnetic force of the main pole" at points A to D after magnetization.
  • the magnetic force of the three poles constituting the main pole in Example 4 was 800 G or more, whereas the three poles constituting the main pole were in Comparative Example 5.
  • the magnet roller of Example 4 can obtain a high magnetic force (800 G or more) sufficient for developing even if three magnetic poles are arranged within a range of 60 ° around the main magnetic pole, and It was confirmed that the developer was close to the point near point C.
  • Example 4 there was no occurrence of mackerel in Example 4 using the exchange spring magnetic powder and Comparative Example 5 using the conventional ferrite magnetic powder.
  • the main body has a multiple phase of a hard magnetic phase and a soft magnetic phase that magnetically exchange and interact with each other, and has a coercive force (iHc) of 5 KOe or less and Since a rare-earth bonded magnet using a rare-earth magnetic powder having a residual magnetic flux density of 5 KG or more is used, the low coercive force of the soft magnetic phase and the magnetization higher than that of the hard magnetic phase can be used. High magnetic force can be obtained even when magnetized. In particular, when the main magnetic pole is composed of a single pole, even if it is magnetized in a low magnetic field of 8 KOe to 15 KOe, a high magnetic force of 850 G or more can be obtained.
  • iHc coercive force
  • the magnetic pole is composed of a plurality of poles, a high magnetic force of 800 G or more can be obtained, so that a magnet roller with high development efficiency can be obtained. Since the main magnetic pole can be magnetized in a low magnetic field in this way, it is possible to avoid an increase in the size and power of the magnetizing device, and to obtain a magnet roller with excellent magnetic properties while keeping manufacturing costs low. It becomes possible.
  • a magnet roller having good corrosion resistance and oxidation resistance can be obtained without requiring surface coating such as plating, and as a result, the magnet Rollers can obtain stable magnetic properties over a long period of time.
  • the main magnetic pole by configuring the main magnetic pole by a plurality of magnetic poles and setting the polarities of the adjacent magnetic poles of the plurality of magnetic poles constituting the main magnetic pole to be opposite to each other, the vicinity of the main magnetic pole in use is reduced.
  • the developer can be made denser, and the reversal (rotation) of the developer due to the change in magnetic polarity in the development zone becomes more active, so that the efficiency of supplying the developer to the photoreceptor is increased and the image quality is improved. Becomes possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)

Abstract

A magnet roller produced at low cost, capable of exhibiting a strong magnetic force even if the magnet roller is magnetized in a relatively weak magnetic field and of exhibiting a magnetic force (800 G or more) practically sufficient for development even if a plurality of magnetic poles are provided in a main magnetic pole part, and having a good resistance to oxidation. The magnetic roller (1) comprises a body part (3) and a shaft part (2) supporting both ends of the body part. A plurality of magnetic poles (N1, S2, N2, S1) are provided in the outer peripheral face of the body part (3). The body part (3) is made up of a rare-earth bond magnet made of rare-earth magnetic power having a composite phase of a hard magnetic phase and a soft magnetic phase both magnetically exchange-interacting with each other and having a coercive force (iHc) of 5 Koe or less and a residual magnetic flux density (Br) of 5 KG or more.

Description

明 細 書 マグネッ卜ローラ 技術分野  Description Magnet roller Technical field
本発明は、 複写機、 レーザ一プリンターまたはファクシミリの受信装置などの 画像形成装置において、 電子写真プロセスを採用した電子写真装置に組み込まれ るマグネットローラに関するものである。 背景技術  The present invention relates to a magnet roller incorporated in an electrophotographic apparatus employing an electrophotographic process in an image forming apparatus such as a copying machine, a laser printer or a facsimile receiving apparatus. Background art
電子写真装置に組み込まれるマグネットローラは、 トナーを静電潜像担持体へ 供給し静電潜像を顕在化させて現像を行う現像ローラや、 その顕在化したトナー 像を用紙に転写した後の静電潜像担持体上の残存トナーを除去するクリーニング ローラなどに適用される。 例えば、 マグネットローラを現像ローラとして用いる 場合、 図 9に示すように、 マグネットローラ 3 1は、 シャフト (軸部) 3 2の外 周上に、 磁石材料からなる本体部 3 3を形成して構成され、 アルミニウム合金な どからなる中空円筒状のスリーブ 3 4に内蔵されて用いられる。 このようなマグ ネットローラ 3 1の本体部 3 3の外周面には、複数の磁極が着磁形成されており、 これら磁極のうち最も高い表面磁束密度を有するものを主磁極と呼び、 現像極と して用いることが多い。 このように、 従来のマグネットローラは、 本体部に 1つ の磁極からなる主磁極 (現像極) を形成し、 その表面磁束密度曲線 (磁力分布曲 線) が単一の高いピークを形成するものや、 2つの同極性の磁極を並設して主磁 極 (現像極) とし、 その磁力分布曲線が 2つの高いピーク (Wピーク) を形成す るものが主流であった。  A magnet roller incorporated in an electrophotographic apparatus supplies a toner to an electrostatic latent image carrier and develops the electrostatic latent image by developing the toner, and a developing roller after transferring the developed toner image onto paper. It is applied to a cleaning roller for removing residual toner on an electrostatic latent image carrier. For example, when a magnet roller is used as a developing roller, as shown in FIG. 9, the magnet roller 31 is formed by forming a main body 33 made of a magnet material on the outer periphery of a shaft (shaft) 32. It is used by being incorporated in a hollow cylindrical sleeve 34 made of an aluminum alloy or the like. A plurality of magnetic poles are formed on the outer peripheral surface of the main body 33 of the magnet roller 31. Of these magnetic poles, the one having the highest surface magnetic flux density is called the main magnetic pole, and the developing pole is Often used as Thus, the conventional magnet roller forms a main magnetic pole (developing pole) consisting of one magnetic pole on the main body, and its surface magnetic flux density curve (magnetic force distribution curve) forms a single high peak. In addition, two main magnetic poles of the same polarity were juxtaposed to form a main magnetic pole (development pole), and the magnetic force distribution curve formed two high peaks (W peaks).
また、 このような従来のマグネットローラの本体部には、 ストロンチウム系ま たはバリウム系フェライト磁性粉や希土類系磁性粉 (N d — F e— B系磁粉、 S m— C o系磁粉などがその代表例) に、 熱可塑性樹脂などの樹脂バインダーを混 練したものを射出成形や押出成形などの手段により形成したボンド磁石を用い、 マグネットローラに必要な磁気特性は、 成形時または成形後に、 その本体部に外 部磁界を印加させて着磁することにより得ていた。 In addition, strontium-based or barium-based ferrite magnetic powder, rare-earth-based magnetic powder (Nd-Fe-B-based magnetic powder, Sm-Co-based magnetic powder, etc.) are formed in the main body of such a conventional magnet roller. A typical example is a bonded magnet formed by kneading a resin binder such as a thermoplastic resin by means such as injection molding or extrusion molding. The magnetic properties required for the magnet roller are determined at the time of molding or after molding. Outside the body It was obtained by applying a partial magnetic field and magnetizing.
しかしながら、 従来のマグネットローラでは、 主に、 以下 (1 ) 〜 (4 ) の問 題点があった。 (1 ) フェライト系磁性粉を用いたマグネットローラでは、 高磁 力要求に対応できなかった。 単一磁極で主磁極を構成したマグネットロ一ラの場 合、 例えば、 外径 1 3 . 6 mmのマグネットローラの磁力は最大でも 8 5 0 G未 満であり、着磁の際に高磁場(3 0 K〇e程度) を印加しても磁気的飽和のため、 8 5 0 G以上の高磁力を得ることは難しかった。  However, the conventional magnet roller has mainly the following problems (1) to (4). (1) A magnet roller using ferrite-based magnetic powder could not meet the demand for high magnetic force. In the case of a magnet roller composed of a single magnetic pole as the main magnetic pole, for example, the magnetic force of a magnet roller with an outer diameter of 13.6 mm is less than 850 G at maximum, and a high magnetic field (Approximately 30 K〇e), it was difficult to obtain a high magnetic force of 850 G or more due to magnetic saturation.
( 2 ) また、 近年、 複数の磁極により主磁極を構成してなるマグネットローラが 開発されているが、 その主磁極における磁力は 6 0 0 G以下であって、 現像極と しての役割を十分に果たし得るレベルでは無かった。 主磁極を複数極で構成する 理由は、 周方向における現像剤の穂立ちの範囲が広くなり、 これが現像効率を高 くする利点があるからである。  (2) In recent years, a magnet roller having a main magnetic pole composed of a plurality of magnetic poles has been developed.The magnetic force at the main magnetic pole is 600 G or less, and the magnetic roller plays a role as a developing pole. It was not a level that could be fulfilled. The reason why the main magnetic pole is composed of a plurality of poles is that the range of the width of the developer in the circumferential direction is widened, and this has an advantage of increasing the development efficiency.
( 3 ) 他方、 希土類磁性粉を用いたマグネットローラでは、 希土類磁性粉の保磁 力が比較的高いため (固有保磁力 (iHc) 5 KO e以上) 、 低磁場の着磁では低 磁力 (7 0 0 G程度) しか得られず、 高磁力を得るには高い印加磁場 (2 0〜3 O KO e程度) が必要となり、 着磁装置の大型化と大電力化が避けられず、 これ が着磁工程を複雑にしてコスト高の一要因となっていた。  (3) On the other hand, in a magnet roller using rare-earth magnetic powder, since the coercive force of the rare-earth magnetic powder is relatively high (intrinsic coercive force (iHc) of 5 KOe or more), low magnetism (7 (Approximately 0 G), and a high applied magnetic field (approximately 20 to 3 O KOe) is required to obtain a high magnetic force, which inevitably increases the size and power of the magnetizing device. This complicates the magnetizing process and is a factor in increasing the cost.
( 4 ) また、 従来の希土類磁性粉は、 約 3 3 0 °C程度の低いキュリー点を有して いたためその使用限界温度が約 1 3 O 程度に低く制限されたり、 従来の希土類 磁性粉の耐食性や耐酸化性が悪いために、 鲭などが発生して磁気特性が低下する から、 その鲭などの発生を防止するためにメツキなどの表面被覆が必要となった りし、 これらがコスト高の一要因となっていた。  (4) In addition, conventional rare-earth magnetic powders have a low Curie point of about 330 ° C, so their working limit temperature is limited to about 13 O, or conventional rare-earth magnetic powders Because of the poor corrosion resistance and oxidation resistance of the steel, magnetic properties are degraded due to the formation of 鲭, so surface coating such as plating is required to prevent the occurrence of 鲭, etc. It was a factor of high.
本発明は、 かかる問題点に鑑みて解決しょうとするところは、 比較的低磁場で 着磁しても高磁力を得ることが可能で、 低コストで作製し得るマグネットローラ を提供する点にある。 特に、 単一磁極で構成される主磁極の磁力を、 1 5 K〇e 以下で着磁しても 8 5 0 G以上の高磁力にすること、 複数極で構成される主磁極 の磁力を実用上十分なレベルにすることを目的とする。 同時に、 メツキなどの表 面被覆を必要とせず、 耐食性や耐酸化性が良好なマグネットローラを得ることを も目的とする。 発明の開示 An object of the present invention is to provide a magnet roller which can obtain a high magnetic force even when magnetized in a relatively low magnetic field and can be manufactured at low cost. . In particular, the magnetic force of the main pole consisting of a single magnetic pole should be set to a high magnetic force of more than 850 G even if it is magnetized at 15 K〇e or less. The purpose is to make it practically sufficient. At the same time, it is another object of the present invention to obtain a magnet roller having good corrosion resistance and oxidation resistance without requiring surface coating such as plating. Disclosure of the invention
前記目的を達成するために、 本発明者は、 保磁力の小さな軟磁性材料と硬磁性 材料とからなりこの軟磁性材料の結晶粒径のオーダーがナノメートルである 「ナ ノコンポジット磁石」 に着目し鋭意研究を行った結果、 このナノコンポジット磁 石がマグネットローラの磁石材料として適していることを見出し、 本発明に到達 するに至った。  In order to achieve the above object, the present inventor has focused on a “nanocomposite magnet” which is composed of a soft magnetic material and a hard magnetic material having a small coercive force, and the order of the crystal grain size of the soft magnetic material is nanometer. As a result of intensive studies, they have found that this nanocomposite magnet is suitable as a magnet material for a magnet roller, and have reached the present invention.
すなわち、本発明は、本体部と、 この本体部の両端を支持する軸部とからなり、 前記本体部の外周面に周方向に亘る複数の磁極を着磁形成したマグネットローラ であって、 前記本体部の全部もしくはその一部が、 磁気的に交換相互作用する硬 磁性相と軟磁性相との複相を有し且つ 5 K〇e以下の保磁力 (iHc) および 5 K G以上の残留磁束密度を有する希土類磁性粉と樹脂バインダーとを用いた希土類 ボンド磁石からなることを特徴とするものである。 よって、 軟磁性相の存在によ り低保磁力 (iHc) で、 磁気的交換相互作用により高い残留磁束密度 (Br) の磁 気特性を有するマグネットローラを得ることができる。  That is, the present invention is a magnet roller comprising a main body portion and a shaft portion supporting both ends of the main body portion, wherein a plurality of magnetic poles are formed on an outer peripheral surface of the main body portion in a circumferential direction. The whole or a part of the main body has a magnetically exchangeable interaction between a hard magnetic phase and a soft magnetic phase, and has a coercive force (iHc) of 5 K〇e or less and a residual magnetic flux of 5 KG or more. It is characterized by comprising a rare-earth bonded magnet using a rare-earth magnetic powder having a high density and a resin binder. Therefore, it is possible to obtain a magnet roller having low coercive force (iHc) due to the presence of the soft magnetic phase and high remanence (Br) magnetic properties due to magnetic exchange interaction.
また、 前記希土類磁性粉は、 交換スプリング磁性粉からなることがより好まし い。 「交換スプリング磁性」 とは、 磁石内に多量の軟磁性相が存在するとき、 こ の軟磁性相および硬磁性相の結晶粒の磁化が交換相互作用で互いに結びつくこと により、 本来低保磁力しかもたず逆磁界中では容易に磁化反転する軟磁性相の磁 化が、 逆磁界中でも反転し難くなり、 あたかも両相がばねで結びつけられた様態 を示し、 硬磁性相のみの単相であるかのような磁気特性をいう (例えば、  Further, it is more preferable that the rare earth magnetic powder is made of exchange spring magnetic powder. "Exchange spring magnetism" means that when a large amount of soft magnetic phase exists in a magnet, the magnetization of the crystal grains of the soft magnetic phase and the hard magnetic phase are connected to each other through exchange interaction, thereby providing a low coercive force. First, the magnetization of the soft magnetic phase, which easily reverses the magnetization in the reverse magnetic field, becomes difficult to reverse even in the reverse magnetic field, and shows a mode in which both phases are connected by a spring. Refers to magnetic properties such as
R. Coehoorn, K. H. J . Buschow e t a l . : J . de Phys . , 49 (1988) C8— 669参照) 。 このような希土類磁性粉には、 硬磁性相として希土類一鉄一ホウ素化合物相、 軟磁性相として鉄相または鉄一ホウ素化合物相を採用したもの、 もしくは、 硬磁 性相として希土類一鉄一窒素化合物相、 軟磁性相として鉄相を採用したものが好 適である。 この種の希土類磁性粉には多量の軟磁性相が含まれているので、 残留 磁化の温度依存性の指標となるキュリ一点は主に軟磁性相の温度依存性に支配さ れる。 よって、 その希土類磁性粉のキュリー点は約 4 0 0 以上の高い値となり 残留磁化の温度依存性は低くなるから、 使用限界温度を約 2 0 0 以上の高い値 にすることができる。 R. Coehoorn, KH J. Buschow etal .: J. de Phys., 49 (1988) C8-669). Such rare-earth magnetic powders include a rare-earth iron-boron compound phase as a hard magnetic phase, an iron phase or an iron-boron compound phase as a soft magnetic phase, or a rare-earth iron-nitrogen compound as a hard magnetic phase. Those using an iron phase as the compound phase and the soft magnetic phase are preferred. Since this kind of rare-earth magnetic powder contains a large amount of soft magnetic phase, one point of curi, which is an index of the temperature dependence of remanent magnetization, is mainly governed by the temperature dependence of the soft magnetic phase. Therefore, the Curie point of the rare earth magnetic powder is a high value of about 400 or more, and the temperature dependence of remanent magnetization is low. Can be
また、 前記希土類磁性粉中にコバルト (C o ) が 1〜1 6 w t %添加されてい ることが望ましい。 これにより、当該希土類磁性粉で作製されたボンド磁石では、 従来の硬磁性相を主体とした希土類 N d - F e - B系磁石よりも C oの含有率が 高いため、 耐食性や耐酸化性が良好となるとともに、 メツキなどの表面被覆が無 くとも鲭などの発生が防止できる。すなわち、 C oの含有率が 1 w t %未満では、 ボンド磁石の耐酸化性などが低下し鲭などが発生し易く、 他方 C oの含有率が 1 6 w t %を超えると、 ボンド磁石の保磁力が低下し、 マグネットローラに必要な 磁気特性を確保し難くなる。  Further, it is desirable that cobalt (Co) is added to the rare earth magnetic powder in an amount of 1 to 16 wt%. As a result, the bonded magnet made of the rare-earth magnetic powder has a higher Co content than the rare-earth Nd-Fe-B-based magnet mainly composed of the conventional hard magnetic phase, so that the corrosion resistance and the oxidation resistance are improved. And the occurrence of 鲭 can be prevented even if there is no surface coating such as plating. That is, if the content of Co is less than 1 wt%, the oxidation resistance of the bonded magnet is reduced, and the likelihood of occurrence is increased. On the other hand, if the content of Co exceeds 16 wt%, the bonded magnet is protected. The magnetic force decreases, making it difficult to secure the magnetic properties required for the magnet roller.
また、 主磁極を複数の磁極で構成する場合、 その主磁極を構成する複数の磁極 のうち隣接し合う磁極の極性を相互に逆極性となすことが望ましい。 隣接し合う 磁極の極性を相互に逆極性となすことにより、 使用時におけるマグネットローラ の回転に伴い、 現像ゾーン (主磁極上で現像剤が感光体に向けて穂立ちする領域 ) において磁極性の変化による現像剤の反転 (回転) が生じ、 感光体への現像剤 の供給効率を高めることができるという利点がある。  When the main magnetic pole is composed of a plurality of magnetic poles, it is desirable that the polarities of adjacent magnetic poles among the plurality of magnetic poles constituting the main magnetic pole be opposite to each other. By making the polarities of the adjacent magnetic poles opposite to each other, the magnetic polarities in the developing zone (the area where the developer rises toward the photoreceptor on the main magnetic pole) with the rotation of the magnet roller during use There is an advantage that the developer is reversed (rotated) due to the change, and the efficiency of supplying the developer to the photoconductor can be increased.
そして、 マグネットローラの磁力分布を制御するには、 前記本体部外周面の主 磁極近辺であって、 軸線に沿って形成した溝内に前記希土類ボンド磁石からなる 磁石片を配設したものも好ましく、 この希土類ボンド磁石を、 1個もしくは複数 個の磁石片で構成することができる。 複数の希土類ボンド磁石片で主磁極を構成 する場合は、 隣接する希土類ボンド磁石片の極性を相互に逆極性となすことが望 ましい。  In order to control the magnetic force distribution of the magnet roller, it is also preferable that a magnet piece made of the rare earth bonded magnet is disposed in a groove formed along an axis near the main magnetic pole on the outer peripheral surface of the main body. The rare earth bonded magnet can be composed of one or a plurality of magnet pieces. When the main magnetic pole is composed of a plurality of rare-earth bonded magnet pieces, it is desirable that adjacent rare-earth bonded magnet pieces have opposite polarities.
また、 上記軸部の外周面に、 上記希土類ボンド磁石を含む複数の磁石片を貼着 することでマグネットローラを構成しても良い。 例えば、 従来のフェライト樹脂 磁石などからなる C字断面形状の磁石片を軸部の外周面に貼着し、 その磁石片の C字の開口部 (主磁極近辺) に上記希土類ボンド磁石片の単または複数個を嵌合 させて、 マグネットローラを構成することができる。 図面の簡単な説明  Further, a magnet roller may be formed by attaching a plurality of magnet pieces including the rare earth bonded magnet to the outer peripheral surface of the shaft portion. For example, a magnet piece with a C-shaped cross section made of a conventional ferrite resin magnet or the like is attached to the outer peripheral surface of the shaft, and the rare-earth bonded magnet piece is placed in the C-shaped opening (near the main magnetic pole) of the magnet piece. Alternatively, a magnet roller can be formed by fitting a plurality of magnet rollers. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係るマグネットローラの一実施例を示す概略断面図である。 図 2は、 本発明に係るマグネットローラの他の実施例を示す概略図である。 図 3は、本発明に係るマグネットロ一ラの更に他の実施例を示す概略図である。 図 4は、本発明に係るマグネットローラの更に他の実施例を示す概略図である。 図 5は、本発明に係るマグネットローラの更に他の実施例を示す概略図である。 図 6は、本発明に係るマグネットローラの更に他の実施例を示す概略図である。 図 7は、 実施例のマグネットローラの周方向に亘る磁力分布を示す模式図であ る。 FIG. 1 is a schematic sectional view showing one embodiment of the magnet roller according to the present invention. FIG. 2 is a schematic view showing another embodiment of the magnet roller according to the present invention. FIG. 3 is a schematic diagram showing still another embodiment of the magnet roller according to the present invention. FIG. 4 is a schematic view showing still another embodiment of the magnet roller according to the present invention. FIG. 5 is a schematic view showing still another embodiment of the magnet roller according to the present invention. FIG. 6 is a schematic view showing still another embodiment of the magnet roller according to the present invention. FIG. 7 is a schematic diagram illustrating a magnetic force distribution in a circumferential direction of the magnet roller of the example.
図 8は、 他の実施例のマグネッ卜ローラの周方向に亘る磁力分布を示す模式図 である。  FIG. 8 is a schematic diagram showing a magnetic force distribution in a circumferential direction of a magnet roller of another embodiment.
図 9は、 従来のスリーブに内蔵された現像ローラを示す概略断面図である。 発明を実施するための最良の形態  FIG. 9 is a schematic sectional view showing a developing roller incorporated in a conventional sleeve. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明に係るマグネットローラの実施形態を図面を参照しながら説明 する。  An embodiment of a magnet roller according to the present invention will be described below with reference to the drawings.
図 1の概略断面図を参照すると、 本発明に係るマグネットローラ 1は、 S U S やアルミニウム合金、 樹脂などからなる軸部 2の外周上に、 本体部 3を形成して なるものである。 この本体部 3は、 磁気的に交換相互作用する硬磁性相と軟磁性 相との複相を有し、 5 KO e以下の保磁力 (iHc) と 5 K G以上の残留磁束密度 (Br) を有する希土類磁性粉を用いて形成した希土類ポンド磁石からなるもので ある。 この希土類磁性粉は、 交換相互作用を有効にすべく軟磁性相の結晶粒径サ ィズを数十 n mに調整された交換スプリング磁性粉であることがより好ましい。 また、 前記本体部 3の外周面には、 複数の磁極 (N S 2、 N2、 の 4 力 着磁形成されており、 これら磁極のうち最大磁力を有するのが主磁極 (本実施例 では、 N,極) である。 尚、 本実施例では 4極を等間隔に着磁形成したが、 本発 明では極数や極位置は何ら限定されるものではなく、 5極、 6極のように所望の 磁気特性に応じて極数や極位置を適宜設定すればよい。 Referring to the schematic cross-sectional view of FIG. 1, the magnet roller 1 according to the present invention has a main body 3 formed on the outer periphery of a shaft 2 made of SUS, an aluminum alloy, a resin, or the like. The main body 3 has a complex phase of a hard magnetic phase and a soft magnetic phase that magnetically exchange and interact with each other, and has a coercive force (iHc) of 5 KOe or less and a residual magnetic flux density (Br) of 5 KG or more. It is composed of a rare earth pound magnet formed using the rare earth magnetic powder. It is more preferable that the rare earth magnetic powder is an exchange spring magnetic powder in which the crystal grain size of the soft magnetic phase is adjusted to several tens nm in order to make the exchange interaction effective. Further, a plurality of magnetic poles (NS 2 , N 2 , four-pole magnetized) are formed on the outer peripheral surface of the main body 3, and the main magnetic pole (in this embodiment, In this example, four poles were formed at equal intervals, but the present invention does not limit the number of poles and pole positions at all. The number of poles and pole positions may be appropriately set according to the desired magnetic characteristics.
このようなマグネットロ一ラ本体部 3の磁石材料には、 前記希土類磁性粉を 5 0重量%〜9 5重量%、 樹脂バインダーを 5重量%〜 5 0重量%配合した混合物 を主体とし、 必要に応じて、 磁性粉の表面処理剤としてシラン系やチタネート系 のカツプリング剤、溶融磁石材料の流動性を良好にする滑剤としてアミド系滑剤、 樹脂バインダーの熱分解を防止する安定剤、 もしくは難燃剤などを添加したもの が好ましい。 前記希土類磁性粉の含有率が 50重量%未満では、 磁性粉不足によ りマグネットローラの磁気特性が低下して所望の磁力 (主磁極において 850 G 以上) が得られず、 またその含有率が 95重量%を超えると、 バインダー不足と なり本体部 3の成形性が損なわれる。 また、 前記樹脂バインダーとしては、 ェチ レン一ェチルァクリレート樹脂、 ポリアミド樹脂、 ポリエチレン樹脂、 ポリスチ レン樹脂、 PET (ポリエチレンテレフ夕レート) 、 PBT (ポリブチレンテレ フタレート) 、 PPS (ポリフエ二レンスルフイド) 、 EVA (エチレン一酢酸 ビニル共重合体) 、 EVOH (エチレン一ビニルアルコール共重合体) および P VC (ポリ塩化ビニル) などの中から 1種類あるいは 2種類以上、 もしくは、 ェ ポキシ樹脂、 フエノール樹脂、 尿素樹脂、 メラミン樹脂、 フラン樹脂、 不飽和ポ リエステル樹脂およびポリイミド樹脂などの熱硬化性樹脂の中から 1種類あるい は 2種類以上を混合して用いることができる。 The magnet material of the magnet roller main body 3 is mainly composed of a mixture of 50 to 95% by weight of the rare earth magnetic powder and 5 to 50% by weight of a resin binder. Depending on the silane or titanate type as a surface treatment agent for magnetic powder It is preferable to add a coupling agent described above, an amide-based lubricant as a lubricant for improving the fluidity of the molten magnet material, a stabilizer for preventing thermal decomposition of the resin binder, or a flame retardant. If the content of the rare earth magnetic powder is less than 50% by weight, the magnetic properties of the magnet roller are reduced due to insufficient magnetic powder, and a desired magnetic force (850 G or more at the main magnetic pole) cannot be obtained. If the content exceeds 95% by weight, the binder becomes insufficient and the moldability of the main body 3 is impaired. Examples of the resin binder include an ethylene-ethyl acrylate resin, a polyamide resin, a polyethylene resin, a polystyrene resin, PET (polyethylene terephthalate), PBT (polybutylene terephthalate), and PPS (polyphenylene sulfide). ), EVA (ethylene-vinyl acetate copolymer), EVOH (ethylene-vinyl alcohol copolymer), PVC (polyvinyl chloride), etc. One or more types, or epoxy resin, phenol resin One or two or more of thermosetting resins such as urea resin, melamine resin, furan resin, unsaturated polyester resin, and polyimide resin can be used.
上記希土類磁性粉としては、 硬磁性相と軟磁性相を含む、 希土類 (R) —鉄 ( Fe) 一窒素 (N) 合金または希土類 (R) —鉄 (Fe) —ホウ素 (B) 合金の 交換スプリング磁性粉が好ましく、 希土類 (R) —鉄 (Fe) —コバルト (Co ) 合金の交換スプリング磁性粉でもよい。 前記 Rとしては、 好ましくは Sm、 N d、 この他に P r, Dy, T bなどの 1種または 2種以上を組み合わせたものを 用いることができ、 また、 前記 F eの一部を置換して磁気特性を高めるために、 Co, N i , C u, Z n, Ga, Ge, A 1 , S i, S c, T i, V, C r , M n, Z r , Nb, Mo, Tc, Ru, Rh, Pd, Ag, C d, I n, Sn, S b, H f , Ta, W, Re, 〇s, I r, P t, Au, Hg, T 1 , P b, B i などの元素の 1種または 2種以上を添加してもよい。 より具体的には、 Nd— F e— B系合金 (軟磁性相: F e— B合金, aFe) 、 Sm— F e— N系合金 (軟 磁性相: ひ Fe) 、 Nd-F e -C o-Cu-Nb一 B系合金 (軟磁性相: F e _B合金, aF eなど) 、 Nd— F e— Co系合金 (軟磁性相: aFeなど) な どの交換スプリング磁性粉が好適であり、 特に、 保磁力 (iHc) を小さく且つ残 留磁束密度 (Br) を大きくする観点からは、 Nd4F e8。B2()合金 (軟磁性相: F e 3B, a F e ) や S m2F e l7N3合金 (軟磁性相: a F e ) の交換スプリング磁 性粉が好ましい。 The rare earth magnetic powder includes a rare earth (R) —iron (Fe) —nitrogen (N) alloy or a rare earth (R) —iron (Fe) —boron (B) alloy containing a hard magnetic phase and a soft magnetic phase. A spring magnetic powder is preferable, and an exchange spring magnetic powder of a rare earth (R) —iron (Fe) —cobalt (Co) alloy may be used. Preferably, R is Sm, Nd, or one or a combination of two or more of Pr, Dy, Tb, and the like. Co, Ni, Cu, Zn, Ga, Ge, A1, Si, Sc, Ti, V, Cr, Mn, Zr, Nb, Mo , Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Hf, Ta, W, Re, 〇s, Ir, Pt, Au, Hg, T1, Pb, One or more elements such as B i may be added. More specifically, Nd-Fe-B alloys (soft magnetic phase: Fe-B alloy, aFe), Sm-Fe-N alloys (soft magnetic phase: Fe), Nd-Fe- Replacement spring magnetic powders such as Co-Cu-Nb-B alloy (soft magnetic phase: Fe_B alloy, aFe), Nd—Fe—Co alloy (soft magnetic phase: aFe, etc.) are suitable. Nd 4 Fe 8 , especially from the viewpoint of reducing the coercive force (iHc) and increasing the residual magnetic flux density (Br). B 2 () alloy (Soft magnetic phase: F An exchange spring magnetic powder of e 3 B, a Fe ) or Sm 2 Fe 17 N 3 alloy (soft magnetic phase: aFe ) is preferable.
また、 前記交換スプリング磁性粉中には、 特に C oを 1〜1 6 w t %、 更には 3〜1 3 w t %添加するのが好ましい。 これにより、 当該希土類磁性粉で作製さ れたボンド磁石では、 C oの添加により磁気特性が向上するとともに、 耐食性や 耐酸化性が良好となり、 その外表面に表面被覆を施さなくとも鲭などの発生を抑 制することが可能となる。  In addition, it is particularly preferable to add Co to the exchange spring magnetic powder in an amount of 1 to 16 wt%, more preferably 3 to 13 wt%. As a result, in the bonded magnet made of the rare earth magnetic powder, the magnetic properties are improved by adding Co, and the corrosion resistance and oxidation resistance are improved. Occurrence can be suppressed.
このような交換スプリング磁性粉の製造方法には、 高速急冷法やメカニカルァ 口イング(機械的合金化) などが使用される。具体的には、 各原料元素を秤量し、 メカニカルァロイングを施して得た合金粉末に熱処理を施し、 必要に応じて窒化 処理を行う方法や、 各原料元素を秤量し、 単ロール法による高速急冷法を施して 得た非晶質または非晶質に近い微細組織を含む合金を粉砕後、 熱処理を施して結 晶を析出させ、 必要に応じて窒化処理を行う方法などが挙げられる。 急冷条件 ( ロール速度など) や粉砕条件、 熱処理条件 (処理時間、 温度) などを適宜調整す ることで、 結晶粒径が数十 nmの軟磁性相を有する交換スプリング磁性粉を作製 できる。 尚、 前記窒化処理は、 R _ F e— N系交換スプリング磁性粉を作製する 際に必要である。  As a method for producing such an exchange spring magnetic powder, a high-speed quenching method, mechanical opening (mechanical alloying), or the like is used. Specifically, each raw material element is weighed, a heat treatment is performed on the alloy powder obtained by mechanical alloying, and a nitriding treatment is performed as necessary. After pulverizing an alloy containing an amorphous or near-amorphous microstructure obtained by performing a rapid quenching method, a heat treatment is performed to precipitate crystals, and a nitriding treatment is performed as necessary. By appropriately adjusting quenching conditions (roll speed, etc.), crushing conditions, heat treatment conditions (treatment time, temperature), etc., it is possible to produce exchange spring magnetic powder having a soft magnetic phase with a crystal grain size of several tens of nm. Incidentally, the nitriding treatment is necessary when producing the R_Fe-N-based exchange spring magnetic powder.
また、本発明に係るマグネットローラおよび後述する磁石ピース ( 石片)は、 上記磁石材料を溶融混練後にペレツト化し、 このペレツ卜から押出成形法もしく は射出成形法を用いて成形される。 また上記磁石材料から圧縮成形法を用いて成 形してもよい。 マグネットローラおよび磁石ピースへの磁化は、 射出成形または 押出成形と同時に配向着磁したり、 内部歪みを除き脱型を容易にするため一旦脱 磁した後に再着磁したり、 または成形時に配向着磁せず成形後に着磁するなどし て得られる。 また、 マグネットローラの成形'組立には、 本体部および軸部を一 体成形したり、 本体部両端に軸部を取り付けたり、 円筒状の本体部軸心に軸部を 貫通配設することもできるし、 蒲鋅状ゃ扇状などの異形状に形成した磁石ピース を、 断面形状が円形、 楕円形または多角形などの軸部に貼り付けてマグネット口 ーラを構成することもできる。  The magnet roller according to the present invention and a magnet piece (stone piece) to be described later are pelletized after melting and kneading the magnet material, and are molded from the pellet by an extrusion molding method or an injection molding method. Further, the magnet material may be formed by a compression molding method. Magnetization of the magnet roller and magnet pieces can be performed at the same time as injection molding or extrusion molding. It is obtained by magnetizing after molding without magnetizing. Also, in forming and assembling the magnet roller, the main body and the shaft may be integrally formed, the shafts may be attached to both ends of the main body, or the shaft may be provided through the cylindrical body axis. Alternatively, a magnet piece formed in a different shape such as a camber or fan may be attached to a shaft having a circular, elliptical or polygonal cross section to form a magnet roller.
例えば、 図 2 (または図 3 ) の概略断面図に示すように、 マグネットローラの 本体部 5 (9) における主磁極近辺であって軸線に沿って形成した溝 6 (10) 内に、 上記希土類ポンド磁石からなる磁石片 7 (1 1) を配設することも好まし い。 これら磁石片には、 その断面形状が図 2に示すような角形状の角形ピース 7 あるいは図 3に示すような半扇形状の半扇形ピース 1 1が望ましい。 このような 形状は、 他のマグネットローラ用のピースと共通化し易く、 成形性および貼り付 け性 (接着性) を良好にするからである。 For example, as shown in the schematic sectional view of Fig. 2 (or Fig. 3), It is also preferable to dispose a magnet piece 7 (11) made of the above rare earth pound magnet in a groove 6 (10) formed along the axis near the main magnetic pole in the main body 5 (9). These magnet pieces are desirably a square piece 7 having a square sectional shape as shown in FIG. 2 or a semi-segment piece 11 having a semi-fan shape as shown in FIG. This is because such a shape is easy to be shared with other magnet roller pieces, and improves moldability and sticking property (adhesive property).
また、 主磁極を複数の磁極で構成する場合、 図 4の概略断面図に示すように、 軸部 12の外周面上に、 表面に複数の磁極 (N極, S極, N極, S極) を着磁形 成され、 扇形の断面形状を有する溝 14を備えた本体部 13を形成し、 この溝 1 4の内に、 上記希土類ポンド磁石からなり表面に S極、 N極および S極をそれぞ れ有する磁石片 15A、 158ぉょび150を、 隣接する磁石片の磁極性が互い に逆極性となるように配設し貼り合わせて、 主磁極を形成してもよい。 または、 図 5の概略断面図に示すように、軸部 16の外周面に、 表面に複数の磁極(N極, S極, N極, S極) を着磁形成された C字断面形状のフェライトポンド磁石 17 を貼着し、 このフェライトポンド磁石 17の C字の開口部 (主磁極近辺) に、 上 記希土類ボンド磁石からなり表面に S極、 N極および S極をそれぞれ有する磁石 片 18A、 18Bおよび 18Cを、 隣接する磁石片の磁極性が互いに逆極性とな るように配設し貼り合わせて、 主磁極を形成してもよい。  When the main magnetic pole is composed of a plurality of magnetic poles, a plurality of magnetic poles (N-pole, S-pole, N-pole, S-pole) are formed on the outer surface of the shaft 12 as shown in the schematic sectional view of FIG. The main body 13 is formed with a groove 14 having a sectoral cross-sectional shape, and the above-mentioned rare earth pound magnet is formed in the groove 14 to form the S pole, N pole and S pole on the surface. The main magnetic poles may be formed by arranging and adhering the magnet pieces 15A, 158, and 150 having the respective magnetic poles so that the magnetic polarities of the adjacent magnet pieces are opposite to each other. Or, as shown in the schematic cross-sectional view of FIG. A ferrite pound magnet 17 is attached, and a magnet piece 18A made of the above-mentioned rare earth bonded magnet and having S, N, and S poles on the surface in the C-shaped opening (near the main magnetic pole) of the ferrite pound magnet 17 is attached. , 18B and 18C may be arranged and bonded so that the magnetic polarities of adjacent magnet pieces are opposite to each other to form a main magnetic pole.
また、 図 6の概略断面図に示すように、 軸部 19の外周面上に、 上記希土類ボ ンド磁石からなり表面に S極、 N極、 S極をそれぞれ有する磁石ピース 21 A, 21 B, 21 Cを配設し貼り合わせて主磁極を形成し、 他の磁極を有するフェラ イトボンド磁石ピース 2 OA, 20 B, 2 OA', 20 B 'を軸部 19の外周面上 に貼り合わせて、 マグネットローラを作製してもよい。  Further, as shown in the schematic cross-sectional view of FIG. 6, magnet pieces 21 A, 21 B, which are made of the above-mentioned rare earth bonded magnet on the outer peripheral surface of the shaft portion 19 and have S, N, and S poles on the surface, respectively. A main magnetic pole is formed by disposing and bonding 21 C, and a ferrite bond magnet piece 2 OA, 20 B, 2 OA ′, 20 B ′ having another magnetic pole is bonded on the outer peripheral surface of the shaft portion 19, A magnet roller may be manufactured.
尚、 本発明では、 その磁石ピース形状を何ら制限するものではなく、 所望の磁 気特性(磁力、磁力分布波形など) に応じて適宜その形状を変えることができる。 また、 このようなマグネットローラの製造方法としては、 2基の射出成形機を用 いて、 第 1の射出成形機により本体部を成形した後、 第 2の射出成形機により溝 内に磁石片を成形するという、 いわゆる 2色成形法を採用することもできる。 こ の方法は、 製造プロセスを大幅に簡易化するのに有効である。 また、 前記磁石片の磁場配向としては、 ランダム配向、 図 2 (b) 、 図 3 (b ) の矢印に示すような直線配向、 および図 2 (c) 、 図 3 (c) の矢印に示すよ うなラジアル配向などがその代表例である。 また、 図で明示していないが、 印加 磁場の磁束密度を収束させて、 磁石片 7 (1 1) の両側面、 裏側面から表側面の 任意の箇所への配向着磁量を制御することにより、 マグネットローラの磁力分布 を制御することができる。 この制御は、 主磁極における磁力分布波形を非対称形 にするときなどに効果的である。 また、 これら異なる配向の磁石片同士を組み合 わせてマグネットローラを構成してもよく、 要求される仕様に応じてその組み合 わせを適宜選択すればよい。 In the present invention, the shape of the magnet piece is not limited at all, and the shape can be appropriately changed according to desired magnetic characteristics (magnetic force, magnetic force distribution waveform, etc.). As a method for manufacturing such a magnet roller, two injection molding machines are used, a main body is molded by a first injection molding machine, and a magnet piece is inserted into a groove by a second injection molding machine. Molding, a so-called two-color molding method, can also be adopted. This method is effective for greatly simplifying the manufacturing process. Further, as the magnetic field orientation of the magnet pieces, random orientation, linear orientation as shown by arrows in FIGS. 2 (b) and 3 (b), and arrows shown in FIGS. 2 (c) and 3 (c) Such a radial orientation is a typical example. Also, although not explicitly shown in the figure, the magnetic flux density of the applied magnetic field is converged to control the amount of orientation magnetization from any side of the magnet piece 7 (1 1), from the back side to the front side. Thereby, the magnetic force distribution of the magnet roller can be controlled. This control is effective when the magnetic force distribution waveform at the main pole is made asymmetric. Further, a magnet roller may be configured by combining magnet pieces having these different orientations, and the combination may be appropriately selected according to required specifications.
また、 本発明に係る希土類磁性粉として等方性のものを採用し、 マグネット口 ーラを成形後に着磁する場合は、 マグネットローラの所望の位置に、 所望の磁力 に着磁し易いために好ましい。 特に、 成形装置に磁気回路を構成する必要がない ことから成形用金型が低価格となり、 成形時における印加磁場によるボンド磁石 の変形も無くなることから成形後の寸法精度が高くなるので、着磁が容易になり、 極位置を高精度に定めることが可能となる。  In addition, when the isotropic rare earth magnetic powder according to the present invention is used and magnetized after molding the magnet roller, it is easy to magnetize to a desired magnetic force at a desired position of the magnet roller. preferable. In particular, since there is no need to construct a magnetic circuit in the molding apparatus, the molding die is inexpensive, and since the bonded magnet is not deformed by the applied magnetic field during molding, the dimensional accuracy after molding is increased, so the magnetizing is performed. And the pole position can be determined with high accuracy.
[実施例]  [Example]
以下、 本発明に係るより具体的な実施例と比較例について説明するが、 以下の 実施例は本発明を何ら限定するものではない。  Hereinafter, more specific examples and comparative examples according to the present invention will be described, but the following examples do not limit the present invention in any way.
以下に詳述する実施例 1〜 3および比較例 1〜4のマグネットローラは、 樹脂 バインダー (ナイロン 12) 10重量%と磁性粉 90重量%とを混合し溶融混練 して、 ペレット状に成形し、 このペレットから射出成形法を用いてローラ (直径 13. 6mm ;全長 320mm) を形成した後、 外部磁場を印加し、 図 7に示 すように 4極 (Ν,, S2, N2, S,) 着磁することにより作製された。 またこの マグネット口一ラは、 アルミニウム合金製スリーブ 12に内蔵された状態で、 そ の磁力分布を測定された。 図 7において、 N,極は主磁極、 符号 13は軸部、 1 4は本体部、 15は磁力の分布波形、 A点は主磁極における磁力分布の最高値を 示している。 The magnet rollers of Examples 1 to 3 and Comparative Examples 1 to 4 described below were mixed with 10% by weight of a resin binder (nylon 12) and 90% by weight of magnetic powder, melt-kneaded, and formed into pellets. After forming a roller (diameter: 13.6 mm; total length: 320 mm) from the pellets by injection molding, an external magnetic field was applied, and a four-pole (Ν ,, S 2 , N 2 , S,) It was produced by magnetizing. The magnetic force distribution of the magnet opening was measured while the magnet opening was housed in the aluminum alloy sleeve 12. In FIG. 7, N and pole are main magnetic poles, reference numeral 13 is a shaft portion, 14 is a main body portion, 15 is a distribution waveform of magnetic force, and point A indicates the maximum value of the magnetic force distribution at the main magnetic pole.
(実施例 1 )  (Example 1)
樹脂バインダーとしてナイロン 12と、 磁性粉として NcLF e8。B2。の交換ス プリング磁性粉 (固有保磁力 iHc: 3. OKOe, 残留磁束密度 Br: 12KG、 Co含有率: 2wt%) とを混合し混練した後にペレット化し、 射出成形により ローラを形成した後、 印加磁場の強さ 8K〇e〜l 5 KOeで着磁したマグネッ トローラである。 Nylon 12 as resin binder and NcLF e 8 as magnetic powder. B 2. Exchange Magnetic powder (intrinsic coercive force iHc: 3. OKOe, residual magnetic flux density Br: 12KG, Co content: 2wt%), kneaded, pelletized, and formed by injection molding to form a roller. It is a magnet roller magnetized at 8K〇e to 15KOe.
(実施例 2)  (Example 2)
磁性粉として Nd5F
Figure imgf000012_0001
リング磁性粉 (固有 保磁力 iHc : 4. 8 KOe、 残留磁束密度 Br: 5. 2KG、 Co含有率: 6wt %) を用いる以外は、 前記実施例 1と同様に作製したマグネットローラである。 (実施例 3)
Nd 5 F as magnetic powder
Figure imgf000012_0001
A magnet roller manufactured in the same manner as in Example 1 except that ring magnetic powder (intrinsic coercive force iHc: 4.8 KOe, residual magnetic flux density Br: 5.2 KG, Co content: 6 wt%) was used. (Example 3)
磁性粉として Sm2Fel7N3の交換スプリング磁性粉 (保磁力 iHc: 4. 0KO e、 残留磁束密度 Br : 7. 8KG、 Co含有率: lwt %) を用いる以外は、 実 施例 1と同様に作製したマグネットローラである。 Example 1 was the same as Example 1 except that Sm 2 Fe 17 N 3 exchange spring magnetic powder (coercive force iHc: 4.0 KOe, residual magnetic flux density Br: 7.8 KG, Co content: lwt%) was used as the magnetic powder. This is a magnet roller manufactured similarly.
(比較例 1 )  (Comparative Example 1)
磁性粉としてフェライト磁性粉 S r O · 6 F e203 (保磁力 iHc: 3KOe、 残留磁束密度 Br: 4. 8KG、 Co含有率: 0wt %) を用いる以外は、 実施例 1と同様に作製したマグネットローラである。 Ferrite magnetic powders S r O · 6 F e 2 0 3 as the magnetic powder (coercivity iHc: 3 kOe, the residual magnetic flux density Br: 4. 8KG, Co content: 0 wt%) except for using, as in Example 1 This is a manufactured magnet roller.
(比較例 2)  (Comparative Example 2)
磁性粉としてフェライト磁性粉 S r O · 6 F e23 (保磁力 iHc: 3K〇e、 残留磁束密度 Br : 4. 8KG、 Co含有率: 0wt %) を用い、 印加磁場の強さ を 2 OKOe〜 3 OKOeにする以外は、 実施例 1と同様に作製したマグネット ローラである。 Ferrite magnetic powders S r O · 6 F e 23 as magnetic powder (coercivity iHc: 3K_〇_E remanence Br: 4. 8KG, Co content: 0 wt%) with, the intensity of the applied magnetic field A magnet roller manufactured in the same manner as in Example 1 except that 2 OKOe to 3 OKOe were used.
(比較例 3 )  (Comparative Example 3)
磁性粉として希土類磁性粉 (Nd13.5Fel 7B4.8 ;保磁力 iHc : 14KOe、 残 留磁束密度 Br: 8. 4KG、 Co含有率: 0. 5wt %) を用いる以外は、 実施 例 1と同様に作製したマグネットロ一ラである。 Rare earth magnetic powder as a magnetic powder (Nd 13 5 Fe l 7 B 4 8; coercive force iHc:.. 14 kOe, residual magnetic flux density Br: 8. 4KG, Co content: 0. 5 wt%), except using, implementation This is a magnet roller manufactured in the same manner as in Example 1.
(比較例 4)  (Comparative Example 4)
磁性粉として希土類磁性粉 (Nd^FeuB ;保磁力 iHc: 14KOe、 残 留磁束密度 Br: 8. 4KG、 Co含有率: 0. 5wt %) を用い、 印加磁場の強 さを 20KOe〜3 OKOeにする以外は、 実施例 1と同様に作製したマグネッ 卜ローラである。 Rare earth magnetic powder (Nd ^ FeuB; coercive force iHc: 14KOe, residual magnetic flux density Br: 8.4KG, Co content: 0.5wt%) was used as the magnetic powder, and the applied magnetic field strength was 20KOe to 3OKOe. Except that the magnet was manufactured in the same manner as in Example 1. Trolla.
次に、 以下に詳述する実施例 4および比較例 5のマグネット口一ラは、 図 8に 示すように、軸部 26の外周面上に磁石ピース 29 A〜 29 C, 28 A, 28 B, 28 Α', 28 B'を貼り合わせて構成したものである (直径 φ 13. 6mm ;全 長 320mm) 。 各々の磁石ピースは、 樹脂バインダー (ナイロン 12) 10重 量%と磁性粉 90重量%とを混合し溶融混練して、 ペレット状に成形し、 このべ レツトを用いて射出成形法により当該ピース形状に成形し、 成形後に外部磁場を 印加し着磁することにより作製された。 図 8において、 S,極、 N,極、 S2極は主 磁極、 符号 26は軸部、 28A, 28B, 28 A'および 28 B'はフェライトポ ンド磁石ピース、 29 A〜 29 Cは希土類ポンド磁石ピース、 30は磁力分布波 形、 B点, C点および D点は主磁極における磁力分布の最高値を示している。 また、 図 8において、 現像剤搬送の上流側極における磁力ピーク位置 (B点) と、 現像剤搬送の下流側極における磁力ピーク位置 (D点) との極間角度 (02 ) を 60° に設定した。 尚、 B点と C点との極間角度 (θ は、 30° である。 Β点と D点との極間角度 (θ2) が 60° を越えると、 感光体と対峙する C点付 近の現像剤の穂立ちは粗となるので、 従来のマグネットローラの現像ゾーンでの 穂立ち状態と変わらず、 同時に、 磁極性の変化による現像剤の反転 (回転) がに ぶくなるので、 感光体へのトナーの供給量が減少するため高画質化が達成できな レ^ 他方、 極間角度 (02) が 30° 未満になると、 主磁極部に前記希土類ボン ド磁石ピースを用いても高磁力を得ることはできず、 高画質化を達成し難いこと を確認した。 Next, as shown in FIG. 8, the magnet apertures of Example 4 and Comparative Example 5, which will be described in detail below, are magnet pieces 29A to 29C, 28A, 28B on the outer peripheral surface of the shaft portion 26. , 28 Α ', 28 B' are bonded together (diameter φ 13.6 mm; overall length 320 mm). Each magnet piece is mixed with 10% by weight of a resin binder (nylon 12) and 90% by weight of magnetic powder, melt-kneaded and formed into pellets, and the pellets are shaped by injection molding using this belt. It was fabricated by applying an external magnetic field and magnetizing after molding. In Fig. 8, S, P, N, and S 2 poles are main poles, 26 is a shaft, 28A, 28B, 28A 'and 28B' are ferrite pole magnet pieces, and 29A to 29C are rare earth elements. The pound magnet piece, 30 indicates the magnetic force distribution waveform, and points B, C, and D indicate the highest values of the magnetic force distribution at the main pole. In FIG. 8, the angle (0 2 ) between the magnetic force peak position (point B) at the upstream side of the developer conveyance and the magnetic force peak position (point D) at the downstream side of the developer conveyance is 60 °. Set to. The angle between the points B and C (θ is 30 °. If the angle between the points Β and D (θ 2 ) exceeds 60 °, the point C is Since the brushing of the nearby developer is coarse, it does not change from the brushing state of the conventional magnet roller in the developing zone, and at the same time, the reversal (rotation) of the developer due to the change in the magnetic polarity becomes noticeable. Higher image quality cannot be achieved due to a decrease in the amount of toner supplied to the photoreceptor. On the other hand, when the gap angle (0 2 ) is less than 30 °, the rare-earth bonded magnet piece is used for the main magnetic pole. No high magnetic force could be obtained, and it was confirmed that it was difficult to achieve high image quality.
(実施例 4)  (Example 4)
主磁極となる S,極、 極および S2極を有する磁石ピース用の磁性粉として Ν d4Fe8QB2。の交換スプリング磁性粉 (固有保磁力 iHc : 3. 0K〇e、 残留磁束 密度 Br : 12KG、 Co含有率: 2wt %) を用い、 樹脂バインダーとしてナイ ロン 12を用いて、 両者を混合し混練した後にペレット化し、 このペレットを用 いて射出成形法により断面が扇形状の磁石ピースを成形し、 これら磁石ピースに 外部磁場を印加して着磁した後、 軸部 26の外周面に前記磁石ピースを貼り合わ せた。 また、 主磁極以外の磁極を構成する N2極、 S3極、 S4極および N3極を有する 磁石ピース用の磁性粉としてフェライト磁性粉 S r〇 · 6Fe203 (保磁力 iHcΝ d 4 Fe 8Q B 2 as magnetic powder for magnet pieces having S, P, P and S 2 poles as main poles. Using an exchange spring magnetic powder (intrinsic coercive force iHc: 3.0 K〇e, residual magnetic flux density Br: 12 KG, Co content: 2 wt%), both were mixed and kneaded using nylon 12 as a resin binder. The pellets are then formed into pellets, and the pellets are used to form magnet pieces having a fan-shaped cross section by an injection molding method. The magnet pieces are magnetized by applying an external magnetic field. I stuck them together. Ferrite magnetic powder S r〇6Fe 2 0 3 (coercive force iHc) is used as a magnetic powder for a magnet piece having N 2 poles, S 3 poles, S 4 poles, and N 3 poles constituting magnetic poles other than the main magnetic pole.
: 3KOe、 残留磁束密度 Br: 4. 8KG) を用い、 樹脂バインダーとしてナイ ロン 12を用いて、 両者を混合し混練した後にペレット化し、 射出成形により断 面が扇形状の磁石ピースを成形し、 成形と同時に配向着磁を行った後、 軸部 26 の外周面に前記磁石ピースを貼り合わせた。 : 3KOe, residual magnetic flux density Br: 4.8KG), using Nylon 12 as a resin binder, mixing and kneading the two, pelletizing, and forming a magnet piece with a fan-shaped cross section by injection molding. After performing orientation magnetization at the same time as molding, the magnet piece was bonded to the outer peripheral surface of the shaft portion 26.
(比較例 5)  (Comparative Example 5)
前記実施例 4において主磁極 (S,極、 N,極、 S2極) を構成する磁石ピースに 用いた交換スプリング磁性粉を、 フェライト磁性粉 S r〇, 6 Fe23 (保磁力 iHc: 3KOe、 残留磁束密度 Br: 4. 8KG、 C o含有率: 0 w t %) に変更 し、 これをナイロン 12と混合し混練した後にペレット化し、 このペレットを用 いて射出成形により断面が扇形状の磁石ピースを成形し、 成形と同時に配向着磁 を行う以外は実施例 4と同様に作製したマグネッ卜ローラである。 The main magnetic pole in the Example 4 (S, poles, N, pole, S 2-pole) the exchange spring magnetic powder used in the magnet pieces which constitute the ferrite magnetic powder S R_〇, 6 Fe 23 (coercivity iHc : 3KOe, residual magnetic flux density Br: 4.8KG, Co content: 0 wt%), mixed with nylon 12 and kneaded, pelletized, and injection molded using these pellets to form a fan-shaped cross section This is a magnet roller manufactured in the same manner as in Example 4 except that the magnet piece is formed and orientation magnetization is performed simultaneously with the forming.
以上の実施例および比較例の磁力分布は、 ガウスメータを用い、 マグネット口 ーラ表面から径方向に 1. 2mm離れた位置 (マグネットローラ中心軸から径方 向に 8. 0mm離れた位置) にプローブを配置し、 このマグネットローラを周方 向回転させて測定された。 実施例および比較例に使用した磁性粉とマグネット口 ーラの磁気特性を表 1および表 2に示し、 耐酸化性を表 3に示す。 耐酸化性につ いては、 作製したマグネットローラを空気中に 168時間放置した後、 マグネッ トローラ表面の鯖の発生の有無を目視にて確認した。 表 1および表 2における磁 気特性は、 磁性粉の 「固有保磁力 iHc」 と 「残留磁束密度 Br」 、 マグネットロー ラ 「成形後の固有保磁力 iHc」 と 「残留磁束密度 Br」 、 「主磁極への着磁磁場の 強さ」 、 および着磁後の A点〜 D点における 「主磁極の磁力」 である。 The magnetic force distributions of the above Examples and Comparative Examples were measured using a Gauss meter with a probe at a position 1.2 mm radially away from the magnet roller surface (at a position 8.0 mm radially away from the center axis of the magnet roller). The magnet roller was rotated in the circumferential direction and measured. Tables 1 and 2 show the magnetic properties of the magnetic powder and the magnet aperture used in the examples and comparative examples, and Table 3 shows the oxidation resistance. Regarding the oxidation resistance, after the produced magnet roller was left in the air for 168 hours, the presence or absence of mackerel on the surface of the magnet roller was visually checked. The magnetic properties in Tables 1 and 2 are as follows: `` intrinsic coercive force iHc '' and `` residual magnetic flux density Br '' of the magnetic powder, magnet roller `` intrinsic coercive force iHc after molding '' and `` residual magnetic flux density Br '' And the "magnetic force of the main pole" at points A to D after magnetization.
(表 1)
Figure imgf000015_0001
(table 1)
Figure imgf000015_0001
(表 2) (Table 2)
Figure imgf000015_0002
Figure imgf000015_0002
(表 3) 実施例 実施例 実施例 実施例 (Table 3) Example Example Example Example Example
1 2 3 4  1 2 3 4
鲭の発生の  発 生 outbreak
有 無し 無し 無し 無し 比較例 比較例 比較例 比較例 比較例 1 2 3 4 5 鲭の発生の し  Yes No No No No Comparative Example Comparative Example Comparative Example Comparative Example Comparative Example 1 2 3 4 5
有 to 無し 有り 有り 無し (主磁極が単極から構成される実施例 1〜 3および比較例 1〜 4の評価) 表 1に示した結果から明らかなように、 実施例 1〜 3の交換スプリング磁性粉 を用いたマグネットローラでは、 低磁場 (1 5 K〇e ) で着磁するとすベて 8 5 0 G以上の磁力が得られたのに対し、 比較例 1, 2の従来のフェライトボンド磁 石からなるマグネットローラでは、 低磁場 (1 5 K O e ) 、 高磁場 (3 0 K〇e ) の何れで着磁しても、 8 0 0 Gの磁力しか得られなかった。 また、 比較例 3 , 4の従来の希土類ボンド磁石からなるマグネットローラでは、 比較例 4のように 高磁場 (3 0 K O e ) で着磁すると 1 3 5 0 Gもの高磁力が得られるものの、 比 較例 3のように低磁場 ( 1 5 K〇 e ) で着磁すると 7 0 0 Gの磁力しか得られな かった。 従って、 本実施例のマグネットローラは、 低磁場 (1 5 K〇e以下) の 着磁で、 高磁力 (8 5 0 G以上) が得られるものであることが確認された。 また、 表 3に示した結果から明らかなように、 交換スプリング磁性粉を用いた 実施例 1〜3と、 従来のフェライト磁性粉を用いた比較例 1, 2とでは、 鯖の発 生が皆無であつたのに対し、 硬磁性相を主体とした希土類磁性粉を用いた従来の 比較例 3, 4では、 鲭の発生が確認された。 Yes to No Yes Yes Yes No (Evaluation of Examples 1 to 3 and Comparative Examples 1 to 4 in which the main magnetic pole is composed of a single pole) As is clear from the results shown in Table 1, the magnets using the exchange spring magnetic powders of Examples 1 to 3 were used. In the case of the rollers, when magnetized in a low magnetic field (15 K〇e), all magnetic forces of more than 850 G were obtained, whereas the magnet rollers made of the conventional ferrite bonded magnets of Comparative Examples 1 and 2 Then, only 800 G of magnetic force was obtained regardless of whether the magnet was magnetized in a low magnetic field (15 KO e) or a high magnetic field (30 K〇e). Also, with the magnet rollers made of the conventional rare-earth bonded magnets of Comparative Examples 3 and 4, when magnetized with a high magnetic field (30 KO e) as in Comparative Example 4, a high magnetic force of 135 G can be obtained. When magnetized in a low magnetic field (15 K〇e) as in Comparative Example 3, only a magnetic force of 700 G was obtained. Therefore, it was confirmed that the magnet roller of the present example can provide a high magnetic force (850 G or more) with a low magnetic field (15 K〇e or less). Further, as is clear from the results shown in Table 3, there was no occurrence of mackerel in Examples 1 to 3 using the exchange spring magnetic powder and Comparative Examples 1 and 2 using the conventional ferrite magnetic powder. On the other hand, in Comparative Examples 3 and 4 using rare earth magnetic powder mainly composed of a hard magnetic phase, generation of 鲭 was confirmed.
(主磁極が 3極から構成される実施例 4および比較例 5の評価) (Evaluation of Example 4 and Comparative Example 5 in which the main magnetic pole is composed of three poles)
表 2に示した結果から明らかなように、 実施例 4では主磁極を構成する 3極の 磁力はともに 8 0 0 G以上であつたのに対し、 比較例 5では主磁極を構成する 3 極の磁力はともに 6 0 0 G以下でしかなかった。 従って、 実施例 4のマグネット ローラは、 主磁極付近 6 0 ° の範囲内に 3つの磁極を配設しても、 現像するの に十分な高磁力 (8 0 0 G以上) が得られ、 且つ C点付近の現像剤の穂立ちが密 となることが確認できた。  As is evident from the results shown in Table 2, the magnetic force of the three poles constituting the main pole in Example 4 was 800 G or more, whereas the three poles constituting the main pole were in Comparative Example 5. Had a magnetic force of less than 600 G. Therefore, the magnet roller of Example 4 can obtain a high magnetic force (800 G or more) sufficient for developing even if three magnetic poles are arranged within a range of 60 ° around the main magnetic pole, and It was confirmed that the developer was close to the point near point C.
また、 表 3によれば、 交換スプリング磁性粉を用いた実施例 4と、 従来のフエ ライト磁性粉を用いた比較例 5とでは、 鯖の発生が皆無であった。 産業上の利用可能性  Further, according to Table 3, there was no occurrence of mackerel in Example 4 using the exchange spring magnetic powder and Comparative Example 5 using the conventional ferrite magnetic powder. Industrial applicability
本発明のマグネットローラによれば、 その本体部に、 磁気的に交換相互作用す る硬磁性相と軟磁性相との複相を有し且つ 5 K O e以下の保磁力 (iHc) および 5 K G以上の残留磁束密度を有する希土類磁性粉を用いた希土類ボンド磁石を用 いているので、 軟磁性相の低保磁力と一般的に硬磁性相より高い磁化とを利用で きるため、 低磁場で着磁しても高磁力が得られる。 特に、 主磁極が単一極から構 成される場合、 8 KO e〜 1 5 KO eの低磁場で着磁しても、 8 5 0 G以上の高 磁力を得ることができ、 また、 主磁極が複数極から構成される場合でも、 8 0 0 G以上の高磁力を得ることができるため、 現像効率の高いマグネットローラを得 ることが可能である。 このように主磁極を低磁場で着磁形成できることから、 着 磁装置の大型化と大電力化を避けることができ、 製作コストを低く抑えつつも、 優れた磁気特性を備えたマグネットローラを得ることが可能となる。 According to the magnet roller of the present invention, the main body has a multiple phase of a hard magnetic phase and a soft magnetic phase that magnetically exchange and interact with each other, and has a coercive force (iHc) of 5 KOe or less and Since a rare-earth bonded magnet using a rare-earth magnetic powder having a residual magnetic flux density of 5 KG or more is used, the low coercive force of the soft magnetic phase and the magnetization higher than that of the hard magnetic phase can be used. High magnetic force can be obtained even when magnetized. In particular, when the main magnetic pole is composed of a single pole, even if it is magnetized in a low magnetic field of 8 KOe to 15 KOe, a high magnetic force of 850 G or more can be obtained. Even when the magnetic pole is composed of a plurality of poles, a high magnetic force of 800 G or more can be obtained, so that a magnet roller with high development efficiency can be obtained. Since the main magnetic pole can be magnetized in a low magnetic field in this way, it is possible to avoid an increase in the size and power of the magnetizing device, and to obtain a magnet roller with excellent magnetic properties while keeping manufacturing costs low. It becomes possible.
また、 前記希土類磁性粉中にコバルトを 1〜1 6 w t %添加することにより、 メツキなどの表面被覆を必要とせず、 耐食性や耐酸化性が良好なマグネットロー ラが得られるため、 その結果マグネットローラは長期にわたり安定した磁気特性 を得ることが可能となる。  Also, by adding 1 to 16 wt% of cobalt to the rare earth magnetic powder, a magnet roller having good corrosion resistance and oxidation resistance can be obtained without requiring surface coating such as plating, and as a result, the magnet Rollers can obtain stable magnetic properties over a long period of time.
更に、 主磁極を複数の磁極によって構成するとともに、 該主磁極を構成する複 数の磁極のうち隣接し合う磁極の極性を相互に逆極性に設定することにより、 使 用時の主磁極近辺における現像剤の穂立ちを密とでき、 また、 現像ゾーンにおけ る磁極性の変化による現像剤の反転 (回転) が活発になるので、 感光体への現像 剤の供給効率が高まり、 高画質化が可能となる。  Further, by configuring the main magnetic pole by a plurality of magnetic poles and setting the polarities of the adjacent magnetic poles of the plurality of magnetic poles constituting the main magnetic pole to be opposite to each other, the vicinity of the main magnetic pole in use is reduced. The developer can be made denser, and the reversal (rotation) of the developer due to the change in magnetic polarity in the development zone becomes more active, so that the efficiency of supplying the developer to the photoreceptor is increased and the image quality is improved. Becomes possible.

Claims

請 求 の 範 囲 The scope of the claims
1 . 本体部と、 この本体部の両端を支持する軸部とからなり、 前記本体部の外 周面に周方向に亘る複数の磁極を着磁形成したマグネットロ一ラにおいて、 前記 本体部の全部もしくはその一部が、 磁気的に交換相互作用する硬磁性相と軟磁性 相との複相を有し且つ 5 K O e以下の保磁力 (iHc) および 5 K G以上の残留磁 束密度を有する希土類磁性粉と樹脂バインダ一とを用いた希土類ボンド磁石から なることを特徴とするマグネットローラ。  1. A magnet roller comprising a main body, and a shaft supporting both ends of the main body, wherein a plurality of magnetic poles are formed on an outer peripheral surface of the main body in a circumferential direction. All or a part of it has a magnetic and exchange interaction of a hard magnetic phase and a soft magnetic phase, and has a coercive force (iHc) of 5 KOe or less and a residual magnetic flux density of 5 KG or more. A magnet roller comprising a rare earth bonded magnet using a rare earth magnetic powder and a resin binder.
2 . 前記希土類磁性粉が交換スプリング磁性粉からなる請求項 1記載のマグ ネッ卜ローラ。  2. The magnet roller according to claim 1, wherein the rare earth magnetic powder is made of exchange spring magnetic powder.
3 . 硬磁性相として希土類一鉄一ホウ素化合物相、 軟磁性相として鉄相また は鉄一ホウ素化合物相を用いた請求項 1または 2記載のマグネットローラ。  3. The magnet roller according to claim 1, wherein a rare-earth iron-boron compound phase is used as the hard magnetic phase, and an iron phase or iron-boron compound phase is used as the soft magnetic phase.
4. 硬磁性相として希土類一鉄一窒素化合物相、 軟磁性相として鉄相を用い た請求項 1または 2記載のマグネットローラ。  4. The magnet roller according to claim 1, wherein a rare-earth iron-nitrogen compound phase is used as a hard magnetic phase and an iron phase is used as a soft magnetic phase.
5 . 前記希土類磁性粉中にコバルトが 1〜 1 6 w t %添加されてなる請求項 1〜4の何れか 1項に記載のマグネットローラ。  5. The magnet roller according to any one of claims 1 to 4, wherein cobalt is added to the rare earth magnetic powder in an amount of 1 to 16 wt%.
6 . 主磁極を複数の磁極によって構成するとともに、 該主磁極を構成する複 数の磁極のうち隣接し合う磁極の極性を相互に逆極性に設定してなる請求項 1〜 5の何れか 1項に記載のマグネットローラ。  6. The main magnetic pole is constituted by a plurality of magnetic poles, and the polarities of adjacent magnetic poles among a plurality of magnetic poles constituting the main magnetic pole are set to mutually opposite polarities. The magnet roller according to the item.
7 . 前記本体部外周面の主磁極近辺であって、 軸線に沿って形成した溝内に 前記希土類ボンド磁石からなる磁石片を配設してなる請求項 1〜 6の何れか 1項 に記載のマグネットローラ。  7. The magnet piece made of the rare earth bonded magnet is disposed in a groove formed along an axis near the main magnetic pole on the outer peripheral surface of the main body. Magnet roller.
8 . 前記軸部の外周面に前記希土類ボンド磁石を含む複数の磁石片を貼着し てなる請求項 1〜 6の何れか 1項に記載のマグネットロ一ラ。  8. The magnet roller according to any one of claims 1 to 6, wherein a plurality of magnet pieces including the rare earth bonded magnet are attached to an outer peripheral surface of the shaft portion.
PCT/JP2000/005939 2000-01-06 2000-09-01 Magnet roller WO2001052278A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00956861A EP1253604A4 (en) 2000-01-06 2000-09-01 Magnet roller
US10/169,626 US6703915B1 (en) 2000-09-01 2000-09-01 Magnet roller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000000960A JP2000323322A (en) 1999-03-05 2000-01-06 Magnet roller
JP2000-000960 2000-01-06

Publications (1)

Publication Number Publication Date
WO2001052278A1 true WO2001052278A1 (en) 2001-07-19

Family

ID=18530226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005939 WO2001052278A1 (en) 2000-01-06 2000-09-01 Magnet roller

Country Status (2)

Country Link
EP (1) EP1253604A4 (en)
WO (1) WO2001052278A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736282A (en) * 1993-07-23 1995-02-07 Hitachi Metals Ltd Magnet roll
JPH1041128A (en) * 1996-07-19 1998-02-13 Bridgestone Corp Magnet roller and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003808A (en) * 1997-12-02 2000-01-07 Alps Electric Co Ltd Hard magnetic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736282A (en) * 1993-07-23 1995-02-07 Hitachi Metals Ltd Magnet roll
JPH1041128A (en) * 1996-07-19 1998-02-13 Bridgestone Corp Magnet roller and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1253604A4 *

Also Published As

Publication number Publication date
EP1253604A1 (en) 2002-10-30
EP1253604A4 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
JP2000323322A (en) Magnet roller
JP3828369B2 (en) Magnet roller
US6762665B1 (en) Magnet roller
JP3799994B2 (en) Magnet roller
WO2001052278A1 (en) Magnet roller
JP4032706B2 (en) Magnet roller manufacturing method and magnet roller manufactured by the manufacturing method
US6703915B1 (en) Magnet roller
JP2007027220A (en) Resin magnet compact, manufacturing method thereof, and magnetizing yoke
JP2004087644A (en) Magnet roller
JP2003086421A (en) Magnet roller
JP3564374B2 (en) Magnet roller
JP2000298400A (en) Magnet roller
JP2005300935A (en) Magnet roller or its manufacturing method
JP2000068120A (en) Magnet roller
JP2000331823A (en) Magnet roller
JP2001274015A (en) Magnet roller
JP2004327871A (en) Magnet roller
JP2003217924A (en) Magnet roller
JP2000305358A (en) Magnet roller
JP2005317845A (en) Anisotropic bond magnet and its manufacturing method
JP2003015424A (en) Magnetic roll
JP2001311423A (en) Magnet roller
JP2006108330A (en) Method for manufacturing magnet piece
JP2001143923A (en) Method for manufacturing magnet roller and method for manufacturing magnet piece
JP2001291628A (en) Magnet roller and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10169626

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000956861

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000956861

Country of ref document: EP