WO2001052245A1 - Tete magnetique d'ecriture multipistes a haute densite - Google Patents

Tete magnetique d'ecriture multipistes a haute densite Download PDF

Info

Publication number
WO2001052245A1
WO2001052245A1 PCT/FR2001/000086 FR0100086W WO0152245A1 WO 2001052245 A1 WO2001052245 A1 WO 2001052245A1 FR 0100086 W FR0100086 W FR 0100086W WO 0152245 A1 WO0152245 A1 WO 0152245A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
air gap
circuit
magnetic circuit
head
Prior art date
Application number
PCT/FR2001/000086
Other languages
English (en)
Inventor
Michel Surugue
Original Assignee
Thomson-Csf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson-Csf filed Critical Thomson-Csf
Priority to AU31880/01A priority Critical patent/AU3188001A/en
Publication of WO2001052245A1 publication Critical patent/WO2001052245A1/fr

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/29Structure or manufacture of unitary devices formed of plural heads for more than one track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/1871Shaping or contouring of the transducing or guiding surface

Definitions

  • the present invention relates to a high density multitrack writing magnetic head.
  • Magnetic tape recording devices in particular digital recording, allow multiple tracks to be recorded simultaneously.
  • These devices include a magnetic multitrack recording head comprising several elementary heads formed on a common substrate.
  • Each of these elementary heads essentially consists of a magnetic circuit and an electric circuit for controlling the magnetic circuit.
  • the latter is generally presented as a simple loop of magnetic material (in Sendust for example) in which is formed a narrow opening representing the air gap of the magnetic circuit.
  • This air gap formed on the part of the magnetic circuit intended to be in contact with the magnetic strip, produces when a current flows through the electrical circuit associated with the magnetic circuit, a leakage field locally modifying the magnetization of the magnetic strip and therefore allowing write information on the magnetic tape.
  • the magnetic circuit must generate a leakage field, at the air gap, greater than the coercive field of the magnetic strip.
  • the geometrical characteristics of such an air gap are such that the width of the track it records is around ten microns and that the crosstalk between neighboring tracks can be significant.
  • the characteristics of the recorded tracks are directly linked to the magnetic field emerging from the air gap.
  • the bandwidth constraints of the signal to be recorded and the technological constraints of manufacturing the magnetic heads impose an air gap width which does not make it possible to obtain an optimal spatial distribution of the intensity of the magnetic leakage field with an air gap of known geometry .
  • This leakage field is too spread out in the direction parallel to the direction of travel of the magnetic tape, which does not allow good resolution of the recorded signal to be obtained. It is difficult to record signals with a width of less than 0.3 ⁇ m. In such conditions, the recorded signals have a signal-to-noise ratio just enough to be used by the signal processing chain connected to the read head of the tape thus recorded, which allows no adjustment and leaves no margin for safety. On the other hand, the efficiency of such an air gap does not allow writing taking advantage of the entire useful thickness of the magnetic strip and thus generates a loss of signal in reading.
  • the present invention relates to a magnetic multitrack writing head requiring, for writing, only the smallest possible current to saturate its magnetic circuit, the width of the written tracks being the smallest possible, the density of these tracks (i.e. their maximum possible number for a given bandwidth) being the highest possible, with the lowest possible crosstalk, the signal / noise ratio of the signals recorded by this head being the highest possible and the writing depth is as high as possible.
  • the magnetic head according to the invention comprising several elementary heads is characterized in that the magnetic circuit of each elementary head has, in the area of the air gap, a change in section relative to that of the adjacent circuit parts.
  • the section in the area of the air gap is smaller than that of the adjacent circuit parts, the reduction in section bearing on the face opposite to that in contact with the magnetic support to be recorded.
  • the magnetic circuit comprises, on its face opposite the magnetic support, a protuberance on each side of the air gap.
  • the magnetic circuit comprises, on its face opposite the magnetic support, a protuberance on each side of the air gap, and a reduction in section bearing on the opposite face, in the same zone.
  • Figures 1 and 2 are respectively a simplified side view of a magnetic circuit of an elementary head forming part of a multitrack head of the prior art, and a diagram evolution of the intensity of the magnetic field of its air gap, and
  • Figures 3 and 4, 5 and 6, 7 and 8 are each time simplified side views of three embodiments of a magnetic circuit of an elementary head forming part of a magnetic recording head conforming to the invention, and the corresponding diagram of the evolution of the intensity of the magnetic field of its air gap.
  • FIG. 1 shows in a simplified manner only the magnetic circuit 1, produced for example in Sendust, of an elementary magnetic head forming part of a known multitrack magnetic head.
  • This magnetic circuit 1 has a substantially constant rectangular section all along the circuit.
  • This circuit 1 forms a rectangular loop interrupted in one place by an opening 2 of small width constituting the air gap of the magnetic circuit 1.
  • the part 3 of the magnetic circuit comprising the opening 2 has a flat external face on which the magnetic support passes. to be recorded, which is generally, but not exclusively, a magnetic tape 4 written by the multitrack magnetic head.
  • FIG. 2 shows the typical shape of the change in the intensity of the magnetic field along the air gap 2 (in the direction of travel of the strip 4). It can be seen that near the air gap, the magnetic field decreases only very slowly as a function of the distance from the air gap, which causes the drawbacks mentioned above.
  • the magnetic circuit 5 shown in FIG. 3 differs from circuit 1 by the conformation of zone 6 of length L1 surrounding its air gap 7.
  • the thickness E1 of the magnetic circuit is less than the thickness E2 of the surrounding parts 8 of branch 9 of circuit 5 comprising air gap 7, this by means of a countersink 6A formed on the internal face of branch 9, in zone 6.
  • the rest of the magnetic circuit 5 can be the same as that of the circuit 1.
  • the branches perpendicular to the branch 9 are referenced 10 and 11, and the branch closing the circuit and perpendicular to the branches 10 and 11 is referenced 12.
  • the width of the air gap 7 is a few tenths of a micron (0.3 ⁇ m for example)
  • the length L1 of the zone 6 is from a few microns to a few tens of microns (10 ⁇ m for example)
  • the thicknesses E1 and E2 are a few microns, the thickness E1 being less than that of E2 by approximately 1 or 2 microns (for example E1 and E2 have respectively values of 2.5 ⁇ m and 3.5 ⁇ m).
  • the length L2 of the branches 10 and 11 is a few microns (for example 4 ⁇ m)
  • the thickness E3 of the branch 12 is a few microns (for example 1 ⁇ m)
  • its overall length L3 is a few tens of microns ( for example 50 ⁇ m).
  • the structure of the head in FIG. 3 clearly improves the efficiency of the air gap of the head, as can be seen from the diagram in FIG. 4. It makes it possible to write on a magnetic strip with a current d intensity lower than that which would be applied to the structure of FIG. 1.
  • This reduction in energy, applied to all the elementary heads of a multitrack head comprising a large number of such elementary heads (for example several hundred) allows to size the control circuits ("drivers") of the head for lower powers.
  • Such weaker control circuits make it possible to reduce the nominal power of the stabilized supply supplying the head and all the corresponding circuits.
  • the reduction in power consumption leads to a reduction in the heat dissipation of all of these circuits. All these repercussions have favorable consequences on the operating cost of the writing system (cost of the consumption of electrical energy).
  • the elementary magnetic head 13 of FIG. 5 is similar to the head 1 of FIG. 1, with the difference that one forms on the external face (that facing the magnetic strip) of each end of the branch 17 of the magnetic circuit leading to the air gap 14 a protuberance, 15, 16 respectively.
  • These protrusions are formed from the same material as the magnetic circuit.
  • the parts 17 of said outer faces of the strip 17 not having the protrusions 15 are deposited, 16 a dielectric or at least non-magnetic coating 18, 19 respectively, having the same thickness as these protuberances.
  • the thickness of the protrusions 15 and 16 is 0.5 ⁇ m and their length L4 is 5 ⁇ m.
  • the other main dimensions of the magnetic circuit E2, E3, L2, L3 are the same as for the circuit 5 in FIG. 3.
  • the air gap 14 also has a width of 0.3 ⁇ m.
  • the maximum amplitude of the magnetic field is substantially the same as in the case of FIG. 2 , but this field remains constant for the entire width of the air gap, and decreases very quickly immediately after the limits of this air gap.
  • the embodiment of FIG. 7 combines the characteristics of the embodiments of FIGS. 3 and 5, namely the reduction in thickness of the magnetic circuit around the air gap 21 and the formation of protrusions 22, 23 on the outer face of each end of the magnetic circuit bordering the air gap 21 and forming part of the branch 24 (that facing the magnetic strip to be written and comprising the air gap).
  • the reduction in thickness of the magnetic circuit is carried out in the same way as in the case of FIG. 3 (counterbore 24A), and the protrusions 22, 23 are formed in the same way as in the case of FIG. 5.
  • a layer of non-magnetic material, for example dielectric, for example 25, 26, of the same thickness as these protrusions, is deposited on either side of the protrusions 22, 23 , in the same way as in the case of FIG. 5.
  • the thickness of the protrusions 22, 23 and of the layers 25, 26 is a few tens of microns (for example 0.5 ⁇ m and the width of the air gap is also a few tens of microns (for example 0.3 ⁇ m).
  • dielectric material is deposited between the elementary heads of the same multi-track head, so that the latter has a very flat surface in contact with the tape to be recorded, so as to increase their contact surface to limit wear. magnetic poles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

La tête magnétique de l'invention comporte plusieurs têtes élémentaires, dont le circuit magnétique, en forme de boucle rectangulaire, présente, dans la zone entourant l'entrefer (7) une réduction de section (6A) sur sa face interne. Il en résulte une concentration élevée du champ magnétique au niveau de l'entrefer.

Description

TETE MAGNETIQUE D'ECRITURE MULTIPISTES A HAUTE DENSITE
La présente invention se rapporte à une tête magnétique d'écriture multipistes à haute densité.
Les appareils actuels d'enregistrement sur bande magnétique, en particulier d'enregistrement numérique, permettent d'enregistrer simultanément plusieurs pistes. Ces appareils comportent une tête magnétique d'enregistrement multipistes comprenant plusieurs têtes élémentaires formées sur un substrat commun. Chacune de ces têtes élémentaires se compose essentiellement d'un circuit magnétique et d'un circuit électrique de commande du circuit magnétique. Ce dernier se présente généralement comme une simple boucle de matériau magnétique (en Sendust par exemple) dans laquelle est formée une étroite ouverture représentant l'entrefer du circuit magnétique. Cet entrefer, formé sur la partie du circuit magnétique destinée à être en contact avec la bande magnétique, produit lorsqu'un courant parcourt le circuit électrique associé au circuit magnétique, un champ de fuite modifiant localement l'aimantation de la bande magnétique et permettant donc d'écrire des informations sur la bande magnétique. Cette écriture n'est possible que si l'intensité du courant est suffisamment élevée pour saturer le matériau constituant le circuit magnétique. Ce courant est généralement très élevé. Le circuit magnétique doit générer un champ de fuite, au niveau de l'entrefer, supérieur au champ coercitif de la bande magnétique. Les caractéristiques géométriques d'un tel entrefer sont telles que la largeur de la piste qu'il enregistre est d'une dizaine de microns et que la diaphonie entre pistes voisines peut être importante. Les caractéristiques des pistes enregistrées sont directement liées au champ magnétique sortant de l'entrefer. Les contraintes de bande passante du signal à enregistrer et les contraintes technologiques de fabrication des têtes magnétiques imposent une largeur d'entrefer qui ne permet pas d'obtenir une répartition spatiale optimale de l'intensité du champ de fuite magnétique avec un entrefer de géométrie connue. Ce champ de fuite est trop étalé dans la direction parallèle à la direction de défilement de la bande magnétique, ce qui ne permet pas d'obtenir une bonne résolution du signal enregistré. Il est difficile d'enregistrer des signaux de largeur inférieure à 0,3 μm. Dans de telles conditions, les signaux enregistrés présentent un rapport signal/bruit juste suffisant pour pouvoir être utilisé par la chaîne de traitement de signal reliée à la tête de lecture de la bande ainsi enregistrée, ce qui ne permet aucun réglage et ne laisse aucune marge de sécurité. D'autre part, l'efficacité d'un tel entrefer ne permet pas une écriture profitant de toute l'épaisseur utile de la bande magnétique et génère ainsi une perte de signal en lecture.
La présente invention a pour objet une tête magnétique d'écriture multipistes ne nécessitant, pour l'écriture, qu'un courant le plus faible possible pour saturer son circuit magnétique, la largeur des pistes écrites étant la plus faible possible, la densité de ces pistes (c'est-à-dire leur nombre maximum possible pour une largeur de bande donnée) étant la plus élevée possible, avec une diaphonie la plus faible possible, le rapport signal/bruit des signaux enregistrés par cette tête étant le plus fort possible et la profondeur d'écriture étant la plus élevée possible.
La tête magnétique conforme à l'invention, comportant plusieurs têtes élémentaires est caractérisée en ce que le circuit magnétique de chaque tête élémentaire présente, dans la zone de l'entrefer, une modification de section par rapport à celle des parties de circuit adjacentes.
Selon un premier mode de réalisation, la section dans la zone de l'entrefer est plus faible que celle des parties de circuit adjacentes, la diminution de section portant sur la face opposée à celle en contact avec le support magnétique à enregistrer.
Selon un deuxième mode de réalisation, le circuit magnétique comporte, sur sa face en vis-à-vis du support magnétique, une protubérance de chaque côté de l'entrefer. Selon un troisième mode de réalisation, le circuit magnétique comporte, sur sa face en vis-à-vis du support magnétique une protubérance de chaque côté de l'entrefer, et une diminution de section portant sur la face opposée, dans la même zone.
La présente invention sera mieux comprise à la lecture de la description détaillée de plusieurs modes de réalisation, pris à titre d'exemples non limitatifs et illustrés par le dessin annexé, sur lequel :
• les figures 1 et 2 sont respectivement une vue de côté simplifiée d'un circuit magnétique d'une tête élémentaire faisant partie d'une tête multipistes de l'art antérieur, et un diagramme d'évolution de l'intensité du champ magnétique de son entrefer, et
• les figures 3 et 4, 5 et 6, 7 et 8, sont à chaque fois des vues de côté simplifiées de trois modes de réalisation d'un circuit magnétique d'une tête élémentaire faisant partie d'une tête magnétique d'enregistrement conforme à l'invention, et le diagramme correspondant de l'évolution de l'intensité du champ magnétique de son entrefer.
On n'a représenté, en figure 1 , de façon simplifiée, que le circuit magnétique 1 , réalisé par exemple en Sendust, d'une tête magnétique élémentaire faisant partie d'une tête magnétique multipistes connue. Sur cette figure, comme sur les figures 3, 5 et 7, les proportions réelles n'ont pas été respectées, pour la clarté du dessin. Ce circuit magnétique 1 a une section rectangulaire sensiblement constante tout le long du circuit. Ce circuit 1 forme une boucle rectangulaire interrompue en un seul endroit par une ouverture 2 de faible largeur constituant l'entrefer du circuit magnétique 1. La partie 3 de circuit magnétique comportant l'ouverture 2 a une face externe plane sur laquelle défile le support magnétique à enregistrer, qui est généralement, mais non exclusivement, une bande magnétique 4 écrite par la tête magnétique multipistes.
On a représenté sur le diagramme de la figure 2 l'allure typique de l'évolution de l'intensité du champ magnétique le long de l'entrefer 2 (dans la direction de défilement de la bande 4). On constate qu'à proximité de l'entrefer, le champ magnétique ne décroît que très lentement en fonction de l'éloignement par rapport à l'entrefer, ce qui entraîne les inconvénients cités ci-dessus.
Le circuit magnétique 5 représenté en figure 3 diffère du circuit 1 par la conformation de la zone 6 de longueur L1 entourant son entrefer 7. Dans cette zone 6, l'épaisseur E1 du circuit magnétique est inférieure à l'épaisseur E2 des parties environnantes 8 de la branche 9 du circuit 5 comportant l'entrefer 7, ceci grâce à un lamage 6A formé sur la face interne de la branche 9, dans la zone 6.
Le reste du circuit magnétique 5 peut être le même que celui du circuit 1. Les branches perpendiculaires à la branche 9 sont référencées 10 et 11 , et la branche refermant le circuit et perpendiculaire aux branches 10 et 11 est référencée 12.
Selon un exemple de réalisation, la largeur de l'entrefer 7 est de quelques dixièmes de microns (0,3 μm par exemple), la longueur L1 de la zone 6 est de quelques microns à quelques dizaines de microns (10 μm par exemple), les épaisseurs E1 et E2 sont de quelques microns, l'épaisseur E1 étant inférieure à celle de E2 d'environ 1 ou 2 microns (par exemple E1 et E2 ont pour valeurs respectivement de 2,5 μm et 3,5 μm). La longueur L2 des branches 10 et 11 est de quelques microns (par exemple 4 μm), l'épaisseur E3 de la branche 12 est de quelques microns (par exemple 1 μm) et sa longueur hors tout L3 est de quelques dizaines de microns (par exemple 50 μm).
La structure de la tête de la figure 3 améliore nettement l'efficacité de l'entrefer de la tête, comme on le voit, d'après le diagramme de la figure 4. Elle permet d'écrire sur une bande magnétique avec un courant d'intensité plus faible que celui qui serait appliqué à la structure de la figure 1. Cette réduction d'énergie, appliquée à l'ensemble des têtes élémentaires d'une tête multipistes comportant un grand nombre de telles têtes élémentaires (par exemple plusieurs centaines), permet de dimensionner les circuits de commande (« drivers ») de la tête pour de plus faibles puissances. De tels circuits de commande plus faibles permettent de réduire la puissance nominale de l'alimentation stabilisée alimentant la tête et tous les circuits correspondants. La réduction de la puissance consommée entraîne une réduction de la dissipation thermique de l'ensemble de ces circuits. Toutes ces répercussions ont des conséquences favorables sur le coût de fonctionnement du système d'écriture (coût de la consommation en énergie électrique).
La tête magnétique élémentaire 13 de la figure 5 est semblable à la tête 1 de la figure 1 , à la différence que l'on forme sur la face extérieure (celle en vis-à-vis de la bande magnétique) de chaque extrémité de la branche 17 du circuit magnétique aboutissant à l'entrefer 14 une protubérance, 15, 16 respectivement. Ces protubérances sont formées dans le même matériau que le circuit magnétique. Pour obtenir une surface plane en contact avec la bande magnétique, on dépose, sur les parties desdites faces extérieures de la bande 17 ne comportant pas les protubérances 15, 16 un revêtement diélectrique ou pour le moins non magnétique 18, 19 respectivement, ayant la même épaisseur que ces protubérances.
Selon un exemple de réalisation, l'épaisseur des protubérances 15 et 16 est de 0,5 μm et leur longueur L4 est de 5 μm. Les autres dimensions principales du circuit magnétique E2, E3, L2, L3 sont les mêmes que pour le circuit 5 de la figure 3. L'entrefer 14 a également une largeur de 0,3 μm.
Comme on le voit d'après le diagramme de la figure 6 (tracé à I même échelle que les diagrammes des figures 2, 4 et 8), l'amplitude maximale du champ magnétique est sensiblement la même que dans le cas de la figure 2, mais ce champ reste constant pour toute la largeur de l'entrefer, et décroît très fortement tout de suite après les limites de cet entrefer.
Le mode de réalisation de la figure 7 combine les caractéristiques des modes de réalisation des figures 3 et 5, à savoir la diminution d'épaisseur du circuit magnétique autour de l'entrefer 21 et la formation de protubérances 22, 23 sur la face extérieure de chaque extrémité du circuit magnétique bordant l'entrefer 21 et faisant partie de la branche 24 (celle en vis-à-vis de la bande magnétique à écrire et comportant l'entrefer). La diminution d'épaisseur du circuit magnétique est réalisée de la même façon que dans le cas de la figure 3 (lamage 24A), et les protubérances 22, 23 sont formées de la même façon que dans le cas de la figure 5. Pour obtenir une surface plane sur la face extérieure de la branche 24, on dépose de part et d'autre des protubérances 22, 23 une couche de matériau non magnétique, diélectrique par exemple, respectivement 25, 26, de même épaisseur que ces protubérances, et ce, de la même façon que dans le cas de la figure 5.
Selon un exemple de réalisation, les dimensions L1 à L4 et E2, E3, qui sont définies de la même façon qu'en figures 3 et 5 ont par exemple les valeurs suivantes : L1 = 10 μm, L2 = 4 μm, L3 = 50 μm, L4 = 5 μm, E2 = 3,5 μm, E3 = 1 μm. L'épaisseur des protubérances 22, 23 et des couches 25, 26 est de quelques dizaines de microns (par exemple 0,5 μm et la largeur de l'entrefer est également de quelques dizaines de microns (par exemple 0,3 μm).
Grâce à cette combinaison de caractéristiques, on obtient (voir figure 8) au droit de l'entrefer, un champ magnétique d'amplitude maximale sensiblement égale à celle du circuit de la figure 3, mais contrairement à ce dernier, l'amplitude est presque constante sur toute la largeur de l'entrefer, et, de plus, elle décroît très fortement en dehors des limites de l'entrefer comme dans le cas du circuit de la figure 5. On combine ainsi les avantages respectifs des circuits des figures 3 et 5. En particulier, on améliore le rapport signal/bruit (de l'ordre de 22 dB), on réduit la diaphonie, et on obtient, pour l'enregistrement numérique, des bits de largeur inférieure à 0,3 μm.
Bien entendu, on dépose avantageusement du matériau diélectrique entre les têtes élémentaires d'une même tête multipistes, afin que cette dernière présente une surface bien plane en contact avec la bande à enregistrer, de manière à augmenter leur surface de contact pour limiter l'usure des pôles magnétiques.

Claims

REVENDICATIONS
1. Tête magnétique d'écriture multipistes à haute densité, comportant plusieurs têtes élémentaires (5, 13, 20), caractérisée par le fait que le circuit magnétique de chaque tête élémentaire présente, dans la zone de l'entrefer (7, 14, 21 ) une modification de section (7, 15-16, 22-23, 24A) par rapport à celle des parties de circuit adjacentes.
2. Tête magnétique selon la revendication 1 , caractérisée par le fait que la modification de section est une diminution d'épaisseur du circuit magnétique (E2/E1 ) dans la zone de l'entrefer (7, 24A).
3. Tête magnétique selon la revendication 1 ou 2, caractérisée par le fait que la modification de section est constituée par des protubérances
(15-16, 22, 23) formées sur la face externe des extrémités du circuit magnétique, en bordure de l'entrefer (14, 21 ), la face externe étant celle en vis-à-vis du média à enregistrer.
4. Tête magnétique selon la revendication 3, caractérisée par le fait que la partie de la face externe du circuit magnétique ne comportant pas les protubérances est recouverte d'une couche non magnétique (18, 19 - 25, 26) de même épaisseur que celle des protubérances.
5. Tête magnétique selon l'une des revendications précédentes, caractérisée par le fait que les espaces entre têtes élémentaires d'une même tête multipistes sont recouverts d'une couche non magnétique, de façon à présenter une surface plane en contact avec le média à enregistrer.
PCT/FR2001/000086 2000-01-14 2001-01-11 Tete magnetique d'ecriture multipistes a haute densite WO2001052245A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU31880/01A AU3188001A (en) 2000-01-14 2001-01-11 High density multi-track magnetic write head

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0000474A FR2803943B1 (fr) 2000-01-14 2000-01-14 Tete magnetique d'ecriture multipistes a haute densite
FR00/00474 2000-01-14

Publications (1)

Publication Number Publication Date
WO2001052245A1 true WO2001052245A1 (fr) 2001-07-19

Family

ID=8845930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/000086 WO2001052245A1 (fr) 2000-01-14 2001-01-11 Tete magnetique d'ecriture multipistes a haute densite

Country Status (3)

Country Link
AU (1) AU3188001A (fr)
FR (1) FR2803943B1 (fr)
WO (1) WO2001052245A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497633A (en) * 1966-06-21 1970-02-24 Vm Corp Multitrack electromagnetic transducer head with cross field pole
JPS5580817A (en) * 1978-12-08 1980-06-18 Nec Corp Magnetic head
JPH04221408A (ja) * 1990-12-20 1992-08-11 Matsushita Electric Ind Co Ltd 積層型磁気ヘッドおよびその製造方法
JPH05120627A (ja) * 1991-10-25 1993-05-18 Matsushita Electric Ind Co Ltd 多素子磁気ヘツドの製造方法
JPH07244816A (ja) * 1994-02-28 1995-09-19 Japan Energy Corp 磁気ヘッド
JPH0896315A (ja) * 1994-09-21 1996-04-12 Toshiba Corp 磁気ヘッドチップと固定ディスクドライブ用磁気ヘッド装置と固定ディスクドライブ用磁気ヘッド装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497633A (en) * 1966-06-21 1970-02-24 Vm Corp Multitrack electromagnetic transducer head with cross field pole
JPS5580817A (en) * 1978-12-08 1980-06-18 Nec Corp Magnetic head
JPH04221408A (ja) * 1990-12-20 1992-08-11 Matsushita Electric Ind Co Ltd 積層型磁気ヘッドおよびその製造方法
JPH05120627A (ja) * 1991-10-25 1993-05-18 Matsushita Electric Ind Co Ltd 多素子磁気ヘツドの製造方法
JPH07244816A (ja) * 1994-02-28 1995-09-19 Japan Energy Corp 磁気ヘッド
JPH0896315A (ja) * 1994-09-21 1996-04-12 Toshiba Corp 磁気ヘッドチップと固定ディスクドライブ用磁気ヘッド装置と固定ディスクドライブ用磁気ヘッド装置の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 004, no. 127 (P - 026) 6 September 1980 (1980-09-06) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 571 (P - 1459) 11 December 1992 (1992-12-11) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 491 (P - 1607) 6 September 1993 (1993-09-06) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 01 31 January 1996 (1996-01-31) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 08 30 August 1996 (1996-08-30) *

Also Published As

Publication number Publication date
AU3188001A (en) 2001-07-24
FR2803943A1 (fr) 2001-07-20
FR2803943B1 (fr) 2002-05-03

Similar Documents

Publication Publication Date Title
EP0420755B1 (fr) Procédé de réalisation d'une tête d'enregistrement magnétique et tête obtenue par ce procédé
CA2047185C (fr) Tete de lecture multipiste magneto-optique
EP0340085B1 (fr) Dispositif matriciel à têtes magnétiques, notamment en couches minces
EP0270404B1 (fr) Arrangement de pôles magnétiques, application à une tête magnétique d'enregistrement/lecture et procédé de réalisation
EP0107589B1 (fr) Dispositif d'écriture d'informations sur un support magnétique
FR2497994A1 (fr) Support de memoire magneto-optique
EP0284495B1 (fr) Tête magnétique de lecture pour piste de très faible largeur et procédé de fabrication
FR2630244A1 (fr) Dispositif d'ecriture et de lecture sur un support magnetique et son procede de fabrication
FR2472321A1 (fr) Magnetoscope a balayage helicoidal a double tete
EP0035943B1 (fr) Tête magnétique d'enregistrement et de lecture de données magnétiques à largeur de piste variable
FR2541492A1 (fr) Tete magnetique pour une aimantation perpendiculaire
EP0046697B1 (fr) Transducteur magnétique intégré
EP0714090B1 (fr) Tête magnétique d'enregistrement/lecture et procédé de réalisation
EP0392906A1 (fr) Tête magnétique statique de lecture
FR2709600A1 (fr) Composant et capteur magnétorésistifs à motif géométrique répété.
EP0369839A1 (fr) Tête magnétique à entrefer saturable et dispositif matriciel comportant un ensemble de telles têtes
WO2001052245A1 (fr) Tete magnetique d'ecriture multipistes a haute densite
FR2648941A1 (fr) Tete de lecture magnetique a effet hall
FR2500672A1 (fr) Tete magnetique a films minces et son procede de fabrication
EP0314557A2 (fr) Tête magnétique d'enregistrement/lecture comportant un matériau supraconducteur
FR2671220A1 (fr) Procede de fabrication de capteurs magneto-resistifs, et dispositif magnetique realise suivant un tel procede.
EP0434547A1 (fr) Tête de lecture multipiste
EP1023608B1 (fr) Capteur de champ magnetique a magnetoresistance
EP0409673B1 (fr) Tête magnétique intégrée d'enregistrement
EP0132186B1 (fr) Transducteur magnétique hautement intégré d'écriture d'informations sur un support magnétique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP