WO2001051861A1 - Heat engine and method of driving the heat engine - Google Patents

Heat engine and method of driving the heat engine Download PDF

Info

Publication number
WO2001051861A1
WO2001051861A1 PCT/JP2000/000112 JP0000112W WO0151861A1 WO 2001051861 A1 WO2001051861 A1 WO 2001051861A1 JP 0000112 W JP0000112 W JP 0000112W WO 0151861 A1 WO0151861 A1 WO 0151861A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
heat engine
valve
driving
volume
Prior art date
Application number
PCT/JP2000/000112
Other languages
French (fr)
Japanese (ja)
Inventor
Mikio Kinoshita
Original Assignee
Mikio Kinoshita
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikio Kinoshita filed Critical Mikio Kinoshita
Priority to PCT/JP2000/000112 priority Critical patent/WO2001051861A1/en
Priority to AU2000220028A priority patent/AU2000220028A1/en
Publication of WO2001051861A1 publication Critical patent/WO2001051861A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/0435Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type

Definitions

  • the present invention relates to a heat engine having a valve and a method of driving the same, and more particularly, to a heat engine used in a temperature difference power generation system and a method of driving the same.
  • the present invention has been made in view of the above, and has as its object to improve the thermal efficiency of a heat engine.
  • an engine having a first space with a variable volume and a second space with a variable volume, and a high-temperature heat source connected between the first space and the second space
  • a heating device having a third space
  • a cooling device having a first space and a fourth space for a low-temperature heat source connected to the second space; a first valve disposed between the first space and the third space; A second valve disposed between the first space and the fourth space; a third valve disposed between the second space and the third space;
  • a novel heat engine having a second space and a fourth valve disposed between the fourth space is provided.
  • the first space, the second space, the third space, and the fourth space are filled with a gas, and the volume changes of the first space and the second space and
  • the operation of the first valve, the second valve, the third valve, and the fourth valve causes the gas to flow with a change in temperature and a change in pressure.
  • This heat engine has means for switching the open / close state of the first valve, the second valve, the third valve, and the fourth valve at a predetermined timing.
  • the first space and the second space may be formed by a cylinder and a piston fitted in the cylinder.
  • the first space and the second space may be formed by a rotary pump or a rotary engine having a curved surface defined by a horrloid curve.
  • the first space and the second space may each have a monolithic structure.
  • the heat engine is provided between the third space and the fourth space, a bypass passage provided between the third space and the fourth space, and provided in the bypass passage, and the third space and the fourth space are provided between the third space and the fourth space.
  • a prime mover that generates power using the differential pressure.
  • the heat engine further includes a thin film coated on an inner peripheral surface of the cylinder, or a sealing member between the cylinder and the piston. It may be.
  • the heat engine further includes a biston bar connected to the piston, and bearing means for performing reciprocating motion of the piston bar under mechanical constraint conditions. You may have.
  • the gas is charged in a predetermined amount, but the gas may be charged at a high pressure.
  • the gas may have a light gas component such as helium, hydrogen, methane, neon, or nitrogen.
  • the heat engine may further include a gas recovery container having a leaked gas storage space for collecting the leaked gas.
  • a pressurizing means for pressurizing the gas collected in the leaked gas storage space and filling the gas into the first space may be used.
  • the heat engine may further include a mechanism for converting the reciprocating motion of the piston into a rotary motion, for example, a crank mechanism.
  • a mechanism for converting the reciprocating motion of the piston into a rotary motion for example, a crank mechanism.
  • the crank mechanisms may be mechanically connected to each other.
  • a generator is provided for the heat engine.
  • the heat engine may further include a power monitor, a pressure sensor, a processor and an information storage device, and / or an auxiliary power unit for accelerating the operation of the piston in order to preferably perform the operation. Good.
  • the plurality of bistones may be mechanically connected.
  • the heat engine has a plurality of units including the engine, the first valve, the second valve, the third valve, and the fourth valve, the plurality of units A heating unit connected in parallel with the heating device and in parallel with the cooling device.
  • an engine having a variable volume first space and a variable volume second space, and a high-temperature heat source connected to the first space and the second space
  • a heating device having a third space for cooling; a cooling device having a fourth space for a low-temperature heat source connected to the first space and the second space; and a cooling device having a fourth space for a low-temperature heat source connected to the first space and the second space.
  • a third valve disposed between the first space and the fourth space; a second valve disposed between the first space and the fourth space; and a third valve disposed between the first space and the fourth space.
  • a third valve disposed between the second space and the fourth space, and a fourth valve disposed between the second space and the fourth space.
  • the method of driving the heat engine includes: a step of switching the third valve from an open state to a closed state during a period in which the volume of the second space increases; and a tie that maximizes the volume of the second space.
  • an operation of switching each of the first valve, the second valve, the third valve, and the fourth valve from a closed state to an open state is performed by switching the respective valves. It may be performed at a timing when the differential pressure becomes substantially zero. In this case, the loss due to the pressure difference is significantly reduced, and the thermal efficiency is improved.
  • the pressure is controlled within a predetermined range.
  • the predetermined range may be changed accordingly.
  • the switching operation of the first valve, the second valve, the third valve, and the fourth valve may be performed based on the detection signal of the pressure sensor. Good.
  • the gas expands in the second space, but the expansion ratio in the second space may change. That is, the expansion ratio is changed by changing the opening and closing timing of each of the second valve and the fourth valve. In this case, the timing at which each of the first valve and the second valve performs the opening / closing operation changes accordingly.
  • the generated power changes. That is, when the heat engine is driven, the generated power depends on the expansion ratio. At the same time, the generated power is dependent on the frequency of the volume change of the second space. In addition, the power generated depends on the temperature of the gas. Similarly, the thermal efficiency in driving the heat engine depends on the expansion ratio, the frequency, and the temperature of the gas.
  • the generated power may be changed.
  • the expansion ratio may be changed so that the frequency has a predetermined value.
  • the frequency may be changed by changing the expansion ratio.
  • the driving method of the heat engine is based on temperature data on the temperature of the gas, and the first method corresponds to a combination of a predetermined expansion ratio of the gas and a predetermined frequency of volume change of the second space.
  • the method may further include the step of determining the timing of the switching operation of each of the second valve, the second valve, the third valve, and the fourth valve. This step may be performed by processing by a processor.
  • the driving method of the heat engine may further include a step of determining an expansion ratio of the gas based on temperature data on a temperature of the gas.
  • the step of determining the expansion ratio may be performed by processing by a processor.
  • the driving method of the heat engine is based on the temperature data and load data relating to the temperature of the gas, and the expansion ratio of the gas and the load ratio.
  • the method may further include a step of determining a combination with a frequency of the volume change of the first space, and the step of determining a combination of the expansion ratio and the frequency is performed by processing by a processor. This step may be performed for the purpose of improving thermal efficiency.
  • the method of driving the heat engine includes monitoring an output change when the timing of the switching operation of the first valve is slightly changed.
  • the method may further include determining the timing of the switching operation of the first valve at which the output of the heat engine is maximized.
  • the driving method of the heat engine includes at least a power monitor having the power monitor.
  • the method may further include a step of performing a switching operation of a first valve of the heat engine not having the power monitor based on an operation of one heat engine.
  • the driving method of the heat engine monitors the output change when the timing of the switching operation of the second valve is minutely changed, and monitors the output change when the output of the heat engine is maximized.
  • the method may further include the step of determining the timing of the switching operation of the second valve.
  • the driving method of the heat engine monitors the output change when the timing of the switching operation of the fourth valve is minutely changed, and monitors the output change when the output of the heat engine is maximized.
  • the method may further include the step of determining the timing of the switching operation of the valve of No. 4.
  • the method for driving the heat engine includes a starting step in which switching operations of the first valve, the second valve, the third valve, and the fourth valve are performed at a timing for starting. May be further provided.
  • the expansion ratio may be set within a region where the output decreases when the expansion ratio increases. High thermal efficiency can be obtained by selecting this region.
  • FIG. 1 is a conceptual diagram illustrating the inside of a heat engine according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram illustrating an example of a biston position corresponding to the timing of switching the third valve of the heat engine shown in FIG. 1 from an open state to a closed state.
  • FIG. 3 is a conceptual diagram illustrating an example of a biston position corresponding to a timing at which the fourth valve of the heat engine shown in FIG. 1 is switched from a closed state to an open state.
  • FIG. 4 is a conceptual diagram illustrating an example of a biston position corresponding to the timing of switching the first valve of the heat engine shown in FIG. 1 from an open state to a closed state.
  • FIG. 5 is a conceptual diagram illustrating an example of a biston position corresponding to the timing of switching the second valve of the heat engine shown in FIG. 1 from a closed state to an open state.
  • FIG. 6 is a conceptual diagram illustrating an example of a piston position corresponding to a timing for switching the second valve of the heat engine shown in FIG. 1 from an open state to a closed state.
  • FIG. 7 is a conceptual diagram illustrating an example of a biston position corresponding to a timing of switching the fourth valve of the heat engine shown in FIG. 1 from an open state to a closed state.
  • FIG. 8 is a conceptual diagram illustrating an example of a piston position corresponding to the timing of switching the third valve of the heat engine shown in FIG. 1 from a closed state to an open state.
  • Fig. 9 is a schematic diagram illustrating an example of the biston position corresponding to the timing of switching the first valve of the heat engine shown in Fig. 1 from the closed state to the open state. It is a reminder.
  • FIG. 10 corresponds to a timing of switching the second valve of the heat engine from the open state to the closed state shown in FIG. 1 in the heat engine driving method according to another embodiment of the present invention. It is a conceptual diagram which illustrates an example of a biston position.
  • FIG. 11 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
  • FIG. 12 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
  • FIG. 13 is a conceptual diagram illustrating a cross section of a heat engine according to still another embodiment of the present invention.
  • FIG. 14 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
  • FIG. 15 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
  • FIG. 6 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
  • FIG. 17 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
  • FIG. 18 is a diagram illustrating an example of the dependence of the thermal efficiency on the expansion ratio under one driving condition of the heat engine illustrated in FIG.
  • FIG. 9 is a diagram showing an example of the expansion ratio dependence of the output per cycle under the driving conditions corresponding to FIG.
  • FIG. 20 is a diagram showing an example of the dependence of the thermal efficiency on the expansion ratio under another driving condition of the heat engine illustrated in FIG. 0
  • FIG. 21 is a diagram showing an example of the dependence of the output on the expansion ratio per cycle under the driving conditions corresponding to FIG.
  • FIG. 22 is a diagram showing an example of the dependence of the thermal efficiency on the expansion ratio under still another driving condition of the heat engine illustrated in FIG.
  • FIG. 23 is a diagram showing an example of the expansion ratio dependence of the output per cycle under the driving conditions corresponding to FIG.
  • FIG. 24 is a diagram showing an example of the drive frequency dependence of the thermal efficiency under still another drive condition.
  • FIG. 25 is a diagram showing an example of the dependence of the output on the driving frequency under the driving conditions corresponding to FIG.
  • FIG. 26 is a diagram showing an example of the drive frequency dependence of the thermal efficiency under still another drive condition.
  • FIG. 27 is a diagram illustrating an example of the drive frequency dependence of the output under the drive conditions corresponding to FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the heat engine 10 has a cylinder 21 and bistons 31. Both ends of the cylinder 21 are airtight.
  • the piston 31 is provided in the cylinder 21.
  • the space inside the cylinder 21 is separated by the piston 31 into a first space 71 and a second space 73 whose volume is variable.
  • the piston 31 has a structure capable of reciprocating up and down in FIG. 1, and the first space 71 and the The volume of the second space 73 changes with the reciprocating movement of the piston 31. In this case, when the volume of the first space 71 increases, the volume of the second space 73 decreases.
  • the heat engine 10 When the heat engine 10 is driven to generate power, power is generated with the reciprocation of the biston 31.
  • the power received by the piston 31 is transmitted to the outside through a power transmission mechanism and a Z or power conversion mechanism (not shown), for example, a biston rod and a crank mechanism and z or a power generator.
  • a power transmission mechanism and a Z or power conversion mechanism (not shown), for example, a biston rod and a crank mechanism and z or a power generator.
  • the heat engine 10 When the heat engine 10 is driven for a heat pump, power is supplied to the piston 31 from a power source (not shown). That is, the piston 31 and the cylinder 21 correspond to an engine acting as a power generating engine or an engine acting as a heat pump. That is, according to the present embodiment, the first space 71 and the second space ⁇ 3 in one unit of the engine are formed using a single cylinder 21 and a single bistone 31. You. This engine structure contributes to reduction of friction loss, improvement of thermal efficiency, cost
  • the heat engine 10 has a third space 75 and a heating device 41 that operates as a high-temperature heat source, a cooling device 51 that has a fourth space 77 and operates as a low-temperature heat source, It further has a first valve 61, a second valve 63, a third valve 65, and a fourth valve 67.
  • a heat exchanger characterized by receiving heat from an external high-temperature heat source, for example, a waste heat source of a power plant or a factory ⁇ a heat storage unit, or solar heat or other heat energy
  • a heating device that warms the gas with a source may be used.
  • cooling device 51 for example, a cooling device characterized by being cooled by heat of evaporation of a liquid, a device cooled by a low-temperature liquid, or a natural air cooling device is used. You may. Also, heat storage such as ice Two bodies or low temperature waste heat may be used.
  • Openings at both ends of the heating device 41 are connected to the first space 71 and the second space 73, respectively.
  • the first valve 61 is provided between the first space 71 and the heating device 41, and when the first valve 61 is open, the first space ⁇ 1 And the third space 75 are in communication with each other.
  • the third valve 65 is provided between the second space 73 and the heating device 41, and when the third valve 65 is open, the second space 73 is provided. And the third space 75 are in communication with each other.
  • Openings at both ends of the cooling device 51 are connected to the first space 71 and the second space 73, respectively.
  • the second valve 63 is provided between the first space 71 and the cooling device 51, and when the second valve 63 is open, the first space 71 is open.
  • the fourth space 77 are in communication with each other.
  • the fourth valve 67 is provided between the second space 73 and the cooling device 51, and when the fourth valve 67 is open, the second space 73 is provided. And the fourth space 77 are in communication with each other.
  • valves have a structure corresponding to the switching operation of opening and closing quickly at a predetermined timing.
  • a valve that operates electromagnetically.
  • the first valve 61, the second valve 63, the third valve 65, and the fourth valve 67 each include: It is preferable that the open / close state be switched at a high speed, and from the viewpoint of reducing the dead volume, the connection of the space may be performed at a position other than the illustrated example. Further, the valve may be arranged at a position other than the illustrated example.
  • the cross section of the gas flow path The product is designed to be equal to or more than a predetermined value.
  • means for increasing the contact area between the gas and the heating device 41 for example, a heat sink or a fine branch pipe structure may be provided.
  • the temperature distribution of the heating device 41 may be designed to reduce thermodynamic irreversibility in heat exchange. Similar means may be provided for the cooling device 51.
  • the first space 71, the second valve 63, the third valve 65, and the fourth valve 67 When all of the first valve 61, the second valve 63, the third valve 65, and the fourth valve 67 are closed, the first space 71, The second space 73, the third space 75, and the fourth space ⁇ have a structure in which their airtightness is maintained.
  • the first space 71, the second space 73, the third space 75, and the fourth space 77 are filled with a predetermined amount of gas.
  • the pressure distribution of the gas when the heat engine 10 is stopped is arbitrary.
  • the first valve 61, the second valve 63, the third valve 65, and the fourth valve 67 When all of the first valve 61, the second valve 63, the third valve 65, and the fourth valve 67 are closed, the first space 71, The second space 73, the third space 75, and the fourth space ⁇ have a structure in which their airtightness is maintained.
  • a stop state where the pressure of the gas in the third space 75 exceeds the pressure of the gas in the fourth space 77 may be fc.
  • Hydrogen, helium, neon, methane, ammonia, nitrogen, air, oxygen, argon, and carbon dioxide, or a mixture thereof can be used as the gas.
  • a gas having a low molecular weight Since the output, that is, the power generated by the heat engine 10 increases with the pressure of the gas, it is preferable to fill the gas with a high average pressure in order to obtain a high output. 4 Ray
  • a sealing member (not shown) may be provided on the piston 31.
  • a lubricant, a bearing, a friction reducing mechanism, or the like for appropriately reducing friction may be provided. Even when dust containing hard particles is removed in the first space 71 and the second space 73, friction and wear are reduced. For example, when the number of dust particles having a particle diameter of 500 nm or more is maintained at 30000 or less per cubic meter, the friction and wear are effectively reduced.
  • the differential pressure between the first space # 1 and the second space 73 tends to be smaller when the piston 31 is located at the center of the cylinder 21. For this reason, even if the inner diameter of the cylinder 21 is slightly increased at the center, leakage of gas may not be a problem.
  • the heat engine 10 may be provided with the engine (not shown).
  • a plurality of units each including an engine and first, second, third, and fourth valves are connected to the cooling device 51 and the heating device 41 in parallel, respectively. May be.
  • the first dead point indicates the position of the piston 31 where the volume of the first space 71 is minimum.
  • the second dead point refers to the position of the piston 31 where the volume of the second space 73 is minimized.
  • open ⁇ closed This means that the valve close to the signal can be switched from the open state to the closed state.
  • closed ⁇ open means that the valve adjacent to the symbol is switched from the closed state to the open state.
  • the heating device 41 is at a higher temperature than the cooling device 51. For this reason, the temperature of the gas in the third space 75 is higher than the temperature of the gas in the fourth space 77.
  • an operation for proper start may be performed.
  • the first valve 61, the second valve 63, the third valve 65, and the fourth valve 67 are all open and the same in all the spaces.
  • increasing the pressure of the gas in the third space 75, and reducing the pressure of the gas in the fourth space 77 For example, a step of reducing the temperature may be performed.
  • the third valve 65 or the fourth valve 67 is closed, the piston is reciprocated by auxiliary power, and the first valve 61 and the second valve are appropriately operated.
  • the initial pressure distribution of the first space 71, the second space 73, the third space 75, and the fourth space 77 can be appropriately set. In this case, an extremely smooth initial operation can be performed.
  • the driving of the heat engine 10 is achieved by the driving method of the heat engine described below.
  • a step of switching the first valve 61 from the open state to the closed state at a timing when the piston 31 reaches the position illustrated in FIG. 4 (hereinafter referred to as a third step) Is performed at or near the timing at which the volume of the first space 71 is minimized,
  • a step of switching the second valve 63 from the closed state to the open state at the timing when the piston 31 reaches the position illustrated in FIG. 5 (hereinafter referred to as a fourth step) Performed at the beginning of the period when the volume of the first space 71 increases.
  • a step of switching the second valve 63 from the open state to the closed state at the timing when the piston 31 reaches the position illustrated in FIG. 6 (hereinafter referred to as a fifth step) Performed at a timing when the volume of the first space 71 becomes a predetermined volume
  • a step of switching the fourth valve 67 from the open state to the closed state at the timing when the piston 31 reaches the position illustrated in FIG. 7 (hereinafter referred to as a sixth step) Performed at the end of the period in which the volume of the second space 73 decreases.
  • a step of switching the first valve 61 from the closed state to the open state at the timing when the piston 31 reaches the position illustrated in FIG. 9 (hereinafter referred to as an eighth step) Which is performed during a period in which the volume of the first space 71 is reduced.
  • the gas is transferred from the first space 71 to the third space 75, from the third space 75 to the second space 73, to the second space 73. It moves sequentially from 73 to the fourth space 77, from the fourth space 77 to the first space 71.
  • the circulation of the gas occurs counterclockwise in FIG. 2-9.
  • the principle of the driving method of the heat engine will be described.
  • the piston 31 continues its movement away from the second dead center. Due to this movement, the gas in the second space 73 adiabatically expands.
  • the timing at which the first step is performed is determined so that the expansion ratio of the gas in the second space 73 becomes a predetermined value.
  • the expansion ratio refers to the volume of the second space 73 at the time when the second step is performed and the volume of the second space 73 at the time when the first step is performed. It is divided by volume. If the timing of performing the first step is delayed, the expansion ratio decreases.
  • the timing at which the first step illustrated in FIG. 2 is performed may be changed.
  • the timing may be changed in accordance with the temperature change of the heating device 41 ⁇ the cooling device 51.
  • the gas in the first space 71 and the third space 75 is compressed because the first valve 61 is open.
  • the volume of the third space is large, the pressure rise due to the compression becomes small.
  • the timing at which the second step is performed corresponds to the timing at which the differential pressure at the fourth valve 67 becomes substantially zero and the vicinity thereof.
  • the timing at which the fourth step is performed corresponds to the timing at which the differential pressure at the second valve 63 becomes substantially zero and the vicinity thereof.
  • the low temperature that has passed through the cooling device 51 in the first space ⁇ 1 due to the movement of the piston 31 Is introduced.
  • the gas after adiabatic expansion is introduced into the fourth space 77 and cooled.
  • the pressures in the first space 71, the second space 73, and the fourth space 77 decrease. This is because the cooling of the gas after the expansion is performed in an equal volume manner. This pressure drop becomes significant when the volume of the fourth space is small. On the other hand, when the volume of the fourth space is large, this pressure change Is small.
  • the timing at which the fifth step is performed is determined so that the mass of the gas introduced into the first space 71 becomes a predetermined value. After the fifth step is performed and before the sixth step is performed, the gas in the second space 73 and the fourth space 77 is compressed. At the time when the sixth step is completed, a predetermined mass of the gas is held in the fourth space 77.
  • the timing at which the seventh step is performed corresponds to the timing at which the differential pressure at the third valve 65 becomes substantially zero and the vicinity thereof. That is, at the timing when the sixth step is performed, the differential pressure at the third valve 65 becomes substantially zero at the timing when the biston 31 reaches the second dead center. It is set as follows.
  • the high-temperature gas that has passed through the third space 75 is introduced into the second space # 3.
  • the gas in the second space 73 and the third space 75 expands.
  • the volume of the third space is large, the pressure drop due to the expansion becomes small.
  • the gas expands isothermally and further absorbs heat from the heating device 41.
  • the timing at which the eighth step is performed corresponds to the case where the pressure difference at the first valve 61 becomes substantially zero.
  • the compressed gas in the first space 71 is introduced into the third space 75. And heated. During this time, the gas is heated in an isosteric manner after the eighth step is performed and before the first step is performed. Along with this heating, the pressures in the first space 71, the second space 73, and the third space 75 increase. This pressure rise becomes remarkable when the volume of the third space is small. On the other hand, when the volume of the third space is large, the change in pressure is small.
  • the pressure in the first space 71 is higher than the pressure in the second space 73. As a result, the piston loses mechanical energy.
  • the pressure in the first space 71 is greater than the pressure in the second space 73.
  • the piston obtains mechanical energy.
  • the pressure in the first space # 1 and the pressure in the second space 73 are almost equal, except for the portion caused by the pressure loss of the fluid.
  • the pressure in the first space 71 is smaller than the pressure in the second space 73. This causes the bistone to lose mechanical energy.
  • the pressure in the first space 71 is smaller than the pressure in the second space 73.
  • the piston obtains mechanical energy.
  • the pressure in the first space 71 and the pressure in the second space 73 are substantially equal to each other, except for the portion caused by the pressure loss of the fluid. equal.
  • the piston 31 By summing up the gain and loss of mechanical energy in the above cycle, the piston 31 obtains mechanical energy.
  • the switching operation of all valves from the closed state to the open state is performed at a timing when the differential pressure is substantially zero, the loss caused by the so-called dead volume is greatly reduced.
  • the first space 71, the second space 73, the third space 75, and the fourth space 77 during one cycle.
  • the first valve 61, the second valve 63, the third valve 65, and the fourth valve 61 so that the mass of the gas flowing into each of the first valve 61 and the mass of the gas flowing out of the first valve 61 become equal.
  • the timing of the operation of each of the valves 67 is determined. In particular, the timing at which the first step is performed and the timing at which the fifth step is performed are important.
  • timing of performing the first step is changed to change the expansion ratio of the gas in the second space 73, other steps are performed based on the driving principle of the valve. The timing of each changes.
  • the volume of the third space 75 is secured to a predetermined value required for the driving.
  • the volume of the third space 5 may be greater than the volume of the cylinder 21.
  • the volume of the fourth space 77 may be smaller than the volume of the cylinder 21. In this case, the power generated when the piston 31 makes one round trip can be increased.
  • the fourth space may have a structure in which a plurality of spaces are connected via a valve (not shown). Further, the third space may be one in which a plurality of dividable spaces are connected via a valve (not shown).
  • the order of the 18th step described above is based on the operation principle of the valve.
  • the context may be partially changed. Also, some steps may be performed simultaneously. Further, when driving conditions such as an expansion ratio are changed in response to a change in the temperature or load of the gas, the order of the eighteenth process may be changed based on the above-described operation principle of the valve. .
  • the fifth step may be performed between the seventh step and the eighth step. That is, the first step, the second step, the third step, the fourth step, the sixth step, the seventh step, the fifth step, and the eighth step
  • the operation is repeated in order. That is, the fifth step may be performed at a timing when the piston 31 reaches the position illustrated in FIG. In this case, the timing for performing the fifth step is set so that a predetermined mass of the gas is retained in the fourth space 77 when the fifth step is completed. .
  • first step may be performed before or simultaneously with the eighth step.
  • second step, the third step, the fourth step, the fifth step, the sixth step, the seventh step, the first step, and the eighth step The operation may be repeated in this order.
  • the second step may be performed simultaneously with the third step or the fourth step.
  • the first step, the third step, the fourth step, the second step, the fifth step, the sixth step, the seventh step, the eighth step May be repeated in this order.
  • FIG. 11 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
  • the heat engine 10 shown in FIG. 11 further includes a plurality of pressure sensors 111 having a sensor pipe 113 in addition to the heat engine shown in FIG.
  • the first valve 61, the second valve 63, the third valve 65, and the fourth valve 67 Each differential pressure has a structure that can be monitored.
  • the pressure sensor 111 is used when determining when to switch each valve from the closed state to the open state.
  • the time lag of the detection signal is corrected.
  • the switching of the valve may be electromagnetic using a pressure switch.
  • the valve may be switched using a processor that processes pressure detection data.
  • FIG. 1′2 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
  • the volume of the first space 71 changes with the movement of the compression biston 33.
  • the volume of the second space 73 changes with the movement of the expansion biston 35.
  • a driving method may be used in which the timing at which the volume of the first space 71 is maximized coincides with the timing at which the volume of the second space 73 is minimized.
  • the volume of the compression button 33 may be smaller than the volume of the expansion button 35.
  • FIG. 13 is a conceptual diagram illustrating a cross section of a heat engine according to another embodiment of the present invention.
  • a sealing member for biston 91 is further provided.
  • the airtightness between the first space 71 and the second space 73 is improved by the piston sealing member 91.
  • the piston sealing member 91 can be made of any material, for example, an elastic material such as rubber or a metal. Pistons and silicon with relatively low machining accuracy
  • an elastic body having a hollow interior and a structure in which a high-pressure fluid is held in the hollow interior may be used as the piston sealing member 91.
  • the hollow elastic body is used as the sealing member 91 for the piston. It may be done. Lubricants may be used as appropriate.
  • a piston rod 101 is provided in the heat engine 10 illustrated in FIG.
  • the piston rod 101 penetrates the walls of the first space 71 and the second space 73.
  • a sealing mechanism 93 for biston rods is provided in each of the penetrating portions, and the first space 71 and the second space 73 are kept airtight.
  • a pair of bearings for biston rods 15 1 are provided to add a mechanical constraint condition that makes the piston rod 101 movable only in the vertical direction in FIG. 13.
  • the pair of piston rod bearings 15 1 allows the piston 31 connected to the piston rod 101 to reciprocate with high accuracy.
  • the piston rod 101 may be provided with a crank mechanism and a generator (not shown).
  • FIG. 14 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
  • the cylinder 21 and the piston 31 shown in FIG. 1 are the same as the rotary compressor 81 having a first space (not shown) and the rotary compressor 81 (not shown). It is replaced by a rotary expander 83 having a second space.
  • the volume of the first space changes with the operation of the rotary compressor 81.
  • the volume of the second space changes with the operation of the rotary expander 83. Timing when the volume of the first space is maximized; A driving method for matching the timing at which the second space is minimized may be used.
  • FIG. 15 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
  • the engine further includes a bypass passage 133 and a bypass prime mover 131 disposed in the bypass passage 133.
  • the bypass motor 13 1 converts the mechanical energy or differential pressure of the gas passing through the bypass passage 13 3 into mechanical energy.
  • a pressure sensor 115 is provided in the fourth space 77 and monitors the pressure in the fourth space 77. The switching of the opening and closing of the first valve 61, the second valve 63, the third valve 65, and the fourth valve 67 so as to maintain the pressure of the fourth space 77 at a predetermined value. The timing may be decided.
  • FIG. 16 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
  • a pair of heat engines 10OA and 10B are arranged such that the second space 73 faces.
  • the pair of pistons 31 are connected to each other by a biston bar 101.
  • the volume of the second space 73 of the heat engine 10OA is the minimum
  • the volume of the second space 73 of the heat engine 10B is the maximum. In this case, there is a period in which the force applied to the pair of bistons 31 is canceled, and a smooth reciprocating motion of the pair of bistons 31 is realized.
  • FIG. 17 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
  • the heat engine 10 illustrated in FIG. 17 is a gas recovery system having an airtight leak gas storage space 1993 in addition to the heat engine illustrated in FIG. It further has a container 19 1 and a power monitor 14 1.
  • the gas recovery container 19 1 is provided at the leak location.
  • the piston rod 101 is provided in the penetrating part.
  • the gas recovery container 191 is for recovering gas that has leaked slightly from the penetration of the piston rod 101, and is compatible with the use of hydrogen, etc. as the gas. It does.
  • the pressure in the leaked gas storage space 1993 is equal to or slightly higher than the atmospheric pressure.
  • pure gas is stored in the leaked gas storage space 1993 in advance.
  • the leaked gas may be returned to the third space 75 by pressurizing means (not shown).
  • the piston rod 101 is connected to a crank mechanism 161.
  • the crank mechanism 16 1 is mechanically connected to a generator 17 1 and an auxiliary power means 18 1 via a rotation transmission mechanism 17 3.
  • the power monitor 141 can be used for optimizing the drive of the heat engine, which will be described later.
  • FIG. 18 is a diagram showing an example of the dependence of the thermal efficiency on the expansion ratio under one driving condition of the heat engine 10 shown in FIG. This corresponds to operation at a relatively small drive frequency of the piston. The thermal efficiency is maximized near the expansion ratio of 1.5, but decreases rapidly in the region where the expansion ratio exceeds 1.5.
  • FIG. 19 is a diagram showing an example of the expansion ratio dependence of the output per cycle under the driving conditions corresponding to FIG.
  • the output is maximum near the expansion ratio of 1.2.
  • the expansion ratio of 1.5, at which the thermal efficiency is maximized, corresponds to the region where the output decreases as the expansion ratio increases.
  • FIG. 20 is a diagram showing an example of the dependence of the thermal efficiency on the expansion ratio under another driving condition of the heat engine 10 shown in FIG. This corresponds to operation at a relatively small drive frequency of the piston.
  • the temperature of the gas in the third space near the third: third valve is increased by 30.
  • the thermal efficiency reaches its maximum near the expansion ratio of 1.8, and decreases rapidly in the region where the expansion ratio exceeds 1.8.
  • the expansion ratio at which the maximum thermal efficiency is obtained increases.
  • FIG. 21 is a diagram showing an example of the expansion ratio dependence of the output per cycle under the driving conditions corresponding to FIG.
  • the output is maximum near the expansion ratio of 1.3.
  • the expansion ratio 1.8 at which the thermal efficiency is maximized, corresponds to the region where the output decreases as the expansion ratio increases.
  • FIG. 22 is a diagram showing an example of the dependence of the thermal efficiency on the expansion ratio under still another driving condition of the heat engine 10 shown in FIG. This corresponds to operation at a relatively low drive frequency of the piston. Compared with the driving conditions corresponding to FIG.
  • the temperature of the gas in the third space near the third valve has decreased by 30 ° C.
  • the thermal efficiency becomes maximum near the expansion ratio of 1.2, and decreases rapidly in the region where the expansion ratio exceeds 1.2.
  • the expansion ratio at which the maximum thermal efficiency is obtained decreases.
  • FIG. 23 is a diagram showing an example of the expansion ratio dependence of the output per cycle under the driving conditions corresponding to FIG.
  • the output becomes maximum around the expansion ratio of 1.15.
  • the expansion ratio 1.2 at which the thermal efficiency is maximized corresponds to a region where the output decreases with an increase in the expansion ratio.
  • the expansion ratio at which the maximum output is obtained decreases.
  • the expansion ratio that achieves high thermal efficiency for a given load is determined by the expansion ratio that provides maximum output and the expansion that provides maximum thermal efficiency at low drive frequency. This is in the region where the power decreases as the expansion ratio increases in the dependence of the power on the expansion ratio.
  • FIG. 24 is a diagram showing an example of the drive frequency dependence of the thermal efficiency under still another drive condition.
  • the drive condition of the expansion ratio ER1.5 which can obtain high thermal efficiency in the low drive frequency range, the decrease in thermal efficiency with the increase in drive frequency is remarkable.
  • the thermal efficiency at low driving frequency is relatively small, The decrease in thermal efficiency with increasing operating frequency is relatively small.
  • FIG. 25 is a diagram showing an example of the dependence of the output on the driving frequency under the driving conditions corresponding to FIG.
  • the output increases as the drive frequency increases.
  • the output decreases in the region where the drive frequency is excessively high due to the loss caused by the pressure loss of the fluid.
  • FIG. 26 is a diagram showing an example of the drive frequency dependence of the thermal efficiency under still another drive condition. Hydrogen, a low-density gas, is used. The tendency of the compression ratio in the dependence of the thermal efficiency on the drive frequency is similar to the result described with reference to FIG. 24, but the decrease in thermal efficiency is alleviated even at a high drive frequency.
  • FIG. 27 is a diagram illustrating an example of the drive frequency dependence of the output under the drive conditions corresponding to FIG.
  • the use of hydrogen allows operation at higher drive frequencies, resulting in a significant increase in output.
  • the dependence of the thermal efficiency and the output on the operating parameters such as the driving frequency, the expansion ratio, and the temperature is required.
  • This dependence can be determined experimentally. Alternatively, it may be calculated semi-empirically or a priori. Data relating to this dependency may be stored in the information storage device and referred to as necessary.
  • a processor When a processor is used, it is possible to immediately determine the driving conditions relating to the driving frequency and expansion ratio that provide the maximum thermal efficiency for a given output. In addition, it is possible to determine a driving condition that can immediately obtain high thermal efficiency in response to a change in environment such as a gas heating temperature, a gas cooling temperature, or a load.
  • the expansion ratio When the expansion ratio is changed, it is necessary to change the timing for opening and closing the first valve, the second valve, the third valve, and the fourth valve correspondingly. is there. Data relating to this may be stored in the information storage device in advance. Alternatively, it may be determined a priori or semi-empirically by processing by the processor.
  • the operation of the valve may be optimized based on a detection signal obtained from a pressure sensor, a power monitor, or the like based on the above-described operation principle.
  • the operation of the valve may be optimized by fixing the expansion ratio and determining the operation timing of each valve that provides the maximum power.
  • auxiliary means for suitably operating the heat engine according to the present invention for example, temperature measuring means, torque meter, impulse measuring means, driving cycle measuring means, analyzing means and operation command means based on temperature data, thermal efficiency Expert system for improvement, prediction system for load, etc., means for adjusting average pressure of gas with auxiliary tank, etc., frequency conversion means for power generation, transmission, means for stopping some engines when load is small
  • the present invention may be practiced with a heat storage means.
  • the present invention disclosed herein provides a novel heat engine and a method for driving the heat engine.
  • the present invention can be implemented by The present invention is not limited to the above-described embodiment for explaining the embodiment, but may be implemented in other forms with various changes within the scope of the following claims.
  • the present invention may be practiced without any additional features or components added to describe one preferred embodiment among them.
  • heat energy can be efficiently converted to mechanical energy using a heat source having a relatively low temperature difference. That is, improvement in thermal efficiency is realized. Furthermore, power generation using waste heat that has been conventionally discarded and power generation using natural energy with a low temperature difference, such as solar heat and deep seawater, are achieved. In other words, the present invention can be used to reduce costs, reduce fossil fuel consumption, reduce carbon dioxide emissions, and use natural energy more effectively. Further provided is a heat engine operating as a heat pump and a method of driving the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

A heat engine, comprising an engine having a displacement-variable first and second spaces, a heating device having a third space for hot heat source connected to the first and second spaces, a cooling device having a fourth space for cold heat source connected to the first and second spaces, a first valve arranged between the first and third spaces, a second valve arranged between the first and fourth spaces, a third valve arranged between the second and third spaces, and a fourth valve arranged between the second and fourth spaces; a method of driving the heat engine at high thermal efficiency, comprising the steps of switching the opening and closing conditions of the first, second, third, and fourth valves at a specified timing for achieving a high thermal efficiency.

Description

明 細 書 熱機関及び熱機関の駆動方法 技術分野  Description Heat engine and heat engine drive method
本発明は弁を有する熱機関及びその駆動方法に関し、 特に、 温度 差発電システムに使用される熱機関及びその駆動方法に関する。 背景技術  The present invention relates to a heat engine having a valve and a method of driving the same, and more particularly, to a heat engine used in a temperature difference power generation system and a method of driving the same. Background art
従来技術における熱エネルギーを機械的エネルギーに変換する熱 機関、 あるいはヒー トポンプと して動作する熱機関と して、 種々の ものが提案されている。 しかしながら理論的熱効率と比較して従来 の熱機関の熱効率は低く 、 この為比較的低い温度差での動作条件で の動作においては、 熱効率が著しく低下するという問題があった。 ヒ一トポンプと してして動作する熱機関においても更なる熱効率の 向上が要求されている。  Various heat engines that convert heat energy into mechanical energy or heat engines that operate as heat pumps in the prior art have been proposed. However, the thermal efficiency of the conventional heat engine is lower than the theoretical thermal efficiency, and therefore, there is a problem that the thermal efficiency is significantly reduced when operating under a relatively low temperature difference operating condition. Further improvement in thermal efficiency is required for heat engines that operate as heat pumps.
従って本発明は上記に鑑みなされたもので、 熱機関の熱効率の向 上を課題とする。 特に、 比較的低い温度領域での動作条件、 例えば 温度差が 2 0 O K ( 2 0 0 °C ) 以下の小温度差の動作条件での熱効 率の向上を課題とする。 発明の開示  Therefore, the present invention has been made in view of the above, and has as its object to improve the thermal efficiency of a heat engine. In particular, it is an object of the present invention to improve the thermal efficiency under operating conditions in a relatively low temperature range, for example, under operating conditions with a small temperature difference of not more than 200K (200 ° C). Disclosure of the invention
本発明の一実施形態によれば、 容積可変の第 1 の空間及び容積可 変の第 2の空間を有するェンジンと、 該第 1の空間及び該第 2の空 間に接続された高温熱源用の第 3の空間を有する加熱装置と、 該第 1の空間及び該第 2の空間に接続された低温熱源用の第 4の空間を 有する冷却装置と、 該第 1の空間と該第 3の空間との間に配備され た第 1 の弁と、 該第 1の空間と該第 4の空間との間に配備された第 2の弁と、 該第 2の空間と該第 3の空間との間に配備された第 3の 弁と、 該第 2の空間と該第 4の空間との間に配備された第 4の弁と を有する新規な熱機関が提供される。 該第 1 の空間、 該第 2の空間、 該第 3 の空間、 及び該第 4の空間内には気体が充填され、 該第 1 の 空間及び該第 2の空間のそれぞれの容積変化と該第 1の弁、 該第 2 の弁、 該第 3の弁、 及び該第 4の弁の動作とによ り該気体が温度変 化及び圧力変化を伴って流れる。 According to one embodiment of the present invention, an engine having a first space with a variable volume and a second space with a variable volume, and a high-temperature heat source connected between the first space and the second space A heating device having a third space; and A cooling device having a first space and a fourth space for a low-temperature heat source connected to the second space; a first valve disposed between the first space and the third space; A second valve disposed between the first space and the fourth space; a third valve disposed between the second space and the third space; A novel heat engine having a second space and a fourth valve disposed between the fourth space is provided. The first space, the second space, the third space, and the fourth space are filled with a gas, and the volume changes of the first space and the second space and The operation of the first valve, the second valve, the third valve, and the fourth valve causes the gas to flow with a change in temperature and a change in pressure.
この熱機関は該第 1 の弁、 該第 2 の弁、 該第 3の弁、 及び該第 4 の弁の開閉状態をそれぞれ所定のタイ ミングで切り替える手段を有 している。  This heat engine has means for switching the open / close state of the first valve, the second valve, the third valve, and the fourth valve at a predetermined timing.
該第 1 の空間及び該第 2の空間はシリ ンダと該シリンダ内に嵌装 されたピス トンとによ り形成されてもよい。 これに替わり、 該第 1 の空間及び該第 2の空間は、 回転ポンプ、 またはペリ コロイ ド曲線 により定義される曲面を有するロータ リ一エンジンにより形成され てもよい。 あるいは該第 1 の空間及び該第 2の空間はそれぞれ、 ベ 口一ズ構造を有していてもよレ、。  The first space and the second space may be formed by a cylinder and a piston fitted in the cylinder. Alternatively, the first space and the second space may be formed by a rotary pump or a rotary engine having a curved surface defined by a pericolloid curve. Alternatively, the first space and the second space may each have a monolithic structure.
該熱機関は該第 3の空間と該第 4の空間との間に配備されるバイ パス流路と、 該バイパス流路中に配備され、 かつ該第 3 の空間と該 第 4の空間との差圧を利用して動力を発生する原動機とを更に有し ていてもよい。  The heat engine is provided between the third space and the fourth space, a bypass passage provided between the third space and the fourth space, and provided in the bypass passage, and the third space and the fourth space are provided between the third space and the fourth space. And a prime mover that generates power using the differential pressure.
該熱機関は、 該シリ ンダの内周面にコーティングされた薄膜、 あ るいは該シリ ンダと該ピス トンとの間のシーリ ング部材を更に有し ていてもよレ、。 The heat engine further includes a thin film coated on an inner peripheral surface of the cylinder, or a sealing member between the cylinder and the piston. It may be.
該ピス トンの運動を精度良く行うため、 該熱機関は該ピス トンに 連結されたビス トン棒と、 該ピス トン棒の往復運動を力学的束縛条 件下で行う為の軸受け手段とを更に有していてもよい。  In order to accurately perform the movement of the piston, the heat engine further includes a biston bar connected to the piston, and bearing means for performing reciprocating motion of the piston bar under mechanical constraint conditions. You may have.
該気体は所定の量が充填されるが、 該気体は高圧の状態で充填さ れてもよい。 該気体の密度を低減するため、 該気体は、 ヘリ ウム、 水素、 メタン、 ネオン、 または窒素等の軽量気体の成分を有してい てもよい。  The gas is charged in a predetermined amount, but the gas may be charged at a high pressure. To reduce the density of the gas, the gas may have a light gas component such as helium, hydrogen, methane, neon, or nitrogen.
該熱機関は、 漏洩した該気体を回収するための漏洩ガス貯留空間 を有する気体回収容器を更に有していてもよい。 この場合、 該漏洩 ガス貯留空間内に回収された該気体を加圧して該第 1 の空間に充填 する加圧手段が使用されてもよい。  The heat engine may further include a gas recovery container having a leaked gas storage space for collecting the leaked gas. In this case, a pressurizing means for pressurizing the gas collected in the leaked gas storage space and filling the gas into the first space may be used.
該熱機関は該ピス トンの往復運動を回転運動に変換する機構、 例 えばクランク機構を更に有していてもよい。 該熱機関が複数同時に 運転される場合、 該クランク機構は互いに機械的に連結されてもよ レヽ  The heat engine may further include a mechanism for converting the reciprocating motion of the piston into a rotary motion, for example, a crank mechanism. When a plurality of the heat engines are operated simultaneously, the crank mechanisms may be mechanically connected to each other.
発電システムに該熱機関を使用する場合には、 発電機が該熱機関 に配備される。  When the heat engine is used in a power generation system, a generator is provided for the heat engine.
該熱機関は、 その動作を好適に行うため、 パワーモニタ、 圧力セ ンサ、 プロセッサ及び情報蓄積装置、 及び/または該ピス トンの運 動を加速するための補助動力手段を更に有していてもよい。  The heat engine may further include a power monitor, a pressure sensor, a processor and an information storage device, and / or an auxiliary power unit for accelerating the operation of the piston in order to preferably perform the operation. Good.
該シリ ンダと該ピス トンとの組み合わせを複数使用する場合、 該 複数のビス トンが機械的に連結されてもよレ、。  When a plurality of combinations of the cylinder and the piston are used, the plurality of bistones may be mechanically connected.
該熱機関が該エンジン、 該第 1 の弁、 該第 2の弁、 該第 3 の弁、 及び該第 4の弁からなるュニッ トを複数有する場合、 該複数のュニ ッ トが、 該加熱装置に並列に接続され、 かつ該冷却装置に並列に接 続さてもよレ、。 When the heat engine has a plurality of units including the engine, the first valve, the second valve, the third valve, and the fourth valve, the plurality of units A heating unit connected in parallel with the heating device and in parallel with the cooling device.
本発明の別の一実施形態によれば、 容積可変の第 1の空間及び容 積可変の第 2の空間を有するエンジンと、 該第 1の空間及び該第 2 の空間に接続された高温熱源用の第 3 の空間を有する加熱装置と、 該第 1 の空間及び該第 2の空間に接続された低温熱源用の第 4の空 間を有する冷却装置と、 該第 1 の空間と該第 3 の空間との間に配備 された第 1の弁と、 該第 1 の空間と該第 4の空間との間に配備され た第 2の弁と、 該第 2の空間と該第 3 の空間との間に配備された第 3 の弁と、 該第 2の空間と該第 4の空間との間に配備された第 4の 弁とを有することを特徴とする熱機関の駆動方法が提供される。 該 熱機関の駆動方法は、 該第 2の空間の容積が増加する期間中に該第 3の弁を開状態から閉状態に切り替える工程と、 該第 2の空間の容 積が最大となるタイ ミングもしく はその近傍で該 4の弁を閉状態か ら開状態に切り替える工程と、 該第 1 の空間が最小の容積となるタ イ ミングもしく はその近傍で該第 1 の弁を開状態から閉状態に切り 替える工程と、 該第 1 の空間の容積が増加する期間の初期に該第 2 の弁を閉状態から開状態に切り替える工程と、 該第 1 の空間の容積 が所定の値となるタイ ミ ングで該第 2の弁を開状態から閉状態に切 り替える工程と、 該第 2の空間の容積が減少する期間の末期に該 4 の弁を開状態から閉状態に切り替える工程と、 該第 2の空間の容積 が最小となるタイ ミングもしく はその近傍で該第 3の弁を閉状態か ら開状態に切り替える工程と、 該第 1の空間の容積が減少する期間 中に該第 1 の弁を閉状態から開状態に切り替える工程とを有する。 該熱機関の駆動方法は、 熱エネルギーを機械的エネルギーに変換す る際に使用される。 According to another embodiment of the present invention, an engine having a variable volume first space and a variable volume second space, and a high-temperature heat source connected to the first space and the second space A heating device having a third space for cooling; a cooling device having a fourth space for a low-temperature heat source connected to the first space and the second space; and a cooling device having a fourth space for a low-temperature heat source connected to the first space and the second space. A third valve disposed between the first space and the fourth space; a second valve disposed between the first space and the fourth space; and a third valve disposed between the first space and the fourth space. A third valve disposed between the second space and the fourth space, and a fourth valve disposed between the second space and the fourth space. Provided. The method of driving the heat engine includes: a step of switching the third valve from an open state to a closed state during a period in which the volume of the second space increases; and a tie that maximizes the volume of the second space. Switching the fourth valve from the closed state to the open state at or near the timing, and opening the first valve at or near the timing at which the first space has a minimum volume. Switching the state from the closed state to the closed state, switching the second valve from the closed state to the open state at the beginning of a period in which the volume of the first space increases, and setting the volume of the first space to a predetermined value. Switching the second valve from the open state to the closed state at a time when the value becomes a value, and closing the fourth valve from the open state to the closed state at the end of a period in which the volume of the second space decreases. Switching and closing the third valve at or near the time when the volume of the second space is minimized. And a step of switching the state or Hiraku Luo state, and a step of switching the first valve from the closed state during the period in which the volume of the first space is reduced in the open state. The driving method of the heat engine converts heat energy into mechanical energy. Used when
該熱機関の駆動方法において、 該第 1 の弁、 該 2の弁、 該第 3の 弁、 及び該第 4の弁のそれぞれの閉状態から開状態への切り替え動 作は、 それぞれの弁の差圧が実質的に 0 となるタイ ミングで行われ てもよい。 この場合には圧力差に起因する損失が著しく低下すし、 熱効率が向上する。  In the method of driving the heat engine, an operation of switching each of the first valve, the second valve, the third valve, and the fourth valve from a closed state to an open state is performed by switching the respective valves. It may be performed at a timing when the differential pressure becomes substantially zero. In this case, the loss due to the pressure difference is significantly reduced, and the thermal efficiency is improved.
上記第 3の空間と該第 4の空間との間に配備される該バイパス流 路と上記バイパス原動機を有する該熱機関を駆動する場合、 該第 3 の空間と該第 4の空間との差圧は所定の範囲に制御される。 動作条 件が変化する場合、 これに応じて該所定の範囲を変更してもよい。 圧力センサを有する熱機関の駆動において、 該圧力センサの検知 信号に基づき該第 1 の弁、 該第 2の弁、 該第 3の弁、 及び該第 4の 弁の切り替え動作が行われてもよい。  When driving the heat engine having the bypass channel and the bypass motor provided between the third space and the fourth space, a difference between the third space and the fourth space is provided. The pressure is controlled within a predetermined range. When the operating conditions change, the predetermined range may be changed accordingly. In driving the heat engine having the pressure sensor, the switching operation of the first valve, the second valve, the third valve, and the fourth valve may be performed based on the detection signal of the pressure sensor. Good.
該気体は該第 2 の空間で膨張するが、 該第 2の空間における膨張 比は変化してもよい。 即ち、 該第 2の弁及び該第 4の弁のそれぞれ の開閉動作を行ぅタイ ミ ングを変化させることによ り該膨張比は変 化する。 この場合、 これに応じて該第 1 の弁及び該第 2の弁のそれ ぞれの開閉動作を行うタイ ミングも変化する。  The gas expands in the second space, but the expansion ratio in the second space may change. That is, the expansion ratio is changed by changing the opening and closing timing of each of the second valve and the fourth valve. In this case, the timing at which each of the first valve and the second valve performs the opening / closing operation changes accordingly.
該膨張比が変化した場合、 発生する動力は変化する。 即ち、 該熱 機関の駆動において、 発生する動力には該膨張比に対する依存性が ある。 同時に、 発生する動力は該第 2の空間の容積変化の周波数に 対する依存性がある。 更に、 発生する動力は該気体の温度に対する 依存性がある。 同様に、 該熱機関の駆動における熱効率は、 該膨張 比、 該周波数、 及び該気体の温度に対する依存性がある。  When the expansion ratio changes, the generated power changes. That is, when the heat engine is driven, the generated power depends on the expansion ratio. At the same time, the generated power is dependent on the frequency of the volume change of the second space. In addition, the power generated depends on the temperature of the gas. Similarly, the thermal efficiency in driving the heat engine depends on the expansion ratio, the frequency, and the temperature of the gas.
このため、 負荷の変動に対応して該膨張比を変化させることによ り、 発生する動力を変化させてもよい。 あるいは、 該周波数が所定 の値となるよ うに、 該膨張比を変化させてもよい。 これに替わり、 該膨張比を変化させることにより該周波数を変化させてもよい。 該熱機関の駆動方法は、 該気体の温度に関する温度データに基づ き、 所定の該気体の膨張比と所定の該第 2の空間の容積変化の周波 数との組み合わせに対応する該第 1 の弁、 該第 2の弁、 該第 3の弁、 及び該第 4の弁のそれぞれの切り替え動作のタイ ミングを決定する 工程を更に有していてもよい。 該工程はプロセッサによる処理によ り行われてもよレ、。 For this reason, by changing the expansion ratio in response to a change in load, Alternatively, the generated power may be changed. Alternatively, the expansion ratio may be changed so that the frequency has a predetermined value. Alternatively, the frequency may be changed by changing the expansion ratio. The driving method of the heat engine is based on temperature data on the temperature of the gas, and the first method corresponds to a combination of a predetermined expansion ratio of the gas and a predetermined frequency of volume change of the second space. The method may further include the step of determining the timing of the switching operation of each of the second valve, the second valve, the third valve, and the fourth valve. This step may be performed by processing by a processor.
該熱機関の駆動方法は、 該気体の温度に関する温度データに基づ き、 該気体の膨張比を決定する工程を更に有していてもよい。 該膨 張比を決定する工程はプロセッサによる処理によ り行われてもよい ( 該熱機関の駆動方法は、 該気体の温度に関する温度データと負荷 データとに基づき、 該気体の膨張比と該第 1 の空間の容積変化の周 波数との組み合わせを決定する工程を更に有していてもよい。 該膨 張比と該周波数との組み合わせを決定する該工程はプロセッサによ る処理によ り行われてもよい。 該工程は熱効率の向上を目的と して 実施されてもよレ、。 The driving method of the heat engine may further include a step of determining an expansion ratio of the gas based on temperature data on a temperature of the gas. The step of determining the expansion ratio may be performed by processing by a processor. ( The driving method of the heat engine is based on the temperature data and load data relating to the temperature of the gas, and the expansion ratio of the gas and the load ratio.) The method may further include a step of determining a combination with a frequency of the volume change of the first space, and the step of determining a combination of the expansion ratio and the frequency is performed by processing by a processor. This step may be performed for the purpose of improving thermal efficiency.
パワーモニタを更に有する熱機関の動作の最適化を行う場合、 該 熱機関の駆動方法は、 該第 1の弁の切り替え動作のタイ ミングを微 小に変化させた場合の出力変化をモニタ リ ングし、 該熱機関の出力 が極大となる該第 1の弁の切り替え動作のタイ ミ ングを決定するェ 程を更に有していてもよい。 更に、 熱機関とパワーモニタを有しな い熱機関とを有する複数の熱機関の組み合わせを同時に動作させる 場合、 該熱機関の駆動方法は、 該パワーモニタを有する少なく とも 1つの熱機関の動作に基づき、 該パワーモニタを有しない熱機関の 第 1 の弁の切り替え動作を行う工程を更に有していてもよい。 When optimizing the operation of the heat engine further including a power monitor, the method of driving the heat engine includes monitoring an output change when the timing of the switching operation of the first valve is slightly changed. In addition, the method may further include determining the timing of the switching operation of the first valve at which the output of the heat engine is maximized. Furthermore, when simultaneously operating a combination of a plurality of heat engines having a heat engine and a heat engine having no power monitor, the driving method of the heat engine includes at least a power monitor having the power monitor. The method may further include a step of performing a switching operation of a first valve of the heat engine not having the power monitor based on an operation of one heat engine.
同様に、 該熱機関の駆動方法は、 該第 2の弁の切り替え動作のタ ィ ミングを微小に変化させた場合の出力変化をモニタ リ ングし、 該 熱機関の出力が極大となる該第 2の弁の切り替え動作のタイ ミング を決定す工程を更に有していてもよい。 同様に、 該熱機関の駆動方 法は、 該第 4の弁の切り替え動作のタイ ミングを微小に変化させた 場合の出力変化をモニタ リ ングし、 該熱機関の出力が極大となる該 第 4の弁の切り替え動作のタイ ミングを決定する工程を更に有して いてもよレ、。  Similarly, the driving method of the heat engine monitors the output change when the timing of the switching operation of the second valve is minutely changed, and monitors the output change when the output of the heat engine is maximized. The method may further include the step of determining the timing of the switching operation of the second valve. Similarly, the driving method of the heat engine monitors the output change when the timing of the switching operation of the fourth valve is minutely changed, and monitors the output change when the output of the heat engine is maximized. The method may further include the step of determining the timing of the switching operation of the valve of No. 4.
負荷が増加する場合、 これに対応して該第 2の空間の容積変化の 周波数を増加させることによ り高い熱効率を維持することができる ( この場合、 補助動力によ り該周波数を増加させる工程を用いること によ り これは速やかに実現される。 If the load increases, high thermal efficiency can be maintained by correspondingly increasing the frequency of the volume change of the second space (in this case, the frequency is increased by the auxiliary power). This is quickly realized by using a process.
該熱機関の駆動方法は、 該第 1 の弁、 該 2の弁、 該第 3の弁、 及 び該第 4の弁のそれぞれの切り替え動作を始動用のタイ ミ ングで行 う始動用工程を更に有していてもよい。  The method for driving the heat engine includes a starting step in which switching operations of the first valve, the second valve, the third valve, and the fourth valve are performed at a timing for starting. May be further provided.
上記膨張比は、 該膨張比が増加した場合に出力が低下する領域内 に設定されてもよい。 この領域を選択することによ り高い熱効率が 得られる。  The expansion ratio may be set within a region where the output decreases when the expansion ratio increases. High thermal efficiency can be obtained by selecting this region.
本発明の更に別の一実施形態は、 上記熱エネルギーを機械的エネ ルギ一に変換する熱機関の駆動方法を逆転させることによ り、 ピー トポンプと して動作する新規な熱機関の駆動方法を提供する。 図面の簡単な説明 第 1図は、 本発明の一実施形態による熱機関の内部を説示する概 念図である。 Still another embodiment of the present invention provides a novel method of driving a heat engine that operates as a pet pump by reversing the method of driving a heat engine that converts the heat energy into mechanical energy. I will provide a. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a conceptual diagram illustrating the inside of a heat engine according to an embodiment of the present invention.
第 2図は、 第 1図に示す熱機関の第 3の弁を開状態から閉状態に 切り替えるタイ ミングに対応するビス トン位置の一例を説示する概 念図である。  FIG. 2 is a conceptual diagram illustrating an example of a biston position corresponding to the timing of switching the third valve of the heat engine shown in FIG. 1 from an open state to a closed state.
第 3図は、 第 1 図に示す熱機関の第 4の弁を閉状態から開状態に 切り替えるタイ ミングに対応するビス トン位置の一例を説示する概 念図である。  FIG. 3 is a conceptual diagram illustrating an example of a biston position corresponding to a timing at which the fourth valve of the heat engine shown in FIG. 1 is switched from a closed state to an open state.
第 4図は、 第 1図に示す熱機関の第 1 の弁を開状態から閉状態に切 り替えるタイ ミ ングに対応するビス トン位置の一例を説示する概念 図である。  FIG. 4 is a conceptual diagram illustrating an example of a biston position corresponding to the timing of switching the first valve of the heat engine shown in FIG. 1 from an open state to a closed state.
第 5図は、 第 1図に示す熱機関の第 2の弁を閉状態から開状態に 切り替えるタイ ミングに対応するビス トン位置の一例を説示する概 念図である。  FIG. 5 is a conceptual diagram illustrating an example of a biston position corresponding to the timing of switching the second valve of the heat engine shown in FIG. 1 from a closed state to an open state.
第 6図は、 第 1図に示す熱機関の第 2の弁を開状態から閉状態に 切り替えるタイ ミ ングに対応するピス トン位置の一例を説示する概 念図である。  FIG. 6 is a conceptual diagram illustrating an example of a piston position corresponding to a timing for switching the second valve of the heat engine shown in FIG. 1 from an open state to a closed state.
第 7図は、 第 1 図に示す熱機関の第 4の弁を開状態から閉状態に 切り替えるタイ ミングに対応するビス トン位置の一例を説示する概 念図である。  FIG. 7 is a conceptual diagram illustrating an example of a biston position corresponding to a timing of switching the fourth valve of the heat engine shown in FIG. 1 from an open state to a closed state.
第 8図は、 第 1図に示す熱機関の第 3の弁を閉状態から開状態に切 り替えるタイ ミ ングに対応するピス トン位置の一例を説示する概念 図である。  FIG. 8 is a conceptual diagram illustrating an example of a piston position corresponding to the timing of switching the third valve of the heat engine shown in FIG. 1 from a closed state to an open state.
第 9図は、 第 1 図に示す熱機関の第 1の弁を閉状態から開状態に 切り替えるタイ ミングに対応するビス トン位置の一例を説示する概 念図である。 Fig. 9 is a schematic diagram illustrating an example of the biston position corresponding to the timing of switching the first valve of the heat engine shown in Fig. 1 from the closed state to the open state. It is a reminder.
第 1 0図は、 本発明の別の一実施形態に基づく熱機関の駆動方法 において、 第 1図に示す熱機関の第 2の弁を開状態から閉状態に切 り替えるタイ ミングに対応するビス トン位置の一例を説示する概念 図である。  FIG. 10 corresponds to a timing of switching the second valve of the heat engine from the open state to the closed state shown in FIG. 1 in the heat engine driving method according to another embodiment of the present invention. It is a conceptual diagram which illustrates an example of a biston position.
第 1 1図は、 本発明の更に別の一実施形態による熱機関の内部を 説示する概念図である。  FIG. 11 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
第 1 2図は、 本発明の更に別の一実施形態による熱機関の内部を 説示する概念図である。  FIG. 12 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
第 1 3図は、 本発明の更に別の一実施形態による熱機関の断面を 説示する概念図である。  FIG. 13 is a conceptual diagram illustrating a cross section of a heat engine according to still another embodiment of the present invention.
第 1 4図は、 本発明の更に別の一実施形態による熱機関の内部を 説示する概念図である。  FIG. 14 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
第 1 5図は、 本発明の更に別の 実施形態による熱機関の内部を 説示する概念図である。  FIG. 15 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
第 ] 6図は、 本発明の更に別の 実施形態による熱機関の内部を 説示する概念図である。  FIG. 6 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
第 1 7図は、 本発明の更に別の 実施形態による熱機関の内部を 説示する概念図である。  FIG. 17 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
第 1 8図は、 第 1図に説示された熱機関の一駆動条件における熱 効率の膨張比依存性の例を示した図である。  FIG. 18 is a diagram illustrating an example of the dependence of the thermal efficiency on the expansion ratio under one driving condition of the heat engine illustrated in FIG.
第 ] 9図は、 第 1 8図に対応する駆動条件における 1周期あたり の出力の膨張比依存性の例を示した図である。  FIG. 9 is a diagram showing an example of the expansion ratio dependence of the output per cycle under the driving conditions corresponding to FIG.
第 2 0図は、 第 1図に説示された熱機関の別の一駆動条件におけ る熱効率の膨張比依存性の例を示した図である。 0 第 2 1 図は、 第 2 0図に対応する駆動条件における 1周期あたり の出力の膨張比依存性の例を示した図である。 FIG. 20 is a diagram showing an example of the dependence of the thermal efficiency on the expansion ratio under another driving condition of the heat engine illustrated in FIG. 0 FIG. 21 is a diagram showing an example of the dependence of the output on the expansion ratio per cycle under the driving conditions corresponding to FIG.
第 2 2図は、 第 1図に説示された熱機関の更に別の一駆動条件に おける熱効率の膨張比依存性の例を示した図である。  FIG. 22 is a diagram showing an example of the dependence of the thermal efficiency on the expansion ratio under still another driving condition of the heat engine illustrated in FIG.
第 2 3図は、 第 2 2図に対応する駆動条件における 1周期あたり の出力の膨張比依存性の例を示した図である。  FIG. 23 is a diagram showing an example of the expansion ratio dependence of the output per cycle under the driving conditions corresponding to FIG.
第 2 4図は、 更に別の一駆動条件における熱効率の駆動周波数依 存性の例を示した図である。  FIG. 24 is a diagram showing an example of the drive frequency dependence of the thermal efficiency under still another drive condition.
第 2 5図は、 第 2 4図に対応する駆動条件における出力の駆動周 波数依存性の例を示した図である。  FIG. 25 is a diagram showing an example of the dependence of the output on the driving frequency under the driving conditions corresponding to FIG.
第 2 6図は、 更に別の一駆動条件における熱効率の駆動周波数依 存性の例を示した図である。  FIG. 26 is a diagram showing an example of the drive frequency dependence of the thermal efficiency under still another drive condition.
第 2 7図は、 第 2 6図に対応する駆動条件における出力の駆動周 波数依存性の例を示した図である。 発明を実施するための最良の形態  FIG. 27 is a diagram illustrating an example of the drive frequency dependence of the output under the drive conditions corresponding to FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をよ り詳細に説述するために、 添付の図面を引用して本発 明を説明する。 いくつかの図を通して、 同一の参照番号は同一もし く は対応する部分を示す。  In order to describe the present invention in more detail, the present invention will be described with reference to the accompanying drawings. Throughout the figures, identical reference numbers indicate identical or corresponding parts.
第 1 図において、 熱機関 1 0は、 シリ ンダ 2 1及びビス トン 3 1 を有する。 該シリ ンダ 2 1 の両端は、 それぞれ気密性を有している。 該シリ ンダ 2 1 内に該ピス トン 3 1 が配備される。 該ピス トン 3 1 によ り該シリ ンダ 2 1 内の空間は容積可変の第 1 の空間 7 1 と第 2 の空間 7 3 とに分離される。 該ピス トン 3 1 は第 1図において上下 に往復運動が可能な構造となっており、 該第 1 の空間 7 1及び該第 2の空間 7 3の容積は、 それぞれ該ピス トン 3 1 の往復運動に伴い 変化する。 この場合、 該第 1 の空間 7 1の容積が増加する場合に該 第 2 の空間 7 3 の容積が減少する。 In FIG. 1, the heat engine 10 has a cylinder 21 and bistons 31. Both ends of the cylinder 21 are airtight. The piston 31 is provided in the cylinder 21. The space inside the cylinder 21 is separated by the piston 31 into a first space 71 and a second space 73 whose volume is variable. The piston 31 has a structure capable of reciprocating up and down in FIG. 1, and the first space 71 and the The volume of the second space 73 changes with the reciprocating movement of the piston 31. In this case, when the volume of the first space 71 increases, the volume of the second space 73 decreases.
該熱機関 1 0が動力発生用に駆動される場合には、 このビス トン 3 1 の往復運動に伴い動力が発生しする。 該ピス トン 3 1 が受ける 動力は図示されない動力伝達機構及び Zまたは動力変換機構、 例え ばビス トン棒とクランク機構及び zまたは発電装置、 を通じて外部 に伝達される。 該熱機関 1 0がヒー トポンプ用に駆動される場合に は、 該ピス トン 3 1 に図示されない動力源から動力が供給される。 即ち、 該ピス トン 3 1及び該シリ ンダ 2 1 は動力を発生するェンジ ンも しく はヒー トポンプと して作用するエンジンに対応する。 即ち 本実施形態によれば 1単位の該エンジン内の該第 1 の空間 7 1及び 該第 2の空間 Ί 3は単一のシリ ンダ 2 1 と単一のビス トン 3 1 を用 いて形成される。 このエンジン構造は、 摩擦損失の低減、 熱効率の 向上、 コス ト低減、 あるいは高出力化に寄与する。  When the heat engine 10 is driven to generate power, power is generated with the reciprocation of the biston 31. The power received by the piston 31 is transmitted to the outside through a power transmission mechanism and a Z or power conversion mechanism (not shown), for example, a biston rod and a crank mechanism and z or a power generator. When the heat engine 10 is driven for a heat pump, power is supplied to the piston 31 from a power source (not shown). That is, the piston 31 and the cylinder 21 correspond to an engine acting as a power generating engine or an engine acting as a heat pump. That is, according to the present embodiment, the first space 71 and the second space Ί3 in one unit of the engine are formed using a single cylinder 21 and a single bistone 31. You. This engine structure contributes to reduction of friction loss, improvement of thermal efficiency, cost reduction, or higher output.
該熱機関 1 0は第 3 の空間 7 5を有し高温熱源と して動作する加 熱装置 4 1 、 第 4の空間 7 7を有し低温熱源と して動作する冷却装 置 5 1 、 第 1 の弁 6 1 、 第 2の弁 6 3、 第 3 の弁 6 5、 及び第 4の 弁 6 7を更に有する。 該加熱装置 4 1 と しては、 外部の高温熱源、 例えば発電所や工場の廃熱源ゃ蓄熱体、 から熱の供給を受けること を特徴とする熱交換器、 あるいは、 太陽熱やその他の熱エネルギー 源により該気体を暖める加熱装置が使用されてもよい。  The heat engine 10 has a third space 75 and a heating device 41 that operates as a high-temperature heat source, a cooling device 51 that has a fourth space 77 and operates as a low-temperature heat source, It further has a first valve 61, a second valve 63, a third valve 65, and a fourth valve 67. As the heating device 41, a heat exchanger characterized by receiving heat from an external high-temperature heat source, for example, a waste heat source of a power plant or a factory ゃ a heat storage unit, or solar heat or other heat energy A heating device that warms the gas with a source may be used.
該冷却装置 5 1 と しては、 例えば、 液体の蒸発熱によ り冷却され ることを特徴とする冷却装置、 低温の液体によ り冷却されるもの、 あるいは自然の空冷装置等が使用されてもよい。 また、 氷等の蓄熱 2 体や低温廃熱が利用されてもよい。 As the cooling device 51, for example, a cooling device characterized by being cooled by heat of evaporation of a liquid, a device cooled by a low-temperature liquid, or a natural air cooling device is used. You may. Also, heat storage such as ice Two bodies or low temperature waste heat may be used.
該加熱装置 4 1 の両端の開口部は該第 1 の空間 7 1及び該第 2の 空間 7 3にそれぞれ接続される。 該第 1 の空間 7 1 と該加熱装置 4 1 との間には該第 1 の弁 6 1 が配備され、 該第 1 の弁 6 1 が開状態 の場合には該第 1 の空間 Ί 1 と該第 3の空間 7 5 とは連通状態とな る。 該第 2の空間 7 3 と該加熱装置 4 1 との間には該第 3 の弁 6 5 が配備され、 該第 3の弁 6 5が開状態の場合には該第 2の空間 7 3 と該第 3 の空間 7 5 とは連通状態となる。  Openings at both ends of the heating device 41 are connected to the first space 71 and the second space 73, respectively. The first valve 61 is provided between the first space 71 and the heating device 41, and when the first valve 61 is open, the first space Ί1 And the third space 75 are in communication with each other. The third valve 65 is provided between the second space 73 and the heating device 41, and when the third valve 65 is open, the second space 73 is provided. And the third space 75 are in communication with each other.
該冷却装置 5 1 の両端の開口部は該第 1 の空間 7 1及び該第 2の 空間 7 3にそれぞれ接続される。 該第 1 の空間 7 1 と該冷却装置 5 1 との間には該第 2の弁 6 3が配備され、 該第 2の弁 6 3が開状態 の場合には該第 1 の空間 7 1 と該第 4の空間 7 7 とは連通状態とな る。 該第 2の空間 7 3 と該冷却装置 5 1 との間には該第 4の弁 6 7 が配備され、 該第 4の弁 6 7が開状態の場合には該第 2の空間 7 3 と該第 4の空間 7 7 とは連通状態となる。  Openings at both ends of the cooling device 51 are connected to the first space 71 and the second space 73, respectively. The second valve 63 is provided between the first space 71 and the cooling device 51, and when the second valve 63 is open, the first space 71 is open. And the fourth space 77 are in communication with each other. The fourth valve 67 is provided between the second space 73 and the cooling device 51, and when the fourth valve 67 is open, the second space 73 is provided. And the fourth space 77 are in communication with each other.
これらの弁は所定のタイ ミングで迅速に開閉の切り替え動作を行 うため、 これに対応する構造を有する。 弁と して、 例えば、 電磁的 に動作するものがある。 短い周期で該ピス トン 3 1 を駆動する際に は、 該第 1 の弁 6 1、 該第 2の弁 6 3 、 該第 3の弁 6 5、 及び該第 4 の弁 6 7はそれぞれ、 高速で開閉状態が切り替えられることが好ま 死容積を低減するという観点から、 図示の例以外の位置での上記 空間の接続が行われてもよい。 また、 図示の例以外の位置に弁の配 置が行われてもよい。  These valves have a structure corresponding to the switching operation of opening and closing quickly at a predetermined timing. For example, there is a valve that operates electromagnetically. When driving the piston 31 in a short cycle, the first valve 61, the second valve 63, the third valve 65, and the fourth valve 67 each include: It is preferable that the open / close state be switched at a high speed, and from the viewpoint of reducing the dead volume, the connection of the space may be performed at a position other than the illustrated example. Further, the valve may be arranged at a position other than the illustrated example.
流体の圧力損失を低減するという観点から、 該気体の流路の断面 積は所定の値以上とする設計が行われる。 From the viewpoint of reducing the pressure loss of the fluid, the cross section of the gas flow path The product is designed to be equal to or more than a predetermined value.
該加熱装置 4 1 における加熱を効果的に行うため、 該第 3の空間 In order to effectively perform heating in the heating device 41, the third space
7 5において、 該気体と該加熱装置 4 1 との接触面積を増加させる 手段、 例えば放熱板や微細な枝管構造などが配備されてもよい。 熱 交換における熱力学的不可逆性を低減するよ うに該加熱装置 4 1 の 温度分布が設計されてもよい。 該冷却装置 5 1 についても同様の手 段が配備されてもよい。 In 75, means for increasing the contact area between the gas and the heating device 41, for example, a heat sink or a fine branch pipe structure may be provided. The temperature distribution of the heating device 41 may be designed to reduce thermodynamic irreversibility in heat exchange. Similar means may be provided for the cooling device 51.
該第 1 の弁 6 1 、 該第 2の弁 6 3、 該第 3 の弁 6 5、 及び該第 4 の弁 6 7のすべてが閉状態の場合には、 該第 1 の空間 7 1 、 該第 2 の空間 7 3、 該第 3の空間 7 5、 及び該第 4の空間 Ί 7は、 それぞ れの気密性が維持される構造となっている。 該第 1 の空間 7 1 、 該 第 2の空間 7 3、 該第 3 の空間 7 5、 及び該第 4の空間 7 7には所 定の気体が所定の量充填される。 該熱機関 1 0が停止状態での該気 体の圧力分布は任意である。 例えば、 該第 1 の弁 6 1、 該第 2の弁 When all of the first valve 61, the second valve 63, the third valve 65, and the fourth valve 67 are closed, the first space 71, The second space 73, the third space 75, and the fourth space Ί have a structure in which their airtightness is maintained. The first space 71, the second space 73, the third space 75, and the fourth space 77 are filled with a predetermined amount of gas. The pressure distribution of the gas when the heat engine 10 is stopped is arbitrary. For example, the first valve 61, the second valve
6 3、 該第 3 の弁 6 5、 及び該第 4 の弁 6 7のすべてが開いた状態 であり、 すべての空間内に同一の圧力の該気体が保持される停止状 態もある。 別の一例と して、 該第 3の空間 7 5内の該気体の圧力が 該第 4の空間 7 7内の該気体の圧力を上回るよ うにする停止状態も fcる。 63, the third valve 65, and the fourth valve 67 are all open, and there is also a stop state in which the gas at the same pressure is held in all the spaces. As another example, a stop state where the pressure of the gas in the third space 75 exceeds the pressure of the gas in the fourth space 77 may be fc.
水素、 ヘリ ウム、 ネオン、 メタン、 アンモニア、 窒素、 空気、 酸 素、 アルゴン、 及び二酸化炭素、 あるいはこれらの混合物等が該気 体と して使用可能である。 後述するように、 低い分子量を有する気 体を使用することが好ましい。 また、 出力、 即ち該熱機関 1 0によ り発生する動力は該気体の圧力の上昇と ともに増加するため、 高い 出力を得る上では、 該気体を高い平均圧力で充填することが好まし 4 レヽ Hydrogen, helium, neon, methane, ammonia, nitrogen, air, oxygen, argon, and carbon dioxide, or a mixture thereof can be used as the gas. As described below, it is preferable to use a gas having a low molecular weight. Since the output, that is, the power generated by the heat engine 10 increases with the pressure of the gas, it is preferable to fill the gas with a high average pressure in order to obtain a high output. 4 Ray
更に、 該第 1 の空間 7 1 と該第 2の空間 Ί 3 との間の気密性を維 持するため、 該ピス トン 3 1 には図示されないシーリ ング部材が配 備されてもよい。 また、 適宜摩擦を低減するための潤滑剤、 軸受、 あるいは摩擦低減機構等が配備されてもよい。 該第 1 の空間 7 1及 び該第 2 の空間 7 3内で硬い粒子を含む塵埃が除去された場合にも 摩擦や摩耗は低減される。 例えば、 5 0 0 n m以上の粒径を有する 塵埃の数が 1 立方メ一トルあたり 3 0 0 0 0 0個以下に維持された 場合にはこの摩擦や摩耗が低減される効果がある。  Further, in order to maintain airtightness between the first space 71 and the second space 3, a sealing member (not shown) may be provided on the piston 31. In addition, a lubricant, a bearing, a friction reducing mechanism, or the like for appropriately reducing friction may be provided. Even when dust containing hard particles is removed in the first space 71 and the second space 73, friction and wear are reduced. For example, when the number of dust particles having a particle diameter of 500 nm or more is maintained at 30000 or less per cubic meter, the friction and wear are effectively reduced.
該第 1 の空間 Ί 1 と該第 2 の空間 7 3 との差圧は該ピス トン 3 1 が該シリ ンダ 2 1の中央部にある場合には小さく なる傾向にある。 この為、 該シリ ンダ 2 1 の内径を中央部で僅かに増加させても気体 の漏洩が問題とならない場合がある。  The differential pressure between the first space # 1 and the second space 73 tends to be smaller when the piston 31 is located at the center of the cylinder 21. For this reason, even if the inner diameter of the cylinder 21 is slightly increased at the center, leakage of gas may not be a problem.
更に、 上記熱機関 1 0は、 図示されない上記エンジンが付加され てもよい。 この場合、 エンジン及び第 1、 第 2、 第 3、 及び第 4の弁 からなるュニッ トを複数と して、 該ュニッ トをそれぞれ並列に該冷 却装置 5 1及び該加熱装置 4 1 に接続してもよい。  Further, the heat engine 10 may be provided with the engine (not shown). In this case, a plurality of units each including an engine and first, second, third, and fourth valves are connected to the cooling device 51 and the heating device 41 in parallel, respectively. May be.
以下に、 該熱機関 1 0の駆動方法を説明する。  Hereinafter, a method of driving the heat engine 10 will be described.
この熱機関 1 0の動作について説明する。 まず、 以下の説明に使 用される用語及び記号の定義を行う。 即ち、 第 1 の死点とは、 該第 1 の空間 7 1 の容積が最小となる該ピス トン 3 1 の位置を指す。 第 2 の死点とは、 該第 2の空間 7 3の容積が最小となる該ピス トン 3 1 の位置を指す。 以下の図面で、 該ピス トン 3 1 の近傍に矢印が示さ れる場合には、 該矢印は該ピス トン 3 1 の運動方向を示すものとす る。 また、 図中に示される記号で、 開→閉とは、 図示の状態で該記 号に近接する弁が開状態から閉状態に切り替えられることを意味す る。 また、 閉→開は該記号に近接する弁が閉状態から開状態に切り 替えられることを意味する。 The operation of the heat engine 10 will be described. First, terms and symbols used in the following description are defined. That is, the first dead point indicates the position of the piston 31 where the volume of the first space 71 is minimum. The second dead point refers to the position of the piston 31 where the volume of the second space 73 is minimized. In the following drawings, when an arrow is shown near the piston 31, the arrow indicates the direction of movement of the piston 31. Also, in the symbols shown in the figure, open → closed This means that the valve close to the signal can be switched from the open state to the closed state. Also, closed → open means that the valve adjacent to the symbol is switched from the closed state to the open state.
該加熱装置 4 1 は該冷却装置 5 1 よ り高温の状態にある。 このた め、 該第 3の空間 7 5内にある該気体の温度は該第 4の空間 7 7内 にある該気体よ り高温の状態にある。  The heating device 41 is at a higher temperature than the cooling device 51. For this reason, the temperature of the gas in the third space 75 is higher than the temperature of the gas in the fourth space 77.
該熱機関 1 0の始動において、 適切な始動の為の動作が施されて もよい。 例えば、 該第 1 の弁 6 1 、 該第 2の弁 6 3、 該第 3 の弁 6 5、 及び該第 4の弁 6 7のすべてが開いた状態であり、 すべての空 間内に同一の圧力の該気体が保持される停止状態に対しては、 該第 3の空間 7 5内の該気体の圧力を上昇させる工程、 及び該第 4の空 間 7 7内の該気体の圧力を減させる工程等が施されてもよい。 例え ば、 該第 3の弁 6 5または該第 4の弁 6 7が閉の状態で該ピス トン を補助的な動力により往復運動させ、 適宜該第 1 の弁 6 1及び該第 2の弁 6 3のそれぞれの開閉動作を適切なタイ ミングで行う ことに よ り、 該第 3の空間 7 5の圧力を上昇させ、 該第 4の空間 7 7の圧 力を低下させることができる。 これによ り該第 1 の空間 7 1 、 該第 2の空間 7 3、 該第 3 の空間 7 5、 及び該第 4 の空間 7 7の初期圧 力分布を適切に設定することができる。 この場合には著しく 円滑な 初期動作を行う ことができる。 なお、 該気体の圧力分布がいずれの 初期状態にあっても、 以下に説述する熱機関の駆動方法により、 該 熱機 1 0の駆動が達成される。  In starting the heat engine 10, an operation for proper start may be performed. For example, the first valve 61, the second valve 63, the third valve 65, and the fourth valve 67 are all open and the same in all the spaces. For a stopped state in which the gas at the pressure of the following is held, increasing the pressure of the gas in the third space 75, and reducing the pressure of the gas in the fourth space 77 For example, a step of reducing the temperature may be performed. For example, when the third valve 65 or the fourth valve 67 is closed, the piston is reciprocated by auxiliary power, and the first valve 61 and the second valve are appropriately operated. By performing the opening and closing operations of 63 at appropriate timing, the pressure in the third space 75 can be increased and the pressure in the fourth space 77 can be reduced. As a result, the initial pressure distribution of the first space 71, the second space 73, the third space 75, and the fourth space 77 can be appropriately set. In this case, an extremely smooth initial operation can be performed. Regardless of the initial pressure distribution of the gas, the driving of the heat engine 10 is achieved by the driving method of the heat engine described below.
以下に、 この弁の動作に関する工程の一例を、 その順序に従い説 明する。 即ち、 本発明の一実施形態による熱機関の駆動方法は、 ( 1 ) 第 2図に例示される位置に該ピス トン 3 1 が到達するタイ ミ 6 ングで該第 3の弁 6 5を開状態から閉状態に切り替える工程 (以下 第 1 の工程と して言及される) で、 該第 2の空間 7 3の容積が増加 する期間中に行われるもの、 Hereinafter, an example of steps relating to the operation of this valve will be described in the order. That is, the driving method of the heat engine according to the embodiment of the present invention is described as follows: (1) The timing at which the piston 31 reaches the position illustrated in FIG. Switching the third valve 65 from the open state to the closed state (hereinafter referred to as the first step) during the period when the volume of the second space 73 increases. What
( 2 ) 第 3図に例示される位置に該ピス トン 3 1 が到達するタイ ミ ングで該第 4の弁 6 7を閉状態から開状態に切り替える工程 (以下 第 2の工程と して言及される) で、 該第 2の空間 7 3 の容積が最大 となるタイ ミ ングもしく はその近傍で行われるもの、  (2) The step of switching the fourth valve 67 from the closed state to the open state at the timing when the piston 31 reaches the position illustrated in FIG. 3 (hereinafter referred to as the second step) At or near the time when the volume of the second space 73 is maximized,
( 3 ) 第 4図に例示される位置に該ピス トン 3 1 が到達するタイ ミ ングで該第 1 の弁 6 1 を開状態から閉状態に切り替える工程 (以下 第 3の工程と して言及される) で、 該第 1 の空間 7 1 の容積が最小 となるタイ ミングもしく はその近傍で行われるもの、  (3) A step of switching the first valve 61 from the open state to the closed state at a timing when the piston 31 reaches the position illustrated in FIG. 4 (hereinafter referred to as a third step) Is performed at or near the timing at which the volume of the first space 71 is minimized,
( 4 ) 第 5図に例示される位置に該ピス トン 3 1が到達するタイ ミ ングで該第 2の弁 6 3を閉状態から開状態に切り替える工程 (以下 第 4の工程と して言及される) で、 該第 1 の空間 7 1 の容積が増加 する期間の初期に行われるもの、  (4) A step of switching the second valve 63 from the closed state to the open state at the timing when the piston 31 reaches the position illustrated in FIG. 5 (hereinafter referred to as a fourth step) Performed at the beginning of the period when the volume of the first space 71 increases.
( 5 ) 第 6図に例示される位置に該ピス トン 3 1 が到達するタイ ミ ングで該第 2の弁 6 3を開状態から閉状態に切り替える工程 (以下 第 5の工程と して言及される)、 該第 1 の空間 7 1 の容積が所定の容 積となるタイ ミ ングで行われるもの、  (5) A step of switching the second valve 63 from the open state to the closed state at the timing when the piston 31 reaches the position illustrated in FIG. 6 (hereinafter referred to as a fifth step) Performed at a timing when the volume of the first space 71 becomes a predetermined volume,
( 6 ) 第 7図に例示される位置に該ピス トン 3 1 が到達するタイ ミ ングで該第 4の弁 6 7を開状態から閉状態に切り替える工程 (以下 第 6の工程と して言及される) で、 該第 2の空間 7 3 の容積が減少 する期間の末期に行われるもの、  (6) A step of switching the fourth valve 67 from the open state to the closed state at the timing when the piston 31 reaches the position illustrated in FIG. 7 (hereinafter referred to as a sixth step) Performed at the end of the period in which the volume of the second space 73 decreases.
( 7 ) 第 8図に例示される位置に該ピス トン 3 1 が到達するタイ ミ ングで該第 3 の弁 6 5を閉状態から開状態に切り替える工程 (以下 第 7の工程と して言及される) で、 該第 2の空間 7 3 の容積が最小 となるタイ ミングもしく はその近傍で行われるもの、 及び (7) Step of switching the third valve 65 from the closed state to the open state at the timing when the piston 31 reaches the position illustrated in FIG. Referred to as the seventh step), which is performed at or near the timing where the volume of the second space 73 is minimized, and
( 8 ) 第 9図に例示される位置に該ピス トン 3 1 が到達するタイ ミ ングで該第 1 の弁 6 1 を閉状態から開状態に切り替える工程 (以下 第 8の工程と して言及される) で、 該第 1 の空間 7 1 の容積が減少 する期間中に行われるもの、 を有している。  (8) A step of switching the first valve 61 from the closed state to the open state at the timing when the piston 31 reaches the position illustrated in FIG. 9 (hereinafter referred to as an eighth step) Which is performed during a period in which the volume of the first space 71 is reduced.
該熱機関の駆動方法により、 該気体は、 第 1の空間 7 1 から該第 3 の空間 7 5 へ、 該第 3 の空間 7 5から該第 2の空間 7 3 へ、 該第 2 の空間 7 3から該第 4 の空間 7 7 へ、 該第 4の空間 7 7から該第 1 の空間 7 1 へ順次移動する。 即ち、 第 2 — 9図において半時計周り を基本とする該気体の循環が発生する。 この循環の中で、 該第 3の 空間 7 5を該気体が通過する際に該気体は熱を吸収しその温度が上 昇し、 該第 4 の空間 7 7を該気体が通過する際に該気体は熱を放出 しその温度が低下する。 以下に該熱機関の駆動方法の原理を説明す 上記弁の動作を繰り返すことによ り、 図 2に示される状態で、 該 第 1 の空間 7 1 、 該第 2 の空間 Ί 3、 及び該第 3の空間 7 5の圧力 はほぼ等しく、 かつ、 該第 4の空間 7 7の圧力が該第 3の空間 7 5 の圧力より低圧の状態が達成される。 そして該第 4の空間 7 7内の 該気体の温度は該第 3の空間 7 5内の該気体の温度よ り低温の状態 となっている。  According to the driving method of the heat engine, the gas is transferred from the first space 71 to the third space 75, from the third space 75 to the second space 73, to the second space 73. It moves sequentially from 73 to the fourth space 77, from the fourth space 77 to the first space 71. In other words, the circulation of the gas occurs counterclockwise in FIG. 2-9. In this circulation, when the gas passes through the third space 75, the gas absorbs heat and its temperature rises, and when the gas passes through the fourth space 77, The gas releases heat and its temperature decreases. Hereinafter, the principle of the driving method of the heat engine will be described. By repeating the operation of the valve, the first space 71, the second space Ί3, and the second space 71 in the state shown in FIG. The pressure in the third space 75 is substantially equal, and the pressure in the fourth space 77 is lower than the pressure in the third space 75. The temperature of the gas in the fourth space 77 is lower than the temperature of the gas in the third space 75.
該第 1 の工程が完了後、 該ピス トン 3 1 は第 2の死点から離れる 運動を続ける。 この運動によ り該第 2の空間 7 3中の該気体は断熱 膨張する。 該第 2の空間 7 3における該気体の膨張比が所定の値と なるように、 該第 1 の工程が行われるタイ ミングは決定される こ こで、 該膨張比とは、 該第 2の工程が行われる時点での該第 2の空 間 7 3の容積を該第 1 の工程が行われる時点での該第 2の空間 7 3 の容積で除したものである。 該第 1 の工程を実施するタイ ミ ングを 遅らせた場合に、 該膨張比は低下する。 該熱機関 1 0の駆動周期や 発生動力を制御するため、 第 2図に説示された該第 1 の工程が行わ れるタイ ミングを変化させてもよい。 また、 該加熱装置 4 1ゃ該冷 却装置 5 1 の温度変化に対応して、 該タイ ミングを変化させてもよ レ、。 一方該第 1 の空間 7 1及び該第 3の空間 7 5中の該気体は、 該 第 1 の弁 6 1 が開状態にあるため圧縮される。 該第 3の空間の容積 が大きな場合には該圧縮に伴う圧力上昇は小さ く なる。 After the first step is completed, the piston 31 continues its movement away from the second dead center. Due to this movement, the gas in the second space 73 adiabatically expands. The timing at which the first step is performed is determined so that the expansion ratio of the gas in the second space 73 becomes a predetermined value. Here, the expansion ratio refers to the volume of the second space 73 at the time when the second step is performed and the volume of the second space 73 at the time when the first step is performed. It is divided by volume. If the timing of performing the first step is delayed, the expansion ratio decreases. In order to control the driving cycle and generated power of the heat engine 10, the timing at which the first step illustrated in FIG. 2 is performed may be changed. Further, the timing may be changed in accordance with the temperature change of the heating device 41 装置 the cooling device 51. On the other hand, the gas in the first space 71 and the third space 75 is compressed because the first valve 61 is open. When the volume of the third space is large, the pressure rise due to the compression becomes small.
該第 2の工程が実施されるタイ ミ ングは、 該第 4の弁 6 7におけ る差圧が実質的に 0 となるタイ ミング及びその近傍に対応する。  The timing at which the second step is performed corresponds to the timing at which the differential pressure at the fourth valve 67 becomes substantially zero and the vicinity thereof.
該第 3の工程の完了後で該第 4の工程が行われるまでの問、 該第 1 の空間 7 1 の気密性が確保されるため、 該第 1の空間 7 1 内の該気 体は膨張する。 該第 4 の工程が行われるタイ ミ ングは、 該第 2の弁 6 3における差圧が実質的に 0 となるタイ ミング及びその近傍に対 応する。  Since the airtightness of the first space 71 is ensured between the completion of the third step and the execution of the fourth step, the gas in the first space 71 is Swell. The timing at which the fourth step is performed corresponds to the timing at which the differential pressure at the second valve 63 becomes substantially zero and the vicinity thereof.
該第 4の工程が完了後で該第 5 の工程が行われるまでの間、 該ピ ス トン 3 1 の運動に伴い、 該第 1 の空間 Ί 1 内に該冷却装置 5 1 を 通過した低温の該気体が導入される。 同時に、 該第 4の空間 7 7に は断熱膨張後の該気体が導入され、 冷却される。 この冷却に伴い該 第 1 の空間 7 1 、 該第 2 の空間 7 3、 及び該第 4の空間 7 7の圧力 は低下する。 これは膨張後の該気体の冷却が等積的に行われること に起因する。 この圧力低下は該第 4の空間の容積が小さい場合に顕 著となる。 一方該第 4の空間の容積が大きい場合にはこの圧力変化 は小さい。 該第 1 の空間 7 1 内に導入される該気体の質量が所定の 値となるよ うに、 該第 5 の工程が行われるタイ ミ ングが決定される。 該第 5 の工程が行われた後で該第 6の工程が行われるまでの間、 該第 2の空間 7 3及び該第 4の空間 7 7内の該気体は圧縮される。 該第 6の工程が完了した時点で該第 4の空間 7 7には所定の質量の 該気体が保持される。 After the completion of the fourth step, until the fifth step is performed, the low temperature that has passed through the cooling device 51 in the first space Ί1 due to the movement of the piston 31 Is introduced. At the same time, the gas after adiabatic expansion is introduced into the fourth space 77 and cooled. With this cooling, the pressures in the first space 71, the second space 73, and the fourth space 77 decrease. This is because the cooling of the gas after the expansion is performed in an equal volume manner. This pressure drop becomes significant when the volume of the fourth space is small. On the other hand, when the volume of the fourth space is large, this pressure change Is small. The timing at which the fifth step is performed is determined so that the mass of the gas introduced into the first space 71 becomes a predetermined value. After the fifth step is performed and before the sixth step is performed, the gas in the second space 73 and the fourth space 77 is compressed. At the time when the sixth step is completed, a predetermined mass of the gas is held in the fourth space 77.
該第 6の工程の完了後で該第 7の工程が行われるまでの間、 該第 2 の空間 Ί 3 の気密性が確保される。 このため該第 2の空間 7 3 内の 該気体は更に圧縮される。 該第 7の工程が行われるタイ ミ ングは該 第 3 の弁 6 5における差圧が実質的に 0 となるタイ ミ ング及びその 近傍に対応する。 即ち、 第 6 の工程が実施されるタイ ミングは、 該 ビス トン 3 1 が該第 2の死点に到達するタィ ミ ングで該第 3の弁 6 5における差圧が実質的に 0 となるように設定される。  After the completion of the sixth step, the airtightness of the second space # 3 is maintained until the seventh step is performed. Therefore, the gas in the second space 73 is further compressed. The timing at which the seventh step is performed corresponds to the timing at which the differential pressure at the third valve 65 becomes substantially zero and the vicinity thereof. That is, at the timing when the sixth step is performed, the differential pressure at the third valve 65 becomes substantially zero at the timing when the biston 31 reaches the second dead center. It is set as follows.
該第 7の工程の完了後で該第 1 の工程が行われるまでの間、 該第 2 の空間 Ί 3には該第 3の空間 7 5を通過した高温の該気体が導入さ れる。  After completion of the seventh step and before the first step is performed, the high-temperature gas that has passed through the third space 75 is introduced into the second space # 3.
該第 7の工程の完了後で該第 8の工程が行われるまでの間、 該第 2 の空間 7 3及び該第 3の空間 7 5の該気体は膨張する。 該第 3の空 間の容積が大きい場合にはこの膨張に伴う圧力低下は小さく なる。 該第 3 の空間 7 5内では該気体は等温的に膨張し、 該加熱装置 4 1 から更に熱を吸収する。  After the completion of the seventh step and before the eighth step is performed, the gas in the second space 73 and the third space 75 expands. When the volume of the third space is large, the pressure drop due to the expansion becomes small. In the third space 75, the gas expands isothermally and further absorbs heat from the heating device 41.
該第 8 の工程が行われるタイ ミ ングは、 該第 1 の弁 6 1 における 差圧が実質的に 0 となる場合に対応する。  The timing at which the eighth step is performed corresponds to the case where the pressure difference at the first valve 61 becomes substantially zero.
該第 8の工程が行われた後で該第 3 の工程が行われるまでの間、 圧 縮された該第 1 の空間 7 1 内の該気体は該第 3の空間 7 5に導入さ れ、 加熱される。 この間で該第 8の工程が行われた後で該第 1のェ 程が行われるまでの間は等積的に該気体は加熱される。 この加熱に 伴い該第 1 の空間 7 1 、 該第 2の空間 7 3、 及び該第 3の空間 7 5 の圧力は上昇する。 この圧力上昇は該第 3の空間の容積が小さい場 合に顕著となる。 一方該第 3の空間の容積が大きい場合にはこの圧 力変化は小さい。 After the eighth step is performed and before the third step is performed, the compressed gas in the first space 71 is introduced into the third space 75. And heated. During this time, the gas is heated in an isosteric manner after the eighth step is performed and before the first step is performed. Along with this heating, the pressures in the first space 71, the second space 73, and the third space 75 increase. This pressure rise becomes remarkable when the volume of the third space is small. On the other hand, when the volume of the third space is large, the change in pressure is small.
上記の動作の中で、 該ピス トンが該気体から受ける力について説 明する。  In the above operation, the force that the piston receives from the gas will be described.
該第 1 の工程と該第 3 の工程と間では、 該第 1 の空間 7 1 の圧力 は該第 2の空間 7 3の圧力より大きい。 このため該ピス トンは力学 的エネルギーを損失する。  Between the first step and the third step, the pressure in the first space 71 is higher than the pressure in the second space 73. As a result, the piston loses mechanical energy.
該第 3の工程と該第 4 との間では、 該第 1の空間 7 1 の圧力は該 第 2の空間 7 3 の圧力よ り大きレ、。 このため該ピス トンは力学的ェ ネルギーを得る。  Between the third step and the fourth step, the pressure in the first space 71 is greater than the pressure in the second space 73. Thus, the piston obtains mechanical energy.
該第 4の工程と該第 5 との間では、 流体の圧力損失に起因する部 分を除き、 該第 1の空間 Ί 1 の圧力と該第 2の空間 7 3の圧力とほ ぼ等しい。  Between the fourth step and the fifth step, the pressure in the first space # 1 and the pressure in the second space 73 are almost equal, except for the portion caused by the pressure loss of the fluid.
該第 5の工程と該第 Ί との間では、 該第 1 の空間 7 1 の圧力は該 第 2の空間 7 3 の圧力よ り小さレ、。 このため該ビス トンは力学的ェ ネルギ一を損失する。  Between the fifth step and the fifth step, the pressure in the first space 71 is smaller than the pressure in the second space 73. This causes the bistone to lose mechanical energy.
該第 7の工程と該第 8 との間では、 該第 1 の空間 7 1 の圧力は該第 2の空間 7 3の圧力よ り小さレ、。 このため該ピス トンは力学的エネ ルギ一を得る。 Between the seventh step and the eighth step, the pressure in the first space 71 is smaller than the pressure in the second space 73. Thus, the piston obtains mechanical energy.
該第 8の工程と該第 1 との間では、 流体の圧力損失に起因する部分 を除き、 該第 1 の空間 7 1 の圧力と該第 2の空間 7 3の圧力とほぼ 等しい。 Between the eighth step and the first step, the pressure in the first space 71 and the pressure in the second space 73 are substantially equal to each other, except for the portion caused by the pressure loss of the fluid. equal.
以上のサイクルでの力学的エネルギーの得失を総和すると、 該ピ ス トン 3 1 は力学的エネルギーを得る。 ここで、 すべての弁の閉状 態から開状態への切り替え動作が実質的に差圧が 0のタイ ミングで 行われるため、 いわゆる死容積に起因する損失が大幅に低減される。 定常的な周期的駆動を行う場合には、 1周期の間に、 該第 1 の空間 7 1 、 該第 2 の空間 7 3、 該第 3の空間 7 5、 及び該第 4 の空間 7 7のそれぞれに流入する気体の質量と流出する気体の質量とが等し く なるよ うに該第 1 の弁 6 1 、 該第 2 の弁 6 3、 該第 3の弁 6 5 、 及び該第 4の弁 6 7のそれぞれの動作のタイ ミ ングを決定する。 特 に、 該第 1 の工程が行われるタイ ミ ング及び該第 5の工程が行われ るタイ ミングは重要である。  By summing up the gain and loss of mechanical energy in the above cycle, the piston 31 obtains mechanical energy. Here, since the switching operation of all valves from the closed state to the open state is performed at a timing when the differential pressure is substantially zero, the loss caused by the so-called dead volume is greatly reduced. In the case of performing a regular periodic drive, the first space 71, the second space 73, the third space 75, and the fourth space 77 during one cycle. The first valve 61, the second valve 63, the third valve 65, and the fourth valve 61, so that the mass of the gas flowing into each of the first valve 61 and the mass of the gas flowing out of the first valve 61 become equal. The timing of the operation of each of the valves 67 is determined. In particular, the timing at which the first step is performed and the timing at which the fifth step is performed are important.
上記第 2の空間 7 3における該気体の膨張比を変化させるため、 該第 1 の工程を行うタイ ミングを変化させた場合には、 上記弁の駆 動原理に基づき、 その他の工程が実施されるタイ ミ ングはそれぞれ 変化する。  If the timing of performing the first step is changed to change the expansion ratio of the gas in the second space 73, other steps are performed based on the driving principle of the valve. The timing of each changes.
更に、 第 3の空間 7 5の容積は上記駆動に必要な所定の値が確保 される。 該第 3の空間 Ί 5の容積が該シリ ンダ 2 1 の容積を上回つ てもよい。 更に該第 4の空間 7 7の容積は該シリ ンダ 2 1 の容積を 下回ってもよい。 この場合には該ピス トン 3 1 が 1往復する際に発 生する動力を増加させることができる。  Further, the volume of the third space 75 is secured to a predetermined value required for the driving. The volume of the third space 5 may be greater than the volume of the cylinder 21. Further, the volume of the fourth space 77 may be smaller than the volume of the cylinder 21. In this case, the power generated when the piston 31 makes one round trip can be increased.
該第 4の空間は複数の空間が図示されない弁を介して連結された 構造を有していてもよい。 また、 該第 3の空間は、 複数の分割可能 な空間が図示されない弁を介して連結されたものでもよい。  The fourth space may have a structure in which a plurality of spaces are connected via a valve (not shown). Further, the third space may be one in which a plurality of dividable spaces are connected via a valve (not shown).
なお、 上述した第 1 一 8の工程の順序は上記の弁の動作原理に基 づき、 その前後関係を一部変更してもよい。 また、 一部の工程を同 時に行ってもよい。 また、 該気体の温度変化や負荷の変動に対応し て膨張比等の駆動条件を変化させた場合、 上述した上記の弁の動作 原理に基づき第 1 8の工程の順序を変更してもよい。 The order of the 18th step described above is based on the operation principle of the valve. The context may be partially changed. Also, some steps may be performed simultaneously. Further, when driving conditions such as an expansion ratio are changed in response to a change in the temperature or load of the gas, the order of the eighteenth process may be changed based on the above-described operation principle of the valve. .
例えば、 該第 5の工程は、 該第 7の工程と該第 8の工程との間で 実施されてもよい。 即ち、 該第 1 の工程、 該第 2の工程、 該第 3の 工程、 該第 4の工程、 該第 6の工程、 該第 7の工程、 該第 5の工程、 該第 8の工程の順に動作が繰り返される。 即ち第 1 0図に例示され る位置に該ピス トン 3 1 が到達するタイ ミングで該第 5の工程が行 われてもよい。 この場合には該第 5の工程が完了した時点で所定の 質量の該気体が該第 4の空間 7 7内に保持されるように該第 5のェ 程を行うタイ ミ ングが設定される。  For example, the fifth step may be performed between the seventh step and the eighth step. That is, the first step, the second step, the third step, the fourth step, the sixth step, the seventh step, the fifth step, and the eighth step The operation is repeated in order. That is, the fifth step may be performed at a timing when the piston 31 reaches the position illustrated in FIG. In this case, the timing for performing the fifth step is set so that a predetermined mass of the gas is retained in the fourth space 77 when the fifth step is completed. .
更に、 該第 1 の工程は該第 8の工程と同時以前に行われてもよい。 例えば、 該第 2の工程、 該第 3の工程、 該第 4の工程、 該第 5のェ 程、 該第 6の工程、 該第 7の工程、 該第 1 の工程、 該第 8の工程の 順に動作が繰り返されてもよい。  Further, the first step may be performed before or simultaneously with the eighth step. For example, the second step, the third step, the fourth step, the fifth step, the sixth step, the seventh step, the first step, and the eighth step The operation may be repeated in this order.
更に、 該第 2の工程は該第 3の工程または該第 4の工程と同時以 降に行われてもよい。 例えば、 該第 1 の工程、 該第 3の工程、 該第 4 の工程、 該第 2の工程、 該第 5の工程、 該第 6の工程、 該第 7のェ 程、 該第 8の工程の順に動作が繰り返されてもよい。  Further, the second step may be performed simultaneously with the third step or the fourth step. For example, the first step, the third step, the fourth step, the second step, the fifth step, the sixth step, the seventh step, the eighth step May be repeated in this order.
第 1 1図は、 本発明の更に別の一実施形態による熱機関の内部を 説示する概念図である。  FIG. 11 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
図 1 1 に示される熱機関 1 0は、 第 1図に説示する熱機関に加え、 センサ用配管 1 1 3を有する複数の圧力センサ 1 1 1 を更に有する。 第 1 の弁 6 1、 第 2 の弁 6 3、 第 3 の弁 6 5、 及び第 4の弁 6 7の それぞれの差圧がモニタ リ ング可能な構造を有している。 それぞれ の弁を閉状態から開状態に切り替えるタイ ミングを決定する際に該 圧力センサ 1 1 1 が利用される。 The heat engine 10 shown in FIG. 11 further includes a plurality of pressure sensors 111 having a sensor pipe 113 in addition to the heat engine shown in FIG. The first valve 61, the second valve 63, the third valve 65, and the fourth valve 67 Each differential pressure has a structure that can be monitored. The pressure sensor 111 is used when determining when to switch each valve from the closed state to the open state.
高速で該熱機関 1 0を駆動する際には、 検知信号のタイムラグは 補正される。 弁の切り替えは圧力スィ ツチを用いる電磁的なもので もよい。 あるいは、 圧力の検知データを処理するプロセッサを利用 して弁の切り替えが行われてもよい。  When driving the heat engine 10 at high speed, the time lag of the detection signal is corrected. The switching of the valve may be electromagnetic using a pressure switch. Alternatively, the valve may be switched using a processor that processes pressure detection data.
第 1 '2図は、 本発明の更に別の一実施形態による熱機関の内部を 説示する概念図である。  FIG. 1′2 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
第 1 2図に示される熱機関 1 0において、 第 1図に説示される該 シリ ンダ 2 1及び該ピス トン 3 1力 圧縮シリ ンダ 2 3、 膨張シリ ンダ 2 5、 圧縮ビス トン 3 3、 及び膨張ビス トン 3 5に置換されて いる。 該圧縮ビス トン 3 3の運動に伴い第 1 の空間 7 1 の容積は変 化する。 該膨張ビス トン 3 5の運動に伴い第 2の空間 7 3 の容積は 変化する。 該第 1 の空間 7 1 の容積が最大となるタイ ミングと該第 2 の空間 7 3の容積が最小となるタイ ミングを一致させる駆動方法を 用いてもよい。 また、 該圧縮ビス トン 3 3 の容積は該膨張ビス 卜ン 3 5の容積よ り小さくてもよい。  In the heat engine 10 shown in FIG. 12, the cylinder 21 and the piston 31 shown in FIG. 1, the compression cylinder 23, the expansion cylinder 25, the compression piston 33, And expanded bistone 35. The volume of the first space 71 changes with the movement of the compression biston 33. The volume of the second space 73 changes with the movement of the expansion biston 35. A driving method may be used in which the timing at which the volume of the first space 71 is maximized coincides with the timing at which the volume of the second space 73 is minimized. In addition, the volume of the compression button 33 may be smaller than the volume of the expansion button 35.
第 1 3図は、 本発明の別の一実施形態による熱機関の断面を説示 する概念図である。  FIG. 13 is a conceptual diagram illustrating a cross section of a heat engine according to another embodiment of the present invention.
第 1図に説示される該熱機関に加え、 ビス トン用シ一リ ング部材 9 1 を更に有する。 該ピス トン用シ一リ ング部材 9 1 によ り第 1の 空間 7 1 と第 2の空間 7 3 との間の気密性が向上する。 該ピス トン 用シーリ ング部材 9 1 は任意の素材、 例えばゴムなどの弾性体や金 属が使用可能である。 比較的低い加工精度を有するピス トンとシリ ンダを使用する場合には、 内部が中空で該中空の内部に高圧の流体 が保持される構造を有する弾性体が該ピス トン用シーリング部材 9 1 と して使用されてもよい。 シリ ンダの中央部の内径が両端部の内 径よ り小さいことを特徴とするシリ ンダを使用する場合にも該中空 の弾性体が該ピス トン用シ一リ ング部材 9 1 と して使用されてもよ い。 適宜潤滑材が使用されてもよい。 In addition to the heat engine illustrated in FIG. 1, a sealing member for biston 91 is further provided. The airtightness between the first space 71 and the second space 73 is improved by the piston sealing member 91. The piston sealing member 91 can be made of any material, for example, an elastic material such as rubber or a metal. Pistons and silicon with relatively low machining accuracy When a cylinder is used, an elastic body having a hollow interior and a structure in which a high-pressure fluid is held in the hollow interior may be used as the piston sealing member 91. Even when using a cylinder characterized in that the inner diameter at the center of the cylinder is smaller than the inner diameter at both ends, the hollow elastic body is used as the sealing member 91 for the piston. It may be done. Lubricants may be used as appropriate.
更に、 ピス トン棒 1 0 1が第 1 3図に説示する該熱機関 1 0に配 備されている。 該ピス トン棒 1 0 1 は該第 1 の空間 7 1及び該第 2 の空間 7 3の壁を貫通する。 それぞれの該貫通部にはビス トン棒用 シーリ ング機構 9 3が配備され、 該第 1 の空間 7 1及び該第 2の空 間 7 3 の気密性が確保される。 そして、 該ピス トン棒 1 0 1 を図 1 3において上下方向にのみ可動とする力学的束縛条件を付加するた めの一対のビス トン棒用軸受け 1 5 1 が配備されている。 該一対の ピス トン棒用軸受け 1 5 1 によ り該ピス トン棒 1 0 1 に連結された 該ピス トン 3 1 の往復運動を精度良く行う ことができる。 該ピス ト ン棒 1 0 1 に図示されないクランク機構及び発電機が配備されても よレヽ。  Further, a piston rod 101 is provided in the heat engine 10 illustrated in FIG. The piston rod 101 penetrates the walls of the first space 71 and the second space 73. A sealing mechanism 93 for biston rods is provided in each of the penetrating portions, and the first space 71 and the second space 73 are kept airtight. In addition, a pair of bearings for biston rods 15 1 are provided to add a mechanical constraint condition that makes the piston rod 101 movable only in the vertical direction in FIG. 13. The pair of piston rod bearings 15 1 allows the piston 31 connected to the piston rod 101 to reciprocate with high accuracy. The piston rod 101 may be provided with a crank mechanism and a generator (not shown).
第 1 4図は、 本発明の更に別の一実施形態による熱機関の内部を 説示する概念図である。  FIG. 14 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
第 1 4図に示される熱機関 1 0において、 第 1図に説示される該 シリ ンダ 2 1及び該ピス トン 3 1が、 図示されない第 1 の空間を有 する回転圧縮機 8 1及び図示されない第 2の空間を有する回転膨張 機 8 3に置換されている。 該回転圧縮機 8 1 の動作に伴い第 1 の空 間の容積は変化する。 該回転膨張機 8 3 の動作に伴い該第 2の空間 の容積は変化する。 該第 1 の空間の容積が最大となるタイ ミ ングと 該第 2 の空間が最小となるタイ ミングを一致させる駆動方法を用い てもよい。 In the heat engine 10 shown in FIG. 14, the cylinder 21 and the piston 31 shown in FIG. 1 are the same as the rotary compressor 81 having a first space (not shown) and the rotary compressor 81 (not shown). It is replaced by a rotary expander 83 having a second space. The volume of the first space changes with the operation of the rotary compressor 81. The volume of the second space changes with the operation of the rotary expander 83. Timing when the volume of the first space is maximized; A driving method for matching the timing at which the second space is minimized may be used.
第 1 5図は、 本発明の更に別の一実施形態による熱機関の内部を 説示する概念図である。  FIG. 15 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
第 1図に説示される該熱機関に加え、 バイパス流路 1 3 3 と、 該 バイパス流路 1 3 3中に配備されるバイパス原動機 1 3 1 を更に有 する。 該バイパス原動機 1 3 1 は該バイパス流路 1 3 3を通過する 該気体の力学的エネルギーもしく は差圧を機械的エネルギーに変換 する。 圧力センサ 1 1 5が第 4の空間 7 7に配備され、 該第 4の空 間 7 7の圧力をモニタする。 該第 4の空間 7 7の圧力を所定の値に 保つように第 1 の弁 6 1 、 第 2の弁 6 3、 第 3の弁 6 5、 及び第 4 の弁 6 7の開閉の切り替えのタイ ミングが決定されてもよレ、。  In addition to the heat engine illustrated in FIG. 1, the engine further includes a bypass passage 133 and a bypass prime mover 131 disposed in the bypass passage 133. The bypass motor 13 1 converts the mechanical energy or differential pressure of the gas passing through the bypass passage 13 3 into mechanical energy. A pressure sensor 115 is provided in the fourth space 77 and monitors the pressure in the fourth space 77. The switching of the opening and closing of the first valve 61, the second valve 63, the third valve 65, and the fourth valve 67 so as to maintain the pressure of the fourth space 77 at a predetermined value. The timing may be decided.
第 1 6図は、 本発明の更に別の一実施形態による熱機関の内部を説 示する概念図である。 FIG. 16 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
第 1 6図において、 一対の熱機関 1 O A及び 1 0 Bが第 2の空間 7 3が対向するよ うに配置されている。 一対のピス トン 3 1 は互いに ビス トン棒 1 0 1 によ り連結されている。 該熱機関 1 O Aの該第 2の 空間 7 3の容積が最小の場合に、 該熱機関 1 0 Bの該第 2の空間 7 3 の容積が最大となる。 この場合、 該一対のビス トン 3 1 に印加され る力が相殺される期間が存在し、 円滑な該一対のビス トン 3 1 の往 復運動が実現される。  In FIG. 16, a pair of heat engines 10OA and 10B are arranged such that the second space 73 faces. The pair of pistons 31 are connected to each other by a biston bar 101. When the volume of the second space 73 of the heat engine 10OA is the minimum, the volume of the second space 73 of the heat engine 10B is the maximum. In this case, there is a period in which the force applied to the pair of bistons 31 is canceled, and a smooth reciprocating motion of the pair of bistons 31 is realized.
第 1 7図は、 本発明の更に別の一実施形態による熱機関の内部を 説示する概念図である。  FIG. 17 is a conceptual diagram illustrating the inside of a heat engine according to still another embodiment of the present invention.
第 1 7図に説示される熱機関 1 0は第 1 図に説示される該熱機関 に加え、 気密性を有する漏洩ガス貯留空間 1 9 3を有する気体回収 容器 1 9 1及びパワーモニタ 1 4 1 を更に有する。 該気体回収容器 1 9 1 は漏洩個所に配備される。 第 1 7図ではピス トン棒 1 0 1 の 貫通部に配備されている。 該気体回収容器 1 9 1 は該ピス トン棒 1 0 1 の貫通部からわずかに漏洩した気体を回収するためのもので、 へリ ゥムゃ水素等を該気体と して使用する場合に対応するものであ る。 該漏洩ガス貯留空間 1 9 3 の圧力は大気圧と同等もしく は僅か に高い。 また、 該漏洩ガス貯留空間 1 9 3には純粋な該気体があら かじめ貯留されている。 漏洩した該気体は図示されない加圧手段に より該第 3 の空間 7 5に還流されてもよい。 なお、 該ピス トン棒 1 0 1 はクランク機構 1 6 1 に接続されている。 そして該クランク機 構 1 6 1 は回転伝達機構 1 7 3を介して発電機 1 7 1及び補助動力 手段 1 8 1 に機械的に接続されている。 該パワーモニタ 1 4 1 は後 述する熱機関の駆動の最適化に使用することができる。 The heat engine 10 illustrated in FIG. 17 is a gas recovery system having an airtight leak gas storage space 1993 in addition to the heat engine illustrated in FIG. It further has a container 19 1 and a power monitor 14 1. The gas recovery container 19 1 is provided at the leak location. In FIG. 17, the piston rod 101 is provided in the penetrating part. The gas recovery container 191 is for recovering gas that has leaked slightly from the penetration of the piston rod 101, and is compatible with the use of hydrogen, etc. as the gas. It does. The pressure in the leaked gas storage space 1993 is equal to or slightly higher than the atmospheric pressure. In addition, pure gas is stored in the leaked gas storage space 1993 in advance. The leaked gas may be returned to the third space 75 by pressurizing means (not shown). The piston rod 101 is connected to a crank mechanism 161. The crank mechanism 16 1 is mechanically connected to a generator 17 1 and an auxiliary power means 18 1 via a rotation transmission mechanism 17 3. The power monitor 141 can be used for optimizing the drive of the heat engine, which will be described later.
以下に、 図 1 に説示する該熱機関を駆動させた場合の動作条件と ピス トン 3 1 の 1周期あたりに発生する動力、 熱効率、 及び仕事率 との関係について説述するため、 駆動例を引用して説明する。 この 駆動例はこのよ うに、 説明のためにのみなされるもので、 本発明に よる熱機関及びその駆動方法について限定するために記述されるも のではない。  In the following, in order to explain the relationship between the operating conditions when the heat engine illustrated in FIG. 1 is driven and the power, thermal efficiency, and power generated per cycle of the piston 31, a driving example is described. I will quote and explain. This driving example is thus considered for explanation, and is not described to limit the heat engine and the driving method according to the present invention.
まず、 第 1 8— 2 7図中に記される記号について説明する。 記号 TH は、 該第 3の弁近傍の該第 3の空間における該気体の温度を意味す る。 記号 TLは、 該第 2の弁近傍の該第 4の空間における該気体の温 度を意味する。 記号 ERは、 上述した膨張比を意味する。 記号 A I Rは 該気体と して圧縮された空気が使用されることを意味する。 記号 HYDROGENは該気体と して圧縮された水素が使用されることを意味す 第 1 8図は、 図 1 に示す熱機関 1 0の一駆動条件における熱効率 の膨張比依存性の例を示した図である。 これは比較的小さな該ピス トンの駆動周波数での動作に対応する。 膨張比 1 . 5付近で熱効率 は最大となるが、 膨張比が 1 . 5を上回る領域で熱効率は急速に低 下する。 First, the symbols shown in Fig. 18-27 will be described. The symbol TH means the temperature of the gas in the third space near the third valve. The symbol TL refers to the temperature of the gas in the fourth space near the second valve. The symbol ER means the expansion ratio described above. The symbol AIR means that compressed air is used as the gas. The symbol HYDROGEN means that compressed hydrogen is used as the gas FIG. 18 is a diagram showing an example of the dependence of the thermal efficiency on the expansion ratio under one driving condition of the heat engine 10 shown in FIG. This corresponds to operation at a relatively small drive frequency of the piston. The thermal efficiency is maximized near the expansion ratio of 1.5, but decreases rapidly in the region where the expansion ratio exceeds 1.5.
第 1 9図は、 第 1 8図に対応する駆動条件における 1周期あたり の出力の膨張比依存性の例を示した図である。 膨張比 1 . 2付近で 出力は最大となる。 熱効率が最大となる膨張比 1 . 5は、 膨張比の 増加とともに出力が減少する領域に対応する。  FIG. 19 is a diagram showing an example of the expansion ratio dependence of the output per cycle under the driving conditions corresponding to FIG. The output is maximum near the expansion ratio of 1.2. The expansion ratio of 1.5, at which the thermal efficiency is maximized, corresponds to the region where the output decreases as the expansion ratio increases.
第 2 0図は、 第 1図に示す熱機関 1 0の別の一駆動条件における 熱効率の膨張比依存性の例を示した図である。 これは比較的小さな 該ピス トンの駆動周波数での動作に対応する。 第 1 8図に対応する 駆動条件と比較して、 該第:3の弁近傍の該第 3の空間における該気 体の温度が 3 0 上昇している。 膨張比 1 . 8付近で熱効率は最大 となり、 膨張比が 1 . 8を上回る領域で熱効率は急速に低下する。 該第 3の空間における該気体の温度の上昇、 即ち高温熱源と低温熱 源との温度差の増加と ともに、 最大熱効率が得られる膨張比が増加 する。  FIG. 20 is a diagram showing an example of the dependence of the thermal efficiency on the expansion ratio under another driving condition of the heat engine 10 shown in FIG. This corresponds to operation at a relatively small drive frequency of the piston. Compared with the driving conditions corresponding to FIG. 18, the temperature of the gas in the third space near the third: third valve is increased by 30. The thermal efficiency reaches its maximum near the expansion ratio of 1.8, and decreases rapidly in the region where the expansion ratio exceeds 1.8. As the temperature of the gas in the third space increases, that is, the temperature difference between the high-temperature heat source and the low-temperature heat source increases, the expansion ratio at which the maximum thermal efficiency is obtained increases.
第 2 1図は、 第 2 0図に対応する駆動条件における 1周期あたり の出力の膨張比依存性の例を示した図である。 膨張比 1 . 3付近で 出力は最大となる。 熱効率が最大となる膨張比 1 . 8は、 膨張比の 増加と ともに出力が減少する領域に対応する。 該第 3の空間におけ る該気体の温度の上昇、 即ち高温熱源と低温熱源との温度差の増加 と ともに、 最大出力が得られる膨張比が増加する。 第 2 2図は、 第 1図に示す熱機関 1 0の更に別の一駆動条件にお ける熱効率の膨張比依存性の例を示した図である。 これは比較的小 さな該ピス トンの駆動周波数での動作に対応する。 第 1 8図に対応 する駆動条件と比較して、 該第 3の弁近傍の該第 3の空間における 該気体の温度が 3 0 °C低下している。 膨張比 1 . 2付近で熱効率は 最大となり、 膨張比が 1 . 2を上回る領域で熱効率は急速に低下す る。 該第 3の空間における該気体の温度の低下、 即ち高温熱源と低 温熱源との温度差の低下とともに、 最大熱効率が得られる膨張比が 減少する。 FIG. 21 is a diagram showing an example of the expansion ratio dependence of the output per cycle under the driving conditions corresponding to FIG. The output is maximum near the expansion ratio of 1.3. The expansion ratio 1.8, at which the thermal efficiency is maximized, corresponds to the region where the output decreases as the expansion ratio increases. As the temperature of the gas in the third space increases, that is, the temperature difference between the high-temperature heat source and the low-temperature heat source increases, the expansion ratio at which the maximum output is obtained increases. FIG. 22 is a diagram showing an example of the dependence of the thermal efficiency on the expansion ratio under still another driving condition of the heat engine 10 shown in FIG. This corresponds to operation at a relatively low drive frequency of the piston. Compared with the driving conditions corresponding to FIG. 18, the temperature of the gas in the third space near the third valve has decreased by 30 ° C. The thermal efficiency becomes maximum near the expansion ratio of 1.2, and decreases rapidly in the region where the expansion ratio exceeds 1.2. As the temperature of the gas in the third space decreases, that is, the temperature difference between the high-temperature heat source and the low-temperature heat source decreases, the expansion ratio at which the maximum thermal efficiency is obtained decreases.
第 2 3図は、 第 2 2図に対応する駆動条件における 1周期あたり の出力の膨張比依存性の例を示した図である。 膨張比 1 . 1 5付近 で出力は最大となる。 熱効率が最大となる膨張比 1 . 2は、 膨張比 の増加と ともに出力が減少する領域に対応する。 該第 3の空間にお ける該気体の温度の低下、 即ち高温熱源と低温熱源との温度差の低 下とともに、 最大出力が得られる膨張比が低下する。  FIG. 23 is a diagram showing an example of the expansion ratio dependence of the output per cycle under the driving conditions corresponding to FIG. The output becomes maximum around the expansion ratio of 1.15. The expansion ratio 1.2 at which the thermal efficiency is maximized corresponds to a region where the output decreases with an increase in the expansion ratio. As the temperature of the gas in the third space decreases, that is, the temperature difference between the high-temperature heat source and the low-temperature heat source decreases, the expansion ratio at which the maximum output is obtained decreases.
以上開示された出力と熱効率の膨張比依存性に関する結果から、 所定の負荷に対し、 高い熱効率が実現される膨張比は、 最大出力が 得られる膨張比と低い駆動周波数で最大熱効率が得られる膨張比と の間にあり、 これは出力の膨張比依存性において、 出力が膨張比の 増加と ともに減少する領域にある。  From the results regarding the expansion ratio dependence of power and thermal efficiency disclosed above, the expansion ratio that achieves high thermal efficiency for a given load is determined by the expansion ratio that provides maximum output and the expansion that provides maximum thermal efficiency at low drive frequency. This is in the region where the power decreases as the expansion ratio increases in the dependence of the power on the expansion ratio.
第 2 4図は、 更に別の一駆動条件における熱効率の駆動周波数依 存性の例を示した図である。 低い駆動周波数領域で高い熱効率が得 られる膨張比 ER1. 5の駆動条件では、 駆動周波数の増加に伴う熱効 率の低下が顕著である。これに対し、最大出力が得られる膨張比 ER1. 3 の駆動条件では、 低い駆動周波数での熱効率は比較的小さいが、 駆 動周波数の増加に伴う熱効率の低下は比較的小さい。 FIG. 24 is a diagram showing an example of the drive frequency dependence of the thermal efficiency under still another drive condition. Under the drive condition of the expansion ratio ER1.5, which can obtain high thermal efficiency in the low drive frequency range, the decrease in thermal efficiency with the increase in drive frequency is remarkable. On the other hand, under the driving conditions of the expansion ratio ER1.3, where the maximum output can be obtained, the thermal efficiency at low driving frequency is relatively small, The decrease in thermal efficiency with increasing operating frequency is relatively small.
第 2 5図は、 第 2 4図に対応する駆動条件における出力の駆動周 波数依存性の例を示した図である。 低い駆動周波数領域では、 駆動 周波数の増加と ともに出力は増加する。 しかし流体の圧力損失に起 因する損失等によ り駆動周波数が過度に高い領域では出力は低下す る。  FIG. 25 is a diagram showing an example of the dependence of the output on the driving frequency under the driving conditions corresponding to FIG. In the low drive frequency region, the output increases as the drive frequency increases. However, the output decreases in the region where the drive frequency is excessively high due to the loss caused by the pressure loss of the fluid.
第 2 6図は、 更に別の一駆動条件における熱効率の駆動周波数依 存性の例を示した図である。 低密度の気体である水素が使用されて いる。 熱効率の駆動周波数依存性における圧縮比についての傾向は 第 2 4図を引用して説明した結果と類似するが、 高い駆動周波数に おいても、 熱効率の低下が緩和されている。  FIG. 26 is a diagram showing an example of the drive frequency dependence of the thermal efficiency under still another drive condition. Hydrogen, a low-density gas, is used. The tendency of the compression ratio in the dependence of the thermal efficiency on the drive frequency is similar to the result described with reference to FIG. 24, but the decrease in thermal efficiency is alleviated even at a high drive frequency.
第 2 7図は、 第 2 6図に対応する駆動条件における出力の駆動周 波数依存性の例を示した図である。 水素の使用によ り高い駆動周波 数での動作が可能となり、 出力が著しく増加する。  FIG. 27 is a diagram illustrating an example of the drive frequency dependence of the output under the drive conditions corresponding to FIG. The use of hydrogen allows operation at higher drive frequencies, resulting in a significant increase in output.
以上開示したよ うに、 本発明による熱機関の駆動方法において、 駆動周波数、 膨張比、 温度等の動作パラメータに対する熱効率及び 出力の依存性が求められる。 この依存性は実験的に決定することが 可能である。 これに替わり、 半経験的または先験的に計算によりに 求められてもよい。 この依存性に関するデータを情報蓄積装置に蓄 積し、 必要に応じ参照してもよい。  As disclosed above, in the driving method of the heat engine according to the present invention, the dependence of the thermal efficiency and the output on the operating parameters such as the driving frequency, the expansion ratio, and the temperature is required. This dependence can be determined experimentally. Alternatively, it may be calculated semi-empirically or a priori. Data relating to this dependency may be stored in the information storage device and referred to as necessary.
プロセッサを使用した場合、 与えられた出力に対し最大の熱効率 が得られる駆動周波数や膨張比に関する駆動条件を即座に決定する ことができる。 また、 気体加熱温度、 気体冷却温度、 あるいは負荷 等の環境の変化に対応して即座に高い熱効率が得られる駆動条件を 決定することができる。 膨張比を変化させた場合には、 これに対応して該第 1 の弁、 該第 2 の弁、 該第 3の弁、 及び該第 4の弁を開閉するタイ ミングを変化さ せる必要がある。 これに関するデータはあらかじめ上記情報蓄積装 置に蓄積されてもよい。 また、 先験的あるいは半経験的にプロセッ サによる処理により決定してもよい。 これに替わり、 上述した動作 原理に基づき、 圧力センサ、 あるいはパワーモニタ等から得られる 検知信号に基づき弁の動作を最適化してもよい。 パワーモニタを有 する場合には、 膨張比を固定して最大のパワーが得られるそれぞれ の弁の動作タイ ミングを求めることによ り弁の動作を最適化しても よい。 When a processor is used, it is possible to immediately determine the driving conditions relating to the driving frequency and expansion ratio that provide the maximum thermal efficiency for a given output. In addition, it is possible to determine a driving condition that can immediately obtain high thermal efficiency in response to a change in environment such as a gas heating temperature, a gas cooling temperature, or a load. When the expansion ratio is changed, it is necessary to change the timing for opening and closing the first valve, the second valve, the third valve, and the fourth valve correspondingly. is there. Data relating to this may be stored in the information storage device in advance. Alternatively, it may be determined a priori or semi-empirically by processing by the processor. Instead, the operation of the valve may be optimized based on a detection signal obtained from a pressure sensor, a power monitor, or the like based on the above-described operation principle. When a power monitor is provided, the operation of the valve may be optimized by fixing the expansion ratio and determining the operation timing of each valve that provides the maximum power.
その他、 本発明による熱機関を好適に動作させるための補助的な 手段、 例えば温度計測手段、 トルク計、 力積計測手段、 駆動周期計 測手段、 温度データに基づく解析手段と動作司令手段、 熱効率向上 のためのエキスパー トシステム、 負荷等の予測システム、 補助タン ク等を有する気体の平均圧力調整手段、 発電用の周波数変換手段、 変速機、 負荷が小さい場合に一部のエンジンを停止させる手段、 あ るいは蓄熱手段、 を伴って本発明が実施されてもよい。  Other auxiliary means for suitably operating the heat engine according to the present invention, for example, temperature measuring means, torque meter, impulse measuring means, driving cycle measuring means, analyzing means and operation command means based on temperature data, thermal efficiency Expert system for improvement, prediction system for load, etc., means for adjusting average pressure of gas with auxiliary tank, etc., frequency conversion means for power generation, transmission, means for stopping some engines when load is small The present invention may be practiced with a heat storage means.
即ち、 ここに開示された本発明は、 新規な熱機関及び熱機関の駆 動方法を提供するが、 以上の詳細な説明に開示された教唆に鑑み、 本発明の実施は、 本発明の最良の形態を説明するためになされた上 記実施例に限定されるものではなく 、 以下の請求の範囲の中で、 諸 変化を伴ってその他の形態で実施してもよく 、 あるいは上記実施例 の中の最良の一実施形態を説明するために附加された付加的な形態 や構成要素を伴わずに実施されてもよい。 3 産業上の利用可能性 That is, the present invention disclosed herein provides a novel heat engine and a method for driving the heat engine. However, in light of the teachings disclosed in the above detailed description, the present invention can be implemented by The present invention is not limited to the above-described embodiment for explaining the embodiment, but may be implemented in other forms with various changes within the scope of the following claims. The present invention may be practiced without any additional features or components added to describe one preferred embodiment among them. 3 Industrial applicability
本発明による熱機関及びその駆動方法により、 比較的低い温度差の 熱源を利用して、 熱エネルギーを効率よく機械的エネルギーに変換 することができる。 即ち熱効率の向上が実現される。 更に、 従来廃 棄されてきた廃熱を利用する発電や、 低温度差の自然エネルギー、 例えば太陽熱や深層海水を利用する発電が達成される。 即ち、 本発 明はコス ト削減、 化石燃料消費の低減、 二酸化炭素排出の抑制、 自 然エネルギーの効果的利用のために利用することができる。 更に、 ヒー トポンプと して動作する熱機関及びその駆動方法も提供される: According to the heat engine and the driving method thereof according to the present invention, heat energy can be efficiently converted to mechanical energy using a heat source having a relatively low temperature difference. That is, improvement in thermal efficiency is realized. Furthermore, power generation using waste heat that has been conventionally discarded and power generation using natural energy with a low temperature difference, such as solar heat and deep seawater, are achieved. In other words, the present invention can be used to reduce costs, reduce fossil fuel consumption, reduce carbon dioxide emissions, and use natural energy more effectively. Further provided is a heat engine operating as a heat pump and a method of driving the same.

Claims

請 求 の 範 囲 The scope of the claims
1 . 容積可変の第 1 の空間及び容積可変の第 2の空間を有するェン ジンと、 該第 1 の空間及び該第 2の空間に接続された高温熱源用の 第 3 の空間を有する加熱装置と、 該第 1の空間及び該第 2の空間に 接続された低温熱源用の第 4の空間を有する冷却装置と、 該第 1の 空間と該第 3の空間との間に配備された第 1 の弁と、 該第 1 の空間 と該第 4の空間との間に配備された第 2の弁と、 該第 2の空間と該 第 3の空間との間に配備された第 3の弁と、 該第 2の空間と該第 4 の空間との間に配備された第 4の弁とを有することを特徴と し、 か っ該第 1 の空間、 該第 2の空間、 該第 3の空間、 及び該第 4の空間 内に気体が充填され、 かつ該第 1 の空間及び該第 2の空間のそれぞ れの容積変化と、 該第 1 の弁、 該第 2の弁、 該第 3 の弁、 及び該第 4の弁の動作とにより該気体が温度変化及び圧力変化を伴って流れ ることを特徴とする熱機関。 1. An engine having a variable-volume first space and a variable-volume second space, and heating having a third space for a high-temperature heat source connected to the first space and the second space. A cooling device having a fourth space for a low-temperature heat source connected to the first space and the second space; and a cooling device disposed between the first space and the third space. A first valve; a second valve disposed between the first space and the fourth space; and a third valve disposed between the second space and the third space. And a fourth valve disposed between the second space and the fourth space, wherein the first space, the second space, A gas is filled in the third space and the fourth space, and the volume changes of the first space and the second space, and the first valve and the second valve The third valve, and the fourth valve Heat engine the gas is characterized by flow isosamples with temperature changes and pressure changes by the operation of the.
2 . 該第 2の空間の容積が増加する期間中に該第 3の弁を開状態か ら閉状態に切り替える手段と、 該第 2の空間の容積が最大となるタ イ ミングもしく はその近傍で該 4の弁を閉状態から開状態に切り替 える手段と、 該第 1の空間が最小の容積となるタイ ミングもしく は その近傍で該第 1 の弁を開状態から閉状態に切り替える手段と、 該 第 1 の空間の容積が増加する期間の初期に該第 2の弁を閉状態から 開状態に切り替える手段と、 該第 1 の空間の容積が所定の値となる タイ ミングで該第 2の弁を開状態から閉状態に切り替える手段と、 該第 2の空間の容積が減少する期間の末期に該 4の弁を開状態から 閉状態に切り替える手段と、 該第 2の空間の容積が最小となるタイ ミングもしくはその近傍で該第 3の弁を閉状態から開状態に切り替 える手段と、 該第 1 の空間の容積が減少する期間中に該第 1 の弁を 閉状態から開状態に切り替える手段とを更に有する請求の範囲第 1 項記載の熱機関。 2. Means for switching the third valve from the open state to the closed state during a period in which the volume of the second space increases, and a timing or a time when the volume of the second space is maximized. Means for switching the fourth valve from the closed state to the open state in the vicinity, and switching the first valve from the open state to the closed state in the vicinity of or at the timing when the first space has a minimum volume. Means for switching the second valve from the closed state to the open state at the beginning of a period in which the volume of the first space increases, and timing at which the volume of the first space becomes a predetermined value. Means for switching the second valve from the open state to the closed state; means for switching the fourth valve from the open state to the closed state at the end of a period in which the volume of the second space decreases; Tie with the smallest volume Means for switching the third valve from the closed state to the open state at or near the timing, and means for switching the first valve from the closed state to the open state during a period in which the volume of the first space decreases. The heat engine according to claim 1, further comprising:
3 . 該第 1の空間及び該第 2の空間が、 シリンダと該シリ ンダ内に 嵌装されたビス トンとによ り形成されることを特徴とする請求の範 囲第 1項記載の熱機関。  3. The heat according to claim 1, wherein the first space and the second space are formed by a cylinder and a biston fitted in the cylinder. organ.
4 . 該第 1 の空間及び該第 2の空間が、 回転ポンプによ り形成され ることを特徴とする請求の範囲第 1 項記載の熱機関。  4. The heat engine according to claim 1, wherein the first space and the second space are formed by a rotary pump.
5 . 該第 1 の空間及び該第 2の空間が、 ペリ コロイ ド曲線によ り定 義される曲面を有するロータ リ ーエンジンによ り形成されることを 特徴とする請求の範囲第 1項記載の熱機関。  5. The method according to claim 1, wherein the first space and the second space are formed by a rotary engine having a curved surface defined by a pericolloid curve. Heat engine.
6 . 該第 1の空間及び該第 2の空間がそれぞれ、 ベローズ構造を有 することを特徴とする請求の範囲第 1項記載の熱機関。  6. The heat engine according to claim 1, wherein each of the first space and the second space has a bellows structure.
7 . 該第 3の空間と該第 4の空間との間に配備されるバイパス流路 と、 該バイパス流路中に配備され、 かつ該第 3 の空間と該第 4の空 間との差圧を利用して動力を発生する原動機とを更に有することを 特徴とする請求の範囲第 1項記載の熱機関。  7. A bypass channel provided between the third space and the fourth space, and a difference between the third space and the fourth space provided in the bypass channel. 2. The heat engine according to claim 1, further comprising: a motor that generates power using pressure.
8 . 該シリ ンダの内周面にコ ーティングされた薄膜を更に有するこ とを特徴とする請求の範囲第 1項記載の熱機関。  8. The heat engine according to claim 1, further comprising a thin film coated on an inner peripheral surface of the cylinder.
9 . 該シリ ンダと該ピス トンとの間のシーリング部材を更に有する ことを特徴とする請求の範囲第 1項記載の熱機関。  9. The heat engine according to claim 1, further comprising a sealing member between the cylinder and the piston.
1 0 . 該シーリ ング部材が内部に気体または液体を有する弾性体で あることを特徴とする請求の範囲第 9項記載の熱機関。  10. The heat engine according to claim 9, wherein said sealing member is an elastic body having gas or liquid therein.
1 1 . 該ピス トンに連結されたビス トン棒と、 該ピス トン棒の往復 運動を力学的束縛条件下で行う為の軸受け手段とを更に有すること を特徴とする請求の範囲第 1項記載の熱機関。 1 1. The piston rod connected to the piston and the reciprocation of the piston rod 2. The heat engine according to claim 1, further comprising bearing means for performing a movement under a mechanically constrained condition.
1 2 . 該気体が高圧の状態で充填され、 かつ、 該気体が該第 1の空 間、 該第 3 の空間、 該第 2の空間、 及び該第 4 の空間内を順次通過 することを特徴とする請求の範囲第 1項記載の熱機関。  12. The gas is charged at a high pressure, and the gas sequentially passes through the first space, the third space, the second space, and the fourth space. The heat engine according to claim 1, wherein the heat engine is a heat engine.
1 3 . 該気体がヘリ ゥムを有することを特徴とする請求の範囲第 1 項記載の熱機関。  13. The heat engine according to claim 1, wherein the gas has a helium.
1 4 . 該気体が水素を有することを特徴とする請求の範囲第 1項記 載の熱機関。  14. The heat engine according to claim 1, wherein the gas contains hydrogen.
1 5 . 該気体が空気であることを特徴とする請求の範囲第 1項記載 の熱機関。  15. The heat engine according to claim 1, wherein the gas is air.
1 6 . 漏洩した該気体を回収するための漏洩ガス貯留空間を有する 気体回収容器を更に有することを特徴とする請求の範囲第 1項記載 の熱機関。  16. The heat engine according to claim 1, further comprising a gas recovery container having a leaked gas storage space for collecting the leaked gas.
1 7 . 該漏洩ガス貯留空間内に回収された該気体を加圧して該第 1 の空間に充填する加圧手段を更に有することを特徴とする請求の範 囲第 1 6項記載の熱機関。  17. The heat engine according to claim 16, further comprising pressurizing means for pressurizing the gas collected in the leaked gas storage space and filling the first space. .
1 8 . 該ピス トンの往復運動を回転運動に変換するクランク機構を 更に有することを特徴とする請求の範囲第 1項記載の熱機関。  18. The heat engine according to claim 1, further comprising a crank mechanism that converts a reciprocating motion of the piston into a rotary motion.
1 9 . 該熱機関が複数であり、 該ク ランク機構が互いに機械的に連 結されていることを特徴とする請求の範囲第 1 8項記載の熱機関。 19. The heat engine according to claim 18, wherein a plurality of said heat engines are provided, and said crank mechanisms are mechanically connected to each other.
2 0 . 発電機を更に有することを特徴とする請求の範囲第 1項記載 の熱機関。 20. The heat engine according to claim 1, further comprising a generator.
2 1 . 該シリ ンダの中央部の内径が該シリ ンダの両端部の内径と比 較して僅かに大きいことを特徴とする請求の範囲第 1項記載の熱機 21. The heat machine according to claim 1, wherein the inner diameter of the center of the cylinder is slightly larger than the inner diameter of both ends of the cylinder.
2 2 . パワーモニタを更に有することを特徴とする請求の範囲第 1 項記載の熱機関。 22. The heat engine according to claim 1, further comprising a power monitor.
2 3 . 圧力センサを更に有することを特徴とする請求の範囲第 1項 記載の熱機関。  23. The heat engine according to claim 1, further comprising a pressure sensor.
2 4 . プロセッサ及び情報蓄積装置を更に有することを特徴とする 請求の範囲第 1項記載の熱機関。  24. The heat engine according to claim 1, further comprising a processor and an information storage device.
2 5 . 該ピス トンの運動を加速するための補助動力装置を更に有す ることを特徴とする請求の範囲第 1項記載の熱機関。  25. The heat engine according to claim 1, further comprising an auxiliary power unit for accelerating the movement of the piston.
2 6 . 該シリ ンダと該ピス トンとの組み合わせを複数有することを 特徴とする請求の範囲第 1項記載の熱機関。 26. The heat engine according to claim 1, wherein the heat engine has a plurality of combinations of the cylinder and the piston.
2 7 . 該複数のビス トンが機械的に連結されていることを特徴とす る請求の範囲第 2 6項記載の熱機関。  27. The heat engine according to claim 26, wherein said plurality of bistones are mechanically connected.
2 8 . 該第 1 の空間及び該第 2の空間内の 5 0 0 n m以上の粒径を 有する塵埃の数が 1立方メ一トル当たり 3 0 0 0 0 0個以下である 請求の範囲第 1項記載の熱機関。  28. The number of dust particles having a particle size of 500 nm or more in the first space and the second space is 300000 or less per cubic meter. Heat engine according to paragraph 1.
2 9 . 該ェンジン、 該第 1 の弁、 該第 2の弁、 該第 3 の弁、 及び該 第 4の弁からなるユニッ トを複数有し、 該複数のユニッ トが、 該加 熱装置に並列に接続され、 かつ該冷却装置に並列に接続されること を特徴とする請求の範囲第 1項記載の熱機関。  29. A plurality of units each including the engine, the first valve, the second valve, the third valve, and the fourth valve, wherein the plurality of units include the heating device. 2. The heat engine according to claim 1, wherein the heat engine is connected in parallel with the cooling device, and is connected in parallel with the cooling device.
3 0 . 容積可変の第 1の空間及び容積可変の第 2の空間を有するェ ンジンと、 該第 1 の空間及ぴ該第 2の空間に接続された高温熱源用 の第 3 の空間を有する加熱装置と、 該第 1 の空間及び該第 2の空間 に接続された低温熱源用の第 4の空間を有する冷却装置と、 該第 1 の空間と該第 3の空間との間に配備された第 1 の弁と、 該第 1 の空 間と該第 4の空間との間に配備された第 2の弁と、 該第 2の空間と 該第 3の空間との間に配備された第 3の弁と、 該第 2の空間と該第 4の空間との間に配備された第 4の弁とを有し、 かつ該第 1 の空間、 該第 2の空間、 該第 3 の空間、 及び該第 4の空間内に気体が充填さ れ、 かつ該第 1 の空間及び該第 2の空間のそれぞれの容積変化と、 該第 1 の弁、 該第 2の弁、 該第 3の弁、 及び該第 4の弁の動作とに より該気体が温度変化及び圧力変化を伴って流れることを特徴とす る熱機関の駆動方法において、 該駆動方法が、 該第 2の空間の容積 が増加する期間中に該第 3 の弁を開状態から閉状態に切り替えるェ 程と、 該第 2の空間の容積が最大となるタイ ミ ングもしく はその近 傍で該 4の弁を閉状態から開状態に切り替える工程と、 該第 1 の空 間が最小の容積となるタイ ミングもしくはその近傍で該第 1の弁を 開状態から閉状態に切り替える工程と、 該第 1 の空間の容積が増加 する期間の初期に該第 2の弁を閉状態から開状態に切り替える工程 と、 該第 1 の空間の容積が所定の値となるタイ ミングで該第 2の弁 を開状態から閉状態に切り替える工程と、 該第 2の空間の容積が減 少する期間の末期に該 4の弁を開状態から閉状態に切り替える工程 と、 該第 2の空間の容積が最小となるタイ ミングもしく はその近傍 で該第 3の弁を閉状態から開状態に切り替える工程と、 該第 1 の空 間の容積が減少する期間中に該第 1 の弁を閉状態から開状態に切り 替える工程とを有する熱機関の駆動方法。 Having 3 0. And E engine having a second space of the first space and the variable volume of the variable volume, a third space for high-temperature heat source that is connected to the space及Pi said second space of said first A heating device; a cooling device having a fourth space for a low-temperature heat source connected to the first space and the second space; and a cooling device disposed between the first space and the third space. The first valve and the first empty A second valve disposed between the second space and the fourth space; a third valve disposed between the second space and the third space; and And a fourth valve disposed between the fourth space and the first space, the second space, the third space, and a gas in the fourth space. The volume of each of the first space and the second space that are filled and the operation of the first valve, the second valve, the third valve, and the fourth valve; A method of driving a heat engine, characterized in that the gas flows with a change in temperature and a change in pressure, whereby the driving method further comprises the third valve during a period in which the volume of the second space increases. Switching the four valves from the closed state to the open state at or near the timing when the volume of the second space is maximized, and One Switching the first valve from the open state to the closed state at or near the time when the volume becomes the minimum volume, and closing the second valve at the beginning of the period in which the volume of the first space increases. Switching the state from the open state to the open state; switching the second valve from the open state to the closed state at a timing when the volume of the first space becomes a predetermined value; and reducing the volume of the second space. Switching the fourth valve from the open state to the closed state at the end of the short period; and opening or closing the third valve from the closed state at or near the timing when the volume of the second space is minimized. A method for driving a heat engine, comprising: a step of switching to a state; and a step of switching the first valve from a closed state to an open state during a period in which the volume of the first space decreases.
3 1 . 該第 1 の空間及び該第 2の空間がシリ ンダと該シリ ンダ内の 空間に嵌装されるピス トンとで形成され、 かつ該第 1 の空間及び該 第 2の空間の容積変化が該ピス トンの往復運動によ り行われること を特徴とする請求の範囲第 3 0項記載の熱機関の駆動方法。 31. The first space and the second space are formed of a cylinder and a piston fitted into a space in the cylinder, and the volumes of the first space and the second space 30. The heat engine driving method according to claim 30, wherein the change is performed by reciprocating movement of the piston.
3 2 . 該第 1 の弁、 該第 2の弁、 該第 3の弁、 及び該第 4の弁のそ れぞれの閉状態から開状態への切り替え動作が、 差圧が実質的に 0 となるタイ ミングで行われることを特徴とする請求の範囲第 3 0項 記載の熱機関の駆動方法。 32. The switching operation of each of the first valve, the second valve, the third valve, and the fourth valve from the closed state to the open state is performed when the differential pressure is substantially reduced. 30. The method for driving a heat engine according to claim 30, wherein the method is performed at a timing when the temperature becomes zero.
3 3 . 該熱機関の駆動方法が該第 3の空間と該第 4の空間との間に 配備されるバイパス流路と、 該バイパス流路中に配備され、 該第 3 の空間と該第 4の空間との差圧を利用して動力を発生するバイパス 原動機とを更に有する熱機関の駆動方法であり、 かつ、 該第 3の空 間と該第 4の空間との差圧を所定の範囲に制御することを特徴とす る請求の範囲第 3 0項記載の熱機関の駆動方法。  33. A method for driving the heat engine, wherein a bypass flow path is provided between the third space and the fourth space, and a bypass flow path is provided in the bypass flow path. A method for driving a heat engine further including a bypass prime mover that generates power by utilizing a pressure difference between the third space and the fourth space, wherein a pressure difference between the third space and the fourth space is determined by a predetermined value. 30. The method for driving a heat engine according to claim 30, wherein the driving is performed within a range.
3 4 . 該熱機関の駆動方法が圧力センサを更に有する熱機関の駆動 方法であり、 かつ、 該第 1 の弁、 該第 2の弁、 該第 3の弁、 及び該 第 4の弁の切り替え動作のタイ ミ ングを該圧力センサの検知信号に 基づき決定することを特徴とする請求の範囲第 3 0項記載の熱機関 の駆動方法。  34. The method for driving the heat engine is a method for driving a heat engine further including a pressure sensor, and a method for driving the first valve, the second valve, the third valve, and the fourth valve. 30. The method for driving a heat engine according to claim 30, wherein a timing of the switching operation is determined based on a detection signal of the pressure sensor.
3 5 . 該熱機関の駆動方法が圧力センサを有する熱機関と圧力セン サを有しない熱機関との組み合わせを同時に動作させる熱機関の駆 動方法であり、 かつ、 該圧力センサを有する少なく とも 1つの熱機 関の動作に基づき、 該圧力センサを有しない熱機関の該第 1の弁、 該第 2の弁、 該第 3の弁、 及び該第 4の弁の切り替え動作を行う こ とを特徴とする請求の範囲第 3 4項記載の熱機関の駆動方法。  35. The method for driving a heat engine is a method for driving a heat engine that simultaneously operates a combination of a heat engine having a pressure sensor and a heat engine having no pressure sensor, and at least having the pressure sensor. Performing a switching operation of the first valve, the second valve, the third valve, and the fourth valve of the heat engine having no pressure sensor based on the operation of one heat engine; The method for driving a heat engine according to claim 34, wherein the method is characterized in that:
3 6 . 該熱機関の駆動方法が該第 3の空間内の圧力をモニタ リ ング する圧力センサを更に有する熱機関の駆動方法であり、 該第 3の空 間内の圧力が所定の値となるよ うに該第 3の弁を開状態から閉状態 に切り替えるタイ ミ ングを制御することを特徴とする請求の範囲第 3 0項記載の熱機関の駆動方法。 36. The method for driving the heat engine is a method for driving a heat engine further including a pressure sensor for monitoring the pressure in the third space, wherein the pressure in the third space is a predetermined value. Controlling the timing of switching the third valve from the open state to the closed state so that the third valve is closed. 30. The method for driving a heat engine according to item 30.
3 7 . 該熱機関の駆動方法が該第 4の空間内の圧力をモニタ リング する圧力センサを更に有する熱機関の駆動方法であり、 該第 4の空 間内の圧力が所定の値となるよ うに該第 2の弁を開状態から閉状態 に切り替えるタイ ミングを制御することを特徴とする請求の範囲第 3 0項記載の熱機関の駆動方法。  37. The method for driving the heat engine is a method for driving a heat engine further including a pressure sensor for monitoring the pressure in the fourth space, and the pressure in the fourth space becomes a predetermined value. 30. The heat engine driving method according to claim 30, wherein the timing of switching the second valve from the open state to the closed state is controlled as described above.
3 8 . 該気体の温度に関する温度データに基づき、 所定の該気体の 膨張比と所定の該第 2の空間の容積変化の周波数との組み合わせに 対応する該第 1 の弁、 該第 2の弁、 該第 3の弁、 及び該第 4の弁の それぞれの切り替え動作のタイ ミングを決定する工程を更に有する ことを特徴とする請求の範囲第 3 0項記載の熱機関の駆動方法。 38. The first valve and the second valve corresponding to a combination of a predetermined expansion ratio of the gas and a predetermined frequency of volume change of the second space based on temperature data on the temperature of the gas. 30. The heat engine driving method according to claim 30, further comprising a step of determining a timing of a switching operation of each of said third valve and said fourth valve.
3 9 . 該所定の膨張比と該所定の周波数との組み合わせに対応する 該第 1 の弁、 該第 2の弁、 該第 3の弁、 及び該第 4の弁のそれぞれ の切り替え動作のタイ ミ ングを決定する該工程がプロセッサによる 処理により行われることを特徴とする請求の範囲第 3 8項記載の熱 機関の駆動方法。 39. A tie of switching operation of each of the first valve, the second valve, the third valve, and the fourth valve corresponding to the combination of the predetermined expansion ratio and the predetermined frequency. 39. The method for driving a heat engine according to claim 38, wherein the step of determining the mining is performed by processing by a processor.
4 0 . 該気体の温度に関する温度データに基づき、 該気体の膨張比 を決定する工程を更に有することを特徴とする請求の範囲第 3 0項 記載の熱機関の駆動方法。  40. The heat engine driving method according to claim 30, further comprising a step of determining an expansion ratio of the gas based on temperature data relating to a temperature of the gas.
4 1 . 該膨張比を決定する工程がプロセッサによる処理により行わ れることを特徴とする請求の範囲第 4 0項記載の熱機関の駆動方法 c 4 2 . 該気体の温度に関する温度データと負荷データとに基づき、 該気体の膨張比と該第 2の空間の容積変化の周波数との組み合わせ を決定する工程を更に有することを特徴とする請求の範囲第 3 0項 記載の熱機関の駆動方法。 4 1. The driving method c 4 2 of the heat engine in the range 4 0 claim of claim the step of determining the expansion ratio is equal to or performed by the processing by the processor. Temperature data and load data relating to the temperature of the gas 31. The method according to claim 30, further comprising the step of determining a combination of an expansion ratio of the gas and a frequency of a volume change of the second space based on the above.
4 3 . 該膨張比と該周波数との組み合わせを決定する該工程がプロ セッサによる処理により行われることを特徴とする請求の範囲第 4 2項記載の熱機関の駆動方法。 43. The method for driving a heat engine according to claim 42, wherein the step of determining the combination of the expansion ratio and the frequency is performed by processing by a processor.
4 4 . 負荷の変動に対応して、 該気体の膨張比を変化させることを 特徴とする請求の範囲第 3 0項記載の熱機関の駆動方法。  44. The method for driving a heat engine according to claim 30, wherein the expansion ratio of the gas is changed in response to a change in load.
4 5 . 該第 2の空間の容積変化の周波数が所定の値となるよ うに、 該気体の膨張比を変化させることを特徴とする請求の範囲第 3 0項 記載の熱機関の駆動方法。  45. The method for driving a heat engine according to claim 30, wherein the expansion ratio of the gas is changed so that the frequency of the volume change of the second space becomes a predetermined value.
4 6 . 該気体の膨張比を変化させることによ り該第 2の空間の容積 変化の周波数を変化させることを特徴とする請求の範囲第 3 0項記 載の熱機関の駆動方法。  46. The method for driving a heat engine according to claim 30, wherein the frequency of volume change of the second space is changed by changing an expansion ratio of the gas.
4 7 . 該熱機関の駆動方法がパヮ一モニタを更に有する熱機関の動 作の最適化を行うための駆動方法であり、 該熱機関の駆動方法が、 該第 1 の弁の切り替え動作のタイ ミ ングを微小に変化させた場合の 出力変化をモニタ リ ングし、 該熱機関の出力が極大となる該第 1の 弁の切り替え動作のタイ ミングを決定することを特徴とする請求の 範囲第 3 0項記載の熱機関の駆動方法。  47. The driving method of the heat engine is a driving method for optimizing the operation of the heat engine further including a power monitor, and the driving method of the heat engine is a driving method of the switching operation of the first valve. A change in output when the timing is minutely changed is monitored, and a timing of a switching operation of the first valve at which an output of the heat engine is maximized is determined. 30. The method for driving a heat engine according to claim 30.
4 8 . 該熱機関の駆動方法がパワーモニタを有する熱機関とパワー モニタを有しない熱機関とを有する複数の熱機関の組み合わせを同 時に動作させる熱機関の駆動方法であり、 該パワーモニタを有する 少なく とも 1つの熱機関の動作に基づき、 該パヮ一モニタを有しな い熱機関の第 1 の弁の切り替え動作を行う ことを特徴とする請求の 範囲第 4 7項記載の熱機関の駆動方法。  48. The method for driving a heat engine is a method for driving a heat engine in which a combination of a plurality of heat engines having a heat engine having a power monitor and a heat engine having no power monitor is operated simultaneously. 48. The heat engine according to claim 47, wherein a switching operation of a first valve of the heat engine without the power monitor is performed based on an operation of at least one heat engine. Drive method.
4 9 . 該熱機関の駆動方法がパワーモニタを更に有する熱機関の動 作の最適化を行うための駆動方法であり、 該熱機関の駆動方法が、 該第 2の弁の切り替え動作のタイ ミングを微小に変化させた場合の 出力変化をモニタリ ングし、 該熱機関の出力が極大となる該第 2の 弁の切り替え動作のタイ ミングを決定することを特徴とする請求の 範囲第 3 0項記載の熱機関の駆動方法。 49. The method for driving the heat engine is a method for optimizing the operation of the heat engine further including a power monitor, and the method for driving the heat engine includes: Monitoring the output change when the timing of the switching operation of the second valve is minutely changed, and determining the timing of the switching operation of the second valve at which the output of the heat engine is maximized. 30. The method for driving a heat engine according to claim 30, wherein:
5 0 . 該熱機関の駆動方法がパワーモニタを有する熱機関とパワー モニタを有しない熱機関とを有する複数の熱機関の組み合わせを同 時に動作させる熱機関の運転方法であり、 該パワーモニタを有する 少なく とも 1 つの熱機関の動作に基づき、 該パワーモニタを有しな い熱機関の第 2の弁の切り替え動作を行う ことを特徴とする請求の 範囲第 4 9項記載の熱機関の駆動方法。  50. The method for driving a heat engine is a method for operating a heat engine in which a combination of a plurality of heat engines having a heat engine having a power monitor and a heat engine having no power monitor is simultaneously operated. The drive of the heat engine according to claim 49, wherein the switching operation of the second valve of the heat engine without the power monitor is performed based on the operation of at least one heat engine. Method.
5 1 . 該熱機関の駆動方法がパワーモニタを更に有する熱機関の動 作の最適化を行うための駆動方法であり、 該熱機関の駆動方法が、 該第 4の弁の切り替え動作のタイ ミ ングを微小に変化させた場合の 出力変化をモニタ リ ングし、 該熱機関の出力が極大となる該第 4の 弁の切り替え動作のタイ ミングを決定することを特徴とする請求の 範囲第 3 0項記載の熱機関の駆動方法。  51. The method for driving the heat engine is a method for optimizing the operation of the heat engine further including a power monitor, and the method for driving the heat engine is a method for switching the operation of the fourth valve. The output change when the mining is changed minutely is monitored, and the timing of the switching operation of the fourth valve at which the output of the heat engine is maximized is determined. 30. The method for driving a heat engine according to item 30.
5 2 . 該熱機関の駆動方法がパワーモニタを有する熱機関とパワー モニタを有しない熱機関とを有する複数の熱機関の組み合わせを同 時に動作させる熱機関の駆動方法であり、 該パワーモニタを有する 少なく とも 1つの熱機関の動作に基づき、 該パワーモニタを有しな い熱機関の第 4の弁の切り替え動作を行う ことを特徴とする請求の 範囲第 4 9項記載の熱機関の駆動方法。  52. The method for driving a heat engine is a method for driving a heat engine that simultaneously operates a combination of a plurality of heat engines having a heat engine having a power monitor and a heat engine having no power monitor. The drive of the heat engine according to claim 49, wherein the switching operation of the fourth valve of the heat engine without the power monitor is performed based on the operation of at least one heat engine. Method.
5 3 . 負荷が増大する場合に対応して、 補助動力により該第 1の空 間の容積変化の周波数を増加させる工程を更に有することを特徴と する請求の範囲第 3 0項記載の熱機関の駆動方法。 4 53. The heat engine according to claim 30, further comprising a step of increasing the frequency of the volume change of said first space by auxiliary power in response to an increase in load. Drive method. Four
5 4 . 該熱機関の始動時には該第 1 の弁、 該 2の弁、 該第 3の弁、 及び該第 4の弁のそれぞれの切り替え動作が、 始動用のタイ ミング で行われることを特徴とする請求の範囲第 3 0項記載の熱機関の駆 動方法。 54. When the heat engine is started, the switching operation of each of the first valve, the second valve, the third valve, and the fourth valve is performed at a timing for starting. 30. The method for driving a heat engine according to claim 30, wherein:
5 5 . 該気体の膨張比を、 該膨張比を増加させた場合に出力が低下 する領域内に設定することを特徴とする請求の範囲第 3 0項記載の 熱機関の駆動方法。  55. The method for driving a heat engine according to claim 30, wherein the expansion ratio of the gas is set in a region where the output decreases when the expansion ratio is increased.
5 6 . 膨張後の該気体が等積的に該冷却装置により冷却される期間 を有することを特徴とする請求の範囲第 3 0項記載の熱機関の駆動 方法。  56. The method for driving a heat engine according to claim 30, wherein said method has a period in which said gas after expansion is cooled by said cooling device in an equal volume manner.
5 7 . 圧縮後の該気体が等積的に該加熱装置によ り加熱される期間 を有することを特徴とする請求の範囲第 3 0項記載の熱機関の駆動 方法。  57. The method for driving a heat engine according to claim 30, wherein the compressed gas has a period during which the gas is heated by the heating device in an isosteric manner.
5 8 . 該第 3の空間内において該気体が等温的に膨張することによ り該加熱装置から熱を吸収する期間を有することを特徴とする請求 の範囲第 3 0項記載の熱機関の駆動方法。  58. The heat engine according to claim 30, further comprising a period for absorbing heat from the heating device by isothermally expanding the gas in the third space. Drive method.
5 9 . 該第 4の空間内において該気体が等温的に圧縮されることに より該冷却装置に熱を放出する期間を有することを特徴とする請求 の範囲第 3 0項記載の熱機関の駆動方法。  59. The heat engine according to claim 30, further comprising a period in which the gas is isothermally compressed in the fourth space to release heat to the cooling device. Drive method.
6 0 . 容積可変の第 1 の空間及び容積可変の第 2の空間を有するェ ンジンと、 該第 1 の空間及び該第 2の空間の容積変化発生用の動力 源と、 該第 1 の空間及び該第 2の空間に接続された高温熱源用の第 3 の空間を有する放熱装置と、 該第 1 の空間及び該第 2の空間に接 続された低温熱源用の第 4の空間を有する冷却装置と、 該第 1 の空 間と該第 3の空間との間に配備された第 1の弁と、 該第 1 の空間と 該第 4の空間との間に配備された第 2の弁と、 該第 2の空間と該第 3の空間との間に配備された第 3の弁と、 該第 2の空間と該第 4の 空間との間に配備された第 4の弁とを有することを特徴と し、 該第 1 の空間、 該第 2の空間、 該第 3の空間、 及び該第 4の空間内に気 体が充填され、 かつ該第 1 の空間及び該第 2の空間のそれぞれの容 積変化と、 該第 1の弁、 該第 2の弁、 該第 3の弁、 及び該第 4の弁 の動作とにより該気体が温度変化及び圧力変化を伴って流れること を特徴とするヒー トポンプ型の熱機関の駆動方法において、 該駆動 方法が、 該第 2の空間の容積が減少する期間中に該第 3の弁を閉状 態から開状態に切り替える工程と、 該第 2の空間の容積が最大とな るタイ ミングもしくはその近傍で該 4の弁を開状態から閉状態に切 り替える工程と、 該第 1 の空間が最小の容積となるタイ ミ ングもし く はその近傍で該第 1 の弁を閉状態から開状態に切り替える工程と . 該第 1の空間の容積が減少する期間の末期に該第 2の弁を開状態 から閉状態に切り替える工程と、 該第 1の空間の容積が所定の値と なるタイ ミングで該第 2の弁を閉状態から開状態に切り替える工程 と、 該第 2の空間の容積が増加する期間の初期に該 4の弁を閉状態 から開状態に切り替える工程と、 該第 2の空間の容積が最小となる タイ ミングもしく はその近傍で該第 3の弁を開状態から閉状態に切 り替える工程と、 該第 1 の空間の容積が増加する期間中に該第 1 の 弁を開状態から閉状態に切り替える工程とを有する熱機関の駆動方 法。 60. An engine having a variable volume first space and a variable volume second space, a power source for generating a volume change in the first space and the second space, and the first space And a radiator having a third space for a high-temperature heat source connected to the second space, and a fourth space for a low-temperature heat source connected to the first space and the second space. A cooling device; a first valve disposed between the first space and the third space; A second valve disposed between the fourth space; a third valve disposed between the second space and the third space; and a second valve disposed between the second space and the third space. And a fourth valve disposed between the first space, the second space, the third space, and the fourth space. The body is filled, and the volume change of each of the first space and the second space; and the change of the first valve, the second valve, the third valve, and the fourth valve. A method of driving a heat pump type heat engine, wherein the gas flows with a change in temperature and a change in pressure due to an operation of the heat pump, wherein the driving method is performed while the volume of the second space is reduced. Switching the third valve from the closed state to the open state, and switching the fourth valve from the open state to the closed state at or near the timing when the volume of the second space is maximized. And switching the first valve from a closed state to an open state at or near the timing when the first space has a minimum volume. The volume of the first space decreases. Switching the second valve from the open state to the closed state at the end of the period; and switching the second valve from the closed state to the open state at a timing when the volume of the first space becomes a predetermined value. Switching the fourth valve from the closed state to the open state at the beginning of the period in which the volume of the second space increases, and at or near the timing when the volume of the second space is minimized. A heat engine having a step of switching the third valve from an open state to a closed state, and a step of switching the first valve from an open state to a closed state during a period in which the volume of the first space increases. Driving method.
PCT/JP2000/000112 2000-01-12 2000-01-12 Heat engine and method of driving the heat engine WO2001051861A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2000/000112 WO2001051861A1 (en) 2000-01-12 2000-01-12 Heat engine and method of driving the heat engine
AU2000220028A AU2000220028A1 (en) 2000-01-12 2000-01-12 Heat engine and method of driving the heat engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/000112 WO2001051861A1 (en) 2000-01-12 2000-01-12 Heat engine and method of driving the heat engine

Publications (1)

Publication Number Publication Date
WO2001051861A1 true WO2001051861A1 (en) 2001-07-19

Family

ID=11735570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000112 WO2001051861A1 (en) 2000-01-12 2000-01-12 Heat engine and method of driving the heat engine

Country Status (2)

Country Link
AU (1) AU2000220028A1 (en)
WO (1) WO2001051861A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196558A (en) * 1986-02-21 1987-08-29 松下電工株式会社 Heat pump
US4700545A (en) * 1985-05-06 1987-10-20 Aisin Seiki Kabushiki Kaisha Refrigerating system
JPS62272064A (en) * 1986-05-20 1987-11-26 松下電工株式会社 Reciprocating type compression-expansion machine
JPS6391462A (en) * 1986-10-06 1988-04-22 株式会社デンソー Gas refrigerator
JPH01142366A (en) * 1987-11-30 1989-06-05 Aisin Seiki Co Ltd Stirling refrigerator
JPH03284134A (en) * 1990-03-29 1991-12-13 Toshiba Corp Power unit
JPH04340060A (en) * 1991-05-15 1992-11-26 Mitsubishi Heavy Ind Ltd Uilleumier cycle heat pump
JPH06159828A (en) * 1992-11-20 1994-06-07 Mitsubishi Electric Corp Cold heat storage type refrigerating machine
JPH08152213A (en) * 1994-11-29 1996-06-11 Sanyo Electric Co Ltd Gas compressor and expansion device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700545A (en) * 1985-05-06 1987-10-20 Aisin Seiki Kabushiki Kaisha Refrigerating system
JPS62196558A (en) * 1986-02-21 1987-08-29 松下電工株式会社 Heat pump
JPS62272064A (en) * 1986-05-20 1987-11-26 松下電工株式会社 Reciprocating type compression-expansion machine
JPS6391462A (en) * 1986-10-06 1988-04-22 株式会社デンソー Gas refrigerator
JPH01142366A (en) * 1987-11-30 1989-06-05 Aisin Seiki Co Ltd Stirling refrigerator
JPH03284134A (en) * 1990-03-29 1991-12-13 Toshiba Corp Power unit
JPH04340060A (en) * 1991-05-15 1992-11-26 Mitsubishi Heavy Ind Ltd Uilleumier cycle heat pump
JPH06159828A (en) * 1992-11-20 1994-06-07 Mitsubishi Electric Corp Cold heat storage type refrigerating machine
JPH08152213A (en) * 1994-11-29 1996-06-11 Sanyo Electric Co Ltd Gas compressor and expansion device

Also Published As

Publication number Publication date
AU2000220028A1 (en) 2001-07-24

Similar Documents

Publication Publication Date Title
US5269147A (en) Pulse tube refrigerating system
EP3076017B1 (en) Compressor unit and gas supply apparatus
JP6017327B2 (en) Cryogenic refrigerator
JP2008544153A (en) A low-temperature engine-compressor unit with an active chamber that continuously burns "cold" at constant pressure
US20130219923A1 (en) Cryogenic refrigerator
JP2011127879A (en) Reciprocation type expansion compressor
US5387252A (en) Cryogenic refrigerator
US20140147296A1 (en) Cooling Device Fitted With A Compressor
US4700545A (en) Refrigerating system
US5009072A (en) Refrigerator
WO2001051861A1 (en) Heat engine and method of driving the heat engine
US11713912B2 (en) Cryocooler and starting method of cryocooler
JP2010071481A (en) Thermal compressor and air conditioning device
Simonenko et al. Cryogenic Thermomechanical Compressor
Orlowska et al. Development status of a 2.5 K–4 K closed-cycle cooler suitable for space use
US5697219A (en) Cryogenic refrigerator
JPH11304271A (en) Cold storage type refrigerating machine and superconducting magnet using it
Longsworth A modified Solvay-cycle cryogenic refrigerator
US20100064681A1 (en) Method for increasing performance of a stirling or free-piston engine
JP2723342B2 (en) Cryogenic refrigerator
US252921A (en) Leicester allen
Miller et al. Proof-of-principle measurements of the superfluid Joule-Thomson refrigerator concept
Bo et al. Design and experimental validation of the slider-based free piston expander for transcritical CO2 refrigeration cycle
Kronberg et al. Isobaric expansion engine compressors: thermodynamic analysis of the simplest direct vapor-driven compressors. Energies 2022; 15: 5028
JPH06323655A (en) Refrigerator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 552032

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase