WO2001047752A1 - Dual inflator - Google Patents

Dual inflator Download PDF

Info

Publication number
WO2001047752A1
WO2001047752A1 PCT/JP2000/004097 JP0004097W WO0147752A1 WO 2001047752 A1 WO2001047752 A1 WO 2001047752A1 JP 0004097 W JP0004097 W JP 0004097W WO 0147752 A1 WO0147752 A1 WO 0147752A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
ignition
dual
combustion
chamber
Prior art date
Application number
PCT/JP2000/004097
Other languages
French (fr)
Japanese (ja)
Inventor
Jianlin Chen
Toshihiko Tamura
Original Assignee
Nippon Koki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koki Co., Ltd. filed Critical Nippon Koki Co., Ltd.
Publication of WO2001047752A1 publication Critical patent/WO2001047752A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/263Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using a variable source, e.g. plural stage or controlled output
    • B60R2021/2633Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using a variable source, e.g. plural stage or controlled output with a plurality of inflation levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
    • B60R2021/2648Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder comprising a plurality of combustion chambers or sub-chambers

Definitions

  • the present invention relates to a gas generator for deploying an airbag, and more particularly, to a dual-type inflation system that can freely adjust gas output to an airbag according to a speed at the time of a collision or an occupant's seating posture.
  • the dual type inflation system has two combustion chambers in one chamber and can be operated by each ignition system.
  • the operation of the air bag at the time difference or simultaneous operation is suppressed, and the deployment speed of the airbag is suppressed at the time of low-speed collision, so that the bag can be deployed strongly at a stretch in the case of a severe collision. It is also possible to change the speed of bag inspection depending on the occupant's sitting position.
  • One is to create two combustion chambers by dividing the inside of a cylindrical chamber into right and left by a partition plate having a certain angle (for example, Japanese Patent Application Laid-Open No. 9-183359).
  • the other is that a cylindrical chamber is divided into upper and lower parts by a disk-shaped partition plate to form two combustion chambers (for example, Japanese Patent Application Laid-Open No. H11-599318, Japanese Patent Application Laid-Open No. No. 17055).
  • the first combustion chamber surrounds the second combustion chamber (for example, Japanese Patent Application Laid-Open No. Hei 5-3-1919).
  • Japanese Patent Application Laid-Open No. Hei 11-217705 describes that two combustion chambers are defined by a disk-shaped partition member, and each combustion chamber communicates with each other via a filter member.
  • a gas generator is disclosed.
  • the first combustion chamber igniter is located at the center, and the second combustion chamber igniter is offset, igniting the gas generant pellet at the end of the second combustion chamber that is far away from the igniter. And the combustion rate of the entire gas generating agent in the second combustion chamber may decrease.
  • the gas generating agent in the vicinity of the igniter is preferentially ignited in the second combustion chamber, so that the combustion product gas tends to pass intensively in the vicinity of the misaligned igniter. High-temperature combustion product gas is blown out, and the concentrated area of the filter is damaged, and there is a risk that the residue will blow out of the inflation overnight. Disclosure of the invention
  • the present invention has been made in order to solve such a conventional problem, and its object is to provide a dual-type single-frame type adopting a single-fill type structure in order to pursue simplicity and high productivity. To provide.
  • Another object of the present invention is to provide a dual-type inflation system capable of cutting off the influence of the second combustion chamber from the first combustion chamber. Another object of the present invention is to provide a dual-type inflation system capable of reducing the amount of charge in the second combustion chamber and reducing the volume of the second combustion chamber. Another object of the present invention is to provide a partition cup that separates the first combustion chamber and the second combustion chamber with a nozzle, so that gas outflow from the second combustion chamber is controlled by the nozzle of the partition force, An object of the present invention is to provide a dual-type inflator capable of maintaining a predetermined combustion pressure and a predetermined gas generating agent combustion rate in two combustion chambers.
  • Another object of the present invention is to provide a nozzle on the entire bottom surface of a partition cup that separates the first combustion chamber and the second combustion chamber, thereby dispersing the gas blowing from the second combustion chamber and concentrating the generated gas.
  • the purpose is to provide a dual-type inflation system that can prevent the problem.
  • Another object of the present invention is a dual type in which the height of the tank pressure output and the time to reach the maximum tank pressure output can be freely adjusted by adjusting the ignition delay time of the first combustion chamber and the second combustion chamber. To submit inflation overnight.
  • Another object of the present invention is to control the ignition of the gas generating agent and the flame propagation in the first combustion chamber, and to provide an S-shaped curve tank pressure output that is advantageous for airbag deployment (the sunset pressure becomes 1 at 20 ms after ignition). OOkPa or less).
  • Another object of the present invention is to prevent the damage of the filter by uniformly passing the circumference of the filter while controlling the flow of the gas generated in the combustion chamber, and to reduce the inflow due to the concentration of the gas flow.
  • An object of the present invention is to provide a dual-type inflator that can suppress a single blow of gas from the airbag and improve the deployment characteristics of the airbag.
  • Another object of the present invention is to concentrate the initial ignition energy from the ignition cartridge to the gas generating agent around the ignition cartridge, thereby reducing the amount of ignition powder, inflation overnight output variation and inflation overnight output low temperature characteristics.
  • the goal is to submit a dual-type inflation that can be expected to improve the economy.
  • Another object of the present invention is to provide an initial combustion control mechanism having a predetermined pressure holding capacity around an ignition cartridge and use the pressure holding characteristic to widely support the combustion characteristics of a gas generating agent. Is to submit a dual inflation overnight.
  • An object of the present invention is to provide an infinity chamber having a plurality of diffusers on a side wall, A partition force provided with a nozzle on the bottom surface, a first combustion chamber and a second combustion chamber formed in the inflation chamber by partitioning the inflation chamber in a vertical direction of the side wall by the partition cup; A sealing member provided on the first combustion chamber side of the bottom of the tip, a gas generating agent filled in the first combustion chamber and the second combustion chamber, and an ignition in the first combustion chamber located in the inflation chamber A first ignition means provided with an energy ejection section, a second ignition means provided in an infra-red chamber, and an ignition energy ejection section provided in a second combustion chamber, and a second ignition means provided in the first combustion chamber; Ignition energy ejected from one ignition means A combustion area of the gas generating agent due to one is formed around the first ignition means, and the combustion energy in the combustion area propagates to the gas generating agent in the first combustion chamber And stage, located Infu rate evening chamber, is achieved by providing
  • the combustion energy transmitting means is, for example, a partition surrounding the first igniting means and the second igniting means, an opening provided in the partition, and filled between the partition and the first igniting means and the second igniting means. And a gas generating agent.
  • the partition is, for example, a cylindrical fin, and an opening is provided on the partition cup side. If the ignition energies of the first ignition means and the second ignition means are clear, they respectively open toward the center of the infra-red chamber.
  • the nozzle provided on the bottom surface of the partition cup is provided, for example, on the entire bottom surface.
  • the volume of the first combustion chamber is larger than the volume of the second combustion chamber.
  • the ratio is arbitrary and is determined by installing a partition cup.
  • the sealing member is peeled off from the partitioning force by the combustion gas pressure of the gas generating agent in the second combustion chamber.
  • the first ignition means and the second ignition means include, for example, an ignition cartridge provided with a nozzle, an ignition agent charged in the ignition cartridge, and an igniter activated by a signal from an external control device. .
  • annular heat absorbing material On the nozzle provided on the bottom surface of the partition cup, for example, an annular heat absorbing material is arranged.
  • FIG. 1 is a vertical cross-sectional view of a dual-type inflator according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • FIG. 3 is an exploded perspective view of the filter used in FIG.
  • FIG. 4 is an exploded explanatory view of the partition cup used in FIG.
  • FIG. 5 is a graph showing the relationship between the airbag deployment pressure, the pressure in the combustion chamber, and the time in the dual-type inflator according to the present embodiment.
  • FIG. 6 is a graph showing the airbag deployment characteristics of the dual-type inflation system according to the present embodiment.
  • FIG. 7 is a graph showing a nozzle evaluation test of a partition cup according to the dual type inflation according to the present embodiment.
  • FIG. 8 is an explanatory diagram showing the arrangement of the fins of the present invention.
  • FIG. 9 is an explanatory diagram showing the nozzle positions of the fins in the first combustion chamber during the dual type inflation according to the present embodiment.
  • FIG. 10 is a graph showing the tank output characteristics during the dual inflation according to the present embodiment.
  • FIG. 11 is a graph showing output characteristics of the dual-type inflation system according to the present embodiment.
  • FIG. 12 is a graph showing a comparison of the amount of heat absorbing material during the dual type inflation according to the present embodiment.
  • FIG. 1 and 2 show a dual-type inflation system A according to an embodiment of the present invention.
  • the inflation overnight chamber 1 is formed by combining, for example, cups 1 a and lb made of SUS304.
  • the cup la is provided with a large number (eight in this example) of 03.5 mm diffusers 2 on the wall surface.
  • the diffuser 2 is provided with a diffuser closure 3.
  • Cup lb, first firing cartridge 20 and second firing powder Through holes 4 and 5 for mounting the cylinder 30 are provided.
  • a partition cup 10 made of an aluminum pressed product, a first ignition cartridge 20, a second ignition cartridge 30, a fin 70, and a filter Evening 40 is arranged.
  • An area defined by the partition cup 10, the cup 1 b of the inflation chamber 1, and the fill bowl 40 forms, for example, a first combustion chamber 100 of 59 mm and a height of 21 mm
  • the area defined by the partitioning force 10 and the cup 1a of the inflation chamber 1 forms, for example, a second combustion chamber 110 of 59 mm and a height of 9 mm.
  • the partition cup 10 has, for example, a cup shape with an outer diameter of 59 mm, an inner diameter of 55 mm, a height of 12 mm, a thickness of 3 mm and a bottom, and a second ignition cartridge 3 on the bottom surface 1 1 side. And a plurality (10 in this example) of nozzles 13 having a hole diameter of 3.5 mm for ejecting generated gas in the second combustion chamber 110. ing. The nozzles 13 are arranged at equal intervals on the same arc along the periphery of the bottom surface 11.
  • An annular heat absorbing material 50 is disposed on the partitioning force 10 so as to cover the nozzle 13.
  • the heat absorbing material 50 is, for example, a pressed product of a knitted woven wire mesh (0.5 mm in wire diameter), and has a trapezoidal cross section in which the lower side is widened.
  • the heat absorbing material 50 has, for example, a lower outer diameter of 55 mm, an inner diameter of 42 mm, an upper outer diameter of 55 mm, an inner diameter of 51.8 mm, a height of 9 mm, and a weight of 30 g.
  • a nozzle blocking plate 60 made of, for example, SS and having a thickness of 0.3 mm is attached to the back surface 11 a of the bottom surface 11 of the partitioning force 10.
  • the second ignition cartridge 30 is inserted into the through hole 12 of the partition cup 10.
  • a nozzle closure 33 made of, for example, aluminum and having a thickness of 0.05 mm is attached to the nozzle 32 on the distal end side of the second ignition cartridge 30.
  • the first ignition cartridge 20 is in contact with the back surface 1 1a side of the bottom surface 11 of the partitioning force 10.
  • a nozzle closure 23 made of aluminum and having a thickness of 0.5 mm is attached to the nozzle 22 on the distal end side of the first ignition cartridge 20.
  • twelve semicircular nozzles 71 of ⁇ zi 4 to 5 mm are provided.
  • An annular filter 40 is provided between the partition cup 10 and the inflation chamber 1.
  • Filler 40 is made of, for example, a punching metal 41 made of SUS 304 having an outer diameter of 72 mm, a height of 30 mm, a plate thickness of 0.4 mm, a hole diameter of 0.5 mm, and a pitch of 1 mm, and a knitted woven wire mesh (wire diameter of 0. It has a diameter of 71 mm, an inner diameter of 59 mm, a height of 33 mm, and a weight of 120 g.
  • the first ignition cartridge 20 is, for example, a SUS pressed product having a plate thickness of 1 mm.
  • the nozzle 22 is 04 mm at 60 ° and 140 ° intervals at a position 5 mm below the back surface 11 a of the bottom surface 11 of the partitioning force gap 10 so as to open toward the second ignition cartridge 30.
  • the ignition charge 24 is, for example, 1.3 g of potassium potassium nitrate.
  • An igniter 25 made of, for example, a pin type igniter is attached to a position connected to the ignition charge 24.
  • the second ignition cartridge 30 is, for example, an aluminum pressed product in which the portion exposed to the second combustion chamber 110 has a plate thickness of 1 mm and the other portions have a plate thickness of 2 mm.
  • the nozzle 32 is placed at a position 4.5 mm below the cup 1 a of the inflation chamber 1 at intervals of 60 ° and 140 ° so as to open toward the axis of the first ignition cartridge 20. There are four 3mm holes.
  • the igniting charge 34 is, for example, 1.0 g of potassium potassium nitrate.
  • An igniter 35 made of, for example, a pin type igniter is attached at a position following the ignition charge 34.
  • the first combustion chamber 100 is loaded with a gas generating agent 101 containing guanylaminotetrazole, an oxidizing agent, a coolant and a residue forming agent (for example, kaolin) as active ingredients.
  • the second combustion chamber 110 is charged with a gas generating agent 111 containing guanylaminotetra-v-l, an oxidizing agent, a cooling agent and a residue forming agent (for example, kaolin) as active ingredients.
  • the details of the gas generating agents 101 and 111 are disclosed in Japanese Patent Application No. 11-369913. Next, an assembling process of the dual type frame A according to the present embodiment will be described.
  • the igniter holder 26 of the first ignition cartridge 20 and the igniter holder 36 of the second ignition cartridge 30 are attached to the cup 1b through the through holes 4 and 5, and fixed by welding.
  • the nozzle closures 23, 33 are attached to the first ignition cartridge 20 and the second ignition cartridge 30, respectively.
  • the first ignition cartridge 20 and the second ignition cartridge 30 can be assembled to the cup 1b.
  • the knitting material 42 is press-fitted into the punching metal 41 to form the filling material 40, which is then disposed in the cup lb, and then the fin 70 is provided in the cup lb. Arrange.
  • the gas generating agent 101 is filled into the cup 1b. Thereby, the charging of the gas generating agent 101 into the first combustion chamber 100 is completed.
  • the second ignition cartridge 30 is passed through the through hole 12 of the partitioning force 10, and the first ignition cartridge 20 contacts the back surface 11 a side of the bottom surface 11.
  • a gas seal 80 made of a SUS pressed product and having a thickness of 0.2 mm is attached around the through hole 12.
  • the blocking plate 60 and the gas seal 80 can be integrated.
  • the gas generating agent 111 is filled on the partition cup 110. Thereby, the filling of the gas generating agent 111 into the second combustion chamber 110 is completed.
  • a gap is formed between the partition 1 and the partition cup 10 due to the deformation of the cap 1a.
  • a 0.2 mm thick second combustion chamber gas seal 82 made of a SUS pressed product is used. Install.
  • the cup 1a to which the diffuser closure 3 is attached is press-fitted into the force lip 1b, and the press-fit portion is welded.
  • the ignition control device 130 determines that the impact is equal to or greater than a predetermined value for deploying the airbag 140 based on the acceleration signal from the acceleration sensor 120 during a vehicle collision.
  • the ignition control device 130 ignites.
  • a command is issued to activate the igniter 25 of the first ignition cartridge 20 and first ignite the gas generating agent 101 in the first combustion chamber 100.
  • the airbag 140 is discharged from the diffuser 2 to the outside and supplied to the inside of the folded airbag 140.
  • a certain delay time for example, 20 ms
  • the igniter 35 of the second ignition cartridge 30 is operated, and the gas generating agent 111 of the second combustion chamber 110 is ignited.
  • the gas generated in the second combustion chamber 110 flows into the first combustion chamber 100 through the nozzle 13 provided on the bottom surface 11 of the partitioning force 10 and then passes through the filter 40
  • the air is discharged from the diffuser 2 and supplied to the inside of the airbag 140. Since the generated gas flowing out of the second combustion chamber 110 is controlled by the nozzle 13 of the partition cup 10, a predetermined combustion pressure can be maintained, and the combustion of the gas generating agent 101 is performed for a predetermined time. Can be terminated within The result is shown in FIG.
  • the pressure X for inflating the airbag 140 is provided by the pressure Y in the first combustion chamber 100 and the pressure Z in the second combustion chamber 110.
  • the dual-type inflation system of the present invention can operate in the first combustion chamber 100 alone.
  • the tank pressure output reaches the maximum value of 180 kPa in about 70 ms as in the case of the single type inflation.
  • the second combustion chamber 110 is operated with a delay time of, for example, 20 ms following the operation of the first combustion chamber 100, the gas flows in from the second combustion chamber 110 for 20 ms.
  • the pressure in the first combustion chamber 100 which started to decrease before, rises again. Thereafter, the pressure decreases in proportion to the pressure Z of the second combustion chamber 110. With the additional supply of the generated gas in the second combustion chamber 110, it is possible to increase the maximum tank pressure output to 230 kPa.
  • the tank pressure output characteristics that draw an S-shaped curve can be achieved.
  • the reason why the s-shaped curve is necessary will be described.
  • the airbag device is designed to protect the occupants by deploying the airbag in an emergency such as a vehicle collision.
  • a vehicle collision or the like is detected by a sensor, the gas generator over the inflation installed in the steering wheel is burned, and the combustion product gas is converted into an airbag folded in the steering wheel. Supplied, this airbag is instantly deployed. This protects the seat occupant from colliding with vehicle interior parts such as steering wheels.
  • the airbag device includes a circular cover 1 having a notch 2 at the center, and a folded airbag. And a gas generator provided with an electric igniter 5.
  • the airbag 3 when the airbag 3 is inflated, the notch 2 at the center of the cover 1 is cut first, the cover 1 is broken and opened, and the airbag 3 is configured to jump out of the cover 1.
  • the cover 11 When the airbag 3 is inflated, the cover 11 is first broken. From the high-speed video footage, the cover 1 is destroyed and the nogg starts to pop out about 5 ms after ignition.
  • the tank pressure reaches the maximum value at about 7 O ms. This means that the combustion of the gas generant ends about 70 ms after ignition and the gas supply to the tank stops.
  • two vent holes (Vent Holes) are constantly opened on the rear surface of the airbag to release the occupants immediately from the restraint of the airbag. With venting from the vent hole, the pressure in the bag reaches the maximum bag pressure in about 45 ms, faster than the maximum tank pressure of 70 ms.
  • the tank pressure output of the so-called S-shaped carp which suppresses the combustion speed of the gas generating agent at the stage of destruction of the cover and jumps out of the bag, accelerates the combustion speed of the gas generating agent after the bag starts to inflate, This is considered advantageous for bag development.
  • the graph of the airbag deployment characteristics shows the inside of the airbag when the airbag is inflated. The change in pressure over time is shown.
  • part H shows the pressure when the cover is broken
  • part I is the pressure when the airbag is deployed
  • a lot of energy is released when the cover of part H is broken. Indicates that it is being consumed.
  • this embodiment does not require two filters as in the conventional dual-type inflation system, and can be configured with one filter 40. Therefore, the structure is simple and it is possible to increase productivity.
  • the second combustion chamber 110 is completely thermally and pressure-controlled in order to shut off all the influence from the first combustion chamber 100 before the second combustion chamber 110 operates. Can be isolated.
  • a partition cup 10 is used in place of the conventional dual-type disk-shaped partition plate. Therefore, the generated gas in the second combustion chamber 110 enters the first combustion chamber 100 from the nozzle 13 provided on the bottom surface 11 of the partition cup 10 once, and then from the diffuser 2 through the filter 40. Is discharged.
  • the amount of charge in the second combustion chamber 110 is smaller than in the first combustion chamber 100, and the volume of the second combustion chamber 110 is smaller.
  • the ratio of the first combustion chamber 100 to the second combustion chamber 110 can be from 6: 4 to 8: 2.
  • the target value of the tank pressure (when the primary combustion chamber operates alone, and when the two combustion chambers operate with a time difference and simultaneous operation) can support a maximum output of 180 kPa to 240 kPa . 12
  • the amount of charge in the second combustion chamber 110 is smaller, the combustion chamber is flat and the heat loss is large, so the gas generating agent in the second combustion chamber 110 It is predicted that the combustion rate of 1 1 1 will decrease. It is necessary to maintain the high combustion rate of the gas generator 111 in the second combustion chamber 110 in order to prevent the gas after-blowing problem.
  • the outflow of gas from the second combustion chamber 110 is controlled by changing the opening area of the nozzle 13 on the bottom surface 11. If the nozzle 13 on the bottom surface 11 is throttled, the combustion pressure in the second combustion chamber 110 is increased, and the combustion of the gas generating agent 111 is promoted.
  • Table 1 shows the results of the nozzle evaluation test shown in FIG. table 1
  • the shape of the ignition system was first changed as follows in order to solve the problem of damage to the filter due to a single blow.
  • the angle range of the nozzles 22 and 32 was set to 60 ° and 140 ° so as to open toward the first ignition cartridge 20 and the second ignition cartridge 30 toward each other. Experiments have confirmed that there is no problem if this angle is less than 140 °.
  • a cylindrical fin 70 was provided to completely eliminate one-sided blowing.
  • the ignition nozzles are equally spaced around the circumference of the ignition cartridge as in a single type inflation.
  • the gas generating agent near the ignition cartridge is preferentially ignited, and the combustion product gas tends to pass intensively near the misaligned ignition cartridge.
  • the first combustion chamber By opening two nozzles at an angle of 70 ° toward the central axis of inflation overnight, or by clogging four nozzles 20 at intervals of 60 ° and 140 °, the first combustion chamber Although there was a certain effect in reducing the non-uniformity of ignition in 100 and suppressing the one-sided blowing of the generated gas, the one-sided blowing problem was not fundamentally solved.
  • the spatial non-uniformity of the charge in the first combustion chamber 100 is also considered to be one of the causes of the one-shot blowing of the generated gas.
  • the installation of fins 70 was considered in order to completely resolve one-sided gas blowing. After the fins 70 have been installed, the generated gas inside the fins 70 is controlled by the nozzles 71 of the fins 70 to flow outward in the radial direction evenly around the fins 70. become. On the other hand, the gas generating agent outside the fin 70 is evenly ignited from the nozzle 71 portion of the fin 70, and the combustion product gas immediately passes through the filter 40 along the radial direction and out. Is discharged to In this way, it is possible to blow out gas from the inflation overnight diffuser uniformly.
  • the tank pressure output of the first combustion chamber 100 becomes an S-shaped curve.
  • the gas generating agent 101 had good flammability, a structure in which the first combustion chamber ignition cartridge nozzle was provided at the end of the first combustion chamber 100 was adopted. Further, as a measure for outputting the tank pressure output of the S-shaped curve, in the present embodiment, the nozzle 71 of the fin 70 is installed at the extreme end, and has a semicircular shape. As a result, it is possible to control the flow of generated gas and delay the propagation of the flame.
  • Figure 8 illustrates the fin installation
  • the flow of the generated gas is controlled by the nozzles 71 of the fins 70 provided at the ends of the circumference evenly, which is useful for eliminating gas blowing and realizing pressure output of the S-shaped curve tank.
  • the gas generating agent 101 is ignited from the middle, and the flame moves up and down, so that the combustion time is shortened and the effect of the S-shape is deteriorated.
  • the position of the hole 71 is optimal on the upper end surface. At other positions, it may be set appropriately according to the degree of the burning rate of the gas generating agent 101 and the required degree of S-shape.
  • the supply of thermal energy to the gas generating agent can be reduced.
  • the pressure inside the first ignition cartridge 30 can be reduced.
  • a 0.3 mm-thick stainless plate-shaped nozzle shut-off plate 60 is attached to the bottom surface 11 of the partition cup 10.
  • the nozzle blocking plate 60 is not broken by the operating pressure of the first combustion chamber 100. At the operating pressure of the second combustion chamber 110, the nozzle blocking plate 60 is peeled off from the bonding surface of the partitioning force 10 and moves to the fin 70 (the distance between the partitioning force 10 and the fin 70 is After a slight gap), it is bent downward (towards the igniters 25 and 35) with the fin 70 as a fulcrum.
  • the gap between the side of the partition cup 10 and the fill 40 is long, making it difficult for flame and gas to pass through. Even after passing a little, enter the second combustion chamber 110 from the upper end of the partition cup 110 The experiment confirmed that the gas generant 1 1 1 did not ignite.
  • Combustion of the gas generating agent 101 in the first combustion chamber 100 is mainly controlled by the diffuser 2.
  • a gas seal 80 is effective to prevent gas leakage through a gap between the second ignition cartridge 30 and the bottom surface 11 of the partition cup 10.
  • the ignition of the first ignition cartridge 20 and the second ignition cartridge 30 can have a width of about 40 ms delay from the simultaneous ignition as shown in Fig. 10 and Fig. 11. is there.
  • the tank pressure and the combustion chamber pressure can be controlled also by the heat absorbing material 50 installed in the second combustion chamber 110.
  • the present invention according to the present invention, it is possible to obtain a dual-type inflator having a simple structure and high productivity. Due to the effects of the first combustion chamber (heat, pressure and gas flow), the second combustion chamber can be completely isolated. There are advantages such as easy adjustment of gas output and correspondence with combustion characteristics of gas generating agents.

Abstract

A gas generator for inflating an air bag, comprising an inflator chamber having a side wall in which a plurality of diffusers are provided, a partition cup having a bottom surface on which a nozzle is installed, first and second combustion chambers formed in the inflator chamber by partitioning the inside of the inflator chamber by the partition cup in the vertical direction of the side wall, a sealing member installed on the bottom surface of the partition cup on the first combustion chamber side, gas generating agent filled into the first and second combustion chambers, first igniting means positioned inside the inflator chamber and having an ignition energy injecting part inside the first combustion chamber, second igniting means positioned inside the inflator chamber and having an ignition energy injecting part inside the second combustion chamber, combustion energy propagation means positioned inside the first combustion chamber, forming an area for combustion of gas generating agent by an ignition energy injected from the fist igniting means around the first igniting means and propagating a thermal energy in the combustion area to the gas generating agent inside the first combustion chamber, and a filter positioned inside the inflator chamber and disposed on the front surface side of the diffuser.

Description

明細 デュアル型ィンフレー夕 技術分野  Description Dual type frame
本発明は、 エアバッグを展開させるためのガス発生器に係り、 さらに詳しくは、 衝突時の速度または乗員着席の姿勢に応じてエアバッグへのガス出力を自由に調整 できるデュアル型インフレ一夕に関する。 背景技術  The present invention relates to a gas generator for deploying an airbag, and more particularly, to a dual-type inflation system that can freely adjust gas output to an airbag according to a speed at the time of a collision or an occupant's seating posture. . Background art
衝突時の速度または乗員着席の姿勢に応じてエアバッグへのガス出力を自由に調 整できるデュアル型インフレ一夕の開発が盛んに行われている。  The development of a dual-type inflation system that can freely adjust the gas output to the airbag according to the speed at the time of the collision or the posture of the occupant is actively being developed.
デュアル型インフレ一夕は、 一つのチャンバ内に二つの燃焼室を設け、 それぞれ の着火系によって作動させることができる。 時間差での作動あるいは同時作動のパ 夕一ンで、 低速度衝突時にエアバッグの展開速度を抑え、 激しい衝突の場合にバッ グを一気に強く展開させることを可能とする。 乗員の着席姿勢によってバッグ展閲 の速度を変えることも可能である。  The dual type inflation system has two combustion chambers in one chamber and can be operated by each ignition system. The operation of the air bag at the time difference or simultaneous operation is suppressed, and the deployment speed of the airbag is suppressed at the time of low-speed collision, so that the bag can be deployed strongly at a stretch in the case of a severe collision. It is also possible to change the speed of bag inspection depending on the occupant's sitting position.
デュアル型ィンフレ一夕は、 一つのチャンバ内に二つの燃焼室が隣接するため、 互いに熱的および圧力的な影響を与えかねない。 これらの影響を無くしインフレ一 夕の出力を有効にコントロールできるようにするために、 様々な工夫が必要である。 これまで公開されたデュアル型ィンフレー夕の構造は、 大きく分けて以下の 3種 類がある。  In the dual-type inflation system, two combustion chambers are adjacent to each other in one chamber, and may have thermal and pressure effects on each other. Various measures are needed to eliminate these effects and enable effective control of inflationary output. The structure of the dual-type infra-type that has been disclosed so far is roughly classified into the following three types.
一つは、 一定の角度を持つ仕切板で円筒状のチャンバ内を左右に分けて、 2つの 燃焼室を作るもの (例えば、 特開平 9— 1 8 3 3 5 9号公報) 。 もう一つは、 円盤 状の仕切板によって円筒状のチャンバを上下に分け、 二つの燃焼室を形成するもの (例えば、 特開平 1 1— 5 9 3 1 8号公報、 特開平 1 1一 2 1 7 0 5 5号公報) 。 三つ目は、 第一燃焼室が第二燃焼室を囲むもの (例えば、 特開平 5— 3 1 9 1 9 9 号公報) である。 特開平 1 1— 2 1 7 0 5 5号公報には、 円盤状の仕切部材によって 2つの燃焼室 に画成し、 各燃焼室がフィル夕部材を介して互いに連通してなることを特徴とする ガス発生器が開示されている。 One is to create two combustion chambers by dividing the inside of a cylindrical chamber into right and left by a partition plate having a certain angle (for example, Japanese Patent Application Laid-Open No. 9-183359). The other is that a cylindrical chamber is divided into upper and lower parts by a disk-shaped partition plate to form two combustion chambers (for example, Japanese Patent Application Laid-Open No. H11-599318, Japanese Patent Application Laid-Open No. No. 17055). Third, the first combustion chamber surrounds the second combustion chamber (for example, Japanese Patent Application Laid-Open No. Hei 5-3-1919). Japanese Patent Application Laid-Open No. Hei 11-217705 describes that two combustion chambers are defined by a disk-shaped partition member, and each combustion chamber communicates with each other via a filter member. A gas generator is disclosed.
しかし、 特開平 1 1— 2 1 7 0 5 5号公報に開示されたデュアル型インフレ一夕 の構造において、 仕切板で 2つの燃焼室を完全に分立させるため、 フィル夕を 2個 使用し、 ディフューザも 2層設ける必要がある。 完全分立で燃焼室が互いに密閉さ れることは可能であるが、 構造が複雑となり生産性の低下とコス卜のアップをもた らすと考えられる。 フィル夕を一個を使用し仕切板をフィル夕の内側に設置する場 合、 仕切板の端からフィル夕室を通して流れ込んだ第一燃焼室の生成ガスとの接触 で、 第二燃焼室の正常な作動に悪影響を与えるおそれがある。  However, in the structure of the dual-type inflation system disclosed in Japanese Patent Application Laid-Open No. H11-217055, in order to completely separate the two combustion chambers by the partition plate, two filters are used. It is necessary to provide two layers of diffusers. Although it is possible to completely separate the combustion chambers from each other with complete separation, it is considered that the structure becomes complicated, leading to a decrease in productivity and an increase in cost. When one filter is used and the partition is installed inside the filter, the contact with the generated gas in the first combustion chamber that flows from the end of the partition through the fill chamber causes the normal operation of the second combustion chamber. Operation may be adversely affected.
第一燃焼室点火器が中心部に位置され、 第二燃焼室点火器が片寄せとなることに よって、 第二燃焼室の中で点火器と遠く離れている端のガス発生剤ペレットが着火 されにくくなり、 第二燃焼室のガス発生剤全体の燃焼速度が落ちかねない。 その一 方、 第二燃焼室の中において点火器付近のガス発生剤が優先的に着火され、 片寄せ になった点火器の付近を燃焼生成ガスが集中的に通りやすくなる。 高温の燃焼生成 ガスが片吹きとなり、 集中した部分のフィル夕が損傷され、 ここから残渣がインフ レ一夕の外へ吹き出すおそれがある。 発明の開示  The first combustion chamber igniter is located at the center, and the second combustion chamber igniter is offset, igniting the gas generant pellet at the end of the second combustion chamber that is far away from the igniter. And the combustion rate of the entire gas generating agent in the second combustion chamber may decrease. On the other hand, the gas generating agent in the vicinity of the igniter is preferentially ignited in the second combustion chamber, so that the combustion product gas tends to pass intensively in the vicinity of the misaligned igniter. High-temperature combustion product gas is blown out, and the concentrated area of the filter is damaged, and there is a risk that the residue will blow out of the inflation overnight. Disclosure of the invention
本発明はかかる従来の問題点を解決するためになされたもので、 その目的は、 簡 素化、 高い生産性を追求するために単一フィル夕の構造を採用したデュアル型ィン フレー夕を提供することにある。  The present invention has been made in order to solve such a conventional problem, and its object is to provide a dual-type single-frame type adopting a single-fill type structure in order to pursue simplicity and high productivity. To provide.
本発明の別の目的は、 仕様の調整で理想的なガス出力性能を容易に出すことがで きるデュアル型ィンフレー夕を提供することにある。  It is another object of the present invention to provide a dual-type inflator that can easily achieve ideal gas output performance by adjusting specifications.
本発明の別の目的は、 様々な燃焼特性を有するガス発生剤にうまく対応できるデ ユアル型ィンフレー夕を提供することにある。  It is another object of the present invention to provide a dual-type infra-red that can cope well with gas generating agents having various combustion characteristics.
本発明の別の目的は、 第二燃焼室を第一燃焼室からの影響を全て遮断することが 可能なデュアル型インフレ一夕を提供することにある。 本発明の別の目的は、 第二燃焼室の填薬量を少なくするとともに、 第二燃焼室の 容積を小さくすることが可能なデュアル型インフレ一夕を提供することにある。 本発明の別の目的は、 第一燃焼室と第二燃焼室とを区画する仕切カップにノズル を設けることにより、 第二燃焼室からのガス流出を仕切力ップのノズルで制御し、 第二燃焼室内において所定の燃焼圧力と所定のガス発生剤燃焼速度を維持すること が可能なデュアル型ィンフレー夕を提供することにある。 Another object of the present invention is to provide a dual-type inflation system capable of cutting off the influence of the second combustion chamber from the first combustion chamber. Another object of the present invention is to provide a dual-type inflation system capable of reducing the amount of charge in the second combustion chamber and reducing the volume of the second combustion chamber. Another object of the present invention is to provide a partition cup that separates the first combustion chamber and the second combustion chamber with a nozzle, so that gas outflow from the second combustion chamber is controlled by the nozzle of the partition force, An object of the present invention is to provide a dual-type inflator capable of maintaining a predetermined combustion pressure and a predetermined gas generating agent combustion rate in two combustion chambers.
本発明の別の目的は、 第一燃焼室と第二燃焼室とを区画する仕切カップの底面全 体にノズルを設けることにより、 第二燃焼室のガスの吹き出しを分散し、 生成ガス の集中を防ぐことが可能なデュアル型ィンフレ一夕を提供することにある。  Another object of the present invention is to provide a nozzle on the entire bottom surface of a partition cup that separates the first combustion chamber and the second combustion chamber, thereby dispersing the gas blowing from the second combustion chamber and concentrating the generated gas. The purpose is to provide a dual-type inflation system that can prevent the problem.
本発明の別の目的は、 第一燃焼室と第二燃焼室の点火遅れ時間等の調整でタンク 圧出力の高さ及び最大タンク圧出力到達時間を自由に調整することが可能なデュア ル型インフレ一夕を提出することにある。  Another object of the present invention is a dual type in which the height of the tank pressure output and the time to reach the maximum tank pressure output can be freely adjusted by adjusting the ignition delay time of the first combustion chamber and the second combustion chamber. To submit inflation overnight.
本発明の別の目的は、 第一燃焼室の中においてガス発生剤への着火と火炎伝播が 制御され、 ェアバッグ展開に有利な S字カーブのタンク圧出力(着火後 20ms時に夕 ンク圧が 1 OOkPa以下である)を出すことが可能なデュアル型インフレ一夕を提出す ることにある。  Another object of the present invention is to control the ignition of the gas generating agent and the flame propagation in the first combustion chamber, and to provide an S-shaped curve tank pressure output that is advantageous for airbag deployment (the sunset pressure becomes 1 at 20 ms after ignition). OOkPa or less).
本発明の別の目的は、 燃焼室内で生成したガスの流れを制御しながらフィル夕の 円周を均等に通過させることにより、 フィル夕の損傷を避け、 また、 ガス流れの集 中によるィンフレー夕からのガスの片吹きを抑制し、 エアバッグの展開特性をアツ プさせることが可能なデュアル型ィンフレー夕を提供することにある。  Another object of the present invention is to prevent the damage of the filter by uniformly passing the circumference of the filter while controlling the flow of the gas generated in the combustion chamber, and to reduce the inflow due to the concentration of the gas flow. An object of the present invention is to provide a dual-type inflator that can suppress a single blow of gas from the airbag and improve the deployment characteristics of the airbag.
本発明の別の目的は、 着火薬筒からのガス発生剤への初期着火エネルギーを着火 薬筒の周囲に集中させることにより、 着火薬の減量、 インフレ一夕出力バラツキと インフレ一夕出力低温特性の改善等が期待できるデュアル型インフレ一夕を提出す ることにある。  Another object of the present invention is to concentrate the initial ignition energy from the ignition cartridge to the gas generating agent around the ignition cartridge, thereby reducing the amount of ignition powder, inflation overnight output variation and inflation overnight output low temperature characteristics. The goal is to submit a dual-type inflation that can be expected to improve the economy.
本発明の別の目的は、 着火薬筒の周囲に所定の圧力保持能力を有する初期燃焼制 御機構を設け、 この圧力保持特性を利用して、 ガス発生剤の燃焼特性を幅広く対応 しゃすいことを期待できるデュアル型ィンフレ一夕を提出することにある。  Another object of the present invention is to provide an initial combustion control mechanism having a predetermined pressure holding capacity around an ignition cartridge and use the pressure holding characteristic to widely support the combustion characteristics of a gas generating agent. Is to submit a dual inflation overnight.
本発明の目的は、 側壁に複数のディフューザを設けたィンフレー夕チャンバと、 底面にノズルを設けた仕切力ップと、 仕切カツプによってインフレ一夕チャンバ内 を側壁の垂直方向に仕切ることによってィンフレー夕チャンバ内に形成された第一 燃焼室および第二燃焼室と、 仕切力ップの底面の第一燃焼室側に設けた封止部材と、 第一燃焼室および第二燃焼室内に充填したガス発生剤と、 インフレ一夕チャンバ内 に位置し、 第一燃焼室内に着火エネルギーの噴出部を設けた第一着火手段と、 イン フレー夕チャンバ内に位置し、 第二燃焼室内に着火エネルギーの噴出部を設けた第 二着火手段と、 第一燃焼室内に位置し、 第一着火手段から噴出される着火エネルギ 一によるガス発生剤の燃焼領域を第一着火手段の周囲に形成し、 燃焼領域の熱エネ ルギーを第一燃焼室内のガス発生剤に伝播する燃焼エネルギー伝播手段と、 ィンフ レー夕チャンバ内に位置し、 ディフユ一ザの前面側に配設したフィル夕とを備える ことによって達成される。 An object of the present invention is to provide an infinity chamber having a plurality of diffusers on a side wall, A partition force provided with a nozzle on the bottom surface, a first combustion chamber and a second combustion chamber formed in the inflation chamber by partitioning the inflation chamber in a vertical direction of the side wall by the partition cup; A sealing member provided on the first combustion chamber side of the bottom of the tip, a gas generating agent filled in the first combustion chamber and the second combustion chamber, and an ignition in the first combustion chamber located in the inflation chamber A first ignition means provided with an energy ejection section, a second ignition means provided in an infra-red chamber, and an ignition energy ejection section provided in a second combustion chamber, and a second ignition means provided in the first combustion chamber; Ignition energy ejected from one ignition means A combustion area of the gas generating agent due to one is formed around the first ignition means, and the combustion energy in the combustion area propagates to the gas generating agent in the first combustion chamber And stage, located Infu rate evening chamber, is achieved by providing a fill evening and which is disposed on the front side of the Difuyu monodentate.
燃焼エネルギー伝播手段は、 例えば、 第一着火手段と第二着火手段とを囲繞する 隔壁と、 この隔壁に設けた開口と、 隔壁と第一着火手段および第二着火手段との間 に充填されたガス発生剤とから成る。  The combustion energy transmitting means is, for example, a partition surrounding the first igniting means and the second igniting means, an opening provided in the partition, and filled between the partition and the first igniting means and the second igniting means. And a gas generating agent.
隔壁は、 例えば、 円筒状のフィンであり、 開口が仕切カップ側に設けてある。 第一着火手段と第二着火手段の着火エネルギーの噴出部は、 冽えば、 それぞれィ ンフレー夕チャンバの中心に向かって開口している。  The partition is, for example, a cylindrical fin, and an opening is provided on the partition cup side. If the ignition energies of the first ignition means and the second ignition means are clear, they respectively open toward the center of the infra-red chamber.
仕切カップの底面に設けたノズルは、 例えば、 底面全体に設けてある。  The nozzle provided on the bottom surface of the partition cup is provided, for example, on the entire bottom surface.
第一燃焼室の容積は、 第二燃焼室の容積より大きい。 その比率は任意であり、 仕 切カップの取り付けにより決められる。  The volume of the first combustion chamber is larger than the volume of the second combustion chamber. The ratio is arbitrary and is determined by installing a partition cup.
封止部材は、 第二燃焼室のガス発生剤の燃焼ガス圧力で仕切力ップから剥がれる ようになっている。  The sealing member is peeled off from the partitioning force by the combustion gas pressure of the gas generating agent in the second combustion chamber.
第一着火手段と第二着火手段は、 例えば、 ノズルを設けた着火薬筒と、 この着火 薬筒内に充填した着火薬と、 外部の制御装置からの信号で作動する点火器とから成 る。  The first ignition means and the second ignition means include, for example, an ignition cartridge provided with a nozzle, an ignition agent charged in the ignition cartridge, and an igniter activated by a signal from an external control device. .
仕切カップの底面に設けたノズル上には、 例えば、 環状の吸熱材が配置されてい る。 図面の簡単な説明 On the nozzle provided on the bottom surface of the partition cup, for example, an annular heat absorbing material is arranged. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施形態に係るデュアル型ィンフレー夕の縦断面図である。 図 2は、 図 1の A— A線に沿った断面図である。  FIG. 1 is a vertical cross-sectional view of a dual-type inflator according to an embodiment of the present invention. FIG. 2 is a cross-sectional view taken along line AA of FIG.
図 3は、 図 1に使用するフィル夕の分解斜視図である。  FIG. 3 is an exploded perspective view of the filter used in FIG.
図 4は、 図 1に使用する仕切カップの分解説明図である。  FIG. 4 is an exploded explanatory view of the partition cup used in FIG.
図 5は、 本実施形態に係るデュアル型ィンフレー夕によるエアバッグ展開圧力と 燃焼室圧力と時間との関係を示すグラフである。  FIG. 5 is a graph showing the relationship between the airbag deployment pressure, the pressure in the combustion chamber, and the time in the dual-type inflator according to the present embodiment.
図 6は、 本実施形態に係るデュアル型インフレ一夕によるエアバッグ展開特性を 示すグラフである。  FIG. 6 is a graph showing the airbag deployment characteristics of the dual-type inflation system according to the present embodiment.
図 7は、 本実施形態に係るデュアル型インフレ一夕による仕切カップのノズル評 価試験を示すグラフである。  FIG. 7 is a graph showing a nozzle evaluation test of a partition cup according to the dual type inflation according to the present embodiment.
図 8は、 本発明のフィンの配置を示す説明図である。  FIG. 8 is an explanatory diagram showing the arrangement of the fins of the present invention.
図 9は、 本実施形態に係るデュアル型インフレ一夕に第一燃焼室におけるフィン のノズル位置を示す説明図である。  FIG. 9 is an explanatory diagram showing the nozzle positions of the fins in the first combustion chamber during the dual type inflation according to the present embodiment.
図 1 0は、 本実施形態に係るデュアル型インフレ一夕におけるタンク出力特性を 示すグラフである。  FIG. 10 is a graph showing the tank output characteristics during the dual inflation according to the present embodiment.
図 1 1は、 本実施形態に係るデュアル型インフレ一夕の出力特性を示すグラフで ある。  FIG. 11 is a graph showing output characteristics of the dual-type inflation system according to the present embodiment.
図 1 2は、 本実施形態に係るデュアル型インフレ一夕の吸熱材の量の比較を示す グラフである。 発明を実施するための最良の形態  FIG. 12 is a graph showing a comparison of the amount of heat absorbing material during the dual type inflation according to the present embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を図面に示す実施形態に基づいて説明する。  Hereinafter, the present invention will be described based on embodiments shown in the drawings.
図 1、 図 2は本発明の実施形態に係るデュアル型ィンフレ一夕 Aを示す。  1 and 2 show a dual-type inflation system A according to an embodiment of the present invention.
インフレ一夕チャンバ 1は、 例えば、 S U S 3 0 4からなるカップ 1 a , l bを 組み合わせて形成されている。 カップ l aは、 壁面に多数 (本例では 8個) の 0 3 . 5 mmのディフューザ 2が設けられている。 ディフユ一ザ 2には、 ディフューザク ロージャ 3が取り付けられている。 カップ l bは、 第一着火薬筒 2 0と第二着火薬 筒 3 0とを装着するための貫通孔 4, 5が設けられている。 The inflation overnight chamber 1 is formed by combining, for example, cups 1 a and lb made of SUS304. The cup la is provided with a large number (eight in this example) of 03.5 mm diffusers 2 on the wall surface. The diffuser 2 is provided with a diffuser closure 3. Cup lb, first firing cartridge 20 and second firing powder Through holes 4 and 5 for mounting the cylinder 30 are provided.
インフレ一夕チャンバ 1内には、 例えば、 アルミニウム製のプレス品からなる仕 切カップ 1 0と、 第一着火薬筒 2 0と、 第二着火薬筒 3 0と、 フィン 7 0と、 フィ ル夕 4 0が配設されている。  In the inflation chamber 1, for example, a partition cup 10 made of an aluminum pressed product, a first ignition cartridge 20, a second ignition cartridge 30, a fin 70, and a filter Evening 40 is arranged.
仕切カップ 1 0とインフレ一夕チャンバ 1のカップ 1 bとフィル夕 4 0とで区画 される領域が、 例えば、 5 9 mm、 高さ 2 1 mmの第一燃焼室 1 0 0を形成し、 仕切力ップ 1 0とインフレ一夕チヤンバ 1のカップ 1 aとで区画される領域が、 例 えば、 5 9 mm、 高さ 9 mmの第二燃焼室 1 1 0を形成する。  An area defined by the partition cup 10, the cup 1 b of the inflation chamber 1, and the fill bowl 40 forms, for example, a first combustion chamber 100 of 59 mm and a height of 21 mm, The area defined by the partitioning force 10 and the cup 1a of the inflation chamber 1 forms, for example, a second combustion chamber 110 of 59 mm and a height of 9 mm.
仕切カップ 1 0は、 例えば、 外径 5 9 mm, 内径 5 5 mm、 高さ 1 2 mm、 板厚 3 mmの底付きのカップ形状をなし、 底面 1 1側に、 第二着火薬筒 3 0を揷通する ための貫通孔 1 2と、 第二燃焼室 1 1 0内の生成ガスを噴出する複数 (本例では 1 0個) の孔径 3 . 5 mmのノズル 1 3とが設けられている。 ノズル 1 3は、 底面 1 1の周縁部側に沿って同一円弧上に等間隔で配設されている。  The partition cup 10 has, for example, a cup shape with an outer diameter of 59 mm, an inner diameter of 55 mm, a height of 12 mm, a thickness of 3 mm and a bottom, and a second ignition cartridge 3 on the bottom surface 1 1 side. And a plurality (10 in this example) of nozzles 13 having a hole diameter of 3.5 mm for ejecting generated gas in the second combustion chamber 110. ing. The nozzles 13 are arranged at equal intervals on the same arc along the periphery of the bottom surface 11.
仕切力ップ 1 0には、 ノズル 1 3を覆うように、 環状の吸熱材 5 0が配置されて いる。 吸熱材 5 0は、 例えば、 メリヤス織り金網 (線径 0 . 5 mm) プレス品から なり、 下側が広くなる断面形状が台形状をなしている。 吸熱材 5 0は、 例えば、 下 側の外径 5 5 mm、 内径 4 2 mm、 上側の外径 5 5 mm、 内径 5 1 . 8 mm、 高さ 9 mm、 重さ 3 0 gである。  An annular heat absorbing material 50 is disposed on the partitioning force 10 so as to cover the nozzle 13. The heat absorbing material 50 is, for example, a pressed product of a knitted woven wire mesh (0.5 mm in wire diameter), and has a trapezoidal cross section in which the lower side is widened. The heat absorbing material 50 has, for example, a lower outer diameter of 55 mm, an inner diameter of 42 mm, an upper outer diameter of 55 mm, an inner diameter of 51.8 mm, a height of 9 mm, and a weight of 30 g.
仕切力ップ 1 0の底面 1 1の裏面 1 1 a側には、 例えば、 S U S製で板厚 0 . 3 mmのノズル遮断板 6 0が貼り付けられている。  A nozzle blocking plate 60 made of, for example, SS and having a thickness of 0.3 mm is attached to the back surface 11 a of the bottom surface 11 of the partitioning force 10.
仕切カップ 1 0の貫通孔 1 2には、 第二着火薬筒 3 0が挿通されている。  The second ignition cartridge 30 is inserted into the through hole 12 of the partition cup 10.
第二着火薬筒 3 0の先端側のノズル 3 2には、 例えば、 アルミニウム製の板厚 0 . 0 5 mmのノズルクロージャ 3 3が取り付けられている。  A nozzle closure 33 made of, for example, aluminum and having a thickness of 0.05 mm is attached to the nozzle 32 on the distal end side of the second ignition cartridge 30.
仕切力ップ 1 0の底面 1 1の裏面 1 1 a側には、 第一着火薬筒 2 0が当接されて いる。  The first ignition cartridge 20 is in contact with the back surface 1 1a side of the bottom surface 11 of the partitioning force 10.
第一着火薬筒 2 0の先端側のノズル 2 2には、 例えば、 アルミニウム製の板厚◦. 0 5 mmのノズルクロージャ 2 3が取り付けられている。  For example, a nozzle closure 23 made of aluminum and having a thickness of 0.5 mm is attached to the nozzle 22 on the distal end side of the first ignition cartridge 20.
第一着火薬筒 2 0と第二着火薬筒 3 0とを囲繞するように、 例えば、 S U S製で 板厚 0. 3mm、 外径 40mm、 高さ 20 mmの円筒状のフィン 70が配設されて いる。 フィン 70の上部側には、 <zi4〜5mmの半円形状のノズル 71が 12個設 けられている。 For example, it is made of SUS so as to surround the first ignition cartridge 20 and the second ignition cartridge 30. A cylindrical fin 70 having a thickness of 0.3 mm, an outer diameter of 40 mm, and a height of 20 mm is provided. On the upper side of the fin 70, twelve semicircular nozzles 71 of <zi 4 to 5 mm are provided.
仕切カップ 10とインフレ一夕チャンバ 1との間には、 環状のフィル夕 40が配 設されている。 フィル夕 40は、 例えば、 SUS 304からなる外径 72mm、 高 さ 30mm、 板厚 0. 4mm、 孔径 0. 5 mm、 ピッチ 1 mmのパンチングメタル 41と、 例えば、 メリヤス織り金網 (線径 0. 5 mm) のプレス品からなる外径 7 1 mm, 内径 59mm、 高さ 33mm、 重さ 120 gのメリヤスフィル夕 42とか らなる。  An annular filter 40 is provided between the partition cup 10 and the inflation chamber 1. Filler 40 is made of, for example, a punching metal 41 made of SUS 304 having an outer diameter of 72 mm, a height of 30 mm, a plate thickness of 0.4 mm, a hole diameter of 0.5 mm, and a pitch of 1 mm, and a knitted woven wire mesh (wire diameter of 0. It has a diameter of 71 mm, an inner diameter of 59 mm, a height of 33 mm, and a weight of 120 g.
第一着火薬筒 20は、 例えば、 板厚 1 mmの S USプレス品である。 ノズル 22 は、 仕切力ップ 10の底面 1 1の裏面 1 1 aより 5 mm下の位置に、 第二着火薬筒 30に向かって開口するように、 60° 、 140° の間隔で 04 mmの孔が 4個設 けてある。 着火薬 24は、 例えば、 ボロン硝酸カリウム 1. 3 gである。 着火薬 2 4に連なる位置に例えば、 ピンタイプィグナイ夕からなる点火器 25が取り付けら れている。  The first ignition cartridge 20 is, for example, a SUS pressed product having a plate thickness of 1 mm. The nozzle 22 is 04 mm at 60 ° and 140 ° intervals at a position 5 mm below the back surface 11 a of the bottom surface 11 of the partitioning force gap 10 so as to open toward the second ignition cartridge 30. There are four holes. The ignition charge 24 is, for example, 1.3 g of potassium potassium nitrate. An igniter 25 made of, for example, a pin type igniter is attached to a position connected to the ignition charge 24.
第二着火薬筒 30は、 例えば、 第二燃焼室 1 10に露出する部分の板厚が 1 mm、 以外の部分の板厚が 2 mmのアルミプレス品である。 ノズル 32は、 インフレ一夕 チャンバ 1のカップ 1 aより 4. 5 mm下の位置に、 第一着火薬筒 20の軸芯方向 に向かって開口するように、 60° 、 140° の間隔で ø 3mmの孔が 4個設けて ある。 着火薬 34は、 例えば、 ボロン硝酸カリウム 1. 0 gである。 着火薬 34に 連なる位置に、 例えば、 ピンタイプィグナイ夕からなる点火器 35が取り付けられ ている。  The second ignition cartridge 30 is, for example, an aluminum pressed product in which the portion exposed to the second combustion chamber 110 has a plate thickness of 1 mm and the other portions have a plate thickness of 2 mm. The nozzle 32 is placed at a position 4.5 mm below the cup 1 a of the inflation chamber 1 at intervals of 60 ° and 140 ° so as to open toward the axis of the first ignition cartridge 20. There are four 3mm holes. The igniting charge 34 is, for example, 1.0 g of potassium potassium nitrate. An igniter 35 made of, for example, a pin type igniter is attached at a position following the ignition charge 34.
第一燃焼室 100には、 グァニルアミノテトラゾールと酸化剤と冷却剤兼残渣形 成剤 (例えば、 カオリン) とを有効成分とするガス発生剤 101が装填されている。 第二燃焼室 1 10には、 グァニルアミノテトラ V—ルと酸化剤と冷却剤兼残渣形 成剤 (例えば、 カオリン) とを有効成分とするガス発生剤 1 1 1が装填されている。 なお、 ガス発生剤 10 1, 1 1 1の詳細は、 特願平 1 1— 3699 13号に開示 されてある。 次に、 本実施形態に係るデュアル型ィンフレー夕 Aの組立工程を説明する。 The first combustion chamber 100 is loaded with a gas generating agent 101 containing guanylaminotetrazole, an oxidizing agent, a coolant and a residue forming agent (for example, kaolin) as active ingredients. The second combustion chamber 110 is charged with a gas generating agent 111 containing guanylaminotetra-v-l, an oxidizing agent, a cooling agent and a residue forming agent (for example, kaolin) as active ingredients. The details of the gas generating agents 101 and 111 are disclosed in Japanese Patent Application No. 11-369913. Next, an assembling process of the dual type frame A according to the present embodiment will be described.
カップ 1 bに貫通孔 4, 5を介して第一着火薬筒 2 0の点火器ホルダ 2 6と第二 着火薬筒 3 0の点火器ホルダ 3 6を装着し、 溶接により固着する。  The igniter holder 26 of the first ignition cartridge 20 and the igniter holder 36 of the second ignition cartridge 30 are attached to the cup 1b through the through holes 4 and 5, and fixed by welding.
第一着火薬筒 2 0と第二着火薬筒 3 0にノズルクロージャ 2 3 , 3 3を貼り付け る。  The nozzle closures 23, 33 are attached to the first ignition cartridge 20 and the second ignition cartridge 30, respectively.
着火薬筒 2 0, 3 0に着火薬 2 4, 3 4を填薬した後、 点火器ホルダ 2 6, 3 6 に圧入する。  After filling the ignition cartridges 20 and 30 with the ignition agents 24 and 34, press-fit them into the igniter holders 26 and 36.
以上で、 カップ 1 bに第一着火薬筒 2 0と第二着火薬筒 3 0とを組み付けること ができる。  As described above, the first ignition cartridge 20 and the second ignition cartridge 30 can be assembled to the cup 1b.
次に、 図 3に示すように、 パンチングメタル 4 1にメリヤスフィル夕 4 2を圧入 してフィル夕 4 0を形成した後、 カップ l bに配設し、 次に、 カップ l bにフィン 7 0を配設する。  Next, as shown in FIG. 3, the knitting material 42 is press-fitted into the punching metal 41 to form the filling material 40, which is then disposed in the cup lb, and then the fin 70 is provided in the cup lb. Arrange.
次に、 カップ 1 bにガス発生剤 1 0 1を填薬する。 これにより、 第一燃焼室 1 0 0へのガス発生剤 1 0 1の填薬が完了する。  Next, the gas generating agent 101 is filled into the cup 1b. Thereby, the charging of the gas generating agent 101 into the first combustion chamber 100 is completed.
次に、 仕切力ップ 1 0の貫通孔 1 2に第二着火薬筒 3 0を揷通し、 底面 1 1の裏 面 1 1 a側に第一着火薬筒 2 0を当接する。  Next, the second ignition cartridge 30 is passed through the through hole 12 of the partitioning force 10, and the first ignition cartridge 20 contacts the back surface 11 a side of the bottom surface 11.
この際、 仕切カップ 1 0には、 図 4に示すように、 仕切カップ 1 0の底面 1 1の 裏面 1 1 a側にノズル遮断板 6 0を貼り付けた後、 ノズル遮断板 6 0の上に貫通孔 1 2の周囲に S U Sプレス品からなる板厚 0 . 2 mmのガスシール 8 0を貼り付け てある。 遮断板 6 0とガスシール 8 0を一体化することができる。  At this time, as shown in FIG. 4, after attaching the nozzle blocking plate 60 to the back surface 11 a side of the bottom surface 11 of the partition cup 10, as shown in FIG. A gas seal 80 made of a SUS pressed product and having a thickness of 0.2 mm is attached around the through hole 12. The blocking plate 60 and the gas seal 80 can be integrated.
次に、 仕切カップ 1 0上に吸熱材 5 0を載置する。  Next, the heat absorbing material 50 is placed on the partition cup 10.
次に、 仕切カップ 1 0上にガス発生剤 1 1 1を填薬する。 これにより、 第二燃焼 室 1 1 0へのガス発生剤 1 1 1の填薬が完了する。 カヅプ 1 aの変形で仕切カップ 1 0との間に隙間が形成され、 この隙間からガスが漏れることを防ぐために S U S プレス品からなる板厚 0 . 2 mmの第二燃焼室ガスシール 8 2を設置する。  Next, the gas generating agent 111 is filled on the partition cup 110. Thereby, the filling of the gas generating agent 111 into the second combustion chamber 110 is completed. A gap is formed between the partition 1 and the partition cup 10 due to the deformation of the cap 1a.In order to prevent gas from leaking from this gap, a 0.2 mm thick second combustion chamber gas seal 82 made of a SUS pressed product is used. Install.
次に、 ディフューザクロージャ 3を取り付けたカップ 1 aを力ップ 1 bに圧入し、 圧入部を溶接する。  Next, the cup 1a to which the diffuser closure 3 is attached is press-fitted into the force lip 1b, and the press-fit portion is welded.
最後に、 点火器ホルダ 2 6, 3 6に点火器 2 5, 3 5を取り付け、 かしめにより 固定する。 Finally, attach the igniters 25 and 35 to the igniter holders 26 and 36, and crimp Fix it.
次に、 このように構成された本実施形態に係るデュアル型インフレ一夕 Aの作用 を説明する。  Next, the operation of the dual-type inflation system A according to the present embodiment configured as described above will be described.
車両の衝突時に加速度センサ 1 2 0からの加速度信号に基づいて点火制御装置 1 3 0がエアバッグ 1 4 0を展開させる所定値以上の衝撃であると判断すると、 点火 制御装置 1 3 0が点火指令を出して、 第一着火薬筒 2 0の点火器 2 5を作動し、 ま ず第一燃焼室 1 0 0のガス発生剤 1 0 1を着火させ、 生成ガスが直ちにフィル夕 4 0を通ってディフユ一ザ 2から外へ排出され、 折り畳まれたエアバッグ 1 4 0の内 部に供給される。 一定の遅れ時間 (例えば、 2 0 m s ) 後、 第二着火薬筒 3 0の点 火器 3 5を作動し、 第二燃焼室 1 1 0のガス発生剤 1 1 1が着火される。 第二燃焼 室 1 1 0の生成ガスが、 一旦仕切力ップ 1 0の底面 1 1に設けたノズル 1 3を通し て第一燃焼室 1 0 0に流れ込み、 フィル夕 4 0を通過した後、 ディフユ一ザ 2から 外へ排出され、 エアバッグ 1 4 0の内部に供給される。 第二燃焼室 1 1 0の生成ガ スの流出が仕切カップ 1 0のノズル 1 3に制御されるため、 所定の燃焼圧力を保持 することができ、 ガス発生剤 1 0 1の燃焼を所定時間内で終了させることができる。 この結果を、 図 5に示す。  When the ignition control device 130 determines that the impact is equal to or greater than a predetermined value for deploying the airbag 140 based on the acceleration signal from the acceleration sensor 120 during a vehicle collision, the ignition control device 130 ignites. A command is issued to activate the igniter 25 of the first ignition cartridge 20 and first ignite the gas generating agent 101 in the first combustion chamber 100. The airbag 140 is discharged from the diffuser 2 to the outside and supplied to the inside of the folded airbag 140. After a certain delay time (for example, 20 ms), the igniter 35 of the second ignition cartridge 30 is operated, and the gas generating agent 111 of the second combustion chamber 110 is ignited. After the gas generated in the second combustion chamber 110 flows into the first combustion chamber 100 through the nozzle 13 provided on the bottom surface 11 of the partitioning force 10 and then passes through the filter 40 The air is discharged from the diffuser 2 and supplied to the inside of the airbag 140. Since the generated gas flowing out of the second combustion chamber 110 is controlled by the nozzle 13 of the partition cup 10, a predetermined combustion pressure can be maintained, and the combustion of the gas generating agent 101 is performed for a predetermined time. Can be terminated within The result is shown in FIG.
図において、 エアバッグ 1 4 0を膨らませるための圧力 Xは、 第一燃焼室 1 0 0 の圧力 Y及び第二燃焼室 1 1 0の圧力 Zによってもたらされる。 現在、 自動車に搭 載されているィンフレー夕は、 殆ど単一燃焼室のシングル型のィンフレー夕である。 本発明のデュアル型インフレ一夕は、 第一燃焼室 1 0 0単独での作動が可能である。 第一燃焼室 1 0 0が単独で作動する場合、 シングル型インフレ一夕と同じように、 タンク圧出力は約 7 0 m s前後で最大値の 1 8 0 k P aに到達する。 第一燃焼室 1 0 0の作動に続いて、 例えば、 2 0 m sの遅れ時間で第二燃焼室 1 1 0を作動する と、 第二燃焼室 1 1 0からのガス流入により、 2 0 m s前に低下し始めた第一燃焼 室 1 0 0の圧力は再度上昇する。 その後、 第二燃焼室 1 1 0の圧力 Zに比例しなが ら低下していく。 第二燃焼室 1 1 0の生成ガスの追加供給で、 最大タンク圧出力が 2 3 0 k P aまで上昇することが可能である。  In the figure, the pressure X for inflating the airbag 140 is provided by the pressure Y in the first combustion chamber 100 and the pressure Z in the second combustion chamber 110. At present, the in-floor evenings on vehicles are almost single-infrared evenings with a single combustion chamber. The dual-type inflation system of the present invention can operate in the first combustion chamber 100 alone. When the first combustion chamber 100 operates alone, the tank pressure output reaches the maximum value of 180 kPa in about 70 ms as in the case of the single type inflation. When the second combustion chamber 110 is operated with a delay time of, for example, 20 ms following the operation of the first combustion chamber 100, the gas flows in from the second combustion chamber 110 for 20 ms. The pressure in the first combustion chamber 100, which started to decrease before, rises again. Thereafter, the pressure decreases in proportion to the pressure Z of the second combustion chamber 110. With the additional supply of the generated gas in the second combustion chamber 110, it is possible to increase the maximum tank pressure output to 230 kPa.
本実施形態では S字曲線を描いたタンク圧出力特性を奏することができる。 ここで、 s字曲線の必要な理由を説明する。 In the present embodiment, the tank pressure output characteristics that draw an S-shaped curve can be achieved. Here, the reason why the s-shaped curve is necessary will be described.
エアバッグ装置は、 車両の衝突等の緊急時にエアバッグを展開させて、 座席乗員 を保護するためのものである。 このエアバッグ装置では、 車両の衝突等がセンサに より検知され、 ステアリングホイ一ル内に装着されたィンフレ一夕のガス発生剤が 燃焼され、 燃焼生成ガスがステアリングホイール内に折り畳まれたエアバヅグに供 給され、 このエアバッグが瞬時に展開される。 これにより、 座席乗員がステアリン グホイール等の車室内部品に衝突することから保護される。  The airbag device is designed to protect the occupants by deploying the airbag in an emergency such as a vehicle collision. In this airbag device, a vehicle collision or the like is detected by a sensor, the gas generator over the inflation installed in the steering wheel is burned, and the combustion product gas is converted into an airbag folded in the steering wheel. Supplied, this airbag is instantly deployed. This protects the seat occupant from colliding with vehicle interior parts such as steering wheels.
エアバッグ装置は、 例えば、 特開平 8— 3 3 2 9 1 1号公報の図 5に示されるよ うに、 中心部に切り欠き 2が設けられた円形のカバ一 1と、 折り畳まれたエアバッ グ 3と、 電気点火器 5が設けられたガス発生器とから成る。  As shown in FIG. 5 of Japanese Patent Application Laid-Open No. H08-332129, for example, the airbag device includes a circular cover 1 having a notch 2 at the center, and a folded airbag. And a gas generator provided with an electric igniter 5.
そして、 エアバッグ 3が膨張されると、 カバー 1の中心部の切り欠き 2が最初に 切断されカバー 1が破壊されて開かれ、 エアバッグ 3がカバー 1から飛び出すよう に構成されている。  Then, when the airbag 3 is inflated, the notch 2 at the center of the cover 1 is cut first, the cover 1 is broken and opened, and the airbag 3 is configured to jump out of the cover 1.
エアバッグ 3が膨張されると、 まずカバ一 1が破断される。 高速度ビデオで撮影 された映像から、 着火後約 5 m sでカバ一 1が破壊され、 ノ ッグが飛び出し始める。 ィンフレー夕が 6 0リッ夕ータンクへ出力する場合、 タンク圧力は約 7 O m sで最 大値に到達する。 これは、 ガス発生剤の燃焼が着火後約 7 0 m sで終了し、 タンク へのガス供給が停止することを意味する。 インフレ一夕作動の直後、 エアバッグの 拘束から乗員をすぐに開放するために、 エアバッグの後の表面に 2つのベントホ一 ル (Vent Hole) という孔が常時開けられている。 ベントホールからのガス抜きで、 バッグ内の圧力は、 最大タンク圧力の 7 0 m sより早く、 約 4 5 m s前後で最大バ ッグ圧力に到達する。 バッグの飛び出しによって、 カバ一 1が破壊された直後にバ ッグ内の圧力は負圧となり、 約 2 0 m s前後に正圧に転じる。 その後、 バッグへ大 量のガスを供給することは必要になっている。 したがって、 カバ一 1破壊及びバッ グ飛び出しの段階で、 ガス発生剤の燃焼速度を抑え、 バッグが膨らみはじめた後、 ガス発生剤の燃焼速度を加速させる、 いわゆる S字カープのタンク圧出力は、 バッ グ展開に有利と考えられている。  When the airbag 3 is inflated, the cover 11 is first broken. From the high-speed video footage, the cover 1 is destroyed and the nogg starts to pop out about 5 ms after ignition. When the inflation output is to the 60-litre tank, the tank pressure reaches the maximum value at about 7 O ms. This means that the combustion of the gas generant ends about 70 ms after ignition and the gas supply to the tank stops. Immediately after the operation of the inflation, two vent holes (Vent Holes) are constantly opened on the rear surface of the airbag to release the occupants immediately from the restraint of the airbag. With venting from the vent hole, the pressure in the bag reaches the maximum bag pressure in about 45 ms, faster than the maximum tank pressure of 70 ms. Immediately after the cover 1 is destroyed by the bag popping out, the pressure in the bag becomes a negative pressure, and changes to a positive pressure in about 20 ms. Later, it became necessary to supply a large amount of gas to the bag. Therefore, the tank pressure output of the so-called S-shaped carp, which suppresses the combustion speed of the gas generating agent at the stage of destruction of the cover and jumps out of the bag, accelerates the combustion speed of the gas generating agent after the bag starts to inflate, This is considered advantageous for bag development.
この現象を図 6に示すエアバヅグ展開特性で説明する。  This phenomenon will be described with reference to the airbag deployment characteristics shown in FIG.
エアバッグ展開特性のグラフには、 エアバッグが膨張する際のエアバッグの内 圧の時間経過に対する変化が示されている。 The graph of the airbag deployment characteristics shows the inside of the airbag when the airbag is inflated. The change in pressure over time is shown.
図 6において、 H部はカバーが破断される際の圧力を示しており、 I部はエア バッグが展開している際の圧力で、 H部のカバ一を破断する際に多大のエネルギ —が消費されていることを示している。  In Fig. 6, part H shows the pressure when the cover is broken, part I is the pressure when the airbag is deployed, and a lot of energy is released when the cover of part H is broken. Indicates that it is being consumed.
このことは、 ガス発生剤が錠剤状に成形されているため、 燃焼時の表面積が燃 焼開始時が最大で、 燃焼につれて減少していく傾向があり、 したがって、 ガス発 生剤 (錠剤) の燃焼初期に多大のエネルギーが発生することによる。  This means that since the gas generating agent is formed into tablets, the surface area during combustion tends to be maximum at the start of combustion, and to decrease as the fuel burns. Due to the large amount of energy generated at the beginning of combustion.
H部でのエネルギー消費が多すぎると、 エアバッグを展開させるエネルギーが 少なくなり、 Jの圧力となり、 展開不足が生じる。  If the energy consumption in section H is too high, the energy for deploying the airbag will decrease and the pressure of J will occur, causing insufficient deployment.
このため、 ガス発生器のガス発生剤の燃焼時間の内、 初期の 2 0 m s間のガス 発生剤の燃焼率を制御することにより、 エアバッグがカバーから飛び出すまでに 消費されるエネルギーロスを最小にして、 エアバッグの展開エネルギーに振り向 けることが可能となる。  For this reason, by controlling the combustion rate of the gas generating agent for the initial 20 ms of the gas generating agent combustion time of the gas generator, the energy loss consumed before the airbag jumps out of the cover is minimized. Then, it becomes possible to turn to the deployment energy of the airbag.
以上のように、 本実施形態では、 従来のデュアル型インフレ一夕のように 2つ のフィルタを必要とせず、 1つのフィル夕 4 0で構成することが可能となる。 そのため、 構造が簡単で、 生産性を高めることが可能となる。  As described above, this embodiment does not require two filters as in the conventional dual-type inflation system, and can be configured with one filter 40. Therefore, the structure is simple and it is possible to increase productivity.
また、 本実施形態では、 第二燃焼室 1 1 0が作動する前に第一燃焼室 1 0 0から の影響を全て遮断するために、 第二燃焼室 1 1 0を熱と圧力的に完全に孤立させる ことができる。  Further, in the present embodiment, the second combustion chamber 110 is completely thermally and pressure-controlled in order to shut off all the influence from the first combustion chamber 100 before the second combustion chamber 110 operates. Can be isolated.
本実施形態では、 従来のデュアル型ィンフレー夕の円盤状の仕切板の代わりに仕 切カップ 1 0を使用した。 そのため、 第二燃焼室 1 1 0の生成ガスが、 仕切カップ 1 0の底面 1 1に設けたノズル 1 3から一旦第一燃焼室 1 0 0に入り、 その後フィ ル夕 4 0を通してディフューザ 2から排出される。  In the present embodiment, a partition cup 10 is used in place of the conventional dual-type disk-shaped partition plate. Therefore, the generated gas in the second combustion chamber 110 enters the first combustion chamber 100 from the nozzle 13 provided on the bottom surface 11 of the partition cup 10 once, and then from the diffuser 2 through the filter 40. Is discharged.
また、 本実施形態では、 第一燃焼室 1 0 0に比し、 第二燃焼室 1 1 0の填薬量が 少なく、 第二燃焼室 1 1 0の容積が小さい。 第一燃焼室 1 0 0と第二燃焼室 1 1 0 の比率は、 6 : 4〜8 : 2が可能である。 また、 タンク圧の目標値 (第一次燃焼室 が単独での作動、 および 2つの燃焼室が時間差、 同時の作動で) 1 8 0 k P a〜2 40 k P aの最大出力に対応できる。 12 第一燃焼室 1 0 0に比し、 第二燃焼室 1 1 0の填薬量が少なく、 燃焼室が扁平な 形状で熱損失が大きいため、 第二燃焼室 1 1 0のガス発生剤 1 1 1の燃焼速度が低 下すると予測される。 ガスの後吹き問題を防止するために、 第二燃焼室 1 1 0のガ ス発生剤 1 1 1の高い燃焼速度を維持する必要がある。 Further, in the present embodiment, the amount of charge in the second combustion chamber 110 is smaller than in the first combustion chamber 100, and the volume of the second combustion chamber 110 is smaller. The ratio of the first combustion chamber 100 to the second combustion chamber 110 can be from 6: 4 to 8: 2. In addition, the target value of the tank pressure (when the primary combustion chamber operates alone, and when the two combustion chambers operate with a time difference and simultaneous operation) can support a maximum output of 180 kPa to 240 kPa . 12 Compared to the first combustion chamber 100, the amount of charge in the second combustion chamber 110 is smaller, the combustion chamber is flat and the heat loss is large, so the gas generating agent in the second combustion chamber 110 It is predicted that the combustion rate of 1 1 1 will decrease. It is necessary to maintain the high combustion rate of the gas generator 111 in the second combustion chamber 110 in order to prevent the gas after-blowing problem.
本実施形態では、 仕切カップ 1 0の底面 1 1のノズル 1 3の開口面積を調整する ことにより第二燃焼室 1 1 ◦からのガス流出を制御し、 第二燃焼室 1 1 0において 一定の燃焼圧力と燃焼速度を維持する方法を採用した。  In the present embodiment, by adjusting the opening area of the nozzle 13 of the bottom surface 11 of the partition cup 10, gas outflow from the second combustion chamber 11 ◦ is controlled, and a constant The method of maintaining the burning pressure and burning speed was adopted.
ここで、 底面 1 1のノズル 1 3による燃焼圧力の保持方法について説明する。 図 7に示すように、 底面 1 1のノズル 1 3の開口面積を変えることによって、 第 二燃焼室 1 1 0からのガス流出をコン卜ロールする。 底面 1 1のノズル 1 3を絞れ ば、 第二燃焼室 1 1 0の中の燃焼圧力を上げ、 ガス発生剤 1 1 1の燃焼が促進され ることになる。  Here, a method of maintaining the combustion pressure by the nozzle 13 on the bottom surface 11 will be described. As shown in FIG. 7, the outflow of gas from the second combustion chamber 110 is controlled by changing the opening area of the nozzle 13 on the bottom surface 11. If the nozzle 13 on the bottom surface 11 is throttled, the combustion pressure in the second combustion chamber 110 is increased, and the combustion of the gas generating agent 111 is promoted.
図 7のノズル評価試験結果を表 1に示す。 表 1  Table 1 shows the results of the nozzle evaluation test shown in FIG. table 1
Figure imgf000014_0001
本実施形態では、 第一燃焼室 1 0 0が作動する際に仕切力ップ 1 0の底面 1 1の ノズル 1 3を通す第二燃焼室 1 1 0へのガスの逆流入を防ぐために、 仕切カップ 1 0の底面 1 1のノズル遮断板 6 0を使用することにした。
Figure imgf000014_0001
In the present embodiment, when the first combustion chamber 100 is operated, in order to prevent reverse flow of gas into the second combustion chamber 110 through the nozzle 13 of the bottom surface 11 of the partitioning force 10, The nozzle blocking plate 60 of the bottom surface 11 of the partition cup 10 was used.
本実施形態では、 第一燃焼室 1 0 0が作動する時に、 生成ガスの片吹きを抑制す ることができる。  In the present embodiment, when the first combustion chamber 100 operates, it is possible to suppress one-shot blowing of the generated gas.
その結果、 フィル夕 4 0の損傷を防止することと、 エアバッグ展開特性を向上さ せることが可能となった。  As a result, it was possible to prevent damage to the vehicle and improve the airbag deployment characteristics.
次に、 生成ガスの片吹きによるフィル夕損傷を防ぐための対策について詳しく述 ベる。 本実施形態では、 片吹きによるフィル夕損傷の問題を解決するために着火系の形 状をまず次のように変更した。 Next, measures for preventing damage to the fill due to one-shot blowing of generated gas will be described in detail. In this embodiment, the shape of the ignition system was first changed as follows in order to solve the problem of damage to the filter due to a single blow.
ノズル 2 2, 3 2の角度の範囲を第一着火薬筒 2 0と第二着火薬筒 3 0に、 互い に向かって開口するように、 6 0 °、 1 4 0 ° の間隔とした。 この角度は、 1 4 0 ° 以下であれば問題がないことは実験で確認された。  The angle range of the nozzles 22 and 32 was set to 60 ° and 140 ° so as to open toward the first ignition cartridge 20 and the second ignition cartridge 30 toward each other. Experiments have confirmed that there is no problem if this angle is less than 140 °.
さらに、 片吹きを完全に解消するために円筒状のフィン 7 0を設置した。  Further, a cylindrical fin 70 was provided to completely eliminate one-sided blowing.
フィ ン 7 0を設置することによって生成ガスの流れを制御し、 片吹きを完全に無 くすことが可能である。 その理由について以下に説明する。  By installing the fin 70, it is possible to control the flow of the generated gas and eliminate one-sided spraying completely. The reason will be described below.
第一燃焼室 1 0 0の第一着火薬筒 2 0は第一燃焼室 1 0 0の中心から離れている ため、 シングル型インフレ一夕のように着火薬筒の円周均等で着火ノズルを開ける と、 着火薬筒付近のガス発生剤が優先的に着火され、 燃焼生成ガスが片寄せになつ た着火薬筒付近を集中的に通りやすくなる。 インフレ一夕の中心軸に向かって、 7 0 ° の角度でノズルを 2個を開け、 あるいは 6 0 ° 、 1 4 0 ° の間隔でノズル 2 0 を 4個閲けることによって、 第一燃焼室 1 0 0における着火の不均一性を低減させ、 生成ガスの片吹きを抑制するために一定の効果があったものの、 片吹き問題を根本 的に解決するにまで至らなかった。 また、 第一燃焼室 1 0 0内における空間的な填 薬の不均一性も生成ガス片吹きの原因の一つと考えられる。 ガスの片吹きを完全に 解決するために、 フィン 7 0を設置することを検討した。 フィン 7 0を設置した後、 フィン 7 0の内側の生成ガスがフィン 7 0のノズル 7 1に制御されることによりフ イン 7 0の円周均等で半径方向に沿って外へ流れていくことになる。 その一方、 フ イン 7 0の外側のガス発生剤は、 フィン 7 0のノズル 7 1部分から均等的に着火さ れ、 燃焼生成ガスが直ちに半径方向に沿って、 フィル夕 4 0を通過し外へ排出され る。 このように、 インフレ一夕ディフユ一ザから円周均等でガスを吹き出すことが 可能となる。  Since the first ignition cartridge 20 of the first combustion chamber 100 is far from the center of the first combustion chamber 100, the ignition nozzles are equally spaced around the circumference of the ignition cartridge as in a single type inflation. When opened, the gas generating agent near the ignition cartridge is preferentially ignited, and the combustion product gas tends to pass intensively near the misaligned ignition cartridge. By opening two nozzles at an angle of 70 ° toward the central axis of inflation overnight, or by clogging four nozzles 20 at intervals of 60 ° and 140 °, the first combustion chamber Although there was a certain effect in reducing the non-uniformity of ignition in 100 and suppressing the one-sided blowing of the generated gas, the one-sided blowing problem was not fundamentally solved. In addition, the spatial non-uniformity of the charge in the first combustion chamber 100 is also considered to be one of the causes of the one-shot blowing of the generated gas. The installation of fins 70 was considered in order to completely resolve one-sided gas blowing. After the fins 70 have been installed, the generated gas inside the fins 70 is controlled by the nozzles 71 of the fins 70 to flow outward in the radial direction evenly around the fins 70. become. On the other hand, the gas generating agent outside the fin 70 is evenly ignited from the nozzle 71 portion of the fin 70, and the combustion product gas immediately passes through the filter 40 along the radial direction and out. Is discharged to In this way, it is possible to blow out gas from the inflation overnight diffuser uniformly.
第一燃焼室 1 0 0のタンク圧出力が S字カーブになるように、 ガス発生剤 1 0 1 への着火をできる限り遅らせる必要がある。 ガス発生剤 1 0 1の燃焼性が良い場合、 第一燃焼室着火薬筒ノズルを第一燃焼室 1 0 0の一番端のところに設ける構造を採 用した。 さらに、 S字カーブのタンク圧出力を出すための対策として、 本実施形態では、 フィ ン 7 0のノズル 7 1を一番端に設置し、 半円の形状にした。 これによつて、 生 成ガスの流れをコントロールし、 火炎の伝播を遅らせることが実現される。 It is necessary to delay ignition of the gas generating agent 101 as much as possible so that the tank pressure output of the first combustion chamber 100 becomes an S-shaped curve. When the gas generating agent 101 had good flammability, a structure in which the first combustion chamber ignition cartridge nozzle was provided at the end of the first combustion chamber 100 was adopted. Further, as a measure for outputting the tank pressure output of the S-shaped curve, in the present embodiment, the nozzle 71 of the fin 70 is installed at the extreme end, and has a semicircular shape. As a result, it is possible to control the flow of generated gas and delay the propagation of the flame.
図 8は、 フィン設置について説明するものである。  Figure 8 illustrates the fin installation.
図示するように、 端に円周均等で設けたフィン 7 0のノズル 7 1によって、 生成 ガスの流れがコン卜ロールされ、 ガス片吹きの解消及び S字カーブタンク圧出力の 実現に役に立てる。  As shown in the figure, the flow of the generated gas is controlled by the nozzles 71 of the fins 70 provided at the ends of the circumference evenly, which is useful for eliminating gas blowing and realizing pressure output of the S-shaped curve tank.
フィン 7 0の孔 7 1の位置について説明する。  The position of the hole 71 of the fin 70 will be described.
孔 7 1が端に位置することによって S字カーブのタンク圧出力が一番得られやす いと考えられる。  It is considered that the tank pressure output of the S-shaped curve is most easily obtained by locating the hole 71 at the end.
孔 7 1が上部にあると、 まず、 図 9 ( a ) に示すように、 ガス発生剤 2 4への着 火は上から下へと順次伝播していく。 その後、 図 9 ( b ) に示すように、 フィン 7 0のノズル 7 1から外方の第一燃焼室 1 0 0へガスを噴出する。  When the hole 71 is at the top, first, as shown in FIG. 9 (a), the ignition to the gas generating agent 24 propagates from top to bottom. Thereafter, as shown in FIG. 9 (b), gas is jetted from the nozzle 71 of the fin 70 to the first combustion chamber 100 outside.
逆に、 孔 7 1の位置が中間にあると、 ガス発生剤 1 0 1は中間から着火され、 火 炎は上下に移動するので燃焼時間が短くなり S字の効果が悪くなる。  Conversely, if the position of the hole 71 is in the middle, the gas generating agent 101 is ignited from the middle, and the flame moves up and down, so that the combustion time is shortened and the effect of the S-shape is deteriorated.
また、 孔 7 1の位置が下にあると、 火炎伝播の方向がガス流れの方向と一致して いるため、 未燃部分のガス発生剤ペレッ トへの予熱効果を上げ、 火炎伝播の速度が 更に加速されることになる。 ガス発生剤全体としての燃焼速度が最も速くなり、 燃 焼時間は最も短縮されると考えられる。  When the position of the hole 71 is below, since the direction of flame propagation coincides with the direction of gas flow, the effect of preheating the unburned portion on the gas generant pellet is increased, and the speed of flame propagation is increased. It will be further accelerated. It is thought that the burning rate of the gas generating agent as a whole is the fastest and the burning time is the shortest.
したがって、 孔 7 1の位置は上端面が最適である。 他の位置では、 ガス発生剤 1 0 1の燃焼速度の程度と必要とする S字の程度により適宜設定すればよ 、。  Therefore, the position of the hole 71 is optimal on the upper end surface. At other positions, it may be set appropriately according to the degree of the burning rate of the gas generating agent 101 and the required degree of S-shape.
また、 着火薬量を減らすことによって、 ガス発生剤への熱エネルギー供給を少な くすることができる。  Also, by reducing the amount of igniting agent, the supply of thermal energy to the gas generating agent can be reduced.
第一着火薬筒 3 0の先端側のノズル 3 2の開口面積を大きくすることによって、 第一着火薬筒 3 0内圧力を低くすることができる。  By increasing the opening area of the nozzle 32 on the distal end side of the first ignition cartridge 30, the pressure inside the first ignition cartridge 30 can be reduced.
ディフューザクロージャ 3の板厚を薄くすることによって、 初期の第一次燃焼室 圧力の上昇を緩やかにすることができる。  By reducing the thickness of the diffuser closure 3, it is possible to moderate the initial rise in the primary combustion chamber pressure.
第一燃焼室 1 0 0が作動する段階で第二燃焼室 1 1 0への影響を無くすために、 次の構造が有効である。 In order to eliminate the effect on the second combustion chamber 110 when the first combustion chamber 100 operates, The following structure is valid:
仕切力ップ 1 0の変形の防止:  Prevention of deformation of the partition force 10:
仕切カップ 1 0の変形で第二燃焼室 1 1 0に影響を与えることを防ぐために、 仕 切カップ 1 0の底面 1 1に板厚が 3 mm以上の材料を使用する。 3 mmの厚さが十 分であることは実験で確認された。  To prevent the deformation of the partition cup 10 from affecting the second combustion chamber 110, use a material with a plate thickness of 3 mm or more for the bottom surface 11 of the partition cup 10. Experiments have confirmed that a thickness of 3 mm is sufficient.
ガス漏れの防止:  Prevent gas leaks:
a . 仕切カップ 1 0のノズル 1 3を通すガス漏れの防止  a. Prevent gas leakage through nozzle 13 of partition cup 10
仕切カップ 1 0のノズル 1 3を遮断すために、 厚み 0 . 3 mmのステンレス板状 のノズル遮断板 6 0を仕切カップ 1 0の底面 1 1に貼り付ける。  In order to shut off the nozzle 13 of the partition cup 10, a 0.3 mm-thick stainless plate-shaped nozzle shut-off plate 60 is attached to the bottom surface 11 of the partition cup 10.
第一燃焼室 1 0 0が作動する段階でノズル遮断板 6 0の破壊がないことを確認し た。 続いて、 第二燃焼室 1 1 0が作動しノズル遮断板 6 0が底面 1 1から剥がれる ため、 第二燃焼室 1 1 0の生成ガスが底面 1 1のノズル 1 3を通過できるようにな る。  It was confirmed that there was no breakage of the nozzle blocking plate 60 at the stage when the first combustion chamber 100 was operated. Subsequently, the second combustion chamber 110 is actuated, and the nozzle blocking plate 60 is peeled off from the bottom surface 11, so that the gas generated in the second combustion chamber 110 can pass through the nozzle 13 on the bottom surface 11. You.
ノズル遮断板 6 0は、 第一燃焼室 1 0 0の作動圧力で破壊されることがない。 第 二燃焼室 1 1 0の作動圧力でノズル遮断板 6 0は仕切力ップ 1 0の接着面から剥が れ、 フィン 7 0まで移動し (仕切力ップ 1 0とフィン 7 0間には僅かな隙間がある) た後、 フィン 7 0を支点として下側 (点火器 2 5 , 3 5の方) に折り曲がる。  The nozzle blocking plate 60 is not broken by the operating pressure of the first combustion chamber 100. At the operating pressure of the second combustion chamber 110, the nozzle blocking plate 60 is peeled off from the bonding surface of the partitioning force 10 and moves to the fin 70 (the distance between the partitioning force 10 and the fin 70 is After a slight gap), it is bent downward (towards the igniters 25 and 35) with the fin 70 as a fulcrum.
b . 仕切カップ 1 0とィンフレー夕のカップ 1 aとの間の隙間を通すガス流れの 防止  b. Prevent gas flow through the gap between the partition cup 10 and the cup 1a
第一燃焼室 1 0 0が作動する時、 圧力の上昇で仕切カップ 1 0の底面 1 1上に、 上向きの力がかかる。 こういう力で仕切力ップ 1 0の上部がィンフレー夕チャンバ の内側との接触は密接になり、 ガス漏れを完全に防止することは実験で確認された。 しかし、 第二燃焼室 1 1 0が作動する時、 カップ 1 aの変形で隙間が大きくなるこ とが予想される。 この隙間からのガス漏れを防ぐために、 内側から外側へのガス移 動を完全に遮断ができる第二燃焼室 1 1 0のガスシール 8 2を設置することにした。 c . 仕切力ップ 1 0とフィル夕 4 0との間の隙間を通すガス流れの防止  When the first combustion chamber 100 operates, an upward force is applied to the bottom surface 11 of the partition cup 10 due to an increase in pressure. It was confirmed by experiments that the upper part of the partitioning force 10 became in close contact with the inside of the infra-red chamber with such a force, and gas leakage was completely prevented. However, when the second combustion chamber 110 is operated, it is expected that the gap becomes larger due to the deformation of the cup 1a. In order to prevent gas leakage from the gap, a gas seal 82 of the second combustion chamber 110, which can completely block the movement of gas from the inside to the outside, was decided. c. Prevention of gas flow through the gap between partition force 10 and fill 40
仕切カップ 1 0の側面とフィル夕 4 0との間の隙間が長く、 火炎およびガスが通 過しにくい。 多少通過しても仕切カップ 1 0の上端より第二燃焼室 1 1 0に入って ガス発生剤 1 1 1を発火させることはないことが実験で確認できた。 The gap between the side of the partition cup 10 and the fill 40 is long, making it difficult for flame and gas to pass through. Even after passing a little, enter the second combustion chamber 110 from the upper end of the partition cup 110 The experiment confirmed that the gas generant 1 1 1 did not ignite.
第一燃焼室 1 0 0のガス発生剤 1 0 1の燃焼は、 主にディフューザ 2によってコ ントロールされる。  Combustion of the gas generating agent 101 in the first combustion chamber 100 is mainly controlled by the diffuser 2.
d . 第二着火薬筒 3 0と仕切力ップ 1 0の底面 1 1との間の隙間を通すガス漏れ の防止  d. Prevention of gas leakage through the gap between the second ignition cartridge 30 and the bottom surface 11 of the partition 10
第二着火薬筒 3 0と仕切カップ 1 0の底面 1 1との間の隙間を通すガス漏れを防 ぐために、 ガスシール 8 0の使用は有効である。  The use of a gas seal 80 is effective to prevent gas leakage through a gap between the second ignition cartridge 30 and the bottom surface 11 of the partition cup 10.
熱伝導の防止:  Prevention of heat conduction:
a . 仕切カップ 1 0の底面 1 1を通す熱伝導の防止  a. Prevention of heat conduction through bottom 1 1 of partition cup 10
仕切カップ 1 0の底面 1 1を通す熱伝導を防止するために、 厚い材料の使用が考 えられる。 仕切カップ 1 0の底面 1 1に 3 mmのステンレス材料を使用すると、 第 一燃焼室 1 0 0が作動する段階で第二燃焼室 1 1 0のガス発生剤 1 1 1が発火しな いことを確認した。  To prevent heat conduction through the bottom surface 11 of the partition cup 10, use of a thick material is conceivable. If a stainless steel material of 3 mm is used for the bottom surface 11 of the partition cup 10, the gas generating agent 1 1 1 in the second combustion chamber 110 will not ignite when the first combustion chamber 100 operates. It was confirmed.
b . 第二着火薬筒 3 0の壁を通す熱伝導による着火薬自然発火の防止  b. Prevention of spontaneous ignition of ignition powder by heat conduction through the wall of the second ignition cartridge 30
第一燃焼室 1 0 0が作動する際、 第二着火薬筒 3 0内に入っている着火薬 3 4の 自然発火を防止する必要がある。 第二着火薬筒 3 0の壁を通す熱伝導を遮断するた めに、 厚い材料の使用が考えられる。 第二着火薬筒 3 0に 2 mmのステンレス材料 を使用することによって、 第一燃焼室 1 0 0が作動する段階で点火器 3 5と着火薬 3 4の発火がないことが確認された。  When the first combustion chamber 100 is operated, it is necessary to prevent spontaneous ignition of the ignition agent 34 contained in the second ignition cartridge 30. To block heat conduction through the wall of the second ignition cartridge 30, a thicker material could be used. By using a stainless steel material of 2 mm for the second igniter cylinder 30, it was confirmed that there was no ignition of the igniter 35 and the igniter 34 at the stage where the first combustion chamber 100 was operated.
なお、 第一着火薬筒 2 0と第二着火薬筒 3 0の着火は、 図 1 0、 図 1 1に示すよ うに、 同時点火から 4 0 m s遅れ程度の幅を持たせることが可能である。  The ignition of the first ignition cartridge 20 and the second ignition cartridge 30 can have a width of about 40 ms delay from the simultaneous ignition as shown in Fig. 10 and Fig. 11. is there.
表 2、 表 3にその結果を示す。 表 2  Tables 2 and 3 show the results. Table 2
Delay Time Pt実力値 Pt狙い ffi i Delay Time Pt actual value Pt aim ffi i
(kPa) (ms) (kPa) (ms)  (kPa) (ms) (kPa) (ms)
0 260.3 53.5 230  0 260.3 53.5 230
20 231 .9 61 .5 70  20 231 .9 61 .5 70
40 214 74 240 表 3 40 214 74 240 Table 3
Figure imgf000019_0001
また、 図 1 2に示すように、 第二燃焼室 1 1 0内の設置する吸熱材 5 0によって もタンク圧力と燃焼室圧力をコントロールすることが可能である。
Figure imgf000019_0001
Further, as shown in FIG. 12, the tank pressure and the combustion chamber pressure can be controlled also by the heat absorbing material 50 installed in the second combustion chamber 110.
その結果を表 4に示す。 表 4  The results are shown in Table 4. Table 4
Figure imgf000019_0002
Figure imgf000019_0002
産業上の利用の可能性 Industrial applicability
本発明にかかわる 本発明によれば、 構造は簡単で、 生産性が良いデュアル型ィ ンフレー夕を得ることができる。 第一燃焼室の影響 (熱、 圧力、 ガスの流れ) から、 第二燃焼室を完全に孤立させることができる。 ガス出力の調整、 ガス発生剤の燃焼 特性との対応は簡単である等の利点がある。  According to the present invention according to the present invention, it is possible to obtain a dual-type inflator having a simple structure and high productivity. Due to the effects of the first combustion chamber (heat, pressure and gas flow), the second combustion chamber can be completely isolated. There are advantages such as easy adjustment of gas output and correspondence with combustion characteristics of gas generating agents.

Claims

請求の範囲 The scope of the claims
( 1 ) 側壁に複数のディフューザを設けたィンフレー夕チャンバと、 (1) an infra-red chamber with a plurality of diffusers on the side wall,
底面にノズルを設けた仕切力ップと、  A partitioning power cup with a nozzle on the bottom,
仕切カップによってィンフレー夕チャンバ内を側壁の垂直方向に仕切ることによ つてィンフレー夕チャンバ内に形成された第一燃焼室および第二燃焼室と、  A first combustion chamber and a second combustion chamber formed in the inflation chamber by partitioning the inside of the inflation chamber in the vertical direction of the side wall with a partition cup;
仕切力ップの底面の第一燃焼室側に設けた封止部材と、  A sealing member provided on the first combustion chamber side of the bottom surface of the partitioning force,
第一燃焼室および第二燃焼室内に充填したガス発生剤と、  A gas generating agent filled in the first combustion chamber and the second combustion chamber,
ィンフレー夕チャンバ内に位置し、 第一燃焼室内に着火エネルギーの噴出部を設 けた第一着火手段と、  A first ignition means which is located in the infinity chamber and has an ignition energy ejection section in the first combustion chamber;
インフレ一夕チャンバ内に位置し、 第二燃焼室内に着火エネルギーの噴出部を設 けた第二着火手段と、  A second ignition means located in the inflation overnight chamber and having an ignition energy ejection section in the second combustion chamber;
第一燃焼室内に位置し、 第一着火手段から噴出される着火エネルギーによるガス 発生剤の燃焼領域を第一着火手段の周囲に形成し、 燃焼領域の熱エネルギーを第一 燃焼室内のガス発生剤に伝播する燃焼エネルギー伝播手段と、  A combustion region for the gas generating agent, which is located in the first combustion chamber and is ignited by the ignition energy ejected from the first ignition means, is formed around the first ignition means, and the heat energy in the combustion region is converted to the gas generating agent in the first combustion chamber. Means for propagating combustion energy to the
インフレ一夕チャンバ内に位置し、 ディフューザの前面側に配設したフィル夕と を備えたことを特徴とするデュアル型ィンフレー夕。  A dual-type infra-red evening, which is located in the inflation evening chamber and includes a fill-in evening disposed in front of the diffuser.
( 2 ) ^求の範囲 1記載のデュアル型ィンフレー夕において、  (2) ^ In the scope of claim 1, the dual type infra
燃焼エネルギー伝播手段は、 第一着火手段と第二着火手段とを囲繞する隔壁と、 この隔壁に設けた開口と、 隔壁と第一着火手段および第二着火手段との間に充填さ れたガス発生剤とから成る  The combustion energy propagating means includes a partition surrounding the first ignition means and the second ignition means, an opening provided in the partition, and gas filled between the partition and the first ignition means and the second ignition means. Consisting of a generator
ことを特徴とするデュアル型インフレ一夕。  Dual-type inflation overnight.
( 3 ) 請求の範囲 1記載のデュアル型ィンフレー夕において、  (3) In the dual-type infra-frame set forth in claim 1,
隔壁は円筒状のフィンであり、 開口が仕切力ップ側に設けてある  The partition is a cylindrical fin with an opening on the side of the partition
ことを特徴とするデュアル型インフレ一夕。  Dual-type inflation overnight.
( 4 ) 請求の範囲 1記載のデュアル型インフレ一夕において、  (4) In the dual type inflation described in claim 1,
第一着火手段と第二着火手段の着火エネルギーの噴出部は、 それぞれインフレ一 夕チャンバの中心に向かって開口している ことを特徴とするデュアル型ィンフレー夕。 The ignition energy jets of the first ignition means and the second ignition means open toward the center of the inflation chamber, respectively. This is a dual-type infra evening.
( 5 ) 請求の範囲 1記載のデュアル型ィンフレー夕において、  (5) In the dual-type infra-frame set forth in claim 1,
仕切力ップの底面に設けたノズルは、 底面全体に設けてある  Nozzles provided on the bottom of the partitioning tap are provided on the entire bottom
ことを特徴とするデュアル型ィンフレー夕。  This is a dual-type infra evening.
( 6 ) 請求の範囲 1記載のデュアル型ィンフレ一夕において、  (6) In the dual type inflation described in claim 1,
第一燃焼室の容積は、 第二燃焼室の容積より大きい  The volume of the first combustion chamber is larger than the volume of the second combustion chamber
ことを特徴とするデュアル型ィンフレー夕。  This is a dual-type infra evening.
( 7 ) 請求の範囲 1記載のデュアル型ィンフレ一夕において、  (7) In the dual type inflation described in claim 1,
封止部材は、 第二燃焼室のガス発生剤の燃焼ガス圧力で仕切力ップから剥がれる ことを特徴とするデュアル型ィンフレー夕。  A dual-type inflator, wherein the sealing member is separated from the partitioning force by a combustion gas pressure of the gas generating agent in the second combustion chamber.
( 8 ) 請求の範囲 1記載のデュアル型ィンフレー夕において、  (8) In the dual type infra-frame set forth in claim 1,
第一着火手段と第二着火手段は、 ノズルを設けた着火薬筒と、 この着火薬筒内に 充填した着火薬と、 外部の制御装置からの信号で作動する点火器とから成る ことを特徴とするデュアル型ィンフレー夕。  The first ignition means and the second ignition means are characterized by comprising an ignition cartridge provided with a nozzle, an ignition charge filled in the ignition cartridge, and an igniter activated by a signal from an external control device. And dual-type infra evening.
( 9 ) 詰求の範囲 1記載のデュアル型ィンフレー夕において、  (9) Scope of request
仕切力ップの底面に設けたノズル上には、 環状の吸熱材が配置されている ことを特徴とするデュアル型ィンフレー夕。  An annular heat-absorbing material is arranged on the nozzle provided on the bottom surface of the partition.
PCT/JP2000/004097 1999-12-28 2000-06-22 Dual inflator WO2001047752A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/375582 1999-12-28
JP37558299 1999-12-28

Publications (1)

Publication Number Publication Date
WO2001047752A1 true WO2001047752A1 (en) 2001-07-05

Family

ID=18505749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004097 WO2001047752A1 (en) 1999-12-28 2000-06-22 Dual inflator

Country Status (1)

Country Link
WO (1) WO2001047752A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1361971A1 (en) * 2001-01-26 2003-11-19 Automotive Systems Laboratory Inc. Dual chamber inflator
US7516983B2 (en) 2002-02-06 2009-04-14 Nippon Kayaku Kabushiki-Kaisha Gas generator
DE102008060305A1 (en) * 2008-12-03 2010-06-10 Trw Airbag Systems Gmbh inflator
DE202010014286U1 (en) * 2010-10-15 2012-01-30 Trw Airbag Systems Gmbh Gas generator and gas bag module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002160A1 (en) * 1995-07-06 1997-01-23 Automotive Systems Laboratory, Inc. Dual chamber nonazide gas generator
JPH1159318A (en) * 1997-08-25 1999-03-02 Nippon Kayaku Co Ltd Gas generator
JPH1191495A (en) * 1997-09-18 1999-04-06 Nippon Kayaku Co Ltd Gas generator
JPH11217055A (en) * 1997-11-05 1999-08-10 Nippon Kayaku Co Ltd Gas generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002160A1 (en) * 1995-07-06 1997-01-23 Automotive Systems Laboratory, Inc. Dual chamber nonazide gas generator
JPH1159318A (en) * 1997-08-25 1999-03-02 Nippon Kayaku Co Ltd Gas generator
JPH1191495A (en) * 1997-09-18 1999-04-06 Nippon Kayaku Co Ltd Gas generator
JPH11217055A (en) * 1997-11-05 1999-08-10 Nippon Kayaku Co Ltd Gas generator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1361971A1 (en) * 2001-01-26 2003-11-19 Automotive Systems Laboratory Inc. Dual chamber inflator
EP1361971A4 (en) * 2001-01-26 2005-02-09 Automotive Systems Lab Dual chamber inflator
US7516983B2 (en) 2002-02-06 2009-04-14 Nippon Kayaku Kabushiki-Kaisha Gas generator
DE102008060305A1 (en) * 2008-12-03 2010-06-10 Trw Airbag Systems Gmbh inflator
US9487183B2 (en) 2008-12-03 2016-11-08 Trw Airbag Systems Gmbh Gas generator
US10106118B2 (en) 2008-12-03 2018-10-23 Trw Airbag Systems Gmbh Gas generator
DE202010014286U1 (en) * 2010-10-15 2012-01-30 Trw Airbag Systems Gmbh Gas generator and gas bag module
US9452729B2 (en) 2010-10-15 2016-09-27 Trw Airbag Systems Gmbh Gas generator and airbag module
US9511738B2 (en) 2010-10-15 2016-12-06 Trw Airbag Systems Gmbh Inflator and airbag module
US9643564B2 (en) 2010-10-15 2017-05-09 Trw Airbag Systems Gmbh Inflator and airbag module
US9815431B2 (en) 2010-10-15 2017-11-14 Trw Airbag Systems Gmbh Inflator and airbag module
US9840224B2 (en) 2010-10-15 2017-12-12 Trw Airbag Systems Gmbh Inflator and airbag module

Similar Documents

Publication Publication Date Title
KR100589993B1 (en) Dual stage pyrotechnic airbag inflator
KR0183410B1 (en) Hybrid inflator with tortuous delivery passage
JP3779730B2 (en) Hybrid inflator
EP0836563B1 (en) Dual chamber nonazide gas generator
US6237950B1 (en) Staged air bag inflator
US5516147A (en) Stamped metal toroidal hybrid gas generator with sliding piston
JP3315686B2 (en) Gas generator and airbag device for multistage airbag
EP1200289B1 (en) Dual stage airbag inflator
EP0609981B1 (en) Inflator assembly
US6485051B1 (en) Gas generator
US6364353B2 (en) Dual stage air bag inflator
US5863066A (en) Multiple stage air bag inflator
US20060267322A1 (en) Apparatus for inflating an inflatable vehicle occupant restraint
JP3040049U (en) Adaptive airbag inflator
US7052040B2 (en) Gas generator for air bag
JP3781603B2 (en) Gas generator
US20030146611A1 (en) Adaptive output passenger disk inflator
JPH11129858A (en) Inflator of air bag for vehicle
JP3986184B2 (en) Gas generator
US6857658B2 (en) Gas generator for air bag and air bag apparatus
WO2001042061A1 (en) Gas generator
US6196582B1 (en) Variable output inflator for an air bag
JPH1095300A (en) Gas generator for air bag
WO2003070528A1 (en) Gas generator
WO2001047752A1 (en) Dual inflator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP