WO2001047033A1 - Photoelectric transducer and substrate for photoelectric transducer - Google Patents

Photoelectric transducer and substrate for photoelectric transducer Download PDF

Info

Publication number
WO2001047033A1
WO2001047033A1 PCT/JP2000/009056 JP0009056W WO0147033A1 WO 2001047033 A1 WO2001047033 A1 WO 2001047033A1 JP 0009056 W JP0009056 W JP 0009056W WO 0147033 A1 WO0147033 A1 WO 0147033A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
fine particles
photoelectric conversion
substrate
silica fine
Prior art date
Application number
PCT/JP2000/009056
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Otani
Toshifumi Tsujino
Yasunori Seto
Masahiro Hirata
Katsuhiko Kinugawa
Tetsuro Kawahara
Original Assignee
Nippon Sheet Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co., Ltd. filed Critical Nippon Sheet Glass Co., Ltd.
Publication of WO2001047033A1 publication Critical patent/WO2001047033A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/365Coating different sides of a glass substrate

Definitions

  • the present invention relates to a substrate used for a photoelectric conversion device such as a solar cell panel. Further, the present invention relates to a photoelectric conversion device using the substrate.
  • photoelectric conversion devices generally used include a “thin film type” using amorphous silicon for the photoelectric conversion layer and a “crystal type” using silicon crystal.
  • Thin-film type photoelectric conversion devices consist of a transparent conductive film such as tin oxide, zinc oxide or tin-doped indium oxide (IT ⁇ ) on one main surface of a transparent substrate such as a glass plate or a resin sheet, and an amorphous A photoelectric conversion layer made of silicon is further added to aluminum, silver, or zinc oxide.
  • the crystal-type photoelectric conversion device has a structure in which a photoelectric conversion element composed of a single-crystal silicon / polycrystalline silicon wafer is sandwiched between two substrates and sealed.
  • the substrate on the light incident side must be transparent, and a glass plate is usually used (hereinafter, this transparent substrate is referred to as “cover glass”).
  • Tin oxide films formed by methods involving thermal decomposition and oxidation of raw materials such as chemical vapor deposition (CVD)
  • CVD chemical vapor deposition
  • transparent conductive films are frequently used as transparent conductive films in thin-film photoelectric conversion devices.
  • CVD chemical vapor deposition
  • a base film is provided to prevent the components from diffusing into the transparent conductive film and lowering the electrical conductivity of the transparent conductive film (increase in resistance).
  • a transparent thin film made of silica (Si ⁇ , etc.) is preferably used for the underlayer.
  • the transparent conductive film has a high transmittance (the photoelectric conversion layer More light), lower resistance (less loss when extracting the generated current), and contribution to light confinement in the photoelectric conversion layer.
  • a technique that can contribute to confinement there is known a method of forming irregularities of an appropriate size on the surface of a transparent conductive film (Japanese Patent Application Laid-Open No. 58-57756).
  • the photoelectric conversion rate of the thin-film photoelectric conversion device can be increased.
  • an anti-reflection film on a surface opposite to one main surface of the transparent substrate on which the transparent conductive film is formed, more light can be introduced into the photoelectric conversion layer.
  • a reflection suppressing film a single-layer film having a refractive index distribution is known.
  • a film containing silica fine particles having a particle size of 50 nm is formed on a glass surface by a sol-gel method.
  • the following literature5 shows that the solar transmittance is improved (2nd international Conierence on Coatiners on Glass, 1999, Elsevier Science, ISBN: 0-444-50247-5'255-260). Since high transmittance is naturally required for the antireflection film, fine particles having a relatively small particle size and uniform particle size as described in the above-mentioned literature have been used.
  • crystalline silicon such as microcrystal or polycrystal for the photoelectric conversion layer has attracted attention as a technique for dramatically increasing the photoelectric conversion rate of a thin film photoelectric conversion device.
  • the above transparent group The technology to increase the transmissivity by forming an anti-reflection film on one main surface of the body has a well-established feeling, as long as there is no fundamental component change such as using new materials that have never existed before However, it is considered difficult to expect effects beyond those shown in the above literature.
  • the present invention has been made in view of the above problems. Its purpose is to suppress more light to the photoelectric conversion layer and to suppress light confinement in the photoelectric conversion layer without depending on surface irregularities of the transparent conductive film. Another object of the present invention is to provide a substrate for a photoelectric conversion device including the same. Another object of the present invention is to provide a thin-film photoelectric conversion device having a photoelectric conversion layer made of crystalline silicon by using this substrate and having extremely high photoelectric conversion efficiency.
  • the present invention provides a substrate for a photoelectric conversion device in which a reflection suppressing film containing fine particles mainly composed of silica having a particle diameter of 30 O nm or less is formed on the main surface of a transparent substrate.
  • the particle size of the fine particles is from 300 to 60 O nm. It is suitable.
  • the antireflection film contains fine particles mainly composed of silica having a different particle diameter from fine particles mainly composed of silica having a particle diameter of 300 nm or more.
  • the particle diameter of fine particles mainly composed of silica having different particle diameters is preferably 50 to: I 50 nm.
  • the fine particles exist in a region of 60% or more of the main surface of the transparent substrate.
  • a transparent conductive film having a haze ratio of 10% or less may be formed on a surface opposite to the main surface of the transparent substrate.
  • FIG. 1 is a cross-sectional view of one embodiment of the substrate for a photoelectric conversion device of the present invention.
  • FIG. 2 is a schematic view showing an apparatus for producing a glass plate and a transparent conductive film.
  • FIG. 3 is an example of a diffusion transmission spectrum of a tin oxide film.
  • FIG. 4 is an example of the diffusion transmission spectrum of the photoelectric conversion device substrates of Examples 1 to 3.
  • FIG. 5 is a diagram illustrating a state in which the surface of the antireflection film manufactured in Example 2 is observed by SEM.
  • FIG. 1 is a cross-sectional view of one embodiment of the present invention.
  • an underlayer film 1 and a transparent conductive film 2 mainly composed of tin oxide are formed in this order on one main surface of a transparent substrate 5, and silica is mainly formed on the opposing surface.
  • An antireflection film 6 composed of fine particles (hereinafter referred to as “silicone fine particles”) and a binder (not shown) is formed.
  • silica fine particles 7 and 8 are formed on the surface of the antireflection film 6.
  • the antireflection film contains silica fine particles and a binder, and a void is formed between the fine particles. Due to the voids formed inside the film, the substantial refractive index of the antireflection film decreases. A decrease in the refractive index of the anti-reflection film is preferable from the viewpoint of improving the anti-reflection effect.
  • silica fine particles examples include silica fine particles synthesized by reacting silicon alkoxide with a basic catalyst such as ammonia by a sol-gel method, colloidal silica made from sodium gayate, etc., or fume synthesized in the gas phase. Dosilica or the like can be used. In order to improve the dispersibility of the raw material, the silica fine particles may contain a trace component other than silica.
  • the optical properties of the antireflection film depend on the particle size of the silica fine particles and the area ratio of the silica fine particles occupying the surface of the transparent substrate.
  • the particle size of the silica fine particles is accurately determined by measurement using a transmission electron microscope.
  • the average particle size of the individual particles that is, the average primary particle size, not the agglomerated particles (for example, secondary particles connected in a chain) is defined as the particle size.
  • the area ratio of the silica fine particles occupying the substrate surface can be determined by observation using a scanning electron microscope (SEM). If SEM is used, the approximate particle size can also be evaluated.
  • SEM scanning electron microscope
  • the reflectance of the anti-reflection film obtained by arranging the spherical fine particles on the substrate surface such that the center of the fine particles is arranged in a grid pattern is considered as follows, and is obtained. Assuming that the diameter of the silica fine particles is the film thickness, air occupies about half of the volume of the antireflection film.
  • the refractive index of silica is 1.45, Since the refractive index of air is 1.00, the refractive index of such an anti-reflection film is a substance having a refractive index of n1 and a volume of V1, and a substance having a refractive index of n2 and a volume of V2. Is calculated by the following equation which gives the refractive index n of the substance obtained by mixing That is,
  • V V 1 + V 2
  • the refractive index of the antireflection film made of the fine particles of silicic acid is calculated to be 1.22.
  • the refractive index calculated based on this formula is referred to as “apparent refractive index”.
  • the reflectance of the antireflection film is minimal when the following condition is satisfied between the refractive index of the antireflection film and the wavelength of the incident light.
  • ⁇ ⁇ d is called “optical thickness” of the antireflection film. Since the optical thickness is a component of the refractive index (apparent refractive index) of the antireflection film, its physical thickness d is smaller than the optical thickness. Therefore, in order to minimize the reflectance near the wavelength of 600 nm, at which the sensitivity of amorphous silicon becomes maximum, the thickness of the antireflection coating with the apparent refractive index of 1.2 d is about 120 nm. In addition, since the photoelectric conversion layer made of amorphous silicon or crystalline silicon has a wide absorption band from visible light to near-infrared light, the preferred particle size of the silica fine particles is 50% when calculated according to the above equation.
  • silica fine particles used in the reflection suppressing film of the photoelectric conversion device have a particle size of 50 to 15 O nm.
  • the present inventors have investigated the relationship between the particle size of the silicic acid fine particles and light scattering in the antireflection film, and found that when the particle size exceeds 20 O nm, the photoelectric conversion rate starts to increase, and 30 O nm From the vicinity, it was found that the change became remarkable.
  • Accordance particle diameter of the silica fine particles increases as this, where n the degree physician light scattering is increased, the haze ratio is the number of fingers indicating the ratio of scattered transmitted light, larger the value Indicates that transmitted light is scattered.
  • Photoelectric It is generally believed that the more scattered light introduced into the conversion layer, the more effective it is in confining light. Therefore, focusing on light confinement, it seems that the larger the particle size of the silica fine particles, the better.
  • the particle size exceeds 1 m the adhesion between the silica fine particles and the transparent substrate is reduced, so that the durability of the antireflection film is reduced.
  • the particle size of the silica fine particles should be 200 to 100 O in consideration of light confinement and durability. nm force Considered reasonable. Further, considering the light scattering by the above-described antireflection film and the adhesiveness between the silica fine particles and the transparent substrate from the viewpoint of practicality, the particle size of the silica fine particles is from 300 to 600 nm. Seems appropriate. As described above, the optical function exerted by the anti-reflection film changes depending on the particle size of the silica fine particles.
  • the anti-reflection having various optical characteristics can be obtained. It is believed that a film is obtained. For example, when the above-described silica fine particles having a particle diameter of 300 to 60 O nm and silica fine particles having a particle diameter of 50 to 15 O nm are combined, light scattering is generated and the reflectance is too low. It is expected that not high films will be obtained. However, this antireflection film exerts more functions than the above-mentioned combination of the functions of the fine particles of each particle diameter. In other words, the combination of the two types of silica microparticles is thought to produce only an effect that compromises the respective functions, but the experimental results disappointed.
  • the haze ratio of the antireflection film shows an intermediate value of that of only silica fine particles of each particle size.
  • the photoelectric conversion rate is higher than that of only particles of each particle size. The reason why such a result is obtained is not necessarily clear, but the present inventors speculate as follows. That is, when fine particles having different particle sizes are mixed, the larger fine particles are dispersed and scattered on the transparent substrate, and a gap is formed between the fine particles. Occurs.
  • the same effect can be obtained by using silica fine particles with a wide particle size distribution, or by laminating the anti-reflection film with a thicker silica fine particle. It is thought to be played.
  • silica fine particles having a wide particle size distribution are used, the number of fine particles satisfying the relationship between the reflectance and the wavelength decreases, so that the reflectance of the antireflection film increases, and the amount of light incident on the photoelectric conversion layer decreases. Eventually, the photoelectric conversion rate decreases. From this, it is considered that the silica fine particles preferably have a uniform particle size as much as possible.
  • the silica fine particles have a particle size of 30 O nm, those having a particle size distribution of about ⁇ 10% are commercially available.
  • the thickness of the anti-reflection film is increased to deposit the fine particles, the strength of the anti-reflection film decreases, and the durability of the anti-reflection film does not reach a practical level. It is conceivable to increase the amount of binder in the anti-reflection coating to increase its strength, but this causes a new problem that the gap between fine particles becomes smaller and the apparent refractive index rises. From these facts, it is considered that the thickness of the antireflection film is preferably 1 to 2 times the particle size of the large fine particles.
  • the particle diameter ratio of each fine particle is preferably 3 or more. If the particle size ratio is 3 or more, small fine particles can enter the gaps between the large fine particles.
  • silica fine particles of less than SO nrn induce an increase in reflectance, and silica fine particles of more than 100 O nm have poor adhesion to the transparent substrate, and the durability of the antireflection film is low. Lower. Therefore, this particle size ratio is preferably Is preferably 20 or less, that is, 3 to 20.
  • the type of transparent substrate is not particularly limited, and various types of transparent substrates such as a glass plate and a resin plate conventionally used as a transparent substrate of a photoelectric conversion device can be used.
  • the binder improves the adhesion between the silica fine particles and between the silica fine particles and the transparent substrate.
  • the binder is preferably at least one metal oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide, zirconium oxide and tantalum oxide.
  • An alkoxide containing at least one metal selected from Si, Al, Ti, Zr, and Ta is preferable as a material for the binder from the viewpoint of film strength and chemical stability.
  • the refractive index of the binder affects the reflectance. Therefore, a silicon alkoxide having a small refractive index, particularly a silicon tetraalkoxide or an oligomer thereof is preferable as the raw material.
  • metal alkoxides may be used as the raw material of the binder, and even if other than metal alkoxides, M (OH) n (M is a metal atom, n is determined based on the valence of the metal by hydrolysis)
  • the metal compound is not particularly limited as long as it is a metal compound from which a reaction product represented by a natural number, for example, 1 to 4) is obtained. Examples of such metal compounds include metal halides and metal compounds having an isocyanate group, an acyloxy group, an aminoxy group, and the like.
  • the anti-reflection film is formed, for example, by applying a coating solution containing silica fine particles and a metal compound such as a metal alkoxide to the surface of the substrate and baking the coating solution. At this time, the weight ratio between the silica fine particles and the binder is preferably in the range of 50:50 to 85:15.
  • the ratio of the binder is too large, the fine particles are buried in the binder, and the unevenness due to the fine particles and the porosity in the film are reduced. On the other hand, if the ratio of the binder is too small, the adhesiveness between the transparent substrate and the fine particles and between the fine particles is reduced.
  • the coating liquid may be prepared by mixing a hydrolyzate of a metal compound with fine particles of silica, but is preferably prepared by hydrolyzing a hydrolyzable metal compound in the presence of fine silica particles. . This is because the film strength is significantly improved. For example, when a metal alkoxide is hydrolyzed in the presence of silica fine particles, a condensation reaction between silanol groups on the surface of the silica fine particles and the metal alkoxide is promoted in the coating solution. This condensation reaction not only enhances the adhesion between the silica fine particles, but also enhances the reactivity of the surface of the silica fine particles to enhance the adhesive force between the fine particles and the glass substrate.
  • the coating liquid is prepared by mixing a hydrolyzable metal compound, a hydrolysis catalyst, water and a solvent, preferably in the presence of silica fine particles, and hydrolyzing the metal compound.
  • the hydrolysis can be carried out, for example, by stirring the mixture at room temperature for 1 hour or more to carry out the reaction, or by stirring the mixture at a temperature higher than room temperature, for example, 40 to 80 minutes for 10 to 50 minutes.
  • the obtained coating solution may be diluted with an appropriate solvent according to the coating method.
  • Hydrolysis catalysts include mineral acids such as hydrochloric acid and nitric acid and acid catalysts such as acetic acid. Is preferred. When an acid catalyst is used, the metal alkoxide reacts easily to form M (OR) n, thereby providing abundant reaction products that effectively act as a binder. With basic catalysts, hydrolysis is rate-limiting and the condensation reaction is faster. For this reason, the reaction product of the alkoxide is reduced to fine particles, or the metal alkoxide is consumed for the growth of the particle diameter of the fine particles, and the number of products acting as a binder is reduced.
  • the amount of the catalyst to be added is preferably from 0.001 to 4 in a molar ratio to the metal compound serving as the binder.
  • the amount of water required for the hydrolysis is preferably from 0.1 to 100 in molar ratio to the metal compound. If the amount of water added is less than 0.1 in a molar ratio, hydrolysis of the metal compound is not sufficiently promoted. On the other hand, if the amount of water added is greater than 100 in terms of molar ratio, the stability of the liquid will be reduced.
  • the solvent is not particularly limited as long as it can dissolve the metal compound.
  • Alcohols such as methanol, ethanol, propanol, and butanol
  • cellosolves such as ethylcellosolve, butylcellosolve, and propylcellosolve
  • ethylene Glycols such as glycol and hexylene glycol
  • the concentration of the metal compound dissolved in the solvent is preferably 20% by weight or less, and more specifically, 1 to 20% by weight.
  • the ratio of the fine particles of the silicon force to the metal compound in the coating solution is determined by changing the metal compound to the corresponding metal oxide (eg, SiO ⁇ AO ⁇ TiO 2, Zr0 in terms of 2, Ta 2 0 5), 0 5 at a weight ratio: 5 0-9 9: 1 is not preferred.
  • the coating solution is prepared by hydrolyzing a metal compound in the presence of silica fine particles, the above weight ratio is more preferably 66:34 to 95: 5, and further preferably 75: 5. 25 to 90: 10
  • the weight ratio is more preferably 50:50 to 85:15, and even more preferably 60:40 to 50:50. 7 5: 25
  • the coating liquid is applied to a glass substrate and heated, whereby a dehydration-condensation reaction of a metal compound hydrolyzate, vaporization and burning of volatile components proceed, and a reflection suppressing film is formed on the glass substrate.
  • the method of applying the coating liquid to the glass substrate is not particularly limited, but may be a method using an apparatus such as a spin-coat, a mouth-coat, a spray-coat, a curtain-coat, or the like.
  • Various methods such as a lifting method (dip coating method) and a flow coating method (flow coating method), and screen printing, gravure printing, and curved surface printing can be used.
  • cleaning and surface modification may be performed.
  • Methods for cleaning and surface modification include degreasing with an organic solvent such as alcohol, acetone or hexane, cleaning with an alkali or acid, and polishing.
  • Surface polishing with an abrasive, ultrasonic cleaning, ultraviolet irradiation treatment, ultraviolet ozone treatment or plasma treatment can be mentioned.
  • the heat treatment after the application is effective in improving the adhesion between the antireflection film substantially consisting of silica fine particles and the binder and the transparent substrate.
  • the heating temperature expressed in terms of the maximum temperature, is preferably 200 ° C or higher, more preferably 400 ° C or higher, particularly preferably 600 ° C or higher, and 180 ° C or lower. Below is preferred. In general, at 200 ° C. or higher, the solvent component of the coating liquid evaporates, and the gelation of the film proceeds to generate an adhesive force. Above 400 ° C, the organic components remaining in the film are almost completely eliminated by combustion.
  • the heating time is preferably from 5 seconds to 5 hours, more preferably from 30 seconds to 1 hour.
  • the photoelectric conversion rate of the photoelectric conversion device is improved by the reflection suppressing effect of the reflection suppressing film.
  • the reflectance of the transparent substrate on which the anti-reflection film is formed is preferably not more than 3.5%, and is preferably not more than 3.5%, expressed as the reflectance not including the reflection of the opposing surface (the surface on which the transparent conductive film was formed). The following is more preferable, and the most preferable is 0.5% or less.
  • a water-repellent film or an anti-fogging film may be further formed on the reflection suppressing film. By coating with a water-repellent film, water-repellent performance can be obtained, and dirt-removing property is also improved.
  • the antireflection film is formed on the main surface of the transparent substrate of the thin-film or crystal-type photoelectric conversion device, thereby realizing the above-described transmittance and high light confinement. Also, the silica fine particles are firmly fixed to the transparent substrate by the binder. Therefore, it shows high durability. Further, since the irregularities derived from the silica fine particles are formed on the surface of the antireflection film, this film has extremely high durability.
  • the underlayer 1 is preferably a two-layer film composed of a first underlayer 1a and a second underlayer 1b, or a single-layer film.
  • the first base layer la preferably contains tin oxide as a main component.
  • the second underlayer 1b preferably contains at least one of silicon oxide and aluminum oxide as a main component, and is particularly preferably a silicon oxide film.
  • a film containing silicon oxide, SiOC, aluminum oxide, or the like as a main component, or a film made of a composite oxide of silicon oxide and tin oxide is preferable.
  • the transparent conductive film 2 is preferably a film containing tin oxide as a main component, and more preferably a material to which a predetermined amount of an element such as fluorine is added for improving conductivity.
  • the transparent conductive film 2 is preferably formed by a method involving a thermal decomposition oxidation reaction of a raw material.
  • Preferred thicknesses of the respective films shown in FIG. 1 are exemplified below.
  • a method of sequentially depositing each film on the glass ribbon surface using the heat of the glass ribbon in the float glass manufacturing process may be applied to each of the above films.
  • a spray method in which the raw material liquid is atomized and supplied to the glass ribbon surface
  • a CVD method in which the raw material is vaporized and supplied to the glass ribbon surface.
  • the surface on which the transparent conductive film is to be formed is float glass top. It is preferable that the surface on which the antireflection film is formed be the bottom surface of the float glass.
  • the bottom surface of the float glass is more excellent in flatness than the top surface. For example, when a reflection suppressing film is formed by a roll coating method, it is easy to control unevenness.
  • FIG. 2 shows an embodiment of an apparatus for forming a transparent conductive film on the surface of the glass ribbon by the CVD method.
  • a predetermined number of glass ribbons flow out of the melting furnace 11 into the tin float tank 12 and immediately above the glass ribbon 10 which is formed into a belt shape in the tin bath 15 and moves.
  • 6 in the illustrated form, five coaters 16a, 16a, 16c, 16c, 16d, 16e) are arranged. From these moments, the vaporized raw material adjusted according to the type of film to be formed is supplied, and each film (for example, the first surface) is applied to the glass ribbon 10 surface (top surface; tin non-contact surface).
  • the transparent conductive film formed to be thicker than both underlayers is formed using a plurality of layers.
  • the temperature of the glass ribbon 10 is controlled by a heater and a cooler (not shown) arranged in the tin float tank 12 so that the temperature becomes a predetermined temperature immediately before the temperature 16.
  • the predetermined temperature of the glass ribbon is preferably 6 ° C. to 75 ° C., and more preferably 63 ° C. to 75 ° C.
  • the glass ribbon 10 on which each film is formed in this way is pulled up by the roll 17 and cooled in the annealing furnace 13.
  • tin raw materials include monobutyltin trichloride, tin tetrachloride, dimethyltin dichloride, dibutyltin dichloride, dioctyltin dichloride, and tetra. Methyltin and the like.
  • organotin chlorides such as monobutyltin trichloride and dimethyltin dichloride are particularly suitable. Oxygen, water vapor, dry Dry air or the like may be used as the oxidizing material.
  • fluorine raw material include hydrogen fluoride, trifluoroacetic acid, bromotrifluoromethane, and chlorodifluoromethane.
  • the silicon raw materials include monosilane, disilane, trisilane, monochlorosilane, 1,2-dimethylsilane, 1,1,2-trimethyldisilane, 1, Examples include 1,2,2-tetramethyldisilane, tetramethylorthosilicate, and tetraethylorthosilicate.
  • oxygen, steam, dry air, carbon dioxide, carbon monoxide, nitrogen dioxide, ozone, or the like may be used.
  • a highly reactive raw material such as monosilane is used, the reactivity may be controlled by adding an unsaturated hydrocarbon gas such as ethylene, acetylene or toluene.
  • aluminum materials include trimethylaluminum, aluminum triisopopropoxide, and getylaluminum chloride.
  • the oxidizing raw material include oxygen, steam, and dry air.
  • the surface of the transparent conductive film may be provided with irregularities.
  • the surface irregularities of the transparent conductive film when the surface irregularities of the transparent conductive film become large, crystal growth of crystalline silicon is inhibited. Therefore, the surface irregularities are preferably not more than 10% in terms of a haze ratio. Further, the surface irregularities of the transparent conductive film can also be formed by etching or the like.
  • the method for manufacturing the thin film type or crystal type photoelectric conversion device is not particularly limited, and other structures may be used if the antireflection film is formed by the above-described means.
  • the component can be manufactured by a known means.
  • the method of measuring the transmittance and the haze of the substrate for a photoelectric conversion device in the examples is as follows.
  • the transmittance at 400 to 110 nm was measured, and the average value was determined.
  • HGM-2DP integrating sphere light transmittance measuring device
  • JIS Japanese Industrial Standard
  • a 1 Ocm square ordinary float glass (2.8 mm thick) was used as a transparent substrate for forming the anti-reflective film.
  • the glass plate was washed and dried, and a silicon dioxide film and a fluorine-doped tin oxide film were deposited in this order using a belt-conveying normal pressure CVD apparatus.
  • the silicon dioxide film was formed by heating a glass plate to 550 ° C. and supplying monosilane, oxygen and nitrogen. Its film thickness was 50 nm.
  • the glass on which the silicon dioxide film is formed is heated to 600 ° C, and a mixed gas comprising dimethyltin dichloride, water vapor, oxygen, hydrofluoric acid, and nitrogen is supplied. Formed. Its film thickness was 45 O nm.
  • the glass substrate with a transparent conductive film thus obtained had a transmittance T1 of 78.3% and a haze ratio H1 of 4.5%.
  • Example 1 First silica fine particle dispersion (Nippon Shokubai Co., Ltd. “Siphos Yuichi KE—W10” average primary particle size 11 1 Onm solids 15%) 5 6.67 g, ethilse Mouth Solve 33.7 g Then, 1 g of concentrated hydrochloric acid and 5.2 g of tetraethoxysilane were sequentially added, and the mixture was reacted with stirring for 24 hours to prepare a first silica fine particle hydrolyzed liquid. In addition, a second silica fine particle dispersion (Nippon Shokubai Co., Ltd.
  • a coating solution was prepared by mixing 12 g of the first hydrolyzed silica fine particle solution, 18 g of the second hydrolyzed silica fine particle solution, 40 g of ethylene glycol, and 30 g of ethyl ethyl solvent.
  • This coating solution was applied to the glass surface of the glass substrate with a transparent conductive film (the surface facing the transparent conductive film) by spin coating.
  • the number of revolutions was set to 120 Or.pm.
  • the maximum temperature of the glass substrate in the electric furnace was 52 Ot :.
  • Example 3 Silica fine particle dispersion ("KE-W50" manufactured by Nippon Shokubai Co., Ltd., average primary particle size: 55 Onm solids: 20%) While stirring 40 g, add ethyl acetate 52.1 g, concentrated hydrochloric acid lg and tetraethoxy 6.9 g of silane was added sequentially, and reacted while stirring for 240 minutes, to prepare a hydrolyzed silica fine particle solution. 30 g of this hydrolyzed silica fine particle solution was diluted by adding 30 g of ethyl acetate solvent and 40 g of hexylene glycol to prepare a coating solution. Using this coating liquid, a reflection suppressing film was formed in the same manner as in Example 1 except that the spin speed was set to 100 rpm.
  • KE-W50 manufactured by Nippon Shokubai Co., Ltd., average primary particle size: 55 Onm solids: 20%
  • Silica fine particle dispersion (“KE_W30”, manufactured by Nippon Shokubai Co., Ltd., average primary particle size 30 Onm, solid content 20%) While stirring 35 g, add 52.1 g of ethylcellosolve, 1 g of concentrated hydrochloric acid and 10 g of tetraethoxysilane. .4 g were sequentially added and reacted while stirring for 300 minutes to prepare a hydrolyzed silica fine particle solution. To 30 g of this hydrolyzed silica fine particle was added 30 g of ethyl ethyl solvent and 40 g of hexylene glycol for dilution to prepare a coating solution. Using this coating liquid, a reflection suppressing film was formed in the same manner as in Example 1 except that the spin rotation speed was set to 100 Or.p.m. (Comparative Example 1)
  • Silica fine particle dispersion (“KE-W10” manufactured by Nippon Shokubai Co., Ltd., average primary particle size: 110 nm, solid content: 15%) While stirring 45 g, add 48.3 g of ethyl ethyl cellulose, 1 g of concentrated hydrochloric acid and 5.7 g of tetraethoxysilane was sequentially added, and the mixture was reacted with stirring for 4 hours to prepare a hydrolyzed silica fine particle solution. 35 g of this hydrolyzed silica fine particle solution was diluted with 30 g of diacetone alcohol and 3 ⁇ -hexylene glycol to prepare a coating solution. Using this coating liquid, a reflection suppressing film was formed in the same manner as in Example 1 except that the spin speed was set to 1200 rpm. (Comparative Example 2)
  • a reflection suppressing film was formed in the same manner as in Example 1 except that the spin speed was set at 100 Or.p.m.
  • the transmittance T 2 and the haze H 2 of the transparent conductive film and the glass substrate with a reflection suppressing film manufactured in Examples 1 to 4 and Comparative Examples 1 and 2 were measured, and the change ⁇ T before and after the formation of the reflection suppressing film was measured.
  • were determined by the following equations. That is, the following ⁇ T and ⁇ indicate the optical characteristics of the antireflection film.
  • Fig. 3 shows an example of the relationship between the haze ratio of the transparent conductive film and the diffusion transmission spectrum (in the thin-film photoelectric conversion device, the light of amorphous silicon in the photoelectric conversion layer is shown in Fig. 3).
  • the absorption band is mainly in the short wavelength range of the visible light range of 400 to 60 orn.
  • a tin oxide film when used as the transparent conductive film, light confinement in the photoelectric conversion layer can be easily generated by increasing the haze ratio of the tin oxide film.
  • the antireflection film of the present invention when the haze ratio is increased by increasing the number of fine particles having a large particle diameter, the diffuse transmittance not only in the short wavelength region but also in the long wavelength region of 60 O nm or more is increased. Can be. Examples are Example 1 (fine particle diameter 110 nm + 300 nm), Example 2 (fine particle diameter 110 nm + 550 nm) and Example 3 (fine particle diameter 55 nm).
  • Fig. 4 shows the diffuse transmission spectrum of the manufactured glass substrate with a reflection suppressing film and a transparent conductive film.
  • the sensitivity of the photoelectric conversion layer When the sensitivity of the photoelectric conversion layer is in the visible light range, it is sufficient to express the surface roughness of the transparent conductive film, that is, its haze ratio, as a standard for measuring the degree of light confinement in the photoelectric conversion layer. In other words, the higher the haze ratio, the greater the light confinement effect.
  • thin-film photoelectric conversion devices with microcrystalline or polycrystalline silicon in the photoelectric conversion layer, crystalline photoelectric conversion devices, or solar cells, such as IS in which the sensitivity of the photoelectric conversion layer includes a wavelength range longer than visible light. It is necessary to judge the degree of light confinement in the photoelectric conversion layer not by the haze ratio but by the diffusion transmission spectrum.
  • the antireflection film of the present invention not only achieves a high haze ratio but also exhibits a high diffuse transmittance in a wide wavelength range. That is, the antireflection film can realize high light confinement there regardless of the material of the photoelectric conversion layer.
  • the present invention has the following effects because it is configured as described above.
  • the photoelectric conversion rate of the photoelectric conversion device can be increased.
  • the particle size of the silica fine particles can be set to 300 to 600 runs, a substrate for a photoelectric conversion device having excellent physical durability such as abrasion resistance can be obtained.
  • Effective light confinement in the photoelectric conversion layer is achieved by forming a reflection suppression film containing silica fine particles with a particle size of 30 O nm or more and silica fine particles with different particle sizes on the main surface of the transparent substrate. And the photoelectric conversion rate can be further increased. Further, by setting the particle size of the silica fine particles having different particle sizes to 50 to 15 O nm, the reflectance of the reflection suppressing film from visible light to near-infrared light can be effectively reduced.
  • silica fine particles are present in a region of 60% or more of the main surface of the transparent substrate, a substrate for a photoelectric conversion device that effectively exhibits various functions such as suppression of reflection, increase in transmittance, and improvement in durability can be obtained.
  • a transparent conductive film having a haze ratio of 10% or less is formed on the surface of the transparent substrate facing the key surface, a substrate suitable for a photoelectric conversion device having a photoelectric conversion layer made of crystalline silicon can be obtained.
  • a photoelectric conversion device having a high photoelectric conversion rate can be obtained according to the present invention.
  • the present invention may include other specific forms without departing from the spirit and essential characteristics thereof.
  • the form disclosed in this specification is not restrictive, and the scope of the present invention is indicated not by the above description but by the appended claims, and all modifications within the scope equivalent to the invention described in the claims are to be made. Shall also be included here.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention provides a substrate for a photoelectric transducer, which comprises a transparent body having a principal surface covered with antireflection coating containing fine silica-base particles of particle size of greater than 300 nm. Preferably, the antireflection coating further contains silica-base particles different in particle size from the above-mentioned particles. A photoelectric layer consisting of crystalline silicon film may be formed on the substrate in order to obtain a thin-film photoelectric transducer with very high photoelectric efficiency.

Description

明 細 書 光電変換装置用基板およびそれを備えた光電変換装置 技術分野  Description: Substrate for photoelectric conversion device and photoelectric conversion device provided with the same
この発明は、 太陽電池パネルなどの光電変換装置に利用される基板に 関する。 さらには、 この基板を利用した光電変換装置に関する。  The present invention relates to a substrate used for a photoelectric conversion device such as a solar cell panel. Further, the present invention relates to a photoelectric conversion device using the substrate.
背景技術 Background art
現在、 一般に利用されている光電変換装置には、 光電変換層にァモル ファスシリコンを用いた 「薄膜型」 と、 シリコン結晶を用いた 「結晶型」 とが存在する。 薄膜型光電変換装置は、 ガラス板や樹脂シートなどの透 明基体の一主表面に、 酸化スズ、 酸化亜鉛またはスズをドープした酸化 インジウム ( I T〇) などの透明導電膜を、 その上にアモルファスシリ コンからなる光電変換層を、 さらにアルミニウム、 銀または酸化亜鉛 Currently, photoelectric conversion devices generally used include a “thin film type” using amorphous silicon for the photoelectric conversion layer and a “crystal type” using silicon crystal. Thin-film type photoelectric conversion devices consist of a transparent conductive film such as tin oxide, zinc oxide or tin-doped indium oxide (IT〇) on one main surface of a transparent substrate such as a glass plate or a resin sheet, and an amorphous A photoelectric conversion layer made of silicon is further added to aluminum, silver, or zinc oxide.
(ΖηΟ 2 )などからなる裏面薄膜電極を順次積層して構成される。 一方、 結 晶型光電変換装置は、 単結晶シリコンゃ多結晶シリコンのウェハからな る光電変換素子を 2枚の基体で挟んで封止した構造である。 その光入射 側の基体は透明でなければならず、 通常はガラス板が使用される (以下、 この透明基体を 「カバーガラス」 という)。 (ΖηΟ 2 ) and the like. On the other hand, the crystal-type photoelectric conversion device has a structure in which a photoelectric conversion element composed of a single-crystal silicon / polycrystalline silicon wafer is sandwiched between two substrates and sealed. The substrate on the light incident side must be transparent, and a glass plate is usually used (hereinafter, this transparent substrate is referred to as “cover glass”).
近年のエネルギー問題の顕在化に伴い、 光電変換装置とくに太陽電池 パネルは、 社会的に注目されている。 中でも、 上記薄膜型太陽電池パネ ルは、 製造段階でのエネルギーコス トが小さいことなどから、 今後主流 になるものと考えられている。 薄膜型光電変換装置の透明導電膜には、 化学蒸着法 (C V D法) など原料の熱分解酸化反応を伴う方法で形成さ れた酸化スズ膜が多用されている。 また、 この透明導電膜と透明基体と くにガラス板との間には、 ガラス板に含まれるナトリウムなどのアル力 リ成分が透明導電膜中に拡散し、 透明導電膜の電気伝導率を低下させる (抵抗が高くなる) ことを防止するために下地膜が設けられる。 この下 地膜には、 シリカ(Si〇, どからなる透明薄膜が好んで用いられる。 薄膜型光電変換装置の光電変換率を高めるために、 透明導電膜には、 透過率が高い (光電変換層により多くの光を入れる) こと、 抵抗が低い (発生した電流を取り出す際のロスを少なくする) こと、 ならびに光電 変換層での光閉じ込めに寄与することが求められる。 この光電変換層で の光閉じ込めに寄与しうる技術として、 透明導電膜の表面に適当な大き さの凹凸を形成する方法が知られている (特開昭 5 8— 5 7 7 5 6号公 報)。 With the emergence of energy problems in recent years, photoelectric conversion devices, especially solar panels, have attracted public attention. Above all, the above-mentioned thin-film solar cell panel is considered to become the mainstream in the future because of the low energy cost at the manufacturing stage. Tin oxide films formed by methods involving thermal decomposition and oxidation of raw materials, such as chemical vapor deposition (CVD), are frequently used as transparent conductive films in thin-film photoelectric conversion devices. In addition, between the transparent conductive film and the transparent substrate, especially the glass plate, there is a force such as sodium contained in the glass plate. A base film is provided to prevent the components from diffusing into the transparent conductive film and lowering the electrical conductivity of the transparent conductive film (increase in resistance). A transparent thin film made of silica (Si〇, etc.) is preferably used for the underlayer. In order to increase the photoelectric conversion rate of the thin-film photoelectric conversion device, the transparent conductive film has a high transmittance (the photoelectric conversion layer More light), lower resistance (less loss when extracting the generated current), and contribution to light confinement in the photoelectric conversion layer. As a technique that can contribute to confinement, there is known a method of forming irregularities of an appropriate size on the surface of a transparent conductive film (Japanese Patent Application Laid-Open No. 58-57756).
また、 透明導電膜以外の構成要素を改良することによつても、 薄膜型 光電変換装置の光電変換率を高めることができる。 たとえば、 上記透明 基体の透明導電膜が形成された一主表面の対向面に反射抑制膜を設ける ことにより、 光電変換層により多くの光を導入することができる。 この ような反射抑制膜としては、屈折率分布をもつた単層膜が知られており、 たとえば粒径 5 0 nm のシリカ微粒子を含有する膜をゾルゲル法によつ てガラス表面に形成すると、 太陽光透過率が向上することがつぎの文献 5れて レ、 ( 2nd international Conierence on Coatiners on Glass, 1999, Elsevier Science, ISBN:0-444-50247-5'255〜260頁)。 反射 抑制膜には、 高い透過率が当然に要求されることから、 これまでは前記 文献に示されたような粒径の比較的小さい、 かつ、 粒径の揃った微粒子 が使用されてきた。  Further, by improving components other than the transparent conductive film, the photoelectric conversion rate of the thin-film photoelectric conversion device can be increased. For example, by providing an anti-reflection film on a surface opposite to one main surface of the transparent substrate on which the transparent conductive film is formed, more light can be introduced into the photoelectric conversion layer. As such a reflection suppressing film, a single-layer film having a refractive index distribution is known. For example, when a film containing silica fine particles having a particle size of 50 nm is formed on a glass surface by a sol-gel method, The following literature5 shows that the solar transmittance is improved (2nd international Conierence on Coatiners on Glass, 1999, Elsevier Science, ISBN: 0-444-50247-5'255-260). Since high transmittance is naturally required for the antireflection film, fine particles having a relatively small particle size and uniform particle size as described in the above-mentioned literature have been used.
さらに、 薄膜型光電変換装置の光電変換率を飛躍的に高める技術とし て、 光電変換層に微結晶または多結晶などの結晶質シリコンを使用する ことが現在注目されている。  Furthermore, the use of crystalline silicon such as microcrystal or polycrystal for the photoelectric conversion layer has attracted attention as a technique for dramatically increasing the photoelectric conversion rate of a thin film photoelectric conversion device.
ところが、 上述の技術には、 つぎのような問題があった。 上記透明基 体の一主表面に反射抑制膜を成形してその透過率を高める技術は、 既に 確立された感がぁり、 従来にない新たな材料を用いるなど根本的な構成 要素の変更を行わない限り、 上記文献で示された以上の効果を期待する のは難しいと考えられる。 However, the above technology has the following problems. The above transparent group The technology to increase the transmissivity by forming an anti-reflection film on one main surface of the body has a well-established feeling, as long as there is no fundamental component change such as using new materials that have never existed before However, it is considered difficult to expect effects beyond those shown in the above literature.
そこで、 薄膜型光電変換装置の光電変換率を高めるには、 透明導電膜 の表面凹凸を大きく して、 光電変換層での光閉じ込めをより多く生じさ せることが考えられる。 しかし、 透明導電膜の表面凹凸が大きくなると、 上記結晶質シリ コンの結晶成長が阻害されることが報告されている ( Technical Digest of the International PVSEC- 11, Sapporo, Hokkaido, Japan, 1999, 231〜232頁)。 これはすなわち、 結晶質シリコ ンを光電変換層に用いる光電変換装置においては、 従来のアモルファス シリコンからなる光電変換層と同様の手段では、 光電変換層での光閉じ 込めを十分に発生させることができず、 その性能向上には限界があると いうことである。  Therefore, in order to increase the photoelectric conversion rate of the thin-film photoelectric conversion device, it is conceivable to increase the surface irregularities of the transparent conductive film so as to generate more light confinement in the photoelectric conversion layer. However, it has been reported that when the surface roughness of the transparent conductive film increases, the crystal growth of the crystalline silicon is hindered (Technical Digest of the International PVSEC-11, Sapporo, Hokkaido, Japan, 1999, 231- 232). This means that in a photoelectric conversion device using crystalline silicon for the photoelectric conversion layer, light confinement in the photoelectric conversion layer can be sufficiently generated by means similar to the conventional photoelectric conversion layer made of amorphous silicon. That is, there is a limit to the performance improvement.
発明の開示 Disclosure of the invention
この発明は、 以上のような問題点に着目してなされたものである。 そ の目的とするところは、 光電変換層により多くの光を導く ことができ、 かつ、 透明導電膜の表面凹凸に依存することなく光電変換層での光閉じ 込めを生じさせ易くする反射抑制膜、 ならびにそれを備えた光電変換装 置用基板を提供することにある。 さらには、 この基板を利用することに より、 結晶質シリコンからなる光電変換層を有し、 光電変換効率がきわ めて高い薄膜型の光電変換装置を提供することにある。  The present invention has been made in view of the above problems. Its purpose is to suppress more light to the photoelectric conversion layer and to suppress light confinement in the photoelectric conversion layer without depending on surface irregularities of the transparent conductive film. Another object of the present invention is to provide a substrate for a photoelectric conversion device including the same. Another object of the present invention is to provide a thin-film photoelectric conversion device having a photoelectric conversion layer made of crystalline silicon by using this substrate and having extremely high photoelectric conversion efficiency.
本発明は, 粒径 3 0 O nm 以ヒのシリカを主成分とする微粒子を含有 する反射抑制膜が透明基体の主表面に形成された光電変換装置用基板を 提供する。  The present invention provides a substrate for a photoelectric conversion device in which a reflection suppressing film containing fine particles mainly composed of silica having a particle diameter of 30 O nm or less is formed on the main surface of a transparent substrate.
この光電変換装置用基板では、 微粒子の粒径は 3 0 0〜 6 0 O nm が 好適である。 In this photoelectric conversion device substrate, the particle size of the fine particles is from 300 to 60 O nm. It is suitable.
また、 この光電変換装置用基板では、 反射抑制膜が、 粒径 3 0 0 nm 以上のシリカを主成分とする微粒子とは粒柽の異なるシリカを主成分と する微粒子を含有することが好ましい。  Further, in this substrate for a photoelectric conversion device, it is preferable that the antireflection film contains fine particles mainly composed of silica having a different particle diameter from fine particles mainly composed of silica having a particle diameter of 300 nm or more.
この光電変換装置用基板は、 粒径の異なるシリカを主成分とする微粒 子の粒径は 5 0〜: I 5 0 nmが好適である。  In the substrate for a photoelectric conversion device, the particle diameter of fine particles mainly composed of silica having different particle diameters is preferably 50 to: I 50 nm.
本発明の光電変換装置用基板では、 透明基体の主表面の 6 0 %以上の 領域に微粒子が存在することが好ましい。 また、 透明基体の主表面の対 向面に、 ヘイズ率 1 0 %以下の透明導電膜が形成されていてもよい。 本発明は、 上記記載の基板を備えた光電変換装置も提供する。  In the photoelectric conversion device substrate of the present invention, it is preferable that the fine particles exist in a region of 60% or more of the main surface of the transparent substrate. Further, a transparent conductive film having a haze ratio of 10% or less may be formed on a surface opposite to the main surface of the transparent substrate. The present invention also provides a photoelectric conversion device provided with the substrate described above.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 この発明の光電変換装置用基板の一形態の断面図である。 図 2は、ガラス板および透明導電膜を製造する装置を示す略図である。 図 3は、 酸化スズ膜の拡散透過スぺクトルの一例図である。  FIG. 1 is a cross-sectional view of one embodiment of the substrate for a photoelectric conversion device of the present invention. FIG. 2 is a schematic view showing an apparatus for producing a glass plate and a transparent conductive film. FIG. 3 is an example of a diffusion transmission spectrum of a tin oxide film.
図 4は、 実施例 1〜 3の光電変換装置用基板の拡散透過スペク トルの 一例図である。  FIG. 4 is an example of the diffusion transmission spectrum of the photoelectric conversion device substrates of Examples 1 to 3.
図 5は、 実施例 2で製造した反射抑制膜の表面を S E Mで観察した状 態を示す図である。  FIG. 5 is a diagram illustrating a state in which the surface of the antireflection film manufactured in Example 2 is observed by SEM.
発明の実施の形態 Embodiment of the Invention
以下、 この発明の実施の形態について、 詳細に説明する。 ただし、 下 記の実施の形態に限定するものではない。  Hereinafter, embodiments of the present invention will be described in detail. However, it is not limited to the following embodiment.
図 1は、 この発明の一形態の断面図である。 この光電変換装置用基板 では、 透明基体 5の一主表面上に、 下地膜 1、 酸化スズを主成分とする 透明導電膜 2がこの順に形成されており、 その対向面上に、 シリカを主 成分とする微粒子(以下、 「シリ力微粒子」という)およびバインダー(図 示しない) からなる反射抑制膜 6が形成されている。 この光電変換装置 用基板では、 反射抑制膜 6の表面にシリカ微粒子 7 , 8による凹凸が形 成されている。 FIG. 1 is a cross-sectional view of one embodiment of the present invention. In this photoelectric conversion device substrate, an underlayer film 1 and a transparent conductive film 2 mainly composed of tin oxide are formed in this order on one main surface of a transparent substrate 5, and silica is mainly formed on the opposing surface. An antireflection film 6 composed of fine particles (hereinafter referred to as “silicone fine particles”) and a binder (not shown) is formed. This photoelectric conversion device In the substrate for use, irregularities due to silica fine particles 7 and 8 are formed on the surface of the antireflection film 6.
以下、 入射光 9の反射抑制および散乱に寄与する反射抑制膜 6につい て説明する。 反射抑制膜はシリカ微粒子とバインダーとを含み、 その微 粒子の間には空隙が形成される。 この膜内部に形成された空隙により、 反射抑制膜の実質的な屈折率が低下する。反射抑制膜の屈折率の低下は、 反射抑制効果を向上させる点で好ましい。  Hereinafter, the reflection suppressing film 6 that contributes to the reflection suppression and scattering of the incident light 9 will be described. The antireflection film contains silica fine particles and a binder, and a void is formed between the fine particles. Due to the voids formed inside the film, the substantial refractive index of the antireflection film decreases. A decrease in the refractive index of the anti-reflection film is preferable from the viewpoint of improving the anti-reflection effect.
シリカ微粒子には、 たとえばゾルゲル法によりシリコンアルコキシド をアンモニアなどの塩基性触媒の存在下で反応させて合成したシリカ微 粒子、 ゲイ酸ソーダなどを原料としたコロイダルシリカ、 あるいは気相 で合成されるヒュームドシリカなどを使用することができる。 前記製造 原料の分散性を改善するなどのため、 シリカ微粒子には、 シリカ以外の 微量成分が含まれることもある。  Examples of silica fine particles include silica fine particles synthesized by reacting silicon alkoxide with a basic catalyst such as ammonia by a sol-gel method, colloidal silica made from sodium gayate, etc., or fume synthesized in the gas phase. Dosilica or the like can be used. In order to improve the dispersibility of the raw material, the silica fine particles may contain a trace component other than silica.
反射抑制膜の光学特性は、 シリカ微粒子の粒径と、 シリカ微粒子が透 明基体の表面を占める面積割合とに依存する。 シリカ微粒子の粒径は、 正確には、 透過型電子顕微鏡を用いて測定することにより定められる。 シリカ微粒子が凝集している場合、 凝集した粒子 (たとえば鎖状に連な つた二次粒子) ではなく、 個々の粒子の平均粒径すなわち平均一次粒径 をもって粒径とする。  The optical properties of the antireflection film depend on the particle size of the silica fine particles and the area ratio of the silica fine particles occupying the surface of the transparent substrate. The particle size of the silica fine particles is accurately determined by measurement using a transmission electron microscope. When the silica fine particles are agglomerated, the average particle size of the individual particles, that is, the average primary particle size, not the agglomerated particles (for example, secondary particles connected in a chain) is defined as the particle size.
また、 シリカ微粒子が基体表面を占める面積割合は、 走査型電子顕微 鏡 (S E M) を用いた観察により求めることができる。 S E Mを使用す れば、 粒径の概略も評価できる。  The area ratio of the silica fine particles occupying the substrate surface can be determined by observation using a scanning electron microscope (SEM). If SEM is used, the approximate particle size can also be evaluated.
真球状シリ力微粒子をその中心が碁盤目状に位置するよう基体表面に 配置して得られる反身ォ抑制膜の反射率は、 つぎのように考えられ、 そし て求められる。 シリカ微粒子の 径をその膜厚と考えれば、 反射抑制膜 の体積の約半分を空気が占めることになる。 シリカの屈折率は 1 . 4 5 、 空気の屈折率は 1. 0 0であるから、 このような反射抑制膜の屈折率は、 屈折率 n 1で体積が V 1の物質と、 屈折率が n 2で体積が V 2の物質と を混合して得られる物質の屈折率 nを与える次式により算出される。 すなわち、 The reflectance of the anti-reflection film obtained by arranging the spherical fine particles on the substrate surface such that the center of the fine particles is arranged in a grid pattern is considered as follows, and is obtained. Assuming that the diameter of the silica fine particles is the film thickness, air occupies about half of the volume of the antireflection film. The refractive index of silica is 1.45, Since the refractive index of air is 1.00, the refractive index of such an anti-reflection film is a substance having a refractive index of n1 and a volume of V1, and a substance having a refractive index of n2 and a volume of V2. Is calculated by the following equation which gives the refractive index n of the substance obtained by mixing That is,
(n 2 - l ) / ( n 2 + 2 ) (n 2 -l) / (n 2 + 2)
= (V 1 ZV) X (n 1 - 1 ) / (n 1 2 + 2 ) = (V 1 ZV) X (n 1-1) / (n 1 2 + 2)
+ (V 2 /V) x ( n 2 - 1 ) / ( n 2 ' + 2 )  + (V 2 / V) x (n 2-1) / (n 2 '+ 2)
V = V 1 + V 2  V = V 1 + V 2
である。 この式より、 上記シリ力微粒子からなる反射抑制膜の屈折率は、 1 . 2 2と計算される。 以下、 この式に基づいて算出された屈折率を「見 かけ上の屈折率」 という。 It is. From this equation, the refractive index of the antireflection film made of the fine particles of silicic acid is calculated to be 1.22. Hereinafter, the refractive index calculated based on this formula is referred to as “apparent refractive index”.
また、 反射抑制膜の屈折率と入射光の波長との間につぎの条件が成り 立つ場合に、 反射抑制膜の反射率は極小となることが知られている。  It is also known that the reflectance of the antireflection film is minimal when the following condition is satisfied between the refractive index of the antireflection film and the wavelength of the incident light.
n · d = λ / 4  nd = λ / 4
(η :膜の屈折率、 d : 膜厚、 λ :波長)  (η: refractive index of film, d: film thickness, λ: wavelength)
ここで、 「η · d」 は、 反射抑制膜の 「光学厚さ」 と呼ばれるものであ る。 光学厚さは、 反射抑制膜の屈折率 (見かけ上の屈折率) を構成要素 とするため、 その物理的な厚さ dは、 光学厚さよりも薄くなる。 したが つて、 アモルファスシリコンの感度が最大となる波長 6 0 0 nm 付近の 反射率を極小にするには、 上記見かけ上の屈折率 1. 2 2をもつ反射抑 制膜の場合、 その厚さ dは 1 2 0 nm 程度となる。 また、 アモルファス シリコンまたは結晶性シリコンからなる光電変換層は、 可視光から近赤 外光に渡る広い吸収バンドを有することから、 上述の式にしたがって計 算すると、 シリカ微粒子の好ましい粒径は 5 0〜 1 5 0 mn となる。 こ のように、 通常の光学理論から導かれる結論にしたがえば、 シリカ微粒 子の粒径を 5 0〜 i 5 O nm から外すことは、 反射抑制膜の機能を消失 させることに等しいと考えられる。 実際、 光電変換装置の反射抑制膜に 利用されているシリカ微粒子は、 その粒径が 5 0〜 1 5 O nm のものば かりである。 Here, “η · d” is called “optical thickness” of the antireflection film. Since the optical thickness is a component of the refractive index (apparent refractive index) of the antireflection film, its physical thickness d is smaller than the optical thickness. Therefore, in order to minimize the reflectance near the wavelength of 600 nm, at which the sensitivity of amorphous silicon becomes maximum, the thickness of the antireflection coating with the apparent refractive index of 1.2 d is about 120 nm. In addition, since the photoelectric conversion layer made of amorphous silicon or crystalline silicon has a wide absorption band from visible light to near-infrared light, the preferred particle size of the silica fine particles is 50% when calculated according to the above equation. ~ 150 mn. Thus, according to the conclusions derived from ordinary optical theory, removing the particle size of silica particles from 50 to i5O nm loses the function of the antireflection film. It is considered equivalent to Actually, the silica fine particles used in the reflection suppressing film of the photoelectric conversion device have a particle size of 50 to 15 O nm.
しかしながら、 光電変換装置の光電変換率を高めるには、 入射光の反 射を抑制して光電変換層に導入する光量を増加させるだけでなく、 上述 の通り、 光電変換層での光閉じ込めを生じ易くする方法もある。 この光 閉じ込めは、 従来は光電変換層に接する透明導電膜で発揮させるべき特 性であると認識されいた。 しかし、 この光閉じ込めに関する数多くの実 験結果から、 本発明者らは、 反射抑制膜でも光閉じ込めに有効な光散乱 を起こさせることができることを見出した。 すなわち、 反射抑制膜に含 まれるシリカ微粒子を比較的粒径の大きな 3 0 O nm 以上のものに変更 することにより、 反射抑制膜において光閉じ込めに有効な光散乱が生じ ることを見出したのである。 さらに、 反射抑制膜で光散乱が担保される ことから、 透明基体の対向面に成形する透明導電膜を平滑にすることが でき、 その結果上述の結晶質シリコンの結晶成長阻害の問題を解決する ことができる。  However, in order to increase the photoelectric conversion rate of the photoelectric conversion device, it is not only necessary to suppress the reflection of incident light to increase the amount of light introduced into the photoelectric conversion layer, but also to cause light confinement in the photoelectric conversion layer as described above. There are ways to make it easier. Conventionally, it has been recognized that this light confinement is a characteristic that should be exerted by a transparent conductive film in contact with the photoelectric conversion layer. However, from the results of many experiments on this light confinement, the present inventors have found that even an antireflection film can cause effective light scattering for light confinement. In other words, it was found that by changing the silica fine particles contained in the antireflection film to those having a relatively large particle size of 30 O nm or more, light scattering effective for confining light in the antireflection film was generated. is there. Further, since light scattering is ensured by the antireflection film, the transparent conductive film formed on the opposing surface of the transparent substrate can be smoothed, thereby solving the above-described problem of crystal growth inhibition of crystalline silicon. be able to.
反射抑制膜におけるシリ力微粒子の粒径と光散乱との関係について、 本発明者らが調査したところ、 その粒径が 2 0 O nm を超えると光電変 換率が高まり始め、 3 0 O nm 付近からその変化が顕著になることが判 明した。 たとえば、 シリカ微粒子: バインダ一= 8 0 : 2 0の組成比か らなる反射抑制膜であれば、 粒径 2 0 O nmではヘイズ率が 1 0 %程度、 粒径 3 0 O nmではヘイズ率が 2 0 %程度、粒径 5 0 O nmではヘイズ率 が 5 5 %程度、 さらに粒径 7 0 0 nm ではヘイズ率が 7 0 %となる。 こ のようにシリカ微粒子の粒径が大きくなるにしたがって、 光散乱の度合 いが大きくなる n ここで、 ヘイズ率とは、 透過光の散乱の割合を示す指 数であり、 その値が大きいほど透過光が散乱していることを示す。 光電 変換層に導入する光が散乱しているほど、 光閉じ込めには有効であると 一般に考えられている。 したがって、 光閉じ込めに着目すれば、 シリカ 微粒子の粒径は大きいほど好ましいように思われる。 しかし、 粒径が 1 mを超える場合は、 シリカ微粒子と透明基体との接着性が低下するた め、 反射抑制膜の耐久性が低下する。 そこで、 太陽電池など長期間屋外 に置かれ、 修理交換が容易でないものに利用される場合は、 光閉じ込め と耐久性とを勘案して、 シリカ微粒子の粒径は 2 0 0〜 1 0 0 O nm 力 妥当であると考えられる。 さらに、 上述の反射抑制膜での光散乱、 なら びにシリ力微粒子と透明基体との接着性を実用性の点で勘案すれば、 シ リカ微粒子の粒径は、 3 0 0〜 6 0 0 nmが適当であると思われる。 このようにシリカ微粒子の粒径により、 反射抑制膜で発揮される光学 的機能が変化することから、 粒径の異なるシリ力微粒子を複数種混在さ せれば、 種々の光学的特性を併せ持つ反射抑制膜が得られると考えられ る。 たとえば、 上述の粒径 3 0 0〜 6 0 O nm のシリカ微粒子と、 粒径 5 0〜 1 5 O nm のシリカ微粒子とを組み合わせれば、 光散乱を発生さ せ、 かつ、 反射率のあまり高くない膜が得られると予想される。 ところ 力 この反射抑制膜は、 上述の各粒径の微粒子の機能を複合した以上の 機能を発揮する。 すなわち、 二種のシリカ微粒子を組み合わせただけで は、 それぞれの機能を折衷した効果しか奏されないと考えられるが、 実 験結果はその予想を裏切るものであった。 粒径 1 1 O nm と粒径 3 0 0 nm のシリカ微粒子を併用した場合、 その反射抑制膜のヘイズ率は、 各 粒径のシリカ微粒子のみからなるものの中間値を示す。 しかし、 その光 電変換率は、 各粒径の微粒子のみからなるものよりも高くなる。 このよ うな結果が得られた原因は必ずしも明らかでないが、 本発明者らは、 つ ぎのように思量している。すなわち、 粒径の異なる微粒子が混在すると, 大きい方の微粒子が透明基体上に分散点在し、 その微粒子の間に隙間が 生じる。 この隙間に小さい方の微粒子が入り込み、 この微粒子が一部積 層するまたは大きい方の微粒子に付着して積層したような構造となるた め、 入射光が反射抑制膜中で多重散乱を起こし易くなる。 この多重散乱 により、 光電変換層への入射角が大きくなつて、 光閉じ込めが発生し易 くなつているのではないかと考えている。 The present inventors have investigated the relationship between the particle size of the silicic acid fine particles and light scattering in the antireflection film, and found that when the particle size exceeds 20 O nm, the photoelectric conversion rate starts to increase, and 30 O nm From the vicinity, it was found that the change became remarkable. For example, if the antireflection film has a composition ratio of silica fine particles: binder = 80: 20, the haze ratio is about 10% at a particle size of 20 O nm, and the haze ratio is 30% at a particle size of 30 O nm. Is about 20%, the haze ratio is about 55% at a particle diameter of 50 nm, and the haze rate is 70% at a particle diameter of 700 nm. Accordance particle diameter of the silica fine particles increases as this, where n the degree physician light scattering is increased, the haze ratio is the number of fingers indicating the ratio of scattered transmitted light, larger the value Indicates that transmitted light is scattered. Photoelectric It is generally believed that the more scattered light introduced into the conversion layer, the more effective it is in confining light. Therefore, focusing on light confinement, it seems that the larger the particle size of the silica fine particles, the better. However, when the particle size exceeds 1 m, the adhesion between the silica fine particles and the transparent substrate is reduced, so that the durability of the antireflection film is reduced. Therefore, in the case where solar cells are used outdoors for a long period of time and are not easily repaired or replaced, such as solar cells, the particle size of the silica fine particles should be 200 to 100 O in consideration of light confinement and durability. nm force Considered reasonable. Further, considering the light scattering by the above-described antireflection film and the adhesiveness between the silica fine particles and the transparent substrate from the viewpoint of practicality, the particle size of the silica fine particles is from 300 to 600 nm. Seems appropriate. As described above, the optical function exerted by the anti-reflection film changes depending on the particle size of the silica fine particles. Therefore, if a plurality of types of silica fine particles having different particle sizes are mixed, the anti-reflection having various optical characteristics can be obtained. It is believed that a film is obtained. For example, when the above-described silica fine particles having a particle diameter of 300 to 60 O nm and silica fine particles having a particle diameter of 50 to 15 O nm are combined, light scattering is generated and the reflectance is too low. It is expected that not high films will be obtained. However, this antireflection film exerts more functions than the above-mentioned combination of the functions of the fine particles of each particle diameter. In other words, the combination of the two types of silica microparticles is thought to produce only an effect that compromises the respective functions, but the experimental results disappointed. When silica fine particles having a particle size of 11 O nm and a particle size of 300 nm are used in combination, the haze ratio of the antireflection film shows an intermediate value of that of only silica fine particles of each particle size. However, the photoelectric conversion rate is higher than that of only particles of each particle size. The reason why such a result is obtained is not necessarily clear, but the present inventors speculate as follows. That is, when fine particles having different particle sizes are mixed, the larger fine particles are dispersed and scattered on the transparent substrate, and a gap is formed between the fine particles. Occurs. Smaller fine particles enter this gap, and the structure is such that these fine particles partially stack or adhere to the larger fine particles and are laminated, so that the incident light is liable to cause multiple scattering in the antireflection film. Become. We believe that this multiple scattering may increase the angle of incidence on the photoelectric conversion layer, making light confinement more likely to occur.
反射抑制膜の多重散乱により光電変換率が一義的に上昇するのであれ ば、 粒度分布の広いシリカ微粒子を使用したり、 反射抑制膜を厚く して シリ力微粒子を積層することでも同様の効果が奏されると考えられる。 しかし、 粒度分布の広いシリカ微粒子を使用した場合は、 上記反射率と 波長の関係を充たす微粒子が少なくなるため、 反射抑制膜の反射率が上 昇し、 光電変換層に入射する光量が減って、 結局光電変換率は低下する。 このことから、 シリカ微粒子には、 できるだけ粒度の揃ったものが好ま しいと考えられる。 具体的には、 粒径 3 0 O nm のシリカ微粒子であれ ば、 粒度分布 ± 1 0 %程度のものが市販されている。 一方、 微粒子を積 層するため反射抑制膜を厚くすると、 反射抑制膜の強度が低下して、 耐 久性が実用レベルに達しないという問題が生じる。 反射抑制膜中のバイ ンダー量を増やし、 その強度を高めることも考えれるが、 そうすると微 粒子同士の隙間が小さくなって、 見かけ上の屈折率が上昇する問題が新 たに生じる。 これらのことから、 反射抑制膜の厚さは、 大きな微粒子の 粒径の 1〜 2倍が好ましいと考えられる。  If the photoelectric conversion rate is unambiguously increased by multiple scattering of the anti-reflection film, the same effect can be obtained by using silica fine particles with a wide particle size distribution, or by laminating the anti-reflection film with a thicker silica fine particle. It is thought to be played. However, when silica fine particles having a wide particle size distribution are used, the number of fine particles satisfying the relationship between the reflectance and the wavelength decreases, so that the reflectance of the antireflection film increases, and the amount of light incident on the photoelectric conversion layer decreases. Eventually, the photoelectric conversion rate decreases. From this, it is considered that the silica fine particles preferably have a uniform particle size as much as possible. Specifically, as long as the silica fine particles have a particle size of 30 O nm, those having a particle size distribution of about ± 10% are commercially available. On the other hand, if the thickness of the anti-reflection film is increased to deposit the fine particles, the strength of the anti-reflection film decreases, and the durability of the anti-reflection film does not reach a practical level. It is conceivable to increase the amount of binder in the anti-reflection coating to increase its strength, but this causes a new problem that the gap between fine particles becomes smaller and the apparent refractive index rises. From these facts, it is considered that the thickness of the antireflection film is preferably 1 to 2 times the particle size of the large fine particles.
また、 粒径の異なる複数種のシリカ微粒子を使用する場合は、 各微粒 子の粒径比は 3以上であることが好ましい。 粒径比が 3以上であれば、 小さな微粒子が大きな微粒子同上の隙間に上手く入り込める。 対して、 上述のように S O nrn 未満のシリカ微粒子は反射率の上昇を誘発し、 ま た 1 0 0 O nm を越えるシリカ微粒子は透明基体との接着性が弱く、 反 射抑制膜の耐久性を低下させる。 したがって、 この粒径比は、 好ましく は 2 0以下、 すなわち 3〜 2 0が好適である。 When a plurality of types of silica fine particles having different particle diameters are used, the particle diameter ratio of each fine particle is preferably 3 or more. If the particle size ratio is 3 or more, small fine particles can enter the gaps between the large fine particles. On the other hand, as described above, silica fine particles of less than SO nrn induce an increase in reflectance, and silica fine particles of more than 100 O nm have poor adhesion to the transparent substrate, and the durability of the antireflection film is low. Lower. Therefore, this particle size ratio is preferably Is preferably 20 or less, that is, 3 to 20.
また、 反射抑制膜が存在する透明基体の表面において、 その 6 0 %以 上の領域にシリカ微粒子が存在する場合に、 上述の反射抑制、 透過率上 昇および耐久性の向上などの諸機能が有効に発揮される。  In addition, when silica fine particles are present in a region of 60% or more of the surface of the transparent substrate on which the antireflection film is present, various functions such as the above-described antireflection, increase in transmittance, and improvement in durability are achieved. Effectively demonstrated.
なお、 透明基体の種類は、 とくに限定されるものではなく、 光電変換 装置の透明基体として従来から利用されているガラス板ゃ樹脂板など各 種透明基体を使用することができる。  The type of transparent substrate is not particularly limited, and various types of transparent substrates such as a glass plate and a resin plate conventionally used as a transparent substrate of a photoelectric conversion device can be used.
バインダーは、 シリカ微粒 同士、 ならびにシリカ微粒子と透明基体 との接着性を向上させる。 バインダーとしては、 シリコン酸化物、 アル ミニゥム酸化物、 チタン酸化物、 ジルコニウム酸化物およびタンタル酸 化物からなる群より選ばれた少なくとも一種の金属酸化物が好ましい。 バインダ一の原料としては、 Si,Al,Ti,Zrおよび Taから選ばれる少な くとも一種の金属を含むアルコキシドが、 膜強度や化学的安定性の観点 から好適である。 バインダーの含有量が比較的大きい膜では、 バインダ 一の屈折率が反射率に影響を及ぼすので、 その原料には屈折率の小さい シリコンアルコキシド、 とくにシリコンテ卜ラアルコキシドまたはその オリゴマーが好ましい。 ただし、 バインダーの原料として、 複数種類の 金属アルコキシドを用いてもよく、 金属アルコキシド以外であっても、 加水分解によって M(OH) n (Mは金属原子、 nは金属の価数に基づいて 定まる自然数、 たとえば 1 〜 4 ) により示される反応生成物が得られる 金属化合物であればとくに限定されない。 このような金属化合物として は、 金厲のハロゲン化物や、 イソシァネート基、 ァシルォキシ基、 アミ ノキシ基などを有する金属化合物が例示される。 また、 シリコンアルコ キシドの一種である Rl,,,M(OR2) n— で示される化合物 (M、 nは上記と 同様, R1 はアルキル基、 アミノ基、 エポキシ基、 フエニル基、 メ夕ク リロキシ基などの有機基、 R2 は主としてアルキル基である有機基、 m は 1から (n— l ) の自然数) もバインダー原料として使用できる。 反射抑制膜は、 たとえばシリカ微粒子と、 金属アルコキシドなどの金 属化合物とを含むコーティング液を基体表面に塗布し、 焼成することに より形成される。この際、シリカ微粒子とバインダ一との重量比は 5 0 : 5 0〜 8 5 : 1 5の範囲が好ましい。 バインダ一の比率が大きずぎると、 微粒子がバインダーに埋まって微粒子による凹凸や膜内の空隙率が小さ くなる。 一方、 バインダーの比率が小さすぎると、 透明基体と微粒子の 間および微粒子間の接着性が低下する。 The binder improves the adhesion between the silica fine particles and between the silica fine particles and the transparent substrate. The binder is preferably at least one metal oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide, zirconium oxide and tantalum oxide. An alkoxide containing at least one metal selected from Si, Al, Ti, Zr, and Ta is preferable as a material for the binder from the viewpoint of film strength and chemical stability. In the case of a film having a relatively large binder content, the refractive index of the binder affects the reflectance. Therefore, a silicon alkoxide having a small refractive index, particularly a silicon tetraalkoxide or an oligomer thereof is preferable as the raw material. However, a plurality of types of metal alkoxides may be used as the raw material of the binder, and even if other than metal alkoxides, M (OH) n (M is a metal atom, n is determined based on the valence of the metal by hydrolysis) The metal compound is not particularly limited as long as it is a metal compound from which a reaction product represented by a natural number, for example, 1 to 4) is obtained. Examples of such metal compounds include metal halides and metal compounds having an isocyanate group, an acyloxy group, an aminoxy group, and the like. In addition, a compound represented by Rl ,,, M (OR2) n — which is a kind of silicon alkoxide (M and n are the same as above, R1 is an alkyl group, amino group, epoxy group, phenyl group, methyl chloroxy R2 is an organic group that is mainly an alkyl group, m Is a natural number from 1 to (n-l). The anti-reflection film is formed, for example, by applying a coating solution containing silica fine particles and a metal compound such as a metal alkoxide to the surface of the substrate and baking the coating solution. At this time, the weight ratio between the silica fine particles and the binder is preferably in the range of 50:50 to 85:15. If the ratio of the binder is too large, the fine particles are buried in the binder, and the unevenness due to the fine particles and the porosity in the film are reduced. On the other hand, if the ratio of the binder is too small, the adhesiveness between the transparent substrate and the fine particles and between the fine particles is reduced.
コーティング液は、 金属化合物の加水分解物をシリ力微粒子と混合す ることによって調製してもよいが、 シリカ微粒子の存在下で、 加水分解 可能な金属化合物を加水分解して調製することが好ましい。 膜強度が格 段に向上するからである。 たとえば、 シリカ微粒子の存在下で金属アル コキシドを加水分解すると、 シリカ微粒子表面のシラノール基と金属ァ ルコキシドとの間の縮合反応がコ一ティング液中で促進される。 この縮 合反応は、 シリカ微粒子間の密着力を高めるだけでなく、 シリカ微粒子 表面の反応性を上げて微粒子とガラス基板との接着力も強化する。  The coating liquid may be prepared by mixing a hydrolyzate of a metal compound with fine particles of silica, but is preferably prepared by hydrolyzing a hydrolyzable metal compound in the presence of fine silica particles. . This is because the film strength is significantly improved. For example, when a metal alkoxide is hydrolyzed in the presence of silica fine particles, a condensation reaction between silanol groups on the surface of the silica fine particles and the metal alkoxide is promoted in the coating solution. This condensation reaction not only enhances the adhesion between the silica fine particles, but also enhances the reactivity of the surface of the silica fine particles to enhance the adhesive force between the fine particles and the glass substrate.
以下、 コ一ティング液を用いた反射抑制膜の成形方法について、 さら に詳細に説明する。  Hereinafter, the method for forming the antireflection film using the coating liquid will be described in more detail.
コーティング液は、 好ましくはシリカ微粒子の存在の下、 加水分解可 能な金属化合物、 加水分解用触媒、 水および溶媒を混合し、 金属化合物 を加水分解して調製する。 加水分解は、 たとえば室温で 1時間以上撹拌 して反応させることにより、 あるいは室温よりも高い温度、 たとえば 4 0〜8 0でで 1 0〜5 0分撹拌することにより行うことができる。 得ら れたコ一ティング液は、 コーティ ング方法に応じて適当な溶媒で希釈し ても構わない。  The coating liquid is prepared by mixing a hydrolyzable metal compound, a hydrolysis catalyst, water and a solvent, preferably in the presence of silica fine particles, and hydrolyzing the metal compound. The hydrolysis can be carried out, for example, by stirring the mixture at room temperature for 1 hour or more to carry out the reaction, or by stirring the mixture at a temperature higher than room temperature, for example, 40 to 80 minutes for 10 to 50 minutes. The obtained coating solution may be diluted with an appropriate solvent according to the coating method.
加水分解用触媒としては、 塩酸や硝酸などの鉱酸ゃ酢酸などの酸触媒 が好ましい。 酸触媒を用いると、 金属アルコキシドが反応して M(OR)n が生成し易くなり、 バインダ一として有効に作用する反応生成物が豊富 に提供される。 塩基性触媒では、 加水分解が律速となり縮合反応が速く なる。 このため、 アルコキシドの反応生成物が微粒子化したり、 微粒子 の粒径成長に金属アルコキシドが消費され、 バインダーとして作用する 生成物が少なくなる。 触媒の添加量は、 バインダーとなる金属化合物に 対してモル比で 0 . 0 0 1以上 4以下が好ましい。 Hydrolysis catalysts include mineral acids such as hydrochloric acid and nitric acid and acid catalysts such as acetic acid. Is preferred. When an acid catalyst is used, the metal alkoxide reacts easily to form M (OR) n, thereby providing abundant reaction products that effectively act as a binder. With basic catalysts, hydrolysis is rate-limiting and the condensation reaction is faster. For this reason, the reaction product of the alkoxide is reduced to fine particles, or the metal alkoxide is consumed for the growth of the particle diameter of the fine particles, and the number of products acting as a binder is reduced. The amount of the catalyst to be added is preferably from 0.001 to 4 in a molar ratio to the metal compound serving as the binder.
加水分解に必要な水の添加量は、 金属化合物に対してモル比で 0 . 1 〜 1 0 0が好ましい。 水の添加量がモル比で 0 . 1より少ないと金属化 合物の加水分解が十分に促進されない。 一方、 水添加量がモル比で 1 0 0より多いと、 液の安定性が低下する。  The amount of water required for the hydrolysis is preferably from 0.1 to 100 in molar ratio to the metal compound. If the amount of water added is less than 0.1 in a molar ratio, hydrolysis of the metal compound is not sufficiently promoted. On the other hand, if the amount of water added is greater than 100 in terms of molar ratio, the stability of the liquid will be reduced.
なお、 金厲化合物としてクロ口基含有化合物を用いる場合には、 必ず しも水や触媒の添加は必要ではない。 溶媒中の水分や雰囲気中の水分な どにより加水分解が進行するからである。 この加水分解に伴って液中に 塩酸が遊離し、 さらに加水分解が進行する。  In addition, when a compound having a black group is used as the gold compound, addition of water or a catalyst is not necessarily required. This is because the hydrolysis proceeds due to the water in the solvent or the water in the atmosphere. Hydrochloric acid is liberated in the liquid with the hydrolysis, and the hydrolysis proceeds.
溶媒は、 金属化合物を溶解できるものであればとくに制限されず、 メ 夕ノール、 エタノール、 プロパノール、 ブタノ一ルなどのアルコール類、 ェチルセ口ソルブ、 ブチルセ口ソルブ、 プロピルセロソルブなどのセロ ソルブ類、 エチレングリコールやへキシレングリコールなどのグリコー ル類を用いることができる。  The solvent is not particularly limited as long as it can dissolve the metal compound.Alcohols such as methanol, ethanol, propanol, and butanol, cellosolves such as ethylcellosolve, butylcellosolve, and propylcellosolve, and ethylene Glycols such as glycol and hexylene glycol can be used.
溶媒に溶解させる金属化合物の濃度があまり高すぎると、 分散させる シリカ微粒子の量にもよるが、 膜中の微粒子間の隙間が十分に形成され なくなる。 このため、 金属化合物の濃度は 2 0重量%以下が好ましく、 さらに具体的には 1〜 2 0重量%が好適である。  If the concentration of the metal compound dissolved in the solvent is too high, the gap between the fine particles in the film will not be formed sufficiently depending on the amount of the silica fine particles to be dispersed. Therefore, the concentration of the metal compound is preferably 20% by weight or less, and more specifically, 1 to 20% by weight.
また、コーティング液におけるシリ力微粒子と金厲化合物との比率は、 金属化合物をそれに対応する金属酸化物 (たとえば SiO ^A O ^TiO 2,Zr02,Ta205) に換算して、 重量比で 5 0 : 5 0〜 9 9 : 1が好まし い。 なお、 コーティ ング液をシリカ微粒子の存在下で金属化合物を加水 分解して調製する場合には、 上記重量比は、 より好ましくは 6 6 : 3 4 〜 9 5 : 5、 さらに好ましくは 7 5 : 2 5〜 9 0 : 1 0である。 シリカ 微粒子が存在しない状態で金属化合物の加水分解を行う場合には、 上記 重量比は、 より好ましくは 5 0 : 5 0〜 8 5 : 1 5であり、 さらに好ま しくは6 0 : 4 0〜 7 5 : 2 5でぁる。 In addition, the ratio of the fine particles of the silicon force to the metal compound in the coating solution is determined by changing the metal compound to the corresponding metal oxide (eg, SiO ^ AO ^ TiO 2, Zr0 in terms of 2, Ta 2 0 5), 0 5 at a weight ratio: 5 0-9 9: 1 is not preferred. When the coating solution is prepared by hydrolyzing a metal compound in the presence of silica fine particles, the above weight ratio is more preferably 66:34 to 95: 5, and further preferably 75: 5. 25 to 90: 10 When the metal compound is hydrolyzed in the absence of silica fine particles, the weight ratio is more preferably 50:50 to 85:15, and even more preferably 60:40 to 50:50. 7 5: 25
コーティング液の好ましい原料配合比を下記 (表 1 ) に例示する。 表 1  Preferred mixing ratios of the coating liquid are shown in the following (Table 1). table 1
Figure imgf000015_0001
コーティング液をガラス基板に塗布し、 加熱することにより、 金属化 合物加水分解物の脱水縮合反応、 揮発成分の気化および燃焼が進行し、 ガラス基板上に反射抑制膜が形成される。
Figure imgf000015_0001
The coating liquid is applied to a glass substrate and heated, whereby a dehydration-condensation reaction of a metal compound hydrolyzate, vaporization and burning of volatile components proceed, and a reflection suppressing film is formed on the glass substrate.
コ一ティ ング液のガラス基板への塗布方法は、とくに限定されないが、 スピンコ一夕一、 口一ルコ一夕一、 スプレーコ一夕一、 カーテンコ一夕 一などの装置を用いる方法や、 浸潰引き上げ法 (ディ ップコーティ ング 法)、 流し塗り法 (フローコーティ ング法) などの方法、 スクリーン印刷、 グラビア印刷、 曲面印刷などの各種印刷法を用いることができる。  The method of applying the coating liquid to the glass substrate is not particularly limited, but may be a method using an apparatus such as a spin-coat, a mouth-coat, a spray-coat, a curtain-coat, or the like. Various methods such as a lifting method (dip coating method) and a flow coating method (flow coating method), and screen printing, gravure printing, and curved surface printing can be used.
透明基体の表面状態によっては、 コーティ ング液をはじいて均一に塗 布できない場合もあるが、 このような場合は、 洗浄や表面改質を行えば よい。 洗浄や表面改質の方法としては、 アルコール、 アセトンもしくは へキサンなどの有機溶媒による脱脂洗浄、 アルカリや酸による洗浄、 研 磨剤による表面研磨、 超音波洗浄、 紫外線照射処理、 紫外線オゾン処理 またはプラズマ処理などが挙げられる。 Depending on the surface condition of the transparent substrate, it may not be possible to apply evenly by repelling the coating liquid. In such a case, cleaning and surface modification may be performed. Methods for cleaning and surface modification include degreasing with an organic solvent such as alcohol, acetone or hexane, cleaning with an alkali or acid, and polishing. Surface polishing with an abrasive, ultrasonic cleaning, ultraviolet irradiation treatment, ultraviolet ozone treatment or plasma treatment can be mentioned.
塗布後の加熱処理は、 実質的にシリカ微粒子およびバインダ一からな る反射抑制膜と、 透明基体との接着性を向上させる上で有効である。 加 熱温度としては、 最高到達温度により表示して、 2 0 0 °C以上が好まし く、 4 0 0 °C以上、 とくに 6 0 0 °C以上がより好ましく、 1 8 0 0 °C以 下が好適である。 概略、 2 0 0 °C以上でコ一ティング液の溶媒成分が蒸 発し、 膜のゲル化が進行して接着力が生じる。 4 0 0 °C以上では膜に残 存した有機成分がほぼ完全に燃焼により消失する。 6 0 0で以上では、 残存した未反応のシラノール基や金属化合物の加水分解物の加水分解基 の縮合反応がほぼ完了して膜強度が向上する。 加熱時間は 5秒〜 5時間 が好ましく、 3 0秒〜 1時間がより好ましい。  The heat treatment after the application is effective in improving the adhesion between the antireflection film substantially consisting of silica fine particles and the binder and the transparent substrate. The heating temperature, expressed in terms of the maximum temperature, is preferably 200 ° C or higher, more preferably 400 ° C or higher, particularly preferably 600 ° C or higher, and 180 ° C or lower. Below is preferred. In general, at 200 ° C. or higher, the solvent component of the coating liquid evaporates, and the gelation of the film proceeds to generate an adhesive force. Above 400 ° C, the organic components remaining in the film are almost completely eliminated by combustion. With a value of 600 or more, the condensation reaction of the remaining unreacted silanol groups and hydrolyzable groups of the hydrolyzate of the metal compound is almost completed, and the film strength is improved. The heating time is preferably from 5 seconds to 5 hours, more preferably from 30 seconds to 1 hour.
反射抑制膜による反射抑制効果により光電変換装置の光電変換率は向 上する。 反射抑制膜が形成された透明基体の反射率は、 対向面 (透明導 電膜が形成された面) の反射を含まない反射率で表示して、 3 . 5 %以 下が好ましく、 2 %以下がより好ましく、 0 . 5 %以下が最も好ましい。 反射抑制膜上に、 さらに撥水性被膜や防曇性被膜を成形してもよい。 撥水性被膜で被覆することにより、 撥水性能が得られ、 汚れ除去性も向 上する。 撥水性被膜で被覆すると、 反射抑制膜を形成していない透明基 体表面を同じ撥水剤で処理した場合と比較して、 優れた撥水性が得られ る。 これは、 表面の凹凸が増加したためである (W e n z e 1 理論)。 同 様に、 防曇性被膜で被覆すれば、 防曇性能とともに改善された汚れ除去 性を得ることができる。  The photoelectric conversion rate of the photoelectric conversion device is improved by the reflection suppressing effect of the reflection suppressing film. The reflectance of the transparent substrate on which the anti-reflection film is formed is preferably not more than 3.5%, and is preferably not more than 3.5%, expressed as the reflectance not including the reflection of the opposing surface (the surface on which the transparent conductive film was formed). The following is more preferable, and the most preferable is 0.5% or less. A water-repellent film or an anti-fogging film may be further formed on the reflection suppressing film. By coating with a water-repellent film, water-repellent performance can be obtained, and dirt-removing property is also improved. When coated with a water-repellent film, excellent water-repellency can be obtained as compared with the case where the surface of a transparent substrate on which no antireflection film is formed is treated with the same water-repellent agent. This is due to an increase in surface irregularities (W enzee 1 theory). Similarly, coating with an anti-fogging film can provide improved anti-fogging performance as well as improved soil removal.
この反射抑制膜は、 薄膜型または結晶型光電変換装置の透明基体の主 表面に形成されることにより、 上述の透過性と高い光閉じ込めを実現す る。 また、 シリカ微粒子がバインダーにより、 透明基体に強固に定着す るため、 高い耐久性を示す。 さらに、 シリカ微粒子に由来する凹凸が反 射抑制膜の表面に形成されるため、 この膜は、 極めて耐久性の高いもの となる。 The antireflection film is formed on the main surface of the transparent substrate of the thin-film or crystal-type photoelectric conversion device, thereby realizing the above-described transmittance and high light confinement. Also, the silica fine particles are firmly fixed to the transparent substrate by the binder. Therefore, it shows high durability. Further, since the irregularities derived from the silica fine particles are formed on the surface of the antireflection film, this film has extremely high durability.
下地膜 1は、第 1の下地層 1 aと第 2の下地層 1 bとからなる 2層膜、 あるいは単層膜とすることが好ましい。 下地膜 1 を 2層膜とする場合、 第 1の下地層 l aは、 酸化スズを主成分とすることが好ましい。 また、 第 2の下地層 1 bは、 酸化ケィ素または酸化アルミニウムの少なく とも 一方を主成分として含むことが好ましく、 酸化ケィ素膜であることがと くに好ましレ 下地膜を単層膜とする場合は、たとえば酸化ケィ素、 SiOC、 酸化アルミニウムなどを主成分とする膜または酸化ケィ素と酸化スズの 複合酸化物からなる膜が好ましい。  The underlayer 1 is preferably a two-layer film composed of a first underlayer 1a and a second underlayer 1b, or a single-layer film. When the base film 1 is a two-layer film, the first base layer la preferably contains tin oxide as a main component. The second underlayer 1b preferably contains at least one of silicon oxide and aluminum oxide as a main component, and is particularly preferably a silicon oxide film. In this case, for example, a film containing silicon oxide, SiOC, aluminum oxide, or the like as a main component, or a film made of a composite oxide of silicon oxide and tin oxide is preferable.
透明導電膜 2は、 酸化スズを主成分とする膜が好ましく、 さらに導電 性向上のために、 フッ素などの元素が所定量添加されたものが好適であ る。 透明導電膜 2は、 原料の熱分解酸化反応を伴う方法により形成され ることが好ましい。  The transparent conductive film 2 is preferably a film containing tin oxide as a main component, and more preferably a material to which a predetermined amount of an element such as fluorine is added for improving conductivity. The transparent conductive film 2 is preferably formed by a method involving a thermal decomposition oxidation reaction of a raw material.
図 1に示した各膜の好ましい膜厚を以下に例示する。  Preferred thicknesses of the respective films shown in FIG. 1 are exemplified below.
第 1の下地層 l a 0〜 l O O nm  First underlayer l a 0 to l O O nm
第 2の下地層 l b 1 0〜 4 O nm  Second underlayer l b 10 to 4 O nm
透明導電膜 2 4 0 0〜 1 2 0 0 nm  Transparent conductive film 2400 to 1200 nm
上記の各膜は、 透明基体にガラス板を使用する場合は、 フロートガラ ス製造工程において、 ガラスリボンが有する熱を利用しながら、 各膜を ガラスリボン面に順次堆積する方法を適用することが好ましい。 高温で の成膜が可能となり、ガラスリボンが有する熱を利用できるからである。 具体的には、 原料液を霧化してガラスリボン表面に供給するスプレー法 や原料を気化させてガラスリボン表面に供給する C V D法が挙げられる。 また、 この場合、 透明導電膜が形成される面がフロートガラスのトツ プ面であり、 反射抑制膜の形成される面がフロー卜ガラスのボトム面で あることが好ましい。 フロートガラスのボトム面は、 トップ面と比較し て平坦性に優れており、 たとえばロールコ一ト法で反射抑制膜を形成す る場合に、 凹凸を制御し易い。 In the case where a glass plate is used for the transparent substrate, a method of sequentially depositing each film on the glass ribbon surface using the heat of the glass ribbon in the float glass manufacturing process may be applied to each of the above films. preferable. This is because film formation can be performed at a high temperature and the heat of the glass ribbon can be used. Specifically, there are a spray method in which the raw material liquid is atomized and supplied to the glass ribbon surface, and a CVD method in which the raw material is vaporized and supplied to the glass ribbon surface. In this case, the surface on which the transparent conductive film is to be formed is float glass top. It is preferable that the surface on which the antireflection film is formed be the bottom surface of the float glass. The bottom surface of the float glass is more excellent in flatness than the top surface. For example, when a reflection suppressing film is formed by a roll coating method, it is easy to control unevenness.
上記ガラスリボン表面に C V D法で透明導電膜を形成する装置の一形 態を、 図 2に示す。 図 2に示したように、 この装置では熔融窯 1 1から スズフロート槽 1 2内に流れ出し、 スズ浴 1 5で帯状に成形されて移動 するガラスリボン 1 0の直上に所定個数のコ一夕 1 6 (図示した形態で は 5つのコ一タ 1 6 a, 1 6 , 1 6 c, 1 6 d , 1 6 e ) が配置され ている。 これらのコ一夕から、 形成する膜の種類に応じて調整され、 気 化された原料が供給され、 ガラスリボン 1 0表面 (トップ面 ; スズ非接 触面) に各膜 (たとえば第 1の下地層、 第 2の下地層、 透明導電膜) 力 連続的に形成される。 この場合、 両下地層と比較して厚く成膜する透明 導電膜については、 複数のコ一夕を用いて成膜することが好ましい。 ガラスリボン 1 0の温度は、 コ一夕 1 6の直前で所定温度となるよう に、 スズフロート槽 1 2内に配置されたヒータ一およびクーラー (図示 省略) により制御される。 ここで、 ガラスリボンの所定温度としては、 6◦ 0〜 7 5 0でが好ましく、 とくに 6 3 0〜 7 5 0 °Cが好ましい。 こ うして各膜が形成されたガラスリボン 1 0はロール 1 7によって引き上 げられ、 徐冷炉 1 3で冷却される。  FIG. 2 shows an embodiment of an apparatus for forming a transparent conductive film on the surface of the glass ribbon by the CVD method. As shown in Fig. 2, in this apparatus, a predetermined number of glass ribbons flow out of the melting furnace 11 into the tin float tank 12 and immediately above the glass ribbon 10 which is formed into a belt shape in the tin bath 15 and moves. 6 (in the illustrated form, five coaters 16a, 16a, 16c, 16c, 16d, 16e) are arranged. From these moments, the vaporized raw material adjusted according to the type of film to be formed is supplied, and each film (for example, the first surface) is applied to the glass ribbon 10 surface (top surface; tin non-contact surface). Underlayer, second underlayer, transparent conductive film) Force Continuously formed. In this case, it is preferable that the transparent conductive film formed to be thicker than both underlayers is formed using a plurality of layers. The temperature of the glass ribbon 10 is controlled by a heater and a cooler (not shown) arranged in the tin float tank 12 so that the temperature becomes a predetermined temperature immediately before the temperature 16. Here, the predetermined temperature of the glass ribbon is preferably 6 ° C. to 75 ° C., and more preferably 63 ° C. to 75 ° C. The glass ribbon 10 on which each film is formed in this way is pulled up by the roll 17 and cooled in the annealing furnace 13.
C V D法により酸化スズを主成分とする膜を形成する場合、 スズ原料 としては、 モノプチルスズトリクロライ ド、 四塩化スズ、 ジメチルスズ ジクロライ ド、 ジブチルスズジクロライ ド、 ジォクチルスズジクロライ ド、 テトラメチルスズなどが挙げられる。 スズ原料としては、 モノプチ ルスズトリクロライ ド, ジメチルスズジクロライ ドなどの有機スズ塩化 物がとくに好適である。 スズ原料の酸化のためには、 酸素、 水蒸気、 乾 燥空気などを酸化原料として用いればよい。 また、 この膜にフッ素を添 加する場合のフッ素原料としては、 フッ化水素、 トリフルォロ酢酸、 ブ ロモトリフルォロメタン、 クロロジフルォロメ夕ンなどが挙げられる。 When a film containing tin oxide as a main component is formed by the CVD method, tin raw materials include monobutyltin trichloride, tin tetrachloride, dimethyltin dichloride, dibutyltin dichloride, dioctyltin dichloride, and tetra. Methyltin and the like. As a tin raw material, organotin chlorides such as monobutyltin trichloride and dimethyltin dichloride are particularly suitable. Oxygen, water vapor, dry Dry air or the like may be used as the oxidizing material. In addition, when fluorine is added to the film, examples of the fluorine raw material include hydrogen fluoride, trifluoroacetic acid, bromotrifluoromethane, and chlorodifluoromethane.
C V D法により酸化ケィ素を主成分とする膜を形成する場合、 ケィ素 原料としては、 モノシラン、 ジシラン、 トリシラン、 モノクロロシラン、 1,2-ジメチルシラン、 1,1,2-トリメチルジシラン、 1, 1,2,2-テトラメチル ジシラン、 テトラメチルオルソシリケ一卜、 テトラェチルオルソシリケ —卜などが挙げられる。 酸化原料としては、 酸素、 水蒸気、 乾燥空気、 二酸化炭素、 一酸化炭素、 二酸化窒素またはオゾンなどを用いればよい。 また、 モノシランなど反応性の極めて高い原料を使用する場合には、 ェ チレン、 アセチレンまたはトルエンなどの不飽和炭化水素ガスを添加し て反応性を制御してもよい。  When a film containing silicon oxide as a main component is formed by the CVD method, the silicon raw materials include monosilane, disilane, trisilane, monochlorosilane, 1,2-dimethylsilane, 1,1,2-trimethyldisilane, 1, Examples include 1,2,2-tetramethyldisilane, tetramethylorthosilicate, and tetraethylorthosilicate. As an oxidizing material, oxygen, steam, dry air, carbon dioxide, carbon monoxide, nitrogen dioxide, ozone, or the like may be used. When a highly reactive raw material such as monosilane is used, the reactivity may be controlled by adding an unsaturated hydrocarbon gas such as ethylene, acetylene or toluene.
酸化ゲイ素と同様、 第 2の下地層として好適な酸化アルミニウムを主 成分とする膜を C V D法により成膜する場合のアルミニウム原料として は、 トリメチルアルミニウム、 アルミニウムトリイソポプロポキサイ ド, 塩化ジェチルアルミニウム、 アルミニウムァセチルァセトネート、 塩化 アルミニウムなどが挙げられる。 この場合の酸化原料としては、 酸素、 水蒸気または乾燥空気などが挙げられる。  Similar to the case of gay oxide, when using a CVD method to form a film mainly containing aluminum oxide, which is suitable as the second underlayer, aluminum materials include trimethylaluminum, aluminum triisopopropoxide, and getylaluminum chloride. Aluminum acetyl acetonate, aluminum chloride and the like. In this case, examples of the oxidizing raw material include oxygen, steam, and dry air.
光電変換層での光閉じ込めを効果的に発生させるためには、 透明導電 膜の表面にも凹凸を付与してもよい。 しかし、 上述の通り、 透明導電膜 の表面凹凸が大きくなると、 結晶質シリコンの結晶成長阻害が生じるこ とから、 その表面凹凸はヘイズ率で表して 1 0 %以下であることが好ま しい。 また、 透明導電膜の表面凹凸は、 エッチングなどによっても形成 できる。  In order to effectively generate light confinement in the photoelectric conversion layer, the surface of the transparent conductive film may be provided with irregularities. However, as described above, when the surface irregularities of the transparent conductive film become large, crystal growth of crystalline silicon is inhibited. Therefore, the surface irregularities are preferably not more than 10% in terms of a haze ratio. Further, the surface irregularities of the transparent conductive film can also be formed by etching or the like.
薄膜型または結晶型の光電変換装置の製造方法は、 とくに限定される ものではなく、 反射抑制膜を上述の手段により成形すれば、 その他の構 W The method for manufacturing the thin film type or crystal type photoelectric conversion device is not particularly limited, and other structures may be used if the antireflection film is formed by the above-described means. W
成部は公知の手段により製造することができる。 The component can be manufactured by a known means.
実施例  Example
以下、 実施例により、 この発明をさらに具体的に説明する。 ただし、 以下の実施例に限定するものではない。  Hereinafter, the present invention will be described more specifically with reference to examples. However, it is not limited to the following examples.
実施例における光電変換装置用基板の透過率およびヘイズ率の測定方 法は、 つぎの通りである。  The method of measuring the transmittance and the haze of the substrate for a photoelectric conversion device in the examples is as follows.
〔透過率〕  (Transmissivity)
分光光度計 (島津製作所社製) を用いて、 4 0 0〜 1 1 0 0 nm での 透過率を測定し、 その平均値を求めた。 Using a spectrophotometer (manufactured by Shimadzu Corporation), the transmittance at 400 to 110 nm was measured, and the average value was determined.
〔ヘイズ率〕  [Haze rate]
積分球式光線透過率測定装置 (スガ試験機 (株) 製 H G M— 2 D P ) を用いて、プラスチックの光学特性試験法( J I S (Japanese Industrial Standard) K 7 1 0 5 - 1 9 8 1 ) に記載されている曇価測定法により 測定した。  Using an integrating sphere light transmittance measuring device (HGM-2DP, manufactured by Suga Test Instruments Co., Ltd.), the method for testing the optical properties of plastics (JIS (Japanese Industrial Standard) K 7105-198 1) The haze was measured by the described haze measurement method.
各実施例および比較例において反財抑制膜を成形する透明基体には、 1 O cm角の通常のフロートガラス (厚さ 2 . 8 mm) を使用した。 この ガラス板を洗浄および乾燥させて、 ベルト搬送式の常圧 C V D装置を用 いて二酸化ケイ素膜およびフッ素ド一プ酸化スズ膜をこの順に堆積させ た。 二酸化ケイ素膜は、 ガラス板を 5 5 0 °Cに加熱し、 モノシラン、 酸 素および窒素を供給して成形した。 その膜厚は 5 0 nmであった。 また、 フッ素ドープ酸化スズ膜は、 二酸化ケイ素膜が形成されたガラスを 6 0 0 °Cに加熱し、 ジメチルスズジクロライ ド、 水蒸気、 酸素、 フッ酸およ び窒素からなる混合ガスを供給して形成した。 その膜厚は 4 5 O nm で あった。 このようにして得られた透明導電膜付きガラス基板の透過率 T 1は 7 8 . 3 %、 ヘイズ率 H 1は 4 . 5 %であった。  In each of Examples and Comparative Examples, a 1 Ocm square ordinary float glass (2.8 mm thick) was used as a transparent substrate for forming the anti-reflective film. The glass plate was washed and dried, and a silicon dioxide film and a fluorine-doped tin oxide film were deposited in this order using a belt-conveying normal pressure CVD apparatus. The silicon dioxide film was formed by heating a glass plate to 550 ° C. and supplying monosilane, oxygen and nitrogen. Its film thickness was 50 nm. For the fluorine-doped tin oxide film, the glass on which the silicon dioxide film is formed is heated to 600 ° C, and a mixed gas comprising dimethyltin dichloride, water vapor, oxygen, hydrofluoric acid, and nitrogen is supplied. Formed. Its film thickness was 45 O nm. The glass substrate with a transparent conductive film thus obtained had a transmittance T1 of 78.3% and a haze ratio H1 of 4.5%.
(実施例 1 ) 第 1のシリカ微粒子分散液 (日本触媒社製 「シーホス夕一 KE— W 1 0」 平均一次粒径 1 1 Onm 固形分 1 5 %) 5 6. 6 7 g、 ェチルセ 口ソルブ 3 7. 1 g、 濃塩酸 1 gおよびテ卜ラエトキシシラン 5. 2 g を順次添加し、 24時間撹拌しながら反応させ、 第 1のシリカ微粒子加 水分解液を作製した。 また、 第 2のシリカ微粒子分散液 (日本触媒社製 「シーホスター KE— E 3 0」 平均一次粒径 30 Onm、固形分 2 0 %) 42. 5 g、 ェチルセ口ソルブ 48. 7 g、 I N塩酸 3. 6 gおよびテ トラエトキシシラン 5. 2 gを順次添加し、 24時間撹拌しながら反応 させ、 第 2のシリカ微粒子加水分解液を作製した。 この第 1のシリカ微 粒子加水分解液 1 2 g、 第 2のシリカ微粒子加水分解液 1 8 g、 ェチレ ングリコール 40 gおよびェチルセ口ソルブ 30 gを混合して、 コーテ イング液を調製した。 このコーティ ング液を、 上記透明導電膜付きガラ ス基板のガラス面 (透明導電膜の対向面) にスピンコート法により塗布 した。 回転数は 1 2 0 Or.p.m とした。 室内で放置乾燥させた後、 6 0 0でに設定した電気炉に 1 0分間入れて反射抑制膜を成形した。 電気炉 内におけるガラス基板の最高到達温度は 5 2 Ot:であった。 (Example 1) First silica fine particle dispersion (Nippon Shokubai Co., Ltd. “Siphos Yuichi KE—W10” average primary particle size 11 1 Onm solids 15%) 5 6.67 g, ethilse Mouth Solve 33.7 g Then, 1 g of concentrated hydrochloric acid and 5.2 g of tetraethoxysilane were sequentially added, and the mixture was reacted with stirring for 24 hours to prepare a first silica fine particle hydrolyzed liquid. In addition, a second silica fine particle dispersion (Nippon Shokubai Co., Ltd. “Seahoster KE-E30” average primary particle size 30 Onm, solid content 20%) 42.5 g, Etyrse mouth solve 48.7 g, IN hydrochloric acid 3.6 g and 5.2 g of tetratraethoxysilane were sequentially added and reacted with stirring for 24 hours to prepare a second hydrolyzed silica fine particle. A coating solution was prepared by mixing 12 g of the first hydrolyzed silica fine particle solution, 18 g of the second hydrolyzed silica fine particle solution, 40 g of ethylene glycol, and 30 g of ethyl ethyl solvent. This coating solution was applied to the glass surface of the glass substrate with a transparent conductive film (the surface facing the transparent conductive film) by spin coating. The number of revolutions was set to 120 Or.pm. After being left to dry in a room, it was placed in an electric furnace set at 600 for 10 minutes to form a reflection suppressing film. The maximum temperature of the glass substrate in the electric furnace was 52 Ot :.
(実施例 2〉  (Example 2)
第 1のシリカ微粒子分散液 (日本触媒社製 「シーホス夕一 KE— W 1 0」 平均一次粒径 1 1 0 nm 固形分 1 5 %) 1 8 g、 第 2のシリカ微 粒子分散液(日本触媒社製「KE— W 50」 平均一次粒径 5 5 Onm固 形分 2 0 %) 9 g、 へキシレングリコール 40 g、 ェチルセ口ソルブ 2 9 g、 濃塩酸 1 gおよびテトラエトキシシラン 3 gを順次添加し、 24 時間撹拌しながら反応させ、 コ一ティ ング液を調製した。 このコ一ティ ング液を用いて、 スピン回転数を 1 5 0 Or.p.m とした以外は実施例 1 と同様の方法で、 反射抑制膜を成形した。  1st silica fine particle dispersion (Nippon Shokubai Co., Ltd. “Siphos Yuichi KE-W10” average primary particle size 110 nm solid content 15%) 18 g, second silica fine particle dispersion (Japan (KE-W50, manufactured by Catalyst Co., Ltd.) Average primary particle size 55 5 Onm solid content 20%) 9 g, hexylene glycol 40 g, ethyl acetate solvent 29 g, concentrated hydrochloric acid 1 g and tetraethoxysilane 3 g The solution was added sequentially, and reacted with stirring for 24 hours to prepare a coating solution. Using this coating liquid, a reflection suppressing film was formed in the same manner as in Example 1 except that the spin rotation speed was set to 150 Or.p.m.
(実施例 3) シリカ微粒子分散液 (日本触媒社製 「KE— W5 0」 平均一次粒径 5 5 Onm 固形分 2 0 %) 40 gを撹拌しながら、 それにェチルセロソ ルブ 5 2. 1 g、 濃塩酸 l gおよびテトラエトキシシラン 6. 9 gを順 次添加し、 240分間撹拌しながら反応させ、 シリカ微粒子加水分解液 を作製した。 このシリカ微粒子加水分解液 30 gにェチルセ口ソルブ 3 0 gおよびへキシレングリコール 40 gを加えて希釈し、 コーティ ング 液を調製した。 このコーティング液を用いて、 スピン回転数を 1 0 00 r.p.mとした以外は実施例 1と同様の方法で、 反射抑制膜を成形した。 (Example 3) Silica fine particle dispersion ("KE-W50" manufactured by Nippon Shokubai Co., Ltd., average primary particle size: 55 Onm solids: 20%) While stirring 40 g, add ethyl acetate 52.1 g, concentrated hydrochloric acid lg and tetraethoxy 6.9 g of silane was added sequentially, and reacted while stirring for 240 minutes, to prepare a hydrolyzed silica fine particle solution. 30 g of this hydrolyzed silica fine particle solution was diluted by adding 30 g of ethyl acetate solvent and 40 g of hexylene glycol to prepare a coating solution. Using this coating liquid, a reflection suppressing film was formed in the same manner as in Example 1 except that the spin speed was set to 100 rpm.
(実施例 4)  (Example 4)
シリカ微粒子分散液 (日本触媒社製 「KE_W30」 平均一次粒径 30 Onm 固形分 2 0 %) 3 5 gを撹拌しながら、 それにェチルセロソ ルブ 52. 1 g、 濃塩酸 1 gおよびテトラエトキシシラン 1 0. 4 gを 順次添加し、 300分間撹拌しながら反応させ、 シリカ微粒子加水分解 液を作製した。 このシリカ微粒子加水分解液 3 0 gにェチルセ口ソルブ 3 0 gおよびへキシレングリコール 40 gを加えて希釈し、 コーティン グ液を調製した。 このコーティング液を用いて、 スピン回転数を 1 00 Or.p.mとした以外は実施例 1と同様の方法で、 反射抑制膜を成形した。 (比較例 1 )  Silica fine particle dispersion (“KE_W30”, manufactured by Nippon Shokubai Co., Ltd., average primary particle size 30 Onm, solid content 20%) While stirring 35 g, add 52.1 g of ethylcellosolve, 1 g of concentrated hydrochloric acid and 10 g of tetraethoxysilane. .4 g were sequentially added and reacted while stirring for 300 minutes to prepare a hydrolyzed silica fine particle solution. To 30 g of this hydrolyzed silica fine particle was added 30 g of ethyl ethyl solvent and 40 g of hexylene glycol for dilution to prepare a coating solution. Using this coating liquid, a reflection suppressing film was formed in the same manner as in Example 1 except that the spin rotation speed was set to 100 Or.p.m. (Comparative Example 1)
シリカ微粒子分散液 (日本触媒社製 「KE—W 1 0」 平均一次粒径 1 1 0 nm 固形分 1 5 %) 45 gを撹拌しながら、 それにェチルセロソ ルブ 48. 3 g、 濃塩酸 1 gおよびテトラエトキシシラン 5. 7 gを順 次添加し、 4時間撹拌しながら反応させ、 シリカ微粒子加水分解液を作 製した。 このシリカ微粒子加水分解液 3 5 gにジァセトンアルコール 3 0 gおよびへキシレングリコール 3 δ を加えて希釈し、 コ一ティ ング 液を調製した。 このコ一ティ ング液を用いて、 スピン回転数を 1 2 0 0 r.p.mとした以外は実施例 1 と同様の方法で、 反射抑制膜を成形した。 (比較例 2 ) Silica fine particle dispersion ("KE-W10" manufactured by Nippon Shokubai Co., Ltd., average primary particle size: 110 nm, solid content: 15%) While stirring 45 g, add 48.3 g of ethyl ethyl cellulose, 1 g of concentrated hydrochloric acid and 5.7 g of tetraethoxysilane was sequentially added, and the mixture was reacted with stirring for 4 hours to prepare a hydrolyzed silica fine particle solution. 35 g of this hydrolyzed silica fine particle solution was diluted with 30 g of diacetone alcohol and 3δ-hexylene glycol to prepare a coating solution. Using this coating liquid, a reflection suppressing film was formed in the same manner as in Example 1 except that the spin speed was set to 1200 rpm. (Comparative Example 2)
シリカ微粒子分散液 (日本触媒社製 「KE— W2 0」 平均一次粒径 Silica fine particle dispersion ("KE-W20" manufactured by Nippon Shokubai Co., Ltd. Average primary particle size
2 3 Onm 固形分 2 0 %) 3 5 gを撹拌しながら、 それにェチルセロソ ルブ 5 3. 6 g、 濃塩酸 1 gおよびテトラエトキシシラン 1 0. 4 gを 順次添加し、 3 00分間撹拌しながら反応させ、 シリカ微粒子加水分解 液を作製した。 このシリ力微粒子加水分解液 3 0 gにェチルセ口ソルブ2 3 Onm solid content 20%) While stirring 35 g, 53.6 g of ethylcellosolve, 1 g of concentrated hydrochloric acid and 10.4 g of tetraethoxysilane were sequentially added thereto, and stirred for 300 minutes. The reaction was performed to prepare a hydrolyzed silica fine particle solution. 30 g of the hydrolyzed liquid
30 gおよびへキシレンダリコール 40 gを加えて希釈し、 コーティン グ液を調製した。 このコーティ ング液を用いて、 スピン回転数を 1 00 Or.p.mとした以外は実施例 1 と同様の方法で、 反射抑制膜を成形した。 実施例 1〜 4および比較例 1および 2で製造した透明導電膜および反 射抑制膜付きガラス基板について、 透過率 T 2およびヘイズ率 H 2を測 定し、 反射抑制膜形成前後の変化 Δ Tおよび ΔΗを次式により求めた。 すなわち、 下記 Δ Tおよび ΔΗが反射抑制膜の光学的特性を示す。 30 g and 40 g of hexylene recall were added and diluted to prepare a coating solution. Using this coating solution, a reflection suppressing film was formed in the same manner as in Example 1 except that the spin speed was set at 100 Or.p.m. The transmittance T 2 and the haze H 2 of the transparent conductive film and the glass substrate with a reflection suppressing film manufactured in Examples 1 to 4 and Comparative Examples 1 and 2 were measured, and the change ΔT before and after the formation of the reflection suppressing film was measured. And ΔΗ were determined by the following equations. That is, the following ΔT and ΔΗ indicate the optical characteristics of the antireflection film.
Δ T = T 2 ( ) — Τ 1 {%)  Δ T = T 2 () — Τ 1 {%)
厶 Η = Η 2 % ) 一 H I (%)  Η = Η 2%) One H I (%)
また、 反射抑制膜が形成された面を電子顕微鏡 ( 5万倍) で観察し、 ガラス表面に微粒子が存在する割合を測定した。これらの結果を下記(表 2 ) に示す。 In addition, the surface on which the anti-reflection film was formed was observed with an electron microscope (magnification: 50,000), and the proportion of fine particles present on the glass surface was measured. The results are shown below (Table 2).
表 2
Figure imgf000024_0001
つぎに、 上記反射抑制膜が光電変換装置の光電変換率に及ぼす影響に ついて測定した。 まず、 厚さ 0 . 7 mmのホウケィ酸ガラス板の片面に、 実施例 1〜 4ならびに比較例 1および 2と同じ反射抑制膜をそれぞれ成 形した。 このガラス基板を反射抑制膜が光入射側になるよう設置して、 屋外で太陽光入射時の短絡電流の変化を測定した。 ここで短絡電流の増 加は、 反射抑制膜における光散乱に基づく光電変換層での光閉じ込めの 発生増加に対応する。 この測定結果を、 比較例 1の測定値を基準とする 相対値で下記 (表 3 ) に示す。 表 3
Table 2
Figure imgf000024_0001
Next, the influence of the above-described antireflection film on the photoelectric conversion rate of the photoelectric conversion device was measured. First, the same antireflection film as in Examples 1 to 4 and Comparative Examples 1 and 2 was formed on one surface of a borosilicate glass plate having a thickness of 0.7 mm. This glass substrate was placed so that the reflection suppressing film was on the light incident side, and the change in short-circuit current when sunlight was incident outdoors was measured. Here, an increase in the short-circuit current corresponds to an increase in the occurrence of light confinement in the photoelectric conversion layer based on light scattering in the reflection suppressing film. The measurement results are shown below (Table 3) as relative values based on the measurement values of Comparative Example 1. Table 3
Figure imgf000024_0002
ところで、 透明導電膜表面の表面凹凸を大きくすると、 光電変換層で の光閉じ込めが生じ易くなることは上述の通りであるが、 これは主とし て 3 0 0〜 6 0 0 nm の短波長域の拡散透過率が大きくなるからである < 透明導電膜のヘイズ率と拡散透過スぺク トルの関係の一例を図 3に示す ( 薄膜型光電変換装置では、 光電変換層のァモルファスシリコンの光吸収 帯が、 主として可視光域 4 0 0〜 6 0 O rnn の短波長域にある。 したが W
Figure imgf000024_0002
By the way, as described above, if the surface roughness of the transparent conductive film surface is increased, light confinement in the photoelectric conversion layer is likely to occur, but this is mainly due to the short wavelength region of 300 to 600 nm. Fig. 3 shows an example of the relationship between the haze ratio of the transparent conductive film and the diffusion transmission spectrum (in the thin-film photoelectric conversion device, the light of amorphous silicon in the photoelectric conversion layer is shown in Fig. 3). The absorption band is mainly in the short wavelength range of the visible light range of 400 to 60 orn. W
つて、 たとえば透明導電膜として酸化スズ膜を使用する場合は、 酸化ス ズ膜のヘイズ率を大きくすることにより、 光電変換層での光閉じ込めを 容易に発生させることができる。 一方、 この発明の反射抑制膜において は、 粒径の大きい微粒子を多く してヘイズ率を高くすると、 前記短波長 域のみならず 6 0 O nm 以上の長波長域の拡散透過率も大きくすること ができる。 その例として、 実施例 1 (微粒子径 1 1 0 nm + 3 0 0 nm)、 実施例 2 (微粒子径 1 1 O nm + 5 5 0 nm) および実施例 3 (微粒子怪 5 5 O nm)で製造した反射抑制膜および透明導電膜付きガラス基板の拡 散透過スぺク トルを図 4に示す。 For example, when a tin oxide film is used as the transparent conductive film, light confinement in the photoelectric conversion layer can be easily generated by increasing the haze ratio of the tin oxide film. On the other hand, in the antireflection film of the present invention, when the haze ratio is increased by increasing the number of fine particles having a large particle diameter, the diffuse transmittance not only in the short wavelength region but also in the long wavelength region of 60 O nm or more is increased. Can be. Examples are Example 1 (fine particle diameter 110 nm + 300 nm), Example 2 (fine particle diameter 110 nm + 550 nm) and Example 3 (fine particle diameter 55 nm). Fig. 4 shows the diffuse transmission spectrum of the manufactured glass substrate with a reflection suppressing film and a transparent conductive film.
光電変換層の感度が可視光域にあるものでは、 光電変換層での光閉じ 込めの程度を測る基準として、 透明導電膜の表面凹凸すなわちそのヘイ ズ率で表せば十分である。 換言すれば、 そのヘイズ率が高いほど、 光閉 じ込め効果が大きいということになる。 一方、 微結晶や多結晶シリコン を光電変換層にもつ薄膜型光電変換装置、 結晶型光電変換装置、 あるい は I Sなど光電変換層の感度が可視光よりも長波長の範囲を含む太陽 電池においては、 ヘイズ率ではなく拡散透過スぺク トルをもって光電変 換層での光閉じ込めの程度を判断する必要がある。  When the sensitivity of the photoelectric conversion layer is in the visible light range, it is sufficient to express the surface roughness of the transparent conductive film, that is, its haze ratio, as a standard for measuring the degree of light confinement in the photoelectric conversion layer. In other words, the higher the haze ratio, the greater the light confinement effect. On the other hand, thin-film photoelectric conversion devices with microcrystalline or polycrystalline silicon in the photoelectric conversion layer, crystalline photoelectric conversion devices, or solar cells, such as IS, in which the sensitivity of the photoelectric conversion layer includes a wavelength range longer than visible light. It is necessary to judge the degree of light confinement in the photoelectric conversion layer not by the haze ratio but by the diffusion transmission spectrum.
図 3および図 4より、 この発明の反射抑制膜は、 単に高いヘイズ率を 実現するのみならず, 広い波長領域において高い拡散透過率を示すこと が判る。 すなわち、 この反射抑制膜は、 光電変換層の材料によらず、 そ こでの高い光閉じ込めを実現することができる。  3 and 4, it can be seen that the antireflection film of the present invention not only achieves a high haze ratio but also exhibits a high diffuse transmittance in a wide wavelength range. That is, the antireflection film can realize high light confinement there regardless of the material of the photoelectric conversion layer.
なお、 上記各実施例および比較例について、 ガラス基板を軟化点以上 に加熱しても、 反射抑制膜の収縮によるガラスの反りの発生はほとんど なかった。 これは、 反射抑制膜の主な材料がシリカ微粒子であり、 シリ 力微粒子は実質的に収縮しないからであると考えられる。 また、 とくに シリカ微粒子の存在下で加水分解を行った反射抑制膜では、 バインダー が膜状に存在せず、 バインダ一の収縮力がガラスに作用し難くなつてい るからであるとも考えられる。 これらのことから、 この反射抑制膜を利 用すれば、 風冷強化などにより強度を向上させた光電変換装置用ガラス 基板を得ることができると考えられる。 In each of the above Examples and Comparative Examples, even when the glass substrate was heated to a temperature equal to or higher than the softening point, the glass was hardly warped due to the shrinkage of the reflection suppressing film. This is presumably because the main material of the antireflection film is silica fine particles, and the silicon fine particles do not substantially shrink. In addition, in particular, in a reflection suppressing film which is hydrolyzed in the presence of silica fine particles, a binder It is considered that this is because the binder does not exist in the form of a film and the contraction force of the binder hardly acts on the glass. From these facts, it is considered that if this antireflection film is used, it is possible to obtain a glass substrate for a photoelectric conversion device whose strength is improved by strengthening the air cooling or the like.
この発明は、 以上のように構成されていることから、 つぎの効果を奏 する。  The present invention has the following effects because it is configured as described above.
粒径 3 0 O nm 以上のシリカ微粒子を含有する反射抑制膜を透明基体 の主表面に形成することにより、 光電変換装置の光電変換率を高めるこ とができる。 また、 シリカ微粒子の粒径を 3 0 0〜 6 0 0 run とするこ とにより、 耐摩耗性などの物理的耐久性に優れた光電変換装置用基板が 得られる。  By forming a reflection suppressing film containing silica fine particles having a particle size of 30 O nm or more on the main surface of the transparent substrate, the photoelectric conversion rate of the photoelectric conversion device can be increased. By setting the particle size of the silica fine particles to 300 to 600 runs, a substrate for a photoelectric conversion device having excellent physical durability such as abrasion resistance can be obtained.
粒径 3 0 O nm 以上のシリカ微粒子と、 それとは粒径の異なるシリカ 微粒子とを含有する反射抑制膜を透明基体の主表面に形成することによ り、 光電変換層での光閉じ込めを有効に生じさせ、 光電変換率をさらに 高めることができる。 また、 粒径の異なるシリカ微粒子の粒径を 5 0〜 1 5 O nm とすることにより、 可視光から近赤外光までにおける反射抑 制膜の反射率を効果的に低下させることができる。  Effective light confinement in the photoelectric conversion layer is achieved by forming a reflection suppression film containing silica fine particles with a particle size of 30 O nm or more and silica fine particles with different particle sizes on the main surface of the transparent substrate. And the photoelectric conversion rate can be further increased. Further, by setting the particle size of the silica fine particles having different particle sizes to 50 to 15 O nm, the reflectance of the reflection suppressing film from visible light to near-infrared light can be effectively reduced.
特に、 透明基体の主表面の 6 0 %以上の領域にシリカ微粒子を存在さ せると、 反射抑制、 透過率上昇および耐久性の向上などの諸機能を有効 に発揮する光電変換装置用基板が得られる。  In particular, if silica fine particles are present in a region of 60% or more of the main surface of the transparent substrate, a substrate for a photoelectric conversion device that effectively exhibits various functions such as suppression of reflection, increase in transmittance, and improvement in durability can be obtained. Can be
さらに、 透明基体のキ表面の対向面にヘイズ率 1 0 %以下の透明導電 膜を形成すると、 結晶質シリコンからなる光電変換層を有する光電変換 装置に適した基板が得られる。  Further, when a transparent conductive film having a haze ratio of 10% or less is formed on the surface of the transparent substrate facing the key surface, a substrate suitable for a photoelectric conversion device having a photoelectric conversion layer made of crystalline silicon can be obtained.
こうして、 本発明により光電変換率の高い光電変換装置が得られる。 本発明は、 その意図および本質的な特徴から逸れない限り、 他の具体 的な形態を含みうる。 この明細書に開示されている形態は、 すべての点 で、 説明であって限定的なものではなく、 本発明の範囲は上記説明では なく付随する請求の範囲により示されており、 請求の範囲に記載の発明 と均等の範囲にある変更すベてもここに包含するものとする。 Thus, a photoelectric conversion device having a high photoelectric conversion rate can be obtained according to the present invention. The present invention may include other specific forms without departing from the spirit and essential characteristics thereof. The form disclosed in this specification However, the description is not restrictive, and the scope of the present invention is indicated not by the above description but by the appended claims, and all modifications within the scope equivalent to the invention described in the claims are to be made. Shall also be included here.

Claims

請求の範囲 The scope of the claims
1 . 粒径 3 0 O nm 以上のシリカを主成分とする微粒子を含有する反射 抑制膜が透明基体の主表面に形成された光電変換装置用基板。 1. A substrate for a photoelectric conversion device in which a reflection suppression film containing fine particles mainly composed of silica having a particle diameter of 30 O nm or more is formed on a main surface of a transparent substrate.
δ δ
2 . 上記微粒子の粒径が 3 0 0〜 6 0 0 nm である請求項 1 に記載の光 電変換装置用基板。 2. The substrate for a photoelectric conversion device according to claim 1, wherein the particle size of the fine particles is from 300 to 600 nm .
3 . 反射抑制膜が、 粒径 3 0 O nm 以上のシリカを主成分とする微粒子0 とは粒径の異なるシリカを主成分とする微粒子をさらに含有する請求項3. The antireflection film further comprises fine particles mainly composed of silica having a particle diameter different from that of fine particles mainly composed of silica having a particle diameter of 30 O nm or more.
1に記載の光電変換装置用基板。 2. The substrate for a photoelectric conversion device according to 1.
4 . 上記粒径の異なるシリカを主成分とする微粒子は、 その粒径が 5 0 〜 1 5 O nmである請求項 3に記載の光電変換装置用基板。4. The substrate for a photoelectric conversion device according to claim 3, wherein the fine particles mainly composed of silica having different particle diameters have a particle diameter of 50 to 15 O nm.
5 Five
5 . 上記透明基体の主表面において、 6 0 %以上の領域に微粒子が存在 する請求項 1 〜 4のいずれか 1 項に記載の光電変換装置用基板。  5. The substrate for a photoelectric conversion device according to any one of claims 1 to 4, wherein fine particles are present in a region of 60% or more on the main surface of the transparent substrate.
6 . 上記透明基体の主表面の対向面に、 ヘイズ率 1 0 %以下の透明導電0 膜が形成された請求項 1〜 5のいずれか 1項に記載の光電変換装置用基 板。 6. The substrate for a photoelectric conversion device according to any one of claims 1 to 5, wherein a transparent conductive film having a haze ratio of 10% or less is formed on a surface facing the main surface of the transparent substrate.
7 . 請求项〗 〜 6のいずれか 1項に記載の基板を備えた光電変換装置。 7. A photoelectric conversion device comprising the substrate according to any one of claims 1 to 6.
PCT/JP2000/009056 1999-12-20 2000-12-20 Photoelectric transducer and substrate for photoelectric transducer WO2001047033A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/361808 1999-12-20
JP36180899 1999-12-20
JP2000/17310 2000-01-26
JP2000017310 2000-01-26

Publications (1)

Publication Number Publication Date
WO2001047033A1 true WO2001047033A1 (en) 2001-06-28

Family

ID=26581320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/009056 WO2001047033A1 (en) 1999-12-20 2000-12-20 Photoelectric transducer and substrate for photoelectric transducer

Country Status (1)

Country Link
WO (1) WO2001047033A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008137412A1 (en) * 2007-05-01 2008-11-13 Jacobs Gregory F Photovoltaic devices and photovoltaic roofing elements including granules, and roofs using them
CN102270667A (en) * 2011-07-27 2011-12-07 保定天威英利新能源有限公司 Component for increasing power generation efficiency of N-type monocrystalline silicon photovoltaic cell and manufacturing method thereof
WO2016051718A1 (en) * 2014-09-30 2016-04-07 日本板硝子株式会社 Low-reflection coating, glass sheet equipped with low-reflection coating, glass sheet having low-reflection coating, glass substrate, and photoelectric conversion device
WO2016181794A1 (en) * 2015-05-08 2016-11-17 富士フイルム株式会社 Laminate for plating processing, conductive laminate manufacturing method, touch panel sensor, and touch panel
JPWO2016002215A1 (en) * 2014-06-30 2017-04-27 日本板硝子株式会社 Low reflection coating, substrate with low reflection coating and photoelectric conversion device
KR20180091113A (en) * 2009-12-18 2018-08-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device including optical sensor and driving method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175601A (en) * 1988-09-09 1990-07-06 Hitachi Ltd Ultrafine particle, production thereof and ultrafine-particle film-utilizing device
JPH02177573A (en) * 1988-12-28 1990-07-10 Matsushita Electric Ind Co Ltd Photovoltaic device
JPH11274536A (en) * 1998-03-26 1999-10-08 Mitsubishi Chemical Corp Substrate for solar cell
EP1058320A2 (en) * 1999-05-31 2000-12-06 Kaneka Corporation Solar battery module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175601A (en) * 1988-09-09 1990-07-06 Hitachi Ltd Ultrafine particle, production thereof and ultrafine-particle film-utilizing device
JPH02177573A (en) * 1988-12-28 1990-07-10 Matsushita Electric Ind Co Ltd Photovoltaic device
JPH11274536A (en) * 1998-03-26 1999-10-08 Mitsubishi Chemical Corp Substrate for solar cell
EP1058320A2 (en) * 1999-05-31 2000-12-06 Kaneka Corporation Solar battery module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008137412A1 (en) * 2007-05-01 2008-11-13 Jacobs Gregory F Photovoltaic devices and photovoltaic roofing elements including granules, and roofs using them
KR20180091113A (en) * 2009-12-18 2018-08-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device including optical sensor and driving method thereof
US10360858B2 (en) 2009-12-18 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Display device including optical sensor and driving method thereof
KR102020739B1 (en) * 2009-12-18 2019-09-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device including optical sensor and driving method thereof
US10796647B2 (en) 2009-12-18 2020-10-06 Semiconductor Energy Laboratory Co., Ltd. Display device including optical sensor and driving method thereof
CN102270667A (en) * 2011-07-27 2011-12-07 保定天威英利新能源有限公司 Component for increasing power generation efficiency of N-type monocrystalline silicon photovoltaic cell and manufacturing method thereof
JPWO2016002215A1 (en) * 2014-06-30 2017-04-27 日本板硝子株式会社 Low reflection coating, substrate with low reflection coating and photoelectric conversion device
WO2016051718A1 (en) * 2014-09-30 2016-04-07 日本板硝子株式会社 Low-reflection coating, glass sheet equipped with low-reflection coating, glass sheet having low-reflection coating, glass substrate, and photoelectric conversion device
JPWO2016051718A1 (en) * 2014-09-30 2017-07-13 日本板硝子株式会社 Low reflection coating, glass plate with low reflection coating, glass plate with low reflection coating, glass substrate, and photoelectric conversion device
WO2016181794A1 (en) * 2015-05-08 2016-11-17 富士フイルム株式会社 Laminate for plating processing, conductive laminate manufacturing method, touch panel sensor, and touch panel

Similar Documents

Publication Publication Date Title
JP4841782B2 (en) Low reflective film and solar panel
US6362414B1 (en) Transparent layered product and glass article using the same
EP1036774B1 (en) Glass substrate having transparent conductive film
JP2862174B2 (en) Substrates for solar cells
JP5063926B2 (en) Method for producing antireflection substrate
JP4430402B2 (en) Glass substrate and manufacturing method thereof
WO2001065612A1 (en) Photoelectric device
EP1533850A2 (en) Photoelectric conversion device and substrate for photoelectric conversion device
JP2001053307A (en) Substrate for photoelectric conversion device and manufacture thereof and photoelectric conversion device using the same
US8093490B2 (en) Method for forming thin film, substrate having transparent electroconductive film and photoelectric conversion device using the substrate
JP2007121786A (en) Method of manufacturing coating liquid, and method of manufacturing antireflection film using the coating liquid
WO2001047033A1 (en) Photoelectric transducer and substrate for photoelectric transducer
WO2003017377A1 (en) Glass plate having electroconductive film formed thereon
WO2022255205A1 (en) Substrate with film
JP2005330172A (en) Glass sheet, its production method, low reflective transparent glass sheet, low reflective transparent electroconductive substrate, its production method, and photoelectric transfer element using low reflective transparent electroconductive substrate
JP4362273B2 (en) Substrate manufacturing method
JP5160574B2 (en) Photoelectric conversion device
JP2003229584A (en) Glass substrate for photoelectric converter and photoelectric converter using the same
JP2002365403A (en) Low reflective film and transparent laminated body using the same
JP3984404B2 (en) Glass plate with conductive film, method for producing the same, and photoelectric conversion device using the same
JP2006332711A (en) Photoelectric conversion device
JP2017001924A (en) Coating film-fitted glass plate
JP7283529B1 (en) Substrate with laminated film
JP7511131B2 (en) Substrate with laminated film
JP2003054996A (en) Reflection suppressing film and transparent base body provided with the same thereon

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 547668

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase