WO2001044419A1 - LUBRICANTS CONTAINING A BIMETALLIC DETERGENT SYSTEM AND A METHOD OF REDUCING NOx EMISSIONS EMPLOYING SAME - Google Patents
LUBRICANTS CONTAINING A BIMETALLIC DETERGENT SYSTEM AND A METHOD OF REDUCING NOx EMISSIONS EMPLOYING SAME Download PDFInfo
- Publication number
- WO2001044419A1 WO2001044419A1 PCT/US2000/033703 US0033703W WO0144419A1 WO 2001044419 A1 WO2001044419 A1 WO 2001044419A1 US 0033703 W US0033703 W US 0033703W WO 0144419 A1 WO0144419 A1 WO 0144419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- acid
- substituted
- groups
- parts
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 239000003599 detergent Substances 0.000 title claims abstract description 56
- 239000000314 lubricant Substances 0.000 title description 20
- 239000000203 mixture Substances 0.000 claims abstract description 237
- 239000003921 oil Substances 0.000 claims abstract description 92
- 229910052751 metal Inorganic materials 0.000 claims abstract description 67
- 239000002184 metal Substances 0.000 claims abstract description 67
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 60
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract description 54
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000011575 calcium Substances 0.000 claims abstract description 28
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 28
- 239000010687 lubricating oil Substances 0.000 claims abstract description 27
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000002485 combustion reaction Methods 0.000 claims abstract description 26
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 25
- 239000002270 dispersing agent Substances 0.000 claims abstract description 25
- 239000000654 additive Substances 0.000 claims abstract description 24
- 239000002585 base Substances 0.000 claims abstract description 24
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 21
- 239000000446 fuel Substances 0.000 claims abstract description 21
- 230000001050 lubricating effect Effects 0.000 claims abstract description 21
- 230000000996 additive effect Effects 0.000 claims abstract description 13
- 229960002317 succinimide Drugs 0.000 claims abstract description 13
- 238000004140 cleaning Methods 0.000 claims abstract description 5
- 229920000098 polyolefin Polymers 0.000 claims description 71
- -1 polypropylene Polymers 0.000 claims description 71
- 229920000768 polyamine Polymers 0.000 claims description 64
- 239000003795 chemical substances by application Substances 0.000 claims description 61
- 150000001412 amines Chemical class 0.000 claims description 52
- 239000002253 acid Substances 0.000 claims description 48
- 238000006243 chemical reaction Methods 0.000 claims description 44
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 37
- 239000000460 chlorine Substances 0.000 claims description 37
- 229910052801 chlorine Inorganic materials 0.000 claims description 37
- 125000000217 alkyl group Chemical group 0.000 claims description 31
- 150000003460 sulfonic acids Chemical class 0.000 claims description 29
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 24
- 229920001083 polybutene Polymers 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 18
- 229940014800 succinic anhydride Drugs 0.000 claims description 18
- 150000008064 anhydrides Chemical class 0.000 claims description 15
- 150000002989 phenols Chemical class 0.000 claims description 14
- 239000011572 manganese Substances 0.000 claims description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 12
- 229910052725 zinc Inorganic materials 0.000 claims description 12
- 239000011701 zinc Substances 0.000 claims description 12
- 150000007513 acids Chemical class 0.000 claims description 11
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 11
- 239000007795 chemical reaction product Substances 0.000 claims description 11
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000011734 sodium Substances 0.000 claims description 10
- 229910052708 sodium Inorganic materials 0.000 claims description 10
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 9
- 239000005977 Ethylene Substances 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 8
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical class OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 claims description 8
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 7
- 229920001155 polypropylene Polymers 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 6
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 238000010790 dilution Methods 0.000 claims description 4
- 239000012895 dilution Substances 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 239000011133 lead Substances 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000011135 tin Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 239000004711 α-olefin Substances 0.000 claims description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229920001281 polyalkylene Polymers 0.000 claims description 2
- 125000004430 oxygen atom Chemical group O* 0.000 claims 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims 2
- 229960004889 salicylic acid Drugs 0.000 claims 2
- MXZROAOUCUVNHX-UHFFFAOYSA-N 2-Aminopropanol Chemical compound CCC(N)O MXZROAOUCUVNHX-UHFFFAOYSA-N 0.000 claims 1
- 125000004920 4-methyl-2-pentyl group Chemical group CC(CC(C)*)C 0.000 claims 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims 1
- 235000019198 oils Nutrition 0.000 description 90
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 48
- 125000001424 substituent group Chemical group 0.000 description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 39
- 229910052757 nitrogen Inorganic materials 0.000 description 34
- 239000000047 product Substances 0.000 description 32
- 150000003839 salts Chemical class 0.000 description 31
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 29
- 239000000376 reactant Substances 0.000 description 28
- 239000002480 mineral oil Substances 0.000 description 27
- 235000010446 mineral oil Nutrition 0.000 description 27
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 25
- 150000001336 alkenes Chemical class 0.000 description 25
- 239000000243 solution Substances 0.000 description 25
- 229910052717 sulfur Inorganic materials 0.000 description 21
- 239000011593 sulfur Substances 0.000 description 21
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 20
- 125000002947 alkylene group Chemical group 0.000 description 19
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 18
- 125000001931 aliphatic group Chemical group 0.000 description 17
- 229930195733 hydrocarbon Natural products 0.000 description 17
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 17
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 16
- 150000002430 hydrocarbons Chemical class 0.000 description 16
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical class ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 15
- 239000004215 Carbon black (E152) Substances 0.000 description 14
- 239000000178 monomer Substances 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 13
- 229920002367 Polyisobutene Polymers 0.000 description 13
- 238000007792 addition Methods 0.000 description 13
- 229910052698 phosphorus Inorganic materials 0.000 description 13
- 239000011574 phosphorus Substances 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 12
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000011787 zinc oxide Substances 0.000 description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 11
- 238000007664 blowing Methods 0.000 description 11
- 239000000706 filtrate Substances 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 150000001298 alcohols Chemical class 0.000 description 10
- 239000003085 diluting agent Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 150000001735 carboxylic acids Chemical group 0.000 description 9
- 230000007935 neutral effect Effects 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 9
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical compound CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000003208 petroleum Substances 0.000 description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 8
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 7
- 239000012141 concentrate Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 229910052749 magnesium Inorganic materials 0.000 description 7
- 159000000003 magnesium salts Chemical class 0.000 description 7
- 235000019271 petrolatum Nutrition 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 7
- 150000003751 zinc Chemical class 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 150000004996 alkyl benzenes Chemical class 0.000 description 6
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 6
- 239000000920 calcium hydroxide Substances 0.000 description 6
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 125000005842 heteroatom Chemical group 0.000 description 6
- 125000000623 heterocyclic group Chemical group 0.000 description 6
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 6
- 150000004885 piperazines Chemical class 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 150000003871 sulfonates Chemical class 0.000 description 6
- 229960001124 trientine Drugs 0.000 description 6
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 5
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 229920001519 homopolymer Polymers 0.000 description 5
- 239000010705 motor oil Substances 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- 239000012188 paraffin wax Substances 0.000 description 5
- 150000003870 salicylic acids Chemical class 0.000 description 5
- 235000011044 succinic acid Nutrition 0.000 description 5
- 239000010689 synthetic lubricating oil Substances 0.000 description 5
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 5
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 238000003915 air pollution Methods 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000007859 condensation product Substances 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 150000001991 dicarboxylic acids Chemical class 0.000 description 4
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- 150000002440 hydroxy compounds Chemical class 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 239000011630 iodine Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 238000007127 saponification reaction Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 150000003333 secondary alcohols Chemical class 0.000 description 4
- 150000003444 succinic acids Chemical class 0.000 description 4
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 4
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 4
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 4
- 239000003039 volatile agent Substances 0.000 description 4
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 125000004103 aminoalkyl group Chemical group 0.000 description 3
- 229940092714 benzenesulfonic acid Drugs 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical compound NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 description 3
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 3
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 150000003053 piperidines Chemical class 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- GGQQNYXPYWCUHG-RMTFUQJTSA-N (3e,6e)-deca-3,6-diene Chemical compound CCC\C=C\C\C=C\CC GGQQNYXPYWCUHG-RMTFUQJTSA-N 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 2
- UWNADWZGEHDQAB-UHFFFAOYSA-N 2,5-dimethylhexane Chemical group CC(C)CCC(C)C UWNADWZGEHDQAB-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- LJKQIQSBHFNMDV-UHFFFAOYSA-N 7-thiabicyclo[4.1.0]hepta-2,4-dien-6-ol Chemical compound C1=CC=CC2(O)C1S2 LJKQIQSBHFNMDV-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241000158728 Meliaceae Species 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004264 Petrolatum Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 125000002015 acyclic group Chemical group 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical group 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 2
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 239000002199 base oil Substances 0.000 description 2
- 150000008107 benzenesulfonic acids Chemical class 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- ZMRQTIAUOLVKOX-UHFFFAOYSA-L calcium;diphenoxide Chemical class [Ca+2].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 ZMRQTIAUOLVKOX-UHFFFAOYSA-L 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 2
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical class C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000013020 final formulation Substances 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- QNVRIHYSUZMSGM-UHFFFAOYSA-N hexan-2-ol Chemical compound CCCCC(C)O QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.000 description 2
- ZOCHHNOQQHDWHG-UHFFFAOYSA-N hexan-3-ol Chemical compound CCCC(O)CC ZOCHHNOQQHDWHG-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000010688 mineral lubricating oil Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 150000002780 morpholines Chemical class 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 238000002103 osmometry Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 150000002924 oxiranes Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 2
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pentene-2 Natural products CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 2
- 229940066842 petrolatum Drugs 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920006389 polyphenyl polymer Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 150000003235 pyrrolidines Chemical class 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- 239000003784 tall oil Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- CMQCNTNASCDNGR-UHFFFAOYSA-N toluene;hydrate Chemical compound O.CC1=CC=CC=C1 CMQCNTNASCDNGR-UHFFFAOYSA-N 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- WJECKFZULSWXPN-UHFFFAOYSA-N 1,2-didodecylbenzene Chemical class CCCCCCCCCCCCC1=CC=CC=C1CCCCCCCCCCCC WJECKFZULSWXPN-UHFFFAOYSA-N 0.000 description 1
- RMSGQZDGSZOJMU-UHFFFAOYSA-N 1-butyl-2-phenylbenzene Chemical group CCCCC1=CC=CC=C1C1=CC=CC=C1 RMSGQZDGSZOJMU-UHFFFAOYSA-N 0.000 description 1
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 1
- YCXSPKZLGCFDKS-UHFFFAOYSA-N 1-dodecylcyclohexane-1-sulfonic acid Chemical class CCCCCCCCCCCCC1(S(O)(=O)=O)CCCCC1 YCXSPKZLGCFDKS-UHFFFAOYSA-N 0.000 description 1
- GMHMYSDPLUGTHX-UHFFFAOYSA-N 1-hexadecylcyclopentane-1-sulfonic acid Chemical class CCCCCCCCCCCCCCCCC1(S(O)(=O)=O)CCCC1 GMHMYSDPLUGTHX-UHFFFAOYSA-N 0.000 description 1
- OOFAEFCMEHZNGP-UHFFFAOYSA-N 1-n',1-n'-dimethylpropane-1,1-diamine Chemical compound CCC(N)N(C)C OOFAEFCMEHZNGP-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- QNVRIHYSUZMSGM-LURJTMIESA-N 2-Hexanol Natural products CCCC[C@H](C)O QNVRIHYSUZMSGM-LURJTMIESA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- CYOIAXUAIXVWMU-UHFFFAOYSA-N 2-[2-aminoethyl(2-hydroxyethyl)amino]ethanol Chemical compound NCCN(CCO)CCO CYOIAXUAIXVWMU-UHFFFAOYSA-N 0.000 description 1
- UXFQFBNBSPQBJW-UHFFFAOYSA-N 2-amino-2-methylpropane-1,3-diol Chemical compound OCC(N)(C)CO UXFQFBNBSPQBJW-UHFFFAOYSA-N 0.000 description 1
- QPRQEDXDYOZYLA-UHFFFAOYSA-N 2-methylbutan-1-ol Chemical compound CCC(C)CO QPRQEDXDYOZYLA-UHFFFAOYSA-N 0.000 description 1
- WPFCHJIUEHHION-UHFFFAOYSA-N 2-nitronaphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=C([N+]([O-])=O)C=CC2=C1 WPFCHJIUEHHION-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- ZAXCZCOUDLENMH-UHFFFAOYSA-N 3,3,3-tetramine Chemical compound NCCCNCCCNCCCN ZAXCZCOUDLENMH-UHFFFAOYSA-N 0.000 description 1
- SEYVCILABJMWEI-UHFFFAOYSA-N 3,4-dihexadecylthianthrene-1,2-disulfonic acid Chemical class S1C2=CC=CC=C2SC2=C1C(S(O)(=O)=O)=C(S(O)(=O)=O)C(CCCCCCCCCCCCCCCC)=C2CCCCCCCCCCCCCCCC SEYVCILABJMWEI-UHFFFAOYSA-N 0.000 description 1
- FTGKPHQQHPCLAI-UHFFFAOYSA-N 3,6-dithiatetracyclo[6.4.0.02,4.05,7]dodeca-1(12),8,10-triene Chemical compound C12=CC=CC=C2C2SC2C2C1S2 FTGKPHQQHPCLAI-UHFFFAOYSA-N 0.000 description 1
- ZQDPJFUHLCOCRG-UHFFFAOYSA-N 3-hexene Chemical compound CCC=CCC ZQDPJFUHLCOCRG-UHFFFAOYSA-N 0.000 description 1
- UIKUBYKUYUSRSM-UHFFFAOYSA-N 3-morpholinopropylamine Chemical compound NCCCN1CCOCC1 UIKUBYKUYUSRSM-UHFFFAOYSA-N 0.000 description 1
- 125000002373 5 membered heterocyclic group Chemical group 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Chemical class C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 1
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 239000005750 Copper hydroxide Substances 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920002368 Glissopal ® Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical class C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- SWYYYSRRSNGOFK-UHFFFAOYSA-N O=NSN=O Chemical compound O=NSN=O SWYYYSRRSNGOFK-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021319 Palmitoleic acid Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- KIDHWZJUCRJVML-UHFFFAOYSA-N Putrescine Natural products NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Chemical class O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 150000008072 azecines Chemical class 0.000 description 1
- 150000001538 azepines Chemical class 0.000 description 1
- 150000001539 azetidines Chemical class 0.000 description 1
- 150000001541 aziridines Chemical class 0.000 description 1
- 150000004916 azocines Chemical class 0.000 description 1
- 150000007982 azolidines Chemical class 0.000 description 1
- 150000008068 azonines Chemical class 0.000 description 1
- 229910052728 basic metal Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- 150000001559 benzoic acids Chemical class 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PLLZRTNVEXYBNA-UHFFFAOYSA-L cadmium hydroxide Chemical compound [OH-].[OH-].[Cd+2] PLLZRTNVEXYBNA-UHFFFAOYSA-L 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 1
- 239000012612 commercial material Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910001956 copper hydroxide Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- OVHKECRARPYFQS-UHFFFAOYSA-N cyclohex-2-ene-1,1-dicarboxylic acid Chemical class OC(=O)C1(C(O)=O)CCCC=C1 OVHKECRARPYFQS-UHFFFAOYSA-N 0.000 description 1
- ZHGASCUQXLPSDT-UHFFFAOYSA-N cyclohexanesulfonic acid Chemical class OS(=O)(=O)C1CCCCC1 ZHGASCUQXLPSDT-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical compound C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 1
- 125000004188 dichlorophenyl group Chemical group 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 125000004925 dihydropyridyl group Chemical class N1(CC=CC=C1)* 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- RAQDACVRFCEPDA-UHFFFAOYSA-L ferrous carbonate Chemical compound [Fe+2].[O-]C([O-])=O RAQDACVRFCEPDA-UHFFFAOYSA-L 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000003948 formamides Chemical class 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002475 indoles Chemical class 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 150000002518 isoindoles Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 229910021514 lead(II) hydroxide Inorganic materials 0.000 description 1
- 239000011968 lewis acid catalyst Substances 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- AQGNVWRYTKPRMR-UHFFFAOYSA-N n'-[2-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCNCCN AQGNVWRYTKPRMR-UHFFFAOYSA-N 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N n-butyl methyl ketone Natural products CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000001741 organic sulfur group Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000005702 oxyalkylene group Chemical class 0.000 description 1
- 238000005949 ozonolysis reaction Methods 0.000 description 1
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003022 phthalic acids Chemical class 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- UUCCCPNEFXQJEL-UHFFFAOYSA-L strontium dihydroxide Chemical compound [OH-].[OH-].[Sr+2] UUCCCPNEFXQJEL-UHFFFAOYSA-L 0.000 description 1
- 229910001866 strontium hydroxide Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical group O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 150000008054 sulfonate salts Chemical class 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- FWMUJAIKEJWSSY-UHFFFAOYSA-N sulfur dichloride Chemical compound ClSCl FWMUJAIKEJWSSY-UHFFFAOYSA-N 0.000 description 1
- 150000001911 terphenyls Chemical class 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 229920006029 tetra-polymer Polymers 0.000 description 1
- 125000004853 tetrahydropyridinyl group Chemical class N1(CCCC=C1)* 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- GVIJJXMXTUZIOD-UHFFFAOYSA-N thianthrene Chemical compound C1=CC=C2SC3=CC=CC=C3SC2=C1 GVIJJXMXTUZIOD-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical class [H]S* 0.000 description 1
- 150000004886 thiomorpholines Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Chemical class OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 238000007056 transamidation reaction Methods 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- LSZKGNJKKQYFLR-UHFFFAOYSA-J tri(butanoyloxy)stannyl butanoate Chemical compound [Sn+4].CCCC([O-])=O.CCCC([O-])=O.CCCC([O-])=O.CCCC([O-])=O LSZKGNJKKQYFLR-UHFFFAOYSA-J 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- MBYLVOKEDDQJDY-UHFFFAOYSA-N tris(2-aminoethyl)amine Chemical compound NCCN(CCN)CCN MBYLVOKEDDQJDY-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M163/00—Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
- C10M133/56—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M137/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
- C10M137/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
- C10M137/04—Phosphate esters
- C10M137/10—Thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M143/00—Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M145/00—Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
- C10M145/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M145/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M145/00—Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
- C10M145/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M145/10—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
- C10M145/12—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
- C10M145/14—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M159/00—Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
- C10M159/12—Reaction products
- C10M159/20—Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M159/00—Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
- C10M159/12—Reaction products
- C10M159/20—Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
- C10M159/22—Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing phenol radicals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M159/00—Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
- C10M159/12—Reaction products
- C10M159/20—Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
- C10M159/24—Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing sulfonic radicals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M167/00—Lubricating compositions characterised by the additive being a mixture of a macromolecular compound, a non-macromolecular compound and a compound of unknown or incompletely defined constitution, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/026—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/028—Overbased salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/121—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
- C10M2207/123—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/129—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/22—Acids obtained from polymerised unsaturated acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/26—Overbased carboxylic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/26—Overbased carboxylic acid salts
- C10M2207/262—Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/086—Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/24—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/046—Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/06—Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/022—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbasedsulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/088—Neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/089—Overbased salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/02—Unspecified siloxanes; Silicones
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/05—Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/251—Alcohol-fuelled engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/28—Rotary engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
- C10N2070/02—Concentrating of additives
Definitions
- This invention relates generally to lubricating oil compositions and methods of reducing exhaust emissions, reducing fuel consumption and cleaning combustion chambers of internal combustion engines.
- Emissions from internal combustion engines are the primary cause of air pollution in many cities and metropolitan areas. Such emissions include uncombusted hydrocarbons, hydrocarbons formed in the combustion process, sulfur oxides, nitrogen oxides, and paniculate matter. To attempt to reduce the quantities of these emissions, the federal and state governments have imposed emission standards. These standards typically apply to new engines but have also been
- a fundamentally sound way to reduce the level of vehicle emissions is by reducing the amount of fuel consumed during operation.
- Hydrocarbon emissions are undesirable because of the role they play in air pollution and also because they represent an energy loss from that available in the hydrocarbon fuel.
- Sulfur oxides not only contribute to local air pollution, but also are the principal cause of acid rain.
- Urban smog is caused primarily by nitrogen oxides (NO x ).
- the black smoke of engine exhaust is typically caused by paniculate emissions which add to the local air pollution and may cause health problems, including cancer, known to be caused by the polycyclic aromatic compounds in the solvent organic fraction of the particulates.
- the levels of emissions of an engine are interrelated by complex and poorly understood mechanisms. It is known, for example, that adding anhydrous alcohol to gasoline reduces the hydrocarbon content of the fuel, and also tends to reduce the levels of emitted particulates and carbon monoxide. Increasing the temperature of the in-cylinder combustion usually results in more complete combustion of the fuel, reducing hydrocarbon emissions, but also results in increased nitrogen oxides and affects the polycyclic aromatic hydrocarbon constituents of the particulates. Sulfur oxide emissions can be reduced by using low sulfur fuels, but it is known that reducing sulfur in the fuel normally changes the aromatics and boiling range of the fuel, both of which affect the amount of particulates emitted.
- U.S. Patent No. 4,326,972 (Chamberlin, m, April 27, 1982) relates to fuel economy of internal combustion engines, especially gasoline engines, which is improved by lubricating such engines with specific lubricant compositions in which the essential ingredients are a specific sulfurized composition and a basic alkali metal sulfonate. Additional ingredients may include at least one oil-dispersible detergent or dispersant, a viscosity improving agent, and a specific salt of a phosphorus acid.
- lubricating oil compositions for internal combustion engines which comprise (A) at least about 60% by weight of oil of lubricating viscosity, (B) at least about 2.0% by weight of at least one carboxylic derivative composition produced by reacting (B-l) at least one substituted succinic acylating agent with (B-2) from about 0.70 equivalent up to less than one equivalent, per equivalent of acylating agent, of at least one amine compound characterized by the presence within its structure of at lest one HN ⁇ group, and wherein said substituted succinic acylating agent consists of substituent groups and succinic groups wherein the substituent groups are derived from a polyalkene, said polyalkene being characterized by an M n value of about 1300 to about 5000 and an Mw /M n value of about 1.5 to about 4.5,
- the oil compositions of the invention also may contain (D) at least one metal dihydrocarbyl dithiophosphate and/or (E) at least one carboxylic ester derivative composition, and/or (F) at least one partial fatty acid ester of a polyhydric alcohol, and/or (G) at least one neutral or basic alkaline earth metal salt of at least one acidic organic compound.
- the oil compositions of the present invention contain the above additives and other additives described in this specification in amounts sufficient to enable the oil to meet all the performance requirements of API Service Classification SG.
- 5,256,322 (Cohu, October 26, 1993) relates to a lubricating oil for use in methanol fueled internal combustion engines, the lubricating oil having a total base number from 9.0 to about 14.0 and comprising: a) a suitable base oil; b) overbased sodium sulfonate in an amount sufficient to provide a base number from about 1.0 to about 2.0 in said lubricating oil; and c) at least one metal sulfonate selected from the group consisting of overbased calcium sulfonate, overbased magnesium sulfonate and mixtures thereof in an amount sufficient to provide a base number from about 8.0 to about 12.0 in said lubricating oil.
- U.S. Patent No. 5,562,864 (Salomon et al, October 8, 1996) describes a lubricating oil composition which comprises a major amount of an oil of lubricating viscosity and
- (A-l) at least one substituted succinic acylating agent containing at least about 50 carbon atoms in the substituent with
- (A-2) from about 0.5 equivalent up to about 2 moles, per equivalent of acylating agent (A-l), of at least one amine compound characterized by the presence within its structure of at least one HN ⁇ group;
- (C-l) at least one magnesium overbased salt of an acidic organic compound provided that the lubricating composition is free of calcium overbased salts of acidic organic compounds;
- (C-2) at least one calcium overbased salt of an acidic organic compound provided that the lubricating composition is free of magnesium overbased salts of acidic organic compounds.
- U.S. Patent No. 5,726,133 (Blahey et al., March 10, 1998) is directed to a low ash natural gas engine oil which contains an additive package including a particular combination of detergents and also containing other standard additives such as dispersants, antioxidants, antiwear agents, metal deactivators, antifoamants and pour point depressants and viscosity index improvers.
- the low ash natural gas engine oil exhibits reduced deposit formation and enhanced resistance to oil oxidation and nitration.
- 5,804,537 (Boffa et al., September 8, 1998) relates to a low phosphorus passenger car motor oil containing an oil of lubricating viscosity as the major component and a tri-metal detergent mixture as a minor component, wherein the tri-metal detergent mixture comprises at least one calcium overbased metal detergent, at least one magnesium overbased metal detergent and at least one sodium overbased metal detergent, wherein the tri-metal detergent mixture is present in the oil composition in an amount such that the total TBN contributed to the oil composition by the tri-metal detergent mixture is from about 2 to about 12, and wherein the calcium overbased detergent contributes from about 8 to about 42% of the total TBN contributed by the tri-metal detergent mixture, the magnesium overbased detergent contributes from about 29 to about 60% of the total TBN contributed by the tri-metal detergent mixture, and the sodium overbased detergent contributes from about 15 to about 64% of the total TBN contributed by the tri-metal detergent mixture.
- This invention is directed to a lubricating oil composition
- a lubricating oil composition comprising a major amount of an oil of lubricating viscosity and an additive system comprising
- (C) from about 0.1 to about 5% by weight of a metal dihydrocarbyl dithiophosphate of the formula wherein R 1 and R 2 are each, independently, hydrocarbyl groups containing from 3 to 13 carbon atoms, M is a metal and n is an integer equal to the valence of M.
- the combustion chamber of an internal combustion engine is cleaned utilizing a NO x emission-reducing amount of a lubricating oil composition comprising components (A), (B), and (C).
- a lubricating oil composition comprising components (A), (B), and (C).
- the words “cleaned”, “clean” or “cleaning” signify removal of paniculate solids from the combustion chamber in the case of a combustion chamber that contains deposits and/or the prevention or reduction of paniculate solids build-up in the combustion chamber.
- the lubricating compositions of this invention also provide a fuel-economy improving benefit.
- hydrocarbyl substituent As used herein, the terms hydrocarbyl substituent, hydrocarbyl group, hydrocarbon group, and the like, are used to refer to a group having one or more carbon atoms directly attached to the remainder of a molecule and having a hydrocarbon or predominantly hydrocarbon character.
- Examples include: (1) purely hydrocarbon groups, that is, aliphatic (e.g., alkyl, alkenyl or alkylene), alicyclic (e.g., cycloalkyl, cycloalkenyl) groups, aromatic groups, and aromatic-, aliphatic-, and alicyclic-substituted aromatic groups, as well as cyclic groups wherein the ring is completed through another portion of the molecule; (2) substituted hydrocarbon groups, that is, hydrocarbon groups containing non- hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the group (e.g., halo, hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy); (3) hetero substituted hydrocarbon groups, that is, hydrocarbon groups containing substituents which, while having a predominantly hydrocarbon character, in the context of this invention, contain other than carbon in a ring or chain otherwise composed of carbon atoms. Heter
- no more than about three nonhydrocarbon groups or heteroatoms and preferably no more than one, will be present for each ten carbon atoms in a hydrocarbyl group.
- the hydrocarbyl groups are preferably free from acetylenic unsaturation. Ethylenic unsaturation, when present will generally be such that there is no more than one ethylenic linkage present for every ten carbon-to-carbon bonds.
- the hydrocarbyl groups are often completely saturated and therefore contain no ethylenic unsaturation.
- the term "lower” as used herein in conjunction with terms such as hydrocarbyl, alkyl, alkenyl, alkoxy, and the like, is intended to describe such groups which contain a total of up to 7 carbon atoms.
- the expression “consisting essentially of permits the inclusion of substances which do not materially affect the basic and novel characteristics of the composition under consideration. Accordingly, the expressions "consists essentially of or “consisting essentially of mean that the recited embodiment, feature, component, etc. must be present and that other embodiments, features, components, etc., may be present provided the presence thereof does not materially affect the performance, character or effect of the recited embodiment, feature, component, etc. The presence of impurities or a small amount of a material that has no material effect on a composition is permitted. Also, the intentional inclusion of small amounts of one or more non-recited components that otherwise have no material effect on the character or performance of a composition is still included within the definition of "consisting essentially of.
- total base number refers to a measure of the amount of acid (perchloric or hydrochloric) needed to neutralize the basicity of a product or a composition, expressed as milligrams KOH/gram of sample. It is measured using Test Method ASTM D-2896. Oil of Lubricating Viscosity
- the lubricating compositions of this invention employ an oil of lubricating viscosity, including natural or synthetic lubricating oils and mixtures thereof. Mixtures of mineral oil and synthetic oils, particularly polyalphaolefin oils and polyester oils, are often used.
- Natural oils include animal oils and vegetable oils (e.g. castor oil, lard oil and other vegetable acid esters) as well as mineral lubricating oils such as liquid petroleum oils and solvent-treated or acid treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types. Hydrotreated or hydrocracked oils are included within the scope of useful oils of lubricating viscosity.
- Oils of lubricating viscosity derived from coal or shale are also useful.
- Synthetic lubricating oils include hydrocarbon oils and halosubstituted hydrocarbon oils such as polymerized and interpolymerized olefins, etc. and mixtures thereof, alkylbenzenes, polyphenyl, (e.g., biphenyls, terphenyls, alkylated polyphenyls, etc.), alkylated diphenyl ethers and alkylated diphenyl sulfides and their derivatives, analogs and homologues thereof and the like.
- Alkylene oxide polymers and interpolymers and derivatives thereof, and those where terminal hydroxyl groups have been modified by esterification, etherification, etc., constitute other classes of known synthetic lubricating oils that can be used.
- Another suitable class of synthetic lubricating oils that can be used comprises the esters of dicarboxylic acids and those made from C 5 to C 12 monocarboxylic acids and polyols or polyether polyols.
- Other synthetic lubricating oils include liquid esters of phosphorus-containing acids, polymeric tetrahydrofurans, alkylated diphenyloxides and the like.
- Unrefined, refined and rerefined oils can used in the compositions of the present invention.
- Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
- Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties.
- Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
- At least two metal overbased detergent compositions are present as (A-l) and (A-2).
- Component (A-l) is at least one alkali metal overbased detergent and (A-2) is at least one calcium overbased detergent.
- Overbased detergents used in this invention are prepared by reacting a metal oxide or metal hydroxide with a substrate and carbon dioxide gas.
- the substrate is usually an acid, usually an acid selected from the group consisting of aliphatic substituted sulfonic acids, aliphatic substituted carboxylic acids and aliphatic substituted phenols.
- the alkali metals comprise at least one of lithium and sodium with sodium being prefened.
- an alkali metal overbased detergent and a calcium metal overbased detergent are both present, they are usually present as separately overbased compositions. That is, an alkali metal overbased composition and a calcium overbased composition are separately prepared then incorporated into the lubricating oil composition. Two separate metal overbased compositions are used. However, an acid simultaneously overbased with both sodium and calcium containing reagents is also useful in the instant invention.
- overbased relates to metal salts (sulfonates, carboxylates and phenates) wherein the amount of metal present exceeds the stoichiometric amount. Such salts are said to have conversion levels in excess of 100% (i.e., they comprise more than 100% of the theoretical amount of metal needed to convert the acid to its "normal”, “neutral” salt).
- metal ratio often abbreviated as MR, is used in the prior art and herein to designate the ratio of total chemical equivalents of metal in the overbased salt to chemical equivalents of the metal in a neutral salt according to known chemical reactivity and stoichiometry.
- the metal ratio is one and in an overbased salt MR is greater than one.
- They are commonly referred to as overbased, hyperbased or superbased salts and are usually salts of organic sulfur acids, carboxylic acids, or phenols.
- the alkali metal overbased detergent typically has a metal ratio of at least 10:1, preferably at least 13:1 and most preferably at least 16:1.
- the calcium overbased detergent typically has a metal ratio of at least 10:1, preferably at least 12:1 and more preferably at least 20:1.
- Sulfonic acids include the mono- or poly-nuclear aromatic or cycloaliphatic compounds which, when overbased, are called sulfonates.
- the oil-soluble sulfonates can be represented for the most part by the following formulae:
- M is a metal cation as described hereinabove
- T is a cyclic nucleus such as, for example, benzene, naphthalene, anthracene, phenanthrene, diphenylene oxide, thianthrene, phenothioxine, diphenylene sulfide, phenothiazine, diphenyl oxide, diphenyl sulfide, diphenylamine, cyclohexane, petroleum naphthenes, decahydro-naphthalene, cyclopentane, etc.
- R 3 in Formula I is an aliphatic group such as alkyl, alkenyl, alkoxy, alkoxyalkyl, carboalkoxyalkyl, etc.
- x is at least 1
- (R 3 ) x + T contains a total of at least 15 carbon atoms
- R 4 in Formula ⁇ is an aliphatic group containing at least about 9, preferably at least about
- R 4 radical examples include alkyl, alkenyl, alkoxyalkyl, carboalkoxyalkyl, etc.
- R 4 examples include groups derived from petrolatum, saturated and unsaturated paraffin wax, and polyolefins, including polymerized C 2 , C 3 , C 4 , C 5 , C 6 , etc., olefins containing up to about 7000 carbon atoms in the polymer.
- the groups T, R 3 , and R 4 in the above formulae can also contain other inorganic or organic substituents in addition to those enumerated above such as, for example, hydroxy, mercapto, halogen, nitro, amino, nitroso, sulfide, disulfide, etc.
- substituents in addition to those enumerated above such as, for example, hydroxy, mercapto, halogen, nitro, amino, nitroso, sulfide, disulfide, etc.
- each of x, y, z and f and g, i, and h is at least 1.
- sulfonic acids useful in this invention are mahogany sulfonic acids; bright stock sulfonic acids; sulfonic acids derived from lubricating oil fractions having a Saybolt viscosity from about 100 seconds at 100°F to about 200 seconds at 210°F; petrolatum sulfonic acids; mono- and poly-wax substituted sulfonic and polysulfonic acids of, e.g., benzene, naphthalene, phenol, diphenyl ether, naphthalene disulfide, diphenylamine, thiophene, alpha-chloronaphthalene, etc.; other substituted sulfonic acids such as alkyl benzene sulfonic acids (where the alkyl group has at least 8 carbons), cetylphenol mono-sulfide sulfonic acids, dicetyl thianthrene disulfonic acids, dilauryl beta naphth
- the bottoms acids are derived from benzene which has been alkylated with propylene tetramers or isobutene trimers to introduce 1,2,3, or more branched-chain C 12 substituents on the benzene ring.
- Dodecyl benzene bottoms principally mixtures of mono- and di-dodecyl benzenes, are available as by-products from the manufacture of household detergents.
- Similar products obtained from alkylation bottoms formed during manufacture of linear alkyl sulfonates (LAS) are also useful in making the sulfonates used in this invention.
- aliphatic sulfonic acids containing at least about 7 carbon atoms, often at least about 12 carbon atoms in the aliphatic group, such as paraffin wax sulfonic acids, unsaturated paraffin wax sulfonic acids, hydroxy-substituted paraffin wax sulfonic acids, hexapropylene sulfonic acids, tetra-amylene sulfonic acids, polyisobutene sulfonic acids wherein the polyisobutene contains from 20 to 7000 or more carbon atoms, chloro-substituted paraffin wax sulfonic acids, nitroparaffin wax sulfonic acids, etc.; cycloaliphatic sulfonic acids such as petroleum naphthene sulfonic acids, cetyl cyclopentyl sulfonic acids, lauryl cyclohexyl sulfonic acids, bis-(di-isobutyl) cyclo
- petroleum sulfonic acids or “petroleum sulfonates” includes all sulfonic acids or the salts thereof derived from petroleum products.
- a particularly valuable group of petroleum sulfonic acids are the mahogany sulfonic acids (so called because of their reddish-brown color) obtained as a by-product from the manufacture of petroleum white oils by a sulfonic acid process.
- Carboxylic acids from which suitable alkali and calcium overbased detergents for use in this invention can be made include aliphatic mono- and polybasic carboxylic acids.
- the aliphatic carboxylic acids generally contain at least 9 carbon atoms, often at least 15 carbon atoms and preferably at least 18 carbon atoms. Usually, they have no more than 400 carbon atoms. Generally, if the aliphatic carbon chain is branched, the acids are more oil-soluble for any given carbon atoms content.
- the aliphatic carboxylic acids can be saturated or unsaturated.
- linolenic acid examples include linolenic acid, linoleic acid, behenic acid, isostearic acid, stearic acid, palmitoleic acid, lauric acid, oleic acid, ricinoleic acid, commercially available mixtures of two or more carboxylic acids, such as tall oil acids, rosin acids, and the like.
- carboxylic acids such as tall oil acids, rosin acids, and the like.
- Preferred aliphatic carboxylic acids are of the formula
- the carboxylic acid is a hydrocarbyl-substituted carboxyalkylene-linked phenol; dihydrocarbyl ester of alkylene dicarboxylic acids, the alkylene group being substituted with a hydroxy group and an additional carboxylic acid group; alkylene-linked polyaromatic molecules, the aromatic moieties whereof comprise at least one hydrocarbyl-substituted phenol and at least one carboxy phenol; and hydrocarbyl-substituted carboxyalkylene-linked phenols.
- carboxylic compounds are prepared by reacting a phenolic reagent with a carboxylic reagent of the general formula
- R , R and R are independently H or a hydrocarbyl group, R is H or an alkyl group, and x is an integer ranging from 0 to about and reactive equivalents thereof.
- R , R and R are independently H or a hydrocarbyl group, R is H or an alkyl group, and x is an integer ranging from 0 to about and reactive equivalents thereof.
- Unsaturated hydroxycarboxylic compounds prepared by reacting olefinic compounds with this carboxylic compound are also useful. Compounds of this type are described in several U.S. Patents including US Patents 5,696,060; 5,696,067;
- Aromatic carboxylic acids are useful for preparing metal salts useful in the compositions of this invention. These include aromatic carboxylic acids such as hydrocarbyl substituted benzoic, phthalic and salicylic acids.
- Salicylic acids and other aromatic carboxylic acids are well known or can be prepared according to procedures known in the art.
- Carboxylic acids of this type and processes for preparing their neutral and basic metal salts are well known and disclosed, for example, in U.S. Patents 2,197,832; 2,197,835; 2,252,662; 2,252,664; 2,714,092; 3,410,798; and 3,595,791. These patents are incorporated by reference for disclosure of carboxylic acids, their basic salts and processes of making the same.
- phenols are considered organic acids.
- overbased salts of phenols are also useful in making (A) of this invention and are well known to those skilled in the art.
- a commonly available class of phenates are those made from phenols of the general formula
- R is as described hereinabove, R is a lower aliphatic of from 1 to 6 carbon atoms, a is an integer of from 1 to 3, b is 1 or 2 and c is 0 or 1.
- phenates for use in this invention are the overbased phenates made by sulfurizing a phenol as described hereinabove with a sulfurizing agent such as sulfur, a sulfur halide or sulfide or hydrosulfide salt.
- a sulfurizing agent such as sulfur, a sulfur halide or sulfide or hydrosulfide salt.
- phenates that are useful are those that are made from phenols that have been linked through alkylene (e.g., methylene) bridges. These are made by reacting single or multi-ring phenols with aldehydes or ketones, typically in the presence of an acid or basic catalyst.
- alkylene e.g., methylene
- Such linked phenates, as well as sulfurized phenates, are described in detail in U.S. Pat. No. 3,350,038; particularly columns 6-8, thereof which is expressly incorporated herein by reference for its disclosure in this regard.
- Salicylic acids may be considered to be carboxylic acids or phenols. Hydrocarbyl substituted salicylic acids are useful for preparing metal salts useful in the compositions of this invention.
- Preferred overbased metal salts are the hydrocarbyl substituted sulfonic acid salts.
- the alkali metal and calcium overbased salts are present in the compositions used in this invention in relative amounts on a per 100 TBN and diluent free basis ranging from about (99.5 - 20) to about (0.5 - 80), preferably from about (99.5-40) to about (0.5-60), more preferably from about (99-45) to about (1-55) and most preferably from about (98-50) to about (2-50).
- alkali metal overbased detergents A-l
- calcium overbased detergents A-2
- all percentages, parts and ratios are by weight and temperatures are in degrees Celsius (°C) unless expressly stated otherwise. Filtrations are conducted using a diatomaceous earth filter aid.
- Example (AVI A flask is charged with 835 parts oil, 118 parts of polyisobutenyl (molecular weight of 1000) substituted succinic anhydride having a saponification number of 100, a solution of 5.9 parts calcium chloride dissolved in 37 parts water, and 118 parts of a mixture of alcohols comprising 61% isobutyl alcohol, 25.5% 2-methyl-l- butanol and 25.5% primary amyl alcohol.
- To the stirred contents are stirred are added 93 parts calcium hydroxide.
- An alkyl benzene sulfonic acid (1000 parts, 1.8 equivalents) is added at a rate which maintains the temperature below 80°C while stirring is continued. Volatiles are removed at 150°C.
- Example (A)-2 A sodium overbased sulfonic acid is prepared by adding 121 parts of the polyisobutenyl succinic anhydride of Example (A)-l, 583 parts diluent oil, 84 parts of a tetrapropene-substituted phenol and 417 parts (0.83 equivalents) of an alkyl benzene sulfonic acid to a reaction vessel. The contents are heated and stirred to 49°C. and 102 parts of a 50% aqueous solution of sodium hydroxide are added, allowing the temperature to rise to 82°C. The temperature is then increased to 86°C. and held at this temperature for one hour.
- Example (A)-3 A reactor is charged with 470 parts diluent oil, 92 parts of the polyisobutenyl succinic anhydride of Example (A)-l, 23 parts acetic acid, 24 parts water and 92 parts (2.5 equivalents) of calcium hydroxide. After stirring for 0.1 hour, 109 parts of the mixture of alcohols of Example (A)-l are added followed by 1000 parts (1.4 equivalents) of an alkyl benzene sulfonic acid. The sulfonic acid is added at a rate to maintain the temperature at 75°C. The contents are stripped of volatiles by heating to 150°C.
- Example (A)-4 Add to a flask about 512 parts by weight of a mineral oil solution containing about 0.5 equivalent of a substantially neutral magnesium salt of an alkylated salicyHc acid wherein the alkyl group has an average of about 18 aliphatic carbon atoms, about 30 parts by weight of an oil mixture containing about 0.037 equivalent of an alkylated benzenesulfonic acid together with about 15 parts by weight (0.65 equivalents) of magnesium oxide and about 250 parts by weight of xylene. Heat to a temperature of about 60°C to 70°C. Increase the heat to about 85°C and add approximately 60 parts by weight of water.
- the filtrate will comprise the basic carboxylic magnesium salt containing 200% of the stoichiometrically equivalent amount of magnesium.
- Example (A)-5 Prepare a substantially neutral magnesium salt of an alkylated salicylic acid wherein the alkyl groups have from 16 to 24 aliphatic carbon atoms by reacting approximately stoichiometric amounts of magnesium chloride with a substantially neutral potassium salt of the alkylated salicylic acid.
- Charge a flask with a reaction mass comprising approximately 6580 parts by weight of a mineral oil solution containing about 6.50 equivalents of the substantially neutral magnesium salt of the alkylated salicylic acid and about 388 parts by weight of an oil mixture containing about 0.48 equivalent of an alkylated benzenesulfonic acid together with approximately 285 parts by weight (14 equivalents) of magnesium oxide and approximately 3252 parts by weight of xylene.
- the filtrate will comprise the basic carboxylic magnesium salts and have a sulfated ash content of 15.7% (sulfated ash) corresponding to 276% of the stoichiometrically equivalent amount.
- Example (AV6 A reaction mixture comprising 2900 grams (3 equivalents) of an oil solution of the magnesium salt of polyisobutylene (average molecular weight— 480)- substituted salicylic acids, 624 grams of mineral oil, 277 grams (1 equivalent) of a commercial mixture of tall oil acids, 1800 grams of xylene, 195 grams (9 equivalents) of magnesium oxide, and 480 grams of water are carbonated at the reflux temperature (about 95°C) for one hour. The carbonated mixture is then stripped by first heating to 160°C with nitrogen blowing (3 cubic feet per hour) and thereafter heating to 165°C at a pressure of 30 mm. (Hg). This stripped carbonated product is filtered, the filtrate being an oil solution of the desired basic magnesium salt.
- the salt is characterized by a metal ratio of 2.7.
- Example (A)-7 A phenol sulfide is prepared by reacting sulfur dichloride with a polyisobutenyl phenol in which the polyisobutenyl substituent has an average of 23.8 carbon atoms, in the presence of sodium acetate (an acid acceptor used to avoid discoloration of the product).
- a mixture of 1755 parts of this phenol sulfide, 500 parts of mineral oil, 335 parts of calcium hydroxide and 407 parts of methanol is heated to about 43-50°C and carbon dioxide is bubbled through the mixture for about 7.5 hours. The mixture is then heated to drive off volatile matter, an additional 422.5 parts of oil are added to provide a 60% solution in oil. This solution contains 5.6% calcium and 1.59% sulfur.
- B The Succinimide Dispersant
- Succinimide dispersants are the reaction product of a hydrocarbyl substituted succinic acylating agent and an amine.
- the succinimide dispersants formed depend upon the type of the hydrocarbyl substituted succinic acylating agent employed.
- hydrocarbyl substituted succinic acylating agents Two types of hydrocarbyl substituted succinic acylating agents are envisioned as
- Type I succinic acylating agent is of the formula
- R 7 is a hydrocarbyl based substituent having from about 30, often from about 40 up to about 500 carbon atoms and preferably from about 50 to about 300, often to about 200 and frequently to about 100 carbon atoms.
- Type I hydrocarbyl- substituted succinic acylating agents are prepared by reacting one mole of an olefin polymer or chlorinated analog thereof with one mole of an unsaturated carboxylic acid or derivative thereof such as fumaric acid, maleic acid or maleic anhydride.
- the succinic acylating agents are derived from maleic acid, its isomers, anhydride and chloro and bromo derivatives.
- R 7 is preferably an olefin, preferably alpha-olefin, polymer-derived group formed by polymerization of monomers such as ethylene, propylene, 1-butene, isobutene, 1 -pentene, 2-pentene, 1-hexene and 3-hexene. Such groups usually contain from about 30, frequently from about 40, up to about 500, often from about 50 up to about 300, often up to about 200, more often up to about 100 carbon atoms. R 7 may also be derived from a high molecular weight substantially saturated petroleum fraction.
- the hydrocarbon-substituted succinic acids and their derivatives constitute the most preferred class of carboxylic acids.
- carboxyhc reactants include aliphatic hydrocarbon substituted cyclohexene dicarboxylic acids and anhydrides which may be obtained from the reaction of e.g., maleic anhydride with an olefin while the reaction mass is being treated with chlorine.
- Patents describing useful aliphatic succinic acids, anhydrides, and reactive equivalents thereof and methods for preparing them include, among numerous others, U.S. Pat. Nos. 3,163,603 (LeSuer), 3,215,707 (Rense); 3,219,666 (Norman et al), 3,231,587 (Rense); 3,306,908 (LeSuer); 3,912,764 (Palmer); 4,110,349 (Cohen); and 4,234,435 (Meinhardt et al); and U.K. 1,440,219 which are hereby incorporated by reference for their disclosure of useful carboxyhc reactants. It should be understood that these patents also disclose derivatives, such as succinimides, etc. which are not reactive equivalents of succinic acids and anhydrides. These are not contemplated as being reactive equivalents of succinic acids or anhydrides.
- the succinic acids include those derived by the reaction of a maleic or fumaric carboxyhc acid or reactive equivalent thereof with a polyalkene or halogenated derivative thereof or a suitable olefin.
- the hydrocarbyl group is referred to hereinafter, for convenience, as the "substituent" and is often an aliphatic group derived from a polyalkene.
- the polyalkene is characterized by M n (number average molecular weight) of at least about 300, preferably at least about 500, more preferably at least about 1000, up to about 7,000.
- M n number average molecular weight
- the polyalkene has M n in the range of about 400 to about 7,000, more preferably about 800 to about 3000, more preferably about 800 to about 2000.
- the polyalkene typically has an M W /M n value of at least about 1.2, often from about 1.5 up to about 5.
- M w is the conventional symbol representing the weight average molecular weight.
- the aliphatic hydrocarbyl group may also be derived from higher molecular weight olefins, cracked wax, and other sources readily available in the art.
- polyalkenes which are derived from the group consisting of homopolymers and interpolymers of terminal hydrocarbon olefins of 2 to about 16 carbon atoms, preferably from about 2 to about 6 carbon atoms, more preferably 2 to 4 carbon atoms. Interpolymers optionally containing up to about 40% of polymer units derived from internal olefins of up to about 16 carbon atoms are also within a preferred group.
- Another preferred class of polyalkenes are the latter more preferred polyalkenes optionally containing up to about 25% of polymer units derived from internal olefins of up to about 6 carbon atoms.
- Interpolymers are those in which two or more olefin monomers are interpolymerized according to well-known conventional procedures to form polyalkenes having units within their structure derived from each of said two or more olefin monomers.
- interpolymer(s) or “copolymers” as used herein is inclusive of polymers derived from two different monomers, terpolymers, tetrapolymers, and the like.
- polyalkenes from which the substituent groups are derived are often conventionally referred to as "polyolefin(s)".
- polyolefinic monomers usually diolefinic monomers
- 1,3-pentadiene i.e., piperylene
- the substituent is derived from polybutene, that is, polymers of C 4 olefins, including 1-butene, 2-butene and isobutylene. Those derived from isobutylene, i.e., polyisobutylenes, are especially preferred.
- the substituent is derived from polypropylene.
- olefin polymers particularly ethylene-propylene polymers and ethylene-alpha olefin-diene, preferably ethylene- propylene -diene polymers.
- the olefin is an ethylene-propylene- diene copolymer having M n ranging from about 900 to about 2500.
- TPJLENE polymers such materials are the TPJLENE polymers marketed by the Uniroyal Company,
- One preferred source of substituent groups are polybutenes obtained by polymerization of a C 4 refinery stream having a butene content of 35 to 75 weight percent and isobutylene content of 15 to 60 weight percent in the presence of a
- Lewis acid catalyst such as aluminum trichloride or boron trifluoride. These polybutenes contain predominantly (greater than 80% of total repeating units) isobutylene repeating units of the configuration
- polybutenes are typically monoolefinic, that is they contain but one olefinic bond per molecule.
- the polybutene may be a polyolefin comprising a mixture of isomers wherein from about 50 percent to about 65 percent are tri-substituted olefins wherein one substituent contains from 18 to about 500 aliphatic carbon atoms, often from about 30 to about 200 carbon atoms, more often from about 50 to about 100 carbon atoms, and the other two substituents are lower alkyl.
- the polybutene When the polybutene is a tri-substituted olefin, it frequently comprises a mixture of cis- and trans- 1 -lower alkyl, 1 -(aliphatic hydrocarbyl containing from 30 to about 100 carbon atoms), 2-lower alkyl ethene and 1,1-di-lower alkyl, 2-(aliphatic hydrocarbyl containing from 30 to about 100 carbon atoms) ethene.
- the monoolefinic groups of the polybutenes are predominantly vinylidene groups, i.e., groups of the formula
- polybutenes may also comprise other olefinic configurations.
- the polybutene is substantially monoolefinic, comprising at least about 30 mole %, preferably at least about 50 mole % vinylidene groups, more often at least about 70 mole % vinylidene groups.
- Such materials and methods for preparing them are described in U.S. Patents 5,071,919; 5,137,978; 5,137,980;
- polyolefin reactants used in this invention can be accomplished using techniques known to those skilled in the art. These include general qualitative analysis by infrared and determinations of average molecular weight, e.g., M n and M w , etc. employing vapor phase osmometry (VPO) and gel permeation chromatography (GPC). Structural details can be elucidated employing proton and carbon 13 (C 13 ) nuclear magnetic resonance (NMR) techniques. NMR is useful for determining substitution characteristics about olefinic bonds, and provides some details regarding the nature of the substituents.
- VPO vapor phase osmometry
- GPC gel permeation chromatography
- substituents about olefinic bonds can be obtained by cleaving the substituents from the olefin by, for example, ozonolysis, then analyzing the cleaved products, also by NMR, GPC, VPO, and by infra-red analysis and other techniques known to the skilled person.
- GPC Gel permeation chromatography
- polyalkenes as described above which meet the various criteria for M n and M W /M n is within the skill of the art and does not comprise part of the present invention.
- Techniques readily apparent to those skilled in the art include controlling polymerization temperatures, regulating the amount and type of polymerization initiator and/or catalyst, employing chain terminating groups in the polymerization procedure, and the like.
- Other conventional techniques such as stripping (including vacuum stripping) a very light end and/or oxidatively or mechanically degrading high molecular weight polyalkene to produce lower molecular weight polyalkenes can also be used.
- Polyalkenes having the M n and M w values discussed above are known in the art and can be prepared according to conventional procedures. For example, some of these polyalkenes are described and exemplified in U.S. Patent 4,234,435. The disclosure of this patent relative to such polyalkenes is hereby incorporated by reference. Several such polyalkenes, especially polybutenes, are commercially available.
- the Type II hydrocarbyl substituted succinic acylating agent is characterized as a polysuccinated hydrocarbyl substituted succinic acylating agent such that more than one mole of an unsaturated carboxylic acid or derivative is reacted with one mole of an olefin polymer or chlorinated analog thereof.
- U.S. Pat. No. 4,234,435 is expressly incorporated herein by reference for its disclosure of procedures for the preparation of polysuccinated hydrocarbyl-substituted succinic acylating agents and dispersants prepared therefrom.
- the Type ⁇ succinic acylating agent consists of substituent groups and succinic groups wherein the substituent groups are derived from polyalkenes characterized by an M n value of at least about 1200 and an M w /M n ratio of at least about 1.5, and wherein said acylating agents are characterized by the presence within their structure of an average of at least about 1.3 succinic groups for each equivalent weight of substituent groups.
- This Type II succinic acylating agent can be characterized by the presence within its structure of two groups or moieties.
- the first group or moiety is referred to hereinafter, for convenience, as the "substituent group(s)" and is derived from a polyalkene.
- the polyalkene from which the substituted groups are derived is characterized by an M n (number average molecular weight) value of at least 1200 and more generally from about 1500 to about 5000, and an M W /M n value of at least about 1.5 and more generally from about 1.5 to about 6.
- the second group or moiety is referred to herein as the "succinic group(s)".
- the succinic groups are those groups characterized by the structure
- X and/or X' is usually -OH, -O-hydrocarbyl, -O " M* where M* represents one equivalent of a metal, ammonium or amine cation, -NH 2 , -Cl, -Br, and together, X and X' can be -O- so as to form the anhydride.
- the specific identity of any X or X' group which is not one of the above is not critical so long as its presence does not prevent the remaining group from entering into acylation reactions.
- X and X' are each such that both carboxyl functions of the succinic group (i.e., both -C-(O)X and -C(O)X' can enter into acylation reactions.
- I of Formula VHI forms a carbon-to-carbon bond with a carbon atom in the substituent group. While other such unsatisfied valence may be satisfied by a similar bond with the same or different substituent group, all but the said one such valence are usually satisfied by hydrogen; i.e., — H.
- the Type It succinic acylating agents are characterized by the presence within their structure of an average of at least about 1.3 succinic groups (that is, groups corresponding to Formula VIH) for each equivalent weight of substituent groups.
- succinic groups that is, groups corresponding to Formula VIH
- the number of equivalent weight of substituent groups is deemed to be the number conesponding to the quotient obtained by dividing the M n value of the polyalkene from which the substituent is derived into the total weight of the substituent groups present in the substituted succinic acylating agents.
- Type JJ succinic acylating agent is characterized by a total weight of substituent group of 40,000 and the M n value for the polyalkene from which the substituent groups are derived is 2000
- Polyalkenes having the M explicat and M w values discussed above are known in the art and can be prepared according to conventional procedures. Several such polyalkenes, especially polybutenes, are commercially available.
- the succinic groups will normally correspond to the formula
- R 10 and R 11 are each independently selected from the group consisting of -OH, -Cl, — O-lower alkyl, and when taken together, R 10 and R 11 are — O— .
- the succinic group is a succinic anhydride group. All the succinic groups in a particular Type U succinic acylating agent need not be the same, but they can be the same. Preferably, the succinic groups will correspond to
- Type II succinic acylating agents wherein the succinic groups are the same or different is within the ordinary skill of the art and can be accomplished through conventional procedures such as treating the substituted succinic acylating agents themselves (for example, hydrolyzing the anhydride to the free acid or converting the free acid to an acid chloride with thionyl chloride) and/or selecting the appropriate maleic or fumaric reactants.
- the minimum number of succinic groups for each equivalent weight of substituent group is 1.3.
- the maximum number generally will not exceed 6.
- the minimum will be 1.4; usually 1.4 to about 6 succinic groups for each equivalent weight of substituent group.
- a range based on this minimum is at least 1.5 to about 3.5, and more generally about 1.5 to about 2.5 succinic groups per equivalent weight of substituent groups.
- the Type II succinic acylating agents can be represented by the symbol R (R ) ⁇ j wherein R represents one equivalent weight of substituent group, R 9 represents one succinic group corresponding to Formula (VIE), Formula (TX), or Formula (X), as discussed above, and d is a number equal to or greater than 1.3.
- the more preferred embodiments of the invention could be similarly represented by, for example, letting R and R represent more preferred substituent groups and succinic groups, respectively, as discussed elsewhere herein and by letting the value of d vary as discussed above.
- M a minimum of about 1200, often at least about 1300 or about 1500 and a maximum of about 5000 are preferred, more preferably from about 1500 to about 2800, and most preferably from about 1500 to about 2400.
- polybutenes an especially preferred minimum value for polybutenes
- M n is about 1700 and an especially preferred range of M n values is from about 1700 to about 2400.
- a minimum M w /M n value of about 1.8 is preferred with a range of about 1.8 up to about 5.0 also being preferred. More preferred is about 2.0 to about 4.5, and especially preferred is about 2.5 with a range of from about 2.5 to about 4.0 also being especially preferred.
- succinic acylating agents are both independent and dependent. They are independent in the sense that, for example, a preference for a minimum of 1.4 or 1.5 succinic groups per equivalent weight of substituent groups is not tied to a more preferred value of M n or M J M n * They are dependent in the sense that, for example, when a preference for a minimum of 1.4 to
- Type II succinic acylating agents are essentially the same as those described hereinabove with the further limitation of M w and M w /M n particular to Type II succinic acylating agents.
- one or more of the above- described polyalkenes is reacted with one or more acidic reactants selected from the group consisting of maleic or fumaric reactants of the general formula
- X(O)C-CH CH-C(O)X' (XI) wherein X and X' are as defined hereinbefore.
- the maleic and fumaric reactants will be one or more compounds corresponding to the formula
- R 10 C(O)-CH CH-C(O)R ⁇ (Xu) wherein R 1 and R 11 are as previously defined herein.
- the maleic or fumaric reactants will be maleic acid, fumaric acid, maleic anhydride, or a mixture of two or more of these.
- Especially preferred reactants are the maleic reactants with maleic anhydride preferred.
- the one or more polyalkenes and one or more maleic or fumaric reactants can be reacted according to any of several known procedures in order to produce the Type I or Type U acylating agents of the present invention.
- the hydrocarbyl substituted succinic acylating agent is reacted with (a) ammonia or (b) an amine having at least one -NH 2 group.
- an amine having at least one -NH 2 group Ordinarily substituted succinic anhydride is reacted directly with ammonia or the amine although in some circumstances it may be desirable first to convert the anhydride to the acid.
- Amine Reactants Suitable amine reactants, as defined herein, include monoamines and polyamines. The amine reactants must contain at least one -NH 2 group. Thus, only amines having at least one primary amino group are used in preparing the succinimide dispersants of this invention. Polyamines may be used and are preferred, provided that they contain at least one primary amine group.
- the monoamines generally contain from 1 to about 24 carbon atoms, preferably 1 to about 12, and more preferably 1 to about 6.
- Examples of monoamines useful in the present invention include primary amines, for example methylamine, ethylamine, propylamine, butylamine, octylamine, and dodecylamine.
- the monoamine may be a hydroxyhydrocarbylamine, usually hydroxyalkylamines.
- hydroxyalkylamines are primary alkanolamines.
- Alkanol amines that can react to form amide can be represented, for example, by the formula:
- R' is a divalent hydrocarbyl group of about two to about 18 carbon atoms, preferably two to about four.
- the group -R'-OH in such formulae represents the hydroxyhydrocarbyl group.
- R' can be an acyclic, alicyclic or aromatic group.
- R' is an acyclic straight or branched alkylene group such as an ethylene, 1,2- propylene, 1,2-butylene, 1,2-octadecylene, etc. group.
- alkanolamines examples include monoethanolamine, propanolamine, etc.
- the hydroxyhydrocarbylamines can also be ether N-(hydroxyhydrocarbyl) amines. These are hydroxy poly(hydrocarbyloxy) analogs of the above-described hydroxy amines (these analogs also include hydroxyl-substituted oxyalkylene analogs).
- N-(hydroxyhydrocarbyl) amines can be conveniently prepared, for example, by reaction of epoxides with aforedescribed amines and can be represented by the formula:
- R 6 is a hydrocarbyl group, preferably an aliphatic group, more preferably an alkyl group, containing from 1 to about 24 carbon atoms and R 1 is a divalent hydrocarbyl group, preferably an alkylene group, containing from two to about 18 carbon atoms, more preferably two to about 4 carbon atoms.
- Especially preferred ether amines are those available under the name SURFAM, produced and marketed by Sea Land Chemical Co., Westlake, Ohio.
- the amine is preferably a polyamine.
- the polyamine may be aliphatic, cycloaliphatic, heterocyclic or aromatic. Examples of the polyamines include alkylene polyamines, hydroxy containing polyamines, arylpolyamines, and heterocyclic polyamines.
- Alkylene polyamines are represented by the formula HN- ⁇ Al lene-N- ⁇ R 5 R 5 R 5 wherein n has an average value between about 1 and about 10, preferably about 2 to about 7, more preferably about 2 to about 5, and the "Alkylene" group has from 1 to about 10 carbon atoms, preferably about 2 to about 6, more preferably about 2 to about 4.
- R is independently hydrogen or an aliphatic or hydroxy-substituted aliphatic group of up to about 30 carbon atoms, preferably H or lower alkyl, most preferably H. At least one amino group must be a primary amino group.
- Alkylene polyamines include methylene polyamines, ethylene polyamines, butylene polyamines, propylene polyamines, pentylene polyamines, etc. Higher homologs and related heterocyclic amines such as N-a ino alkyl-substituted piperazines are also included. Specific examples of such polyamines are ethylene diamine, diethylene triamine, triethylene tetramine, tris-(2-aminoethyl)amine, propylene diamine, trimethylene diamine, tripropylene tetramine, tetraethylene pentamine, hexaethylene heptamine, pentaethylenehexamine, aminoethyl piperazine, dimethyl aminopropylamine, etc. Higher homologs obtained by condensing two or more of the above-noted alkylene amines are similarly useful as are mixtures of two or more of the aforedescribed polyamines.
- Ethylene polyamines such as some of those mentioned above, are preferred. They are described in detail under the heading "Diamines and Higher Amines” in Kirk Othmer's “Encyclopedia of Chemical Technology", 4th Edition, Vol. 8, pages 74-108, John Wiley and Sons, New York (1993) and in Meinhardf, et al, U.S. 4,234,435, both of which are hereby incorporated herein by reference for disclosure of useful polyamines.
- Such polyamines are conveniently prepared by the reaction of ethylene dichloride with ammonia or by reaction of an ethylene imine with a ring opening reagent such as water, ammonia, etc. These reactions result in the production of a complex mixture of polyalkylene polyamines including cyclic condensation products such as the aforedescribed piperazines. Ethylene polyamine mixtures are useful.
- alkylene polyamine bottoms can be characterized as having less than two, usually less than 1% (by weight) material boiling below about 200°C.
- a typical sample of such ethylene polyamine bottoms obtained from the Dow Chemical Company of Freeport, Texas, designated “E-100” has a specific gravity at 15.6°C of 1.0168, a percent nitrogen by weight of 33.15 and a viscosity at 40°C of 121 centistokes.
- Another useful polyamine is a condensation product obtained by reaction of at least one hydroxy compound with at least one polyamine reactant containing at least one primary or secondary amino group.
- the hydroxy compounds are preferably polyhydric alcohols and amines.
- Preferably the hydroxy compounds are polyhydric amines.
- Polyhydric amines include any of the above-described monoamines reacted with an alkylene oxide (e.g., ethylene oxide, propylene oxide, butylene oxide, etc.) having two to about 20 carbon atoms, preferably two to about four.
- alkylene oxide e.g., ethylene oxide, propylene oxide, butylene oxide, etc.
- Examples of polyhydric amines include tris-(hydroxymethyl)amino methane and 2-amino-2-methyl- 1,3-propanediol.
- Polyamine reactants which react with the polyhydric alcohol or amine to form the condensation products or condensed amines, are described above.
- Preferred polyamine reactants include triethylenetetramine (TETA), tetraethylenepentamine
- TEPA pentaethylenehexamine
- PEHA pentaethylenehexamine
- mixtures of polyamines such as the above-described "amine bottoms”.
- the condensation reaction of the polyamine reactant with the hydroxy compound is conducted at an elevated temperature, usually about 60°C to about 265°C in the presence of an acid catalyst.
- the amine condensates and methods of making the same are described in Steckel (US Patent 5,053,152) which is incorporated by reference for its disclosure to the condensates and methods of making amine condensates.
- the polyamines are hydroxy-containing polyamines.
- Hydroxy-containing polyamine analogs of hydroxy monoamines can also be used.
- Such polyamines can be made by reacting the above-described alkylene amines with one or more of the above-described alkylene oxides.
- Similar alkylene oxide-alkanolamine reaction products can also be used such as the products made by reacting the aforedescribed primary, secondary or tertiary alkanolamines with ethylene, propylene or higher epoxides in a 1.1 to 1.2 molar ratio. Reactant ratios and temperatures for carrying out such reactions are known to those skilled in the art.
- such hydroxy-containing polyamines must have at least one -NH 2 group.
- alkoxylated alkylenepolyamines include N-(2- hydroxyethyl) ethylenediamine, N,N-di-(2-hydroxyethyl)-ethylenediamine, mono- (hydroxypropyl)-substituted tetraethylenepentamine, N-(3-hydroxybutyl)- tetramethylene diamine, etc.
- Higher homologs obtained by condensation of the above illustrated hydroxy-containing polyamines through amino groups or through hydroxy groups are likewise useful. Condensation through amino groups results in a higher amine accompanied by removal of ammonia while condensation through the hydroxy groups results in products containing ether linkages accompanied by removal of water. Mixtures of two or more of any of the aforesaid polyamines are also useful.
- the polyamine may be a heterocyclic polyamine.
- the heterocyclic polyamines include aminoalkyl substituted heterocycles, including aminoalkyl substituted aziridines, azetidines, azolidines, azepines, azocines, azonines, azecines, tetra- and dihydropyridines, pyrroles, indoles, piperidines, imidazoles, di- and tetrahydroimidazoles, piperazines, isoindoles, purines; N-aminoalkylthiomorpholines, N-aminoalkylmorpholines, N-aminoalkylpiperazines, N,N'-bisaminoalkyl piperazines, and tetra-, di- and perhydro derivatives of each of the above and mixtures of two or more of these heterocyclic amines.
- Preferred heterocyclic amines are the aminoalkyl substituted saturated 5- and 6-membered heterocyclic amines containing only nitrogen, or nitrogen with oxygen and/or sulfur in the hetero ring, especially the piperidines, piperazines, thiomorpholines, morpholines, pyrrolidines, and the like.
- Aminoalkylsubstituted piperidines, aminoalkylsubstituted piperazines, aminoalkylsubstituted morpholines, and aminoalkyl-substituted pyrrolidines are especially preferred.
- the aminoalkyl substituents are substituted on a nitrogen atom forming part of the hetero ring.
- heterocyclic amines include N-aminopropylmorpholine, N-amino-ethylpiperazine, and N,N-diaminoethyl- piperazine. Hydroxy alkyl substituted heterocyclic polyamines are also useful.
- the amine is a polyalkene-substituted amine. These polyalkene-substituted amines are well known to those skilled in the art. They are disclosed in U.S. patents 3,275,554; 3,438,757; 3,454, 555; 3,565,804; 3,755,433; and 3,822,289. These patents are hereby incorporated by reference for their disclosure of polyalkene-substituted amines and methods of making the same. Typically, polyalkene-substituted amines are prepared by reacting halogenated-
- chlorinated-, olefins and olefin polymers preferably chlorinated-, olefins and olefin polymers (polyalkenes) with amines (mono- or polyamines).
- the amines may be any of the amines described above. Examples of these compounds include poly(propylene)amine; polybutene amine; N-poly(butene) ethylenediamine; N-poly(propylene)trimethylenediamine; N-poly(butene)diethylenetriamine; N',N'-poly(butene)tetraethylenepentamine; and the like.
- the polyalkene substituted amine is characterized as containing from at least about 8 carbon atoms, preferably at least about 30, more preferably at least about 35 up to about 300 carbon atoms, preferably 200, more preferably 100.
- the polyalkene substituted amine is characterized by an n (number average molecular weight) value of at least about 500.
- the polyalkene substituted amine is characterized by an n value of about 500 to about 5000, preferably about 800 to about 2500. In another embodiment n varies between about 500 to about 1200 or 1300.
- the polyalkenes from which the polyalkene substituted amines are derived include homopolymers and interpolymers, preferably homopolymers, of polymerizable olefin monomers of 2 to about 16 carbon atoms; usually 2 to about 6, preferably 2 to about 4, more preferably 4.
- the olefins may be monoolefins such as ethylene, propylene, 1-butene, isobutene, and 1-octene; or a polyolefinic monomer, preferably diolefinic monomer, such 1,3-butadiene and isoprene.
- An example of a preferred homopolymer is a polybutene, preferably a polybutene in which about 50% of the polymer is derived from isobutylene.
- the polyalkenes are prepared by conventional procedures.
- the number of equivalents of acylating agent depends on the total number of carboxylic functions present. In the determination of the number of equivalents of acylating agent, carboxyl functions which are not capable of reacting as a carboxyhc acid acylating agent are excluded. In general, there is one equivalent of acylating agent for each carboxy group in the acylating agents. Conventional methods for determining the number of carboxyl functions (e.g., acid number, saponification number, etc.) are available and are well known to those skilled in the art.
- An equivalent weight of monoamine is the molecular weight of the amine.
- the equivalent weight of mixtures of monoamines can be determined by dividing the atomic weight of nitrogen (14) by the %N contained in the mixture and multiplying by 100. Equivalent weight of polyamines can be determined similarly.
- Amounts of polyamines are often referred to in equivalents.
- One equivalent of a polyamino compound or derivative thereof is its formula weight divided by the average number of nitrogen atoms therein which contain a basic -NH 2 group.
- ethylene diamine contains 2 equivalents; N,N-dimethyl-propanediamine contains one equivalent.
- the polyamine may be a hydroxyamine provided that the polyamine contains at least , one condensable -NH 2 group.
- the hydroxyamines are primary alkanol amines.
- Such amines can be represented by mono- and poly-N-hydroxyalkyl substituted alkylene polyamines wherein the alkylene polyamines are as described hereinabove; especially those that contain two to three carbon atoms in the alkylene radicals and the alkylene polyamine contains up to seven amino groups.
- the succinimide dispersants are frequently basic, that is they display a base number. The base number is usually expressed as total base number as described hereinabove.
- the base number of the succinimide dispersant arises from the presence of the amine reactant, usually the amount of unreacted amino moiety present in the dispersant. These base numbers can vary over a wide range, but values ranging from about 5 to about 200, on a diluent-free basis, often from about 15 to about 100, frequently from about 30 to about 60. In one preferred embodiment, the dispersant has TBN of at least about 40.
- a polyisobutenyl succinic anhydride is prepared by the reaction of a chlorinated polyisobutylene with maleic anhydride at 200°C.
- the polyisobutenyl radical has average molecular weight of 850 and the resulting alkenyl succinic anhydride is found to have an acid number of 113 (corresponding to an equivalent weight of 500).
- To a mixture of 500 grams (1 equivalent) of this polyisobutenyl succinic anhydride and 160 grams of toluene are added at room temperature 35 grams (1 equivalent) of diethylene triamine. The addition is made portionwise over 0.25 hour with an initial exothermic reaction causing the temperature to rise to 50°C.
- a polyisobutenyl succinic anhydride having an acid number of 105 and an equivalent weight of 540 is prepared by the reaction of a chlorinated polyisobutylene
- the residue is diluted with 200 grams of mineral oil.
- a mixture is prepared by the addition, at 138°C, of 10.2 parts (0.25 equivalent) of a commercial mixture of ethylene polyamines having about 3 to about
- a mixture is prepared by the addition, at 140°-145°C, of 57 parts (1.38 equivalents) of a commercial mixture of ethylene polyamines having from about 3 to 10 nitrogen atoms per molecule to 1067 parts of mineral oil and 893 parts (1.38 equivalents) of the above-prepared succinic acylating agent.
- the reaction mixture is heated to 155°C. in 3 hours and stripped by blowing with nitrogen.
- the reaction mixture is filtered.
- Example (B)-14 A reactor is charged with 1000 parts of polybutene having a number average molecular weight determined by vapor phase osmometry of about 950 and which consists primarily of isobutene units, followed by the addition of 108 parts of maleic anhydride. The mixture is heated to 110°C followed by the sub-surface addition of 100 parts Cl 2 over 6.5 hours at a temperature ranging from 110 to 188°C. The exothermic reaction is controlled as not to exceed 188°C. The batch is blown with nitrogen then stored.
- a succinimide dispersant is prepared by reacting 1000 parts of the substituted succinic anhydride of this example with 85 parts of a commercial ethylene polyamine mixture having an average nitrogen content of about 34.5% in 820 parts mineral oil diluent under conditions described in LeSuer, U.S. 3,172,892.
- One method for reducing the amount of chlorine in additive compositions based on polyalkenyl-substituted dicarboxylic acids is to prepare such hydrocarbon- substituted dicarboxylic acids in the absence of chlorine, and procedures have been described for preparing such compounds by the "ene” process in which the polyolefin and the unsaturated dicarboxylic acid are heated together, optionally in the presence of a catalyst. Using this procedure, it is often more difficult to incorporate an excess of the succinic groups into the polyalkenyl-substituted succinic acylating agents.
- the amount of chlorine employed during reaction to prepare the polyalkenyl substituted acylating agent is reduced.
- this method is employed when the polyolefin reactant has M n ranging from about 300 to about 10,000, more often from about 500 to about 2,500, and has a high level of tri- and tetra- substituted unsaturated end groups, especially in amounts up to about 90 mole %.
- Chlorine is used on a molar basis up to an amount equal to the number of moles of tetra- and tri- substituted end groups.
- the halogen to polyolefin molar ratio is about 0.9:1 or less.
- the reaction is conducted under conditions of time and temperature, typically wherein said temperature ranges between about 20°C. - 175°C, to effect the reaction of the end groups and the chlorine to produce a polyolefin having labile chlorine substituents.
- the chlorination is conducted in the presence of a substantially chlorine inert liquid, for example hexane, as a solvent, and wherein said mixture is heated at a temperature of less than about 70°C.
- a substantially chlorine inert liquid for example hexane
- the reaction is carried out using a dilution gas.
- Preferred dilution gases are N 2 O, CO 2 or
- the polyalkenyl substituted acylating agent is prepared by reacting the labile chlorine containing polyolefin with an - ⁇ -unsaturated compound, said compound comprising ⁇ - ⁇ -unsaturated acids, anhydrides, derivatives or mixtures thereof and reacting the mixture under time and temperature parameters selected to effect reaction of the polyolefin with the ⁇ - ⁇ -unsaturated compound to produce a polyolefin substituted reaction product having low chlorine content.
- the chlorine content of said substituted reaction product is 1000 parts per million or less on an oil-free basis.
- the polyolefin substituted reaction product is a polybutene substituted succinic acid, anhydride or mixture thereof or derivative thereof.
- Example (BV15 A polyisobutenyl (molecular weight of 1000) succinic anhydride is prepared according to Example (B)-7. After obtaining the anhydride, 1000 parts of it is treated with 4 parts of iodine which lowers the chlorine content to 0.1 percent. This anhydride is diluted with 667 parts of diluent oil and 1000 parts of the oil diluted anhydride is reacted with 103 parts of a commercial mixture of polyamines. A succinimide dispersant is obtained having a 40% oil content, 45 total base number and 2.0% nitrogen.
- Example (B)-16 Following essentially the same procedure of Example (B)-12, 1000 grams of the polyisobutene is reacted with a total of 106 grams maleic anhydride and a total of 90 grams chlorine. After obtaining the anhydride, 1000 parts of it is treated with 4 parts of iodine which lowers the chlorine content to 0.1 percent. To 1000 grams of this anhydride are added 207 grams of diluent oil. The contents are heated to 110°C. and 39 grams of a commercial mixture of polyamines are added over a two-hour period while allowing the contents to exotherm to 127°C. The contents are heated to 152°C. and held for one hour with nitrogen blowing to remove water of reaction. Additional oil is added, 23 grams, and the contents are filtered to give a product containing 50% oil, 1.05% nitrogen, 250 ppm halogen and 18 total base number. (C The Metal Dihydrocarbyl Dithiophosphate
- the metal dihydrocarbyl dithiophosphate is characterized by the formula wherein R 1 and R 2 are each independently hydrocarbyl groups containing from 3 to about 13 carbon atoms, M is a metal, and n is an integer equal to the valence of M.
- the hydrocarbyl groups R 1 and R 2 in the dithiophosphate may be alkyl, cycloalkyl, aralkyl or alkaryl groups, or a substantially hydrocarbon group of similar structure.
- substantially hydrocarbon is meant hydrocarbons which contain substituent groups such as ether, ester, nitro, or halogen which do not materially affect the hydrocarbon character of the group.
- Illustrative alkyl groups include isopropyl, isobutyl, n-butyl, sec-butyl, the various amyl groups, n-hexyl, methylisobutyl carbinyl, heptyl, 2-ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, dodecyl, tridecyl, etc.
- Illustrative lower alkylphenyl groups include butylphenyl, amylphenyl, heptylphenyl, etc.
- Cycloalkyl groups likewise are useful and these include chiefly cyclohexyl and the lower alkyl- cyclohexyl radicals. Many substituted hydrocarbon groups may also be used, e.g., chlorophentyl, dichlorophenyl, and dichlorodecyl.
- At least one of R 1 and R 2 in Formula Xm is an isopropyl or secondary butyl group. In yet another embodiment, both R 1 and R 2 are secondary alkyl groups.
- the phosphorodithioic acids from which the metal salts useful in this invention are prepared are well known.
- Examples of dihydrocarbyl phosphorodithioic acids and metal salts, and processes for preparing such acids and salts are found in, for example, U.S. Pat. Nos. 4,263,150; 4,289,635; 4,308,154; and
- the phosphorodithioic acids are prepared by the reaction of phosphorus pentasulfide with an alcohol or phenol or mixtures of alcohols.
- the reaction involves four moles of the alcohol or phenol per mole of phosphorus pentasulfide, and may be carried out within the temperature range from about 50C. to about
- the preparation of O,O-di-n-hexyl phosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at about 100°C. for about two hours. Hydrogen sulfide is liberated and the residue is the defined acid.
- the preparation of the metal salt of this acid may be effected by reaction with metal oxide. Simply mixing and heating these two reactants is sufficient to cause the reaction to take place and the resulting product is sufficiently pure for the purposes of this invention.
- the metal salts of dihydrocarbyl dithiophosphates which are useful in this invention include those salts containing Group I metals, Group U metals, aluminum, lead, tin, molybdenum, manganese, cobalt, nickel or mixtures thereof.
- the Group II metals, aluminum, tin, iron, cobalt, lead, molybdenum, manganese, nickel and copper are among the preferred metals. Zinc and copper either alone or in combination are especially useful metals.
- the lubricant compositions of the invention contain examples of metal compounds which may be reacted with the acid include lithium oxide, lithium hydroxide, sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, silver oxide, magnesium oxide, magnesium hydroxide, calcium oxide, zinc hydroxide, strontium hydroxide, cadmium oxide, cadmium hydroxide, barium oxide, aluminum oxide, iron carbonate, copper hydroxide, lead hydroxide, tin butyrate, cobalt hydroxide, nickel hydroxide, nickel carbonate, etc.
- certain ingredients such as small amounts of the metal acetate or acetic acid in conjunction with the metal reactant will facilitate the reaction and result in an improved product.
- the alkyl groups R 1 and R 2 are derived from secondary alcohols such as isopropyl alcohol, secondary butyl alcohol, 2-pentanol, 4- methyl-2-pentanol, 2-hexanol, 3-hexanol, etc.
- Especially useful metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols.
- the use of such mixtures enables the utilization of cheaper alcohols which in themselves may not yield oil-soluble phosphorodithioic acids.
- Useful mixtures of metal salts of dihydrocarbyl dithiophosphoric acid are obtained by reacting phosphorus pentasulfide with a mixture of (a) isopropyl or secondary butyl alcohol, and (b) an alcohol containing at least 5 carbon atoms wherein at least 10 mole percent, preferably 20 or 25 mole percent, of the alcohol in the mixture isopropyl alcohol, secondary butyl alcohol or a mixture thereof.
- the mixtures of alcohols may be mixtures of different primary alcohols, mixtures of different secondary alcohols or mixtures of primary and secondary alcohols.
- useful mixtures include: n-butanol and n-octanol; n-pentanol and 2-ethyl-l-hexanol; isobutanol and n-hexanol; isobutanol and isoamyl alcohol; isopropanol and 4-methyl-2-pentanol; isopropanol and sec-butyl alcohol; isopropanol and isooctyl alcohol; etc.
- Particularly useful alcohol mixtures are mixtures of secondary alcohols containing at least about 20 mole percent of isopropyl alcohol, and in a preferred embodiment, at least 40 mole percent of isopropyl alcohol.
- a phosphorodithioic acid is prepared by reacting a mixture of alcohols comprising 6 moles of 4-methyl-2-pentanol and 4 moles of isopropyl alcohol with phosphorus pentasulfide. The phosphorodithioic acid then is reacted with an oil slurry of zinc oxide. The amount of zinc oxide in the slurry is about 1.08 times and theoretical amount required to completely neutralize the phosphorodithioic acid.
- the oil solution of the zinc phosphorodithioate obtained in this manner (10% oil) contains 9.5% phosphorous, 20.0% sulfur and 10.5% zinc.
- a phosphorodithioic acid is prepared by reacting finely powdered phosphorus pentasulfide with an alcohol mixture containing 11.53 moles (692 parts by weight) of isopropyl alcohol and 7.69 moles (1000 parts by weight) of isooctanol.
- the phosphorodithioic acid obtained in this manner has an acid number of about
- a phosphorodithioic acid is prepared by reacting a mixture of 1560 parts (12 moles) of isooctyl alcohol and 180 parts (3 moles) of isopropyl alcohol with 756 parts (3.4 moles) of phosphorus pentasulfide. The reaction is conducted by heating the alcohol mixture to about 55°C. and thereafter adding the phosphorus pentasulfide over a period of 1.5 hours while maintaining the reaction temperature at about 60°-
- Zinc oxide (282 parts, 6.87 moles) is charged to a reactor with 278 parts of mineral oil.
- the above-prepared phosphorodithioic acid (2305 parts, 6.28 moles) is charged to the zinc oxide slurry over a period of 30 minutes with an exotherm to
- the mixture then is heated to 80C. and maintained at this temperature for 3 hours. After stripping to 100°C. and 6 mm. Hg., the mixture is filtered twice through a filter aid, and the filtrate is the desired oil solution of the zinc salt containing 10% oil, 7.97% zinc (theory 7.40); 7.21% phosphorus (theory 7.06); and
- Isopropyl alcohol (396 parts, 6.6 moles) and 1287 parts (9.9 moles) of isooctyl alcohol are charged to a reactor and heated with stirring to 59C.
- Phosphorus pentasulfide (833 parts, 3.75 moles) is then added under a nitrogen sweep.
- the addition of the phosphorus pentasulfide is completed in about 2 hours at a reaction temperature between 59°-63°C.
- the mixture then is stirred at 45°-63°C. for about 1.45 hours and filtered.
- the filtrate is the desired phosphorodithioic acid.
- a reactor is charged with 312 parts (7.7 equivalents) of zinc oxide and 580 parts of mineral oil. While stirring at room temperature, the above-above-prepared phosphorodithioic acid (2287 parts, 6.97 equivalents) is added over a period of about 1.26 hours with an exotherm to 54°C. The mixture is heated to 78°C. and maintained at 75°-85°C. for 3 hours. The reaction mixture is vacuum stripped to 100°C. at 19 mm. Hg. The residue is filtered through a filter aid, and the filtrate is an oil solution (19.2% oil) of the desired zinc salt containing 7.86% zinc, 7.76% phosphorus and 14.8% sulfur.
- Example (C)-5 The general procedure of Example (C)-4 is repeated except that the mole ratio of isopropyl alcohol to isooctyl alcohol is 1:1.
- the product obtained in this manner is an oil solution (10% oil) of the zinc phosphorodithioate containing 8.96% zinc, 8.49% phosphorus and 18.05% sulfur.
- a phosphorodithioic acid is prepared in accordance with the general procedure of Example (C)-4 utilizing an alcohol mixture containing 520 parts (4 moles) of isooctyl alcohol and 360 parts (6 moles) of isopropyl alcohol with 504 parts (2.27 moles) of phosphorus pentasulfide.
- the zinc salt is prepared by reacting an oil slurry of 116.3 parts of mineral oil and 141.5 parts (3.44 moles of zinc oxide with 950.8 parts (3.20 moles) of the above-prepared phosphorodithioic acid.
- the product prepared in this manner is an oil solution (10% mineral oil) of the desired zinc salt, and the oil solution counting 9.36% zinc, 8.81% phosphorus and 18.65% sulfur.
- a mixture of 520 parts ( 4 moles) of isooctyl alcohol and 559.8 parts (9.33 moles) of isopropyl alcohol is prepared and heated to 60°C. at which time 672.5 parts (3.03 moles) of phosphorus pentasulfide are added in portions while 15 stirring.
- the reaction then is maintained at 60°-65°C. for about one hour and filtered.
- the filtrate is the desired phosphorodithioic acid.
- An oil slurry of 188.6 parts (4 moles) of zinc oxide and 144.2 parts of mineral oil is prepared, and 1145 parts of the above-prepared phosphorodithioic acid are added in portions while maintaining the mixture at about 70°C. After all of the acid is charged, the mixture is heated at 80°C. for 3 hours.
- the reaction mixture then is stripped of water to 110°C.
- the residue is filtered through a filter aid, and the filtrate is an oil solution (10% mineral oil) of the desired product containing 9.99% zinc, 1
- a phosphorodithioic acid is prepared by the general procedure of Example (C)-4 utilizing 260 parts ( 2 moles) of isooctyl alcohol, 480 parts (8 moles) of isopropyl alcohol, and 504 parts (2.27 moles) of phosphorus pentasulfide.
- the phosphorodithioic acid (1094 parts, 3.84 moles) is added to an oil slurry containing
- a reactor is charged with 145 parts (3.57 equivalents) of zinc oxide and 116 parts oil. Stirring is begun and added is 1000 parts (3.24 equivalents) of the above obtained phosphorodithioic acid over a 1 hour period beginning at room temperature. The addition causes an exotherm to 52°C. The contents are heated to 80°C. and maintained at this temperature for 2 hours. The contents are then vacuum stripped to 100°C. at 22 millimeters mercury. Added is 60 parts oil and the contents are filtered to give the desired product containing 12% oil, 9.5% zinc, 18.5% sulfur and 8.6% phosphorus.
- Example (CMO Following the procedure of Example (C)-9, a phosphorodithioic acid is prepared by reacting 1000 parts of an alcohol mixture comprising 46.8% weight isopropyl alcohol and 53.2% weight 4-methyl-2-pentanol, and 642 parts (2.89 moles) phosphorus pentasulfide. To 1000 parts of this acid is added 56 parts diluent oil and 157.5 parts (1.9 moles) zinc oxide. Additional oil is added (28.6 parts) and the contents are filtered to give a product containing 9% oil, 10.0% phosphorus, 11.05 % zinc and 21% sulfur. Other Additives Additive concentrates and lubricating oil compositions of this invention may contain other additives.
- additives are optional and the presence thereof in the compositions of this invention will depend on the particular use and level of performance required. Thus the other additive may be included or excluded.
- One or more zinc salts of dithiophosphoric acids other than those described herein as component (C) may be present in a minor amount to provide additional extreme pressure, anti-wear and anti-oxidancy performance.
- additives that may optionally be used in the lubricating oils of this invention include, for example, auxiliary dispersants, viscosity improvers, oxidation inhibitors, corrosion inhibitors, pour point depressants, extreme pressure agents, anti-wear agents, color stabilizers, friction modifiers, and anti-foam agents.
- additives are well known in the art and are described in numerous patents and publications. They may each be present in lubricating compositions at a concentration of as little as 0.001% by weight, usually ranging from about 0.01% to about 20% by weight. In most instances, when used, each contributes from about 0.1% to about 10% by weight, more often up to about 5% by weight.
- Additive Concentrates are well known in the art and are described in numerous patents and publications. They may each be present in lubricating compositions at a concentration of as little as 0.001% by weight, usually ranging from about 0.01% to about 20% by weight. In most instances, when used, each contributes from about 0.1% to about 10% by weight, more often up to about 5% by weight. Additive Concentrates
- Lubricating oil compositions of this invention may be prepared by directly adding each ingredient to the oil of lubricating viscosity.
- they are usually supplied as an additive concentrate wherein the additives, usually a mixture of two or more thereof, are diluted with a substantially inert, normally liquid least about 20% by weight of additives, often as much as 80% by weight.
- Additive concentrates are prepared by mixing together the desired components, often at elevated temperatures, usually less than 150°C, often no more than about 130°C, frequently no more than about 100°C.
- Example I An engine lubricating oil composition is prepared by combining 10 parts of an additive concentrate containing 57.5% of the dispersant of Example (B)-13, 9.2 parts of the zinc dithiophosphate of Example (C)-10, 2.52 parts of di(nonylphenyl) amine, 7 parts sulfurized C 12- ⁇ 8 olefin, 5 parts 2,6-di tertiary butyl-4-(propylene tetramer) phenol, 4.6 parts of the product of Example (A)-2, 6.8 parts of the product of Example (A)-l, 0.09 parts of a kerosene solution of a silicone antifoam agent, and sufficient mineral oil to make 100 parts additive concentrate, with 0.13 parts of a polymethacrylate pour point depressant, 0.74% of an ethylene-propylene polymer viscosity improver and a mineral oil basestock (Chevron RLOP 100N) to make a total of 100 parts of lubricating oil composition. Comparative Example I
- Example JJ An engine lubricating oil composition, identical in every respect to that of Example I is prepared except 6.8 parts of the product of Example (A)-l in the additive concentrate is replaced (equal TBN basis) with 5.2 parts of a 68% in oil solution of magnesium overbased alkyl benzene sulfonate. Comparative Example JJ
- Example II An engine lubricating oil composition, identical in every respect to that of Example I is prepared except the 4.6 parts of the product of Example (A)-2 is replaced (equal TBN basis) with an additional 6.9 parts (total 13.7 parts) of the product of Example (A)-l.
- Fuel consumption and tailpipe emissions of engines lubricated with lubricants of Example I and comparative Example I were measured using the procedure described in Part 86 of Title 40 of the Code of Federal Regulations, entitled 'Protection of the Environment', published by the U. S. Government Printing Office (1996). Briefly, the procedure involves operating a test vehicle using the Federal Test Procedure (FTP) cycle, an emission certification test procedure used for light duty vehicles employing a Clayton Model ECE-50 chassis dynamometer.
- FTP Federal Test Procedure
- Fuel consumption is measured using volumetric and gravimetric procedures. During testing, fuel is supplied to the engine from a container. It was found that both fuel consumption and NO x emissions were reduced employing the lubricant of Example I, a lubricant of the instant invention.
- combustion chamber deposits formed during operation with the all calcium detergent system of Comparative Example II are removed using the calcium and sodium detergent system of Example I following operation with the lubricant of Comparative Example 2.
- After 12,500 miles using the lubricant of Comparative Example 2 heavy piston crown deposits are observed.
- the lubricant is changed to that of Example I.
- After only 500 miles of operation with the lubricant of Example I a noticeable reduction in the amount of piston crown deposits is observed.
- piston crown deposits are further reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002394289A CA2394289C (en) | 1999-12-15 | 2000-12-13 | Lubricants containing a bimetallic detergent system and a method of reducing nox emissions employing same |
EP00986338A EP1240282A1 (en) | 1999-12-15 | 2000-12-13 | LUBRICANTS CONTAINING A BIMETALLIC DETERGENT SYSTEM AND A METHOD OF REDUCING NO x? EMISSIONS EMPLOYING SAME |
AU22594/01A AU778615B2 (en) | 1999-12-15 | 2000-12-13 | Lubricants containing a bimetallic detergent system and a method of reducing NOx emissions employing same |
JP2001545497A JP2003517094A (en) | 1999-12-15 | 2000-12-15 | Lubricant containing bimetallic detergent system and method of using it to reduce NOx emissions |
US10/148,093 US6727208B2 (en) | 2000-12-13 | 2000-12-15 | Lubricants containing a bimetallic detergent system and a method of reducing NOx emissions employing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17091099P | 1999-12-15 | 1999-12-15 | |
US60/170,910 | 1999-12-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001044419A1 true WO2001044419A1 (en) | 2001-06-21 |
WO2001044419A8 WO2001044419A8 (en) | 2004-04-22 |
Family
ID=22621779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/033703 WO2001044419A1 (en) | 1999-12-15 | 2000-12-13 | LUBRICANTS CONTAINING A BIMETALLIC DETERGENT SYSTEM AND A METHOD OF REDUCING NOx EMISSIONS EMPLOYING SAME |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1240282A1 (en) |
JP (2) | JP2003517094A (en) |
AU (1) | AU778615B2 (en) |
CA (1) | CA2394289C (en) |
WO (1) | WO2001044419A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003040273A2 (en) * | 2001-11-05 | 2003-05-15 | The Lubrizol Corporation | Lubricating composition with improved fuel economy |
WO2005003266A1 (en) * | 2003-06-25 | 2005-01-13 | The Lubrizol Corporation | Novel additive composition that reduces soot and/or emissions from engines |
JP2005529218A (en) * | 2002-06-10 | 2005-09-29 | ザ ルブリゾル コーポレイション | Method for lubricating an internal combustion engine and improving the efficiency of the engine's emission control system |
FR3053049A1 (en) * | 2016-06-28 | 2017-12-29 | Total Marketing Services | REDUCTION OF NITROGEN OXIDES |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7772171B2 (en) * | 2006-07-17 | 2010-08-10 | The Lubrizol Corporation | Method of lubricating an internal combustion engine and improving the efficiency of the emissions control system of the engine |
JP5564166B2 (en) * | 2008-05-16 | 2014-07-30 | Jx日鉱日石エネルギー株式会社 | Lubricating oil additive composition, manufacturing method of lubricating oil additive composition, and manufacturing method of lubricating oil composition |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4283294A (en) * | 1978-10-13 | 1981-08-11 | Exxon Research & Engineering Co. | Lubricating oil composition |
US4326872A (en) * | 1980-06-30 | 1982-04-27 | Technology Glass Corporation | Method for making perforations or depressions in a glass work piece |
WO1987001722A1 (en) * | 1985-09-19 | 1987-03-26 | The Lubrizol Corporation | Diesel lubricants and methods |
US4952328A (en) * | 1988-05-27 | 1990-08-28 | The Lubrizol Corporation | Lubricating oil compositions |
EP0731159A2 (en) * | 1995-03-07 | 1996-09-11 | Ethyl Corporation | Overbased lithium salt lubricant additives and production thereof |
EP0859042A1 (en) * | 1997-02-13 | 1998-08-19 | The Lubrizol Corporation | Low chlorine content compounds for use in lubricants and fuels |
US5804537A (en) * | 1997-11-21 | 1998-09-08 | Exxon Chemical Patents, Inc. | Crankcase lubricant compositions and method of improving engine deposit performance |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03227398A (en) * | 1989-11-04 | 1991-10-08 | Nippondenso Co Ltd | Lubricating oil-purifying device |
US5562864A (en) * | 1991-04-19 | 1996-10-08 | The Lubrizol Corporation | Lubricating compositions and concentrates |
US5885944A (en) * | 1996-05-21 | 1999-03-23 | The Lubrizol Corporation | Low chlorine polyalkylene substituted carboxylic acylating agent compositions and compounds derived therefrom |
-
2000
- 2000-12-13 WO PCT/US2000/033703 patent/WO2001044419A1/en active IP Right Grant
- 2000-12-13 AU AU22594/01A patent/AU778615B2/en not_active Ceased
- 2000-12-13 CA CA002394289A patent/CA2394289C/en not_active Expired - Fee Related
- 2000-12-13 EP EP00986338A patent/EP1240282A1/en not_active Withdrawn
- 2000-12-15 JP JP2001545497A patent/JP2003517094A/en active Pending
-
2013
- 2013-08-27 JP JP2013175254A patent/JP2013234337A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4283294A (en) * | 1978-10-13 | 1981-08-11 | Exxon Research & Engineering Co. | Lubricating oil composition |
US4326872A (en) * | 1980-06-30 | 1982-04-27 | Technology Glass Corporation | Method for making perforations or depressions in a glass work piece |
WO1987001722A1 (en) * | 1985-09-19 | 1987-03-26 | The Lubrizol Corporation | Diesel lubricants and methods |
US4952328A (en) * | 1988-05-27 | 1990-08-28 | The Lubrizol Corporation | Lubricating oil compositions |
EP0731159A2 (en) * | 1995-03-07 | 1996-09-11 | Ethyl Corporation | Overbased lithium salt lubricant additives and production thereof |
EP0859042A1 (en) * | 1997-02-13 | 1998-08-19 | The Lubrizol Corporation | Low chlorine content compounds for use in lubricants and fuels |
US5804537A (en) * | 1997-11-21 | 1998-09-08 | Exxon Chemical Patents, Inc. | Crankcase lubricant compositions and method of improving engine deposit performance |
Non-Patent Citations (1)
Title |
---|
See also references of EP1240282A1 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003040273A2 (en) * | 2001-11-05 | 2003-05-15 | The Lubrizol Corporation | Lubricating composition with improved fuel economy |
WO2003040273A3 (en) * | 2001-11-05 | 2004-03-11 | Lubrizol Corp | Lubricating composition with improved fuel economy |
US7407919B2 (en) * | 2001-11-05 | 2008-08-05 | The Lubrizol Corporation | Sulfonate detergent system for improved fuel economy |
JP2005529218A (en) * | 2002-06-10 | 2005-09-29 | ザ ルブリゾル コーポレイション | Method for lubricating an internal combustion engine and improving the efficiency of the engine's emission control system |
WO2005003266A1 (en) * | 2003-06-25 | 2005-01-13 | The Lubrizol Corporation | Novel additive composition that reduces soot and/or emissions from engines |
FR3053049A1 (en) * | 2016-06-28 | 2017-12-29 | Total Marketing Services | REDUCTION OF NITROGEN OXIDES |
Also Published As
Publication number | Publication date |
---|---|
CA2394289A1 (en) | 2001-06-21 |
JP2003517094A (en) | 2003-05-20 |
AU778615B2 (en) | 2004-12-16 |
EP1240282A1 (en) | 2002-09-18 |
CA2394289C (en) | 2009-10-20 |
JP2013234337A (en) | 2013-11-21 |
WO2001044419A8 (en) | 2004-04-22 |
AU2259401A (en) | 2001-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6727208B2 (en) | Lubricants containing a bimetallic detergent system and a method of reducing NOx emissions employing same | |
AU754442B2 (en) | Alcohol borate esters and borated dispersants to improve bearing corrosion in engine oils | |
EP0802255B1 (en) | Hydroxy-group containing acylated nitrogen compositions useful as additives for lubricating oil and fuel compositions | |
AU759023B2 (en) | Alcohol borated esters to improve bearing corrosion in engine oils | |
US4502970A (en) | Lubricating oil composition | |
US5858929A (en) | Composition for providing anti-shudder friction durability performance for automatic transmissions | |
EP0277729B1 (en) | Lubricant compositions providing wear protection at reduced phosphorus levels | |
CN107400547B (en) | Synergistic dispersants | |
CA2364729C (en) | Lubricating oil compositions | |
JPH06220478A (en) | Oil additive package used in lubricant for diesel engine and transmission | |
WO1993024599A1 (en) | Diesel lubricants and methods | |
JP2013234337A (en) | LUBRICANTS CONTAINING BIMETALLIC DETERGENT SYSTEM AND METHOD OF REDUCING NOx EMISSIONS EMPLOYING THE SAME | |
CA2097029C (en) | Triglycerides as friction modifiers in engine oil for improved fuel economy | |
CA2772646A1 (en) | Natural gas engine lubricating oil compositions | |
JPH01299892A (en) | Lubricant composition | |
CA2752334A1 (en) | Method for preventing exhaust valve seat recession | |
AU659450B2 (en) | Overbased alkali metal salts and methods for making the same | |
EP0696635B1 (en) | Two-stroke engine lubricant and method of using same | |
CA2049435C (en) | Lubricating compositions | |
JPS5915491A (en) | Lubricating oil composition | |
EP1213341A1 (en) | Lubricating oil compositions | |
EP0976811A1 (en) | Carboxyl containing additive compositions for lubricating oils and fuels | |
US6211122B1 (en) | Carboxylic compositions and derivatives thereof and use as lubricating oil and fuel additives | |
GB1585056A (en) | Phosphosulphurised terpenes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10148093 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 22594/01 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2001 545497 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2394289 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2000986338 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000986338 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2000986338 Country of ref document: EP |
|
CFP | Corrected version of a pamphlet front page | ||
CR1 | Correction of entry in section i |
Free format text: IN PCT GAZETTE 25/2001 UNDER (22) REPLACE "15 DECEMBER 2000 (15.12.2000)" BY "13 DECEMBER 2000 (13.12.2000)" |
|
WWG | Wipo information: grant in national office |
Ref document number: 22594/01 Country of ref document: AU |