WO2001043805A2 - Exspirationsabhängige gasdosierung - Google Patents

Exspirationsabhängige gasdosierung Download PDF

Info

Publication number
WO2001043805A2
WO2001043805A2 PCT/EP2000/012244 EP0012244W WO0143805A2 WO 2001043805 A2 WO2001043805 A2 WO 2001043805A2 EP 0012244 W EP0012244 W EP 0012244W WO 0143805 A2 WO0143805 A2 WO 0143805A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
supply system
gas supply
metering
expiration
Prior art date
Application number
PCT/EP2000/012244
Other languages
English (en)
French (fr)
Other versions
WO2001043805A3 (de
Inventor
Rainer Muellner
Original Assignee
Ino Therapeutics Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ino Therapeutics Gmbh filed Critical Ino Therapeutics Gmbh
Priority to EP00991584A priority Critical patent/EP1239910B1/de
Priority to DE50012332T priority patent/DE50012332D1/de
Publication of WO2001043805A2 publication Critical patent/WO2001043805A2/de
Publication of WO2001043805A3 publication Critical patent/WO2001043805A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0266Nitrogen (N)
    • A61M2202/0275Nitric oxide [NO]

Definitions

  • the invention relates to a gas supply system with a controlled metering of at least one gas or at least one aerosol, its use and a method for gas metering in the supply of humans or mammals with one or more gases for inhalation treatment.
  • Ventilation devices are used for mechanical ventilation, for anesthesia and for respiratory therapy by treatment with gases, e.g. B. Oxygen donation or treatment with nitrogen monoxide (NO).
  • gases e.g. B. Oxygen donation or treatment with nitrogen monoxide (NO).
  • a normally portable oxygen dispenser Such patients are referred to as spontaneously breathing patients, in contrast to patients who are intubated to a ventilator in the clinic.
  • LOT long-term oxygen therapy
  • CPAP continuous positive airways pressure
  • the gases are administered either via a so-called nasal cannula or nasal tube (nasal application; in the simplest case, a gas supply hose, the opening of which is open below the patient's nostrils) or via a breathing mask (especially with CPAP).
  • WO 98/31282 (internal designation TMG 2028/67) describes a gas supply system for ventilated or spontaneously breathing patients, in which one or more gases (e.g. NO, oxygen) by means of a controller (program control, sensor control or combined program
  • the maximum of the inspiratory flow is important, since the metered gas should usually be available at this point in time. This maximum usually coincides with the trigger start point. Due to mechanical, electrical and, above all, flow delays, it is not possible to equate the beginning of the gas flow actually dosed into the nasal / pharynx with the maximum inspiratory flow.
  • the dead space volume in particular plays a major role.
  • the anatomical dead space includes nasopharynx, trachea, bronchi and bronchioles. In adults, this dead space volume is between 150 and 200 ml.
  • part of the respiratory gas entering the alveoli is not used due to a lower perfusion of the alveoli in question.
  • This dead space is called the alveolar dead space. This value can vary greatly from patient to patient. COPD patients usually have a higher respiratory rate, but a smaller tidal volume. If you calculate with a tidal volume of 400 ml and a dead space volume of 200 ml, the dead space volume makes up 50% of the tidal volume. As a result, the therapeutic effect is severely affected.
  • the gas should therefore be supplied in such a way that the entire amount available at the site of action, the alveolar area, is available.
  • the invention has for its object to optimize the gas dosage in inhalation therapy, especially in spontaneous breathing.
  • the expiration-triggered gas supply system is a gas supply system for ventilated or spontaneously breathing patients as described in WO 98/31282 (internal name TMG 2028/67) and to which reference is hereby made.
  • the gas supply system described in WO 98/31282 is advantageously modified, as will be explained in the following.
  • the gas supply system is used in humans and animals, especially mammals.
  • the therapeutic gas e.g. 0 2 , NO
  • the therapeutic gas must be supplied in such a way that it does not remain in the dead space, ie it must in any case participate in gas exchange or improve it, in which a bolus is as highly concentrated as possible at the site of action reached.
  • the therapy gas is delivered to the patient at a defined point in time before inspiration begins to ensure that the gas in question actually reaches the areas of the lungs it is intended to reach. To do this, it is necessary to know the course of the expiration in order to precisely define the starting point of the dosage. This is especially done by measuring the pressure curve during a breathing cycle (expiration and inspiration), e.g. B. in the nasal cannula, usually by means of a pressure sensor or flow sensor (or systems based thereon).
  • the pressure curve is characteristic of every patient. Since this pressure curve is relatively the same during each breathing cycle, it can be seen from an instantaneous expiratory pressure when the patient will inhale. Ie it can over a threshold value of the corresponding pressure value Be predicted when the inspiration begins.
  • the expiration curve is therefore recorded for each patient, and with the help of an algorithm, each pressure value (depending on whether the curve rises or falls) is assigned a specific point in time before inhalation. By recording this curve in a patient-specific manner by the doctor, each time of the expiration is precisely defined by the pressure curve.
  • the trigger pulse is therefore not triggered by the negative pressure created when inhaling, but by an adjustable positive pressure threshold value resulting from the course of the expiration.
  • the triggering adapts to the patient's needs due to the possibly fluctuating expiration process, since triggering is not carried out with a time constant, but with the patient-dependent overpressure in the expiration phase.
  • This enables automatic adjustment of the triggering depending on the patient's breathing curve.
  • the triggering adapts itself automatically to the changed conditions when the patient is subjected to additional stress, which also leads to a change in the breathing curve. This makes it possible to control the metering of one or more therapeutic gases in such a way that various lung areas are targeted by the therapeutic gas due to the individual physiology of the patient.
  • This process can be used for all gases that are beneficial for the therapy of lung diseases.
  • patients who were previously dependent on a continuous 0 2 supply due to their clinical picture can use this system to receive a pulsed dose, which is associated with a low rem 0 2 consumption, the blood gas values are in the same range as for the continuous gas supply.
  • Another application of the method is e.g. B. gas or aerosol therapy in the nasopharynx or in the trachea. This means that the effective area is not directly in the lungs but in the anatomical dead space.
  • Fig. 1 illustrates the effect of expiration-triggered gas metering, a gas surge (bolus) of the metered gas to the site of action, e.g. B. in the patient's lungs.
  • FIG. 2 schematically shows an expiration curve recorded on the patient before or during the gas treatment, in which the pressure p (in front of the nose or in a breathing mask) recorded in p (in mbar) as a function of the time t (in Seconds, s).
  • the mark a represents the point in time at which a fixed threshold value of the pressure p is reached and the mark b represents the point in time when the inspiration begins.
  • FIG. 3 to 5 schematically show the volume flow V (in l / min.) Of metered gas (e.g. oxygen) as a function of the time t (in seconds, s) for different metering intervals.
  • metered gas e.g. oxygen
  • the gas metering shown in FIG. 3 begins at time a during expiration and ends after the start of inspiration, time b, during inspiration.
  • the gas dosing shown in FIG. 4 begins at time a during expiration and ends before the start of inspiration, before time b.
  • Fig. 5 shows the dosage of two
  • Gases the types of gas metering shown in FIGS. 4 and 3 being combined.
  • 6 shows a diagram of a gas supply system.
  • the gas supply system is designed for the metering of two gases (Gas 1 and Gas 2), which are provided in D-pressure gas containers, for example.
  • the gas is metered via the controllable solenoid valves (MV1 and MV2) connected to a control unit (CPU) into a gas line leading to the patient.
  • a pressure sensor (labeled ⁇ p) for overpressure and underpressure is in the gas line or e.g. B. at the exit of the gas line (z. B. in front of the patient's nose).
  • FIG. 1 shows how any place in the respiratory organs can be specifically treated by means of a defined relationship between gas flow, dosing time and the corresponding starting point of the dosing during expiration.
  • Short gas dosing surges (bolus) in particular allow higher concentrations to be achieved at the site of action without affecting other areas. As a result, gas consumption can be reduced, which in turn leads to smaller and therefore lighter storage containers, and any side effects of therapy can be minimized. Due to the short time of the dosing there is no homogenization of the gas mixture and the dosing surge propagates to the desired effective range (Fig. 1).
  • FIG. 2 An example of an expiration curve as the basis for triggering and controlling a dosing process is shown in FIG. 2. If the expiratory pressure P reaches the specified threshold value of 1.2 mbar or falls during ventilation, the dosage (in the example corresponds to) this triggered a time of 120 ms before the start of inspiration), whereby all possible forms of metering (see FIGS. 3, 4, 5) can take place.
  • the anatomical dead space can be flowed to in a targeted manner. It can target z.
  • the dosage can be done either through nasal cannula or through a breathing mask.
  • the pressure curve is advantageously recorded by the same pressure sensor which is also responsible for triggering the trigger signal (FIG. 6).
  • Dosage of gas or aerosol can either continue only during the expiration (therapy in the anatomical dead space) or also continue during the inspiration (FIGS. 3, 4). Furthermore, several gases can also be metered (FIG. 5), the starting point of the metering (mark a in FIGS. 3 to 5) not necessarily having to be the same.
  • the dosing quantities and dosing times depend strongly on the respective therapy and can be varied as desired.
  • the starting point of the dosage, the duration of the dosage and the dosage amount vary depending on the areas of the lung that are to be flown to.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Das Gasversorgungssystem mit einer gesteuerten Dosierung von mindestens einem Gas oder von mindestens einem Aerosol ist gekennzeichnet durch eine Steuerung für eine Dosierung, bei der die Zuführung des Gases oder Aerosols zu einem Atemgas zu einem definierten Zeitpunkt während der Exspiration eines Patienten beginnt.

Description

Exspirationsabhängige Gasdosierung
Die Erfindung betrifft ein Gasversorgungssystem mit einer gesteuerten Dosierung von mindestens einem Gas oder von mindestens einem Aerosol, dessen Verwendung und ein Verfahren zur Gasdosierung bei der Versorgung von Mensch oder Säugetier mit einem oder mehreren Gasen zur inhalativen Behandlung.
Geräte zur Beatmung werden eingesetzt für die maschinelle Beatmung, für die Anaesthesie und für die Atemtherapie durch Behandlung mit Gasen, z. B. Sauerstoffspende oder Behandlung mit Stickstoffmonoxid (NO).
Patienten mit chronischen Atembeschwerden (z. B. Asthma und COPD (chronisch obstruktive Atemwegserkrankung / Chronic Obstructive Pulmonary Disea- se)) werden durch einen in der Regel transportablen Sauerstoffspender in der Sauerstoffversorgung des Körpers unterstützt. Solche Patienten werden als spontanatmende Patienten bezeichnet, im Unterschied zu Patienten, die in der Klinik intubiert an ein Beatmungsgerät angeschlossen sind. Spontanatmende Patienten erhalten so zum Beispiel eine zusätzliche Sauerstoffspende (LOT = Langzeitsauerstofftherapie) oder eine Atmungsunterstützung (per CPAP = con- tinuous posit. airways pressure). Verabreicht werden die Gase entweder über eine sogenannte Nasenbrilie oder Nasensonde (Nasalapplikation; im einfachsten Fall ein Gasversorgungsschlauch, dessen Öffnung unterhalb der Nasenöffnungen des Patienten offen angeordnet ist) oder per Atemmaske (besonders bei CPAP).
In WO 98/31282 (interne Bezeichnung TMG 2028/67) wird ein Gasversorgungssystem für beatmete oder spontanatmende Patienten beschrieben, bei dem ein oder mehrere Gase (z. B. NO, Sauerstoff) mittels einer Steuerung (Programmsteuerung, Sensorsteuerung oder kombinierte Programm-
/Sensorsteuerung) ungleichmäßig (kontinuierlich oder diskontinuierlich) in das Atemgas dosiert werden. Die Gasdosierung bei den bekannten Gasversorgungssystemen erfolgt inspira- tionsgetriggert.
Wichtig ist bei der Triggerung der Gasdosierung das Maximum des inspiratori- sehen Flows, da meist zu diesem Zeitpunkt das dosierte Gas schon zur Verfügung stehen sollte. Dieses Maximum fällt im Regelfall mit dem Triggerstartpunkt zusammen. Durch mechanische, elektrische vor allem aber strömungstechnische Verzögerungen ist es nicht möglich den Beginn den tatsächlich in den Na- sen-/Rachenraum dosierten Gasstrom mit dem maximalen inspiratorischen Flow gleichzusetzen. Besonders das Totraumvolumen spielt eine große Rolle. Der anatomische Totraum umfaßt Nasen-Rachen-Raum, Trachea, Bronchien und Bronchiolen. Dieses Totraumvolumen beträgt beim Erwachsenen zwischen 150 und 200 ml. Außerdem wird ein Teil des in die Alveolen gelangenden A- temgases aufgrund einer Minderperfusion der betreffenden Alveolen nicht aus- genutzt. Dieser Totraum wird als alveolärer Totraum bezeichnet. Dieser Wert kann von Patient zu Patient stark schwanken. COPD-Patienten haben meist eine höhere Atemfrequenz dafür ein kleineres Atemzugsvolumen. Rechnet man mit einem Atemzugsvolumen von 400 ml und einem Totraumvolumen von 200 ml so macht das Totraumvolumen 50% des Atemzugsvolumens aus. Dadurch ist der therapeutische Effekt stark in Mitleidenschaft gezogen.
Bei der Inhalationstherapie sollte das Gas demnach so zugeführt werden, daß dieses möglichst in der gesamten Menge am Wirkort, dem Alveolärbereich, zur Verfügung steht.
Der Erfindung liegt die Aufgabe zugrunde, die Gasdosierung bei der Inhalationstherapie, insbesondere bei Spontanatmern, zu optimieren.
Gelöst wurde die Aufgabe durch ein Gasversorgungssystem mit den in An- spruch 1 beschriebenen Merkmalen.
Dem exspirationsgetriggerten Gasversorgungssystem gemäß der Erfindung liegt ein Gasversorgungssystem für beatmete oder spontanatmende Patienten zugrunde, wie es beispielsweise in WO 98/31282 (interne Bezeichnung TMG 2028/67) beschrieben wird und worauf hiermit Bezug genommen wird. Das in WO 98/31282 beschriebene Gasversorgungssystem wird vorteilhaft modifiziert, wie im folgenden erläutert wird.
Das Gasversorgungssystem wird bei Mensch und Tier, insbesondere Säugetieren, eingesetzt.
Der Effekt des Bolus ("Gaspaket") wird ausgenutzt, so daß eine höhere Konzentration am Wirkort vorliegt (weit höher als die mittlere), da die Homogenisierung eine gewisse Zeit in Anspruch nimmt. Somit liegt dann auch ein höherer Partialdruckunterschied vor, was eine höhere Diffusion am Wirkort (z. B. Alve- ole) zur Folge hat. Hierzu ist es notwendig, den Beginn der inspiratorischen Phase möglichst genau zu kennen und auf oben erwähnte Effekte zu reagieren.
Das Therapiegas (z. B. 02, NO) muß auf jeden Fall so zugeführt werden, daß es nicht im Totraum verbleibt, d.h. es muß auf jeden Fall am Gasaustausch teilnehmen bzw. diesen noch verbessern, in dem ein Bolus möglichst hochkonzentriert am Wirkort angelangt.
Das Therapiegas wird zu einem definierten Zeitpunkt vor dem Beginn der Inspiration dem Patienten zugeführt, um zu gewährleisten, daß das jeweilige Gas tatsächlich die Lungenareale erreicht, die es erreichen soll. Dazu ist es notwendig, den Verlauf der Exspiration zu kennen, um den Startpunkt der Dosierung genau zu definieren. Dies wird insbesondere durch eine Messung des Druckverlaufes während eines Atemzykluses (Exspiration und Inspiration), z. B. in der Nasenbrille, in der Regel mittels eines Drucksensors oder Flowsensors (oder darauf basierende Systeme) gewährleistet.
Der Druckverlauf ist für jeden Patienten charakteristisch. Da dieser Druckverlauf während jedes Atemzykluses relativ gleich ist, ist auf Grund eines augenblicklichen exspiratorischen Druckes zu ersehen, wann der Patient einatmen wird. D.h. es kann über einen Schwellenwert des entsprechenden Druckwertes der Zeitpunkt des Beginns der Inspiration vorhergesagt werden. Es wird also für jeden Patienten die Exspirationskurve aufgenommen, und mit Hilfe eines Algorithmus jedem Druckwert (abhängig davon ob die Kurve steigt oder fällt) ein bestimmter Zeitpunkt vor der Einatmung zugeordnet. Durch eine Aufnahme dieser Kurve patientenspezifisch durch den Arzt ist durch den Druckverlauf jeder Zeitpunkt der Exspiration genau definiert. Der Triggerimpuls wird also nicht durch den beim Einatmen entstandenen Unterdruck ausgelöst, sondern durch einen einstellbaren Überdruckschwellenwert resultierend aus dem Exspirationsverlauf. Bei der Triggerung während der Exspiration paßt sich die Triggerung den Pati- entenbedürfnissen durch den eventuell schwankenden Exspirationsverlauf an, da nicht mit einer Zeitkonstanten getriggert wird, sondern mit dem patientenabhängigen Überdruck in der Exspirationsphase. Dadurch kann eine automatische Anpassung der Triggerung abhängig von der Atemkurve des Patienten gewährleistet werden. Die Triggerung paßt sich also bei einer Mehrbelastung des Patienten, die auch zu einer Veränderung der Atemkurve führt, selbständig den veränderten Verhältnissen an. Dadurch ist es möglich die Dosierung von einem oder mehreren Therapiegasen so zu steuern, daß aufgrund der gegebenen, individuellen Physiologie des Patienten diverse Lungenareale gezielt vom Therapiegas angeströmt werden.
Weiters besteht die Möglichkeit verschiedenartige Gase zu verschiedenen Zeitpunkten während der Exspiration zu dosieren. Diese Zeitpunkte werden durch die Druckkurve genau definiert. Dadurch ist es möglich pro Atemzug verschiedene Lungenareale mit verschiedenen Gasen bzw. Gaskonzentrationen zu ver- sorgen.
Dieses Verfahren kann für alle Gase die zur Therapie von Lungenkrankheiten vorteilhaft herangezogen werden.
Vor allem Patienten, die auf Grund Ihres Krankheitsbildes (z. B. Lungenfibrose) bisher auf eine kontinuierliche 02-Zufuhr angewiesen waren, können mit diesem System auf eine gepulste Dosierung, und damit verbunden mit einem geringe- rem 02-Verbrauch, umgestellt werden, wobei die Blutgaswerte sich im gleichen Rahmen wie bei der kontinuierlichen Gasversorgung bewegen.
Ein weiteres Anwendungsgebiet des Verfahrens ist z. B. eine Gas- oder Aero- soltherapie im Nasen Rachen-Raum oder in der Luftröhre. Das bedeutet hier, daß der Wirkbereich nicht direkt in der Lunge liegt sondern im anatomischen Totraum.
Dies wird vorteilhaft ebenfalls durch eine in die Exspiration gelegte Dosierung erreicht und kann genau gesteuert werden.
Die Erfindung wird anhand der Zeichnung erläutert.
Fig. 1 veranschaulicht die Wirkung der exspirationsgetriggerten Gasdosierung, wobei ein Gasstoß (Bolus) des dosierten Gases an den Wirkort, z. B. in der Lunge des Patienten, gelangt.
Fig. 2 zeigt schematisch eine am Patienten vor oder während der Gasbehandlung aufgenommene Exspirationskurve, bei der der mittels eines Sensors (z. B. vor der Nase oder in einer Atemmaske) aufgenommene Druck p (in mbar) in Abhängigkeit von der Zeit t (in Sekunden, s) dargestellt. Die Marke a stellt den Zeitpunkt des Erreichens eines festgesetzten Schwellenwertes des Druckes p und die Marke b den Zeitpunkt des Beginns der Inspiration dar.
Fig. 3 bis 5 zeigen schematisch den Volumenstrom V (in l/min.) von dosiertem Gas (z. B. Sauerstoff) in Abhängigkeit von der Zeit t (in Sekunden, s) für unterschiedliche Dosierintervalle. Die in Fig. 3 gezeigte Gasdosierung beginnt zum Zeitpunkt a während der Exspiration und endet nach dem Beginn der Inspiration, dem Zeitpunkt b, während der Inspiration. Die in Fig. 4 gezeigte Gasdosierung beginnt zum Zeitpunkt a während der Exspiration und endet vor dem Be- ginn der Inspiration, vor dem Zeitpunkt b. Fig. 5 zeigt die Dosierung von zwei
Gasen, wobei die in Fig. 4 und Fig. 3 gezeigten Arten der Gasdosierung kombiniert sind. Fig. 6 zeigt ein Schema eines Gasversorgungssystems. Das Gasversorgungssystem ist für die Dosierung zweier Gase (Gas 1 und Gas 2) ausgelegt, die beispielsweise in DFruckgasbehältern bereitgestellt werden. Die Gasdosierung erfolgt über die mit einer Steuereinheit (CPU) verbundenen steuerbaren Magnet- ventile (MV1 und MV2) in eine Gasleitung, die zum Patienten führt. Ein Drucksensor (bezeichnet mit Δp) für Über- und Unterdruck ist in der Gasleitung oder z. B. am Ausgang der Gasleitung (z. B. vor der Nase des Patienten) angeordnet.
Fig. 1 zeigt, wie durch ein definiertes Verhältnis zwischen Gasflow, Dosierzeit und dem entsprechenden Startpunkt der Dosierung während der Expiration jeder beliebige Ort in den Atemorganen gezielt therapiert werden kann. Vor allem durch kurze Gasdosierstöße (Bolus) können höhere Konzentrationen am Wirkort erreicht werden, ohne daß andere Bereiche davon in Mitleidenschaft gezo- gen werden. Dadurch kann sowohl der Gasverbrauch reduziert werden, was wiederum zu kleineren und damit leichteren Vorratsbehältern führt, als auch eventuelle Therapienebeneffekte minimiert werden. Durch die kurze Zeit der Dosierung kommt es zu keiner Homogenisierung des Gasgemisches und der Dosierstoß pflanzt sich bis zum gewünschten Wirkbereich fort (Fig. 1).
Ein Beispiel für eine Exspirationskurve als Grundlage für die Triggerung und Steuerung eines Dosierablaufes zeigt Fig. 2. Erreicht der Exspirationsdruck P bei fallenden Druckwerten den vorgegebenen oder während der Beatmung ermittelten Schwellenwert von 1 ,2 mbar, so wird die Dosierung (im Beispiel ent- spricht dies einer Zeit von 120ms vor dem Beginn der Inspiration) ausgelöst, wobei alle möglichen Formen der Dosierung (siehe Fig. 3, 4, 5) erfolgen können.
Durch eine Dosierung von Gasen bzw. Aerosolen nur während der Exspiration kann der anatomische Totraum gezielt angeströmt werden. Es kann gezielt z. B. der Nasen Rachen-Raum oder die Luftröhre behandelt werden (Fig. 3). Die Dosierung kann sowohl über eine Nasenbrille oder über eine Atemmaske erfolgen.
Der Druckverlauf wird vorteilhaft durch den selben Drucksensor aufgenommen, der auch für das Auslösen des Triggersignals verantwortlich ist (Fig. 6).
Der Dosierablauf wird im folgenden erläutert.
Zu einem bestimmten Zeitpunkt der Exspiration (Marke a) wird eine gewisse
Gas-, oder Aerosolmenge dosiert. Die Dosierung kann entweder nur während der Exspiration weiter erfolgen (Therapie im anatomischen Totraum) oder auch während der Inspiration weiter erfolgen (Fig. 3, 4). Weiters können auch mehrere Gase dosiert werden (Fig. 5), wobei der Startpunkt der Dosierung (in Fig. 3 bis 5 die Marke a) nicht zwingend gleich sein muß. Die Dosiermengen und Dosierzeiten hängen dabei stark von der jeweiligen Therapie ab, und können be- liebig variiert werden.
Je nach den Lungenarealen, die angetrömt werden sollen, variiert der Startpunkt der Dosierung, die Dauer der Dosierung, als auch die Dosiermenge.

Claims

Patentansprüche
1. Exspirationsgetriggert.es Gasversorgungssystem zur Gasbehandlung von Mensch und Tier.
2. Gasversorgungssystem mit einer gesteuerten Dosierung von mindestens einem Gas oder von mindestens einem Aerosol, gekennzeichnet durch eine Steuerung für eine Dosierung, bei der die Zuführung des Gases oder Aerosols zu einem Atemgas zu einem definierten Zeitpunkt während der Exspiration ei- nes Patienten beginnt.
3. Gasversorgungssystem nach Anspruch 2, dadurch gekennzeichnet, daß der Bestimmung der Zeit des Beginns der Zuführung des Gases oder Aerosols eine aufgenommene Atemkurve oder Exspirationskurve zugrunde liegt.
4. Gasversorgungssystem nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß das Gasversorgungssystem mindestens einen Drucksensor zur Steuerung und/oder Triggerung der Gasdosierung enthält.
5. Gasversorgungssystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Gasversorgungssystem programm- oder progamm- und sensorgesteuert ist und eine Steuereinheit enthält.
6. Gasversorgungssystem nach einem der Ansprüche 1 bis 4, dadurch gekenn- zeichnet, daß das Gasversorgungssystem eine Steuerung für eine automatische Anpassung der Triggerung der Gasdosierung, abhängig von der Atemkurve des Patienten, enthält.
7. Verfahren zur Gasdosierung bei der Versorgung von Mensch oder Tier mit einem oder mehreren Gasen zur inhalativen Behandlung, dadurch gekennzeichnet, daß die Gasdosierung exspirationsgetriggert erfolgt.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Gasdosierung in Sequenzen erfolgt.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Gasdo- sierung nur während der Exspiration erfolgt oder die Gasdosierung während der
Exspiration beginnt und während der Inspiration eines Atemzykluses endet.
10. Verfahren zum Betrieb eines Gasversorgungssystems für Mensch oder Tier, dadurch gekennzeichnet, daß die Gasdosierung exspirationsgetriggert erfolgt.
11. Verwendung eines Gasversorgungssystems nach einem der Ansprüche 1 bis 6 zur Gasversorgung von beatmeten oder spontanatmenden Patienten.
12. Verwendung nach Anspruch 11 zur Gasversorgung von COPD-Patienten.
13. Verwendung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß Sauerstoff und NO-haltiges Gas; Sauerstoff, NO-haltiges Gas und Helium; Sauerstoff, NO-haltiges Gas, Kohlendioxid und Helium; Sauerstoff, Kohlendioxid und Helium; oder Sauerstoff, NO-haltiges Gas, Kohlendioxid und Wasserstoff dosiert werden.
PCT/EP2000/012244 1999-12-15 2000-12-06 Exspirationsabhängige gasdosierung WO2001043805A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00991584A EP1239910B1 (de) 1999-12-15 2000-12-06 Exspirationsabhängige gasdosierung
DE50012332T DE50012332D1 (de) 1999-12-15 2000-12-06 Exspirationsabhängige gasdosierung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19960404A DE19960404A1 (de) 1999-12-15 1999-12-15 Exspirationsabhängige Gasdosierung
DE19960404.5 1999-12-15

Publications (2)

Publication Number Publication Date
WO2001043805A2 true WO2001043805A2 (de) 2001-06-21
WO2001043805A3 WO2001043805A3 (de) 2002-01-03

Family

ID=7932701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/012244 WO2001043805A2 (de) 1999-12-15 2000-12-06 Exspirationsabhängige gasdosierung

Country Status (5)

Country Link
US (1) US20030145853A1 (de)
EP (1) EP1239910B1 (de)
AT (1) ATE318630T1 (de)
DE (2) DE19960404A1 (de)
WO (1) WO2001043805A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557300B2 (en) 2005-05-19 2013-10-15 University Of Cincinnati Methods for treating bacterial respiratory tract infections in an individual using acidified nitrite
US9675637B2 (en) 2003-07-09 2017-06-13 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Use of nitrite salts for the treatment of cardiovascular conditions

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10107443A1 (de) * 2001-02-16 2002-08-29 Heptec Gmbh Verfahren zur Desinfektion von Frischluft, Luftdesinfektionsmodul sowie Blitzlampen
DE10337138A1 (de) * 2003-08-11 2005-03-17 Freitag, Lutz, Dr. Verfahren und Anordnung zur Atmungsunterstützung eines Patienten sowie Luftröhrenprothese und Katheter
US7588033B2 (en) 2003-06-18 2009-09-15 Breathe Technologies, Inc. Methods, systems and devices for improving ventilation in a lung area
US7406966B2 (en) 2003-08-18 2008-08-05 Menlo Lifesciences, Llc Method and device for non-invasive ventilation with nasal interface
US7380550B2 (en) 2004-01-30 2008-06-03 Hewlett-Packard Development Company, L.P. Systems and methods for particle detection
US7819115B2 (en) * 2004-01-30 2010-10-26 Hewlett-Packard Development Company, L.P. Inhalers and methods of controlling airflow in inhalers
ITMI20050491A1 (it) * 2005-03-24 2006-09-25 Paolo Licciulli Apparato per la somministrazione di prodotti farmaceutici in forma di aerosol
JP2009508645A (ja) 2005-09-20 2009-03-05 ルッツ フレイテッグ, 患者の呼吸を補助するためのシステム、方法、および装置
JP5191005B2 (ja) 2006-05-18 2013-04-24 ブリーズ テクノロジーズ, インコーポレイテッド 気管切開の方法およびデバイス
WO2008019102A2 (en) 2006-08-03 2008-02-14 Breathe Technologies, Inc. Methods and devices for minimally invasive respiratory support
WO2008144589A1 (en) 2007-05-18 2008-11-27 Breathe Technologies, Inc. Methods and devices for sensing respiration and providing ventilation therapy
WO2009042973A1 (en) 2007-09-26 2009-04-02 Breathe Technologies, Inc. Methods and devices for treating sleep apnea
CN101873875B (zh) 2007-09-26 2014-11-12 呼吸科技公司 用于在通气治疗中提供吸气和呼气流释放的方法和装置
EP2237788A4 (de) * 2007-12-27 2013-06-05 Aires Pharmaceuticals Inc Aerosolisierte nitrit- und stickoxidspendende verbindungen und ihre verwendung
JP5758799B2 (ja) 2008-04-18 2015-08-05 ブリーズ・テクノロジーズ・インコーポレーテッド 呼吸作用を感知し、人工呼吸器の機能を制御するための方法およびデバイス
EP2274036A4 (de) 2008-04-18 2014-08-13 Breathe Technologies Inc Verfahren und vorrichtungen zur messung von atmung und zur kontrolle der funktionen eines beatmungsgeräts
WO2009149353A1 (en) 2008-06-06 2009-12-10 Nellcor Puritan Bennett Llc Systems and methods for triggering and cycling a ventilator based on reconstructed patient effort signal
EP2326376B1 (de) 2008-08-22 2019-07-24 Breathe Technologies, Inc. Vorrichtungen für mechanische beatmung mit offener atemwegsschnittstelle
US10252020B2 (en) 2008-10-01 2019-04-09 Breathe Technologies, Inc. Ventilator with biofeedback monitoring and control for improving patient activity and health
US9132250B2 (en) 2009-09-03 2015-09-15 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
US9962512B2 (en) 2009-04-02 2018-05-08 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature
JP5758875B2 (ja) 2009-04-02 2015-08-05 ブリーズ・テクノロジーズ・インコーポレーテッド 非侵襲性換気システム
CN102762250B (zh) 2009-09-03 2017-09-26 呼吸科技公司 用于包括具有夹带端口和/或压力特征的非密封通气界面的无创通气的方法、系统和装置
CA2807416C (en) 2010-08-16 2019-02-19 Breathe Technologies, Inc. Methods, systems and devices using lox to provide ventilatory support
JP6297329B2 (ja) 2010-09-30 2018-03-20 ブリーズ・テクノロジーズ・インコーポレーテッド 鼻インタフェース装置
US8783250B2 (en) 2011-02-27 2014-07-22 Covidien Lp Methods and systems for transitory ventilation support
US8714154B2 (en) 2011-03-30 2014-05-06 Covidien Lp Systems and methods for automatic adjustment of ventilator settings
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US9808591B2 (en) 2014-08-15 2017-11-07 Covidien Lp Methods and systems for breath delivery synchronization
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US10792449B2 (en) 2017-10-03 2020-10-06 Breathe Technologies, Inc. Patient interface with integrated jet pump
EP3793656A1 (de) 2018-05-14 2021-03-24 Covidien LP Systeme und verfahren zur erfassung der atemleistung unter verwendung von signalverzerrung
US11717634B2 (en) 2018-10-02 2023-08-08 MaxxO2, LLC Therapeutic oxygen breathing apparatus and exercise system
US11752287B2 (en) 2018-10-03 2023-09-12 Covidien Lp Systems and methods for automatic cycling or cycling detection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031282A1 (de) 1997-01-17 1998-07-23 Messer Griesheim Austria Ges.Mbh Gesteuertes gasversorgungssystem

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803066A (en) * 1992-05-07 1998-09-08 New York University Method and apparatus for optimizing the continuous positive airway pressure for treating obstructive sleep apnea
GB9320978D0 (en) * 1993-10-12 1993-12-01 Higenbottam Timohy W Nitric oxide treatment
US5479920A (en) * 1994-03-01 1996-01-02 Vortran Medical Technology, Inc. Breath actuated medicinal aerosol delivery apparatus
US5615669A (en) * 1994-07-22 1997-04-01 Siemens Elema Ab Gas mixture and device for delivering the gas mixture to the lungs of a respiratory subject
SE9601719D0 (sv) * 1996-05-06 1996-05-06 Siemens Elema Ab Doserare för tillförsel av tillsatsgas eller vätska till andningsgas vid anestesiapparat eller ventilator
US6142147A (en) * 1998-03-31 2000-11-07 The General Hospital Corporation Nasal delivery system for inhaled nitric oxide
SE9803685D0 (sv) * 1998-10-27 1998-10-27 Siemens Elema Ab Device for flushing a deadspace in mechanical ventilation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031282A1 (de) 1997-01-17 1998-07-23 Messer Griesheim Austria Ges.Mbh Gesteuertes gasversorgungssystem

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9675637B2 (en) 2003-07-09 2017-06-13 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Use of nitrite salts for the treatment of cardiovascular conditions
US9700578B2 (en) 2003-07-09 2017-07-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Use of nitrite salts for the treatment of cardiovascular conditions
US8557300B2 (en) 2005-05-19 2013-10-15 University Of Cincinnati Methods for treating bacterial respiratory tract infections in an individual using acidified nitrite

Also Published As

Publication number Publication date
WO2001043805A3 (de) 2002-01-03
EP1239910A2 (de) 2002-09-18
EP1239910B1 (de) 2006-03-01
DE50012332D1 (de) 2006-04-27
US20030145853A1 (en) 2003-08-07
ATE318630T1 (de) 2006-03-15
DE19960404A1 (de) 2001-07-05

Similar Documents

Publication Publication Date Title
EP1239910B1 (de) Exspirationsabhängige gasdosierung
DE3636669C2 (de) Anordnung zur Zufuhr von Aerosol zu den Luftwegen und/oder Lungen eines Patienten
EP0973443B1 (de) Gesteuertes gasversorgungssystem
EP0756502B1 (de) Beatmungsgerät, insbesondere zur behandlung von ateminsuffizienzen, sowie verfahren zu dessen betrieb
EP2563444B1 (de) Vorrichtung zur applikation mindestens eines medizinischen gases an einen mit hilfe eines anästhesiegeräts beatmeten patienten
EP0073219B2 (de) Respirator zum anschliessen an die atemwege von menschen oder tieren
DE69735428T2 (de) Gerät zur beatmung während der anästhesie
DE60109474T2 (de) Beatmungsvorrichtung
WO2001043806A2 (de) Atemzugsvolumenabhängige gasdosierung
EP1449559B1 (de) Vorrichtung zur dosierten Abgabe eines therapeutischen Gases
DE102010054361B4 (de) Therapiegerät
DE19626924C2 (de) Gerät zur Bereitstellung eines Atemgases
WO2004105846A2 (de) Steuergerät für antischnarchgerät sowie antischnarchgerät z. b. für die copd-therapie
EP0636037A1 (de) Anästhesiemaschine.
EP3270993B1 (de) Beatmungsgeräte
DE212016000269U1 (de) Ein Mundstückanschluss des Inhalationsgerätes und intelligentes adaptives Inhalationsgerät zur Verabreichung von flüssigem Inhalationsgemisch
DE102018003027A1 (de) Beatmungsvorrichtung
DE19746742A1 (de) Gasversorgungssystem für spontanatmende Patienten
DE10025203C2 (de) Abdichtende Nasenbrille für die Atemtherapie
DE60027403T2 (de) Verbesserung der Sauerstoffversorgung in Lebewesen mit gestörter Sauerstoffversorgung
EP1284774A1 (de) Gasdosiergerät mit katheter
DE102022002797A1 (de) Dosiereinrichtung zur Zugabe wenigstens einer pharmazeutisch wirksamen Substanz zu einem extrakorporal bereitgestellten Atemgas, Gerät zur Bereitstellung eines Atemgases mit einer solchen Dosiereinrichtung und Verfahren
DE69736077T2 (de) Vorrichtung zur patientenbeatmungsunterstüzung
DE102017009951A1 (de) System zur Unterstützung des Gasaustauschs bei Patienten
Stocker et al. Zusätzliche Atemarbeit, Atemmuster und Erkennbarkeit der Extubationsbereitschaft unter inspiratorischer Druckunterstützung (IPS) und automatischer Tubuskompensation (ATC)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000991584

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000991584

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10149615

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2000991584

Country of ref document: EP