WO2001042827A1 - Photic paroxysmal brain wave reaction preventive filter - Google Patents
Photic paroxysmal brain wave reaction preventive filter Download PDFInfo
- Publication number
- WO2001042827A1 WO2001042827A1 PCT/JP2000/008706 JP0008706W WO0142827A1 WO 2001042827 A1 WO2001042827 A1 WO 2001042827A1 JP 0008706 W JP0008706 W JP 0008706W WO 0142827 A1 WO0142827 A1 WO 0142827A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter
- transmittance
- onm
- characteristic
- wavelength side
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
- G02B5/226—Glass filters
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/10—Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
- G02C7/104—Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having spectral characteristics for purposes other than sun-protection
Definitions
- the present invention relates to a funtor that suppresses the amount of transmitted light of a specific wavelength to prevent a sudden photoencephalogram response.
- the purpose of the present invention is to find out what kind of light causes the light spontaneous electroencephalogram response, and to determine the transmission characteristics as a filter necessary to prevent the light spontaneous electroencephalogram reaction based on the results.
- the most fundamental problem to be solved by the present invention is to propose a technology for practical use of a filter having the transmission characteristics. Disclosure of the invention
- a photo-sudden electroencephalogram reaction prevention filter according to claim 1 of the present invention is provided.
- the filter is at least at wavelengths longer than 60 Onm, and the wavelength at which the transmittance becomes 20 ° / 0 in the transmittance attenuation curve formed toward the longer wavelength side is in the range of 61 to 68 Onm. It is characterized by having both a certain characteristic and a characteristic of suppressing the average transmittance from 400 to 70 Onm by 65 to 20%.
- Claim 2 is that at least the wavelength at which the transmittance becomes 20% in the transmittance attenuation curve formed toward the longer wavelength side on the longer wavelength side than 60 Onm is 610 to 68 Onm.
- the characteristics are in the range of 400-70 Onm and the average transmittance is 60-20. / 3 , characterized in that the transmittance is at least 20% in the transmittance attenuation curve formed toward the long wavelength side at wavelengths longer than 60 Onm.
- the wavelength at which the transmittance is 20%, the power is in the range of 6 10 to 6 75 nm, and the average transmittance at 400 to 70 Onm is 5 5 It is characterized by having a characteristic of suppressing it by up to 20%.
- claim 6 relates to a photo-sudden electroencephalogram reaction prevention filter, characterized in that Cu ion is essential as a coloring component and at least one of Nd ion, Fe ion, Co ion and Mn ion is included. is there. Claim 7 is characterized in that Cu ions and Nd ions are contained as essential coloring components.
- Figure 1 is a spectral transmittance curves of the light-absorbing filter CF 1 c
- FIG. 2 is a spectral transmittance curve diagram of the light absorption type filter CF2.
- FIG. 3 is a spectral transmittance curve diagram of the light absorption type filter CF3.
- FIG. 4 is a spectral transmittance curve diagram of the light absorption type filter CF4.
- FIG. 5 is a spectral transmittance curve diagram of the light absorption filter CF5.
- FIG. 6 is a spectral transmittance curve diagram of the light absorption type filter CF6.
- FIG. 7 is a diagram of a reflection filter-TF1 spectral transmittance curve of a multilayer film.
- FIG. 8 is a spectral transmittance curve diagram of a multilayer filter of a reflection type filter TF2.
- FIG. 9 is a spectral transmittance curve diagram of a combination of the filter type CF1 and TF1.
- Figure 1 0 is a spectral transmittance curve chart when combining filter one CF 2 and TF 1 c
- Figure 1 1 is a spectral transmittance curve diagram of combining the filter one of CF 4 and TF 1 c
- FIG. 12 is a spectral transmittance curve diagram when the filters CF 1 and TF 2 are combined.
- FIG. 13 is a spectral transmittance curve diagram when filters CF 2 and TF 2 are combined.
- FIG. 14 is a spectral transmittance curve diagram when filters CF3 and TF2 are combined.
- FIG. 15 is a spectral transmittance curve diagram when the filters CF 4 and TF 2 are combined.
- Figure 1 6 is a spectral transmittance curve chart when combining filter CF 3 and CF 6 c
- FIG. 17 is a spectral transmittance curve diagram when filters CF4 and CF6 are combined.
- FIG. 18 shows the correlation between AXBZ100 in Table 1 and the prevention rate of the photo-spontaneous electroencephalogram response.
- the present inventors have determined whether the intensity of visible light affects the appearance of the photo-spontaneous electroencephalogram response (light-intensity dependence), and whether there is a specific wavelength range in which the photo-spontaneous electroencephalogram response occurs.
- Optical filters with various characteristics (wavelength dependence) were manufactured, and these were used alone or in combination to conduct detailed clinical tests.
- CF 1 with an average transmission of 75 ° / .
- Figure 1 and 50% CF 2 Figure 2 alone
- the prevention effect was recognized in any case compared to the case of the naked eye (100%), there was no difference between CF1 and CF2, and the prevention effect was improved in about 33% of the test subjects. Only recognized (see
- CF 1 and CF 2 are absorption type filters (ND) with the characteristic of neutral density, to which Fe ions, Co ions, etc. are added as coloring components, as shown in Figs. 1 and 2, respectively.
- the average transmittance at 400 to 70 Onm is 75% and 50% as follows:
- CF3 and CF4 are both absorption filters with Nd ions added as coloring components, as shown in Figs. 3 and 4, respectively. As described above, it has a spectral transmittance characteristic of selectively transmitting only BGR.
- Each of TF 1 and TF 2 is a multilayer filter and has a characteristic of shielding a wavelength band around 70 Onm as shown in FIGS.
- Table 1 shows the difference in the prevention rate of the photo-spontaneous electroencephalogram response based on the combination of the filters:
- a filter that shields around 70 Onm used in the test up to that time that is, a filter that blocks visible light in a long wavelength region is realized by a multilayer film.
- the light coming out of the display device such as a CRT (TV) as an image is adjusted by the filter to light that does not induce a light sudden EEG response.
- this filter will leave that light as it is. Because of the reflection, people watching the CRT (TV) will see the light. Light sources that emit undesired light are consciously avoided and not seen, but light reflected and reflected on the front of the CRT (TV) that you are actively watching cannot be avoided:
- CF 5 and CF 6 that utilize the light absorption of Cu (+2) ions have a certain strength, as shown in Figs. 5 and 6, respectively. It is clearly different from a reflection type filter using a multilayer film. This is a characteristic in which the transmittance attenuates gradually from around 520 ⁇ m to 78 Onm, and transmits light to some extent even at 650 to 750 nm. It was thought that the suppression effect could not be expected so much.
- the present inventors examined the effect of suppressing the photo-spontaneous electroencephalogram reaction by using the Cu ion-added filter (CF5) alone to make sure that the effect was higher than that of the multilayer filter. It is.
- the present inventors examined how much the suppression effect of the light sudden electroencephalogram reaction changes by replacing CF 6 as the filter of (2) and superimposing with the filter of (1). As a result, the comparison of CF3 + TF2 and CF3 + CF6 in Table 1; or the comparison of CF4 + TF2 and CF4 + CF6, the absorption type filter (CF6) with Cu ion addition was also found. Thus, the suppression effect was quite close to that of a multilayer filter (TF2) that sharply shields wavelengths longer than 65 Onm. This is another important point of the present invention.
- TF2 multilayer filter
- the present inventors have conducted studies based on the above experimental results to determine the transmission characteristics required to prevent the occurrence of the photo-sudden electroencephalographic response. As a result, the following two values were found to be particularly effective in determining the transmission characteristics of the filter.
- One is an average transmittance from 400 to 700 nm; the other is a wavelength longer than 600 nm, at which the transmittance becomes 20% in a transmittance attenuation curve formed toward the longer wavelength side. It is.
- the average transmittance of 400 to 70 Onm is 65 ° / 0 or less, and it is desirable that the average transmittance be lower, but if it is less than 20%, it will be too high. Therefore, the average transmittance of 400 to 70 Onm is judged to be suitable between 65 and 20%, because it may cause eyestrain.
- the wavelength at which the transmittance becomes 20% in the transmittance attenuation curve formed toward the longer wavelength side has a sudden burst of light with a transmission characteristic that is closer to the longer wavelength side than 68 Onm. Since the EEG response cannot be suppressed, a shorter wavelength is desirable, but it should be shorter than 615 nm.
- the wavelength range suitable for the present invention is limited to 615 to 68 Onm.
- the value obtained by multiplying the value of the average transmittance (B) by 100 is divided by 100, and only the upper two digits are taken as the effective figure.
- ⁇ indicates the combination of filters using TF2 (No. 8 to 11 in Table 1)
- # indicates the combination of filters with TF2 changed to CF6 (Table 1).
- ⁇ indicates the case of the combination of filters using TF1 (No. 5 to 7 in Table 1).
- FIG. 18 clearly shows the magnitude of the synergistic effect of A and B, and the magnitude of the effect of the above-mentioned 20% transmission wavelength.
- the optical sudden electroencephalogram reaction prevention filter according to the present invention has at least a wavelength at which the transmittance becomes 20% in the transmittance attenuation curve formed on the longer wavelength side than 60 Onm toward the longer wavelength side. It is characterized by having both a characteristic in the range of 10 to 68 Onm and a characteristic of suppressing the average transmittance from 400 to 700 nm by 65 to 20%. These two optical characteristics are limited irrespective of the composition of the filter material and the like in embodying the present invention.
- FIGS. 1 to 6 show the spectral transmittance curves of the light absorbing filters CF 1 to CF 6 respectively;
- FIGS. 7 and 8 show the spectral transmittance curves of the multilayer filters TF 1 and TF 2 respectively.
- Is shown. 9 to 17 show spectral transmittance curves when the above filters are combined, and the combinations are as shown in Table 1. Further, in FIG.
- the present inventors have studied visibility and mass productivity for practical use of the present invention.
- the entire color becomes slightly bluish when viewed through a filter in order to suppress the transmittance particularly in the R wavelength band of the BGR.
- the present inventors have studied to improve the filter characteristics so that the optical spontaneous electroencephalogram reaction can be suppressed and an image or the like can be visually recognized in a state closer to a natural color.
- the present inventors have studied various element technologies from various angles and devised the following mass production technologies. These mass production technologies can be applied not only to small products such as glasses, but also to low-cost large display devices.
- the optical spontaneous electroencephalogram reaction prevention filter according to the present invention is capable of controlling the optical spontaneous electroencephalogram reaction such as a display device using a CRT, a liquid crystal, a plasma, an EL, an LED, etc. It can be applied as a structure directly coated on a potential trigger object; or as a retrofit structure.
- Example 1 The transmission characteristic of FIG. 15 formed by superposing the absorption type filter CF 4 having the transmission characteristic of FIG. 4 and the reflection type filter TF 2 of the multilayer film having the transmission characteristic of FIG. That is, on the longer wavelength side than 60 Onm, the wavelength at which the transmittance becomes 20% in the transmittance attenuation curve formed toward the longer wavelength side is 625 nm, and the average transmittance from 400 to 700 nm is 25 ° / o.
- the filter having the transmission characteristics based on the present invention as shown in No. 11 of Table 1, An extremely high prevention rate of 94 ° / 0 was confirmed.
- Example 2 The transmission characteristics of FIG. 16 formed by superimposing the absorption type filter CF3 having the transmission characteristics of FIG. 3 and the absorption type filter CF6 of the transmission characteristics of FIG. 6; On the longer wavelength side than 60 Onm, the wavelength at which the transmittance becomes 20% in the attenuation curve formed toward the longer wavelength side is 634 nm, and the average transmittance from 400 to 70 Onm is 33%.
- the present invention has been made to relieve a photosensitized person having a photo-spontaneous electroencephalogram reaction from such anxiety, and to observe a CRT (TV) or other image through a filter according to the present invention.
- the danger of electroencephalographic reactions can be avoided.
- the present invention will play a major role in removing a kind of social unrest about the image culture represented by the Pokemon uproar.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Health & Medical Sciences (AREA)
- Optical Filters (AREA)
Abstract
A filter for preventing children who might have a photic paroxysmal brain wave reaction induced even by a feeble photic stimulation such as by viewing a CRT (TV) from being provoked to have a photic paraoxysmal brain wave reaction and a subsequent photosensitive attack. The filter has a characteristic that the transmittance shown by the attenuation curve drawn toward the long wavelength side in the range over at least 600 nm decreases to 20 % at the range from 610 to 680 nm and a characteristic that the average transmittance over the range from 400 to 700 nm is suppressed below 65-50 %. The characteristics of the filter are realized by coloring glass or resin by adding a coloring component containing Cu ions essentially and at least one kind of ions among from Nd ions, Fe ions, Co ions, and Mn ions, thus producing a filter of absorption type preferable to, e. g. a CRT (TV).
Description
明 細 書 光突発脳波反応防止フ 技術分野 Technical Information
本発明は、 特定波長の透過光量を抑制して光突発脳波反応を防止するフノルタ —に関するものである。 背景技術 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a funtor that suppresses the amount of transmitted light of a specific wavelength to prevent a sudden photoencephalogram response. Background art
平成 9年 1 2月 9日に放送された T Vアニメ 「ポケッ トモンスタ一」 を視聴し ていた全国の多くの小児達が、 番組のクライマックスで赤と青の閃光が激しく明 滅するシーンによって痙攣などの発作を起こした、 いわゆる "ポケモン騒動" を 招いた。 この現象は、 光突発脳波反応を示す小児達が如何に多いかを如実に示す 結果となった。 潜在的光感受性者数も含めると、 光突発脳波反応を有する小児の 割合は約 1 0 %にも達すると推定されている。 Many children across the country watching the TV animation `` Pocket Monster I '' broadcasted on February 9, 1997, saw convulsions caused by the scene where the red and blue flashes flickered violently at the program climax. It caused a so-called "Pokemon uproar" that caused a seizure. This phenomenon was a good indication of how many children showed a light burst electroencephalographic response. Including the number of potential photosensitizers, the proportion of children with photo-spontaneous electroencephalographic reactions is estimated to be as high as about 10%.
光突発脳波反応を防止するフィルターに関しては、 各国の研究機関で研究が進 められているが、 未だ予防に充分な光学性能の見極めは為されておらず、 当然そ のような特性を有するフィルタ一は実用化されていない c Research on filters to prevent photo-spontaneous electroencephalogram reactions is being conducted by research institutions in various countries, but as yet, sufficient optical performance has not yet been determined for prevention, and filters with such characteristics are naturally available. One is not put into practical use c
光突発脳波反応を有する光感受性者の不幸な事故を防止するための光学的なフ ィルターであり、 多くの小児達及び保護者をその不安から開放するものである。 光突発脳波反応が、 どのような光によって出現するかを究明し、 その結果に基 づき、 光突発脳波反応を防止するために必要なフィルターとしての透過特性の見 極めが本発明が解決しょうとする最も基本的な課題であり、 更にその透過特性を 有するフィルターの実用化技術を提案する事も本発明が解決する重要な課題であ る。 発明の開示 It is an optical filter to prevent unfortunate accidents of light-sensitive individuals with photo-spontaneous electroencephalogram reaction, and to relieve many children and their parents from the anxiety. The purpose of the present invention is to find out what kind of light causes the light spontaneous electroencephalogram response, and to determine the transmission characteristics as a filter necessary to prevent the light spontaneous electroencephalogram reaction based on the results. The most fundamental problem to be solved by the present invention is to propose a technology for practical use of a filter having the transmission characteristics. Disclosure of the invention
上記目的を達成するために、 本発明の請求項 1に係る光突発脳波反応防止フィ
ルターは、 少なくとも、 60 Onmより長波長側で、 長波長側に向かって形成され る透過率の減衰曲線において透過率が 20°/0となる波長が 6 1 0〜6 8 Onmの範 囲である特性と、 40 0〜70 Onmの平均透過率を 6 5〜20%で抑制する特性 を併せ持つことを特徴とする。 In order to achieve the above object, a photo-sudden electroencephalogram reaction prevention filter according to claim 1 of the present invention is provided. The filter is at least at wavelengths longer than 60 Onm, and the wavelength at which the transmittance becomes 20 ° / 0 in the transmittance attenuation curve formed toward the longer wavelength side is in the range of 61 to 68 Onm. It is characterized by having both a certain characteristic and a characteristic of suppressing the average transmittance from 400 to 70 Onm by 65 to 20%.
また、 請求項 2は、 少なくとも、 60 Onmより長波長側で、 長波長側に向かつ て形成される透過率の減衰曲線において透過率が 2 0%となる波長が 6 1 0〜6 8 Onmの範囲である特性と、 40 0〜 70 Onmの平均透過率を 60〜20。/0で抑 制する特性を併せ持つことを特徴とし;請求項 3は、 少なく とも、 60 Onmより 長波長側で、 長波長側に向かって形成される透過率の減衰曲線において透過率が 20 %となる波長が 6 1 0〜6 8 Onmの範囲である特性と、 400〜 700 nmの 平均透過率を 5 5〜2 0%で抑制する特性を併せ持つことを特徴とし;請求項 4 は、 少なくとも、 60 Onraより長波長側で、 長波長側に向かって形成される透過 率の減衰曲線において透過率が 20%となる波長が 6 1 0〜6 75nmの範囲であ る特性と、 400〜70 Onmの平均透過率を 60〜20%で抑制する特性を併せ 持つことを特徴とし;請求項 5は、 少なくとも、 600 nmより長波長側で、 長波 長側に向かって形成される透過率の減衰曲線において透過率が 20%となる波長 力 6 1 0〜 6 75nmの範囲である特性と、 400〜 70 Onmの平均透過率を 5 5 〜 20 %で抑制する特性を併せ持つことを特徴とする。 Claim 2 is that at least the wavelength at which the transmittance becomes 20% in the transmittance attenuation curve formed toward the longer wavelength side on the longer wavelength side than 60 Onm is 610 to 68 Onm. The characteristics are in the range of 400-70 Onm and the average transmittance is 60-20. / 3 , characterized in that the transmittance is at least 20% in the transmittance attenuation curve formed toward the long wavelength side at wavelengths longer than 60 Onm. And a characteristic that suppresses the average transmittance from 400 to 700 nm by 55 to 20% at the wavelength of 610 to 68 Onm; On the longer wavelength side than 60 Onra, the characteristic where the wavelength at which the transmittance becomes 20% in the transmittance attenuation curve formed toward the longer wavelength side is in the range of 60 to 675 nm, and 400 to 70 It also has a characteristic of suppressing the average transmittance of Onm by 60 to 20%; Claim 5 at least on the wavelength side longer than 600 nm and attenuation of the transmittance formed toward the longer wavelength side. In the curve, the wavelength at which the transmittance is 20%, the power is in the range of 6 10 to 6 75 nm, and the average transmittance at 400 to 70 Onm is 5 5 It is characterized by having a characteristic of suppressing it by up to 20%.
更に、 請求項 6は、 着色成分として Cuイオンを必須として、 かつ Ndイオン、 Feイオン、 Coイオン及び Mnイオンの内の少なくとも一つを含むことを特徴とす る光突発脳波反応防止フィルタ一である。 請求項 7は、 Cuイオン及び Ndイオン を必須の着色成分として含むことを特徴とするものである。 図面の簡単な説明 Further, claim 6 relates to a photo-sudden electroencephalogram reaction prevention filter, characterized in that Cu ion is essential as a coloring component and at least one of Nd ion, Fe ion, Co ion and Mn ion is included. is there. Claim 7 is characterized in that Cu ions and Nd ions are contained as essential coloring components. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 光吸収型フィルター C F 1の分光透過率曲線図である c Figure 1 is a spectral transmittance curves of the light-absorbing filter CF 1 c
図 2は、 光吸収型フィルタ一 CF 2の分光透過率曲線図である。 FIG. 2 is a spectral transmittance curve diagram of the light absorption type filter CF2.
図 3は、 光吸収型フィルタ一 CF 3の分光透過率曲線図である。 FIG. 3 is a spectral transmittance curve diagram of the light absorption type filter CF3.
図 4は、 光吸収型フィルタ一 CF 4の分光透過率曲線図である。
図 5は、 光吸収型フィルター CF 5の分光透過率曲線図である。 FIG. 4 is a spectral transmittance curve diagram of the light absorption type filter CF4. FIG. 5 is a spectral transmittance curve diagram of the light absorption filter CF5.
図 6は、 光吸収型フィルタ一 CF 6の分光透過率曲線図である。 FIG. 6 is a spectral transmittance curve diagram of the light absorption type filter CF6.
図 7は、 多層膜による反射型フィルタ一 TF 1分光透過率曲線図である。 図 8は、 多層膜による反射型フィルタ一 TF 2の分光透過率曲線図である c 図 9は、 フィルタ一 CF 1と TF 1を組み合わせた場合の分光透過率曲線図で ある。 FIG. 7 is a diagram of a reflection filter-TF1 spectral transmittance curve of a multilayer film. FIG. 8 is a spectral transmittance curve diagram of a multilayer filter of a reflection type filter TF2. C FIG. 9 is a spectral transmittance curve diagram of a combination of the filter type CF1 and TF1.
図 1 0は、 フィルタ一 CF 2と TF 1を組み合わせた場合の分光透過率曲線図 である c Figure 1 0 is a spectral transmittance curve chart when combining filter one CF 2 and TF 1 c
図 1 1は、 フィルタ一 CF 4と TF 1を組み合わせた場合の分光透過率曲線図 である c Figure 1 1 is a spectral transmittance curve diagram of combining the filter one of CF 4 and TF 1 c
図 1 2は、 フィルタ一 CF 1と TF 2を組み合わせた場合の分光透過率曲線図 である。 FIG. 12 is a spectral transmittance curve diagram when the filters CF 1 and TF 2 are combined.
図 1 3は、 フィルター CF 2と TF 2を組み合わせた場合の分光透過率曲線図 である。 FIG. 13 is a spectral transmittance curve diagram when filters CF 2 and TF 2 are combined.
図 14は、 フィルター CF 3と TF 2を組み合わせた場合の分光透過率曲線図 である。 FIG. 14 is a spectral transmittance curve diagram when filters CF3 and TF2 are combined.
図 1 5は、 フィルタ一 CF 4と TF 2を組み合わせた場合の分光透過率曲線図 である。 FIG. 15 is a spectral transmittance curve diagram when the filters CF 4 and TF 2 are combined.
図 1 6は、 フィルター C F 3と C F 6を組み合わせた場合の分光透過率曲線図 である c Figure 1 6 is a spectral transmittance curve chart when combining filter CF 3 and CF 6 c
図 1 7は、 フィルター C F 4と CF 6を組み合わせた場合の分光透過率曲線図 である。 FIG. 17 is a spectral transmittance curve diagram when filters CF4 and CF6 are combined.
図 1 8は、 表 1の AXBZ1 00と光突発脳波反応の防止率の相関を示してい る。 発明を実施するための最良の形態 FIG. 18 shows the correlation between AXBZ100 in Table 1 and the prevention rate of the photo-spontaneous electroencephalogram response. BEST MODE FOR CARRYING OUT THE INVENTION
本発明者らは、 光突発脳波反応の発現に可視光の光量の強弱が影響するかどう か (光量依存性) を、 また、 光突発脳波反応を発現する特定の波長域があるかど
う力 (波長依存性) を、 種々の特性を持たせた光学フィルタ一を製作し、 これら を単独で、 もしくはそれらの組み合わせで用いて詳細な臨床試験を実施した。 まず、 40 Onm〜 700 nmの透過率を全体的に下げるニュートラルデンシティ —フィルタ一 (平均透過率が 75 °/。の C F 1 ;図 1、 及び 50%の CF 2 :図 2) をそれぞれ単独で用いて、 可視光の光量を減衰した場合の光突発脳波反応への防 止効果を調べた。 その結果、 裸眼 (1 00%) の場合に比べて何れの場合も防止 効果は認められたものの、 CF 1と CF 2の差はなく、 被試験者の内約 33%に 防止効果の向上が認められただけであった (後記表 1参照) c The present inventors have determined whether the intensity of visible light affects the appearance of the photo-spontaneous electroencephalogram response (light-intensity dependence), and whether there is a specific wavelength range in which the photo-spontaneous electroencephalogram response occurs. Optical filters with various characteristics (wavelength dependence) were manufactured, and these were used alone or in combination to conduct detailed clinical tests. First, a neutral density filter that reduces the overall transmission from 40 Onm to 700 nm—a filter (CF 1 with an average transmission of 75 ° / .; Figure 1 and 50% CF 2: Figure 2) alone We investigated the effect of attenuating the amount of visible light on the light sudden EEG response. As a result, although the prevention effect was recognized in any case compared to the case of the naked eye (100%), there was no difference between CF1 and CF2, and the prevention effect was improved in about 33% of the test subjects. Only recognized (see Table 1 below) c
次に、 狭い特定波長帯のみを透過する選択透過フィルタ一 (中心波長が 600、 620、 640、 660、 680及び 700 nmのもの) を単独で用いて、 光突発 脳波反応の波長依存性についても系統的に調べたところ、 70 Onm付近の波長帯 を含んだ光が光突発脳波反応を起こし得ること、 また、 そのような波長依存性の 光突発脳波反応を有する光感受性者が低輝度光刺激ではかなり多いことが見出さ れた。 Next, using a selective transmission filter (with a center wavelength of 600, 620, 640, 660, 680, and 700 nm) that transmits only a narrow specific wavelength band, the wavelength dependence of the photo-spontaneous electroencephalogram response was also investigated. A systematic study shows that light containing a wavelength band around 70 Onm can cause a photo-spontaneous electroencephalographic response. Was found to be quite large.
本発明者らは、 これらの結果から、 70 Onm付近の波長域さえ完全に遮蔽すれ ば光突発脳波反応が大幅に抑制されるであろうことを期待して、 600〜700n mの間に、 長波長に向かって透過率を減衰してゆく減衰曲線がある、 長波長遮蔽フ ィルター (TF 1 :図 7) で試験を行った。 しかし、 結果は意外であった (表 1 参照) = From these results, the present inventors expect that if the wavelength region around 70 Onm is completely shielded, the photo-spontaneous electroencephalogram response will be significantly suppressed. The test was performed using a long-wavelength blocking filter (TF1: Fig. 7), which has an attenuation curve that attenuates the transmittance toward longer wavelengths. However, the results were surprising (see Table 1) =
前述の通り、 光突発脳波反応の発現がはっきりと認められた 70 Onm付近の波 長域を完全に遮蔽したフィルターを用いているにも拘わらず、 光突発脳波反応を 充分に抑制できなかったのである- そこで、遮蔽帯域を 70 Onmだけでなく 650 nm付近まで拡げたフィルター(T F 2 ;図 8) で光突発脳波反応の防止効果を調べてみたが、 本発明者らの期待に 反して、 TF 1に比べて顕著な優位性は認められなかった- 光突発脳波反応の抑 制はそれほど単純ではなかったのである。 As described above, despite the use of a filter that completely shielded the wavelength region around 70 Onm where the appearance of the photo-spontaneous electroencephalographic response was clearly observed, the photo-spontaneous electroencephalographic response could not be sufficiently suppressed. Yes-So, we examined the effect of preventing the photo-spontaneous electroencephalogram response using a filter (TF2; Fig. 8) whose shielding band was expanded not only to 70 Onm but also to around 650 nm, but contrary to the expectations of the present inventors, There was no significant advantage over TF1-the suppression of the light burst EEG response was not so simple.
〈400〜 70 Onmの透過率を抑制する吸収型フィルタ一 (①) と、 長波長の 可視光を遮蔽する多層膜フィルター (②) の組み合わせ〉
本発明者らは、 次に "光突発脳波反応は複合的なメカニズムによって引き起こ されている可能性があるかもしれない" との作業仮説に基づき、 2系統のフィル ター、 即ち、 ① 400〜70 Onmの透過率を抑制する吸収型フィルタ一 (CF 1、 CF 2、 CF 3、 CF 4) と、 ②長波長の可視光を遮蔽する多層膜フィルタ一 (T F l、 TF 2) を重ねた状態で試験を行うことにした c <A combination of an absorption filter (一) that suppresses the transmittance from 400 to 70 Onm and a multilayer filter (②) that blocks long-wavelength visible light> Based on the working hypothesis that the photo-spontaneous electroencephalographic response may be caused by a complex mechanism, the present inventors then proceeded with two types of filters: An absorption filter (CF1, CF2, CF3, CF4) that suppresses the transmittance of 70 Onm and a multilayer filter (TFl, TF2) that blocks long-wavelength visible light I decided to test in the state c
ここで、 CF 1、 CF 2は、 Feイオン、 Coイオンなどを着色成分として添加 したニニ一トラルデンシティ一特性をもつ吸収型フィルタ一 (ND) で、 それぞ れ図 1、 図 2で示した通り 400〜 70 Onmの平均透過率が 75 %、 50 %であ る: CF 3、 CF4は、 何れも Ndイオンを着色成分として添加した吸収型フィル タ一で、 それぞれ図 3、 図 4で示したように BGRだけを選択的透過させる分光 透過率特性を有する。 また、 TF 1、 TF 2はいずれも多層膜フィルタ一で図 7、 図 8で示したように 70 Onm付近の波長域を遮蔽する特性を有するものである。 そして、 試験の結果、 それまでの①、 ②単独で試験した場合とは明らかに異な り、 光突発脳波反応の抑制効果が飛躍的に向上する場合があることを発見したの である。 組み合わせの中には、 光突発脳波反応が特に顕著に現れ易い人にも極め て有効なものもあった。 これは期待を大きく上回る画期的な成果であり、 本発明 の最も重要な部分である。 Here, CF 1 and CF 2 are absorption type filters (ND) with the characteristic of neutral density, to which Fe ions, Co ions, etc. are added as coloring components, as shown in Figs. 1 and 2, respectively. The average transmittance at 400 to 70 Onm is 75% and 50% as follows: CF3 and CF4 are both absorption filters with Nd ions added as coloring components, as shown in Figs. 3 and 4, respectively. As described above, it has a spectral transmittance characteristic of selectively transmitting only BGR. Each of TF 1 and TF 2 is a multilayer filter and has a characteristic of shielding a wavelength band around 70 Onm as shown in FIGS. Then, as a result of the test, they found that the effect of suppressing the photo-spontaneous electroencephalogram response could be dramatically improved, which was clearly different from the previous tests performed by ① and ② alone. Some combinations were also very effective for those who had a particularly prominent light-evoked EEG response. This is a landmark achievement that greatly exceeds expectations and is the most important part of the present invention.
ここで、 フィルタ一の組み合わせに基づく光突発脳波反応の防止率の違いを表 1に示す:
Here, Table 1 shows the difference in the prevention rate of the photo-spontaneous electroencephalogram response based on the combination of the filters:
'実験に川いた ( \ レ t,幺 'I was in the experiment (\ t, mod
フ ルター と ^ *■ ^ ϋ Filter and ^ * ■ ^ ϋ
八口 イ 廿十/ 追"^八口 〜 vjuniii ) i\ 15 又 しゝ WJ JL Hakuguchi I Hatsuku / Oi "^ Hakuguchi ~ vjuniii) i \ 15 Also WJ JL
(')) ひ)、^ ϊβ ^ * JΗ ' A (')) HI), ^ ϊβ ^ * JΗ' A
1 7 1 7
丄 X - 丄 丄 /0 ο し 1 Δ ) リ 丄 X-丄 丄 / 0 ο then 1 Δ)
し O 凶 o ) « 7 n m o o A O り«7 nm oo AO ri
A 1 Γ 上 、凶 ί ) β Q Q A 1 Γ Γ 凶 β) β Q Q
O Ό o, Q Q O Ό o, Q Q
Ό Cし Κ丄 1丄 ( \ 1丄 ノ T l F r 1上 ( β 7 7 Ό C Κ 丄 1 丄 (\ 1 丄 ノ T l F r 1 on (β 7 7
凶\ 7 、ノ 凶 O O ir O O ir
\ C F 2 (図 2 ) T F 1 (図 7 ) \ 1 π 9 U\ C F 2 (Fig. 2) T F 1 (Fig. 7) \ 1 π 9 U
7 C F 4 (図 4 ) T F 1 (図 7 ) 図 1 1 6 6 9 3 3 2 2 5 37 C F 4 (Fig. 4) T F 1 (Fig. 7) Fig. 1 1 6 6 9 3 3 2 2 5 3
8 C F 1 (図 1 ) 'Γ F 2 (図 8 ) 図 1 2 6 2 5 5 0 3 1 7 68 C F 1 (Fig. 1) 'Γ F 2 (Fig. 8) Fig. 1 2 6 2 5 5 0 3 1 7 6
9 C F 2 (図 2 ) T F 2 (図 8 ) 図 1 3 6 1 8 2 5 1 5 8 89 C F 2 (Figure 2) T F 2 (Figure 8) Figure 1 3 6 1 8 2 5 1 5 8 8
1 0 C F 3 (図 3 ) T F 2 (図 8 ) 図 1 4 6 2 7 3 3 2 0 8 71 0 C F 3 (Figure 3) T F 2 (Figure 8) Figure 1 4 6 2 7 3 3 2 0 8 7
1 1 C F 4 (図 4 ) T F 2 (図 8 ) 図 1 5 6 2 5 2 5 1 5 9 41 1 C F 4 (Figure 4) T F 2 (Figure 8) Figure 1 5 6 2 5 2 5 1 5 9 4
1 2 C F 3 (図 3 ) C F 6 (図 6 ) 図 1 6 6 3 4 3 3 2 1 8 91 2 C F 3 (Figure 3) C F 6 (Figure 6) Figure 1 6 6 3 4 3 3 2 1 8 9
1 3 C F 4 (図 4 ) C F 6 (図 6 ) 図 1 7 6 2 4 2 5 1 5 8 4
1 3 CF 4 (Figure 4) CF 6 (Figure 6) Figure 1 7 6 2 4 2 5 1 5 8 4
最も顕著な効果が認められたフィルターの組み合わせは次の通りであった (表 1の N o. 1 1参照) 。 The combinations of the filters that showed the most remarkable effects were as follows (see No. 11 in Table 1).
400〜70 Onmの波長域の光量を減衰させる①のフィルタ一としては CF 4 ;そして長波長域の可視光を遮蔽する②のフィルタ一としては TF 2であった (これらの組み合わせによる透過スペク トルを図 1 5で示した) = CF 4 was used as a filter to attenuate the light amount in the wavelength range of 400 to 70 Onm, and TF 2 was used as a filter to block visible light in the long wavelength region (the transmission spectrum of these combinations). Is shown in Figure 15) =
他に、 CF 2と TF 2の組み合わせでもかなり高い効果が確認された (これら の組み合わせによる透過スぺク トルを図 1 3で示した) 。 In addition, the combination of CF 2 and TF 2 also showed a considerably high effect (the transmission spectrum of these combinations is shown in FIG. 13).
〈多層膜フィルタ一の問題点〉 <Problems of multilayer filter>
しかし、 本発明はこれに留まるものではない。 However, the present invention is not limited to this.
次に、 本発明者らは、 それまで試験に用いた 70 Onm付近を遮蔽する、 即ち長 波長域の可視光を遮蔽するフィルターが多層膜で実現していることに注目した。 確かに、 この種のフィルターを装着した場合、 CRT (TV) などの表示装置内 部から映像として出てくる光は、 そのフィルターによって光突発脳波反応を誘発 しない光に調整される訳であるが、 CRT (TV) を観ている人の側の何らかの 光源から発せられた光突発脳波反応を誘発する光が、 この種の多層膜フィルタ一 に照射された場合、 このフィルタ一はその光をそのまま反射するため、 CRT (T V) を観ている人はその光を見てしまうことになる。 好ましくない光を出す光源 は意識的に避け、見ないで済ませられるが、積極的に観ようとしている CRT (T V) の前面で反射されて飛び込んでくる光は避けることができない: Next, the present inventors noticed that a filter that shields around 70 Onm used in the test up to that time, that is, a filter that blocks visible light in a long wavelength region is realized by a multilayer film. Certainly, when this type of filter is installed, the light coming out of the display device such as a CRT (TV) as an image is adjusted by the filter to light that does not induce a light sudden EEG response. However, if a light that evokes a photo-spontaneous electroencephalogram response from some light source on the side of the person watching the CRT (TV) irradiates this kind of multilayer filter, this filter will leave that light as it is. Because of the reflection, people watching the CRT (TV) will see the light. Light sources that emit undesired light are consciously avoided and not seen, but light reflected and reflected on the front of the CRT (TV) that you are actively watching cannot be avoided:
多層膜フィルターから着色フィルタ一への代替とは言うものの、 本発明者らは ここで困惑してしまった。 長波長の可視光をシャープに遮蔽する多層膜の特性に 相当する吸収型フィルタ一が無いのである。 The present inventors were confused here, though it was an alternative to a multilayer filter from a multilayer filter. There is no absorption filter equivalent to the characteristics of a multilayer film that sharply blocks long-wavelength visible light.
確かに 70 Onm付近を遮蔽する吸収型フィルタ一としては Cu (+2価) イオン の光吸収を活かした CF 5、 CF 6がある力 それぞれ図 5、 図 6で示した通り、 シャープに遮蔽する多層膜による反射型フィルターとは明らかに異なる。 520η m付近から 78 Onmまでなだらかに透過率が減衰する特性であり、 650〜750 nmにおいてもある程度光を透過する事から、 上述の如く多層膜の場合で確認され たような光突発脳波反応を抑制する効果はさほど期待できないと考えられた。
本発明者らは、 念のためにこの Cuイオン添加フィルタ一 (CF 5) 単独で光突 発脳波反応の抑制効果を調べてみたところ、 逆に多層膜フィルタ一の場合より効 果は高かったのである。 Certainly, as an absorption type filter that shields around 70 Onm, CF 5 and CF 6 that utilize the light absorption of Cu (+2) ions have a certain strength, as shown in Figs. 5 and 6, respectively. It is clearly different from a reflection type filter using a multilayer film. This is a characteristic in which the transmittance attenuates gradually from around 520ηm to 78 Onm, and transmits light to some extent even at 650 to 750 nm. It was thought that the suppression effect could not be expected so much. The present inventors examined the effect of suppressing the photo-spontaneous electroencephalogram reaction by using the Cu ion-added filter (CF5) alone to make sure that the effect was higher than that of the multilayer filter. It is.
更に、 本発明者らは、 ②のフィ タ一として CF 6に置き換えて、 ①のフィル タ一との重ね合わせで、 光突発脳波反応の抑制効果がどの程度変わるかを調べて みた。 その結果、 表 1の CF 3+TF 2と CF 3+CF 6の比較; あるいは C F 4+TF 2と CF4+CF 6の比較で分かる通り、 Cuイオン添加の吸収型フィル タ一 (CF6) も、 65 Onmより長波長をシャープに遮蔽する多層膜フィルタ一 (TF 2) にかなり近い抑制効果をもたらしたのであある。 本発明のもう一つの 重要な点である。 Further, the present inventors examined how much the suppression effect of the light sudden electroencephalogram reaction changes by replacing CF 6 as the filter of (2) and superimposing with the filter of (1). As a result, the comparison of CF3 + TF2 and CF3 + CF6 in Table 1; or the comparison of CF4 + TF2 and CF4 + CF6, the absorption type filter (CF6) with Cu ion addition was also found. Thus, the suppression effect was quite close to that of a multilayer filter (TF2) that sharply shields wavelengths longer than 65 Onm. This is another important point of the present invention.
と言っても、 光吸収型フィルタ一の有効性を示すこの結果が、 多層膜による反 射型フィルタ一の適用を否定することを意味するものではない。 人の後方からく る光は頭で防ぐことになり、 多層膜による反射を考える必要がほとんどないる眼 鏡レンズの場合などは、 本発明を具体化する上で多層膜が極めて有効であるから である。 Even so, this result showing the effectiveness of the light absorption type filter does not mean that the application of the reflection type filter using a multilayer film is denied. The light coming from behind the person is prevented by the head, and the multilayer film is extremely effective in embodying the present invention in an ophthalmic lens where it is almost unnecessary to consider the reflection by the multilayer film. It is.
本発明者らは、 以上の実験結果に基づいて光突発脳波反応の発現を防止するた めに必要な透過特性を見極めるための検討を行った。 その結果、 次の 2つの数値 がフィルターの透過特性を見極める上で、 特に有効であることが分かったのであ る。 一つは 400〜 700 nmの平均透過率であり ; もう一つが、 600 nmより長 波長側で、 長波長側に向かって形成される透過率の減衰曲線において透過率が 2 0%となる波長である。 The present inventors have conducted studies based on the above experimental results to determine the transmission characteristics required to prevent the occurrence of the photo-sudden electroencephalographic response. As a result, the following two values were found to be particularly effective in determining the transmission characteristics of the filter. One is an average transmittance from 400 to 700 nm; the other is a wavelength longer than 600 nm, at which the transmittance becomes 20% in a transmittance attenuation curve formed toward the longer wavelength side. It is.
本発明を実現する上で、 400〜 70 Onmの平均透過率は 65°/0以下であるこ とが必須であり、 低い方が望ましいが、 20%を下回るようであれば、 喑くなり 過ぎてしまい、 却って目の疲れを招くことから、 400〜70 Onmの平均透過率 は 65〜20%の間が好適と判断した。 また、 60 Onmより長波長側で、 長波長 側に向かって形成される透過率の減衰曲線において透過率が 20%となる波長は、 68 Onmより長波長側にくるような透過特性では光突発脳波反応を抑制できない ことから、 短い波長であることが望ましいが、 61 5nmより短波長側にくるよう
では青みが強過ぎて、 不自然な色調を観ることに因る視覚障害を招く恐れがある ことから、 本発明にとって好適な波長範囲として 6 1 5〜6 8 Onmに限定した。 なお、 6 0 Onmより長波長側で、 長波長側に向かって形成される透過率の减衰 曲線において透過率が 20 %となる波長の数値 (A) と、 4 0 0〜7 00nmの平 均透過率の数値 (B) を掛けたものを 1 0 0で割り、 その上位 2桁のみを有効数 字として採り、 この数値と光突発脳波反応の防止率との相関を調べた (図 1 8参 照) -一 図中、 ◎印は T F 2を用いたフィルターの組み合わせ (表 1の No. 8〜 1 1 ) の場合、 #は TF 2を C F 6に変更したフィルターの組み合わせ(表 1の No. 1 2〜 1 3) の場合、 そして、 〇印が TF 1用いたフィルタ一の組み合わせ (表 1の No. 5〜 7) の場合である。 In order to realize the present invention, it is essential that the average transmittance of 400 to 70 Onm is 65 ° / 0 or less, and it is desirable that the average transmittance be lower, but if it is less than 20%, it will be too high. Therefore, the average transmittance of 400 to 70 Onm is judged to be suitable between 65 and 20%, because it may cause eyestrain. On the longer wavelength side than 60 Onm, the wavelength at which the transmittance becomes 20% in the transmittance attenuation curve formed toward the longer wavelength side has a sudden burst of light with a transmission characteristic that is closer to the longer wavelength side than 68 Onm. Since the EEG response cannot be suppressed, a shorter wavelength is desirable, but it should be shorter than 615 nm. In this case, the bluish color is too strong, which may cause visual impairment due to unnatural color tones. Therefore, the wavelength range suitable for the present invention is limited to 615 to 68 Onm. On the longer wavelength side than 600 Onm, the numerical value (A) of the wavelength at which the transmittance becomes 20% in the attenuation curve of the transmittance formed toward the longer wavelength side and the flat value of 400 to 700 nm. The value obtained by multiplying the value of the average transmittance (B) by 100 is divided by 100, and only the upper two digits are taken as the effective figure. -In the figure, ◎ indicates the combination of filters using TF2 (No. 8 to 11 in Table 1), and # indicates the combination of filters with TF2 changed to CF6 (Table 1). No. 12 to 13) of the above, and 〇 indicates the case of the combination of filters using TF1 (No. 5 to 7 in Table 1).
この図 1 8で Aと Bの相乗効果の大きさ、 かつ、 上記の 2 0 %の透過波長の影 響の大きさが明確に示されている。 This FIG. 18 clearly shows the magnitude of the synergistic effect of A and B, and the magnitude of the effect of the above-mentioned 20% transmission wavelength.
即ち、 本発明になる光突発脳波反応防止フィルタ一は、 少なくとも、 60 Onm より長波長側で、 長波長側に向かって形成される透過率の減衰曲線において透過 率が 20%となる波長が 6 1 0〜6 8 Onmの範囲である特性と、 4 00〜700n mの平均透過率を 6 5〜20%で抑制する特性を併せ持つことを特徴とする。 そし て、 これら 2つの光学特性は、 本発明を具体化する上でフィルターの素材等の構 成に無関係に限定されるものである。 That is, the optical sudden electroencephalogram reaction prevention filter according to the present invention has at least a wavelength at which the transmittance becomes 20% in the transmittance attenuation curve formed on the longer wavelength side than 60 Onm toward the longer wavelength side. It is characterized by having both a characteristic in the range of 10 to 68 Onm and a characteristic of suppressing the average transmittance from 400 to 700 nm by 65 to 20%. These two optical characteristics are limited irrespective of the composition of the filter material and the like in embodying the present invention.
以上の説明で用いた図、 表についてここでまとめて説明する。 The figures and tables used in the above description are summarized here.
図 1〜図 6では、 それぞれ光吸収型のフィルター C F 1〜C F 6の分光透過率 曲線を;図 7、 図 8では、 それぞれ多層膜による反射型フィルタ一 TF 1及び T F 2の分光透過率曲線を示してある。 図 9〜図 1 7では、 上記フィルターを組み 合わせた場合の分光透過率曲線を示しているが、 その組み合わせは表 1に示され てある通りである。 また、 図 1 8では、 6 0 Onmより長波長側で、 長波長側に向 かって形成される透過率の減衰曲線において透過率が 2 0 %となる波長の数値 (A) と、 4 0 0〜 7 0 Onmの平均透過率の数値 (B) を掛けたものを 1 0 0で 割り、 その上位 2桁の数値と光突発脳波反応の防止率との相関を示してある。 次に表 1では、 左端から番号;上述の①に相当するフィルタ一名 ;②に相当す
るフィルタ一名; 6 0 Onmより長波長側で、 長波長側に向かって形成される透過 率の減衰曲線において透過率が 2 0 %となる波長; 40 0〜70 Onmでの平均透 過率:上記の (A) X (B) Zl 0 0の上位 2桁の数値;そして右端に光突発脳 波反応の防止率を示してある。 FIGS. 1 to 6 show the spectral transmittance curves of the light absorbing filters CF 1 to CF 6 respectively; FIGS. 7 and 8 show the spectral transmittance curves of the multilayer filters TF 1 and TF 2 respectively. Is shown. 9 to 17 show spectral transmittance curves when the above filters are combined, and the combinations are as shown in Table 1. Further, in FIG. 18, on the longer wavelength side than 60 Onm, the numerical value (A) of the wavelength at which the transmittance becomes 20% in the transmittance attenuation curve formed toward the longer wavelength side (A), and The value obtained by multiplying the average transmittance value (B) of ~ 70 Onm by 100 is divided by 100, and the correlation between the numerical value of the upper two digits and the rate of prevention of the light sudden EEG reaction is shown. Next, in Table 1, the numbers from the left end; one filter corresponding to the above ①; One filter at a wavelength longer than 60 Onm, at a wavelength where the transmittance becomes 20% in the transmittance attenuation curve formed toward the longer wavelength side; Average transmittance at 400 to 70 Onm : The upper two digits of (A) X (B) Z100 above; and the right end shows the prevention rate of the photo-sudden electroencephalographic response.
〈視認性及び量産性に関する解決〉 <Solution for visibility and mass production>
本発明者らは、 本発明の実用化に向け、 視認性及び量産性について検討を行つ た。 The present inventors have studied visibility and mass productivity for practical use of the present invention.
まず、 視認性についてである。 First, visibility.
前述の①と②のフィルタ一を組み合わせの場合、 BGRの内、 Rの波長帯で特 に透過率を抑制するために、 フィルターを通して視ると、 全体が若干青みを帯び た色調になる。 短時間の場合さほど問題はないものの、 長時間使用の場合、 不自 然な色調を視ることによる不 ' 感を人に与えてしまう恐れがある。 そこで、 本発 明者らは、 光突発脳波反応を抑制でき、 且つ、 より自然色に近い状態で映像等を 視覚でできるようなフィルタ一特性に改良するための検討を行つた。 In the case of combining the filters (1) and (2) above, the entire color becomes slightly bluish when viewed through a filter in order to suppress the transmittance particularly in the R wavelength band of the BGR. Although there is not much problem in the case of a short time, there is a possibility that a person may feel uneasy by seeing an unnatural color tone in the case of a long use. Therefore, the present inventors have studied to improve the filter characteristics so that the optical spontaneous electroencephalogram reaction can be suppressed and an image or the like can be visually recognized in a state closer to a natural color.
その結果、 この問題は BGRの内の BGの波長帯の透過率を下げることで解消 され、 より自然色に近づけられることが分かった。 As a result, it was found that this problem could be solved by lowering the transmittance of the BG wavelength band within the BGR, and the color could be made more natural.
次に量産性について説明する。 Next, mass productivity will be described.
本発明者らは、 種々の要素技術をべ一スに多角的に検討し、 次のようないくつ かの量産技術を考案した。 これらの量産技術は、 眼鏡用などの小さい製品は勿論 のこと、 低コス トの大型表示装置用としても適用できるものである。 The present inventors have studied various element technologies from various angles and devised the following mass production technologies. These mass production technologies can be applied not only to small products such as glasses, but also to low-cost large display devices.
1 ) 一つは着色ガラスをベースにした量産技術である。 燐酸系ガラスをベース として Cu (+ 2価) イオンの添加で、 6 1 5 nmより長波長域の透過率を抑制 .遮 蔽を行い、 更に Fe、 Co、 Mn、 Crあるいは Ndイオン等から選択された着色成分 の添加とそれらの量の調整によって、 BG Rの色バランスを図りながら 4 0 0〜 70 Onmの透過率の抑制、 調整を行う方法である。 1) One is mass production technology based on colored glass. Adds Cu (+ divalent) ions based on phosphate glass to suppress transmittance in the wavelength region longer than 615 nm. Shields and selects from Fe, Co, Mn, Cr, Nd ions, etc. This method controls and adjusts the transmittance of 400 to 70 Onm while maintaining the BGR color balance by adding the coloring components obtained and adjusting their amounts.
2) 1 ) と同様の金属イオンの錯体化合物、 あるいは顔料などの添加で樹脂を 着色する方法である。 2) This is a method in which the resin is colored by the addition of a complex compound of a metal ion or a pigment as in 1).
3) 2) を更にフィルム状に成形し、 これをガラス、 あるいは樹脂板に貼り付
ける方法、 もしくはガラス、 あるいは榭脂板でサンドウイツチ状にする方法も有 効である。 3) Form 2) into a film and paste it on a glass or resin plate It is also effective to make a sandwich or a sandwich using a glass or a resin plate.
4) 2) と同様の樹脂をガラス、 あるいは樹脂板にコ一ティングする方法は低 コストの大型表示装置用を実現する上で極めて有用な方法となる。 4) The same method of coating resin on glass or resin plate as in 2) is an extremely useful method for realizing a low-cost large display device.
上述の量産技術は全て光吸収型をべ一スとしたものであるが、 当然の事ながら、 本発明はこれらに限定されるものではない多層膜による反射が光突発脳波反応の 発現に繋がらない眼鏡レンズのような場合は、 一部あるいは全部の透過特性を実 現が施せる多層膜の方法が有効となる。 Although the above-mentioned mass production techniques are all based on the light absorption type, it is a matter of course that the present invention is not limited to these. In the case of a spectacle lens, a multilayer film method that can realize a part or all of the transmission characteristics is effective.
本発明になる光突発脳波反応防止フィルターの機能を実現する量産技術に関し て特に限定はなく、 その形状、 用途に応じて要素後術の種々選択とそれらの組み 合わせの適用が可能である。 There is no particular limitation on the mass production technique for realizing the function of the optical spontaneous electroencephalogram reaction prevention filter according to the present invention, and various selections of elementary surgery and the combination thereof can be applied according to the shape and application.
〈用途〉 <Applications>
本発明になる光突発脳波反応防止フィルタ一は、 CRT、 液晶、 プラズマ、 E L、 LED等を用いた表示装置、 眼鏡、 ノ ックミラ一、 電子レンジ、 ランプ、 照 明器具など、 光突発脳波反応を誘発し得る可能性のある対象物に直接コーティン グした構造として;または後付けで設ける構造として適用できる。 実施例 The optical spontaneous electroencephalogram reaction prevention filter according to the present invention is capable of controlling the optical spontaneous electroencephalogram reaction such as a display device using a CRT, a liquid crystal, a plasma, an EL, an LED, etc. It can be applied as a structure directly coated on a potential trigger object; or as a retrofit structure. Example
〈例 1〉 図 4の透過特性を有する吸収型フィルタ一 CF 4と、 図 8の透過特 性を有する多層膜の反射型フィルタ一 TF 2を重ね合わせて形成される図 1 5の 透過特性;即ち、 60 Onmより長波長側で、 長波長側に向かって形成される透過 率の減衰曲線において透過率が 20%となる波長が 625nmで、 400〜700n mの平均透過率が 25 °/oとなる、 本発明に基づく透過特性のフィルターで、 光突発 脳波反応を有する光感受性者に対して、 光突発脳波反応の防止効果を調べた結果、 表 1の No. 1 1に示した通り、 94 °/0という極めて高い防止率が確認された。 <Example 1> The transmission characteristic of FIG. 15 formed by superposing the absorption type filter CF 4 having the transmission characteristic of FIG. 4 and the reflection type filter TF 2 of the multilayer film having the transmission characteristic of FIG. That is, on the longer wavelength side than 60 Onm, the wavelength at which the transmittance becomes 20% in the transmittance attenuation curve formed toward the longer wavelength side is 625 nm, and the average transmittance from 400 to 700 nm is 25 ° / o. As a result of examining the effect of preventing the photo-spontaneous electroencephalographic response on a photosensitive person having a photo-spontaneous electroencephalographic reaction with the filter having the transmission characteristics based on the present invention, as shown in No. 11 of Table 1, An extremely high prevention rate of 94 ° / 0 was confirmed.
(本実施例では、 フィルタ一の組み合わせによって本発明の特性を実現している 力 上述の量産技術で 1枚のフィルタ一として同種の特性を具現化できることは 言うまでもない。 )
〈例 2〉 図 3の透過特性を有する吸収型フィルタ一 CF 3と、 図 6の透過特 性を有する吸収型フィルタ一 C F 6を重ね合わせて形成される図 1 6の透過特 性;即ち、 60 Onmより長波長側で、 長波長側に向かって形成される透過率の減 衰曲線において透過率が 20%となる波長が 63 4nmで、 400〜70 Onmの平 均透過率が 3 3%となる、 本発明に基づく透過特性のフィルタ一で、 光突発脳波 反応を有する光感受性者に対して、 光突発脳波反応の防止効果を調べた結果、 表 1の No. 1 2に示した通り、 8 9%という極めて高い防止率が確認された。 (本 実施例では、 フィルタ一の組み合わせによって本発明の特性を実現しているが、 上述の量産技術で 1枚のフィルタ一として同種の特性を具現化できることは言う までもない- ) 産業上の利用可能性 (In this embodiment, it is needless to say that the same kind of characteristics can be realized as one filter by the above-mentioned mass production technology.) <Example 2> The transmission characteristics of FIG. 16 formed by superimposing the absorption type filter CF3 having the transmission characteristics of FIG. 3 and the absorption type filter CF6 of the transmission characteristics of FIG. 6; On the longer wavelength side than 60 Onm, the wavelength at which the transmittance becomes 20% in the attenuation curve formed toward the longer wavelength side is 634 nm, and the average transmittance from 400 to 70 Onm is 33%. As a result of examining the effect of preventing a photo-spontaneous electroencephalographic reaction on a photosensitized person having a photo-spontaneous electroencephalographic reaction with a filter having the transmission characteristics based on the present invention, as shown in No. 12 of Table 1, An extremely high prevention rate of 89% was confirmed. (In the present embodiment, the characteristics of the present invention are realized by a combination of filters, but it goes without saying that the same kind of characteristics can be realized as one filter by the above-mentioned mass production technology.) Availability
CRT (TV) 等の映像に接する機会は、 今後益々多くなることは確実である 力 光突発脳波反応を有する潜在的光感受性者が小児の 1 0%にも達する現状を 考え合わせると、 光感受性者に対する対策を講じない映像の提供は極めて危険で あり、 光感受性者に大きな不安を与えるものと言わざるを得ない。 Opportunities to come into contact with images such as CRT (TV) will surely increase in the future. Power Considering the current situation where potentially light-sensitive individuals with sudden photoencephalogram reactions reach 10% of children, Providing images that do not take any measures for the light is extremely dangerous, and must be said to cause great anxiety to light-sensitive individuals.
本発明は、 光突発脳波反応を有する光感受性者をそのような不安から開放する ために為されたものであり、 CRT (TV) 等の映像を本発明になるフィルタ一 を通して観ることによって光突発脳波反応の危険を回避できるのである。 The present invention has been made to relieve a photosensitized person having a photo-spontaneous electroencephalogram reaction from such anxiety, and to observe a CRT (TV) or other image through a filter according to the present invention. The danger of electroencephalographic reactions can be avoided.
本発明は、 ポケモン騒動に代表される、 映像文化に対する一種の社会不安を取 り除く大きな役目を果たすことになるのである。
The present invention will play a major role in removing a kind of social unrest about the image culture represented by the Pokemon uproar.
Claims
1. 少なくとも、 60 Omnより長波長側で、 長波長側に向かって形成される透過 率の減衰曲線において透過率が 20%となる波長が 61 0〜68 Omnの範囲であ る特性と、 400〜70 Onmの平均透過率を 65〜20%で抑制する特性を併せ 持つことを特徴とする光突発脳波反応防止フィルター: 1. At least, in the long wavelength side of 60 Omn, and transmittance area by der wavelength 61 0-68 Omn comprising 20% characteristic in the attenuation curve of the transmittance which is formed toward the long wavelength side, 4 The optical spontaneous electroencephalogram reaction prevention filter, which also has the characteristic of suppressing the average transmittance from 00 to 70 Onm by 65 to 20%:
2. 少なくとも、 60 Onmより長波長側で、 長波長側に向かって形成される透過 率の減衰曲線において透過率が 20%となる波長が 61 0〜68 Onmの範囲であ る特性と、 400〜70 Onraの平均透過率を 60〜20%で抑制する特性を併せ 持つことを特徴とする光突発脳波反応防止フィルター = 2. At least on the longer wavelength side than 60 Onm, the characteristic where the wavelength at which the transmittance becomes 20% in the transmittance attenuation curve formed toward the longer wavelength side is in the range of 610 to 68 Onm; light sudden electroencephalographic responses prevention filter for the average transmission to 70 Onra characterized by having combined repressing quality in 60-20% =
3. 少なくとも、 60 Onmより長波長側で、 長波長側に向かって形成される透過 率の減衰曲線において透過率が 20%となる波長が 610〜68 Onmの範囲であ る特性と、 400〜70 Onmの平均透過率を 55〜20%で抑制する特性を併せ 持つことを特徴とする光突発脳波反応防止フィルター。 3. At least on the longer wavelength side than 60 Onm, the characteristic where the wavelength at which the transmittance becomes 20% in the transmittance attenuation curve formed toward the longer wavelength side is in the range of 610 to 68 Onm; An optical spontaneous electroencephalogram reaction prevention filter that also has the property of suppressing the average transmittance of 70 Onm by 55 to 20%.
4. 少なくとも、 60 Onmより長波長側で、 長波長側に向かって形成される透過 率の減衰曲線において透過率が 20%となる波長が 61 0〜675 mnの範囲であ る特性と、 400〜70 Onmの平均透過率を 60〜20 <½で抑制する特性を併せ 持つことを特徴とする光突発脳波反応防止フィルタ一。 4. At least on the longer wavelength side than 60 Onm, the characteristic where the wavelength at which the transmittance becomes 20% in the transmittance attenuation curve formed toward the longer wavelength side is in the range of 610 to 675 mn, and 400 An optical spontaneous electroencephalogram reaction prevention filter characterized in that the filter also has a characteristic of suppressing the average transmittance of up to 70 Onm by 60 to 20 <½.
5. 少なくとも、 60 Onmより長波長側で、 長波長側に向かって形成される透過 率の減衰曲線において透過率が 20%となる波長が 6 1 0〜675 nmの範囲であ る特性と、 400〜70 Onmの平均透過率を 55〜20%で抑制する特性を併せ 持つことを特徴とする光突発脳波反応防止フィルタ一。 5. At least on the longer wavelength side than 60 Onm, the characteristic in which the wavelength at which the transmittance becomes 20% in the transmittance attenuation curve formed toward the longer wavelength side is in the range of 60 to 675 nm, An optical spontaneous electroencephalogram reaction prevention filter characterized by having a characteristic of suppressing the average transmittance of 400 to 70 Onm by 55 to 20%.
6. 着色成分として Cuイオンを必須として、 かつ Ndイオン、 Feイオン、 Coィ オン及び Mnイオンの内の少なくとも一つを含むことを特徴とする請求項 1〜 5 に記載の光突発脳波反応防止フィルター- 6. The light spontaneous electroencephalogram reaction prevention according to claims 1 to 5, wherein Cu ion is essential as a coloring component, and at least one of Nd ion, Fe ion, Co ion and Mn ion is included. filter-
7. 必須の着色成分として少なくとも Cuイオン及び Ndイオンを含むことを特徴 とする請求項 1〜 5に記載の光突発脳波反応防止フィルター。
7. The light-sudden electroencephalogram reaction prevention filter according to any one of claims 1 to 5, wherein the filter includes at least Cu ions and Nd ions as essential coloring components.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34882699A JP2001166130A (en) | 1999-12-08 | 1999-12-08 | Photo-spontaneous brain wave reaction preventive filter |
JP11/348826 | 1999-12-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001042827A1 true WO2001042827A1 (en) | 2001-06-14 |
Family
ID=18399644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/008706 WO2001042827A1 (en) | 1999-12-08 | 2000-12-08 | Photic paroxysmal brain wave reaction preventive filter |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2001166130A (en) |
WO (1) | WO2001042827A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06324213A (en) * | 1993-04-28 | 1994-11-25 | Kureha Chem Ind Co Ltd | Composite optical filter |
JPH09211220A (en) * | 1996-01-30 | 1997-08-15 | Kureha Chem Ind Co Ltd | Heat ray absorbing composite body |
JPH11302308A (en) * | 1998-02-20 | 1999-11-02 | Mitsubishi Rayon Co Ltd | Production of copper compound-containing resin composition |
-
1999
- 1999-12-08 JP JP34882699A patent/JP2001166130A/en active Pending
-
2000
- 2000-12-08 WO PCT/JP2000/008706 patent/WO2001042827A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06324213A (en) * | 1993-04-28 | 1994-11-25 | Kureha Chem Ind Co Ltd | Composite optical filter |
JPH09211220A (en) * | 1996-01-30 | 1997-08-15 | Kureha Chem Ind Co Ltd | Heat ray absorbing composite body |
JPH11302308A (en) * | 1998-02-20 | 1999-11-02 | Mitsubishi Rayon Co Ltd | Production of copper compound-containing resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP2001166130A (en) | 2001-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10642071B2 (en) | Tinted polarized lenses having selective frequency filtering | |
RU2118616C1 (en) | Neutrally colored sodium-calcium silicate glass | |
US6641261B2 (en) | Lens for vision enhancement | |
US7106509B2 (en) | Filter for enhancing vision and/or protecting the eyes and method of making a filter | |
US5243460A (en) | Light filtering system for creating perception of stereoscopic images from two-dimensional images and enhancing perception of objects | |
KR101456727B1 (en) | System and method for selective light inhibition | |
US5173808A (en) | Optical filter | |
EP2074070B1 (en) | Contrast-enhancing uv-absorbing glass and articles containing same | |
US4826286A (en) | Filter with three-band transmission for good seeing | |
US5534041A (en) | Method of making laser eyewear protection | |
US5149183A (en) | Color enhancing lens | |
JPS6351979B2 (en) | ||
GB2548660A (en) | Filters for laser protection | |
JP2017116951A (en) | Light emission reducing film for electronic devices | |
US11892714B2 (en) | Using binocular rivalry for expanding color perception | |
WO2011105546A1 (en) | Imaging prevention device, imaging prevention method and image display system | |
US10683232B2 (en) | Photochromic glass with sharp cutoff | |
CA2111009A1 (en) | Protective filter lenses | |
US20020159026A1 (en) | Optical medium with tailored electromagnetic spectrum transmission | |
WO2001042827A1 (en) | Photic paroxysmal brain wave reaction preventive filter | |
JPH02103504A (en) | Daylight filter | |
CN107958576A (en) | The method that other people use eye health is reminded in monitoring based on internet | |
US5170501A (en) | Welding mask to prevent orange flare and method of welding | |
Sliney et al. | Semitransparent curtains for control of optical radiation hazards | |
EP0115656A1 (en) | Eye protection means |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CN KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |