WO2001039448A1 - Methods, receiver devices and systems for whitening a signal disturbance in a commmunication signal - Google Patents
Methods, receiver devices and systems for whitening a signal disturbance in a commmunication signal Download PDFInfo
- Publication number
- WO2001039448A1 WO2001039448A1 PCT/US2000/026776 US0026776W WO0139448A1 WO 2001039448 A1 WO2001039448 A1 WO 2001039448A1 US 0026776 W US0026776 W US 0026776W WO 0139448 A1 WO0139448 A1 WO 0139448A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- whitening
- received signal
- disturbance
- equalizer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03993—Noise whitening
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03248—Arrangements for operating in conjunction with other apparatus
- H04L25/03299—Arrangements for operating in conjunction with other apparatus with noise-whitening circuitry
Definitions
- the present invention relates to communications methods and apparatus, and more particularly, to methods and apparatus for receiving communications signals subject to noise such as those typically found in wireless communication systems.
- Wireless communications systems are commonly employed to provide voice and data communications to subscribers.
- analog cellular radiotelephone systems such as those designated AMPS, ETACS, NMT-450, and NMT-900, have long been deployed successfully throughout the world.
- Digital cellular radiotelephone systems such as those conforming to the North American standard IS-54 and the European standard GSM have been in service since the early 1990's.
- PCS Personal Communications Services
- DECT Digital Enhanced Cordless Telephone
- CDPD Cellular Digital Packet Data
- Wireless communications systems such as cellular radiotelephone systems typically include a plurality of communication channels which may be established between a first transceiver (such as a base station) and a second transceiver (such as a mobile terminal).
- the communication channels typically are subject to performance- degrading environmental effects such as multi-path fading and interference (noise). Fading effects include flat fading which may arise from the interaction of a transmitted signal (the main ray) with reflected versions of the transmitted signal that arrive concurrently at a receiver. Time dispersion, another type of fading, may arise from interaction of the main ray with time-delayed reflections of the main ray.
- Interference effects may be caused by interaction of non-orthogonal signals generated in the signal medium by sources other than the source of the desired transmitted signal. These various sources of signal disturbances may come from a variety of sources including thermal noise, a co-channel interferer and an adjacent-channel interferer. Most cellular communication standards typically require the receiver to achieve a minimum adjacent-channel protection (ACP). Unfortunately, to meet this minimum specification, a narrow receive filter is often used in the receiver at the expense of losing co-channel performance which might otherwise be obtainable with a wider receive filter.
- ACP adjacent-channel protection
- the dynamic characteristics of the radio channel present difficulties in tracking the channel to allow for decoding of information contained in the received signal.
- known data sequences are inserted periodically into the transmitted information sequences.
- Such data sequences are commonly called synchronizing sequences or training sequences and are typically provided at the beginning or in the middle of a frame of data or a burst of data.
- Channel estimation may be carried out using the synchronizing sequences and other known parameters to estimate the impact the channel has on the transmitted signal.
- Least square estimation may be an efficient way of estimating the channel impulse response in the presence of additive Gaussian (white) noise. However, as the noise becomes non-white, or colored, these techniques may become less effective.
- the receiver of a mobile terminal typically includes a demodulator which may be a coherent demodulator such as a maximum likelihood sequence estimation (MLSE) demodulator (or equalizer).
- a demodulator which may be a coherent demodulator such as a maximum likelihood sequence estimation (MLSE) demodulator (or equalizer).
- MSE maximum likelihood sequence estimation
- an associated channel tracker is typically provided for the demodulator.
- the channel tracker typically operates in a "decision directed" mode where the symbol estimates are used to track the variations of the channel. After acquisition of a communicated signal by the receiver, the channel tracker maintains a channel estimate to provide a coherent reference between the demodulator and the received signal.
- LMS Least Mean Square
- RLS Recursive Least Square
- a signal y(t) is first filtered in an analog filter 105 having a transfer function h(t) to provide a received signal r(t) which is downsampled to a symbol rate received signal r(n) before processing in the equalizer 110 to get a signal estimate s est (u) .
- symbol rate encompasses both the symbol transmission rate and multiples thereof.
- the symbol-rate downsampled discrete-time received signal r(n) is given by:
- c(i) is the discrete-time based-band channel model with L coefficients
- s is the transmitted symbols
- w(n) is a discrete-time random process caused by the signal disturbance (this sequence can be either colored or white and may be referred to as noise).
- a surviving path and a cumulative path metric M(S n ) are kept for each of the 8 i_1 states. Also, at each stage of the trellis, the branch metric is:
- s is the signal (symbol) estimate and dM[ ⁇ n , SRON_, ) corresponding to the state transition from one previous hypothesized state, SRON_, , to the current hypothesized state, S ⁇ , which is computed and added to the path metric (Srase_, ) associated with the previous state.
- the path metric of the current state may then be updated by choosing the minimum of the accumulated metrics among all paths that terminate in the current hypothesized state, Ssky .
- N 0 E
- Equation (7) Using the orthogonality principle of linear estimation, it may be shown that z( ⁇ ) in equation (7) is a white (i.e. uncorrelated) sequence; hence, h(n) is the desired whitening filter. Using recursion, it is also possible to show that h(n) is casually invertible; hence, h(n) is minimum-phase.
- p m ⁇ m is typically fixed and known from equation (3) for each lag m.
- the autocorrelation of w ⁇ ) would need to be estimated for all lags in order to compute ⁇ a(i) ⁇ properly.
- the effective baseband channel seen by the equalizer will generally consist of the convolution of the whitening filter and the original channel. Therefore, the equalizer may have to equalize a much longer channel, possibly requiring a more complex equalizer.
- a finite impulse response filter (FIR) which whitens the signal disturbance by filtering a downsampled received signal using filter coefficients adaptively established using known signal information in each signal burst of the received signal.
- FIR finite impulse response filter
- a noise-whitening equalizer is utilized having a modified metric that whitens the signal disturbance again using coefficients adaptively established using known signal information in each signal burst of the received signal.
- the noise-whitening equalizer approach further allows the noise-whitening coefficients to be updated by treating symbol estimates from the equalizer as known signal information to generate updated noise-whitening coefficients.
- a novel receiver containing a modified Euclidean metric equalizer to provide noise-whitening is also provided.
- a method for adaptively whitening a signal disturbance in a communication signal, the communication signal, which includes the signal disturbance, is received and coefficients are determined for whitening the signal disturbance using known signal information from the received signal.
- the communication signal may include a plurality of signal bursts containing the known signal information which are received. The steps of receiving, determining and generating are repeated for at least two of the plurality of signal bursts. Accordingly, the determined coefficients are updated for each burst and then used by the equalizer in generating the signal estimates for the received burst which was used to determine (update) the coefficients.
- the signal estimate is generating by processing the received signal through a whitening filter having a selected number of taps associated with the determined coefficients and processing the filtered received signal through an equalizer to generate a signal estimate for the received signal.
- the communication signal is preferably downsampled to a symbol rate of the communication signal before filtering.
- the received signal is processed through a whitening filter having M+l taps, where M is a selected integer, and wherein the determined coefficients are coefficients of the whitening filter which are based on an M-th order linear predictor of the signal disturbance.
- the coefficients of the whitening filter may be determined over a training sequence in the received signal.
- the coefficients for whitening the signal disturbance are determined by first determining a plurality of channel taps of the equalizer and determining the signal disturbance based on the determined channel taps and samples of the received signal. An auto-correlation of the signal disturbance is determined for a plurality of lags and the coefficients of the whitening filter are established based on the determined auto-correlation of the signal disturbance.
- the whitening filter may be a minimum-phase filter.
- the whitening filter may also be monic with simple scaling.
- the equalizer may use a Euclidean metric.
- the signal estimate for the received signal is generated by processing the received signal through a noise- whitening equalizer to generate a signal estimate for the received signal.
- Metrics of the noise-whitening equalizer are modified to convert the signal disturbance to a substantially white noise signal disturbance.
- An estimate of the signal disturbance may be maintained for a plurality of states in a decoding trellis of the noise- whitening equalizer.
- the coefficients for whitening the signal disturbance are determined by first determining a plurality of channel taps of the noise- whitening equalizer and determining the signal disturbance based on the determined channel taps and samples of the received signal.
- An autocorrelation of the signal disturbance is determined for a plurality of lags to provide a model for the color of the signal disturbance.
- the received signal is processed through a noise-whitening equalizer having a coefficients determined based on the model for the color of the signal disturbance to generate a signal estimate for the received signal.
- the noise-whitening equalizer may be an Ungerboeck maximum likelihood sequence estimation (MLSE) equalizer.
- the determined coefficients are updated based on the signal estimate from the noise-whitening equalizer. The update may be provided by treating the signal estimate from the noise-whitening equalizer as known signal information.
- a method for whitening a signal disturbance in a received signal is provided.
- the received signal wherein r(n) is the received signal at an nth symbol period, is processed through a modified Euclidean metric equalizer using metrics defined by the equation
- a receiver device including a receiver that receives wireless communication signals including a signal disturbance and downsamples the received signals to a symbol rate of the communication signals to provide received signal samples.
- the receiver device also includes a noise-whitening filter that filters the received signal samples, the noise- whitening filter having filter coefficients.
- An equalizer generates symbol estimates from the filtered received signal samples.
- the receiver device also includes a filter coefficient estimation circuit that generates the filter coefficients based on known signal information from the received signals.
- a receiver device including a receiver that receives wireless communication signals including a signal disturbance and downsamples the received signals to a symbol rate of the communication signals to provide received signal samples.
- the receiver device further includes a noise-whitening equalizer having an associated metric that generates a signal estimate for the received signal and a metric circuit that adjusts the metric based on known signal information from the received signals.
- the metric circuit preferably outputs a model of the signal disturbance to the noise- whitening equalizer and the associated metric is based on the model of the signal disturbance.
- a receiver device including a receiver that receives wireless communication signals including a signal disturbance and downsamples the received signals to a symbol rate of the communication signals to provide received signal samples, where r(n) is a received signal sample at an nth symbol period.
- the receiver device further includes a modified Euclidean metric equalizer using metrics defined by the equation
- FIG. 1 is a schematic block diagram illustrating a conventional receiver
- FIG. 2 is a schematic block diagram illustrating a receiver device according to a first embodiment of the present invention
- FIG. 3 is a schematic block diagram illustrating a receiver device according to a second embodiment of the present invention.
- FIG. 4 is a flowchart illustrating operations for an embodiment of the present invention.
- FIG. 5 is a flowchart illustrating operations for estimating coefficients according to an embodiment of the present invention.
- a signal s (t) is transmitted over a channel 205 having a channel characteristic c(t), such as a wireless cellular radio telephone communication channel.
- the transmitted signal including channel induced effects is received as a signal r(t) at the receiver/RF processor 210 which provides a front end receiver for a receiver device 215 according to an embodiment of the present invention.
- the receiver 210 receives the wireless communication signals r(t) which include a signal disturbance, such as an interference signal from an adjacent-channel interferer or a co-channel interferer.
- the receiver 210 further downsamples the received signals to a symbol rate of the communication signals to provide a received signal r(n).
- the receiver device 215 further includes a whitening filter 220 that filters the received signal r(n) samples.
- the noise whitening filter 220 has an associated impulse response h m ⁇ ) having an associated matrix of filter coefficients.
- a filter coefficient estimation circuit 225 generates the filter coefficients for the whitening filter 220 based on known signal information from the received signals. Accordingly, the received signal samples r(n) are provided by the receiver 210 to both the whitening filter 220 and the estimation circuit 225.
- the estimation circuit 225 in the illustrated embodiment of FIG. 2 obtains the known signal information from a control processor/memory 235 of the receiver device 215.
- the processor/memory 235 may have knowledge of the defined bit pattern for a training sequence included in signal burst for signals received over the channel 205 as defined by the communication protocol used for the communication signals.
- the equalizer 230 generates symbol estimates from the filtered received signal samples output by the whitening filter 220.
- the whitening filter 220 may have a selected finite number of taps with each tap being associated with one of the filter coefficients provided by the estimation circuit 225.
- the whitening filter 220 may have M+l taps where M is a selected finite integer and wherein the filter coefficients are based on an M-th order linear predictor of the signaled disturbance.
- the number of taps M can also be provided by the estimation circuit. For example, the number of coefficients M may be gradually increased. If the incremental reduction in interference (noise) power is larger than a determined criteria, then M may be increased, for example, by one. This adaptive process may be repeated until the incremental reduction in the power of the noise is less than a threshold criteria or until some specified maximum M is reached.
- the whitening filter 220 may also be a minimum phase filter such as a monic with simple scaling.
- the equalizer 230 may be an equalizer which uses a Euclidean metric.
- ⁇ a M (&) ⁇ . are different from the first M taps of ⁇ a(k) ⁇ s.
- ⁇ M (k) ⁇ can also be obtained from the auto-correlation of w ⁇ ) . More specifically, if T M is an (Mx M) Hermitian Toeplitz auto-correlation matrix of w ⁇ ) :
- the Levinson-Durbin algorithm can be used to solve equation (11) efficiently.
- N * 1 sequence and * denotes the complex conjugate and where, after channel estimation, an estimate of the noise sequence w(k) can be computed correspondingly.
- the wireless communication signal s(t) is transmitted over a channel 205 having a channel characteristic c(t) to the receiver device 315 and is received by a receiver/RF processor 310 as a received signal r(t).
- the receiver 310 down samples the received signal rft) to a symbol rate of the communication signal to provide the received signal samples r(n).
- the receiver device 315 further includes a noise whitening equalizer 330 which has an associated metric that generates a signal estimate for the received signal.
- the metric estimation circuit 325 adjusts the metric of the noise whitening equalizer 330 based on known signal information from the received signals r(n).
- the known signal information may be provided to the estimation circuit 325 by a processor/memory 335.
- a training sequence of known bits included in a signal burst as defined by the protocol used for the communication signal s(t) may be known by a processor or stored in a memory of the receiver device 315.
- the metric estimation circuit 325 outputs a model of the signal disturbance to the noise whitening equalizer 330 which is used by the associated metric of the noise whitening equalizer 330.
- the equalizers 230, 330 may, in part, support operations of the respective estimation circuits 225, 325 as well as providing signal estimates.
- the whitening filter h u (n) may be effectively incorporated into the metric calculation of the MLSE for the noise- whitening equalizer 330.
- the noise-whitening equalizer 330 may, for example, be an
- the past samples of the noise sequence are known exactly (i.e. assume that at time n we know)
- the M-th order one-step ahead predictor for w ⁇ ) has coefficients a(k)s which are again known.
- the Euclidean metric (2) is modified as follows:
- the noise-whitening equalizer 330 with the modified metric may result in an improved receiver by reducing the average power of a signal disturbance.
- noise- whitening equalizer with modified branch metrics (13) gives similar performance when compared to an ordinary equalizer with an Euclidean metric based on a longer channel c(n)*h M ( «), preceded by the noise whitening filter h M (n) .
- Implementing an explicit whitening filter h M (n) between the sampler and the equalizer as in the embodiment of FIG. 2 may result in a lower complexity structure than the embodiment of FIG. 3 in which noise whitening is done in the metrics.
- performing noise whitening in the metrics may provide a more flexible structure where the predictor coefficients ⁇ a M (/) ⁇ can be adaptively updated in a symbol-by-symbol fashion during equalization by treating the symbol estimates generated by the equalizer 330 as known signal information. Furthermore, in a high-performance equalizer where a per-survivor channel tracker is employed, the predictor coefficients ⁇ a M (i) ⁇ may also be updated differently for different surviving paths.
- FIGs. 2 and 3 may be provided by hardware, software, or a combination of the above.
- various components of receiver device 315 have been illustrated in FIG. 3, in part, as discrete elements, they may, in practice, be implemented by a micro controller including input and output ports and running software code, by custom or hybrid chips, by discrete components or by a combination of the above.
- the noise- whitening equalizer 33 and the metric estimation circuit 325 may be implemented in part as code executing on a processor.
- each block of the flowchart illustrations and the block diagram illustrations of FIGs. 2 and 3, and combinations of blocks in the flowchart illustrations and the block diagram illustrations of FIGs. 2 and 3, can be implemented by computer program instructions.
- These program instructions may be provided to a processor to produce a machine, such that the instructions which execute on the processor create means for implementing the functions specified in the flowchart and block diagram block or blocks.
- the computer program instructions may be executed by a processor to cause a series of operational steps to be performed by the processor to produce a computer implemented process such that the instructions which execute on the processor provide steps for implementing the functions specified in the flowchart and block diagram block or blocks.
- blocks of the flowchart illustrations and the block diagrams support combinations of means for performing the specified functions, combinations of steps for performing the specified functions and program instruction means for performing the specified functions. It will also be understood that each block of the flowchart illustrations and block diagrams, and combinations of blocks in the flowchart illustrations and block diagrams, can be implemented by special purpose hardware-based systems which perform the specified functions or steps, or combinations of special purpose hardware and computer instructions.
- operations begin at block 400 when a communication signal including a signal disturbance is received. More particularly, the embodiment illustrated in FIG. 4 is directed to a communication system in which the communication signal includes a plurality of signal bursts containing the known signal information, such as a training sequence, within one or more of the signal bursts.
- operations at block 400 involve receipt of one of the plurality of signal bursts to provide a received signal.
- the received signal is downsampled to the symbol rate of the communication signal (block 405).
- Coefficients for whitening the signal disturbance are then determined using the known signal information from the received signal burst (block 410). For example, operations at block 410 may include determining the coefficients of the whitening filter 220 over a training sequence in the received signal.
- the received signal is processed through a whitening filter having a selected number of taps associated with the determined coefficients (block 415).
- the filtered received signal may then be processed through an equalizer to generate a signal estimate for the received signal (block 420).
- the whitening filter has M+l taps where M is a selected integer and wherein the determined coefficients are coefficients of the whitening filter which are based on an M-th order linear predictor of the signal disturbance.
- operations at block 415 may include modifying metrics of the noise whitening equalizer 330 to convert the signal disturbance to a substantially white noise signal disturbance.
- operations begin at block 500 by determining a plurality of channel taps for the equalizer.
- the signal disturbance is then determined based on the determined channel taps and samples of the received signal (block 505).
- An autocorrelation of the signal disturbance for a plurality of lags is then determined (block 510).
- coefficients of the whitening filter are established based on the determined auto-correlation of the signal disturbance (block 515).
- the whitening filter may be a monic with simple scaling minimum phase filter and the equalizer may use a Euclidean metric.
- operations at block 510 may comprise determining an auto-correlation of the signal disturbance for a plurality of lags to provide a model for the color of the signal disturbance.
- Operations at block 515 may then comprise processing the received signal through a noise whitening equalizer having coefficients determined based on the model for the color of the signal disturbance to generate a signal estimate for the received signal.
- the noise whitening equalizer may be an Ungerboeck maximum likelihood sequence estimation (MLSE) equalizer.
- the received baseband, complex -valued signal r(n) can be expressed as:
- each transmitted burst contains a number of known symbols. Let us denote these known symbols by ⁇ s(n) ⁇ _° + ] .
- operations for estimating a received symbol may also be described as follows: 1. Estimate the channel taps. Call the estimated channel taps c(i)s .
- step (2) Based on w(n) obtained in step (2), estimate the auto-correlation and/or the power spectrum of the disturbance for various lags. Call this estimated auto-correlation at lag ⁇ : /3 HW (r) . This will be a model for the color of the
- the signal r(n) is filtered with the whitening filter 220 h(n) to obtain z(n).
- z(n) is fed to an equalizer 230 which is optimized for white disturbance (e.g. MLSE equalizer with Euclidean metric, decision-feedback sequence estimation
- the equalizer 230 provides an estimate of the transmitted symbols s(n)s.
- the signal r(n) is equalized using an equalizer 330 that is capable of dealing with non-white disturbance.
- an equalizer typically requires knowledge of the color of the disturbance, and this knowledge may be provided to the equalizer 330 based on the model of the disturbance obtained in step (3).
- An example of such an equalizer is an Eungerbock MLSE equalizer or the modified Euclidian equalizer described above.
- the present invention has been described above primarily with reference to MLSE equalizers. However, the present invention is not so limited and may also be applied to other types of equalizers, for example, DFSE equalizers.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Noise Elimination (AREA)
- Dc Digital Transmission (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00967078A EP1232617B1 (en) | 1999-11-24 | 2000-09-28 | Method and receiver for whitening a signal disturbance in a communication signal |
AT00967078T ATE310352T1 (en) | 1999-11-24 | 2000-09-28 | METHOD AND RECEIVER FOR IDENTIFYING A SIGNAL FAULT IN A COMMUNICATIONS SYSTEM |
JP2001540477A JP4694750B2 (en) | 1999-11-24 | 2000-09-28 | Method, receiver, and system for whitening signal disturbance in communication signal |
AU77333/00A AU7733300A (en) | 1999-11-24 | 2000-09-28 | Methods, receiver devices and systems for whitening a signal disturbance in a commmunication signal |
DE60024127T DE60024127T2 (en) | 1999-11-24 | 2000-09-28 | METHOD AND RECEIVER FOR TURNING A SIGNAL FAULT IN A COMMUNICATION SYSTEM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/450,684 US6590932B1 (en) | 1999-11-24 | 1999-11-24 | Methods, receiver devices and systems for whitening a signal disturbance in a communication signal |
US09/450,684 | 1999-11-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001039448A1 true WO2001039448A1 (en) | 2001-05-31 |
Family
ID=23789094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/026776 WO2001039448A1 (en) | 1999-11-24 | 2000-09-28 | Methods, receiver devices and systems for whitening a signal disturbance in a commmunication signal |
Country Status (9)
Country | Link |
---|---|
US (1) | US6590932B1 (en) |
EP (1) | EP1232617B1 (en) |
JP (1) | JP4694750B2 (en) |
CN (1) | CN100426806C (en) |
AT (1) | ATE310352T1 (en) |
AU (1) | AU7733300A (en) |
DE (1) | DE60024127T2 (en) |
MY (1) | MY126984A (en) |
WO (1) | WO2001039448A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003100997A1 (en) * | 2002-05-27 | 2003-12-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Colored interference identification |
WO2004002092A1 (en) * | 2002-06-25 | 2003-12-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Method for estimating noise auto-correlation |
EP1383289A1 (en) * | 2002-07-17 | 2004-01-21 | Telefonaktiebolaget L M Ericsson (Publ) | Noise whitening |
WO2004008705A1 (en) * | 2002-07-17 | 2004-01-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Noise whitening |
WO2004014031A1 (en) * | 2002-08-01 | 2004-02-12 | Ericsson Inc. | Apparatus and methods for suppression of interference |
US6768441B2 (en) | 2002-08-20 | 2004-07-27 | Telefonaktiebolaget L.M. Ericsson | Methods of receiving communications signals including a plurality of digital filters having different bandwidths and related receivers |
US6778619B2 (en) | 2001-05-11 | 2004-08-17 | Ericsson Inc. | Methods for receiving diversity transmissions including prefiltering to provide minimum phase channel characteristics and related receivers |
WO2005002241A2 (en) | 2003-06-27 | 2005-01-06 | Nokia Corporation | Method and apparatus for suppressing co-channel interference in a receiver |
US6947403B2 (en) | 2003-06-27 | 2005-09-20 | Nokia Corporation | Advanced whitener-rake receiver for WCDMA terminal |
EP1597851A4 (en) * | 2003-02-07 | 2006-03-01 | Ericsson Inc | System and method for interference cancellation in a wirelss communication receiver |
US7212593B2 (en) | 2003-10-14 | 2007-05-01 | Telefonaktiebolaget Lm Ericsson (Publ) | Method of and apparatus for noise whitening filtering |
US7289583B2 (en) | 2003-10-14 | 2007-10-30 | Telefonktiebolagel Lm Ericsson (Publ) | Method of and apparatus for single antenna interference rejection through relaxation |
EP1956718A1 (en) * | 2007-02-09 | 2008-08-13 | Research In Motion Limited | Apparatus, and associated method, for filtering a receive signal by adaptive operation of an input noise whitening filter |
US8126099B2 (en) | 2007-02-09 | 2012-02-28 | Research In Motion Limited | Apparatus, and associated method, for filtering a receive signal by adaptive operation of an input noise whitening filter |
EP3131247A4 (en) * | 2014-04-29 | 2017-04-26 | Huawei Technologies Co., Ltd. | Signal receiving method and receiver |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE517039C2 (en) * | 2000-05-31 | 2002-04-02 | Bjoern Ottersten | Device and method for channel interference suppression |
DE60022012D1 (en) * | 2000-06-08 | 2005-09-22 | St Microelectronics Nv | Equalizer, using a channel conversion. |
FR2812480B1 (en) * | 2000-07-28 | 2003-01-17 | Nortel Matra Cellular | PROCESS FOR PROCESSING A DIGITAL SIGNAL AT THE INPUT OF A CHANNEL EQUALIZER |
US6775322B1 (en) * | 2000-08-14 | 2004-08-10 | Ericsson Inc. | Equalizer with adaptive pre-filter |
US7340016B2 (en) * | 2001-05-11 | 2008-03-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Equalizers for multi-branch receiver |
US7209511B2 (en) * | 2001-08-31 | 2007-04-24 | Ericsson Inc. | Interference cancellation in a CDMA receiving system |
US6928104B2 (en) * | 2002-07-18 | 2005-08-09 | Interdigital Technology Corporation | Scaling using gain factors for use in data detection for wireless code division multiple access communication systems |
US7206798B1 (en) * | 2002-07-30 | 2007-04-17 | Adaptec, Inc. | Apparatus and method for programmable dual stage digital filter |
WO2004090782A1 (en) * | 2003-03-31 | 2004-10-21 | University Of Florida | Accurate linear parameter estimation with noisy inputs |
DE10354557B4 (en) * | 2003-11-21 | 2007-11-29 | Infineon Technologies Ag | Method and apparatus for predicting noise contained in a received signal and a digital receiver |
FR2873877B1 (en) * | 2004-08-02 | 2006-12-01 | Wavecom Sa | METHOD FOR DESIGNING A DIGITAL RECEPTION FILTER AND CORRESPONDING RECEPTION DEVICE |
US7711035B2 (en) * | 2004-09-17 | 2010-05-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for suppressing communication signal interference |
CN101860503B (en) * | 2010-05-06 | 2012-10-31 | 三维通信股份有限公司 | Method for echo interference cancellation of 3G digital repeater based on blind detection |
FR3034274B1 (en) * | 2015-03-27 | 2017-03-24 | Stmicroelectronics Rousset | METHOD FOR PROCESSING AN ANALOGUE SIGNAL FROM A TRANSMISSION CHANNEL, ESPECIALLY AN ONLINE CARRIER CURRENT VEHICLE SIGNAL |
EP4173243A1 (en) | 2020-06-29 | 2023-05-03 | Nokia Technologies Oy | Training in communication systems |
CN112713905B (en) * | 2020-12-02 | 2022-06-07 | 中科长城海洋信息系统有限公司 | Self-noise cancellation method, device, medium and equipment |
KR20220111145A (en) * | 2021-02-01 | 2022-08-09 | 삼성전자주식회사 | Wireless communication device performing inference whitening operation and method of thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5031195A (en) * | 1989-06-05 | 1991-07-09 | International Business Machines Corporation | Fully adaptive modem receiver using whitening matched filtering |
EP0615347A1 (en) * | 1992-09-18 | 1994-09-14 | Oki Electric Industry Company, Limited | Adaptative equalizing receiver and maximum likelihood sequence estimation receiver |
US5905743A (en) * | 1996-12-31 | 1999-05-18 | Ericsson Inc. | Apparatus, methods and computer program products for sequential maximum likelihood estimating communications signals using whitening path metrics |
DE19803235A1 (en) * | 1998-01-28 | 1999-07-29 | Siemens Ag | Noise reduction device for receiver of data transmission system |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2247812B (en) * | 1990-09-06 | 1994-08-31 | Motorola Inc | Equalizer for linear modulated signal |
JPH05152894A (en) * | 1991-07-29 | 1993-06-18 | Oki Electric Ind Co Ltd | Adaptive equalizer |
JPH06284094A (en) * | 1992-01-10 | 1994-10-07 | Mitsubishi Electric Corp | Most likelihood series estimating device |
JPH0729320A (en) * | 1993-07-05 | 1995-01-31 | Matsushita Electric Ind Co Ltd | Detecting device for digital information |
US5572552A (en) * | 1994-01-27 | 1996-11-05 | Ericsson Ge Mobile Communications Inc. | Method and system for demodulation of downlink CDMA signals |
US5721694A (en) * | 1994-05-10 | 1998-02-24 | Aura System, Inc. | Non-linear deterministic stochastic filtering method and system |
IT1273963B (en) * | 1995-02-24 | 1997-07-11 | Alcatel Italia | FRACTIONAL SPACING EQUALIZATION METHOD AND CIRCUITS |
TW349296B (en) * | 1996-05-21 | 1999-01-01 | Ibm | Wireless communication apparatus, wireless communication method, and wireless communication system |
US6134265A (en) * | 1996-12-31 | 2000-10-17 | Cirrus Logic, Inc. | Precoding coefficient training in a V.34 modem |
ES2241107T3 (en) * | 1997-11-03 | 2005-10-16 | Alcatel | METHOD FOR THE DIGITAL TRANSMISSION OF INFORMATION. |
US6314147B1 (en) * | 1997-11-04 | 2001-11-06 | The Board Of Trustees Of The Leland Stanford Junior University | Two-stage CCI/ISI reduction with space-time processing in TDMA cellular networks |
US6226321B1 (en) * | 1998-05-08 | 2001-05-01 | The United States Of America As Represented By The Secretary Of The Air Force | Multichannel parametric adaptive matched filter receiver |
-
1999
- 1999-11-24 US US09/450,684 patent/US6590932B1/en not_active Expired - Lifetime
-
2000
- 2000-09-28 WO PCT/US2000/026776 patent/WO2001039448A1/en active IP Right Grant
- 2000-09-28 AT AT00967078T patent/ATE310352T1/en not_active IP Right Cessation
- 2000-09-28 EP EP00967078A patent/EP1232617B1/en not_active Expired - Lifetime
- 2000-09-28 JP JP2001540477A patent/JP4694750B2/en not_active Expired - Fee Related
- 2000-09-28 DE DE60024127T patent/DE60024127T2/en not_active Expired - Lifetime
- 2000-09-28 AU AU77333/00A patent/AU7733300A/en not_active Abandoned
- 2000-09-28 CN CNB008161429A patent/CN100426806C/en not_active Expired - Fee Related
- 2000-10-17 MY MYPI20004854A patent/MY126984A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5031195A (en) * | 1989-06-05 | 1991-07-09 | International Business Machines Corporation | Fully adaptive modem receiver using whitening matched filtering |
EP0615347A1 (en) * | 1992-09-18 | 1994-09-14 | Oki Electric Industry Company, Limited | Adaptative equalizing receiver and maximum likelihood sequence estimation receiver |
US5905743A (en) * | 1996-12-31 | 1999-05-18 | Ericsson Inc. | Apparatus, methods and computer program products for sequential maximum likelihood estimating communications signals using whitening path metrics |
DE19803235A1 (en) * | 1998-01-28 | 1999-07-29 | Siemens Ag | Noise reduction device for receiver of data transmission system |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6778619B2 (en) | 2001-05-11 | 2004-08-17 | Ericsson Inc. | Methods for receiving diversity transmissions including prefiltering to provide minimum phase channel characteristics and related receivers |
WO2003100997A1 (en) * | 2002-05-27 | 2003-12-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Colored interference identification |
CN100375398C (en) * | 2002-05-27 | 2008-03-12 | 艾利森电话股份有限公司 | Colored interference identification |
US7319846B2 (en) | 2002-05-27 | 2008-01-15 | Telafonaktiebolaget Lm Ericsson(Publ) | Colored interference identification |
WO2004002092A1 (en) * | 2002-06-25 | 2003-12-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Method for estimating noise auto-correlation |
EP1383289A1 (en) * | 2002-07-17 | 2004-01-21 | Telefonaktiebolaget L M Ericsson (Publ) | Noise whitening |
WO2004008705A1 (en) * | 2002-07-17 | 2004-01-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Noise whitening |
WO2004014031A1 (en) * | 2002-08-01 | 2004-02-12 | Ericsson Inc. | Apparatus and methods for suppression of interference |
US6768441B2 (en) | 2002-08-20 | 2004-07-27 | Telefonaktiebolaget L.M. Ericsson | Methods of receiving communications signals including a plurality of digital filters having different bandwidths and related receivers |
EP1597851A4 (en) * | 2003-02-07 | 2006-03-01 | Ericsson Inc | System and method for interference cancellation in a wirelss communication receiver |
EP1639719A2 (en) * | 2003-06-27 | 2006-03-29 | Nokia Corporation | Method and apparatus for suppressing co-channel interference in a receiver |
US6947403B2 (en) | 2003-06-27 | 2005-09-20 | Nokia Corporation | Advanced whitener-rake receiver for WCDMA terminal |
WO2005002241A2 (en) | 2003-06-27 | 2005-01-06 | Nokia Corporation | Method and apparatus for suppressing co-channel interference in a receiver |
EP1639719A4 (en) * | 2003-06-27 | 2009-04-22 | Nokia Corp | Method and apparatus for suppressing co-channel interference in a receiver |
US7212593B2 (en) | 2003-10-14 | 2007-05-01 | Telefonaktiebolaget Lm Ericsson (Publ) | Method of and apparatus for noise whitening filtering |
US7289583B2 (en) | 2003-10-14 | 2007-10-30 | Telefonktiebolagel Lm Ericsson (Publ) | Method of and apparatus for single antenna interference rejection through relaxation |
EP1956718A1 (en) * | 2007-02-09 | 2008-08-13 | Research In Motion Limited | Apparatus, and associated method, for filtering a receive signal by adaptive operation of an input noise whitening filter |
US8126099B2 (en) | 2007-02-09 | 2012-02-28 | Research In Motion Limited | Apparatus, and associated method, for filtering a receive signal by adaptive operation of an input noise whitening filter |
US8391431B2 (en) | 2007-02-09 | 2013-03-05 | Research In Motion Limited | Apparatus, and associated method, for filtering a receive signal by adaptive operation of an input noise whitening filter |
EP3131247A4 (en) * | 2014-04-29 | 2017-04-26 | Huawei Technologies Co., Ltd. | Signal receiving method and receiver |
US9906310B2 (en) | 2014-04-29 | 2018-02-27 | Huawei Technologies Co., Ltd. | Signal receiving method and receiver |
Also Published As
Publication number | Publication date |
---|---|
DE60024127D1 (en) | 2005-12-22 |
MY126984A (en) | 2006-11-30 |
EP1232617B1 (en) | 2005-11-16 |
US6590932B1 (en) | 2003-07-08 |
CN100426806C (en) | 2008-10-15 |
EP1232617A1 (en) | 2002-08-21 |
CN1399835A (en) | 2003-02-26 |
ATE310352T1 (en) | 2005-12-15 |
JP4694750B2 (en) | 2011-06-08 |
JP2003515972A (en) | 2003-05-07 |
AU7733300A (en) | 2001-06-04 |
DE60024127T2 (en) | 2006-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1232617B1 (en) | Method and receiver for whitening a signal disturbance in a communication signal | |
KR101477482B1 (en) | Adaptive equalizer for communication channels | |
US6674820B1 (en) | Receiver devices, systems and methods for receiving communication signals subject to colored noise | |
US7848460B2 (en) | Interference suppression method and apparatus | |
TWI422167B (en) | Interference cancellation receiver and method | |
KR100791988B1 (en) | Method and apparatus providing low complexity equalization and interference suppression for SAIC GSM/EDGE receiver | |
KR101085708B1 (en) | Equalizers for multi-branch receiver | |
WO2006034813A1 (en) | Iterative forward-backward parameter estimation | |
WO2001048991A1 (en) | Equaliser with a cost function taking into account noise energy | |
JPWO2006090438A1 (en) | Receiver | |
EP1475931B1 (en) | Method and apparatus for iterative estimation of channel- or filter-coefficients | |
EP1475933B1 (en) | Method for interference cancellation using iterative semi-blind channel estimation | |
Schoeneich et al. | Iterative semi-blind single-antenna cochannel interference cancellation and tight lower bound for joint maximum-likelihood sequence estimation | |
Singh et al. | Approaches to Channel Equalization | |
WO2004008705A1 (en) | Noise whitening | |
US8605827B2 (en) | Timing errors | |
JP2000295148A (en) | Adaptive equalizer | |
EP1383289A1 (en) | Noise whitening | |
Liu et al. | An adaptive MLSD receiver using colored noise diversity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2001 540477 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 008161429 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000967078 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2000967078 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 2000967078 Country of ref document: EP |