WO2001039347A1 - Protective device against overpotential in the terminals of electrical equipment, caused by switching operations - Google Patents

Protective device against overpotential in the terminals of electrical equipment, caused by switching operations Download PDF

Info

Publication number
WO2001039347A1
WO2001039347A1 PCT/DE2000/003866 DE0003866W WO0139347A1 WO 2001039347 A1 WO2001039347 A1 WO 2001039347A1 DE 0003866 W DE0003866 W DE 0003866W WO 0139347 A1 WO0139347 A1 WO 0139347A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
protection device
electrical equipment
additional
power
Prior art date
Application number
PCT/DE2000/003866
Other languages
German (de)
French (fr)
Inventor
Hubert Schierling
Hans-Dieter Heining
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2001039347A1 publication Critical patent/WO2001039347A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/005Emergency protective circuit arrangements for limiting excess current or voltage without disconnection avoiding undesired transient conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the invention relates to a protective device against the overvoltages caused by switching operations at terminals of electrical equipment, which can be connected to an energy supply via at least one power cable.
  • the converter In addition to the load current, the converter is also loaded with the natural frequency of the charging current of the cable.
  • An RC terminating impedance of the power cable at the terminals of the electrical equipment can be used to easily reduce reflection-related overvoltages between the connecting cable and the electrical machine. Disadvantages here are the losses occurring in the circuit and the problem of multiple reflections on unmatched converter output filters. Dimensioning must take into account the parameters, if any, in the specific application. (Elektrie, Berlin 49 (1995) 1/2). In addition, the space requirement of the circuit in the vicinity of the machine disturbs.
  • a control method for pulse converters with IGBT is known from the ETZ volume 114 (1993), volume 17, pages 1060 to 1066, which controls the operation of a Avoids pulse overvoltages on the motor on an unprotected motor cable by changing the IGBT control.
  • IGBT Insulated Gate Bipolar Transistor
  • converter output chokes are used.
  • the disadvantage here is that the switching frequency of the IGBTs increases and thus the switching losses also increase.
  • the invention is therefore based on the object of reducing switching overvoltages on electrical equipment in a simple manner in order to protect the insulation of the electrical equipment and to prevent early failures.
  • the solution to the problem is achieved in that there is at least one additional cable not provided for power transmission with a predeterminable intrinsic impedance, which is electrically contacted at one end to the terminal of the electrical equipment and the other end of the cable with a predeterminable terminating impedance is completed.
  • the protective device according to the invention in particular saves material and assembly costs in contrast to conventional protective devices. There are therefore no complex controls or chokes, e.g. at an inverter output is necessary to reduce overvoltages at the terminals of the electrical equipment. This also results in a space-optimized configuration of such systems.
  • Charging current of the cable arrangement as a circulating current via power cables and additional cables results from the quotient of jump height and wave resistance (e.g. 5 A with an intermediate circuit voltage of 500 V and a wave resistance of 100 ⁇ ). Due to the voltage drops in the additional cable, among other things, the current decays quickly (after approx. 20 ⁇ sec.). Among other things, this current is decisive for the dimensioning of the additional cable.
  • the resulting additional load on the energy supply for example the main valves of an inverter, must only be taken into account for inverters with low power.
  • the additional cable according to the invention serves to avoid or suppress voltage peaks at the terminals of almost any electrical equipment, e.g. Motors, transformers, capacitors, especially during switching operations.
  • the insulation of the switched electrical equipment is preferably protected. This extends the life of the equipment and prevents early failures.
  • the voltage peaks are caused, for example, by inverters connected to electrical equipment or electromechanical switching elements, e.g. Vacuum switch. Such switches also cause overvoltages in transformers. In particular, current or voltage intermediate circuit converters are used as the converter device. Avoiding such voltage peaks also works with a three-point inverter.
  • the terminating impedance is designed as a voltage limiting filter or a passive filter.
  • the terminating impedance is connected to the intermediate circuit of the converter.
  • the intermediate circuit of the converter itself is used to limit the voltage at the terminals of the electrical equipment. At the end of the additional line rectified with the help of diodes, and this rectified voltage is given to the intermediate circuit capacitor.
  • a spatially separated installation of power cable and additional cable is particularly suitable for retrofitting the additional cable.
  • the resulting characteristic impedance of the power cable is similar to the resulting characteristic impedance of the additional cable. This reduces the reflection of an incoming traveling wave at the terminal of the electrical equipment, so that the insulation of the respective equipment is stressed only slightly.
  • power and additional cables are arranged within a common insulation. This considerably reduces the assembly effort. By laying a cable, power cable and additional cable, which contributes to reducing the overvoltage, are laid at the same time.
  • FIG. 2 two-point inverter with motor and voltage limitation on additional cable
  • FIGS. 5 and 6 design with matrix converter
  • FIGS. 5 and 6 embodiments of passive filters
  • FIG. 1 shows a converter 1, a two-point inverter, which electrically supplies a motor 3 via a power cable 2.
  • the motor 3 can be both an asynchronous and a synchronous motor.
  • another load can be controlled by the converter 1, which also has a high characteristic impedance and thereby causes the problem of overvoltages.
  • An additional cable 4 is led back from the motor terminals to the converter 1.
  • Power cable 2 and the additional cable 4 can be spatially separated or laid electrically and spatially in parallel.
  • the wave resistances of the power cables 2 connected in parallel and the additional cables 4 which may be connected in parallel are preferably chosen to be similar.
  • a particularly simple assembly results if both power cable 2 and additional cable 4 are arranged in a cable that has a common insulation.
  • the converter 1 according to FIG. 1 is a two-point inverter and additionally has a passive filter 5 in its housing, which is electrically connected to the motor terminals via the additional cable 4.
  • the additional cable 4 must and can not carry the load current during operation of the converter 1, but must be designed for the charging current at the maximum.
  • the passive filter 5 is constructed, for example according to FIG. 4 and FIG. 5, by means of ohmic 18 and / or capacitive components 19 both between the phases and between phase and earth.
  • the ohmic components 18 serve to dampen high-frequency processes.
  • FIG. 9 shows a further embodiment of the passive filter 5.
  • the diodes 11 are provided with circuit elements such as an ohmic component 18, a capacitor 19 connected in series therewith and an overvoltage limiter 20 connected in parallel with this overall arrangement.
  • 2 also shows a two-point inverter 1, which supplies a motor 3 or another load via one or more power cables 2.
  • One or more additional cables 4 are led back from the terminal of the motor 3 to the converter 1.
  • the additional cable 4 is connected to the converter 1 via the intermediate circuit 13.
  • the additional cable 4 is connected to the intermediate circuit 13 of the two-point inverter 1 via an uncontrolled B ⁇ bridge 6.
  • the voltage at the end of the additional cable 4 is preferably rectified with the aid of diodes 11 and the rectified voltage connected to the intermediate circuit capacitor 14. If the converter 1 is in a switching state in which the current flows through the freewheeling diodes 12, the power cable 2 and the additional cable 4 form parallel current paths from the motor 3 to the intermediate circuit 13. In the event of a fault, for example an interruption in the power cable 2, the current was switched to the Commutate additional cables 4 and destroy them, or destroy the diodes 11 of the B6 bridge 6. This case can preferably be avoided by fuses which are not shown in more detail.
  • the uncontrolled B6 bridge 6 can be improved by additional capacitors 15 according to FIG. 7 and FIG.
  • Each of the drawn diode symbols 11 of the uncontrolled B6 bridge 6 according to FIG. 7 or FIG. 8 can be implemented by connecting several individual diodes in series, which leads to a voltage increase or to a faster reduction of the charging current flowing in the circuit (power cable 2 and additional cable 4).
  • FIG. 3 shows a converter 1 which is designed as a three-point inverter.
  • the voltage limitation does not apply to every switching operation, but only to the E n switching of the outer valves 16. However, this does not impair the protective effect.
  • FIG. 4 shows a matrix converter 1, in which there is no intermediate circuit 13 due to the principle.
  • voltage limitation by means of gage bridges 6 and storage capacitor 17 can be provided at the converter output in order to protect the power semiconductor valves from overvoltage in the event of errors or when the converter 1 is switched off.
  • Such a circuit can be combined in the manner shown with the limitation of the terminal voltage on the motor 3 according to the invention.
  • the power fed into the common capacitor must be destroyed by methods known per se with the aid of a pulse resistor 10 or fed back into the supply network.
  • the limitation of the motor voltage according to the invention can be done via a passive filter - similar to FIG. 1 - or by arranging the protective circuit as in FIG. 4, the storage capacitor 17 also having to be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

The invention relates to a protective device against overpotential in the terminals (1) of electrical equipment (3) caused by switching operations. Said device can be connected to a power supply using at least one power cable (2). The device has at least one additional cable (4), not designed for power transmission, with its own predeterminable impedance, one end of which makes electrical contact with the terminal of the electrical equipment and the other end of said cable (4) is terminated by a predeterminable terminating impedance.

Description

Beschreibung description
Schutzvorrichtung gegen die durch Schaltvorgänge verursachten Überspannungen an Klemmen eines elektrischen BetriebsmittelsProtective device against the overvoltages at terminals of electrical equipment caused by switching operations
Die Erfindung betrifft eine Schutzvorrichtung gegen die durch Schaltvorgänge verursachten Überspannungen an Klemmen eines elektrischen Betriebsmittels, das über mindestens ein Leistungskabel an eine Energieversorgung anschließbar ist.The invention relates to a protective device against the overvoltages caused by switching operations at terminals of electrical equipment, which can be connected to an energy supply via at least one power cable.
Durch hohe Steilheiten beim Schalten moderner Leistungshalbleiter in Stromrichtergeräten (z.B. Umrichtern) oder Vakuumschaltern treten neben EMV-Problemen vor allem hohe du/dt Belastungen vor allem an der Isolation der angeschlossenen elektrischen Betriebsmittel. Lange Zuleitungen bewirken außerdem Spannungsüberhöhungen an den elektrischen Betriebsmitteln, wodurch sich die Lebensdauer je nach Isoliersystem reduziert und das elektrische Betriebsmittel zu Frühausfällen neigt.Due to the high steepness when switching modern power semiconductors in converter devices (e.g. converters) or vacuum switches, in addition to EMC problems, there are above all high du / dt loads, especially on the insulation of the connected electrical equipment. Long supply lines also cause voltage surges on the electrical equipment, which reduces the service life depending on the insulation system and tends to cause the electrical equipment to fail prematurely.
Außerdem wird der Umrichter zusätzlich zum Laststrom noch mit der Eigenfrequenz des Ladestroms der Leitung belastet. Durch eine RC-Abschlußimpedanz des Leistungskabels an den Klemmen des elektrischen Betriebsmittels lassen sich reflexionsbe- dingte Überspannungen zwischen Anschlußleitung und elektrischer Maschine auf einfache Weise reduzieren. Nachteilig dabei sind die in der Schaltung entstehenden Verluste und die Problematik von Mehrfachreflexionen an nicht angepaßten Stromrichterausgangsfilter. Eine Dimensionierung muß unter Berücksichtigung der im konkreten Anwendungsfall gegebenenfalls Parametern erfolgen. (Elektrie, Berlin 49 (1995) 1/2). Darüber hinaus stört der Platzbedarf der Schaltung in der Nähe der Arbeitsmaschine.In addition to the load current, the converter is also loaded with the natural frequency of the charging current of the cable. An RC terminating impedance of the power cable at the terminals of the electrical equipment can be used to easily reduce reflection-related overvoltages between the connecting cable and the electrical machine. Disadvantages here are the losses occurring in the circuit and the problem of multiple reflections on unmatched converter output filters. Dimensioning must take into account the parameters, if any, in the specific application. (Elektrie, Berlin 49 (1995) 1/2). In addition, the space requirement of the circuit in the vicinity of the machine disturbs.
Aus der ETZ Band 114 (1993), Heft 17, Seite 1060 bis 1066 ist ein Steuerverfahren für Pulsumrichter mit IGBT (Insulated Gate Bipolar Transistor) bekannt, das die beim Betrieb eines Motors an einer ungeschützten Motorzuleitung entstehenden Pulsüberspannungen am Motor durch Änderungen der IGBT-An- steuerung vermeidet. Um die Spannungssteilheiten zu reduzieren, werden Umrichterausgangsdrosseln eingesetzt . Nachteilig dabei ist, daß die Schalthäufigkeit der IGBTs zunimmt und sich damit auch die Schaltverluste erhöhen.A control method for pulse converters with IGBT (Insulated Gate Bipolar Transistor) is known from the ETZ volume 114 (1993), volume 17, pages 1060 to 1066, which controls the operation of a Avoids pulse overvoltages on the motor on an unprotected motor cable by changing the IGBT control. In order to reduce the voltage steepness, converter output chokes are used. The disadvantage here is that the switching frequency of the IGBTs increases and thus the switching losses also increase.
Aus der WO 98/01937 sind Kabelverbindungen zwischen Umrichter und Motor bekannt, die parallel oder in Serie geschaltet sind und verschiedene Wellenwiderstände aufweisen. Nachteilig dabei ist, daß jedes Kabel zur Leistungsübertragung ausgelegt sein muß.From WO 98/01937 cable connections between converter and motor are known, which are connected in parallel or in series and have different characteristic impedances. The disadvantage here is that each cable must be designed for power transmission.
Der Erfindung liegt demnach die Aufgabe zugrunde, in einfa- eher Art und Weise Schaltüberspannungen an elektrischen Betriebsmitteln zu reduzieren um die Isolation des elektrischen Betriebsmittels zu schützen und Frühausfällen vorzubeugen.The invention is therefore based on the object of reducing switching overvoltages on electrical equipment in a simple manner in order to protect the insulation of the electrical equipment and to prevent early failures.
Die Lösung der gestellten Aufgabe gelingt dadurch, daß minde- stens ein zusätzliches nicht zur Leistungsübertragung vorgesehenes Kabel mit einer vorgebbaren Eigenimpedanz vorhanden ist, das mit seinem einen Ende an der Klemme des elektrischen Betriebsmittels elektrisch kontaktiert ist und das andere Ende des Kabels mit einer vorgebbaren Abschlußimpedanz abge- schlössen ist.The solution to the problem is achieved in that there is at least one additional cable not provided for power transmission with a predeterminable intrinsic impedance, which is electrically contacted at one end to the terminal of the electrical equipment and the other end of the cable with a predeterminable terminating impedance is completed.
Durch die erfindungsgemäße Schutzvorrichtung werden auf Grund des einfachen und wirkungsvollen Aufbaus der Schutzvorrichtung insbesondere Material- und Montagekosten im Gegensatz zu herkömmlichen Schutzvorrichtungen eingespart. Es sind somit keine aufwendigen Steuerungen, oder Drosseln z.B. an einem Umrichterausgang notwendig, um Überspannungen an den Klemmen des elektrischen Betriebsmittels zu reduzieren. Außerdem ergibt sich dadurch eine raumoptimierte Projektierung derarti- ger Anlagen. Nach Abschluß eines Spannungspulses fließt derDue to the simple and effective construction of the protective device, the protective device according to the invention in particular saves material and assembly costs in contrast to conventional protective devices. There are therefore no complex controls or chokes, e.g. at an inverter output is necessary to reduce overvoltages at the terminals of the electrical equipment. This also results in a space-optimized configuration of such systems. After the completion of a voltage pulse, the
Ladestrom der Kabelanordnung als Kreisstrom über Leistungskabel und zusätzliches Kabel. Die Höhe des Stromes ergibt sich aus dem Quotienten aus Sprunghöhe und Wellenwiderstand (z.B. 5 A bei einer Zwischenkreisspannung von 500 V und einem Wellenwiderstand von 100Ω) . Aufgrund der Spannungsabfälle unter anderem im zusätzlichen Kabel klingt der Strom schnell ab (nach ca. 20μsec.) . Dieser Strom ist unter anderem maßgeblich für die Dimensionierung des zusätzlichen Kabels. Die ebenfalls entstehende zusätzliche Belastung der Energieversorgung z.B. der Hauptventile eines Umrichters ist nur bei Umrichtern kleiner Leistung zu beachten.Charging current of the cable arrangement as a circulating current via power cables and additional cables. The amount of the current results from the quotient of jump height and wave resistance (e.g. 5 A with an intermediate circuit voltage of 500 V and a wave resistance of 100Ω). Due to the voltage drops in the additional cable, among other things, the current decays quickly (after approx. 20μsec.). Among other things, this current is decisive for the dimensioning of the additional cable. The resulting additional load on the energy supply, for example the main valves of an inverter, must only be taken into account for inverters with low power.
Das erfindungsgemäße zusätzliche Kabel dient der Vermeidung bzw. Unterdrückung von Spannungsspitzen an den Klemmen nahezu beliebiger elektrischer Betriebsmittel wie z.B. Motoren, Transformatoren, Kondensatoren insbesondere bei Schaltvorgän- gen. Dabei wird vorzugsweise die Isolation des geschalteten elektrischen Betriebsmittels geschützt. Damit verlängert sich die Lebensdauer des Betriebsmittels und Frühausfälle werden vermieden.The additional cable according to the invention serves to avoid or suppress voltage peaks at the terminals of almost any electrical equipment, e.g. Motors, transformers, capacitors, especially during switching operations. The insulation of the switched electrical equipment is preferably protected. This extends the life of the equipment and prevents early failures.
Die Spannungsspitzen werden beispielsweise verursacht durch an ein elektrisches Betriebsmittel angeschlossenen Umrichter oder elektromechanische Schaltelemente, wie z.B. Vakuumschalter. Derartige Schalter verursachen auch bei Transformatoren Überspannungen. Als Stromrichtergerät werden insbesondere Strom- oder Spannungszwischenkreisu richter eingesetzt. Die Vermeidung derartiger Spannungsspitzen funktioniert auch bei einem Drei-Punkt-Wechselrichter.The voltage peaks are caused, for example, by inverters connected to electrical equipment or electromechanical switching elements, e.g. Vacuum switch. Such switches also cause overvoltages in transformers. In particular, current or voltage intermediate circuit converters are used as the converter device. Avoiding such voltage peaks also works with a three-point inverter.
In einer vorteilhaften Ausführungsform ist die Abschlußimpe- danz als Spannungs-Begrenzungsfilter oder passives Filter ausgelegt.In an advantageous embodiment, the terminating impedance is designed as a voltage limiting filter or a passive filter.
In einer weiteren bevorzugten Ausführungsform ist die Abschlußimpedanz am Zwischenkreis des Umrichters angeschlossen. Dabei wird zur Begrenzung der Spannung an den Klemmen des elektrischen Betriebsmittels der Zwischenkreis des Umrichters selbst genutzt. Diese Spannung wird dabei am Ende der Zusatz- leitung mit Hilfe von Dioden gleichgerichtet, und diese gleichgerichtete Spannung auf den Zwischenkreiskondensator gegeben.In a further preferred embodiment, the terminating impedance is connected to the intermediate circuit of the converter. The intermediate circuit of the converter itself is used to limit the voltage at the terminals of the electrical equipment. At the end of the additional line rectified with the help of diodes, and this rectified voltage is given to the intermediate circuit capacitor.
Insbesondere für eine nachträgliche Montage des zusätzlichen Kabels eignet sich eine räumlich getrennt Verlegung von Leistungskabel und zusätzlichem Kabel.A spatially separated installation of power cable and additional cable is particularly suitable for retrofitting the additional cable.
In einer weiteren vorteilhaften Ausführungsform der Erfindung ist der resultierenden Wellenwiderstand des Leistungskabels dem resultierenden Wellenwiderstand des zusätzlichen Kabels ähnlich. Damit reduziert sich an der Klemme des elektrischen Betriebsmittels die Reflexion einer einlaufenden Wanderwelle, so daß die Isolation des jeweiligen Betriebsmittels nur ge- ring beansprucht wird.In a further advantageous embodiment of the invention, the resulting characteristic impedance of the power cable is similar to the resulting characteristic impedance of the additional cable. This reduces the reflection of an incoming traveling wave at the terminal of the electrical equipment, so that the insulation of the respective equipment is stressed only slightly.
In einer weiteren Ausführungsform sind Leistungs- und zusätzliches Kabel innerhalb einer gemeinsamen Isolierung angeordnet. Damit wird der Montageaufwand erheblich reduziert. Durch Verlegen eines Kabels ist somit gleichzeitig Leistungskabel und zusätzliches Kabel, das zur Reduzierung der Überspannung beiträgt, verlegt.In a further embodiment, power and additional cables are arranged within a common insulation. This considerably reduces the assembly effort. By laying a cable, power cable and additional cable, which contributes to reducing the overvoltage, are laid at the same time.
Die Erfindung sowie weitere vorteilhafte Ausgestaltungen der Erfindung gemäß den Merkmalen der Unteransprüche werden im folgenden anhand schematisch dargestellter Ausführungsbei- spiele in der Zeichnung näher erläutert. Darin zeigen:The invention and further advantageous embodiments of the invention according to the features of the subclaims are explained in more detail below with reference to schematically illustrated exemplary embodiments in the drawing. In it show:
FIG 1 Zweipunktwechselrichter mit Motor und passivem Filter an zusätzlichem Kabel,1 two-point inverter with motor and passive filter on additional cable,
FIG 2 Zweipunktwechselrichter mit Motor und Spannungsbegrenzung an zusätzlichem Kabel,FIG. 2 two-point inverter with motor and voltage limitation on additional cable,
FIG 3 Ausführung mit Dreipunktwechselrichter,3 version with three-point inverter,
FIG 4 Ausführung mit Matrixumrichter, FIG 5 und 6 Ausführungsformen passiver Filter,4 design with matrix converter, FIGS. 5 and 6 embodiments of passive filters,
FIG 7, 8 und 9 Filterschaltungen. FIG 1 zeigt einen Umrichter 1, einen Zweipunktwechselrichter, der über ein Leistungskabel 2 einen Motor 3 elektrisch versorgt. Der Motor 3 kann sowohl ein Asynchron- als auch Synchronmotor sein. Ebenso kann durch den Umrichter 1 eine ande- re Last angesteuert werden, die ebenfalls einen hohen Wellenwiderstand aufweist und dadurch die Problematik der Überspannungen verursacht. Ein zusätzliches Kabel 4 wird von den Motorklemmen zurück zum Umrichter 1 geführt. Dabei können Leistungskabel 2 und das zusätzliche Kabel 4 räumlich getrennt oder elektrisch und räumlich parallel verlegt werden. Eine7, 8 and 9 filter circuits. 1 shows a converter 1, a two-point inverter, which electrically supplies a motor 3 via a power cable 2. The motor 3 can be both an asynchronous and a synchronous motor. Likewise, another load can be controlled by the converter 1, which also has a high characteristic impedance and thereby causes the problem of overvoltages. An additional cable 4 is led back from the motor terminals to the converter 1. Power cable 2 and the additional cable 4 can be spatially separated or laid electrically and spatially in parallel. A
Parallelschaltung mehrerer Leistungskabel 2 und/oder zusätzlicher Kabel 4 ist je nach Anwendungszweck möglich. Vorzugsweise werden dabei die Wellenwiderstände der parallel geschalteten Leistungskabel 2 und der eventuell parallel ge- schalteten zusätzlichen Kabel 4 ähnlich gewählt. Eine besonders einfache Montage ergibt sich, wenn sowohl Leistungskabel 2 als auch zusätzliches Kabel 4 in einem Kabel angeordnet sind, das eine gemeinsame Isolierung aufweist. Der Umrichter 1 nach FIG 1 ist ein Zwei-Punkt-Wechselrichter und weist zu- sätzlich in seinem Gehäuse ein passives Filter 5 auf, das über das zusätzliche Kabel 4 mit den Motorklemmen elektrisch verbunden ist. Das zusätzliche Kabel 4 muß und kann im Betrieb des Umrichters 1 nicht den Laststrom führen, sondern muß maximal für den Ladestrom ausgelegt sein.Parallel connection of several power cables 2 and / or additional cables 4 is possible depending on the application. The wave resistances of the power cables 2 connected in parallel and the additional cables 4 which may be connected in parallel are preferably chosen to be similar. A particularly simple assembly results if both power cable 2 and additional cable 4 are arranged in a cable that has a common insulation. The converter 1 according to FIG. 1 is a two-point inverter and additionally has a passive filter 5 in its housing, which is electrically connected to the motor terminals via the additional cable 4. The additional cable 4 must and can not carry the load current during operation of the converter 1, but must be designed for the charging current at the maximum.
Das passive Filter 5 ist beispielsweise gemäß FIG 4 und FIG 5 durch ohmsche 18 und/oder kapazitive Komponenten 19 sowohl zwischen den Phasen als auch zwischen Phase und Erde aufgebaut. Die ohmschen Komponenten 18 dienen dabei der Dämpfung hochfrequenter Vorgänge.The passive filter 5 is constructed, for example according to FIG. 4 and FIG. 5, by means of ohmic 18 and / or capacitive components 19 both between the phases and between phase and earth. The ohmic components 18 serve to dampen high-frequency processes.
FIG 9 zeigt eine weitere Ausführungsform des passiven Filters 5. Bei einer ungesteuerten B6-Brücke 6 sind den Dioden 11 Be- schaltungselemente wie eine ohmsche Komponente 18, ein dazu in Reihe geschalteter Kondensator 19 und ein zu dieser Gesamtanordnung parallel geschalteter Überspannungsbegrenzer 20 vorgesehen. FIG 2 zeigt ebenfalls einen Zwei-Punkt-Wechselrichter 1, der über ein oder mehrere Leistungskabel 2 einen Motor 3 oder eine andere Last versorgt. Dabei wird von der Klemme des Motors 3 ein oder mehrere zusatzliche Kabel 4 zurück zum Umrichter 1 gefuhrt. Der Anschluß des zusatzlichen Kabels 4 an den Umrichter 1 erfolgt über den Zwischenkreis 13. Der Anschluß des zusatzlichen Kabels 4 an den Zwischenkreis 13 des Zweipunktwechselrichters 1 erfolgt über eine ungesteuerte Bβ-Brucke 6. Die Spannung am Ende des zusatzlichen Kabels 4 wird vorzugs- weise mit Hilfe von Dioden 11 gleichgerichtet und die gleichgerichtete Spannung mit dem Zwischenkreiskondensator 14 verbunden. Falls sich der Umrichter 1 in einem Schaltzustand befindet, indem der Strom über die Freilaufdioden 12 fließt, bilden Leistungskabel 2 und zusatzliches Kabel 4 parallele Stromwege vom Motor 3 zum Zwischenkreis 13. Bei einem Fehler, z.B. einer Unterbrechung des Leistungskabels 2 wurde der Strom auf das zusatzliche Kabel 4 kommutieren und dieses, oder die Dioden 11 der B6-Brucke 6 zerstören. Dieser Fall kann vorzugsweise durch nicht naher dargestellte Sicherungen vermieden werden. Die ungesteuerte B6-Brucke 6 kann durch zusatzliche Kondensatoren 15 gemäß FIG 7 und FIG 8 zwischen den Phasen oder zwischen Phasen oder zwischen Phase und Erde verbessert werden, die die Emschaltgeschwindigkeit der Dioden 11 reduziert. Zusatzliche Widerstände in Reihe mit den Kon- densatoren oder aber in der Verbindungsleitung im Zwischenkreis, tragen zur Dampfung der Vorgange bei. Jedes der gezeichnete Diodensymbole 11 der ungesteuerten B6-Brucke 6 nach FIG 7 oder FIG 8 kann durch eine Reihenschaltung mehrere Einzeldioden realisiert werden, was zur Spannungserhohung oder zum schnelleren Abbau des im Kreis (Leistungskabel 2 und zusätzliches Kabel 4) fließenden Ladestroms fuhrt.FIG. 9 shows a further embodiment of the passive filter 5. In the case of an uncontrolled B6 bridge 6, the diodes 11 are provided with circuit elements such as an ohmic component 18, a capacitor 19 connected in series therewith and an overvoltage limiter 20 connected in parallel with this overall arrangement. 2 also shows a two-point inverter 1, which supplies a motor 3 or another load via one or more power cables 2. One or more additional cables 4 are led back from the terminal of the motor 3 to the converter 1. The additional cable 4 is connected to the converter 1 via the intermediate circuit 13. The additional cable 4 is connected to the intermediate circuit 13 of the two-point inverter 1 via an uncontrolled Bβ bridge 6. The voltage at the end of the additional cable 4 is preferably rectified with the aid of diodes 11 and the rectified voltage connected to the intermediate circuit capacitor 14. If the converter 1 is in a switching state in which the current flows through the freewheeling diodes 12, the power cable 2 and the additional cable 4 form parallel current paths from the motor 3 to the intermediate circuit 13. In the event of a fault, for example an interruption in the power cable 2, the current was switched to the Commutate additional cables 4 and destroy them, or destroy the diodes 11 of the B6 bridge 6. This case can preferably be avoided by fuses which are not shown in more detail. The uncontrolled B6 bridge 6 can be improved by additional capacitors 15 according to FIG. 7 and FIG. 8 between the phases or between phases or between phase and earth, which reduces the switching speed of the diodes 11. Additional resistors in series with the capacitors or in the connecting line in the intermediate circuit contribute to the damping of the processes. Each of the drawn diode symbols 11 of the uncontrolled B6 bridge 6 according to FIG. 7 or FIG. 8 can be implemented by connecting several individual diodes in series, which leads to a voltage increase or to a faster reduction of the charging current flowing in the circuit (power cable 2 and additional cable 4).
FIG 3 zeigt einen Umrichter 1, der als Drei-Punkt-Wechselrichter ausgeführt ist. Im Gegensatz zur Wirkungsweise eines Zwei-Punkt-Wechselrichters setzt die Spannungsbegrenzung hier nicht bei -jeder Schalthandlung ein, sondern nur beim E n- schalten der äußeren Ventile 16. Dies stellt aber keine Beeinträchtigung der Schutzwirkung dar.3 shows a converter 1 which is designed as a three-point inverter. In contrast to the mode of operation of a two-point inverter, the voltage limitation does not apply to every switching operation, but only to the E n switching of the outer valves 16. However, this does not impair the protective effect.
FIG 4 zeigt einen Matrixumrichter 1, bei dem es prinzipbe- dingt keinen Zwischenkreis 13 gibt. Aus Schutzgründen kann man bei Matrixumrichtern 1 eine Spannungsbegrenzung durch Bö- Brücken 6 und Speicherkondensator 17 am Umrichterausgang vorsehen, um die Leistungshalbleiterventile bei Fehlern oder beim Ausschalten des Umrichters 1 vor Überspannung zu schüt- zen. Eine solche Schaltung läßt sich in der gezeigten Art und Weise mit der erfindungsgemäßen Begrenzung der Klemmenspannung am Motor 3 kombinieren. Die in den gemeinsamen Kondensator eingespeiste Leistung muß allerdings durch an sich bekannte Methoden mit Hilfe eines Pulswiderstandes 10 vernich- tet oder in das Versorgungsnetz rückgespeist werden.4 shows a matrix converter 1, in which there is no intermediate circuit 13 due to the principle. For protection reasons, in the case of matrix converters 1, voltage limitation by means of gage bridges 6 and storage capacitor 17 can be provided at the converter output in order to protect the power semiconductor valves from overvoltage in the event of errors or when the converter 1 is switched off. Such a circuit can be combined in the manner shown with the limitation of the terminal voltage on the motor 3 according to the invention. However, the power fed into the common capacitor must be destroyed by methods known per se with the aid of a pulse resistor 10 or fed back into the supply network.
Ist die Überspannungsbegrenzung des Matrixumrichters in einer anderen Weise realisiert, kann die erfindungsgemäße Begrenzung der Motorspannung über ein passives Filter - ähnlich zu FIG 1 - oder durch die Anordnung der Schutzbeschaltung wie in FIG 4, wobei der Speicherkondensator 17 zusätzlich vorgesehen werden muß . If the overvoltage limitation of the matrix converter is realized in a different way, the limitation of the motor voltage according to the invention can be done via a passive filter - similar to FIG. 1 - or by arranging the protective circuit as in FIG. 4, the storage capacitor 17 also having to be provided.

Claims

Patentansprüche claims
1. Schutzvorrichtung gegen die durch Schaltvorgänge verursachten Überspannungen an Klemmen (1) eines elektrischen Be- triebsmittels (3), das über mindestens ein Leistungskabel (2) an eine Energieversorgung anschließbar ist, d a d u r c h g e k e n n z e i c h n e t , daß mindestens ein zusätzliches nicht zur Leistungsübertragung vorgesehenes Kabel (4) mit einer vorgebbaren Eigenimpedanz vorhanden ist, das mit seinem einen Ende an der Klemme des elektrischen Betriebsmittels elektrisch kontaktiert ist und das andere Ende des Kabels (4) mit einer vorgebbaren Abschlußimpedanz abgeschlossen ist .1. Protection device against the overvoltages caused by switching operations at terminals (1) of electrical equipment (3) which can be connected to an energy supply via at least one power cable (2), characterized in that at least one additional cable (4 ) is present with a predeterminable intrinsic impedance which is electrically contacted at one end to the terminal of the electrical equipment and the other end of the cable (4) is terminated with a predeterminable terminating impedance.
2. Schutzvorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das elektrische Betriebsmittel (3) an wenigstens ein elektronisches Schaltelement anschließbar ist.2. Protection device according to claim 1, d a d u r c h g e k e n n z e i c h n e t that the electrical equipment (3) can be connected to at least one electronic switching element.
3. Schutzvorrichtung nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , daß das elektronische Schaltelement Teil eines Umrichters (1) mit Zwischenkreis (13) ist.3. Protection device according to claim 3, d a d u r c h g e k e n n z e i c h n e t that the electronic switching element is part of a converter (1) with an intermediate circuit (13).
4. Schutzvorrichtung nach Anspruch 3, d a d u r c h g e - k e n n z e i c h n e t , daß die Abschlußimpedanz am Zwischenkreis (13) des Umrichters (1) anschließbar ist.4. Protection device according to claim 3, d a d u r c h g e - k e n n z e i c h n e t that the terminating impedance at the intermediate circuit (13) of the converter (1) can be connected.
5. Schutzvorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das elektrische Betriebs- mittel (3) an wenigstens ein elektromechanisches Schaltelement anschließbar ist.5. Protection device according to claim 1, d a d u r c h g e k e n n z e i c h n e t that the electrical equipment (3) can be connected to at least one electromechanical switching element.
6. Schutzvorrichtung nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , daß das elektrische Betriebs- mittel (3) über einen Vakuumschalter anschließbar ist. 6. Protection device according to claim 5, characterized in that the electrical operating means (3) can be connected via a vacuum switch.
7. Schutzvorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Abschlußimpedanz des zusätzlichen Kabels7. Protection device according to one or more of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that the terminating impedance of the additional cable
(4) als Spannungsbegrenzungsfilter ausgeführt ist.(4) is designed as a voltage limiting filter.
8. Schutzvorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Abschlußimpedanz des zusätzlichen Kabels8. Protection device according to one or more of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that the terminating impedance of the additional cable
(4) als passives Filter (5) ausgelegt ist.(4) is designed as a passive filter (5).
9. Schutzvorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c hn e t , daß das Leistungs- (2) bzw. zusätzliche Kabel (4) räumlich getrennt verlegt sind.9. Protection device according to one or more of the preceding claims, that the power (2) or additional cables (4) are laid separately.
10. Schutzvorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Wellenwiderstände der resultierenden Leistungskabel (2) und des resultierenden zusätzlichen Kabels (4) ähnlich sind.10. Protection device according to one or more of the preceding claims, that the wave resistances of the resulting power cable (2) and the resulting additional cable (4) are similar.
11. Schutzvorrichtung nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , daß sowohl Leistungs- (2) als auch zusätzliches Kabel (4) innerhalb zumindest einer gemein- samen Isolierung sind.11. Protective device according to claim 10, so that both power (2) and additional cables (4) are within at least one common insulation.
12. Schutzvorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Filterschaltung (5) bzw. passiven Elemente der Abschlußimpedanz mit Kondensatoren versehen sind. 12. Protection device according to one or more of the preceding claims, that the filter circuit (5) or passive elements of the terminating impedance are provided with capacitors.
PCT/DE2000/003866 1999-11-26 2000-11-03 Protective device against overpotential in the terminals of electrical equipment, caused by switching operations WO2001039347A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19957132A DE19957132C1 (en) 1999-11-26 1999-11-26 Protective device against the overvoltages at terminals of electrical equipment caused by switching processes of a power supply
DE19957132.5 1999-11-26

Publications (1)

Publication Number Publication Date
WO2001039347A1 true WO2001039347A1 (en) 2001-05-31

Family

ID=7930548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003866 WO2001039347A1 (en) 1999-11-26 2000-11-03 Protective device against overpotential in the terminals of electrical equipment, caused by switching operations

Country Status (2)

Country Link
DE (1) DE19957132C1 (en)
WO (1) WO2001039347A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936795A2 (en) 2006-12-21 2008-06-25 ABB Oy Method and arrangement in connection with motor fed with frequency converter provided with intermediate voltage circuit
WO2015052660A1 (en) * 2013-10-10 2015-04-16 Power-One Italy S.P.A. Transient current protection device for electrical energy conversion systems connected to the power grid
EP1873894A3 (en) * 2006-06-26 2015-12-16 Hitachi, Ltd. Inverter-driven rotating machine system, rotating machine and inverter used in the same and electric vehicle using the same
CN110138248A (en) * 2018-02-08 2019-08-16 富士电机株式会社 Surge voltage suppressor, power-converting device and multiple polyphase dynamoelectric machine actuating device
CN110649830A (en) * 2018-06-26 2020-01-03 富士电机株式会社 Motor overvoltage protection device, power conversion device, and drive device
EP4143956A4 (en) * 2020-04-29 2024-06-05 Bae Sys Controls Inc Ac drive dv/dt filter using reverse recovery charge of diodes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013919A1 (en) * 2004-03-22 2005-10-20 Siemens Ag electric motor
EP1699129A1 (en) * 2005-03-04 2006-09-06 Abb Research Ltd. Inverter system
EP3457550A1 (en) 2017-09-14 2019-03-20 Siemens Aktiengesellschaft Coupling between circuits in drive networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473192A2 (en) * 1990-08-30 1992-03-04 Mitsubishi Denki Kabushiki Kaisha A circuit for reducing resonance voltage
WO1998001937A2 (en) * 1996-07-08 1998-01-15 Abb Industry Oy A connection means between a frequency converter and its load

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271446A (en) * 1977-06-27 1981-06-02 Comstock Wilford K Transient voltage suppression system
DE19832557A1 (en) * 1997-12-19 1999-07-22 Loher Ag Output circuit for pulse inverter driving electric motor
DE19853693A1 (en) * 1998-11-20 2000-05-25 Bernd Orlik Equipment for preventing surge voltages on the output wires of a self-commutated DC voltage changer uses a 3-phase DC voltage changer with 3-phase load and a circuit layout based on a lossy diode DC restorer forming a reference voltage.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473192A2 (en) * 1990-08-30 1992-03-04 Mitsubishi Denki Kabushiki Kaisha A circuit for reducing resonance voltage
WO1998001937A2 (en) * 1996-07-08 1998-01-15 Abb Industry Oy A connection means between a frequency converter and its load

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1873894A3 (en) * 2006-06-26 2015-12-16 Hitachi, Ltd. Inverter-driven rotating machine system, rotating machine and inverter used in the same and electric vehicle using the same
EP1936795A2 (en) 2006-12-21 2008-06-25 ABB Oy Method and arrangement in connection with motor fed with frequency converter provided with intermediate voltage circuit
US7733048B2 (en) 2006-12-21 2010-06-08 Abb Oy Method and arrangement in connection with motor fed with frequency converter provided with intermediate voltage circuit
WO2015052660A1 (en) * 2013-10-10 2015-04-16 Power-One Italy S.P.A. Transient current protection device for electrical energy conversion systems connected to the power grid
CN106416031A (en) * 2013-10-10 2017-02-15 Abb技术股份公司 Transient current protection device for electrical energy conversion systems connected to the power grid
US9941836B2 (en) 2013-10-10 2018-04-10 Abb Schweiz Ag Transient current protection device for electrical energy conversion systems connected to the power grid
CN106416031B (en) * 2013-10-10 2020-05-15 Abb瑞士股份有限公司 Transient current protection device for an electric energy conversion system connected to an electric network
CN110138248A (en) * 2018-02-08 2019-08-16 富士电机株式会社 Surge voltage suppressor, power-converting device and multiple polyphase dynamoelectric machine actuating device
CN110138248B (en) * 2018-02-08 2021-12-14 富士电机株式会社 Surge voltage suppression device, power conversion device, and multiphase motor drive device
CN110649830A (en) * 2018-06-26 2020-01-03 富士电机株式会社 Motor overvoltage protection device, power conversion device, and drive device
CN110649830B (en) * 2018-06-26 2021-07-16 富士电机株式会社 Motor overvoltage protection device, power conversion device, and drive device
EP4143956A4 (en) * 2020-04-29 2024-06-05 Bae Sys Controls Inc Ac drive dv/dt filter using reverse recovery charge of diodes

Also Published As

Publication number Publication date
DE19957132C1 (en) 2001-06-13

Similar Documents

Publication Publication Date Title
EP2100368B1 (en) Semiconductor protective elements for controlling short-circuits at the dc end of voltage source converters
EP1917706A1 (en) Rectifier circuit with distributed energy stores
DE10217889A1 (en) Power supply with a direct converter
WO2012113704A2 (en) Sub-module of a modular multi-stage converter
DE19746112A1 (en) Power converter arrangement
EP3556000B1 (en) Module for modular multilevel converter with crowbar and capacitor current limitation
EP1782527B1 (en) Device for feeding auxiliary operating devices for a fuel electric vehicle
EP2659532A1 (en) Battery module having reduced total inductance
EP2254228A1 (en) Electronic switching module and system with such switching modules
EP0682402B1 (en) Output magnitudes rise limiting device for self-commutated constant voltage intermediate circuit converter
EP2989660B1 (en) Semiconductor stack for converter with snubber capacitors
WO2001039347A1 (en) Protective device against overpotential in the terminals of electrical equipment, caused by switching operations
EP0682401B1 (en) Limiting device for the output voltage slope of a self-commutated converter
EP3783783A1 (en) Assembly for regulating a power flow in an ac network and method for protecting said assembly
EP3251194B1 (en) Energy storage arrangement
EP2564501B1 (en) Sub-module for a modular multi-level converter
EP2994984B1 (en) Three-level inverter
EP3639360B1 (en) Converter arrangement having phase module arrester and method for short-circuit protection thereof
EP3804112A1 (en) Modular multilevel current converter with different sub-module types
EP3180844B1 (en) Power converter arrangement with short-circuit unit and method for separating an ac voltage line
WO2018113926A1 (en) Power converter
EP3878088B1 (en) Assembly having a multilevel power converter
WO2002069482A1 (en) Circuit design for a circuit for switching currents
EP3571758B1 (en) Modular inverter
DE102013218799A1 (en) Modular power converter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase