WO2001037360A1 - Electrical power source - Google Patents

Electrical power source Download PDF

Info

Publication number
WO2001037360A1
WO2001037360A1 PCT/GB2000/004351 GB0004351W WO0137360A1 WO 2001037360 A1 WO2001037360 A1 WO 2001037360A1 GB 0004351 W GB0004351 W GB 0004351W WO 0137360 A1 WO0137360 A1 WO 0137360A1
Authority
WO
WIPO (PCT)
Prior art keywords
well
polymerisable
electrodes
primary
power source
Prior art date
Application number
PCT/GB2000/004351
Other languages
French (fr)
Inventor
Alan Glyn Jones
Original Assignee
Alan Glyn Jones
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9926775.9A external-priority patent/GB9926775D0/en
Priority claimed from GBGB9926777.5A external-priority patent/GB9926777D0/en
Application filed by Alan Glyn Jones filed Critical Alan Glyn Jones
Priority to AU14025/01A priority Critical patent/AU1402501A/en
Publication of WO2001037360A1 publication Critical patent/WO2001037360A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/58Polymerisation initiated by direct application of electric current
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide

Definitions

  • the present invention is concerned with a source of electrical power, and a method for the production thereof.
  • Batteries and other electrical power sources are used in a wide range of applications, from consumer products to devices for medical purposes in the body. Improvements in such power sources are continually being sought: and I have accordingly devised an improved such electrical power source and a method of making the same .
  • a method of producing an electrical power source which comprises providing at least one well having at least two opposed primary electrodes, and at least two opposed secondary electrodes; filling said well with an aqueous medium including a polymerisable system containing at least one polymerisable monomer capable of providing at least one mobile ionic group and at least one fixed ionic group, and being polymerisable to form a viscous hydrogel; covering said well so as to substantially exclude air therefrom; and permitting said polymerisable system to polymerise in said covered well in the presence of an applied field extending between said primary electrodes, such that the resulting hydrogel substantially fills the space in said well .
  • polymerisable monomer is an acrylamide or an acrylamide derivative.
  • the polymerisable system then preferably includes a cross-linking co-monomer such as a bisacrylamide (for example, N,N-methylene bisacrylamide).
  • the polymerisation of such a polymerisable system may be initiated by a free radical initiator.
  • a preferred free radical initiator includes a persulfate, such as, for example, ammonium persulfate.
  • the polymerisable system may further contain a polymerisation controller such as tetramethyl ethylenediamme (known as TEMED) , which accelerates the rate of formation of free radicals from persulfate, which m turn initiates polymerisation.
  • TEMED tetramethyl ethylenediamme
  • the initiator and/or the cross-linking co-monomer should be present in an amount more than that required to form a cross-linked copolymer so that there is an enhanced amount of mobile ionic groups. It is known that increasing the amount of initiation results m decreased average polymer chain length, increased gel turbidity and decreased elasticity.
  • the polymerisation reaction of acrylamides or the like is a vinyl addition polymerisation reaction, initiated by the free radical initiator -just described.
  • the persulfate free radicals convert an acrylamide or acrylamide derivative to free radicals, which m turn react with inactivated monomers to begin and propagate the polymerisation chain reaction.
  • the elongated polymer chains are cross-linked by the cross-linking agent (typically N, -methylene bisacrylamide) which is generally randomly distributed along the polymer chain, resulting m a reticulated polymer with substantially linear cnams and links between the chains .
  • the cross-linking agent typically N, -methylene bisacrylamide
  • polymerisable systems include at least one monomer which undergoes polymerisation via a condensation reaction.
  • condensation monomer systems are those including at least one polymerisable ammo acid (such as glutamic acid or the like) ; alternatively, at least one hydroxy functional fatty acid can be used, especially such an acid which can polymerise to a lipid-like polymer hydrogel.
  • polymers derived from aminoacids or hydroxy functional fatty acids can be substantially biocompatible , which means that the power source according to the invention may be used m vivo .
  • an electrical power source which comprises at least one cell each having at least two primary opposed electrodes, and at least two opposed secondary electrodes, the cell being substantially filled by a viscous hydrogel having fixed ions oriented substantially transverse to the primary electrodes, the gel containing mobile ions capable of migration through said hydrogel .
  • the power source preferably includes a plurality of such cells, m which each cell has a primary electrode thereof connected to an adjacent primary electrode of an adjacent one of the aforementioned cells. It is further preferred that the power source includes a plurality of such cells, m which each cell has a secondary electrode thereof connected to an adjacent secondary electrode of an adjacent one of the aforementioned cells
  • the longitudinally spaced locations may be the primary electrodes. If the fixed ionic groups are drawn into a "virtual re-alignment” , then the polar groups m the polymer may form magnetic dipole moments also drawn into a "virtual re-alignment” .
  • the primary electrodes are connected to one another, mobile ions will pass through the hydrogel as a result of the electric potential difference or magnetic field; at the same time the mobile ions pass through the re- structured magnetic dipole moments causing a transverse voltage to be produced at right angles thereto .
  • the fixed ionic groups will attract around themselves mobile ions of opposite electrical polarity, forming an electrical double layer.
  • the relative proportions of the various ingredients of the polymerisable system are selected so that the resulting aqueous medium is m the form of a viscous hydrogel (or hydrated gel) , which substantially fills the well up to the cover .
  • the electric and magnetic dipole moments of the resulting polymer forming the hydrogel are drawn towards the appropriate primary electrode, with the polar groups oriented substantially transverse to the respective primary electrodes.
  • the polar groups are "stretched" from their equilibrium positions and held m fixed positions by the viscosity of the viscous hydrogel .
  • the electrodes m this case (that is, when polymerisation is m the presence of a direct current electric field) are typically of a suitable conductive metal of, for example, platinum, aluminium, tungsten or the like.
  • the primary electrodes are preferably m the form of electromagnets each having a core surrounded by conductive windings .
  • Figure 1 is a schematic sectional view showing the arrangement of polymer chains obtained m a power source according to the invention
  • Figure 2 is a schematic sectional view showing the arrangement of a similar system in which polymerisation has taken place m the absence of an applied field between primary electrodes
  • Figure 1 shows a cell 1 having a pair of opposed primary electrodes 2,3 and, substantially transverse thereto, a pair of secondary electrodes 4,5. Extending between the primary electrodes are a plurality of polymer chains 6 m which the polymer chains having backbones tend towards a linear or stretched orientation with reticulated bridges extending between the backbones.
  • the polymer backbones have side chains 7 inducting fixed ionic groups, the side chains being aligned substantially transverse to the spacing between primary electrodes, and substantially parallel to the spacing between the secondary electrodes.
  • m which like elements are denoted by like reference numerals, it will be seen that the polymer backbones are somewhat more random m orientation and the side chains including the fixed polar groups are also somewhat more random m orientation.
  • the conductive mechanism is not governed by co-operative motion of the polymer chains but by the mobile ions or charge carriers (typically hydroxyl ions) moving through water-filled micro pores of the hydrogel. If a direct current electric field of uniform intensity is applied to a system containing mobile ions suspended m a viscous hydrogel matrix, at least three effects are expected to occur, as follows:
  • the mobile ions will move towards the electrode of opposite polarity; 2. an electrical double layer surrounding the mobile ions will be distorted; and 3. electrical charges are likely to be induced between moving mobile ions.
  • the wells employed m the polymerisation system according to the invention are sealed against ingress of air both during and after polymerisation.
  • the wells are preferably provided with an air-tight cover, after having been filled with the polymerisable system.
  • a series of power sources obtained according to the invention can be connected m order with the primary anode of a first well being connected to the primary cathode of a second well, the primary anode of the second well connected to the primary cathode of a third well, and so on.
  • An example of such an arrangement is illustrated m Figure 3 of the accompanying drawing, which shows a series of nine wells 1,2,3,4,5,6,7,8,9 (m order of connection of the primary electrodes, as will be described below) .
  • Well 1 has a pair of opposed primary electrodes la and lb;
  • well 2 has a pair of opposed primary electrodes 2a, 2b,
  • well 3 has a pair of opposed primary electrodes 3a, 3b, etc.
  • Well 1 furthermore has a pair of opposed secondary electrodes lc,ld
  • well 2 has a pair of opposed secondary electrodes 2c, 2d
  • well 3 has a pair of opposed secondary electrodes 3c, 3d, etc.
  • a unitary moulded body of plastics material as shown m Figure 3 of the accompanying drawings had nine wells each of dimensions approx. 1cm 2 and a depth of 0.75cm. All nine wells were filled with a polymerisable mixture containing acrylamide, methylene bisacrylamide, ammonium persulfate, TEMED and distilled water. The wells were all sealed by a hermetically sealed lid or cover and then a 30 volt direct current applied to primary electrode la of well 1 and opposed primary electrode 9b of well 9. Polymerisation was allowed to proceed in each well until a viscous hydrogel was produced.
  • the vertical axis is the voltage (the applied voltage between the primary electrodes in Figure 4a and the transverse voltage between the secondary electrodes in Figure 4c) .
  • the vertical axis is the current in milliamps (the applied current in Figure 4b and the transverse current between the secondary electrodes in Figure 4d) .
  • the horizontal axis in all Figures have units of time (seconds) .

Abstract

An electrical power source is obtained by providing at least one well having at least two primary opposed electrodes, and at least two opposed secondary electrodes; filling the well with an aqueous medium including a polymerisable system containing at least one polymerisable monomer having at least one mobile ion and at least one fixed ion and being polymerisable to form a viscous hydrogel; covering the well so as to substantially exclude air therefrom; and permitting the polymerisable system to polymerise in the covered well in the presence of an applied field extending between the primary electrodes, such that the resulting hydrogel substantially fills the space in the well.

Description

Electrical Power Source
The present invention is concerned with a source of electrical power, and a method for the production thereof.
Batteries and other electrical power sources are used in a wide range of applications, from consumer products to devices for medical purposes in the body. Improvements in such power sources are continually being sought: and I have accordingly devised an improved such electrical power source and a method of making the same .
According to a first aspect of the present invention, there is provided a method of producing an electrical power source, which comprises providing at least one well having at least two opposed primary electrodes, and at least two opposed secondary electrodes; filling said well with an aqueous medium including a polymerisable system containing at least one polymerisable monomer capable of providing at least one mobile ionic group and at least one fixed ionic group, and being polymerisable to form a viscous hydrogel; covering said well so as to substantially exclude air therefrom; and permitting said polymerisable system to polymerise in said covered well in the presence of an applied field extending between said primary electrodes, such that the resulting hydrogel substantially fills the space in said well . An example of such a polymerisable monomer is an acrylamide or an acrylamide derivative. The polymerisable system then preferably includes a cross-linking co-monomer such as a bisacrylamide (for example, N,N-methylene bisacrylamide).
The polymerisation of such a polymerisable system may be initiated by a free radical initiator. A preferred free radical initiator includes a persulfate, such as, for example, ammonium persulfate. The polymerisable system may further contain a polymerisation controller such as tetramethyl ethylenediamme (known as TEMED) , which accelerates the rate of formation of free radicals from persulfate, which m turn initiates polymerisation.
It is preferred that the initiator and/or the cross-linking co-monomer should be present in an amount more than that required to form a cross-linked copolymer so that there is an enhanced amount of mobile ionic groups. It is known that increasing the amount of initiation results m decreased average polymer chain length, increased gel turbidity and decreased elasticity.
The polymerisation reaction of acrylamides or the like is a vinyl addition polymerisation reaction, initiated by the free radical initiator -just described. The persulfate free radicals convert an acrylamide or acrylamide derivative to free radicals, which m turn react with inactivated monomers to begin and propagate the polymerisation chain reaction. The elongated polymer chains are cross-linked by the cross-linking agent (typically N, -methylene bisacrylamide) which is generally randomly distributed along the polymer chain, resulting m a reticulated polymer with substantially linear cnams and links between the chains .
Further examples of such polymerisable systems include at least one monomer which undergoes polymerisation via a condensation reaction. Examples of such condensation monomer systems are those including at least one polymerisable ammo acid (such as glutamic acid or the like) ; alternatively, at least one hydroxy functional fatty acid can be used, especially such an acid which can polymerise to a lipid-like polymer hydrogel. Such polymers derived from aminoacids or hydroxy functional fatty acids can be substantially biocompatible , which means that the power source according to the invention may be used m vivo .
According to a second aspect of the invention, there is provided an electrical power source which comprises at least one cell each having at least two primary opposed electrodes, and at least two opposed secondary electrodes, the cell being substantially filled by a viscous hydrogel having fixed ions oriented substantially transverse to the primary electrodes, the gel containing mobile ions capable of migration through said hydrogel .
The power source preferably includes a plurality of such cells, m which each cell has a primary electrode thereof connected to an adjacent primary electrode of an adjacent one of the aforementioned cells. It is further preferred that the power source includes a plurality of such cells, m which each cell has a secondary electrode thereof connected to an adjacent secondary electrode of an adjacent one of the aforementioned cells
The results obtained using a power source according to the invention suggest that during polymerisation m the presence of an applied electric (or magnetic) field , the fixed ionic groups which are electrically orientated, are drawn from their "normal" alignment/molecular structure, towards the primary electrodes of opposite polarity. While this process continues, the polymerisation system increases m viscosity to form a viscous hydrogel, thus restricting the movement of the fixed ionic groups provided by or associated with the polymerisable monomer.
These results indicate that, following polymerisation m the presence of an applied electric or magnetic field, there is an electric potential between longitudinally spaced locations within the resulting viscous hydrogel
The longitudinally spaced locations may be the primary electrodes. If the fixed ionic groups are drawn into a "virtual re-alignment" , then the polar groups m the polymer may form magnetic dipole moments also drawn into a "virtual re-alignment" . Thus when the primary electrodes are connected to one another, mobile ions will pass through the hydrogel as a result of the electric potential difference or magnetic field; at the same time the mobile ions pass through the re- structured magnetic dipole moments causing a transverse voltage to be produced at right angles thereto . In a hydrogel, the fixed ionic groups will attract around themselves mobile ions of opposite electrical polarity, forming an electrical double layer. The symmetry of this double layer can be expected to be distorted m the presence of an applied electrical field. The distortion of the electrical layer and the creation of Maxwell -Wagner mterfacial charges lend to the ions the properties of an electric dipole moment . The magnitudes of these induced dipoles are very large m comparison to those usually associated with molecular species because, although the magnitude of the charges involved may not be large, the distance between their oppositely charged poles is large, so that the induced dipole moment arising from the two induced charges + and - located at r" and r+ respectively, is given by - m = (a +) r+ - (a -) r = aq.r where r is the particle radius. Even when the separated charge q is equivalent to ust one electronic charge, then for a cell of diameter 5 microns the dipole moment will be of value around 2.5 x 105 debye units (cf.. 1.84 debye for a water molecule) .
The relative proportions of the various ingredients of the polymerisable system are selected so that the resulting aqueous medium is m the form of a viscous hydrogel (or hydrated gel) , which substantially fills the well up to the cover .
When the polymerisation process is carried out in the presence of a direct current electric field, the electric and magnetic dipole moments of the resulting polymer forming the hydrogel are drawn towards the appropriate primary electrode, with the polar groups oriented substantially transverse to the respective primary electrodes. The polar groups are "stretched" from their equilibrium positions and held m fixed positions by the viscosity of the viscous hydrogel .
The electrodes m this case (that is, when polymerisation is m the presence of a direct current electric field) are typically of a suitable conductive metal of, for example, platinum, aluminium, tungsten or the like.
When the field applied during polymerisation is a magnetic field, the primary electrodes are preferably m the form of electromagnets each having a core surrounded by conductive windings .
The resulting orientation of the polar groups following polymerisation m the method according to the invention is illustrated schematically m Figure 1 of the accompanying drawings, compared to the more random orientation which arises if polymerisation is carried out m the absence of an applied field (see for example, the orientation illustrated schematically m Figure 2) .
In the accompanying drawings, Figure 1 is a schematic sectional view showing the arrangement of polymer chains obtained m a power source according to the invention, whereas Figure 2 is a schematic sectional view showing the arrangement of a similar system in which polymerisation has taken place m the absence of an applied field between primary electrodes . In more detail, Figure 1 shows a cell 1 having a pair of opposed primary electrodes 2,3 and, substantially transverse thereto, a pair of secondary electrodes 4,5. Extending between the primary electrodes are a plurality of polymer chains 6 m which the polymer chains having backbones tend towards a linear or stretched orientation with reticulated bridges extending between the backbones. The polymer backbones have side chains 7 inducting fixed ionic groups, the side chains being aligned substantially transverse to the spacing between primary electrodes, and substantially parallel to the spacing between the secondary electrodes. In Figure 2, m which like elements are denoted by like reference numerals, it will be seen that the polymer backbones are somewhat more random m orientation and the side chains including the fixed polar groups are also somewhat more random m orientation.
As a result, m the power source according to the invention, electric dipole moments present on the polymer chain are drawn towards primary electrodes of opposite polarity and the fixed ionic groups on the polymer chain will be oriented m a "spring loaded" fashion. There may thus be a substantially constant potential difference across the gel, and when the secondary electrodes are electrically connected to one another so as to complete a circuit, mobile ions (such as hydroxyl ions) may start to migrate towards the secondary electrode of opposite polarity and at the same time pass through aligned magnetic dipole moments formed by the fixed ionic (polar) groups. This process is similar to the Hall effect in macro physics and the resulting transverse voltage can be associated with a voltage or current output drawn from the secondary electrodes .
From investigations carried out on such systems, it is believed that the conductive mechanism is not governed by co-operative motion of the polymer chains but by the mobile ions or charge carriers (typically hydroxyl ions) moving through water-filled micro pores of the hydrogel. If a direct current electric field of uniform intensity is applied to a system containing mobile ions suspended m a viscous hydrogel matrix, at least three effects are expected to occur, as follows:
1. the mobile ions will move towards the electrode of opposite polarity; 2. an electrical double layer surrounding the mobile ions will be distorted; and 3. electrical charges are likely to be induced between moving mobile ions.
It is particularly preferred that the wells employed m the polymerisation system according to the invention are sealed against ingress of air both during and after polymerisation. The wells are preferably provided with an air-tight cover, after having been filled with the polymerisable system.
It is particularly preferred that a series of power sources obtained according to the invention can be connected m order with the primary anode of a first well being connected to the primary cathode of a second well, the primary anode of the second well connected to the primary cathode of a third well, and so on. An example of such an arrangement is illustrated m Figure 3 of the accompanying drawing, which shows a series of nine wells 1,2,3,4,5,6,7,8,9 (m order of connection of the primary electrodes, as will be described below) . Well 1 has a pair of opposed primary electrodes la and lb; well 2 has a pair of opposed primary electrodes 2a, 2b, well 3 has a pair of opposed primary electrodes 3a, 3b, etc.
Well 1 furthermore has a pair of opposed secondary electrodes lc,ld, well 2 has a pair of opposed secondary electrodes 2c, 2d and well 3 has a pair of opposed secondary electrodes 3c, 3d, etc.
The present invention will now be illustrated in more detail m the following example, given by way of illustration only, m which a power source is obtained as follows :
A unitary moulded body of plastics material as shown m Figure 3 of the accompanying drawings had nine wells each of dimensions approx. 1cm2 and a depth of 0.75cm. All nine wells were filled with a polymerisable mixture containing acrylamide, methylene bisacrylamide, ammonium persulfate, TEMED and distilled water. The wells were all sealed by a hermetically sealed lid or cover and then a 30 volt direct current applied to primary electrode la of well 1 and opposed primary electrode 9b of well 9. Polymerisation was allowed to proceed in each well until a viscous hydrogel was produced.
Finally, a circuit was completed between secondary electrode lc of well 1 and opposed secondary electrode 9d of well 9. The resultant circuit provided a long lasting output as shown in Figures 4a, 4b, 4c and 4ά of the accompanying drawings .
In Figures 4a and 4c, the vertical axis is the voltage (the applied voltage between the primary electrodes in Figure 4a and the transverse voltage between the secondary electrodes in Figure 4c) .
In Figures 4b and 4d, the vertical axis is the current in milliamps (the applied current in Figure 4b and the transverse current between the secondary electrodes in Figure 4d) .
The horizontal axis in all Figures have units of time (seconds) .

Claims

CLAIMS :
1. A method of producing an electrical power source, which comprises providing at least one well having at least two primary opposed electrodes, and at least two opposed secondary electrodes; filling said well with an aqueous medium including a polymerisable system containing at least one polymerisable monomer having at least one mobile ion and at least one fixed ion and being polymerisable to form a viscous hydrogel, covering said well so as to substantially exclude air therefrom; and permitting said polymerisable system to polymerise m said covered well m the presence of a applied field extending between said primary electrodes, such that the resulting hydrogel substantially fills the space m said well.
2. A method according to claim 1, wherein said polymerisable monomer is at least one acrylamide monomer .
3. A method according to claim 1 or 2 , wherein said polymerisable system contains at least one cross- linking co-monomer.
4. A method according to any of claims 1 to 3 , m which the polymerisable system, m which said applied field is a direct current electric field.
5. An electrical power source which comprises at least one cell each having at least two primary opposed electrodes, and at least two opposed secondary electrodes, the cell being substantially filled by a viscous hydrogel having fixed ions oriented substantially transverse to the primary electrodes, the gel containing mobile ions capable of migration through said hydrogel .
6. A power source according to claim 5, which includes a plurality of said cells, in which each cell has a primary electrode thereof connected to an adjacent primary electrode of an adjacent one of said cells.
7. A power source according to claim 5 or 6, which includes a plurality of said cells, in which each cell has a secondary electrode thereof connected to an adjacent secondary electrode of an adjacent one of said cells.
PCT/GB2000/004351 1999-11-15 2000-11-15 Electrical power source WO2001037360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU14025/01A AU1402501A (en) 1999-11-15 2000-11-15 Electrical power source

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GBGB9926775.9A GB9926775D0 (en) 1999-11-15 1999-11-15 Polymer gel battery
GBGB9926777.5A GB9926777D0 (en) 1999-11-15 1999-11-15 Invasive blood glucose monitor
GB9926777.5 1999-11-15
GB9926775.9 1999-11-15

Publications (1)

Publication Number Publication Date
WO2001037360A1 true WO2001037360A1 (en) 2001-05-25

Family

ID=26316075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2000/004351 WO2001037360A1 (en) 1999-11-15 2000-11-15 Electrical power source

Country Status (2)

Country Link
AU (1) AU1402501A (en)
WO (1) WO2001037360A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097461A1 (en) * 2001-05-24 2002-12-05 Alan Glyn Jones Sensing an electric, magnetic or electromagnetic field
WO2006014730A2 (en) * 2004-07-21 2006-02-09 Hewlett-Packard Development Company, L.P. Method for preparation of anisotropic materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573180A (en) * 1967-11-03 1971-03-30 Us Army Method of initiating polymerization electrolytically
GB2212504A (en) * 1987-11-19 1989-07-26 Nat Res Dev Solid polyacrylamide electrolyte
WO1995018468A1 (en) * 1993-12-28 1995-07-06 Yeda Research And Development Co., Ltd. Solid rechargeable zinc halide electrolyte electrochemical cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573180A (en) * 1967-11-03 1971-03-30 Us Army Method of initiating polymerization electrolytically
GB2212504A (en) * 1987-11-19 1989-07-26 Nat Res Dev Solid polyacrylamide electrolyte
WO1995018468A1 (en) * 1993-12-28 1995-07-06 Yeda Research And Development Co., Ltd. Solid rechargeable zinc halide electrolyte electrochemical cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"CHEMICAL ABSTRACTS + INDEXES,US,AMERICAN CHEMICAL SOCIETY. COLUMBUS", CHEMICAL ABSTRACTS + INDEXES,US,AMERICAN CHEMICAL SOCIETY. COLUMBUS, XP000282415, ISSN: 0009-2258 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097461A1 (en) * 2001-05-24 2002-12-05 Alan Glyn Jones Sensing an electric, magnetic or electromagnetic field
WO2006014730A2 (en) * 2004-07-21 2006-02-09 Hewlett-Packard Development Company, L.P. Method for preparation of anisotropic materials
WO2006014730A3 (en) * 2004-07-21 2006-04-27 Hewlett Packard Development Co Method for preparation of anisotropic materials
US7390540B2 (en) 2004-07-21 2008-06-24 Hewlett-Packard Development Company, L.P. Method for preparation of anisotropic materials

Also Published As

Publication number Publication date
AU1402501A (en) 2001-05-30

Similar Documents

Publication Publication Date Title
Kwon et al. Drug release from electric current sensitive polymers
Baker et al. Effect of initial total monomer concentration on the swelling behavior of cationic acrylamide-based hydrogels
Katchalsky et al. Section II: polybase properties of polyvinylamine
Kim et al. Electrical/pH responsive properties of poly (2‐acrylamido‐2‐methylpropane sulfonic acid)/hyaluronic acid hydrogels
Shiga et al. Deformation of polyelectrolyte gels under the influence of electric field
Jin et al. Preparation and electrical sensitive behavior of poly (N-vinylpyrrolidone-co-acrylic acid) hydrogel with flexible chain nature
GB2380055B (en) Hydrophilic polymers and their use in electrochemical cells
Yang et al. Stimuli response of polysoap hydrogels in aqueous solution and DC electric fields
CN108602906B (en) Electroactive hydrophilic biopolymers
Ciszkowska et al. Voltammetric studies of counterion transport in polyelectrolyte solutions
WO2001037360A1 (en) Electrical power source
Otero et al. Influence of the counterion size on the rate of electrochemical relaxation in polypyrrole
Osada et al. Synthesis, mechanism, and application of an electro-driven chemomechanical system using polymer gels
CN101058619A (en) Method of preparing intelligent aqueous gel capable of directional moving in electric field
US20220181092A1 (en) A Process of Integrating Electrically Conductive Nanoparticulate Material into an Electrically Conductive Cross-Linked Polymer Membrane
Shimizu et al. The binding of cationic surfactants by hydrophobic alternating copolymers of maleic acid—charge density dependence
Kaneto et al. Contribution of conformational change of polymer structure to electrochemomechanical deformation based on polyaniline
Ma et al. Bending behavior of gelatin/poly (hydroxyethyl methacrylate) IPN hydrogel under electric stimulus
ES8604746A1 (en) Electrically conductive composites comprising p-doped acetylene having conductive coatings and conjugated aromatic polymers and process therefor.
Jean et al. Microphase separation of cationic poly (N-isopropylacrylamide) copolymers in water: Effect of the migration of charges
Pasquini et al. Ionomer Thin‐Films by Electrochemical Synthesis: Bipolar and Ampholytic Membranes
Hakimian et al. Oxidation kinetics and conformational relaxation of poly (N-methylaniline) in aqueous solution
WO1987005230A1 (en) Electrophoresis gel and method of production
Zhao et al. Erosion behavior of ionically crosslinked polyampholyte gels under DC electric fields
Wódzki Conformation and transport properties of poly (alkylene phosphate)—A synthetic analogue of natural teichoic acids—II. Conductivity percolation in poly (vinyl chloride)-poly (1, 3-propylene phosphate) membranes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP