WO2001035086A2 - Device for non-contacting detection of test samples - Google Patents

Device for non-contacting detection of test samples Download PDF

Info

Publication number
WO2001035086A2
WO2001035086A2 PCT/DE2000/003838 DE0003838W WO0135086A2 WO 2001035086 A2 WO2001035086 A2 WO 2001035086A2 DE 0003838 W DE0003838 W DE 0003838W WO 0135086 A2 WO0135086 A2 WO 0135086A2
Authority
WO
WIPO (PCT)
Prior art keywords
camera
test specimen
cooling unit
line
cooling
Prior art date
Application number
PCT/DE2000/003838
Other languages
German (de)
French (fr)
Other versions
WO2001035086A3 (en
Inventor
Peter Meinlschmidt
Jörg SEMBACH
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to AU23466/01A priority Critical patent/AU2346601A/en
Publication of WO2001035086A2 publication Critical patent/WO2001035086A2/en
Publication of WO2001035086A3 publication Critical patent/WO2001035086A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • B27N1/02Mixing the material with binding agent
    • B27N1/029Feeding; Proportioning; Controlling

Definitions

  • test specimens a device for the contactless detection of structural and / or surface defects of large-area bodies, in particular plate-shaped materials (hereinafter "test specimens").
  • Point measuring systems such as B. ultrasound, radiometric, inductive or capacitive methods provide information about the
  • DE 1 97 03 484 A1 discloses a test method in which internal defects are detected in a material or composite of materials by generating a heat flow in the area to be examined which is disturbed at defects. The resulting distortions in the surface temperature field are recorded and evaluated for error contrasting. Sensitivity to smaller and deeper internal faults is achieved through optimized heat management and through the use of high-resolution measuring equipment to record the local and temporal surface temperature distribution.
  • DE 1 96 28 391 C1 discloses a signal processing unit of a device for photothermal testing of a surface of a test specimen.
  • a speed measuring device is provided which can be used to determine the relative speed of a test specimen with respect to the optical part and a detector which is fixedly arranged thereon. With the speed measurement value obtained in this way, the temporal course of induced thermal radiation generated by excitation radiation can be corrected to a stationary test area.
  • DE 1 97 20 461 A1 discloses a method and a device for checking the inner cooling structure of a turbine blade. An output thermographic image of the turbine blade to be tested is recorded by means of a first infrared camera. The turbine blade is then briefly heated by blowing hot air into its cooling structure.
  • thermographic image of the heated turbine blade is then recorded by a second infrared camera.
  • the infrared thermography camera can work in a line scan mode, i.e. scan the object line by line.
  • the time course of the temperature distribution recorded by the camera is digitized online by a personal computer using a corresponding evaluation and image processing program, and the output thermographic image is substituted in each case.
  • DE-OS 1 648 349 discloses a device for non-destructive material testing of rolling stock after a rolling process and during a change in temperature of the rolling stock.
  • a contactless temperature sensor is arranged at a distance from the rolling stock, which delivers a signal according to the temperature of the rolling stock surface to an evaluation device, which triggers a switching process as soon as the signal changes beyond predefined limit values.
  • the temperature sensor can detect infrared radiation from the rolling stock surface be an appealing radiometer, which is focused on a certain part of the surface of the rolling stock, so that the signal is a function of the temperature of this surface part.
  • the surface part observed in each case can never follow a scan on the surface of the rolling stock, the signal obtained then corresponding to the temperature profile along this scan line.
  • a lens system is always focused on a relatively small scanning spot on the surface of the rolling stock, this lens system concentrating the radiation from this spot on the infrared cell.
  • Radiometer is moved back and forth in order to move the scanning spot across the rolling stock, a wide cooling nozzle is arranged on the side of the rolling stock facing away from the radiometer, which directs a curtain of coolant against the lower surface of the rolling stock and thus cools the lower surface thereof.
  • EP 0 093 422 A2 discloses a device which is only intended and suitable for the contactless detection of surface defects.
  • a Fairchild semiconductor line scan camera with 2,048 pixels is used for this purpose, with the slab surface to be detected being illuminated with mercury vapor lamps in order to improve the image recordings.
  • US Pat. No. 4,168,430 discloses a device for the contactless detection of welding spots which have just been produced with the aid of a special video camera which responds to infrared radiation and which is attached to the head of the welding device. The heat curve that propagates from the checked welding point in the workpiece surface is then detected. The thermal image obtained in this way is then compared with a reference image of a reference welding point previously produced under the same conditions.
  • the invention is based on the object of developing a device for carrying out a method which is improved compared to the previously known methods, in particular with regard to the test speed, and which also enables the detection of test specimens with poor thermal conductivity (for example wood and wood-based materials).
  • the test specimens to be examined come heated from one Production process, for example from a heating press.
  • this process heat which is emitted essentially by convection from the surface of the test specimen to the cooler environment, is used to detect the test specimen surface.
  • Adhesion defects or delaminations in the material hinder the heat transfer to the surface, which thus appears much cooler than the surroundings over the defects.
  • This difference in heat on the surface of the test specimen is detected with a thermography camera, which can be a line scan camera or an area scan camera.
  • the cooling unit is provided in order to accelerate the heat dissipation to the environment and thus the cooling of the body surface to be detected, in order to achieve a faster detection of the adhesion defects. It is advantageous here if the cooling unit is a cooling register which extends transversely to the direction of displacement and is linear or strip-shaped cooling air which blows onto the surface of the test specimen to be detected.
  • the drive for the relative displacement is a conveyor belt that feeds the test specimen under the stationary thermography camera. It is then advantageous if the thermographic camera, viewed in the conveying direction, is arranged at a distance behind the production line that heats the test specimen, e.g. by far behind the outlet of a heating press.
  • thermography line or surface camera is attached at such a height above the surface of the test specimen to be measured that the surface to be examined can be observed with the appropriate optics.
  • the lines of the line camera or the lines of the area camera are aligned so that they convey the thermal image of the material uniformly under the thermographic camera perpendicular to the direction of travel of the conveyor belt, which can also be a V-belt conveyor, a driven roller conveyor or the like Test body takes up. An image of the entire test specimen is then built up from the individual lines in a connected computer. The thermal images obtained with the aid of a cell camera or the individual lines of a flat panel camera can be evaluated in an identical manner.
  • thermography camera Thermal conductivity
  • adjustment devices are provided for changing the distance between the cow unit and the thermographic camera to be measured in the direction of displacement and / or for changing the relative speed between the test specimen and the thermographic camera and / or for changing the distance of the cow unit from the one to be loaded Surface of the test specimen and / or for the performance of the cow unit
  • a freely rotatable roller intended for resting on the surface of a plate-shaped test specimen can also be provided as a cow unit, the axis of rotation of which lies transversely to the displacement of the test specimen, that is to say parallel to the camera line mentioned, because the direct contact between the roller and the test body results in heat from the test body surface derived into the role acting as a cow unit.
  • the roll itself can be equipped with a cooling device, for example with a cooling water system.
  • An exemplary embodiment of the invention is shown in the drawing in the form of a diagram.
  • the drawing shows a conveyor 1 in the form of a conveyor belt for a plate-shaped test specimen 2, which is e.g. can be a coated chipboard.
  • the conveying device 1 the conveying direction of which is indicated by an arrow F, is arranged behind a production line 3, which is schematically represented by e.g. pull-out rollers arranged at the outlet of a heating press is shown.
  • a cooling unit 4 which extends transversely to the conveying direction F, is arranged in a stationary manner above the conveying device 1, said cooling unit 4 forming the surface to be detected of the test specimen 2 conveyed beneath it in a line or strip, e.g. charged with evenly cool air.
  • thermography camera 5 Seen in the conveying direction F, the cooling unit 4 is followed by a thermography camera 5, which is shown in the drawing as an area camera, but can also be a line camera. Like the cooling unit 4, the thermography camera 5 is arranged stationary above the conveying plane and is aligned with its at least one camera line o transversely to the conveying direction F. A computer is connected to the thermography camera 5, the computer 6 of which builds up a separate thermal image pattern from each camera line, which pattern can be viewed on a color monitor 7 and evaluated on a PC.
  • the drawn double arrow 8 symbolizes an adjusting device for changing the distance to be measured in the conveying direction F between the cooling unit 4 and the thermographic camera 5.
  • the latter can be designed as a scanning system or as a complete line or area camera (focal plane array).
  • thermography camera 5 is attached in a stationary manner at such a height above the conveyor device 1 that with the appropriate optics investigating surface of the test specimen 2 can be observed.
  • the camera line oriented transversely to the conveying direction F records the thermal image of the test specimen passed in a continuous movement under the cooling unit 4 and then under the thermography camera 5, an image of the entire surface then being obtained from the individual line recordings in the connected computer 7, 8 of the test specimen 2 is built.
  • the depth layer of the test specimen 2 to be examined is determined by the distance setting of the thermography camera 5 relative to the cooling unit 4 in connection with the speed of the conveyor device 1.
  • the camera When using a thermographic surface camera, the camera is mounted at such a height above the test specimen 2 to be measured that the desired width of the surface of the test specimen 2 is imaged with the appropriate optics.
  • the individual lines of this area camera are also arranged one behind the other transversely to the conveying direction F and in the conveying direction F. Due to the uniform movement of the test specimen 2 under the surface camera 6, a separate image of the test specimen is built up from each camera line in the connected computer 7, 8. This creates as many thermal images of the test specimen as the camera has lines. Since each camera line records a somewhat more distant area of the test body 2 from the cooling unit 4, the respective line images contain information from different depth levels 10 of the test body 2, as is indicated in the lower part of the figure. In relation to the surface camera shown, a section 2a of the test specimen 2, shown on an enlarged scale, shows n lines 11, which convey information from different depth planes 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

The invention relates to the non-contacting detection of structural and/or surface defects in large surface area test samples. According to the invention, process heat emanating from said test sample is exploited in order to enable rapid, non-contacting detection. When said test object cools, a thermograph camera is used to detect thermal patterns appearing on the surface of said object.

Description

Vorrichtung zum berührungslosen Detektieren von PrüfkörpernDevice for the contactless detection of test specimens
Die Erfindung betrifft eine Vorrichtung zum berührungslosen Detektieren von Struktur- und/oder Oberflächenfehlern großflächiger Körper, insbesondere plattenförmiger Materialien (nachfolgend "Prüfkörper") .The invention relates to a device for the contactless detection of structural and / or surface defects of large-area bodies, in particular plate-shaped materials (hereinafter "test specimens").
Bei der Herstellung großflächiger homogener oder aus verschiedenen Komponenten zusammengesetzter Materialien kann es zu Lufteinschlüssen, Rissen oder Inhomogenitäten im Material selbst oder zwischen den einzelnen Komponenten kommen. Diese struktureilen Schwächen vermindern in der Regel die Haftfestigkeit und damit die Qualität des Produktes. Es ist daher wünschenswert, frühzeitig und möglichst im Laufe des Fertigungsprozesses diese Fehler oder Schwächen zu erkennen, um korrigierend in den Herstellungsprozess eingreifen zu können.When manufacturing large-area materials that are homogeneous or composed of different components, air inclusions, cracks or inhomogeneities can occur in the material itself or between the individual components. These structural weaknesses generally reduce the adhesive strength and thus the quality of the product. It is therefore desirable to identify these errors or weaknesses at an early stage and, if possible, in the course of the manufacturing process in order to be able to intervene in the manufacturing process in a corrective manner.
Je nach Art und Umfang des zu untersuchenden Materials werden zui Zeit verschiedene Verfahren zur Erkennung von Materialschwächen verwendet:Depending on the type and scope of the material to be examined, various methods are currently used to identify material weaknesses:
Punktuell messende Systeme wie z. B. Ultraschall, radiometrische , induktive oder kapazitive Methoden geben Auskunft über diePoint measuring systems such as B. ultrasound, radiometric, inductive or capacitive methods provide information about the
Materialschwächen in einem kleinen Messfeld. Um mit diesen Methoden eine 1 00% Kontrolle von großflächigem Material zu ermöglichen, müssen punktuell messende Verfahren zeitraubend über das gesamte Objekt geführt werden. Diese punktuell messenden Verfahren sind für eine 100% online Fertigungskontrolle in der Regel wegen des zeitaufwendigen Scannens der Probe nicht zu verwenden. Gleichzeitiges paralleles Betreiben mehrerer Geräte verkürzt in der Regel zwar die Messzeit, macht aber die Messeinrichtungen entsprechend teuer. Schnelle, flächenhaft messende Systeme sind für eine 100% Fertigungskontrolle wünschenswert. Die optische Inspektion der Oberfläche im sichtbaren Licht erlaubt es, z.B. Fehler der Oberflächenschicht zu detektieren. Interferometrische Messsysteme, wie z.B. das Elektronische Speckle Muster Interferometer (ESPI) oder das Shear-ESPI können Fehler auch im Inneren von Materialproben ganzflächig vermessen. Sie sind aber wegen ihrer großen Empfindlichkeit gegen äußere Störeiπflüsse nicht einfach und zuverlässig in den Produktionsprozess zu integrieren. Mikro- oder Radiowellen wären zwar prinzipiell für solch einenMaterial weaknesses in a small measuring field. In order to enable a 100% control of large-area material with these methods, selective measuring procedures have to be carried out time-consuming over the entire object. These point measuring methods are generally not to be used for a 100% online production control because of the time-consuming scanning of the sample. Simultaneously operating several devices in parallel generally shortens the measuring time, but makes the measuring equipment correspondingly expensive. Fast, area measuring systems are desirable for 100% production control. The optical inspection of the surface in visible light makes it possible, for example, to detect defects in the surface layer. Interferometric measuring systems, such as the electronic speckle pattern interferometer (ESPI) or the shear ESPI, can also measure defects over the entire surface of material samples. However, because of their great sensitivity to external interference, they cannot be easily and reliably integrated into the production process. Micro or radio waves would in principle be for such one
Überwachungsprozess geeignet, verlangen aber einen relativ hohen Aufwand zur Einhaltung der strengen Sicherheitsvorschriften im Umgang mit Strahlungsquellen.Suitable monitoring process, but require a relatively high effort to comply with the strict safety regulations when dealing with radiation sources.
Die DE 1 97 03 484 A1 offenbart ein Prüfverfahren, bei dem in einem Material oder Materialverbund innere Fehler detektiert werden, indem im zu untersuchenden Bereich ein Wärmestrom erzeugt wird, der an Fehlstellen gestört ist. Die dadurch entstehenden Verzerrungen des Oberflächentemperaturfeldes werden erfasst und zur Fehlerkontrastierung ausgewertet. Die Empfindlichkeit auf kleinere und tiefer liegende innere Fehler wird durch eine optimierte Wärmeführung und durch Nutzung hochauflösender Messeinrichtung zur Erfassung der örtlichen und zeitlichen Oberflächentemperaturverteilung erreicht.DE 1 97 03 484 A1 discloses a test method in which internal defects are detected in a material or composite of materials by generating a heat flow in the area to be examined which is disturbed at defects. The resulting distortions in the surface temperature field are recorded and evaluated for error contrasting. Sensitivity to smaller and deeper internal faults is achieved through optimized heat management and through the use of high-resolution measuring equipment to record the local and temporal surface temperature distribution.
Die DE 1 96 28 391 C1 offenbart eine Signalverarbeitungseinheit einer Vorrichtung zum photothermischen Prüfen einer Oberfläche eines Prüfkörpers. Vorgesehen ist eine Geschwindigkeitsmesseinrichtung, mit der die Relativgeschwindigkeit eines Prüfkörpers in Bezug auf den optischen Teil sowie einen dazu fest angeordneten Detektor bestimmbar ist. Mit dem dadurch gewonnenen Geschwindigkeitsmesswert ist der zeitliche Verlauf von durch Anregungsstrahlung erzeugter induzierter Wärmestrahlung auf einen ruhenden Prüfbereich korrigierbar. Die DE 1 97 20 461 A1 offenbart ein Verfahren sowie eine Vorrichtung zur Überprüfung der inneren Kuhlstruktur einer Turbinenschaufel. Dabei wird von der zu prüfenden Turbinenschaufel ein Ausgangs-Thermographiebild mittels einer ersten Infrarot-Kamera aufgenommen. Anschließend wird die Turbinenschaufel mittels Einblasen von Heizluft in deren Kuhlstruktur kurzzeitig aufgeheizt. Von der so aufgeheizten Turbmenschaufel wird dann ein Thermographiebild durch eine zweite Infrarot-Kamera aufgenommen. Die Infrarot-Thermographie-Kamera kann in einem Line-Scan-Modus arbeiten, also das Objekt zeilenweise abtasten. Der von der Kamera aufgezeichnete zeitliche Verlauf der Temperaturverteilung wird von einem Personalcomputer durch ein entsprechendes Auswerte- und Bildverarbeitungsprogramm online digitalisiert und davon jeweils das Ausgangs-Thermographiebild substtahiert. Diese Differenzbilder werden mit den Aufnahmen einer Referenzschaufel verglichen und bewertetDE 1 96 28 391 C1 discloses a signal processing unit of a device for photothermal testing of a surface of a test specimen. A speed measuring device is provided which can be used to determine the relative speed of a test specimen with respect to the optical part and a detector which is fixedly arranged thereon. With the speed measurement value obtained in this way, the temporal course of induced thermal radiation generated by excitation radiation can be corrected to a stationary test area. DE 1 97 20 461 A1 discloses a method and a device for checking the inner cooling structure of a turbine blade. An output thermographic image of the turbine blade to be tested is recorded by means of a first infrared camera. The turbine blade is then briefly heated by blowing hot air into its cooling structure. A thermographic image of the heated turbine blade is then recorded by a second infrared camera. The infrared thermography camera can work in a line scan mode, i.e. scan the object line by line. The time course of the temperature distribution recorded by the camera is digitized online by a personal computer using a corresponding evaluation and image processing program, and the output thermographic image is substituted in each case. These difference images are compared with the images of a reference blade and evaluated
Die DE-OS 1 648 349 offenbart eine Vorrichtung zur zerstörungsfreien Werkstoffprüfung von Walzgut nach einem Walzvorgang und wahrend einer Temperaturanderung des Walzgutes. Hierfür ist im Abstand von dem Walzgut ein beruhrungsloser Temperaturfühler angeordnet, der ein Signal nach Maßgabe der Temperatur der Walzgutoberflache an eine Auswertevorrichtung liefert, die einen Schaltvorgang auslost, sobald das Signal sich über vorgegebene Grenzwerte hinaus ändert Der Temperaturfühler kann ein auf infraiote Strahlung von der Walzgutoberflache ansprechendes Radiometer sein, das auf einen bestimmten Teil der Walzgutoberflache fokussiert ist, so dass das Signal eine Funktion der Temperatur dieses Oberflachenteiles ist. Dabei kann der jeweils beobachtete Oberflachenteil einer Abtast nie auf der Walzgutoberflache folgen, wobei dann das erhaltene Signal dem Temperaturverlauf längs dieser Abtasthnie entspricht. Dabei ist immer ein Linsensystem auf einen relativ kleinen Abtastfleck auf der Oberfläche des Walzgutes fokussiert, wobei dieses Linsensystem die Strahlung von diesem Fleck auf die Infrarotzelle konzentriert. Insbesondere dann, wenn das Radiometer hin- und her bewegt wird, um den Abtastfleck quer zu dem Walzgut zu bewegen, wird auf der dem Radiometer abgewandten Seite des Walzgutes eine breite Kühldüse angeordnet, die einen Vorhang von Kühlmittel gegen die Unterfläche des Walzgutes richtet und so dessen Unterfläche abkühlt.DE-OS 1 648 349 discloses a device for non-destructive material testing of rolling stock after a rolling process and during a change in temperature of the rolling stock. For this purpose, a contactless temperature sensor is arranged at a distance from the rolling stock, which delivers a signal according to the temperature of the rolling stock surface to an evaluation device, which triggers a switching process as soon as the signal changes beyond predefined limit values. The temperature sensor can detect infrared radiation from the rolling stock surface be an appealing radiometer, which is focused on a certain part of the surface of the rolling stock, so that the signal is a function of the temperature of this surface part. The surface part observed in each case can never follow a scan on the surface of the rolling stock, the signal obtained then corresponding to the temperature profile along this scan line. In this case, a lens system is always focused on a relatively small scanning spot on the surface of the rolling stock, this lens system concentrating the radiation from this spot on the infrared cell. Especially if that Radiometer is moved back and forth in order to move the scanning spot across the rolling stock, a wide cooling nozzle is arranged on the side of the rolling stock facing away from the radiometer, which directs a curtain of coolant against the lower surface of the rolling stock and thus cools the lower surface thereof.
Die EP 0 093 422 A2 offenbart eine Vorrichtung, die lediglich zum berührungslosen Detektieren von Oberflächenfehlern bestimmt und geeignet ist. Eingesetzt wird hierzu eine Fairchild-Halbleiterzeilenkamera mit 2.048 Pixeln, wobei zur Verbesserung der Bildaufnahmen die zu detektierende Brammenoberfläche mit Quecksilberdampflampen beleuchtet werden soll.EP 0 093 422 A2 discloses a device which is only intended and suitable for the contactless detection of surface defects. A Fairchild semiconductor line scan camera with 2,048 pixels is used for this purpose, with the slab surface to be detected being illuminated with mercury vapor lamps in order to improve the image recordings.
Die US-PS 4, 168,430 offenbart eine Vorrichtung zum berührungslosen Detektieren von gerade erzeugten Schweißpunkten mit Hilfe einer speziellen, auf Infrarotstrahlung ansprechenden Videokamera, die am Kopf der Schweißvorrichtung befestigt ist. Detektiert wird dann der sich von dem überprüften Schweißpunkt in der Werkstückoberfläche ausbreitende Wärmeverlauf. Das so erlangte Wärmebild wird dann verglichen mit einem Referenzbild eines zuvor unter gleichen Bedingungen hergestellten Referenzschweißpunktes.US Pat. No. 4,168,430 discloses a device for the contactless detection of welding spots which have just been produced with the aid of a special video camera which responds to infrared radiation and which is attached to the head of the welding device. The heat curve that propagates from the checked welding point in the workpiece surface is then detected. The thermal image obtained in this way is then compared with a reference image of a reference welding point previously produced under the same conditions.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Durchführung eines gegenüber den vorbekannten Verfahren insbesondere hinsichtlich der Prüfgeschwindigkeit verbesserten Verfahrens zu entwickeln, das auch das Detektieren von Prüfkörpern mit schlechter Wärmeleitfähigkeit (z. B. Holz und Holzwerkstoffe) ermöglicht.The invention is based on the object of developing a device for carrying out a method which is improved compared to the previously known methods, in particular with regard to the test speed, and which also enables the detection of test specimens with poor thermal conductivity (for example wood and wood-based materials).
Die Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung mit den Merkmalen des Anspruchs 1 .The object is achieved according to the invention by a device having the features of claim 1.
In der Praxis kommen die zu untersuchenden Prüfkörper wie z.B. Spanplatten, Faserplatten, Laminatböden oder dergl. erwärmt aus einem Produktionsprozess, beispielsweise aus einer Heizpresse. Erfindungsgemäß wird diese Prozesswärme, die im wesentlichen durch Konvektion von der Oberfläche des Prüfkörpers an die kühlere Umgebung abgegeben wird, zur Detektierung der Prüfkörperoberfläche ausgenutzt. Haftungsfehler oder Delaminationen im Material behindern den Wärmetransport an die Oberfläche, die dadurch über den Fehlstellen wesentlich kühler erscheint als die Umgebung. Dieser Wärmeunterschied auf der Prüfkörperoberfläche wird mit einer Thermographiekamera detektiert, die eine Zeilenkamera oder eine Flächenkamera sein kann.In practice, the test specimens to be examined, such as chipboard, fibreboard, laminate flooring or the like, come heated from one Production process, for example from a heating press. According to the invention, this process heat, which is emitted essentially by convection from the surface of the test specimen to the cooler environment, is used to detect the test specimen surface. Adhesion defects or delaminations in the material hinder the heat transfer to the surface, which thus appears much cooler than the surroundings over the defects. This difference in heat on the surface of the test specimen is detected with a thermography camera, which can be a line scan camera or an area scan camera.
Um die Wärmeabgabe an die Umgebung und damit die Abkühlung der zu detektierenden Pi üfkörperoberfläche zu beschleunigen, um so eine schnellere Detektion der Haftungsfehler zu erzielen, ist die Kühleinheit vorgesehen. Hierbei ist es vorteilhaft, wenn die Kühleinheit ein sich quer zur Verschieberichtung erstreckendes, Kühlluft linien- oder streifenförmig auf die zu detektierende Oberfläche des Prüfkörpers blasendes Kühlregister ist.The cooling unit is provided in order to accelerate the heat dissipation to the environment and thus the cooling of the body surface to be detected, in order to achieve a faster detection of the adhesion defects. It is advantageous here if the cooling unit is a cooling register which extends transversely to the direction of displacement and is linear or strip-shaped cooling air which blows onto the surface of the test specimen to be detected.
Dabei ist es zweckmäßig, wenn der Antrieb für die Relativverschiebung ein den Prüfkörper unter der stationär angeordneten Thermografiekamera hindurchföiderndes Förderband ist. Es ist dann vorteilhaft, wenn die Thermografiekamera in Förderrichtung gesehen mit Abstand hinter der den Prüfkörper erwäi menden Produktionslinie angeordnet ist, also z.B. mit Abstand hinter dem Auslauf einer Heizpresse.It is expedient if the drive for the relative displacement is a conveyor belt that feeds the test specimen under the stationary thermography camera. It is then advantageous if the thermographic camera, viewed in the conveying direction, is arranged at a distance behind the production line that heats the test specimen, e.g. by far behind the outlet of a heating press.
Für die Messung wird eine Thermographiezeilen- oder -flächenkamera in einer solchen Höhe über der zu messenden Prüfkörperoberfläche angebracht, dass mit der entsprechenden Optik die zu untersuchende Fläche beobachtet werden kann. Dabei werden die Zeilen der Zeilenkamera bzw. die Zeilen der Flächenkamera so ausgerichtet, dass sie senkrecht zur Laufrichtung des Förderbandes, das auch ein Keilriemenförderer, eine angetriebene Rollenbahn oder dgl. sein kann, das Wärmebild des gleichförmig unter der Thermographiekamera hindurchgeförderten Prüfkörpers aufnimmt. Aus den einzelnen Zeilen wird dann in einem angeschlossenen Computer ein Bild des gesamten Prüfkörpers aufgebaut. Dabei kann die Auswertung der Warmebilder, die mit Hilfe einer Zellenkamera bzw. den einzelnen Zeilen einer Flachenkamera gewonnen wurden, auf identische Weise erfolgen.For the measurement, a thermography line or surface camera is attached at such a height above the surface of the test specimen to be measured that the surface to be examined can be observed with the appropriate optics. The lines of the line camera or the lines of the area camera are aligned so that they convey the thermal image of the material uniformly under the thermographic camera perpendicular to the direction of travel of the conveyor belt, which can also be a V-belt conveyor, a driven roller conveyor or the like Test body takes up. An image of the entire test specimen is then built up from the individual lines in a connected computer. The thermal images obtained with the aid of a cell camera or the individual lines of a flat panel camera can be evaluated in an identical manner.
Für die Detektion von Mateπalschwachen sind neben den physikalischen Parametern des Prufkorpermateπals (Wärmekapazität undIn addition to the physical parameters of the test material (heat capacity and
Wärmeleitfähigkeit) und der Temperaturempfindlichkeit der Thermogtaphiekamera weitere entscheidende Faktoren dieThermal conductivity) and the temperature sensitivity of the thermography camera are other decisive factors
Temperaturdifferenz sowie die Relativgeschwindigkeit zwischen Kamera und PrüfkörperTemperature difference and the relative speed between the camera and the test specimen
Zur Anpassung des erfmdungsgemaßen Inspektionsgerates an unterschiedliche Prufbedingungen ist es zweckmäßig, wenn Versteileinrichtungen vorgesehen sind zur Veränderung des in Verschieberichtung zu messenden Abstandes zwischen Kuhleinheit und Thermographiekamera und/oder zur Veränderung der Relativgeschwindigkeit zwischen Prüfkörper und Thermographiekamera und/oder zur Abstandsveranderung der Kuhleinheit von der zu beaufschlagenden Oberfläche des Prüfkörpers und/oder für die Leistung dei KuhleinheitTo adapt the inspection device according to the invention to different test conditions, it is expedient if adjustment devices are provided for changing the distance between the cow unit and the thermographic camera to be measured in the direction of displacement and / or for changing the relative speed between the test specimen and the thermographic camera and / or for changing the distance of the cow unit from the one to be loaded Surface of the test specimen and / or for the performance of the cow unit
Als Kuhleinheit kann auch eine frei drehbare, zur Auflage auf der Oberflache eines plattenformigen Prüfkörpers bestimmte Rolle vorgesehen sein, deren Drehachse quer zur Verschiebeπchtung des Prüfkörpers, also parallel zu der genannten Kamerazeile liegt Durch den unmittelbaren Kontakt Rolle/Prufkorper wird aus der Prufkorper-Oberflache Warme in die als Kuhleinheit wirkende Rolle abgeleitet. Zur Vetgroßerung der Kühlleistung kann die Rolle selbst mit einer Kuhleinrichtung, z.B. mit einem Kuhlwassersystem ausgerüstet sein. In der Zeichnung ist eine als Beispiel dienende Ausführungsform der Erfindung schaubildartig dargestellt.A freely rotatable roller intended for resting on the surface of a plate-shaped test specimen can also be provided as a cow unit, the axis of rotation of which lies transversely to the displacement of the test specimen, that is to say parallel to the camera line mentioned, because the direct contact between the roller and the test body results in heat from the test body surface derived into the role acting as a cow unit. To increase the cooling capacity, the roll itself can be equipped with a cooling device, for example with a cooling water system. An exemplary embodiment of the invention is shown in the drawing in the form of a diagram.
Die Zeichnung zeigt eine Fördereinrichtung 1 in Form eines Förderbandes für einen plattenformigen Prüfkörper 2, bei dem es sich z.B. um eine beschichtete Spanplatte handeln kann. Die Fördervorrichtung 1 , deren Förderrichtung mit einem Pfeil F gekennzeichnet ist, ist hinter einer Produktionslinie 3 angeordnet, die schematisch durch z.B. am Auslauf einer Heizpresse angeordnete Auszugswalzen dargestellt ist. Hinter der Produktionslinie 3 ist über der Fördereinrichtung 1 eine sich quer zur Förderrichtung F erstreckende Kühleinheit 4 stationär angeordnet, die die zu detektierende Oberfläche des unter ihr hindurchgeförderten Prüfkörpers 2 linien- oder streifenförmig z.B. mit gleichmäßig kühler Luft beaufschlagt.The drawing shows a conveyor 1 in the form of a conveyor belt for a plate-shaped test specimen 2, which is e.g. can be a coated chipboard. The conveying device 1, the conveying direction of which is indicated by an arrow F, is arranged behind a production line 3, which is schematically represented by e.g. pull-out rollers arranged at the outlet of a heating press is shown. Behind the production line 3, a cooling unit 4, which extends transversely to the conveying direction F, is arranged in a stationary manner above the conveying device 1, said cooling unit 4 forming the surface to be detected of the test specimen 2 conveyed beneath it in a line or strip, e.g. charged with evenly cool air.
5 Der Kühleinheit 4 ist in Förderrichtung F gesehen eine Thermographiekamera 5 nachgeordnet, die in der Zeichnung als Flächenkamera dargestellt ist, aber auch eine Zeilenkamera sein kann. Die Thermographiekamera 5 ist ebenso wie die Kühleinheit 4 stationär oberhalb der Förderebene angeordnet und ist mit ihrer zumindest einen Kamerazeile o quer zur Förderrichtung F ausgerichtet. An die Thermographiekamera 5 ist ein Computer angeschlossen, dessen Rechner 6 aus jeder Kamerazeile ein gesondertes Wärmebildmuster aufbaut, das auf einem Farbmonitor 7 betrachtet und auf einem PC ausgewertet werden kann.5 Seen in the conveying direction F, the cooling unit 4 is followed by a thermography camera 5, which is shown in the drawing as an area camera, but can also be a line camera. Like the cooling unit 4, the thermography camera 5 is arranged stationary above the conveying plane and is aligned with its at least one camera line o transversely to the conveying direction F. A computer is connected to the thermography camera 5, the computer 6 of which builds up a separate thermal image pattern from each camera line, which pattern can be viewed on a color monitor 7 and evaluated on a PC.
_τ Der eingezeichnete Doppelpfeil 8 symbolisiert eine VerStelleinrichtung zur Veränderung des in Förderrichtung F zu messenden Abstandes zwischen Kühleinheit 4 und Thermographiekamera 5. Letztere kann als scannendes System oder als komplette Zeilen- oder Flächenkamera (Focal Plane Array) ausgelegt sein. 0The drawn double arrow 8 symbolizes an adjusting device for changing the distance to be measured in the conveying direction F between the cooling unit 4 and the thermographic camera 5. The latter can be designed as a scanning system or as a complete line or area camera (focal plane array). 0
Die Thermographiekamera 5 wird in solcher Höhe über der Fördereinrichtung 1 stationär angebracht, dass mit der entsprechenden Optik die zu untersuchende Oberfläche des Prüfkörpers 2 beobachtet werden kann. Bei einer Zeilenkamera nimmt die quer zur Förderrichtung F ausgerichtete Kamerazeile das Wärmebild des in einer kontinuierlichen Bewegung unter der Kühleinheit 4 und dann unter der Thermographiekamera 5 vorbeigeführten Prüfkörpers auf, wobei dann aus den einzelnen Zeilenaufnahmen in dem angeschlossenen Computer 7, 8 ein Bild der gesamten Oberfläche des Prüfkörpers 2 aufgebaut wird. Hierbei wird die zu untersuchende Tiefenschicht des Prüfkörpers 2 bestimmt durch die Abstandseinstellung der Thermographiekamera 5 gegenüber der Kühleinheit 4 in Verbindung mit der Geschwindigkeit der Fördereinrichtung 1 . Bei Verwendung einer Thermographieflächenkamera wird die Kamera in solcher Höhe über dem zu vermessenden Prüfkörper 2 angebracht, dass mit der entsprechenden Optik die gewünschte Breite der Oberfläche des Prüfkörpers 2 abgebildet wird. Dabei sind die einzelnen Zeilen dieser Flächenkamera ebenfalls quer zur Förderrichtung F und in Förderrichtung F hintereinander angeordnet. Durch die gleichförmige Bewegung des Prüfkörpers 2 unter der Flächenkamera 6 hindurch wird in dem angeschlossenen Computer 7, 8 aus jeder Kamerazeile ein gesondertes Bild des Prüfkörpers aufgebaut. Hierdurch entstehen so viele Wärmebilder des Prüfkörpers, wie die Kamera Zeilen besitzt. Da jede Kamerazeile einen etwas entfernteren Bereich des Prüfkörpers 2 von der Kühleinheit 4 aufzeichnet, enthalten die jeweiligen Zeilenbilder Informationen aus verschiedenen Tiefenebenen 10 des Prüfkörpers 2, wie es im unteren Teil der Figur schaubildlich angedeutet ist. Bezogen auf die dargestellte Flächenkamera zeigt ein in vergrößertem Maßstab dargestellter Ausschnitt 2a des Prüfkörpers 2 n-Zeilen 1 1 , die Informationen aus verschiedenen Tiefenebenen 10 vermitteln. The thermography camera 5 is attached in a stationary manner at such a height above the conveyor device 1 that with the appropriate optics investigating surface of the test specimen 2 can be observed. In the case of a line-scan camera, the camera line oriented transversely to the conveying direction F records the thermal image of the test specimen passed in a continuous movement under the cooling unit 4 and then under the thermography camera 5, an image of the entire surface then being obtained from the individual line recordings in the connected computer 7, 8 of the test specimen 2 is built. Here, the depth layer of the test specimen 2 to be examined is determined by the distance setting of the thermography camera 5 relative to the cooling unit 4 in connection with the speed of the conveyor device 1. When using a thermographic surface camera, the camera is mounted at such a height above the test specimen 2 to be measured that the desired width of the surface of the test specimen 2 is imaged with the appropriate optics. The individual lines of this area camera are also arranged one behind the other transversely to the conveying direction F and in the conveying direction F. Due to the uniform movement of the test specimen 2 under the surface camera 6, a separate image of the test specimen is built up from each camera line in the connected computer 7, 8. This creates as many thermal images of the test specimen as the camera has lines. Since each camera line records a somewhat more distant area of the test body 2 from the cooling unit 4, the respective line images contain information from different depth levels 10 of the test body 2, as is indicated in the lower part of the figure. In relation to the surface camera shown, a section 2a of the test specimen 2, shown on an enlarged scale, shows n lines 11, which convey information from different depth planes 10.

Claims

Ansprüche Expectations
1 . Vorrichtung zum berührungslosen Detektieren von Struktur- und/oder Oberflächenfehlern großflächiger, durch Prozesswärme vollständig erwärmter Körper, insbesondere plattenförmiger Materialien1 . Device for the contactless detection of structural and / or surface defects of large areas, completely heated by process heat, in particular plate-shaped materials
(nachfolgend "Prüfkörper 2"), mit einer in Förderrichtung (F) gesehen mit Abstand hinter der den Prüfkörper (2) erwärmenden Produktionslinie (3) angeordneten, das sich beim Abkühlen des Prüfkörpers (2) auf seiner Oberfläche einstellende Wärmebildmuster detektierenden, auf diese Oberfläche gerichteten Thermographiekamera (5) , die einen lichten, ihrer Optik angepassten Abstand von der zu detektierenden Oberfläche aufweist, mit einer zwischen Produktionslinie (3) und Thermographkamera (5) angeordneten, die zu detektierende Oberfläche des Prüfkörpers (2) beaufschlagenden Kühleinheit (4), und mit einem Antrieb für eine Relativverschiebung zwischen Prüfkörper (2) und Thermographiekamera (5) bzw. Kühleinheit (4), wobei die Thermographiekamera (5) zumindest eine quer zur Verschieberichtung (F) liegende Kamerazeile und einen an sie angeschlossenen Rechner (6) mit Monitor (7) aufweist, der aus der(hereinafter "test specimen 2"), with a seen in the conveying direction (F) at a distance behind the production line (3) heating the test specimen (2), which detects thermal image patterns on its surface when the test specimen (2) cools down Surface-directed thermographic camera (5), which is at a clear distance, adapted to its optics, from the surface to be detected, with a cooling unit (4) arranged between the production line (3) and thermographic camera (5) and acting on the surface of the test specimen (2) to be detected. , and with a drive for a relative displacement between the test specimen (2) and the thermography camera (5) or cooling unit (4), the thermography camera (5) having at least one camera line lying transversely to the displacement direction (F) and a computer (6) connected to it with monitor (7), which from the
Kamerazeile oder den Kamerazeilen ein komplettes Wärmebildmuster aufbaut.Camera line or the camera lines builds a complete thermal image pattern.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass der Antrieb für die Relativverschiebung ein den Prüfkörper (2) unter der stationär angeordneten Thermographiekamera (5) hindurchförderndes Förderband ( 1 ) ist.2. Device according to claim 1, characterized in that the drive for the relative displacement is a conveyor belt (1) conveying the test specimen (2) under the stationary thermography camera (5).
3. Vorrichtung nach Anspruch 1 , gekennzeichnet durch eine VerStelleinrichtung zur Veränderung der Relativgeschwindigkeit zwischen Prüfkörper (2) und Thermographiekamera (5) . 3. Device according to claim 1, characterized by an adjusting device for changing the relative speed between the test specimen (2) and the thermographic camera (5).
4. Vorrichtung nach Anspruch 1 , 2 oder 3, gekennzeichnet durch eine VerStelleinrichtung (8) zur Veränderung des in Verschieberichtung (F) zu messenden Abstandes zwischen Kühleinheit (4) und Thermographiekamera (5) .4. Apparatus according to claim 1, 2 or 3, characterized by an adjusting device (8) for changing the distance to be measured in the displacement direction (F) between the cooling unit (4) and the thermographic camera (5).
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kühleinheit (4) ein sich quer zur Verschieberichtung (F) erstreckendes, Kühlluft linien- oder streifenförmig auf die zu detektierende Oberfläche des Prüfkörpers (2) blasendes Kühlregister ist.5. Device according to one of the preceding claims, characterized in that the cooling unit (4) is a cooling air which extends transversely to the direction of displacement (F) and is linear or stripe-shaped on the surface of the test specimen (2) to be detected and which blows the cooling register.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Versteileinrichtung zur Veränderung des Abstandes der Kühleinheit (4) von der zu beaufschlagenden Oberfläche des Prüfkörpers (2).6. Device according to one of the preceding claims, characterized by an adjusting device for changing the distance of the cooling unit (4) from the surface of the test specimen (2) to be acted upon.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Versteileinrichtung für die Leistung der Kühleinheit (4) .7. Device according to one of the preceding claims, characterized by an adjusting device for the performance of the cooling unit (4).
8. Vorrichtung nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass die Kühleinheit eine frei drehbare, zur abrollenden Auflage auf der Oberfläche eines plattenformigen Prüfkörpers bestimmte Rolle ist.8. Device according to one of claims 1-4, characterized in that the cooling unit is a freely rotatable roller intended for rolling support on the surface of a plate-shaped test specimen.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Rolle gekühlt ist. 9. The device according to claim 8, characterized in that the roller is cooled.
PCT/DE2000/003838 1999-11-06 2000-10-31 Device for non-contacting detection of test samples WO2001035086A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU23466/01A AU2346601A (en) 1999-11-06 2000-10-31 Device for non-contacting detection of test samples

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19953415.2 1999-11-06
DE19953415A DE19953415C1 (en) 1999-11-06 1999-11-06 Device for the contactless detection of test specimens

Publications (2)

Publication Number Publication Date
WO2001035086A2 true WO2001035086A2 (en) 2001-05-17
WO2001035086A3 WO2001035086A3 (en) 2001-10-25

Family

ID=7928108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003838 WO2001035086A2 (en) 1999-11-06 2000-10-31 Device for non-contacting detection of test samples

Country Status (3)

Country Link
AU (1) AU2346601A (en)
DE (1) DE19953415C1 (en)
WO (1) WO2001035086A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917040B2 (en) 2002-04-19 2005-07-12 Giesecke & Devrient Gmbh Method and apparatus for recognizing foreign material on bank notes
WO2009071738A1 (en) * 2007-12-03 2009-06-11 Upm-Kymmene Oyj Method and apparatus for measuring temperatures in connection with manufacturing of a glue board or a corresponding product
WO2011137995A3 (en) * 2010-05-03 2012-05-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for measuring joining properties of a material composite
US9851318B2 (en) 2012-10-18 2017-12-26 Yoshino Gypsum Co., Ltd. Method of detecting air gap in gypsum-based building board and method of manufacturing gypsum-based building board
EP3292995A1 (en) * 2016-09-07 2018-03-14 SWISS KRONO Tec AG Wood material panel hot press and method for operating a wood material panel hot press

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMO20030284A1 (en) * 2003-10-21 2005-04-22 Paolo Benedetti METHOD FOR DETECTING DEFECTS IN SUBSTANTIALLY WOODY TYPICAL PRODUCTS, PARTICULARLY PANELS AND SIMILAR, AND RELATIVE EQUIPMENT.
DE102004060235B4 (en) * 2004-12-15 2006-12-21 Jrw Technology + Engineering Gmbh Method and device for quality inspection of workpieces
DE102005030996B3 (en) * 2005-07-02 2007-02-01 Daimlerchrysler Ag Thermographic test process for analyzing test pieces esp. for detecting structure or surface defects such as tears
DE102006027028A1 (en) * 2006-06-09 2007-12-13 Ise Intex Gmbh Plastic shaped part production monitoring method, involves producing plastic shaped part in tool, and recording produced plastic shaped part by thermal image camera after removal of plastic shaped part from tool
WO2010059728A1 (en) * 2008-11-18 2010-05-27 Boatner Charles L Jr Vei void detection systems
EP2851677B1 (en) 2013-09-23 2020-02-05 Gerresheimer Bünde GmbH Multi-line scanning method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000632A1 (en) * 1985-07-15 1987-01-29 Kanor A/S Method and apparatus for the characterization and control of substances, materials and objects
US4996426A (en) * 1989-09-11 1991-02-26 National Research Council Of Canada Device for subsurface flaw detection in reflective materials by thermal transfer imaging
EP0813055A1 (en) * 1996-06-10 1997-12-17 Wagner International Ag Method and device for photothermal testing of surfaces of workpieces
EP0872725A1 (en) * 1997-04-15 1998-10-21 Eaton Corporation Method for detecting defect in ceramic body and apparatus therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483721A (en) * 1966-12-30 1969-12-16 Automation Ind Inc Material tester
FR2371685A1 (en) * 1976-11-17 1978-06-16 Aerospatiale METHOD AND DEVICE FOR THE QUALITY CONTROL OF SOLDER POINTS BY RESISTANCE
US4519041A (en) * 1982-05-03 1985-05-21 Honeywell Inc. Real time automated inspection
JP2653532B2 (en) * 1989-12-26 1997-09-17 株式会社東芝 Surface defect inspection equipment
JP3275796B2 (en) * 1997-09-08 2002-04-22 日本鋼管株式会社 Manufacturing equipment for resin-coated steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000632A1 (en) * 1985-07-15 1987-01-29 Kanor A/S Method and apparatus for the characterization and control of substances, materials and objects
US4996426A (en) * 1989-09-11 1991-02-26 National Research Council Of Canada Device for subsurface flaw detection in reflective materials by thermal transfer imaging
EP0813055A1 (en) * 1996-06-10 1997-12-17 Wagner International Ag Method and device for photothermal testing of surfaces of workpieces
EP0872725A1 (en) * 1997-04-15 1998-10-21 Eaton Corporation Method for detecting defect in ceramic body and apparatus therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H TRETOUT: "Composites, la thermographie ça marche en CND" MESURES REGULATION AUTOMATISME,FR,CFE. PARIS, Bd. 51, Nr. 15, 17. November 1986 (1986-11-17), Seiten 43,45-46, XP002125600 ISSN: 0755-219X *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 462 (P-1279), 22. November 1991 (1991-11-22) & JP 03 197856 A (TOSHIBA CORP), 29. August 1991 (1991-08-29) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 08, 30. Juni 1999 (1999-06-30) & JP 11 083773 A (NKK CORP), 26. März 1999 (1999-03-26) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917040B2 (en) 2002-04-19 2005-07-12 Giesecke & Devrient Gmbh Method and apparatus for recognizing foreign material on bank notes
WO2009071738A1 (en) * 2007-12-03 2009-06-11 Upm-Kymmene Oyj Method and apparatus for measuring temperatures in connection with manufacturing of a glue board or a corresponding product
WO2011137995A3 (en) * 2010-05-03 2012-05-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for measuring joining properties of a material composite
US9851318B2 (en) 2012-10-18 2017-12-26 Yoshino Gypsum Co., Ltd. Method of detecting air gap in gypsum-based building board and method of manufacturing gypsum-based building board
EP3292995A1 (en) * 2016-09-07 2018-03-14 SWISS KRONO Tec AG Wood material panel hot press and method for operating a wood material panel hot press
WO2018046390A1 (en) 2016-09-07 2018-03-15 SWISS KRONO Tec AG Wood material panel hot press and method for operating a wood material panel hot press
CN109789658A (en) * 2016-09-07 2019-05-21 瑞士卢森技术股份公司 The method of composite wood boards hot press and operation composite wood boards hot press
RU2747355C2 (en) * 2016-09-07 2021-05-04 Суисс Кроно Тек Аг Press for wood panel hot pressing and mode of operation of hot press for wood panels
CN109789658B (en) * 2016-09-07 2021-06-18 瑞士卢森技术股份公司 Wood material plate hot press and method of operating a wood material plate hot press
US11097502B2 (en) 2016-09-07 2021-08-24 SWISS KRONO Tec AG Wood material panel hot press and method for operating a wood material panel hot press
DE202017007606U1 (en) 2016-09-07 2023-08-21 SWISS KRONO Tec AG Wood-based panel hot press

Also Published As

Publication number Publication date
AU2346601A (en) 2001-06-06
DE19953415C1 (en) 2001-07-05
WO2001035086A3 (en) 2001-10-25

Similar Documents

Publication Publication Date Title
EP1121586B1 (en) Device for contactless testing of test bodies
DE102007024789B3 (en) Method for detecting defects in a weld during a laser welding process
DE102013104545B4 (en) Method and device for detecting defects of deposited semifinished fiber products
EP0995108B1 (en) Method for the automatic recognition of surface defects in body shells and device for carrying out said method
EP2189786A2 (en) Method and device for non-destructive quality determination of a weld seam and welding device
EP3314036B1 (en) Method for coating a surface of a metal strip and a metal strip-coating device
WO2002059587A2 (en) Thermography method
WO2001035086A2 (en) Device for non-contacting detection of test samples
WO2016038096A1 (en) Thermographic examination device and method for nondestructively examining a structure near the surface on a test object
DE19623121A1 (en) Method and device for photothermal testing of workpiece surfaces
DE102004037575A1 (en) Test device and test method for production-integrated, non-destructive testing, in particular of membrane-electrode assemblies for use in fuel cells
EP2470858B1 (en) Method and device for the quality inspection of a formed thermoplastic fiber-reinforced plastic component
EP1642116B1 (en) Method for characterising workpieces consisting of electrically conductive materials
EP3210003B1 (en) Method and device for determining the transmittance of a sheet glass substrate
DE10217586A1 (en) Banknote sorting device has thermal means for detection of foreign material, e.g. tape, adhering to a note surface, whereby once the note is heated, areas of foreign material have different heat emissivity properties to the note
EP2618958B1 (en) Use of the polarity of a thermal emission for the detection of 3d-structures
WO2016062733A1 (en) Method and device for verifying the transmittance of a flat glass substrate
EP3657125B1 (en) Device and method for determining variations in flatness when handling a material in the form of a strip
DE4319996A1 (en) Method for the non-contact registration of the surface temperature of rotating discs
DE10118131C2 (en) Process for thermographic production, quality and function control of heating conductor tracks embedded in aircraft parts
DE10355440A1 (en) Method and device for measuring the wall thickness of plastic parts
EP3753720A1 (en) Method for the three-dimensional detection of fibre material using terahertz-radiation and fibre laying system for same
DE102011002288B4 (en) Method and arrangement for non-contact double sheet metal inspection of sheets
EP3583382A1 (en) Method for the non-destructive analysis and classification of a metal workpiece
DE102009052172A1 (en) Method for controlling the temperature profile and the speed of a casting strand in a continuous casting plant and continuous casting plant for carrying out the process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WA Withdrawal of international application