WO2001035063A1 - Apparatus for detecting luminous energy - Google Patents

Apparatus for detecting luminous energy Download PDF

Info

Publication number
WO2001035063A1
WO2001035063A1 PCT/JP1999/006282 JP9906282W WO0135063A1 WO 2001035063 A1 WO2001035063 A1 WO 2001035063A1 JP 9906282 W JP9906282 W JP 9906282W WO 0135063 A1 WO0135063 A1 WO 0135063A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
signal
light
amount
voltage signal
Prior art date
Application number
PCT/JP1999/006282
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Koike
Toyoshi Ito
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP12897798A priority Critical patent/JP3863290B2/en
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to PCT/JP1999/006282 priority patent/WO2001035063A1/en
Priority to AU11780/00A priority patent/AU1178000A/en
Publication of WO2001035063A1 publication Critical patent/WO2001035063A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/30Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for

Definitions

  • the present invention relates to a light amount detection device that quantitatively detects the amount of received light.
  • a light amount detection device using a photomultiplier tube has been known.
  • a constant voltage is applied to the photocathode of the photomultiplier tube and that of the dynode, and a photon is emitted from the photocathode in response to light incident on the photocathode, and the photoelectron is emitted.
  • Is multiplied by the dynode to generate secondary electrons and a current signal corresponding to the number of the secondary electrons is output from the anode electrode. Then, based on the magnitude of the current signal output from the anode electrode, the amount of light incident on the photocathode is quantitatively detected.
  • the light quantity detection device disclosed in Japanese Patent Publication No. 59-500018 was proposed to solve such a problem, and it was developed from an anode electrode of a photomultiplier tube.
  • the voltage applied to each of the photocathode and the dynode of the photomultiplier tube is feedback-controlled so that the magnitude of the input current signal is constant, and based on the value of the applied voltage, the light incident on the photocathode is controlled.
  • the quantity of light is detected quantitatively. And like this This prevents excessive current from flowing through the photomultiplier tube and peripheral circuits, avoids damage to the photomultiplier tube and peripheral circuits, and facilitates handling. Is trying to expand. Disclosure of the invention
  • the present invention has been made in order to solve the above problems, and has as its object to provide a light amount detection device having a wide dynamic range of light amount detection.
  • the light quantity measuring device comprises: (1) a photocathode that emits a number of photoelectrons according to the amount of received light, a dynode that multiplies the photoelectrons to generate secondary electrons, and a number of the secondary electrons.
  • a photomultiplier tube having an anode electrode that outputs a current signal corresponding to the current, (2) a current-to-voltage converter that converts the current signal output from the anode into a voltage signal, and (3) a current-to-voltage converter.
  • a power supply unit that applies the applied voltage adjusted so that the voltage signal matches the reference voltage to each of the photocathode and the dynode of the photomultiplier tube.
  • a signal processing unit that calculates a light reception amount based on the voltage signal when the voltage signal is smaller than the reference voltage, and calculates a light reception amount based on the applied voltage when the voltage signal is equal to or higher than the reference voltage.
  • the current output from the anode electrode of the photomultiplier tube The signal is converted into a voltage signal by the current-voltage converter, and the voltage signal is compared with the reference signal by the comparator.
  • the comparator determines that the voltage signal is smaller than the reference voltage
  • a constant voltage is applied from the power supply unit to the photocathode of the photomultiplier tube and the dynode, and the signal processing unit
  • the received light amount is calculated based on the signal.
  • the comparator determines that the voltage signal is equal to or higher than the reference voltage.
  • the voltage is applied to the photocathode and the dynode of the intensifier, and the signal processing unit calculates the amount of received light based on the applied signal.
  • the applied voltage includes not only the applied voltage actually applied to the photomultiplier tube but also a voltage having a correlation with the applied voltage.
  • the signal processor linearly converts the value of the voltage signal to calculate the amount of received light, and when the voltage signal is equal to or higher than the reference voltage, performs inverse logarithmic conversion on the value of the applied voltage to receive light. It is preferred to calculate the amount.
  • the received light amount calculated by the signal processing unit has linearity with respect to the received light amount of the photocathode of the photomultiplier tube.
  • the signal processing unit calculates the amount of received light by linearly correcting the value of the applied voltage after performing an inverse logarithmic conversion.
  • the received light amount calculated by the signal processing unit has excellent linearity with respect to the received light S of the photocathode of the photomultiplier tube.
  • FIG. 1 is a configuration diagram showing a preferred embodiment of a light quantity detection device according to the present invention.
  • FIG. 2A is a graph showing the relationship between the voltage signal V I output from the current-to-voltage converter and the amount of light received by the photomultiplier.
  • FIG. 2B is a graph showing the relationship between the voltage signal V2 output from the buffer unit and the amount of light received by the photomultiplier tube.
  • Figure 2C shows the signal V3 output from the signal processing unit and the light received by the photomultiplier tube.
  • 6 is a graph showing a relationship between the light amount and the light amount.
  • FIG. 3 is a front chart showing the operation of the signal processing unit of the light amount detection device shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram of a light quantity detection device 1 according to the present embodiment.
  • the light amount detection device 1 includes a photomultiplier tube 10, a voltage divider 20, a current-voltage converter 30, a reference voltage generator 40, a comparator 50, a power supply 60, a buffer 70, and a signal processor 80.
  • the photomultiplier tube 10 includes a photocathode 11 that emits a number of photoelectrons according to the amount of incident light, and a dynode Dy, which multiplies the photoelectrons emitted from the photocathode 11 to generate secondary electrons.
  • DDy 9 and an anode electrode 12 that outputs a current signal according to the number of secondary electrons from the dynodes Dy, ⁇ Dy 9 are provided in a vacuum vessel 13.
  • the photomultiplier tube 10 When the photomultiplier tube 10 is applied with the photocathode 11, the dynodes Dy, to Dy 9 , the anode 12, and a predetermined voltage applied thereto, the photomultiplier tube 10 responds to the light amount Photoelectrons are emitted from the photocathode 11, the photoelectrons are multiplied by dynodes D to Dy 9 to generate secondary electrons, and a current signal is output according to the secondary electrons reaching the anode electrode 12.
  • Current signal output from the anode electrode 12 are those according to the amount of light received, also those corresponding to the dynode Dy, multiplication factor i.e. the voltage applied by ⁇ D y 9.
  • the voltage divider 20 is a resistor R 21 connected in series. :: Each potential generated by voltage division by R 2 19 is connected to a resistor R 22. To R 2 2 3 via or directly to photocathode 1 1 and the dynode Dy of the photomultiplier tube 1 0, ⁇ Dy 9 which is applied to it.
  • the current-voltage converter 30 When a current signal output from the anode electrode 12 of the photomultiplier tube 10 is input, the current-voltage converter 30 integrates the current signal, converts the current signal into a voltage signal, and outputs the voltage signal. It is.
  • the current-voltage converter 30 includes a differential amplifier A31, resistors R31 to R34, and a capacitor C31.
  • the resistor R33 and the resistor R34 connected in series are provided between the output terminal of the differential amplifier A31 and the ground terminal.
  • the resistor R31 and the resistor R32 connected in series are provided between the first input terminal of the differential amplifier A31 and the connection point of the resistor R33 and the resistor R34. I have.
  • the connection point between the resistor R31 and the resistor R32 is connected to the anode electrode 12 of the photomultiplier tube 10.
  • the capacitor C31 is provided between the first input terminal and the output terminal of the differential amplifier A31.
  • the input terminal of ⁇ 2 of the differential amplifier A31 is grounded.
  • the voltage signal VI output from the current-voltage converter 30 is the potential of the output terminal of the differential amplifier A31.
  • the ft current signal also fluctuates, but even in these cases, by appropriately determining the capacitance value of the capacitor C31, the integration time for converting the current signal to the voltage signal can be reduced. It is sufficient to eliminate the effects of fluctuations in the current signal.
  • the reference voltage generation section 40 generates a reference voltage V0 to be applied to the comparison section 50, and includes a zener diode D41.
  • Zener diode D 4 1 Caso The anode terminal is connected to the power supply voltage Vcc via the resistor R2, and the anode terminal is grounded.
  • the reference voltage V0 output from the reference voltage generator 40 is the potential of the force source terminal of the Zener diode D41.
  • the comparator 50 receives the voltage signal VI (potential of the output terminal of the differential amplifier A31) output from the current-voltage converter 30 via the resistor R1, and outputs the voltage signal VI from the reference voltage generator 40. It receives the reference voltage V0 (potential of the power source terminal of the Zener diode D41), amplifies the difference between these voltage values, and outputs the result.
  • the comparison unit 50 includes a differential amplifier A51, a resistor R51, and a transistor Tr51.
  • the first input terminal of the differential amplifier A5 1 is connected to the force source terminal of the zener diode D41, and the second input terminal is connected to the output of the differential amplifier A31 of the current-to-voltage converter 30. Connected to terminal via resistor R1.
  • the base terminal of the transistor Tr 51 is connected to the output terminal of the differential amplifier A 51 via a resistor R 51, and the collector terminal is connected to a resistor R 2 and a variable resistor connected in series. It is connected to the power supply voltage Vcc via the resistor R3 and the resistor R4, and the emitter terminal is grounded.
  • the output signal output from the comparing unit 50 is the potential of the collector terminal of the transistor Tr51, and is based on the difference between the voltage signal VI and the reference signal V0. That is, when the voltage signal VI becomes larger than the reference voltage V0, a voltage is applied from the differential amplifier A51 to the base terminal of the transistor Tr51, and the voltage between the collector terminal and the emitter terminal of the transistor Tr51 is changed. The resistance becomes low, and the output signal output from the comparison section 50 becomes small.
  • the power supply unit 60 Upon receiving the output signal (potential of the collector terminal of the transistor Tr 51) output from the comparison unit 50, the power supply unit 60 supplies the output signal to both ends of the resistor string of the voltage division unit 20 based on the output signal. Generates voltage.
  • the power supply unit 60 includes resistors R61 to R65, differential amplifier A61, capacitors C61 to C67, transistors Tr61 to Tr63, coil L61, diode D61. DD 64 and a transformer T 61. Since the oscillation frequency of the power supply section 60 is high, Because of the high power consumption, no excessive current flows and power consumption is low.
  • the resistor R61 and the resistor R62 are connected in series between the collector terminal of the transistor Tr51 of the comparing section 50 and the first end of the resistor row of the voltage dividing section 20. I have.
  • a first input terminal of the differential amplifier A61 is connected to a connection point between the resistor R61 and the resistor R62, and a second input terminal is grounded.
  • the collector terminal of the transistor Tr 61 is connected to the power supply voltage Vcc and grounded via the capacitor C 61, and the base terminal is connected to the output of the differential amplifier A 61 via the resistor R 63. Terminal, and the emitter terminal is grounded via a capacitor C62.
  • the primary side of transformer T61 consists of two coils.
  • the first coil on the primary side has a first end connected to the collector terminal of the transistor Tr62 and a second end connected to the collector terminal of the transistor Tr63.
  • the second coil on the primary side has a first end connected to the base terminal of the transistor Tr62 and a second end connected to the base terminal of the transistor Tr63.
  • the first end of the first coil and the first end of the second coil are connected via a resistor R64.
  • a point in the middle of the primary coil on the primary side is connected to the emitter terminal of the transistor Tr61 via the coil L61.
  • the emitter terminals of the transistors Tr 62 and Tr 63 are grounded.
  • the first end of the secondary coil of transformer T61 is connected in series with capacitors C63 and C64, and the other end is grounded and connected in series with capacitors C65 and C66. Have been.
  • the anode terminal of the diode D61 is connected to the connection point of the capacitor C63 and the capacitor C64, and the cathode terminal is connected to the second end of the secondary coil of the transformer T61.
  • the anode terminal of diode D62 is connected to the connection point of capacitors C65 and C66, and the cathode terminal is connected to the connection point of capacitors C63 and C64.
  • C The anode terminal of the diode D 63 is connected to the capacitor C 64, and the cathode terminal is connected to the connection point of the capacitors C 65 and C 66.
  • the anode terminal of diode D64 is connected to capacitor C66, and the cathode terminal is connected to capacitor C66. Connected to Densa C64.
  • the second end of the secondary coil of transformer T61 is connected to capacitor C66 via capacitor C67 and resistor R65 in this order. Further, the connection point of the capacitor C 67 and the resistor R 65 is connected to the first end of the resistor row of the voltage divider 20.
  • the buffer unit 70 receives the output signal (potential of the collector terminal of the transistor Tr51) output from the comparison unit 50, amplifies the output signal, and outputs a voltage signal V2.
  • the voltage signal V2 has a correlation with an applied voltage applied to the photomultiplier tube 10 from the power supply unit 60.
  • the signal processing unit 80 receives the voltage signal VI output from the current-voltage conversion unit 30 and the voltage signal V2 output from the buffer unit 70, performs a predetermined calculation based on these, and performs photoelectron enhancement.
  • the light intensity of the light received by the multiplier 10 is determined, and a signal V3 representing the amount of received light is output.
  • the signal processing section 80 may process the voltage signals VI and V2, which are analog values, digitally after A / D conversion, or may process the voltage signals VI, V2, respectively, in an analog manner.
  • FIG. 2A is a graph showing the relationship between the voltage signal V I output from the dc voltage converter 30 and the amount of light received by the photomultiplier 10.
  • FIG. 2B is a graph showing the relationship between the voltage signal V2 output from the buffer unit 70 and the light received by the photomultiplier 10.
  • FIG. 2C is a graph showing the relationship between the signal V 3 output from the signal processing unit 80 and the amount of light received by the photomultiplier tube 10.
  • the voltage applied from the light source unit 60 to the photomultiplier tube 10 via the voltage dividing unit 20 is It is constant.
  • the voltage signal VI output from the current-voltage converter 30 increases.
  • the voltage signal VI output from the current-voltage converter 30 is smaller than the reference voltage V0 output from the reference voltage generator 40. This is detected by the comparing section 50, and the voltage applied by the power supply section 60 to the photomultiplier tube 10 via the voltage dividing section 20 is kept constant.
  • the larger the light reception amount the larger the voltage signal VI output from the current-voltage converter 30, but the voltage signal V 2 output from the buffer 70 is constant. is there.
  • the voltage applied by the power supply section 60 to the photomultiplier tube 10 is always constant, if the amount of light received by the photomultiplier tube 10 increases, the current signal output from the anode electrode 12 also increases. As a result, the voltage signal VI output from the current-voltage converter 30 also increases. When the amount of received light is equal to or greater than P0, the voltage signal VI is higher than the reference voltage V0. However, the fact is detected by the comparing section 50, and the voltage applied from the power supply section 60 to the photomultiplier tube 10 via the voltage dividing section 20 decreases, and the current output from the anode electrode 12 is reduced. The signal also decreases, and the voltage signal VI output from the current-voltage converter 30 also decreases to the reference voltage V0. As a result, the current signal output from the anode electrode 12 does not become larger than a certain value, and the voltage signal VI output from the current-voltage converter 30 does not become larger than the reference voltage V0.
  • the voltage applied by the power supply unit 60 to the photomultiplier tube 10 is constant.
  • the voltage signal VI output from the current-voltage converter 30 is large.
  • the voltage signal V2 output from the buffer unit 70 is constant.
  • the light amount detection device according to the present embodiment constitutes a feedback circuit.
  • the voltage signal VI output from 30 is maintained at the same value as the reference voltage vo.
  • the larger the light reception a the smaller the voltage signal V2 output from the buffer unit 70.
  • FIG. 3 is a flowchart illustrating the operation of the signal processing unit 80 of the light amount detection device according to the present embodiment.
  • the signal processing unit 80 receives the voltage signals VI and V2, performs an operation described below based on these, calculates the amount of light received by the photomultiplier tube 10, and calculates the amount of received light. And outputs a signal V3 representing.
  • step S1 the signal processing unit 80 compares the input voltage signal VI and the stored reference voltage V0 with each other in magnitude, and if the voltage signal VI is If it is smaller than the signal VO, go to step S2, otherwise go to step S3. At this time, considering the influence of noise or the like, if the difference between the voltage signal VI and the reference signal V 0 is equal to or less than a certain value, it may be determined that the two are equal. Further, instead of comparing the voltage signal V 1 with the reference signal V 0, the process may proceed to either step S 2 or S 3 based on the voltage signal V 2. If the value of the voltage signal VI or V2 is not stable due to a change in the amount of received light, it may wait until the value of the voltage signal VI or V2 becomes stable.
  • step S2 the signal processing unit 80 calculates the value of the signal V3 representing the amount of received light based on the value of the voltage signal VI.
  • step S3 the signal processing unit 80 calculates the value of the signal V3 representing the amount of received light based on the value of the voltage signal V2.
  • the voltage signal VI has a substantially linear relationship with the light receiving amount.
  • step S2 the voltage signal VI is linearly transformed. To calculate the value of the signal V3.
  • step S2 and / or S3 a predetermined linear transformation is performed to satisfy these requirements.
  • step S4 following step S3, the value of the signal V3 calculated in step S3 is linearly corrected.
  • the voltage applied by the power supply unit 60 to the photomultiplier tube 10 via the voltage dividing unit 20 becomes small, and therefore, The linearity between the signal V 3 and the actual amount of received light may be poor only by performing the antilogarithmic conversion in step S3. Therefore, the value of signal V 3 is linearly corrected Thus, the linearity between the signal V3 and the actual amount of received light is improved.
  • the dynamic range of the light amount detection is about 2 to 4 digits in the range of the light reception amount P 0 or less, and 4 in the range of the light reception amount P 0 or more. It is about 6 to 6 digits. Therefore, a dynamic range of about eight digits can be obtained as a whole. Also, since the current signal output from the anode electrode 12 of the photomultiplier tube 10 is less than a certain fixed value, the power consumption is small, and the photomultiplier tube 10 and peripheral circuits are The risk of destruction is small and easy to handle.
  • the signal processing unit 80 replaces the voltage signal V2 output from the comparison unit 50 via the buffer unit 70 with the voltage from the power supply unit 60 to the photomultiplier tube 10 via the voltage dividing unit 20.
  • the applied voltage to be applied may be received, and the amount of received light may be calculated based on the applied voltage.
  • the signal processing section 80 may output a signal representing a logarithmic value of the received light amount, instead of the signal V3 representing a value having a linear relationship with the received light amount.
  • the current signal output from the anode electrode of the photomultiplier is converted into a voltage signal by the current-voltage converter, and the voltage signal is compared with the reference signal by the comparator.
  • the comparator determines that the voltage signal is smaller than the reference voltage, and applies a certain voltage from the power supply to the photocathode of the photomultiplier, the dynode, and signal processing.
  • the unit calculates the amount of received light based on the voltage signal.
  • the comparator determines that the voltage signal is higher than the reference voltage, and the applied voltage adjusted so that the voltage signal matches the reference voltage is supplied from the power supply to the photomultiplier.
  • the signal is applied to the photocathode and dynode of the tube, and the signal processor calculates the amount of received light based on the applied signal. Therefore, a wide dynamic range of about 8 digits can be obtained as a whole.

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The current signal from the anode (12) of a photomultiplier tube (10) is converted into a voltage signal (V1) by a current-to-voltage converter (30), and the voltage signal (V1) is compared with a reference signal (V0) by a comparator (50). When the received luminous energy is smaller than a predetermined quantity, the comparator (50) judges that the voltage signal (V1) is smaller than the reference voltage (V0), and a power source (60) applies a constant voltage to the photomultiplier tube (10). A signal processor (80) calculates the received luminous energy based on the voltage signal (V1). When the received luminous energy is greater than a predetermined quantity, the comparator (50) judges that the voltage signal (V1) is greater than the reference voltage (V0), and the power source (60) applies such a voltage to the photomultiplier tube (10) that the voltage signal (V1) approaches the reference voltage (V0). A buffer (70) amplifies the output signal from the comparator (50), and the signal processor (80) calculates the received luminous energy based on the voltage signal (V2) output from the buffer.

Description

明糸田  Akitoda
光量検出装置 技術分野 Light intensity detector Technical field
本発明は、 受光した光の光量を定量的に検出する光量検出装置に関するもので ある。 背景技術  The present invention relates to a light amount detection device that quantitatively detects the amount of received light. Background art
従来から、 光電子増倍管を用いた光量検出装置が知られている。 従来の光量検 出装置では、 光電子増倍管の光電陰極およびダイノードのそれそれに一定 ¾圧が 印加され、 光電陰極への光の入射に応じて光電陰極から光 [ϊ子が放出され、 その 光電子がダイノードにより増倍されて 2次電子が発生し、 その 2次電子の個数に 応じた電流信号がアノード電極から出力される。 そして、 このアノード電極から 出力される電流信号の大きさに基づいて、 光電陰極へ入射した光の光量が定量的 に検出される。  Conventionally, a light amount detection device using a photomultiplier tube has been known. In a conventional light quantity detection device, a constant voltage is applied to the photocathode of the photomultiplier tube and that of the dynode, and a photon is emitted from the photocathode in response to light incident on the photocathode, and the photoelectron is emitted. Is multiplied by the dynode to generate secondary electrons, and a current signal corresponding to the number of the secondary electrons is output from the anode electrode. Then, based on the magnitude of the current signal output from the anode electrode, the amount of light incident on the photocathode is quantitatively detected.
しかし、 この光量検出装置では、 過大光が光 ¾陰極に入射すると、 光^子がダ ィノードにより増倍されて発生する 2次' 子の個数が過大となり、 その結: ¾、 光 電子増倍管や周辺回路が過大電流により破壊されるおそれがある。 また、 このこ とから、 過大光が光電子増倍管に入射しないよう利用者は留意する必要があるた め取り扱いは容易でなく、 また、 光量検出のダイナミックレンジが狭い、 等の問 題点がある。  However, in this light quantity detection device, when excessive light is incident on the photocathode, the number of secondary electrons generated by multiplying photons by the dynode becomes excessive, which results in: ¾, photoelectron multiplication The tube and peripheral circuits may be destroyed by excessive current. Also, from this, it is necessary for the user to take care that excessive light does not enter the photomultiplier tube, so that handling is not easy, and the dynamic range of light amount detection is narrow. is there.
特表昭 5 9 - 5 0 0 0 1 8号公報に開示された光量検出装置は、 このような 題点を解決すベく提案されたものであって、 光電子増倍管のァノード電極から出 力される電流信号の大きさが一定になるよう、 光電子増倍管の光電陰極およびダ ィノードそれぞれに印加する電圧をフィードバック制御し、 その印加電圧の値に 基づいて、 光電陰極へ入射した光の光量を定量的に検出する。 そして、 このよう にすることにより、 光電子増倍管や周辺回路に過大電流が流れないようにして、 光電子増倍管や周辺回路の破壊を回避して取り扱いを容易なものとし、 また、 光 量検出のダイナミックレンジを拡大しょうとしている。 発明の開示 The light quantity detection device disclosed in Japanese Patent Publication No. 59-500018 was proposed to solve such a problem, and it was developed from an anode electrode of a photomultiplier tube. The voltage applied to each of the photocathode and the dynode of the photomultiplier tube is feedback-controlled so that the magnitude of the input current signal is constant, and based on the value of the applied voltage, the light incident on the photocathode is controlled. The quantity of light is detected quantitatively. And like this This prevents excessive current from flowing through the photomultiplier tube and peripheral circuits, avoids damage to the photomultiplier tube and peripheral circuits, and facilitates handling. Is trying to expand. Disclosure of the invention
しかしながら、 特表昭 5 9 - 5 0 0 0 1 8号公報に開示された光量検出装置で は、 過大電流が流れることはないものの、 光電子増倍管に印加する電圧の値の調 整幅が大きいことが必要であり、 入射光が極めて微弱である場合には印加電圧は 極めて高くなり、 この超高電圧に因り周辺回路が破壊される危険がある。 したが つて、 この光量検出装置でも、 光量検出のダイナミックレンジは充分なものでは ない。  However, in the light amount detection device disclosed in Japanese Unexamined Patent Publication No. 59-50018, although the excessive current does not flow, the adjustment range of the voltage applied to the photomultiplier tube is limited. It is necessary to be large, and when the incident light is extremely weak, the applied voltage becomes extremely high, and there is a risk that peripheral circuits may be destroyed due to the extremely high voltage. Therefore, even with this light amount detection device, the dynamic range of light amount detection is not sufficient.
本発明は、 上記問題点を解消する為になされたものであり、 光量検出のダイナ ミックレンジが広い光量検出装置を提供することを目的とする。  The present invention has been made in order to solve the above problems, and has as its object to provide a light amount detection device having a wide dynamic range of light amount detection.
本発明に係る光量測定装置は、 (1) 受光量に応じた個数の光電子を放出する光 電陰極と、 その光電子を増倍して 2次電子を発生させるダイノードと、 その 2次 電子の個数に応じた電流信号を出力するアノード電極とを有する光電子増倍管と、 (2) アノード電極から出力された電流信号を電圧信号に変換する電流電圧変換部 と、(3) 電流電圧変換部から出力された電圧信号を基準電圧と比較する比較部と、 (4) 比較部により電圧信号が基準電圧より小さいと判断されたときには、 一定電 圧を光電子増倍管の光電陰極およびダイノードそれそれに印加し、 電圧信号が ¾ 準電圧以上であると判断されたときには、 電圧信号が基準電圧と一致するよう調 整された印加電圧を光電子増倍管の光電陰極およびダイノードそれぞれに印加す る電源部と、 (5) 電圧信号が基準電圧より小さいときには電圧信号に基づいて受 光量を算出し、 電圧信号が基準電圧以上であるときには印加電圧に基づいて受光 量を算出する信号処理部と、 を備えることを特徴とする。  The light quantity measuring device according to the present invention comprises: (1) a photocathode that emits a number of photoelectrons according to the amount of received light, a dynode that multiplies the photoelectrons to generate secondary electrons, and a number of the secondary electrons. A photomultiplier tube having an anode electrode that outputs a current signal corresponding to the current, (2) a current-to-voltage converter that converts the current signal output from the anode into a voltage signal, and (3) a current-to-voltage converter. A comparator for comparing the output voltage signal with the reference voltage; and (4) applying a constant voltage to the photocathode of the photomultiplier tube, the dynode, and the like when the comparator determines that the voltage signal is smaller than the reference voltage. When it is determined that the voltage signal is equal to or higher than the reference voltage, a power supply unit that applies the applied voltage adjusted so that the voltage signal matches the reference voltage to each of the photocathode and the dynode of the photomultiplier tube. And (5) a signal processing unit that calculates a light reception amount based on the voltage signal when the voltage signal is smaller than the reference voltage, and calculates a light reception amount based on the applied voltage when the voltage signal is equal to or higher than the reference voltage. Features.
この光量測定装置によれば、 光電子増倍管のアノード電極から出力された電流 信号は電流電圧変換部により電圧信号に変換され、 その電圧信号は比較部により 基準信号と比較される。 受光量が或る一定量より小さいときには、 比較部により 電圧信号が基準電圧より小さいと判断され、 一定電圧が電源部から光電子増倍管 の光電陰極およびダイノードそれそれに印加され、 信号処理部により電圧信号に 基づいて受光量が算出される。 一方、 受光量が或る一定量以上のときには、 比較 部により電圧信号が基準電圧以上であると判断され、 電圧信号が基準電圧と一致 するよう調整された印加電圧が電源部から光' rl子増倍管の光電陰極およびダイノ 一ドそれぞれに印加され、 信号処理部により印加信号に基づいて受光量が算出さ れる。 なお、 印加電圧とは、 光電子増倍管に実際に印加される印加電圧そのもの の他、 これと相関を有するものをも含む。 According to this light quantity measuring device, the current output from the anode electrode of the photomultiplier tube The signal is converted into a voltage signal by the current-voltage converter, and the voltage signal is compared with the reference signal by the comparator. When the amount of received light is smaller than a certain amount, the comparator determines that the voltage signal is smaller than the reference voltage, a constant voltage is applied from the power supply unit to the photocathode of the photomultiplier tube and the dynode, and the signal processing unit The received light amount is calculated based on the signal. On the other hand, when the amount of received light is equal to or more than a certain amount, the comparator determines that the voltage signal is equal to or higher than the reference voltage. The voltage is applied to the photocathode and the dynode of the intensifier, and the signal processing unit calculates the amount of received light based on the applied signal. Note that the applied voltage includes not only the applied voltage actually applied to the photomultiplier tube but also a voltage having a correlation with the applied voltage.
また、 信号処理部は、 電圧信号が基準電圧より小さいときには電圧信号の値を 線形変換して受光量を算出し、 電圧信号が基準電圧以上であるときには印加電圧 の値を逆対数変換して受光量を算出することが好ましい。 この場合には、 信号処 理部により算出される受光量は、 光電子増倍管の光電陰極の受光量に対して線形 性を有する。  When the voltage signal is smaller than the reference voltage, the signal processor linearly converts the value of the voltage signal to calculate the amount of received light, and when the voltage signal is equal to or higher than the reference voltage, performs inverse logarithmic conversion on the value of the applied voltage to receive light. It is preferred to calculate the amount. In this case, the received light amount calculated by the signal processing unit has linearity with respect to the received light amount of the photocathode of the photomultiplier tube.
さらに、 信号処理部は、 印加電圧の値を逆対数変換した後に線形補正して受光 量を算出することが好ましい。 この場合には、 信号処理部により算出される受光 量は、 光電子増倍管の光電陰極の受光 Sに対して ¾に優れた線形性を する。 図面の簡単な説明  Further, it is preferable that the signal processing unit calculates the amount of received light by linearly correcting the value of the applied voltage after performing an inverse logarithmic conversion. In this case, the received light amount calculated by the signal processing unit has excellent linearity with respect to the received light S of the photocathode of the photomultiplier tube. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る光量検出装置の好適な実施形態を示す構成図である。 図 2 Aは、 電流電圧変換部から出力される電圧信号 V I と、 光電子増倍管が受 光した光の光量との関係を示すグラフである。  FIG. 1 is a configuration diagram showing a preferred embodiment of a light quantity detection device according to the present invention. FIG. 2A is a graph showing the relationship between the voltage signal V I output from the current-to-voltage converter and the amount of light received by the photomultiplier.
図 2 Bは、 バッファ部から出力される電圧信号 V2 と、 光電子増倍管が受光し た光の光量との関係を示すグラフである。  FIG. 2B is a graph showing the relationship between the voltage signal V2 output from the buffer unit and the amount of light received by the photomultiplier tube.
図 2 Cは、 信号処理部から出力される信号 V3 と、 光電子増倍管が受光した光 の光量との関係を示すグラフである。 Figure 2C shows the signal V3 output from the signal processing unit and the light received by the photomultiplier tube. 6 is a graph showing a relationship between the light amount and the light amount.
図 3は、 図 1に示す光量検出装置の信号処理部の作用を示すフ口一チャートで ある。 発明を実施するための最良の形態  FIG. 3 is a front chart showing the operation of the signal processing unit of the light amount detection device shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して本発明に係る光量検出装置の好適な実施形態を詳細 に説明する。  Hereinafter, preferred embodiments of a light amount detection device according to the present invention will be described in detail with reference to the accompanying drawings.
図 1は、本実施形態に係る光量検出装置 1の構成図である。光量検出装置 1は、 光電子増倍管 10、 分圧部 20、 電流電圧変換部 30、 基準電圧発生部 40、 比 較部 50、 電源部 60、 バッファ部 70および信号処理部 80を備える。  FIG. 1 is a configuration diagram of a light quantity detection device 1 according to the present embodiment. The light amount detection device 1 includes a photomultiplier tube 10, a voltage divider 20, a current-voltage converter 30, a reference voltage generator 40, a comparator 50, a power supply 60, a buffer 70, and a signal processor 80.
光電子増倍管 10は、 入射した光の光量に応じた個数の光電子を放出する光電 陰極 1 1と、 光電陰極 1 1から放出された光電子を増倍して 2次電子を発生する ダイノード Dy, 〜Dy9 と、 ダイノード Dy, 〜Dy9 からの 2次電子の個 数に応じて電流信号を出力するアノード電極 12とを、真空容器 13内に備える。 光電子増倍管 10は、 光電陰極 1 1、 ダイノード Dy, 〜Dy9 およびァノ一 ド 12それそれに所定の電圧が印加されているときに、 光電陰極 1 1に入射した 光の光量に応じて光電陰極 1 1から光電子を放出し、 その光電子をダイノード D 〜Dy9 により増倍して 2次電子を発生させ、 アノード電極 12に到達し た 2次電子に応じて電流信号を出力する。 このアノード電極 12から出力される 電流信号は、 受光した光の光量に応じたものであり、 また、 ダイノード Dy, 〜 D y9 による増倍率すなわち印加電圧にも応じたものである。 The photomultiplier tube 10 includes a photocathode 11 that emits a number of photoelectrons according to the amount of incident light, and a dynode Dy, which multiplies the photoelectrons emitted from the photocathode 11 to generate secondary electrons. DDy 9 and an anode electrode 12 that outputs a current signal according to the number of secondary electrons from the dynodes Dy, 〜Dy 9 are provided in a vacuum vessel 13. When the photomultiplier tube 10 is applied with the photocathode 11, the dynodes Dy, to Dy 9 , the anode 12, and a predetermined voltage applied thereto, the photomultiplier tube 10 responds to the light amount Photoelectrons are emitted from the photocathode 11, the photoelectrons are multiplied by dynodes D to Dy 9 to generate secondary electrons, and a current signal is output according to the secondary electrons reaching the anode electrode 12. Current signal output from the anode electrode 12 are those according to the amount of light received, also those corresponding to the dynode Dy, multiplication factor i.e. the voltage applied by ~ D y 9.
分圧部 20は、 光電子増倍管 10に所定の電圧を印加するものであり、 抵抗器 R2 1。 〜R 2 19 および抵抗器 R 22。 〜R 223 を備える。 抵抗器 R 2 1。 〜R 2 19 は直列接続されて抵抗器列を構成している。 この抵抗器列の抵抗器 R 2 19 側の第 1端は接地され、 この抵抗器列の抵抗器 R 2 1。 側の第 2端は、 抵抗器 R 22。 を介して光電陰極 1 1と接続されるとともに、 電源部 6 0によ り電圧が印加されている。抵抗器 R 2 1 , および抵抗器 R 2 1 i の接続点は、 ダイノード D yi と抵抗器 R 22 i を介して接続されている ( i = l〜3)。 ま た、 抵抗器 , および抵抗器 R 2 1 i の接続点は、 ダイノード D y】 と 直接に接続されている ( i = 4〜9)。 分圧部 2 0は、 直列接続された抵抗器 R 2 1。 〜: R 2 19 により分圧されて生じた各電位を、 抵抗器 R 2 2。 〜R 2 23 を介して又は直接に、 光電子増倍管 1 0の光電陰極 1 1およびダイノード Dy, 〜Dy9 それそれに印加する。 The voltage dividing section 20 applies a predetermined voltage to the photomultiplier tube 10, and includes a resistor R21. To R 2 1 9 and a resistor R 22. Comprising a to R 22 3. Resistor R2 1. To R 2 1 9 constitutes a resistor string connected in series. The first end of the resistor R 2 1 9 side of the resistor string is grounded, the resistor R 2 1 of the resistor string. The second end of the side is a resistor R22. Connected to the photocathode 11 via the Voltage is applied. The connection point between the resistor R 21 and the resistor R 21 i is connected to the dynode D yi via the resistor R 22 i (i = l to 3). The connection point between the resistor and the resistor R2i is directly connected to the dynode Dy] (i = 4 to 9). The voltage divider 20 is a resistor R 21 connected in series. :: Each potential generated by voltage division by R 2 19 is connected to a resistor R 22. To R 2 2 3 via or directly to photocathode 1 1 and the dynode Dy of the photomultiplier tube 1 0, ~Dy 9 which is applied to it.
電流電圧変換部 30は、 光電子増倍管 1 0のアノード電極 1 2から出力された 電流信号が入力されると、 この電流信号を積分して電圧信号に変換し、 その電圧 信号を出力するものである。 電流電圧変換部 30は、 差動増幅器 A3 1、 抵抗器 R 3 1〜R 34およびコンデンサ C 3 1を備える。 直列接続された抵抗器 R 3 3 および抵抗器 R 34は、 差動増幅器 A 3 1の出力端子と接地端子との間に設けら れている。 直列接続された抵抗器 R 3 1および抵抗器 R 3 2は、 差動増幅器 A 3 1の第 1の入力端子と抵抗器 R 33および抵抗器 R 34の接続点との問に設けら れている。 抵抗器 R 3 1と抵抗器 R 3 2との接続点は、 光電子増倍管 1 0のァノ 一ド電極 1 2と接続されている。 コンデンサ C 3 1は、 差動増幅器 A 3 1の第 1 の入力端子と出力端子との間に設けられている。 差動増幅器 A3 1の^ 2の入力 端子は接地されている。 電流電圧変換部 30から出力される電圧信号 VI は、 差動増幅器 A 3 1の出力端子の電位である。 なお、 光電陰極 1 1に入射する光が 極微弱である場合にはアノード電極 1 2から出力される電流信号はパルス的にな り、 また、 光電子増倍管 1 0に印加される電圧が変動する場合にはこの ft流信号 も変動するが、 これらの場合であっても、 コンデンサ C 3 1の容量値を適切に決 定することで、 電流信号から電圧信号への変換に際しての積分時間を充分なもの とし、 電流信号の変動等の影響を排除することができる。  When a current signal output from the anode electrode 12 of the photomultiplier tube 10 is input, the current-voltage converter 30 integrates the current signal, converts the current signal into a voltage signal, and outputs the voltage signal. It is. The current-voltage converter 30 includes a differential amplifier A31, resistors R31 to R34, and a capacitor C31. The resistor R33 and the resistor R34 connected in series are provided between the output terminal of the differential amplifier A31 and the ground terminal. The resistor R31 and the resistor R32 connected in series are provided between the first input terminal of the differential amplifier A31 and the connection point of the resistor R33 and the resistor R34. I have. The connection point between the resistor R31 and the resistor R32 is connected to the anode electrode 12 of the photomultiplier tube 10. The capacitor C31 is provided between the first input terminal and the output terminal of the differential amplifier A31. The input terminal of ^ 2 of the differential amplifier A31 is grounded. The voltage signal VI output from the current-voltage converter 30 is the potential of the output terminal of the differential amplifier A31. When the light incident on the photocathode 11 is extremely weak, the current signal output from the anode 12 becomes pulse-like, and the voltage applied to the photomultiplier 10 fluctuates. In this case, the ft current signal also fluctuates, but even in these cases, by appropriately determining the capacitance value of the capacitor C31, the integration time for converting the current signal to the voltage signal can be reduced. It is sufficient to eliminate the effects of fluctuations in the current signal.
基準電圧発生部 40は、 比較部 5 0に与える基準電圧 V0 を発生するもので あり、 ツエナーダイオード D 4 1を備える。 ツエナ一ダイオード D 4 1のカソー ド端子は抵抗器 R 2を介して電源電圧 Vcc と接続され、 アノード端子は接地さ れている。 基準電圧発生部 40から出力される基準電圧 V0 は、 ツエナーダイ オード D4 1の力ソード端子の電位である。 The reference voltage generation section 40 generates a reference voltage V0 to be applied to the comparison section 50, and includes a zener diode D41. Zener diode D 4 1 Caso The anode terminal is connected to the power supply voltage Vcc via the resistor R2, and the anode terminal is grounded. The reference voltage V0 output from the reference voltage generator 40 is the potential of the force source terminal of the Zener diode D41.
比較部 50は、 電流電圧変換部 30から出力された電圧信号 VI (差動増幅器 A3 1の出力端子の電位) を抵抗器 R 1を介して受信し、 また、 基準電圧発生部 40から出力された基準電圧 V0 (ツエナーダイオード D 4 1の力ソード端子 の電位) を受信し、 これらの電圧値の差を増幅して、 その結果を出力するもので ある。 比較部 50は、 差動増幅器 A 5 1、 抵抗器 R 5 1およびトランジスタ T r 5 1を備える。 差動増幅器 A5 1の第 1の入力端子は、 ッヱナ一ダイオード D 4 1の力ソード端子と接続され、 第 2の入力端子は、 電流電圧変換部 30の差動 ¾ 幅器 A 3 1の出力端子と抵抗器 R 1を介して接続されている。 トランジスタ T r 5 1のべ一ス端子は、 抵抗器 R 5 1を介して差動増幅器 A 5 1の出力端子と接続 されており、 コレクタ端子は、 直列接続された抵抗器 R 2、 可変抵抗器 R 3およ び抵抗器 R 4を介して電源電圧 Vcc と接続されており、 ェミッタ端子は接地さ れている。 比較部 50から出力される出力信号は、 トランジスタ T r 5 1のコレ クタ端子の電位であり、 電圧信号 VI と基準信号 V0 との差に応じたものであ る。 すなわち、 電圧信号 VI が基準電圧 V0 より大きくなると、 差動増幅器 A 5 1より トランジスタ T r 5 1のベース端子に電圧が印加され、 トランジスタ T r 5 1のコレクタ端子とエミッ夕端子との間が低抵抗となり、 比較部 50から出 力される出力信号は小さくなる。  The comparator 50 receives the voltage signal VI (potential of the output terminal of the differential amplifier A31) output from the current-voltage converter 30 via the resistor R1, and outputs the voltage signal VI from the reference voltage generator 40. It receives the reference voltage V0 (potential of the power source terminal of the Zener diode D41), amplifies the difference between these voltage values, and outputs the result. The comparison unit 50 includes a differential amplifier A51, a resistor R51, and a transistor Tr51. The first input terminal of the differential amplifier A5 1 is connected to the force source terminal of the zener diode D41, and the second input terminal is connected to the output of the differential amplifier A31 of the current-to-voltage converter 30. Connected to terminal via resistor R1. The base terminal of the transistor Tr 51 is connected to the output terminal of the differential amplifier A 51 via a resistor R 51, and the collector terminal is connected to a resistor R 2 and a variable resistor connected in series. It is connected to the power supply voltage Vcc via the resistor R3 and the resistor R4, and the emitter terminal is grounded. The output signal output from the comparing unit 50 is the potential of the collector terminal of the transistor Tr51, and is based on the difference between the voltage signal VI and the reference signal V0. That is, when the voltage signal VI becomes larger than the reference voltage V0, a voltage is applied from the differential amplifier A51 to the base terminal of the transistor Tr51, and the voltage between the collector terminal and the emitter terminal of the transistor Tr51 is changed. The resistance becomes low, and the output signal output from the comparison section 50 becomes small.
電源部 60は、 比較部 50から出力された出力信号 (トランジスタ T r 5 1の コレクタ端子の電位) を受信すると、 この出力信号に基づいて、 分圧部 20の抵 抗器列の両端に与える電圧を発生する。 電源部 60は、 抵抗器 R6 1〜R 65、 差動増幅器 A 6 1、 コンデンサ C 6 1〜C 67、 トランジスタ T r 6 1〜T r 6 3、 コイル L 6 1、 ダイォ一ド D 6 1〜D 64および変圧器 T 6 1を備える。 こ の電源部 60は、 発振周波数が高いことから発振が起こり難く、 インピーダンス が高いことから過大電流が流れず、 消費電力も小さい。 Upon receiving the output signal (potential of the collector terminal of the transistor Tr 51) output from the comparison unit 50, the power supply unit 60 supplies the output signal to both ends of the resistor string of the voltage division unit 20 based on the output signal. Generates voltage. The power supply unit 60 includes resistors R61 to R65, differential amplifier A61, capacitors C61 to C67, transistors Tr61 to Tr63, coil L61, diode D61. DD 64 and a transformer T 61. Since the oscillation frequency of the power supply section 60 is high, Because of the high power consumption, no excessive current flows and power consumption is low.
抵抗器 R 6 1と抵抗器 R 6 2とは、 比較部 5 0のトランジスタ T r 5 1のコレ クタ端子と分圧部 2 0の抵抗器列の第 1端との間に直列接続されている。 差動増 幅器 A 6 1の第 1の入力端子は抵抗器 R 6 1および抵抗器 R 6 2の接続点と接続 され、 第 2の入力端子は接地されている。 トランジスタ T r 6 1のコレクタ端子 は、 電源電圧 Vcc と接続されるとともにコンデンサ C 6 1を介して接地されて おり、 ベース端子は、 抵抗器 R 6 3を介して差動増幅器 A 6 1の出力端子と接続 され、 エミヅ夕端子は、 コンデンサ C 6 2を介して接地されている。  The resistor R61 and the resistor R62 are connected in series between the collector terminal of the transistor Tr51 of the comparing section 50 and the first end of the resistor row of the voltage dividing section 20. I have. A first input terminal of the differential amplifier A61 is connected to a connection point between the resistor R61 and the resistor R62, and a second input terminal is grounded. The collector terminal of the transistor Tr 61 is connected to the power supply voltage Vcc and grounded via the capacitor C 61, and the base terminal is connected to the output of the differential amplifier A 61 via the resistor R 63. Terminal, and the emitter terminal is grounded via a capacitor C62.
変圧器 T 6 1の 1次側は 2つのコイルからなる。 1次側の第 1コィルは、 第 1 端がトランジスタ T r 6 2のコレクタ端子と接統され、 第 2端がトランジスタ T r 6 3のコレクタ端子と接続されている。 1次側の第 2コィルは、 第 1端がトラ ンジス夕 T r 6 2のベース端子と接続され、 第 2端がトランジスタ T r 6 3のべ ース端子と接続されている。 第 1コイルの第 1端と第 2コイルの第 1端とは抵抗 器 R 6 4を介して接続されている。 1次側の第 1コイルの途中の地点は、 コイル L 6 1を介してトランジスタ T r 6 1のェミツ夕端子と接続されている。 トラン ジス夕 T r 6 2および T r 6 3のそれそれのエミッ夕端子は、 接地されている。 変圧器 T 6 1の 2次側コイルの第 1端は、 コンデンサ C 6 3およびコンデンサ C 6 4と直列接続され、 2端は、 接地されるとともにコンデンサ C 6 5および コンデンサ C 6 6と直列接続されている。 ダイオード D 6 1のアノード端子はコ ンデンサ C 6 3およびコンデンサ C 6 4の接続点と接続され、 カソード端子は変 圧器 T 6 1の 2次側コイルの第 2端と接続されている。 ダイオード D 6 2のァノ —ド端子はコンデンサ C 6 5およびコンデンサ C 6 6の接続点と接続され、 カソ ―ド端子はコンデンサ C 6 3およびコンデンサ C 6 4の接続点と接続されている c ダイォード D 6 3のアノード端子はコンデンサ C 6 4と接続され、 カソード端子 はコンデンサ C 6 5およびコンデンサ C 6 6の接続点と接続されている。 ダイォ ード D 6 4のアノード端子はコンデンサ C 6 6と接続され、 カソード端子はコン デンサ C 6 4と接続されている。また、変圧器 T 6 1の 2次側コイルの第 2端は、 コンデンサ C 6 7および抵抗器 R 6 5を順に介してコンデンサ C 6 6と接続され ている。 さらに、 コンデンサ C 6 7および抵抗器 R 6 5の接続点は、 分圧器 2 0 の抵抗器列の第 1端と接続されている。 The primary side of transformer T61 consists of two coils. The first coil on the primary side has a first end connected to the collector terminal of the transistor Tr62 and a second end connected to the collector terminal of the transistor Tr63. The second coil on the primary side has a first end connected to the base terminal of the transistor Tr62 and a second end connected to the base terminal of the transistor Tr63. The first end of the first coil and the first end of the second coil are connected via a resistor R64. A point in the middle of the primary coil on the primary side is connected to the emitter terminal of the transistor Tr61 via the coil L61. The emitter terminals of the transistors Tr 62 and Tr 63 are grounded. The first end of the secondary coil of transformer T61 is connected in series with capacitors C63 and C64, and the other end is grounded and connected in series with capacitors C65 and C66. Have been. The anode terminal of the diode D61 is connected to the connection point of the capacitor C63 and the capacitor C64, and the cathode terminal is connected to the second end of the secondary coil of the transformer T61. The anode terminal of diode D62 is connected to the connection point of capacitors C65 and C66, and the cathode terminal is connected to the connection point of capacitors C63 and C64. C The anode terminal of the diode D 63 is connected to the capacitor C 64, and the cathode terminal is connected to the connection point of the capacitors C 65 and C 66. The anode terminal of diode D64 is connected to capacitor C66, and the cathode terminal is connected to capacitor C66. Connected to Densa C64. The second end of the secondary coil of transformer T61 is connected to capacitor C66 via capacitor C67 and resistor R65 in this order. Further, the connection point of the capacitor C 67 and the resistor R 65 is connected to the first end of the resistor row of the voltage divider 20.
バッファ部 7 0は、 比較部 5 0から出力された出力信号 (トランジスタ T r 5 1のコレクタ端子の電位) を受信し、 これを増幅して電圧信号 V2 を出力する。 この電圧信号 V2 は、 電源部 6 0から光電子増倍管 1 0に印加される印加電圧 と相関を有するものである。 信号処理部 8 0は、 電流電圧変換部 3 0から出力さ れた電圧信号 V I とバッファ部 7 0から出力された電圧信号 V2 とを受信し、 これらに基づいて所定の演算を行い、 光電子増倍管 1 0が受光した光の光 ¾を求 め、 この受光量を表す信号 V3 を出力する。 信号処理部 8 0は、 アナログ値で ある電圧信号 V I および V 2 それそれを A/ D変換した後にデジタル的に処理 してもよいし、 或いは、 電圧信号 V I および V2 それそれをアナログ的に処理 次に、 本実施形態に係る光量検出装置の作用について説明する。 図 2 Aは、 ¾ 流電圧変換部 3 0から出力される電圧信号 V I と、 光電子増倍管 1 0が受光し た光の光量との関係を示すグラフである。 図 2 Bは、 バッファ部 7 0から出力さ れる電圧信号 V2 と、 光^子増倍管 1 0が受光した光の光 との関係を示すグ ラフである。 また、 図 2 Cは、 信号処理部 8 0から出力される信号 V 3 と、 光 電子増倍管 1 0が受光した光の光量との関係を示すグラフである。  The buffer unit 70 receives the output signal (potential of the collector terminal of the transistor Tr51) output from the comparison unit 50, amplifies the output signal, and outputs a voltage signal V2. The voltage signal V2 has a correlation with an applied voltage applied to the photomultiplier tube 10 from the power supply unit 60. The signal processing unit 80 receives the voltage signal VI output from the current-voltage conversion unit 30 and the voltage signal V2 output from the buffer unit 70, performs a predetermined calculation based on these, and performs photoelectron enhancement. The light intensity of the light received by the multiplier 10 is determined, and a signal V3 representing the amount of received light is output. The signal processing section 80 may process the voltage signals VI and V2, which are analog values, digitally after A / D conversion, or may process the voltage signals VI, V2, respectively, in an analog manner. Next, the operation of the light quantity detection device according to the present embodiment will be described. FIG. 2A is a graph showing the relationship between the voltage signal V I output from the dc voltage converter 30 and the amount of light received by the photomultiplier 10. FIG. 2B is a graph showing the relationship between the voltage signal V2 output from the buffer unit 70 and the light received by the photomultiplier 10. FIG. 2C is a graph showing the relationship between the signal V 3 output from the signal processing unit 80 and the amount of light received by the photomultiplier tube 10.
光電子増倍管 1 0の受光量が小さく、 或る受光量 P 0 以下であるときは、 † 源部 6 0から分圧部 2 0を介して光電子増倍管 1 0に印加される電圧は一定であ る。 光電子増倍管 1 0の受光量が大きいほど、 アノード電極 1 2から出力される 電流信号は大きく、 電流電圧変換部 3 0から出力される電圧信号 V I も大きい。 しかし、 受光量 P 0 よりも小さい範囲では、 電流電圧変換部 3 0から出力される 電圧信号 V I は、 基準電圧発生部 4 0から出力される基準電圧 V0 より小さい。 そして、 その旨が比較部 5 0により検出されて、 電源部 6 0が分圧部 2 0を介し て光電子増倍管 1 0に印加する電圧は一定に維持される。 すなわち、 受光量 P 0 よりも小さい範囲では、 受光量が大きいほど、 電流電圧変換部 3 0から出力され る電圧信号 V I も大きくなるが、 バッファ部 7 0から出力される電圧信号 V2 は 一定である。 When the amount of light received by the photomultiplier tube 10 is small and equal to or less than a certain amount of received light P 0, the voltage applied from the light source unit 60 to the photomultiplier tube 10 via the voltage dividing unit 20 is It is constant. As the amount of light received by the photomultiplier tube 10 increases, the current signal output from the anode electrode 12 increases, and the voltage signal VI output from the current-voltage converter 30 increases. However, in a range smaller than the light reception amount P 0, the voltage signal VI output from the current-voltage converter 30 is smaller than the reference voltage V0 output from the reference voltage generator 40. This is detected by the comparing section 50, and the voltage applied by the power supply section 60 to the photomultiplier tube 10 via the voltage dividing section 20 is kept constant. In other words, in a range smaller than the light reception amount P 0, the larger the light reception amount, the larger the voltage signal VI output from the current-voltage converter 30, but the voltage signal V 2 output from the buffer 70 is constant. is there.
もし、 電源部 6 0が光電子増倍管 1 0に印加する電圧が常に一定であれば、 光 電子増倍管 1 0の受光量が大きくなると、 アノード電極 1 2から出力される電流 信号も大きくなり、 電流電圧変換部 3 0から出力される電圧信号 V I も大きく なる。 そして、 受光量が P 0 以上では、 電圧信号 V I は基準電圧 V0 より大き い。 しかし、 その旨が比較部 5 0により検出されて、 電源部 6 0が分圧部 2 0を 介して光電子増倍管 1 0に印加する電圧は低下し、 アノード電極 1 2から出力さ れる電流信号も小さくなり、 電流電圧変換部 3 0から出力される電圧信号 V I も 基準電圧 V0 まで小さくなる。 結局、 アノード電極 1 2から出力される電流信 号は一定値より大きくなることはなく、 電流電圧変換部 3 0から出力される電圧 信号 V I も基準電圧 V0 より大きくなることはない。  If the voltage applied by the power supply section 60 to the photomultiplier tube 10 is always constant, if the amount of light received by the photomultiplier tube 10 increases, the current signal output from the anode electrode 12 also increases. As a result, the voltage signal VI output from the current-voltage converter 30 also increases. When the amount of received light is equal to or greater than P0, the voltage signal VI is higher than the reference voltage V0. However, the fact is detected by the comparing section 50, and the voltage applied from the power supply section 60 to the photomultiplier tube 10 via the voltage dividing section 20 decreases, and the current output from the anode electrode 12 is reduced. The signal also decreases, and the voltage signal VI output from the current-voltage converter 30 also decreases to the reference voltage V0. As a result, the current signal output from the anode electrode 12 does not become larger than a certain value, and the voltage signal VI output from the current-voltage converter 30 does not become larger than the reference voltage V0.
逆に、 光電子増倍管 1 0の受光量が P 0 以上の範 1で小さくなつていくと、 アノード電極 1 2から出力される電流信号は小さくなり、 電流 ¾圧変換部 3 0か ら出力される電圧信号 V I は基準電圧 V0 以下になる。 そして、 その が比較 部 5 0により検出されて、 電源部 6 0が分圧部 2 0を介して光電子増倍管 1 0に 印加する電圧は上昇し、 電流電圧変換部 3 0から出力される f 圧信号 V I は上 昇する。 しかし、 電源部 6 0が光電子増倍管 1 0に印加する電圧の上昇は、 電流 電圧変換部 3 0から出力される電圧信号 V I が基準電圧 V0 に達するまでであ る。 結局、 アノード電極 1 2から出力される電流信号は一定値より小さくなるこ とはなく、 電流電圧変換部 3 0から出力される電圧信号 V I も基準電圧 V0 よ り小さくなることはない。  Conversely, when the amount of light received by the photomultiplier tube 10 decreases in the range 1 above P 0, the current signal output from the anode electrode 12 decreases, and the current-to-voltage converter 30 outputs The voltage signal VI falls below the reference voltage V0. Then, the voltage is applied to the photomultiplier tube 10 by the power supply unit 60 via the voltage dividing unit 20, and the voltage is output from the current-voltage conversion unit 30. f Pressure signal VI rises. However, the voltage applied by the power supply section 60 to the photomultiplier tube 10 rises until the voltage signal VI output from the current / voltage conversion section 30 reaches the reference voltage V0. As a result, the current signal output from the anode electrode 12 does not become smaller than a fixed value, and the voltage signal V I output from the current-voltage converter 30 does not become smaller than the reference voltage V0.
また、 光電子増倍管 1 0の受光量が P 0 以上から P 0 以下に変化すると、 ァ ノード電極 1 2から出力される電流信号は小さくなり、 電流電圧変換部 3 0から 出力される電圧信号 V I は基準電圧 V0 以下になる。 その旨が比較部 5 0によ り検出されて、 電源部 6 0が分圧部 2 0を介して光電子増倍管 1 0に印加する電 圧は上昇する。 しかし、 その印加電圧は一定電圧を超えることはない。 印加電圧 が当該一定電圧に達したとき、 電流電圧変換部 3 0から出力される電圧信号 V I は基準電圧 V0 以下である。 When the amount of light received by the photomultiplier tube 10 changes from P 0 or more to P 0 or less, The current signal output from the node electrode 12 becomes smaller, and the voltage signal VI output from the current-voltage converter 30 becomes lower than the reference voltage V0. This is detected by the comparing section 50, and the voltage applied by the power supply section 60 to the photomultiplier tube 10 via the voltage dividing section 20 increases. However, the applied voltage does not exceed a certain voltage. When the applied voltage reaches the constant voltage, the voltage signal VI output from the current-voltage converter 30 is equal to or lower than the reference voltage V0.
以上のように、 光電子増倍管 1 0の受光量が P 0 よりも小さなの範囲では、 電 源部 6 0が光電子増倍管 1 0へ印加する電圧は一定であり、受光量が大きいほど、 電流電圧変換部 3 0から出力される電圧信号 V I は大きい。 しかし、 バッファ 部 7 0から出力される電圧信号 V2 は一定である。 一方、 光電子 ¾倍管 1 0の 受光量が P 0 以上の範囲では、 本実施形態に係る光量検出装置はフィードバッ ク回路を構成しており、 受光量が変化しても、 電流電圧変換部 3 0から出力され る電圧信号 V I は基準電圧 vo と同一値に維持される。 しかし、 受光 aが大き いほど、 バッファ部 7 0から出力される電圧信号 V2 は小さい。  As described above, in the range where the amount of light received by the photomultiplier tube 10 is smaller than P 0, the voltage applied by the power supply unit 60 to the photomultiplier tube 10 is constant. The voltage signal VI output from the current-voltage converter 30 is large. However, the voltage signal V2 output from the buffer unit 70 is constant. On the other hand, when the amount of light received by the photomultiplier tube 10 is in the range of P 0 or more, the light amount detection device according to the present embodiment constitutes a feedback circuit. The voltage signal VI output from 30 is maintained at the same value as the reference voltage vo. However, the larger the light reception a, the smaller the voltage signal V2 output from the buffer unit 70.
なお、 電源部 6 0が光電子増倍管 1 0へ印加する電圧の設定は、 受光 S変化に 対して高速に追従することが望まれる。 しかし、 受光量が急激に増加した場合に は、 光電子増倍管 1 0に流れる電流が増加する。 その場合であっても、 分圧部 2 0の抵抗器 R 2 2。 〜R 2 2 3 それそれを高い抵抗値のものとしておくことに より、 光電子増倍管 1 0に過大な電流が流れるのを防ぐことできる。 It is desired that the setting of the voltage applied to the photomultiplier tube 10 by the power supply section 60 follows the change in the received light S at high speed. However, when the amount of received light increases sharply, the current flowing through the photomultiplier tube 10 increases. Even in such a case, the resistor R 22 of the voltage dividing section 20. RR 2 2 3 By setting each of them to have a high resistance value, it is possible to prevent an excessive current from flowing through the photomultiplier tube 10.
次に、 本実施形態に係る光量検出装置の信号処理部 8 0の作用について説明す る。 図 3は、 本実施形態に係る光量検出装置の信号処理部 8 0の作用を示すフロ 一チャートである。 信号処理部 8 0は、 電圧信号 V I および V2 を受信し、 こ れらに基づいて以下に説明する演算を行って、 光電子増倍管 1 0が受光した光の 光量を算出し、 その受光量を表す信号 V3 を出力する。  Next, the operation of the signal processing unit 80 of the light quantity detection device according to the present embodiment will be described. FIG. 3 is a flowchart illustrating the operation of the signal processing unit 80 of the light amount detection device according to the present embodiment. The signal processing unit 80 receives the voltage signals VI and V2, performs an operation described below based on these, calculates the amount of light received by the photomultiplier tube 10, and calculates the amount of received light. And outputs a signal V3 representing.
信号処理部 8 0は、 まずステップ S 1で、 入力された電圧信号 V I および記 憶している基準電圧 V 0それそれの値を大小比較し、 もし電圧信号 V I が基準 信号 V Oよりも小さければステップ S 2に進み、 そうでなければステップ S 3に 進む。 このとき、 ノイズ等の影響を考慮すれば、 電圧信号 V I と基準信号 V 0 との差が或る値以下であれば両者は等しいと判断してもよい。 また、 電圧信号 V 1 と基準信号 V 0との比較に替えて、 電圧信号 V 2 に基づいてステップ S 2ま たは S 3の何れかに進むようにしてもよい。 また、 受光量の変化に伴い電圧信号 V I または V2 の値が安定していないときには、 電圧信号 V I または V2 の値 が安定するまで待機してもよい。 First, in step S1, the signal processing unit 80 compares the input voltage signal VI and the stored reference voltage V0 with each other in magnitude, and if the voltage signal VI is If it is smaller than the signal VO, go to step S2, otherwise go to step S3. At this time, considering the influence of noise or the like, if the difference between the voltage signal VI and the reference signal V 0 is equal to or less than a certain value, it may be determined that the two are equal. Further, instead of comparing the voltage signal V 1 with the reference signal V 0, the process may proceed to either step S 2 or S 3 based on the voltage signal V 2. If the value of the voltage signal VI or V2 is not stable due to a change in the amount of received light, it may wait until the value of the voltage signal VI or V2 becomes stable.
ステップ S 2では、 信号処理部 8 0は、 電圧信号 V I の値に基づいて、 受光 量を表す信号 V3 の値を算出する。 一方、 ステップ S 3では、 信号処理部 8 0 は、 電圧信号 V2 の値に基づいて、 受光量を表す信号 V3 の値を算出する。 な お、 受光量と線形関係にある信号 V3 を出力するには、 以下のようにする。 す なわち、光電子増倍管 1 0の受光量が P 0よりも小さな範囲では、電圧信号 V I は 受光量に対して略線形関係にあるので、 ステップ S 2では、 電圧信号 V I を線 形変換して信号 V3 の値を算出する。 一方、 光電子増倍管 1 0の受光量が P 0 以 上の範囲では、 電圧信号 V2 は受光量の対数値に対して略線形関係にあるので、 ステップ S 3では、 電圧信号 V2 を逆対数変換して信号 V3 の値を算出する。 また、 光電子増倍管 1 0の受光量が P 0 のとき、 ステップ S 2および S 3そ れそれにより算出される信号 V3 は互いに略等しいことが要求される。 また、 受光量に対する信号 V 3 の微係数は、 広い受光量範囲に つて略一定であるこ とも要求される。 そこで、 ステップ S 2および S 3の双方または何れか一方にお いて、 これらの要求を満たすべく所定の線形変換を行う。  In step S2, the signal processing unit 80 calculates the value of the signal V3 representing the amount of received light based on the value of the voltage signal VI. On the other hand, in step S3, the signal processing unit 80 calculates the value of the signal V3 representing the amount of received light based on the value of the voltage signal V2. To output a signal V3 that is linearly related to the amount of received light, follow the steps below. In other words, in the range where the light receiving amount of the photomultiplier tube 10 is smaller than P0, the voltage signal VI has a substantially linear relationship with the light receiving amount.In step S2, the voltage signal VI is linearly transformed. To calculate the value of the signal V3. On the other hand, when the amount of light received by the photomultiplier tube 10 is equal to or greater than P 0, the voltage signal V2 has a substantially linear relationship with the logarithmic value of the amount of light received. Convert to calculate the value of signal V3. Further, when the amount of light received by the photomultiplier tube 10 is P 0, steps S 2 and S 3 and the signal V3 calculated thereby need to be substantially equal to each other. Further, the derivative of the signal V 3 with respect to the received light amount is required to be substantially constant over a wide received light amount range. Therefore, in step S2 and / or S3, a predetermined linear transformation is performed to satisfy these requirements.
ステップ S 3に続くステップ S 4では、 ステップ S 3で算出された信号 V3 の 値を線形補正する。 光電子増倍管 1 0における実際の受光量が P 0 以上の範囲 では、 電源部 6 0が分圧部 2 0を介して光電子増倍管 1 0に印加する電圧は小さ くなり、 それ故、 ステップ S 3で逆対数変換を行っただけでは、 信号 V 3 と実 際の受光量との線形性は悪い場合がある。 そこで、 信号 V 3 の値を線形補正し て、 信号 V3 と実際の受光量との線形性を改善する。 In step S4 following step S3, the value of the signal V3 calculated in step S3 is linearly corrected. In the range where the actual amount of light received by the photomultiplier tube 10 is equal to or greater than P 0, the voltage applied by the power supply unit 60 to the photomultiplier tube 10 via the voltage dividing unit 20 becomes small, and therefore, The linearity between the signal V 3 and the actual amount of received light may be poor only by performing the antilogarithmic conversion in step S3. Therefore, the value of signal V 3 is linearly corrected Thus, the linearity between the signal V3 and the actual amount of received light is improved.
以上説明した本実施形態に係る光量検出装置では、 光量検出のダイナミックレ ンジは、 受光量 P 0 以下の範囲では 2桁〜 4桁程度であり、 また、 受光量 P 0 以 上の範囲では 4桁〜 6桁程度である。 したがって、 全体として 8桁程度のダイナ ミックレンジが得られる。 また、 光電子増倍管 1 0のアノード電極 1 2から出力 される電流信号は或る一定値以下であるので、 消費電力は小さく、 過大電流のた めに光電子増倍管 1 0や周辺回路が破壊される危険は小さく、 取り扱いは容易で ある。  In the light amount detection device according to the present embodiment described above, the dynamic range of the light amount detection is about 2 to 4 digits in the range of the light reception amount P 0 or less, and 4 in the range of the light reception amount P 0 or more. It is about 6 to 6 digits. Therefore, a dynamic range of about eight digits can be obtained as a whole. Also, since the current signal output from the anode electrode 12 of the photomultiplier tube 10 is less than a certain fixed value, the power consumption is small, and the photomultiplier tube 10 and peripheral circuits are The risk of destruction is small and easy to handle.
本発明は、 上記実施形態に限定されるものではなく種々の変形が可能である。 例えば、 信号処理部 8 0は、 比較部 5 0からバッファ部 7 0を経て出力される電 圧信号 V2 に替えて、 電源部 6 0から分圧部 2 0を経て光電子増倍管 1 0へ印 加される印加電圧を受信し、 この印加電圧に基づいて受光量を算出するようにし てもよい。また、信号処理部 8 0は、受光量と線形関係にある値を表す信号 V3 で はなく、 受光量の対数値を表す信号を出力するようにしてもよい。 産業上の利用可能性  The present invention is not limited to the above embodiment, and various modifications are possible. For example, the signal processing unit 80 replaces the voltage signal V2 output from the comparison unit 50 via the buffer unit 70 with the voltage from the power supply unit 60 to the photomultiplier tube 10 via the voltage dividing unit 20. The applied voltage to be applied may be received, and the amount of received light may be calculated based on the applied voltage. Further, the signal processing section 80 may output a signal representing a logarithmic value of the received light amount, instead of the signal V3 representing a value having a linear relationship with the received light amount. Industrial applicability
以上説明したとおり、 本発明によれば、 光電子増倍管のアノード電極から出力 された電流信号を電流電圧変換部により ί¾圧信号に変換し、 その ¾圧信号を比較 部により基準信号と比較する。 受光量が或る一定量よりも小さいときには、 比較 部は電圧信号が基準電圧より小さいと判断し、 一定電圧を電源部から光 ¾子増倍 管の光電陰極およびダイノードそれそれに印加し、 信号処理部は電圧信号に基づ いて受光量を算出する。 一方、 受光量が或る一定量以上のときには、 比較部は電 圧信号が基準電圧以上であると判断し、 電圧信号が基準電圧と一致するよう調整 された印加電圧が電源部から光電子増倍管の光電陰極およびダイノードそれそれ に印加され、 信号処理部は印加信号に基づいて受光量を算出する。 したがって、 全体として 8桁程度の広範囲なダイナミックレンジを得ることができる。  As described above, according to the present invention, the current signal output from the anode electrode of the photomultiplier is converted into a voltage signal by the current-voltage converter, and the voltage signal is compared with the reference signal by the comparator. . When the amount of received light is smaller than a certain amount, the comparator determines that the voltage signal is smaller than the reference voltage, and applies a certain voltage from the power supply to the photocathode of the photomultiplier, the dynode, and signal processing. The unit calculates the amount of received light based on the voltage signal. On the other hand, when the amount of received light is more than a certain amount, the comparator determines that the voltage signal is higher than the reference voltage, and the applied voltage adjusted so that the voltage signal matches the reference voltage is supplied from the power supply to the photomultiplier. The signal is applied to the photocathode and dynode of the tube, and the signal processor calculates the amount of received light based on the applied signal. Therefore, a wide dynamic range of about 8 digits can be obtained as a whole.

Claims

言青求の範囲 Scope of word blue
1 . 受光量に応じた個数の光電子を放出する光電陰極、 その光電子を増倍し て 2次電子を発生させるダイノード、 及びその 2次電子の個数に応じた電流信号 を出力するアノード電極を有する光電子増倍管と、 1. A photocathode that emits a number of photoelectrons according to the amount of received light, a dynode that multiplies the photoelectrons to generate secondary electrons, and an anode electrode that outputs a current signal according to the number of the secondary electrons A photomultiplier tube,
前記ァノ一ド電極から出力された前記電流信号を電圧信号に変換する電流電圧 変換部と、  A current-voltage converter for converting the current signal output from the anode electrode into a voltage signal;
前記電流電圧変換部から出力された前記電圧信号を基準電圧と比較する比較部 と、  A comparison unit that compares the voltage signal output from the current-voltage conversion unit with a reference voltage;
前記比較部により前記電圧信号が前記基準電圧より小さいと判断されたときに は、 一定電圧を前記光電子増倍管の前記光電陰極および前記ダイノ一ドそれそれ に印加し、 前記電圧信号が前記基準電圧以上であると判断されたときには、 前記 電圧信号が前記基準電圧と一致するよう調整された印加電圧を前記光電子増倍管 の前記光電陰極および前記ダイノードそれそれに印加する電源部と、  When the comparing unit determines that the voltage signal is smaller than the reference voltage, a constant voltage is applied to the photocathode and the dynode of the photomultiplier tube, and the voltage signal is set to the reference voltage. When it is determined that the voltage is equal to or higher than the voltage, a power supply unit that applies the applied voltage adjusted so that the voltage signal matches the reference voltage, the photocathode of the photomultiplier tube, the dynode, and the like,
前記電圧信号が前記基準電圧より小さいときには前記電圧信号に基づいて受光 量を算出し、 前記電圧信号が前記基準電圧以上であるときには前記印加電圧に基 づいて受光量を算出する信号処理部と、  A signal processing unit that calculates a light reception amount based on the voltage signal when the voltage signal is smaller than the reference voltage, and calculates a light reception amount based on the applied voltage when the voltage signal is equal to or higher than the reference voltage;
を備えることを特徴とする光量検出装置。  A light amount detection device comprising:
2 . 前記信号処理部は、 前記電圧信号が前記基準電圧より小さいときには前 記電圧信号の値を線形変換して受光量を算出し、 前記電圧信号が前記基準 ¾圧以 上であるときには前記印加電圧の値を逆対数変換して受光量を算出する、 ことを 特徴とする請求項 1記載の光量検出装置。  2. The signal processing unit calculates the amount of received light by linearly converting the value of the voltage signal when the voltage signal is smaller than the reference voltage, and calculates the applied light when the voltage signal is equal to or higher than the reference voltage. 2. The light amount detection device according to claim 1, wherein an amount of received light is calculated by performing an inverse logarithmic conversion of the voltage value.
3 . 前記信号処理部は、 前記印加電圧の値を逆対数変換した後に線形補正し て受光量を算出する、 ことを特徴とする請求項 2記載の光量検出装置。  3. The light amount detection device according to claim 2, wherein the signal processing unit calculates the amount of received light by performing linear correction on the value of the applied voltage after performing an inverse logarithmic conversion.
PCT/JP1999/006282 1998-05-12 1999-11-11 Apparatus for detecting luminous energy WO2001035063A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP12897798A JP3863290B2 (en) 1998-05-12 1998-05-12 Light intensity detector
PCT/JP1999/006282 WO2001035063A1 (en) 1998-05-12 1999-11-11 Apparatus for detecting luminous energy
AU11780/00A AU1178000A (en) 1999-11-11 1999-11-11 Apparatus for detecting luminous energy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12897798A JP3863290B2 (en) 1998-05-12 1998-05-12 Light intensity detector
PCT/JP1999/006282 WO2001035063A1 (en) 1998-05-12 1999-11-11 Apparatus for detecting luminous energy

Publications (1)

Publication Number Publication Date
WO2001035063A1 true WO2001035063A1 (en) 2001-05-17

Family

ID=26440206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006282 WO2001035063A1 (en) 1998-05-12 1999-11-11 Apparatus for detecting luminous energy

Country Status (2)

Country Link
JP (1) JP3863290B2 (en)
WO (1) WO2001035063A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7110901B2 (en) 2000-11-10 2006-09-19 Arkray, Inc. Correction method for sensor output

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3863290B2 (en) * 1998-05-12 2006-12-27 浜松ホトニクス株式会社 Light intensity detector
WO2007011630A2 (en) * 2005-07-14 2007-01-25 Kla-Tencor Technologies Corporation Systems, circuits and methods for reducing thermal damage and extending the detection range of an inspection system by avoiding detector and circuit saturation
JP5439483B2 (en) * 2008-07-03 2014-03-12 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Active voltage divider for detectors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979575A (en) * 1972-11-20 1974-08-01
JPS4937231Y1 (en) * 1970-01-14 1974-10-11
JPS56174049U (en) * 1980-05-28 1981-12-22
WO1983002323A1 (en) * 1981-12-28 1983-07-07 Beckman Instruments Inc Photomultiplier detector protection device and method
JPH0961537A (en) * 1995-08-30 1997-03-07 Rigaku Corp Photodetector
JPH11329340A (en) * 1998-05-12 1999-11-30 Hamamatsu Photonics Kk Light quantity detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937231Y1 (en) * 1970-01-14 1974-10-11
JPS4979575A (en) * 1972-11-20 1974-08-01
JPS56174049U (en) * 1980-05-28 1981-12-22
WO1983002323A1 (en) * 1981-12-28 1983-07-07 Beckman Instruments Inc Photomultiplier detector protection device and method
JPH0961537A (en) * 1995-08-30 1997-03-07 Rigaku Corp Photodetector
JPH11329340A (en) * 1998-05-12 1999-11-30 Hamamatsu Photonics Kk Light quantity detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7110901B2 (en) 2000-11-10 2006-09-19 Arkray, Inc. Correction method for sensor output

Also Published As

Publication number Publication date
JP3863290B2 (en) 2006-12-27
JPH11329340A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
JP4409764B2 (en) High-speed logarithmic photodetector
US5880457A (en) Voltage division circuit for a photomultiplier tube
AU599296B2 (en) Temperature stabilized rf detector
US6694105B2 (en) Burst mode receiving apparatus having an offset compensating function and a data recovery method thereof
US7005625B1 (en) Low power stabilized voltage divider network
WO2001035063A1 (en) Apparatus for detecting luminous energy
JPS59500018A (en) Photomultiplier tube detector protection device and method
US7355456B2 (en) Wide linear range peak detector
JP2003168933A (en) Photoreceiving circuit
JP3820718B2 (en) Optical receiver
GB1601654A (en) Micro-channel tube power supply
JPH0883593A (en) Drive circuit of electron multiplier
JP2001013005A (en) Light quantity detecting circuit capable of controlling photoelectric conversion ratio
US6714093B2 (en) Dynamics compressor for an analog signal to be compressed
JP4083551B2 (en) Preamplifier
EP0366176B1 (en) Receiver for use in a remote control system
WO2023286353A1 (en) Arithmetic device, optical detection device, and gain calculation method
US6791269B1 (en) Active photomultiplier tube base
KR101836997B1 (en) Gamma-ray detection apparatus based on scintillator and the method thereof
JP2001004445A (en) Light measuring instrument
JP3363537B2 (en) Photomultiplier tube control module
JPH1127944A (en) High-voltage generator and display
TW465231B (en) Cut-off level setting
JP2806872B2 (en) Unipolar / bipolar code conversion circuit
JP2839293B2 (en) Constant current detection voltage holding circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase