WO2001034243A1 - Recommended replacement time of an implantable medical device - Google Patents

Recommended replacement time of an implantable medical device Download PDF

Info

Publication number
WO2001034243A1
WO2001034243A1 PCT/SE2000/001957 SE0001957W WO0134243A1 WO 2001034243 A1 WO2001034243 A1 WO 2001034243A1 SE 0001957 W SE0001957 W SE 0001957W WO 0134243 A1 WO0134243 A1 WO 0134243A1
Authority
WO
WIPO (PCT)
Prior art keywords
limit value
rrt
impedance
battery
determining
Prior art date
Application number
PCT/SE2000/001957
Other languages
French (fr)
Inventor
Mikael Gustavsson
Original Assignee
St. Jude Medical Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by St. Jude Medical Ab filed Critical St. Jude Medical Ab
Publication of WO2001034243A1 publication Critical patent/WO2001034243A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3706Pacemaker parameters
    • A61N1/3708Pacemaker parameters for power depletion

Definitions

  • the present invention relates to a method and a circuit for determining recommended replacement time, RRT, of a battery of an implantable medical device.
  • the method comprises the steps of measuring the battery's internal impedance, comparing said measured impedance with a predetermined limit value, and determining RRT from the result of this comparison.
  • the circuit includes an impedance measurement means for measuring the internal impedance of the stimulator battery, a comparator means for comparing the measured internal impedance with the predetermined limit value, and a determining means for determining RRT from the result of this comparison.
  • US-A-5 , 620 , 474 discloses a method to calculate the RRT impedance depending on the operating conditions seen by the pacemaker .
  • the disclosed method in US-A-5 , 620 , 474 calculates a new value of the RRT-impedance to be used in the future each time the operating conditions are changed.
  • US-A-5 , 800 , 472 describes determination of recommended replacement time, RRT, of an implantable multimode rate responsive pacemaker by monitoring the battery voltage.
  • US-A-5 , 370 , 668 discloses an implantable medical device in which internal battery impedance measurements are combined with periodical assessments of the loaded terminal voltage of the battery to obtain an elective replacement indication. Another example of such a technique is described in US-A-5 , 741, 307. This publication discloses a method of determining RRT for an implantable cardioverter-defibrillator by measuring battery terminal voltage and capacitor charging time .
  • one of the most commonly used methods for determining remaining capacity of the battery of an implanted medical device consists in measurement of the internal impedance of the battery. This impedance increases exponentially with the charge drawn from the battery. Thus, during depletion of the first 50% of the total charge of the battery the change in its impedance can hardly be measured, whereas during depletion of the subsequent 50% of the charge the impedance change will be more and more pronounced.
  • RRT replacement time
  • the current consumption is, however, depending on several factors, such as adjustable operating parameters of the medical device in question, like amplitude and width of stimulation pulses, programmed stimulation rate, and diagnostic data, like electrode lead impedance, actual stimulation rate and current consumption of the stimulator electronics, as well as mode of operation of the medical device. This means that the time from RRT till the battery reaches its end of life is also depending on these factors.
  • the purpose of the present invention is to provide an improvement of the previously known technique for determining RRT from measurements of the battery internal impedance, whereby a sufficiently long safety period between RRT and the battery end of life is secured also when factors affecting the current consumption are changed.
  • a limit value is used in the present invent- ion which is changed in response to changes of operating condition affecting the current consumption.
  • the battery impedance limit value used as an RRT indicator is adjusted correspondingly.
  • said RRT is determined from the result of the comparison of the measured battery internal impedance with a predetermined limit value according to pre- defined worst conditions of operation.
  • worst conditions could be e.g. 100% stimulation and e.g. 250 Ohms drop in the lead impedance.
  • the limit value changing means includes a plurality of registers storing different preprogrammed impedance limit values and a pointer for selecting one register of said plurality of registers, which is storing an impedance limit value suitable for use in said comparator means under the actual operating conditions of the heart stimulator.
  • the registers are preferably programmed when the heart stimulator is manufactured.
  • an indicator is provided to be activated if, in reprogramming the heart stimulator, its operating parameters are changed such that a hazardous increase of the current consumption will result.
  • the limit value changing means is implemented in an external programmer devised for communication with the heart stimulator by a telemetry link, preferably also the RRT determining means is implemented in such an external programmer.
  • figure 1 is a block diagram illustrating schematically a heart stimulator provided with an embodiment of the circuit according to the invention
  • figure 2 is a flow chart illustrating an example of the operation of the circuit according to the invention
  • figures 3a and 3b illustrate the RRT- impedance register 17 and pointer 19 which indicates actual RRT-impedance according to the invention.
  • FIG. 1 shows schematically in the form of a block diagram a heart stimulator connected through a lead 2 to the heart 4 of a patient.
  • the heart stimulator comprises a battery 6 for supplying necessary electric energy to the stimulator electronics 8 and for charging a discharge capacitor 10 for delivery of stimulation pulses to the heart 4 by the lead 2.
  • An impedance measurement means 12 is connected to the battery 6 for measuring the internal battery impedance.
  • a comparison means 14 is connected to the impedance measurement means 12 for comparing the measured internal impedance with a predetermined limit value.
  • a determining means 16 is provided for determining RRT from the results of this comparison.
  • Current measurement means 18, 20 are further provided to continuously measure the current supplied to the stimulator electronics 8 and the current delivered to the discharge capacitor 10 for stimulation pulse delivery.
  • a control unit 30 Various controlling and timing functions of the heart stimulator are performed by a control unit 30.
  • charging of the discharge capacitor 10 and delivery of stimulation pulses are controlled from the control unit 30 by schematically shown switches 32 and 34 respectively.
  • the control unit 30 also includes means 31 for measuring diagnostic data like electrode lead impedance, actual stimulation rate and current consumption of the stimulator electronics .
  • a limit value changing means 15 is provided to automatically change the limit value of the comparator means 14 in response to changes of operating conditions like measured diagnostic data of the heart stimulator, programmed operating parameters, including mode of operation of the stimulator, etc.
  • This limit value changing means 15 includes a plurality of registers 17 storing different impedance limit values programmed at the manufacture of the device.
  • a pointer 19 is provided to point out one specific register of this plurality of registers 17, which is storing an impedance limit value suitable for use in the comparator means 14 under the actual operating conditions of the heart stimulator. When measured diagnostic data or programmed parameters are changed the pointer 19 automatically points out another register 17 storing a value which is suitable for use for the changed operating condition.
  • An external programmer 22 is devised for communication with the heart stimulator electronics 8 by a telemetry link 25, 27.
  • programmable operating conditions of the heart stimulator can be reprogrammed via the telemetry link 25, 27 and the controlling unit 30.
  • Such a reprogramming also results in a change of the limit value used in the comparison means 14 by selection of another register 17 by the pointer 19.
  • Results from the RRT determining means 16 are read by the programmer 22 via the telemetry link 25, 27 as well as other operating data of the stimulator determined and stored in the control unit 30.
  • an indicator 21 is activated to draw the physicians attention to this circumstance .
  • the external programmer 22 can include necessary calculating means 23 for determining RRT directly from the result of the comparison performed by the comparison means 14, i.e. the RRT determining means is contained in the programmer 22. This is indicated in figure 1 by the dashed line 24 between the comparison means 14 and the implanted part 27 of the telemetry link for further communication with the external programmer 22.
  • RRT is preferably determined based on a worst case parameter values, e.g. 100% pacing, a resistance drop of the lead impedance of 250 Ohms, together with programmed parameters such as programmed rate, programmed mode of operations of the heart stimulator, etc.
  • the limit value for RRT determination is automatically adjusted if necessary.
  • the heart stimulator illustrated in figure 1 could be a dual chamber pacemaker having five registers 17 preprogrammed with battery impedance limit values.
  • the pacemaker Before a follow up procedure the pacemaker is programmed according to the following shipped settings: DDD-mode, basic rate 75, pulse amplitude 3,9 V, pulse width 0.5 msec, and RRT battery impedance limit value is set to 13 kOhm, see figure 3a.
  • the heart stimulator is reprogrammed to VDD-mode with basic rate 45, pulse amplitude 2.4 V, and pulse width 0.25 msec.
  • the electrode lead impedance is measured to 750 Ohm. Based on the information above the register containing 15 kOhm value is determined with the aid of the invention to be used for RRT determination as indicated in fig 3b.
  • the telemetry channel is opened and interrogation of the implanted pacemaker is started, block 30.
  • Pacing para- meters having impact on RRT determination, e.g. pulse amplitude, pulse width, programmed rate, pacing mode, and if rate response function is activated, etc. are then interrogated, block 32.
  • diagnostic data having impact on RRT determination, e.g. lead impedance, actual paced rate (if other than the programmed rate) , and electronics' current consumption, are interrogated, block 34. If no such values are stored measurements of necessary values are performed.
  • a RRT limit value is then calculated based on the data retrieved and taking a worst case into account e.g.
  • a tracking mode i.e. XDD
  • block 36 Based on the calculation in block 36 it is determined which preprogrammed RRT-criteria, i.e. which preprogrammed register 17 should be used and it is then programmed into an active state (by pointer 19), block 38. If any of the pacing parameters that have impact on the RRT criteria, e.g. pulse amplitude, pulse width, programmed rate, pacing mode, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrotherapy Devices (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)

Abstract

A method of determining recommended replacement time, RRT, of a battery of an implantable medical device comprises the steps of measuring the battery's internal impedance, comparing the measured impedane with a predetermined limit value and determining RRT from the result of this comparison. The limit value is hanged in response to hanges of operating conditions affecting the current consumption of the medical device. A circuit for determining RRT of an implantable heart stimulator having a battery includes an impedane measurement means (12) for measuring the internal impedance of the stimulation battery (6), a comparator means (14) for comparing the measured internal impedance with a predetermined limit value, and a determining means (16, 23) for determining RRT from the result of this comparison. A limit value hanging means (15) is provided to automatically change the limit value of the comparator means in response to changes of operating conditions affecting the current consumption of the heart stimulator.

Description

RECOMMENDED REPLACEMENT TIME OF AN IMPLANTABLE MEDICAL DEVICE
Technical Field
The present invention relates to a method and a circuit for determining recommended replacement time, RRT, of a battery of an implantable medical device. The method comprises the steps of measuring the battery's internal impedance, comparing said measured impedance with a predetermined limit value, and determining RRT from the result of this comparison. The circuit includes an impedance measurement means for measuring the internal impedance of the stimulator battery, a comparator means for comparing the measured internal impedance with the predetermined limit value, and a determining means for determining RRT from the result of this comparison.
Background Art
It is of utmost importance to get reliable information about the status of batteries used in implantable medical devices, like heart stimulators, and in particular information about the remaining capacity or remaining charge of the battery. From this information remaining operation time of the device can be determined and this enables the physician to plan for replacement of the battery and/or the medical device at an appropriate time. Several techniques have therefore been proposed for monitoring battery depletion and determining remaining battery capacity.
One of the most commonly used methods consists in monitoring the internal impedance of the battery. US-A-5 , 620 , 474 discloses a method to calculate the RRT impedance depending on the operating conditions seen by the pacemaker . The disclosed method in US-A-5 , 620 , 474 calculates a new value of the RRT-impedance to be used in the future each time the operating conditions are changed. Further, US-A-5 , 800 , 472 describes determination of recommended replacement time, RRT, of an implantable multimode rate responsive pacemaker by monitoring the battery voltage.
To obtain a more reliable determination of the battery status it has been proposed to independently monitor or measure at least two different parameters indicating the battery depletion. Thus, to reject especially transients in the demand on the battery as criteria for an elective replacement indication, US-A-5 , 370 , 668 discloses an implantable medical device in which internal battery impedance measurements are combined with periodical assessments of the loaded terminal voltage of the battery to obtain an elective replacement indication. Another example of such a technique is described in US-A-5 , 741, 307. This publication discloses a method of determining RRT for an implantable cardioverter-defibrillator by measuring battery terminal voltage and capacitor charging time .
From a theoretical point of view the ideal way of determining the remaining capacity of a battery would be measurement of the charge drawn from the battery. Such techniques are proposed in e.g. US-A-4 , 715 , 381 and US-A-5 , 769, 873.
As mentioned above, one of the most commonly used methods for determining remaining capacity of the battery of an implanted medical device consists in measurement of the internal impedance of the battery. This impedance increases exponentially with the charge drawn from the battery. Thus, during depletion of the first 50% of the total charge of the battery the change in its impedance can hardly be measured, whereas during depletion of the subsequent 50% of the charge the impedance change will be more and more pronounced.
From information about when a predetermined limit value of the battery internal impedance is reached it is possible to determine how much current is consumed in the actual mode of operation of the device, and it is then also possible to determine for how long time the remaining charge of the battery will suffice. A recommended replacement time, RRT, for the battery of the medical device or for the medical device, can consequently be determined. As a safety measure RRT is in practice selected 3-6 months before the calculated end of life of the battery.
The current consumption is, however, depending on several factors, such as adjustable operating parameters of the medical device in question, like amplitude and width of stimulation pulses, programmed stimulation rate, and diagnostic data, like electrode lead impedance, actual stimulation rate and current consumption of the stimulator electronics, as well as mode of operation of the medical device. This means that the time from RRT till the battery reaches its end of life is also depending on these factors.
Disclosure of the Invention
The purpose of the present invention is to provide an improvement of the previously known technique for determining RRT from measurements of the battery internal impedance, whereby a sufficiently long safety period between RRT and the battery end of life is secured also when factors affecting the current consumption are changed.
This purpose is obtained by a method and a circuit of the kind set forth in the introductory portion of the description and having the characterizing features of claim 1 and claim 9 respectively .
Thus, contrary to the situation in the prior art solutions where one single fixed battery impedance limit is used for determining RRT, a limit value is used in the present invent- ion which is changed in response to changes of operating condition affecting the current consumption. When e.g. settings of the medical device in question are changed or the patient load towards which the device is stimulating is changed, the battery impedance limit value used as an RRT indicator is adjusted correspondingly. Thus, with a circuit according to the invention RRT is automatically changed when factors affecting the current consumption are changing. In this way there will always be a sufficiently long time between RRT and end of life of the battery.
According to an advantageous embodiment of the method according to the invention said RRT is determined from the result of the comparison of the measured battery internal impedance with a predetermined limit value according to pre- defined worst conditions of operation. Examples of such worst conditions could be e.g. 100% stimulation and e.g. 250 Ohms drop in the lead impedance. By using such a procedure for the RRT determination the safety of the patient is further increased.
According to an advantageous embodiment of the circuit according to the invention the limit value changing means includes a plurality of registers storing different preprogrammed impedance limit values and a pointer for selecting one register of said plurality of registers, which is storing an impedance limit value suitable for use in said comparator means under the actual operating conditions of the heart stimulator. The registers are preferably programmed when the heart stimulator is manufactured. By using such preprogrammed registers patient safety is improved since it eliminates the risk of erroneous programming of this vital parameter.
According to another advantageous embodiment of the circuit according to the invention an indicator is provided to be activated if, in reprogramming the heart stimulator, its operating parameters are changed such that a hazardous increase of the current consumption will result. This is an important safety increasing feature of the circuit according to the invention, since an indication is then immediately given if the heart stimulator is reprogrammed into a mode of operation with an increased current consumption that would result in a quick discharge of the battery. According to still other advantageous embodiments of the circuit according to the invention the limit value changing means is implemented in an external programmer devised for communication with the heart stimulator by a telemetry link, preferably also the RRT determining means is implemented in such an external programmer. Thus, an external programmer is provided with calculation capacity necessary for determining a suitable impedance limit value and this limit value is then automatically set by the programmer for RRT determination.
Brief Description of the Drawings
To explain the invention more in detail certain embodiments of the invention will now be described with reference to the drawings, on which figure 1 is a block diagram illustrating schematically a heart stimulator provided with an embodiment of the circuit according to the invention, and figure 2 is a flow chart illustrating an example of the operation of the circuit according to the invention, and figures 3a and 3b illustrate the RRT- impedance register 17 and pointer 19 which indicates actual RRT-impedance according to the invention.
Description of Preferred Embodiments
Figure 1 shows schematically in the form of a block diagram a heart stimulator connected through a lead 2 to the heart 4 of a patient. The heart stimulator comprises a battery 6 for supplying necessary electric energy to the stimulator electronics 8 and for charging a discharge capacitor 10 for delivery of stimulation pulses to the heart 4 by the lead 2.
An impedance measurement means 12 is connected to the battery 6 for measuring the internal battery impedance. A comparison means 14 is connected to the impedance measurement means 12 for comparing the measured internal impedance with a predetermined limit value. A determining means 16 is provided for determining RRT from the results of this comparison. Current measurement means 18, 20 are further provided to continuously measure the current supplied to the stimulator electronics 8 and the current delivered to the discharge capacitor 10 for stimulation pulse delivery.
Various controlling and timing functions of the heart stimulator are performed by a control unit 30. Thus, e.g. charging of the discharge capacitor 10 and delivery of stimulation pulses are controlled from the control unit 30 by schematically shown switches 32 and 34 respectively.
The control unit 30 also includes means 31 for measuring diagnostic data like electrode lead impedance, actual stimulation rate and current consumption of the stimulator electronics .
A limit value changing means 15 is provided to automatically change the limit value of the comparator means 14 in response to changes of operating conditions like measured diagnostic data of the heart stimulator, programmed operating parameters, including mode of operation of the stimulator, etc. This limit value changing means 15 includes a plurality of registers 17 storing different impedance limit values programmed at the manufacture of the device. A pointer 19 is provided to point out one specific register of this plurality of registers 17, which is storing an impedance limit value suitable for use in the comparator means 14 under the actual operating conditions of the heart stimulator. When measured diagnostic data or programmed parameters are changed the pointer 19 automatically points out another register 17 storing a value which is suitable for use for the changed operating condition.
An external programmer 22 is devised for communication with the heart stimulator electronics 8 by a telemetry link 25, 27. By this programmer 22 programmable operating conditions of the heart stimulator can be reprogrammed via the telemetry link 25, 27 and the controlling unit 30. Such a reprogramming also results in a change of the limit value used in the comparison means 14 by selection of another register 17 by the pointer 19.
Results from the RRT determining means 16 are read by the programmer 22 via the telemetry link 25, 27 as well as other operating data of the stimulator determined and stored in the control unit 30.
If one or more parameters are changed in a reprogramming operation, e.g. the pulse rate is changed such that the current consumption is drastically increased which would result in a quick discharge of the battery, an indicator 21 is activated to draw the physicians attention to this circumstance .
As an alternative the external programmer 22 can include necessary calculating means 23 for determining RRT directly from the result of the comparison performed by the comparison means 14, i.e. the RRT determining means is contained in the programmer 22. This is indicated in figure 1 by the dashed line 24 between the comparison means 14 and the implanted part 27 of the telemetry link for further communication with the external programmer 22.
As an additional safety measure RRT is preferably determined based on a worst case parameter values, e.g. 100% pacing, a resistance drop of the lead impedance of 250 Ohms, together with programmed parameters such as programmed rate, programmed mode of operations of the heart stimulator, etc.
Thus, by choosing between preprogrammed register values and pointing out a suitable value, a sufficient time between RRT and end of life of the battery is always secured based on a worst case calculation, and when a physician makes a reprogramming of the implanted medical device, the limit value for RRT determination is automatically adjusted if necessary. As an example the heart stimulator illustrated in figure 1 could be a dual chamber pacemaker having five registers 17 preprogrammed with battery impedance limit values.
Before a follow up procedure the pacemaker is programmed according to the following shipped settings: DDD-mode, basic rate 75, pulse amplitude 3,9 V, pulse width 0.5 msec, and RRT battery impedance limit value is set to 13 kOhm, see figure 3a.
During the follow-up the heart stimulator is reprogrammed to VDD-mode with basic rate 45, pulse amplitude 2.4 V, and pulse width 0.25 msec. The electrode lead impedance is measured to 750 Ohm. Based on the information above the register containing 15 kOhm value is determined with the aid of the invention to be used for RRT determination as indicated in fig 3b.
The function of one embodiment of the invention applied to a pacemaker is illustrated by the flow chart of figure 2.
Thus, the telemetry channel is opened and interrogation of the implanted pacemaker is started, block 30. Pacing para- meters having impact on RRT determination, e.g. pulse amplitude, pulse width, programmed rate, pacing mode, and if rate response function is activated, etc. are then interrogated, block 32. Also diagnostic data having impact on RRT determination, e.g. lead impedance, actual paced rate (if other than the programmed rate) , and electronics' current consumption, are interrogated, block 34. If no such values are stored measurements of necessary values are performed. A RRT limit value is then calculated based on the data retrieved and taking a worst case into account e.g. a lead impedance decrease of 250 Ohm, 100% pacing, 10% of the time at maximum sensor rate or maximum tracking rate depending on the programming of the pacemaker, and also taking a higher measured rate into account if the pacemaker is programmed to a tracking mode, i.e. XDD, block 36. Based on the calculation in block 36 it is determined which preprogrammed RRT-criteria, i.e. which preprogrammed register 17 should be used and it is then programmed into an active state (by pointer 19), block 38. If any of the pacing parameters that have impact on the RRT criteria, e.g. pulse amplitude, pulse width, programmed rate, pacing mode, etc. are changed during the follow-up session due to reprogramming of the pacemaker by the physician, a new RRT-criteria should be calculated and chosen on the basis of these new data, and other unchanged data retrieved at the beginning of the session, block 40. Finally the telemetry channel is closed and the follow-up session is ended, block 42.

Claims

1. A method of determining recommended replacement time, RRT, of a battery of an implantable medical device comprising the steps of measuring the battery's internal impedance, comparing said measured impedance with a predetermined limit value, and determining the RRT from the result of this comparison, characterized in that said limit value is changed in steps by selecting a limit value among a plurality of predetermined values .
2. The method according to claim 1, characterized in that said operating conditions comprise adjustable operating parameters of the medical device.
3. The method according to any one of the preceding claims, characterized in that said operating conditions comprise measured diagnostic data of the medical device affecting its current consumption.
4. The method according to any one of the preceding claims, characterized in that said operating conditions comprise mode of operation of the medical device.
5. The method according to claim 2, said medical device being a heart stimulator, characterized in that said adjustable operating parameters include amplitude and width of stimulation pulses and programmed stimulation rate.
6. The method according to claim 3 , said medical device being a heart stimulator, characterized in that said diagnostic data include electrode lead impedance, actual stimulation rate and current consumption of the stimulator electronics .
7. The method according to any one of the preceding claims, characterized in that said RRT is determined from the result of said comparison according to predefined worst conditions of operation.
8. A circuit for determining recommended replacement time, RRT, of an implantable heart stimulator having a battery, said circuit including an impedance measurement means (12) for measuring the internal impedance of the stimulator battery (6) , a comparator means (14) for comparing the measured internal impedance with a predetermined limit value, and a determining means (16, 23) for determining the RRT from the result of this comparison, characterized in that said limit value is changed by a limit value changing means (15) which includes a plurality of registers (17) storing different preprogrammed impedance limit values and a pointer (19) for selecting one register of said plurality of registers, which is storing an impedance limit value suitable for use in said comparator means (14) under the actual operating conditions of the heart stimulator.
9. The circuit according to claim 8, characterized in that said limit changing means (15) is adapted to receive programmed operating parameters of the heart stimulator and in that said pointer (19) is controlled by this received parameters to select one register of said plurality of registers (17) which is storing a corresponding suitable impedance limit value for use in said comparator means (14) .
10. The circuit according to claim 8 or 9, characterized in that said limit changing means (15) is adapted to receive measured diagnostic data of the heart stimulator and in that said pointer (19) is controlled by this received data to select one register of said plurality of registers (17) which is storing a corresponding suitable impedance limit value for use in said comparator means (14) .
11. The circuit according to any one of the claims 8 -
10, characterized in that an indicator (21) is provided to be activated if, in reprogramming the heart stimulator, its operating parameters are changed such that a hazardous increase of the current consumption will result.
12. The circuit according to any one of the claims 8 - 11, characterized in that said determining means (23) is implemented in an external programmer (22) devised for communication with the heart stimulator by a telemetry link (25,27) .
13. An implantable heart stimulator, characterized by a circuit according to any one of the claims 8 - 12.
PCT/SE2000/001957 1999-11-11 2000-10-10 Recommended replacement time of an implantable medical device WO2001034243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9904087-5 1999-11-11
SE9904087A SE9904087D0 (en) 1999-11-11 1999-11-11 Recommended replacement time of an implantable medical device

Publications (1)

Publication Number Publication Date
WO2001034243A1 true WO2001034243A1 (en) 2001-05-17

Family

ID=20417686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2000/001957 WO2001034243A1 (en) 1999-11-11 2000-10-10 Recommended replacement time of an implantable medical device

Country Status (2)

Country Link
SE (1) SE9904087D0 (en)
WO (1) WO2001034243A1 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US7095210B2 (en) 2001-10-26 2006-08-22 Medtronic Emergency Response Systems, Inc. Defibrillator power source with replaceable and rechargeable power packs
WO2008042733A2 (en) * 2006-10-04 2008-04-10 Medtronic, Inc. Replacement indicator timer for implantable medical devices
WO2009134473A1 (en) * 2008-04-30 2009-11-05 Medtronic, Inc. Time to next recharge session feedback while recharging an implantable medical device, system and method therefore
US7657297B2 (en) 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US7778680B2 (en) 2003-08-01 2010-08-17 Dexcom, Inc. System and methods for processing analyte sensor data
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8193766B2 (en) 2008-04-30 2012-06-05 Medtronic, Inc. Time remaining to charge an implantable medical device, charger indicator, system and method therefore
US8314594B2 (en) 2008-04-30 2012-11-20 Medtronic, Inc. Capacity fade adjusted charge level or recharge interval of a rechargeable power source of an implantable medical device, system and method
US8840553B2 (en) 1998-04-30 2014-09-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8882741B2 (en) 2004-02-26 2014-11-11 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US8915850B2 (en) 2005-11-01 2014-12-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8915849B2 (en) 2003-08-01 2014-12-23 Dexcom, Inc. Transcutaneous analyte sensor
US8920319B2 (en) 2005-11-01 2014-12-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8923947B2 (en) 1997-03-04 2014-12-30 Dexcom, Inc. Device and method for determining analyte levels
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011332B2 (en) 2001-01-02 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9060742B2 (en) 2004-07-13 2015-06-23 Dexcom, Inc. Transcutaneous analyte sensor
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9078607B2 (en) 2005-11-01 2015-07-14 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9078608B2 (en) 2005-03-10 2015-07-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9107623B2 (en) 2003-12-09 2015-08-18 Dexcom, Inc. Signal processing for continuous analyte sensor
US9282925B2 (en) 2002-02-12 2016-03-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9420968B2 (en) 2003-08-22 2016-08-23 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9446194B2 (en) 2009-03-27 2016-09-20 Dexcom, Inc. Methods and systems for promoting glucose management
US9451908B2 (en) 2006-10-04 2016-09-27 Dexcom, Inc. Analyte sensor
US9538946B2 (en) 2003-11-19 2017-01-10 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US9741139B2 (en) 2007-06-08 2017-08-22 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US9833143B2 (en) 2004-05-03 2017-12-05 Dexcom, Inc. Transcutaneous analyte sensor
US9895089B2 (en) 2003-08-01 2018-02-20 Dexcom, Inc. System and methods for processing analyte sensor data
US10478108B2 (en) 1998-04-30 2019-11-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10653835B2 (en) 2007-10-09 2020-05-19 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor
US10966609B2 (en) 2004-02-26 2021-04-06 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US10980461B2 (en) 2008-11-07 2021-04-20 Dexcom, Inc. Advanced analyte sensor calibration and error detection
US11000215B1 (en) 2003-12-05 2021-05-11 Dexcom, Inc. Analyte sensor
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US11350862B2 (en) 2017-10-24 2022-06-07 Dexcom, Inc. Pre-connected analyte sensors
US11382539B2 (en) 2006-10-04 2022-07-12 Dexcom, Inc. Analyte sensor
US11399745B2 (en) 2006-10-04 2022-08-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11432772B2 (en) 2006-08-02 2022-09-06 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US11559260B2 (en) 2003-08-22 2023-01-24 Dexcom, Inc. Systems and methods for processing analyte sensor data
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11890482B2 (en) 2019-12-20 2024-02-06 Medtronic, Inc. Medical device and method for estimating time between voltage levels of a power source

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290429A (en) * 1979-03-31 1981-09-22 Biotronick Mess-und Therapiegerate GmbH & Co. Ingenieurburo Berlin Battery monitoring circuit in a cardiac pacemaker
EP0058603A1 (en) * 1981-02-17 1982-08-25 Medtronic, Inc. Implantable medical device power source depletion indicators
US4715381A (en) * 1985-10-02 1987-12-29 Siemens Aktiengesellschaft Battery test circuit for a heart pacemaker
EP0431437A2 (en) * 1989-12-07 1991-06-12 Pacesetter, Inc. A system and method for maintaining stimulation pulse amplitude at battery depletion by self-regulating current drain usage
US5369364A (en) * 1993-04-26 1994-11-29 Medtronic, Inc. Battery state of charge determination with plural periodic measurements to determine its internal impedance and geometric capacitance
US5370668A (en) * 1993-06-22 1994-12-06 Medtronic, Inc. Fault-tolerant elective replacement indication for implantable medical device
US5741307A (en) * 1997-01-21 1998-04-21 Pacesetter, Inc. Method for determining an ICD replacement time
US5769873A (en) * 1996-10-15 1998-06-23 Pacesetter, Inc. Meter for measuring battery charge delivered in an implantable device
US5800472A (en) * 1996-05-14 1998-09-01 Pacesetter, Inc. Recommended replacement time trigger for use within an implantable rate-responsive pacemaker

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290429A (en) * 1979-03-31 1981-09-22 Biotronick Mess-und Therapiegerate GmbH & Co. Ingenieurburo Berlin Battery monitoring circuit in a cardiac pacemaker
EP0058603A1 (en) * 1981-02-17 1982-08-25 Medtronic, Inc. Implantable medical device power source depletion indicators
US4715381A (en) * 1985-10-02 1987-12-29 Siemens Aktiengesellschaft Battery test circuit for a heart pacemaker
EP0431437A2 (en) * 1989-12-07 1991-06-12 Pacesetter, Inc. A system and method for maintaining stimulation pulse amplitude at battery depletion by self-regulating current drain usage
US5369364A (en) * 1993-04-26 1994-11-29 Medtronic, Inc. Battery state of charge determination with plural periodic measurements to determine its internal impedance and geometric capacitance
US5370668A (en) * 1993-06-22 1994-12-06 Medtronic, Inc. Fault-tolerant elective replacement indication for implantable medical device
US5800472A (en) * 1996-05-14 1998-09-01 Pacesetter, Inc. Recommended replacement time trigger for use within an implantable rate-responsive pacemaker
US5769873A (en) * 1996-10-15 1998-06-23 Pacesetter, Inc. Meter for measuring battery charge delivered in an implantable device
US5741307A (en) * 1997-01-21 1998-04-21 Pacesetter, Inc. Method for determining an ICD replacement time

Cited By (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9931067B2 (en) 1997-03-04 2018-04-03 Dexcom, Inc. Device and method for determining analyte levels
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US8923947B2 (en) 1997-03-04 2014-12-30 Dexcom, Inc. Device and method for determining analyte levels
US7136689B2 (en) 1997-03-04 2006-11-14 Dexcom, Inc. Device and method for determining analyte levels
US10478108B2 (en) 1998-04-30 2019-11-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011331B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9014773B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8880137B2 (en) 1998-04-30 2014-11-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9042953B2 (en) 1998-04-30 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8840553B2 (en) 1998-04-30 2014-09-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9072477B2 (en) 1998-04-30 2015-07-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066697B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326714B2 (en) 1998-04-30 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066694B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011332B2 (en) 2001-01-02 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9610034B2 (en) 2001-01-02 2017-04-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9498159B2 (en) 2001-01-02 2016-11-22 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9532741B2 (en) 2001-07-27 2017-01-03 Dexcom, Inc. Membrane for use with implantable devices
US8840552B2 (en) 2001-07-27 2014-09-23 Dexcom, Inc. Membrane for use with implantable devices
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US10039480B2 (en) 2001-07-27 2018-08-07 Dexcom, Inc. Membrane for use with implantable devices
US7095210B2 (en) 2001-10-26 2006-08-22 Medtronic Emergency Response Systems, Inc. Defibrillator power source with replaceable and rechargeable power packs
US9282925B2 (en) 2002-02-12 2016-03-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US10252062B2 (en) 2003-02-15 2019-04-09 Medtronic, Inc. Replacement indicator timer for implantable medical devices
US8060173B2 (en) 2003-08-01 2011-11-15 Dexcom, Inc. System and methods for processing analyte sensor data
US8052601B2 (en) 2003-08-01 2011-11-08 Dexcom, Inc. System and methods for processing analyte sensor data
US8915849B2 (en) 2003-08-01 2014-12-23 Dexcom, Inc. Transcutaneous analyte sensor
US9895089B2 (en) 2003-08-01 2018-02-20 Dexcom, Inc. System and methods for processing analyte sensor data
US10786185B2 (en) 2003-08-01 2020-09-29 Dexcom, Inc. System and methods for processing analyte sensor data
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US7778680B2 (en) 2003-08-01 2010-08-17 Dexcom, Inc. System and methods for processing analyte sensor data
US7797028B2 (en) 2003-08-01 2010-09-14 Dexcom, Inc. System and methods for processing analyte sensor data
US7826981B2 (en) 2003-08-01 2010-11-02 Dexcom, Inc. System and methods for processing analyte sensor data
US8442610B2 (en) 2003-08-01 2013-05-14 Dexcom, Inc. System and methods for processing analyte sensor data
US9649069B2 (en) 2003-08-22 2017-05-16 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9427183B2 (en) 2003-08-22 2016-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US11589823B2 (en) 2003-08-22 2023-02-28 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9420968B2 (en) 2003-08-22 2016-08-23 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9510782B2 (en) 2003-08-22 2016-12-06 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8843187B2 (en) 2003-08-22 2014-09-23 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9585607B2 (en) 2003-08-22 2017-03-07 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9149219B2 (en) 2003-08-22 2015-10-06 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US11559260B2 (en) 2003-08-22 2023-01-24 Dexcom, Inc. Systems and methods for processing analyte sensor data
US9724045B1 (en) 2003-08-22 2017-08-08 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9750460B2 (en) 2003-08-22 2017-09-05 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9538946B2 (en) 2003-11-19 2017-01-10 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US11564602B2 (en) 2003-11-19 2023-01-31 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US11020031B1 (en) 2003-12-05 2021-06-01 Dexcom, Inc. Analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11000215B1 (en) 2003-12-05 2021-05-11 Dexcom, Inc. Analyte sensor
US9351668B2 (en) 2003-12-09 2016-05-31 Dexcom, Inc. Signal processing for continuous analyte sensor
US9364173B2 (en) 2003-12-09 2016-06-14 Dexcom, Inc. Signal processing for continuous analyte sensor
US9420965B2 (en) 2003-12-09 2016-08-23 Dexcom, Inc. Signal processing for continuous analyte sensor
US10898113B2 (en) 2003-12-09 2021-01-26 Dexcom, Inc. Signal processing for continuous analyte sensor
US9192328B2 (en) 2003-12-09 2015-11-24 Dexcom, Inc. Signal processing for continuous analyte sensor
US11638541B2 (en) 2003-12-09 2023-05-02 Dexconi, Inc. Signal processing for continuous analyte sensor
US9107623B2 (en) 2003-12-09 2015-08-18 Dexcom, Inc. Signal processing for continuous analyte sensor
US9498155B2 (en) 2003-12-09 2016-11-22 Dexcom, Inc. Signal processing for continuous analyte sensor
US9750441B2 (en) 2003-12-09 2017-09-05 Dexcom, Inc. Signal processing for continuous analyte sensor
US9155843B2 (en) 2004-02-26 2015-10-13 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US8926585B2 (en) 2004-02-26 2015-01-06 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US11246990B2 (en) 2004-02-26 2022-02-15 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US8920401B2 (en) 2004-02-26 2014-12-30 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US8882741B2 (en) 2004-02-26 2014-11-11 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US9050413B2 (en) 2004-02-26 2015-06-09 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US10966609B2 (en) 2004-02-26 2021-04-06 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US10835672B2 (en) 2004-02-26 2020-11-17 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US12102410B2 (en) 2004-02-26 2024-10-01 Dexcom, Inc Integrated medicament delivery device for use with continuous analyte sensor
US12115357B2 (en) 2004-02-26 2024-10-15 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US10327638B2 (en) 2004-05-03 2019-06-25 Dexcom, Inc. Transcutaneous analyte sensor
US7657297B2 (en) 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US9833143B2 (en) 2004-05-03 2017-12-05 Dexcom, Inc. Transcutaneous analyte sensor
US10932700B2 (en) 2004-07-13 2021-03-02 Dexcom, Inc. Analyte sensor
US10722152B2 (en) 2004-07-13 2020-07-28 Dexcom, Inc. Analyte sensor
US11883164B2 (en) 2004-07-13 2024-01-30 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11064917B2 (en) 2004-07-13 2021-07-20 Dexcom, Inc. Analyte sensor
US9801572B2 (en) 2004-07-13 2017-10-31 Dexcom, Inc. Transcutaneous analyte sensor
US11045120B2 (en) 2004-07-13 2021-06-29 Dexcom, Inc. Analyte sensor
US11026605B1 (en) 2004-07-13 2021-06-08 Dexcom, Inc. Analyte sensor
US9060742B2 (en) 2004-07-13 2015-06-23 Dexcom, Inc. Transcutaneous analyte sensor
US10993642B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10524703B2 (en) 2004-07-13 2020-01-07 Dexcom, Inc. Transcutaneous analyte sensor
US10993641B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10980452B2 (en) 2004-07-13 2021-04-20 Dexcom, Inc. Analyte sensor
US10918313B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10918315B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10918314B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10827956B2 (en) 2004-07-13 2020-11-10 Dexcom, Inc. Analyte sensor
US10813576B2 (en) 2004-07-13 2020-10-27 Dexcom, Inc. Analyte sensor
US10799158B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US10799159B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US10709362B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US10709363B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US9220449B2 (en) 2005-03-10 2015-12-29 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9078608B2 (en) 2005-03-10 2015-07-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10743801B2 (en) 2005-03-10 2020-08-18 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11051726B2 (en) 2005-03-10 2021-07-06 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10709364B2 (en) 2005-03-10 2020-07-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10716498B2 (en) 2005-03-10 2020-07-21 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10925524B2 (en) 2005-03-10 2021-02-23 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11000213B2 (en) 2005-03-10 2021-05-11 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10617336B2 (en) 2005-03-10 2020-04-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9918668B2 (en) 2005-03-10 2018-03-20 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10856787B2 (en) 2005-03-10 2020-12-08 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10898114B2 (en) 2005-03-10 2021-01-26 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9314196B2 (en) 2005-03-10 2016-04-19 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918317B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610135B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918316B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610136B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918318B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610137B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor
US9326716B2 (en) 2005-11-01 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10952652B2 (en) 2005-11-01 2021-03-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10231654B2 (en) 2005-11-01 2019-03-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11399748B2 (en) 2005-11-01 2022-08-02 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11363975B2 (en) 2005-11-01 2022-06-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11272867B2 (en) 2005-11-01 2022-03-15 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9078607B2 (en) 2005-11-01 2015-07-14 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8915850B2 (en) 2005-11-01 2014-12-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8920319B2 (en) 2005-11-01 2014-12-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10201301B2 (en) 2005-11-01 2019-02-12 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11103165B2 (en) 2005-11-01 2021-08-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11911151B1 (en) 2005-11-01 2024-02-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11432772B2 (en) 2006-08-02 2022-09-06 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US10349873B2 (en) 2006-10-04 2019-07-16 Dexcom, Inc. Analyte sensor
US11382539B2 (en) 2006-10-04 2022-07-12 Dexcom, Inc. Analyte sensor
US11399745B2 (en) 2006-10-04 2022-08-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
WO2008042733A3 (en) * 2006-10-04 2008-06-26 Medtronic Inc Replacement indicator timer for implantable medical devices
US9451908B2 (en) 2006-10-04 2016-09-27 Dexcom, Inc. Analyte sensor
WO2008042733A2 (en) * 2006-10-04 2008-04-10 Medtronic, Inc. Replacement indicator timer for implantable medical devices
US10403012B2 (en) 2007-06-08 2019-09-03 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US11373347B2 (en) 2007-06-08 2022-06-28 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US9741139B2 (en) 2007-06-08 2017-08-22 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US11744943B2 (en) 2007-10-09 2023-09-05 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US11160926B1 (en) 2007-10-09 2021-11-02 Dexcom, Inc. Pre-connected analyte sensors
US10653835B2 (en) 2007-10-09 2020-05-19 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US8193766B2 (en) 2008-04-30 2012-06-05 Medtronic, Inc. Time remaining to charge an implantable medical device, charger indicator, system and method therefore
WO2009134473A1 (en) * 2008-04-30 2009-11-05 Medtronic, Inc. Time to next recharge session feedback while recharging an implantable medical device, system and method therefore
US8751010B2 (en) 2008-04-30 2014-06-10 Medtronic, Inc. Time to next recharge session feedback while recharging an implantable medical device, system and method therefore
US8314594B2 (en) 2008-04-30 2012-11-20 Medtronic, Inc. Capacity fade adjusted charge level or recharge interval of a rechargeable power source of an implantable medical device, system and method
US10980461B2 (en) 2008-11-07 2021-04-20 Dexcom, Inc. Advanced analyte sensor calibration and error detection
US10610642B2 (en) 2009-03-27 2020-04-07 Dexcom, Inc. Methods and systems for promoting glucose management
US10537678B2 (en) 2009-03-27 2020-01-21 Dexcom, Inc. Methods and systems for promoting glucose management
US10675405B2 (en) 2009-03-27 2020-06-09 Dexcom, Inc. Methods and systems for simulating glucose response to simulated actions
US9446194B2 (en) 2009-03-27 2016-09-20 Dexcom, Inc. Methods and systems for promoting glucose management
US11382540B2 (en) 2017-10-24 2022-07-12 Dexcom, Inc. Pre-connected analyte sensors
US11706876B2 (en) 2017-10-24 2023-07-18 Dexcom, Inc. Pre-connected analyte sensors
US11943876B2 (en) 2017-10-24 2024-03-26 Dexcom, Inc. Pre-connected analyte sensors
US11350862B2 (en) 2017-10-24 2022-06-07 Dexcom, Inc. Pre-connected analyte sensors
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US11890482B2 (en) 2019-12-20 2024-02-06 Medtronic, Inc. Medical device and method for estimating time between voltage levels of a power source

Also Published As

Publication number Publication date
SE9904087D0 (en) 1999-11-11

Similar Documents

Publication Publication Date Title
WO2001034243A1 (en) Recommended replacement time of an implantable medical device
US6671552B2 (en) System and method for determining remaining battery life for an implantable medical device
US6400988B1 (en) Implantable cardiac device having precision RRT indication
EP0739645B1 (en) System and method for determining indicated pacemaker replacement time based upon battery impedance measurement
US7123964B2 (en) Replacement indicator timer for implantable medical devices
EP1202774B1 (en) Battery status detection
US5370666A (en) Pacemaker with power-consuming component inhibited during storage
US5193538A (en) In vivo implantable medical device with battery monitoring circuitry
US6101417A (en) Implantable electrical device incorporating a magnetoresistive magnetic field sensor
EP1784239B1 (en) Power supply monitoring for an implantable device
EP0763747B1 (en) Apparatus and method for fault-tolerant detection of the depletion of a battery
US6148235A (en) Implantable stimulator with battery status measurement
US6016448A (en) Multilevel ERI for implantable medical devices
US8046071B2 (en) Pacemaker passive measurement testing system
US20050277994A1 (en) Apparatus and method for estimating battery condition in implantable cardiac devices
US8052610B2 (en) Event registration for automatic threshold setting
US11730966B2 (en) Methods, systems, and devices that estimate remaining longevity of an implanted medical device with improved accuracy
US10252062B2 (en) Replacement indicator timer for implantable medical devices
US8996113B2 (en) Recommended replacement time based on user selection
US11493556B2 (en) Methods of determining battery life in an implantable medical device
US5713931A (en) Method and apparatus for detecting amplitude loss in cardiac pacing pulses
US11890482B2 (en) Medical device and method for estimating time between voltage levels of a power source

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase