WO2001033829A9 - Service de fichiers partages a base d'internet avec semantique et acces client du pc natif et controle d'acces distribue - Google Patents

Service de fichiers partages a base d'internet avec semantique et acces client du pc natif et controle d'acces distribue

Info

Publication number
WO2001033829A9
WO2001033829A9 PCT/US2000/030201 US0030201W WO0133829A9 WO 2001033829 A9 WO2001033829 A9 WO 2001033829A9 US 0030201 W US0030201 W US 0030201W WO 0133829 A9 WO0133829 A9 WO 0133829A9
Authority
WO
WIPO (PCT)
Prior art keywords
file
node
client node
file server
remote
Prior art date
Application number
PCT/US2000/030201
Other languages
English (en)
Other versions
WO2001033829A3 (fr
WO2001033829A2 (fr
Inventor
Robert S Phillips
Scott H Davis
Daniel J Dietterich
Scott E Nyman
David Porter
Original Assignee
Mangosoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mangosoft Corp filed Critical Mangosoft Corp
Priority to AU20413/01A priority Critical patent/AU2041301A/en
Publication of WO2001033829A2 publication Critical patent/WO2001033829A2/fr
Publication of WO2001033829A3 publication Critical patent/WO2001033829A3/fr
Publication of WO2001033829A9 publication Critical patent/WO2001033829A9/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/17Details of further file system functions
    • G06F16/172Caching, prefetching or hoarding of files

Definitions

  • the present invention pertains to a multi-user shared file access service provided over a wide area network, such as the Internet.
  • a local area network provides some measures of security against eavesdropping and other unauthorized access as only those with access to the local area network can monitor the data transferred on the local area network.
  • Local area networks enable sharing at two levels. First, groups of users may simultaneously access files in a common storage space. More importantly, users can contemporaneously or simultaneously access the same file. Applications which permit contemporaneous and simultaneous file access amongst multiple users provide "locks," i.e., controls for maintaining the integrity of data. For instance, multiple users are only allowed to access files or portions of files according to compatible access modes.
  • write access to a file, or a specific portion of a file is typically exclusive to one user.
  • more than one user often may be permitted to simultaneously read a file, or a portion of a file, at the same time.
  • privilege access rights are typically specifiable for directories and files.
  • read, write and delete privileges can be restricted to individual users and groups. For example, one user might be provided read, write and delete rights to an entire directory. An entire user group might have only read and write privileges for all files in a directory, but certain users of that group might have only read privileges for a certain file within that directory. A third user group might have only read privileges for all files in a directory. Certain products and services are currently available for assisting users to obtain remote access to files.
  • a number of single user Internet services are available for storing information including those marketed under the names “DrivewayTM,” “IdriveTM,” “FreeDiskSpaceTM,” “FreeBackTM,” “SwapDriveTM,” and “VistoTM.”
  • These services provide a remote storage device, which the user can access while executing a web browser program on the user's computer terminal, to store data for later retrieval.
  • Most of these services operate according to a so-called “publish/subscribe” schema. According to a publish subscribe schema, the user must take deliberate actions while executing the web browser program to transfer files from the user's computer terminal to the remote storage device for storage or to retrieve files from the remote storage device to the user's computer terminal.
  • the user uses the pointing to device to select a selectable displayed feature on the display device (i.e., a "button" or "icon") for uploading files.
  • the user selects a locally stored file for uploading (by locating the file and selecting it).
  • a copy of the file is then transferred via the Internet to the remote storage device where it is stored.
  • a similar sequence of steps can be used to retrieve files from the remote storage device.
  • the publish/subscribe schema requires deliberate user intervention to transfer files between the user's local terminal and the remote storage space. This has several consequences. First, the user must engage in a different set of actions to transfer a file between the remote storage device and the user's local computer terminal than the user normally uses when accessing a file locally resident on the user's computer terminal. As a result, the user must acquire additional skills to access files on the remote storage space.
  • SSL secured socket layer transfers
  • File version control and integrity is not maintained automatically.
  • Some single user systems enable multiple users to access a file albeit, one at a time. That is, user A may access and modify a specific remotely stored file. Subsequently, a second user B may access and modify the same remotely stored file. When user A accesses the modified file again, the file includes the most recent modifications by user B and not the modifications by user A. This requires more effort on the part of users who share access to the files to coordinate their accesses to the files to avoid errors and loss of data.
  • StoragepointTM provides a WindowsTM ExplorerTM Name Space extension object.
  • WindowsTM ExplorerTM Name Space extension object As a result, certain aspects pertaining to user file access are similar for both files which are stored remotely and files which are stored locally. For instance, a user executing the "WindowsTM" operating system can use the "ExplorerTM” program to display the list of files stored on the remote storage device in the same fashion as the user would display a list of files stored locally on the user's computer terminal.
  • the user can transfer files between the remote storage device and the user's computer terminal using similar actions as can be utilized to move files between various local devices of the user's computer terminal, i.e., by "dragging" and “dropping" the icons associated with such files.
  • applications and programs executing at the user's computer terminal cannot seamlessly and automatically access files which reside at the remote storage device in the same fashion as such applications or programs would access files stored locally at the user's computer terminal. The reason is that the automatic mechanism for enabling an executing application to locate and automatically download such a file is not provided by such services. Rather, remotely stored files must first be transferred to the user's computer terminal so that the applications and programs can access them during normal execution.
  • "X-DriveTM" provides a more extensive file service for a single user. Like
  • X-DriveTM enables the user to transfer files between the remote storage device and the user's computer terminal using the same actions for transferring the files between locally physically present devices of the user's computer terminal (i.e., icon dragging and dropping).
  • X-DriveTM also allows applications and programs executing at the user's terminal to seamlessly access files which reside at the remote storage device as such applications or programs would access files stored locally at the user's computer terminal. Specifically, during the course of normal execution of such programs or applications, such files are seamlessly, and automatically transferred from the remote stored device to the user's computer terminal by other software provided by X-DriveTM, when such applications or programs attempt to access the remotely stored files.
  • the user, applications and programs treat remotely stored files the same way as locally stored files.
  • StoragepointTM neither StoragepointTM nor X-DriveTM enable contemporaneous or simultaneous access to files or a group of files by multiple users. Nor do these services maintain the integrity of such files.
  • StoragepointTM offers server encryption but X-DriveTM does not.
  • StoragepointTM uses a secured socket layer to transfer encrypted information between the user's computer terminal and the remote file storage device. Once at the remote file storage device, the information is "re-encrypted" prior to storage to prevent against unauthorized access by StoragepointTM employees.
  • the data exists in non-encrypted form at the site of the remote file storage device immediately prior to the pre-storage re-encryption step and immediately before pre-transfer secured socket layer encryption.
  • Punch NetworksTM provides a version control system whereby every version of a file (i.e., every updated modification specifically "published,” i.e., deliberately uploaded by each user) is maintained. This enables each user in a group to access any specific version of a file and to be assured that any given uploaded version has remained intact between accesses by that specific user.
  • this system cannot be assured to provide a single version of a file which is most up-to-date for each of multiple users who modify the file in an interleaved fashion. For instance, suppose that both user A and user B obtains the same copy of a given version of a file. Users A and B both modify their respective copies differently and desire to upload their modified copies for storage. The result will be that two versions of the file will be stored, one for user A and one for user B, each being a different version. A third user C, will now be required to pick amongst these two versions.
  • Internet services including "EroomTM,” “ChangePointTM,” “X-CollaborateTM,” “eGroupsTM,” “eCirclesTM,” “vJungleTM,” “Hot OfficeTM,” and “HotBizTM,” provide personal remote storage space. Some of these services provide for file sharing under the publish/subscribe schema. In addition, some of the services provide rudimentary document control. Each of these systems has the same problems already noted above.
  • none of the wide area network services available provide for remote file access which maintains the integrity of files by ensuring that each access to a file at the remote file server is to the most up-to-date copy of the file.
  • these services enable contemporaneous and simultaneous access by multiple users to the same files.
  • these services do not provide adequate encryption according to which the manner of encrypting the files is not known at the remote storage device. It is an object of the invention to overcome the disadvantages of the prior art.
  • Each user of a user group of one or more users is enabled to operate an arbitrary client node at an arbitrary geographic location to communicate with a remote file server node via a wide area network.
  • Each user of the user group is enabled to access the files of the file group via the respective client node in communication with the remote file server node via the wide area network. More than one user of user group is permitted to access the file group at the remote file server node simultaneously.
  • the integrity of the files at the remote file server node are maintained by controlling each access to each of the files at the remote file server node so that each access to one of the files at the remote file server is performed, if at all, on a respective portion of each of the one files as most recently updated at the remote file server node.
  • an interface for adapting file access at a first one of the client nodes.
  • the interface designates at the first client node each of the one or more accessible files of the file group as stored on a virtual storage device.
  • the interface also enables access to the designated files in a fashion which is indistinguishable, by users of, and applications executing at, the first client node, with access to one or more files stored on a physical storage device that is locally present at the first client node.
  • an encrypted key is transferred from the remote file server node to a first one of the client nodes via a secure channel.
  • the key is encrypted using an encryption function not known locally at the remote file server node.
  • the transferred key is decrypted at the first client node.
  • the key is used at the first client node to decrypt information of the files downloaded from the remote file server node or to encrypt information of the files prior to uploading for storage at the remote file server node.
  • a manger node which chooses which users may join the group, transmits a message to an Internet email address of a user inviting the user to join the user group.
  • a client node operated by the user uses the information in the message to issue a message to join the user group.
  • the message is usable only once to join the user group.
  • a connection between the particular client node and the remote file server node is authenticated.
  • the particular client node verifies the identity of the remote server node
  • the remote server node verifies the identity of the user of the particular client node. . .
  • the particular client node illustratively encrypts data of a file using an encryption methodology known to the client node but not known to the remote file server node.
  • the client node then uploads the encrypted data to the remote file server node.
  • the remote file server node stores the encrypted file data.
  • the remote file server node illustratively retrieves from storage the encrypted data of a particular file and transmits the encrypted data to a specific client node. Using a decryption methodology known to the specific client node but not known at the remote file server node, the client node decrypts the data.
  • the remote file server node when the remote file server node receives a request from a specific client node to access a particular file, the remote file server node determines whether or not the particular access requested by the specific client node is permitted by privilege access rights associated with the particular file. The remote file server node only permits the access to the particular file by the specific client node if permitted by the privilege access rights
  • access control to a particular one of the files of the group of files is delegated to an access control node.
  • version control of a particular one of the files is delegated to a version control node.
  • FIG 1 shows an illustrative network in which an embodiment of the present invention is intended to be used.
  • FIG 2 shows an illustrative computer terminal or remote file server of the network of FIG 1.
  • FIG 3 shows an illustrative architecture according to an embodiment of the present invention.
  • FIG 4 shows an illustrative screen displayed on a client node according to an embodiment of the present invention.
  • FIGs 5, 6 A and 6B show a flowchart describing a process for joining a new client user to a group of users permitted to access a virtual storage device according to alternate embodiments of the present invention.
  • FIG 7 shows a flowchart describing an authentication process according to an embodiment of the present invention.
  • FIGs 8 and 9 show flowcharts describing, respectively, a download process and an upload process according to an embodiment of the present invention.
  • FIG 10 shows a flowchart describing a file access process according to an embodiment of the present invention.
  • FIGs 11-12 show tables illustrating a reconciliation process according to an embodiment of the present invention.
  • FIG 13 shows an illustrative environment of use of another embodiment of the present invention.
  • FIG 14 shows a flowchart illustrating distributed access control according to an embodiment of the present invention.
  • FIG 15 shows a flowchart illustrating distributed version control according to an embodiment of the present invention.
  • FIG 1 shows a wide area network 100 such as the Internet.
  • This network is composed of local networks 11 -16, access networks a-d and backbone networks A-C forming backbone 1.
  • Devices rl-rl8 denote switches or routers
  • devices hl-hlO denote computer terminals
  • devices asl-as4 denote access servers.
  • Computer terminals typically originate and terminate communications and messages
  • switches, routers and access servers typically merely route messages and communications to another device in transferring such messages or communications to their intended destinations.
  • Access servers also control access of messages and communications from the networks 11-16 to the rest of the wide area network 100.
  • the Internet 100 is an interconnection of a plurality of private networks maintained by network access providers (NAPs) and Internet service providers (ISP), who operate the access networks a-d.
  • the interconnection of the access networks may be carried by various high capacity (i.e., TI, T3, T4, OC-3, OC-48, etc.) privately leased lines of the telephone network, e.g., backbone networks A-C.
  • Communication is achieved in the Internet using a hierarchy of protocols, including the Internet protocol (IP), the transmission control protocol (TCP), the file transfer protocol (ftp), the hypertext transfer protocol (http) and the hypertext transfer protocol over secured sockets layer (https).
  • IP Internet protocol
  • TCP transmission control protocol
  • ftp file transfer protocol
  • http hypertext transfer protocol
  • https hypertext transfer protocol over secured sockets layer
  • the Internet 100 can carry (in packets) messages for requesting information, and such requested information, from a source device to an appropriate destination device.
  • FIG 2 depicts a typical node in the form of a computer terminal 10.
  • the computer terminal 10 typically includes a processor 1 i or CPU, memory 1.2, one or more I/O devices 13-1, 13-2,..., 13-N (e.g., modems, cable modems, network interface cards, etc.), disk 15 (fixed magnetic, removable magnetic, optical, etc.), graphics accelerator and display monitor 16 and keyboard and mouse 17. Each of these devices is connected via one or more busses
  • An illustrative example of the computer terminal 10 is a "PC" compatible computer capable of executing the Windows NTTM operating system distributed by Microsoft Corp.TM, a company located in Redmond, Washington.
  • a similar architecture can be used for routers and access servers by substituting disks 15, memories 12, I/O devices 13-1 to 13-N and processors 11 of appropriate sizes, number and/or capacity.
  • the keyboard and mouse 17 and/or the graphics accelerator and monitor 16 can be omitted.
  • the memory 12 can include both a large main memory, e.g., implemented with SDRAM circuits and a smaller cache memory, e.g., implemented with SRAM circuits.
  • the invention is illustrated using PC computers, such as desktops, laptops and file servers, as nodes.
  • the invention is also applicable for other types of nodes such as game consoles and Internet receivers. Such devices have different mechanisms for enabling user input.
  • the nodes will be presumed to include "pointer devices" implemented using an input device, such as a mouse, track pad, joy stick, track ball, stylus, etc. and suitable software which responds to the manual input device.
  • the invention is illustrated using a pointer device designed to work with the Windows NTTM operating system. Such a pointer device accepts user input regarding direction and selection and supports the well known user operations of "selecting,” “dragging,” “clicking on,” “double-clicking on,” etc. graphical representations of files, devices, etc. to activate access or otherwise use them.
  • the invention is illustrated herein for the Internet as the wide area network, but of course is applicable to other wide area networks.
  • Client node describes a device such as a computer terminal hl-h8; adapted according to the invention for purposes of enabling access to files stored locally in the memory 12 or disk 1.5 of the client node or remotely as described herein.
  • Remote file server node describes an apparatus, such as a file server computer h9-hl0, including a storage device, such as one or more disk drives 15, memory circuits 12, etc., adapted according to the invention to enable multiple simultaneous client node access to groups of files.
  • one or more remote file server nodes e.g., nodes h9-hl0, which can be implemented using Proliant 6400TM servers distributed by CompaqTM a company located in Houston, Texas, have a large disk storage capacity, e.g., implemented using EMC Symetrix SANsTM, distributed by EMC Corp.TM, a company located in Hopkinson, Massachusetts. This disk storage capacity is allocated for storing a group of one or more files as if on a single virtual storage device or virtual drive.
  • a group of users is enabled to access the group of files on such a virtual storage device by accessing data in local caches and interaction between the remote file servers nodes h9-hl0 and geographically remote client nodes hl-h8 operated by the users.
  • the remote file server nodes effectively provide a consistent and persistent "home" at which a master copy of each file of the group is persistently maintained.
  • the remote file server nodes h9-hl0 enable access to the files in a shared fashion-multiple client nodes operated by users can simultaneously access the files of the group stored on the virtual storage device.
  • the copies of the files on the remote file server nodes serve as a master or true source copy
  • the accesses to the copies of the files at the remote file server nodes illustratively are performed in a fashion described below which maintains the integrity of these master copies of the files at the remote file server nodes.
  • each client node which "hides" the geographic remoteness of the origin of the files from both the users of the client nodes and applications executing on the client nodes.
  • the files "appear,” i.e., entirely behave, and can be accessed using pre-existing programs and applications, as if locally present on the client nodes. Any file or directory information transfer and integrity maintenance is performed transparently to the user and applications which otherwise function, most notably, access the files, as if they were locally present.
  • security is provided in several forms.
  • the client nodes and remote file server nodes are geographically remote and may be operated by different organizations.
  • a manner is provide for each of the client nodes and the remote file server nodes to authenticate each other prior to communicating sensitive information.
  • a secure channel is provided to enable transfer of file data over the Internet, which otherwise is inherently insecure.
  • client node h8 illustratively represents a mobile client node that can connect to a remote file server node h9 or hlO via any available communication channel to the Internet 100, e.g., a land-line telephone dial up channel or wireless channel.
  • the remote file server nodes can implement several virtual storage devices.
  • a group FI of one or more virtual storage devices can be provided for a single group of users Gl.
  • a group F2 of one or more additional virtual storage devices can be provided for an entirely contained subset of users of that group G2 Gl .
  • Yet another group F3 of one or more additional virtual storage device can be provided entirely for a distinct, group of users G3, where G3nGl ⁇ ⁇ .
  • one specific user gl to be part of two different groups, say Gl and G4, where Gl ? G4, where the users of Gl can access the file group FI and where the users of G4 can access the file group F4 of another virtual storage device provided by the remote file server nodes.
  • user gl can freely transparently and simultaneously access the files of groups Gl and G4 in an arbitrary fashion.
  • One remote file server node may contain all of the files of a given group Gl and provide all of the file access functions described below for that group.
  • the storage of the files of a group are divided amongst multiple remote file server nodes which may be in close geographic proximity to one another or which may be geographically remote from one another.
  • the client nodes can access one or more files via each of multiple remote file server nodes.
  • the specific remote file server node believed to perform a file access most efficiently is chosen for a file access operation by a given client node.
  • multiple remote file server nodes are provided as a bank.
  • the remote file server node which is least "busy" servicing other file accesses is allocated to the next incoming client node file access.
  • FIG 3 shows a typical architecture for implementing the invention.
  • the functional blocks "Volume Management" 20 and “File System” 30 can be implemented by suitable software executing on the processor 11 of a client node.
  • the "Local Disk Store” 40 is a software subsystem executed by the processor 11 of the client node which manages storage of information on the local disk of the client node. The division of the client node software in this fashion is merely illustrative.
  • Each "volume” 42, 44 figuratively represent a different virtual storage device which is accessible to the client node. Two different virtual storage devices are shown for sake of illustration although the exact number will vary.
  • the precise number accessible on a given client node will depend on the particular user who is using the client node at that moment.
  • These storage devices are "virtual" in that they are presented to the user and applications by the operating system as if they were actual physical devices.
  • they are constituted by an elaborate scheme of local "cache" storage of selected file data and directory information on an actual physical storage device (e.g., disk 15) of the client node and secured connection communication by the client node (e.g., using the I/O device 13-1) with the remote file server node to obtain missing file data and directory information and to ensure the integrity of the master copy of such information at the remote file server node.
  • a volume index 45 assists in identifying file data and directory information stored on the virtual storage devices 42, 44.
  • the remote file servers are actually shown as organized into a "public server” 50 and "file servers" 61, 62, ... although this organization is merely illustrative.
  • the public server 50 is provided as a point of first contact for the client nodes, whereas the file servers 61, 62, ... actually perform the file access and integrity maintenance functions. More specifically, the public server 50 is initially contacted by the client nodes when a user desires to join a particular virtual storage device. In addition, the public server 50 can redirect each client node to the correct or most efficient file server 61, 62, ... for providing the file access and integrity maintenance features described below.
  • the public server 50 is shown as including a component labeled "volume management web pages" 54 and a component labeled rendezvous server" 56. Both the public server 50 and the file servers 61, 62, ... are implemented by suitable software executing on the processor 11 of each remote file server node. Given that the specific division of functions of a remote file server node is arbitrary, below, the term remote file server node will be used for sake of generality, without reference to specific components to which each function has been allocated in a given configuration.
  • the client software may be deployed at one, all or some of the computer terminals on a local area network, such as the host computer terminals h4, h5 and h6 oil subnetwork 12 of FIG 1. Also, the client software can be deployed on moveable computer terminals (such as laptops) and or computer terminals at multiple different geographic locations, e.g., host computer terminal h8.
  • the client software/client node is capable of performing the following functions: (a) Locating remote file server nodes on the wide area network: As noted above, the client nodes access one or more virtual storage devices 42, 44 identified as distinct units without regard as to where such virtual storage devices are located or as to precisely on which group of one or more remote file servers implement such virtual storage devices.
  • a file server can provide file access for (actually store, retrieve or modify the data of) an entire single virtual storage device, multiple virtual storage devices, parts of such virtual storage devices or combinations thereof. Furthermore, it is sometimes desirable to maintain mirror copies of data for sake of robustness (i.e., to have a backup remote file server node in the event one file server is disabled), ease of maintenance, or traffic control.
  • the client software transparently accesses locally stored information, such as URLs, for determining how to send commands, data or other information to the appropriate remote file server node providing the functionality of a virtual storage device to be accessed;
  • (f) Maintaining the integrity of file data access at this client node includes, if possible, performing version checks on file data prior to accessing it and obtaining the most up-to-date copy of accessed file data prior to access. Such version checks may be performed at the file level or on individual portions of a given file. This is described in detail in U.S. Patent No. 5,918,229 and U.S. Patent Application Serial No. 08/754,481, both assigned to MangoSoft Corp. and are fully incorporated herein by reference.
  • the client node software recognizes and resolves conflicts in file data this client node modified while disconnected from the remote file server vis-a-vis file data modified at the remote file server node (by another client node) while this client node was disconnected from the remote file server node.
  • the client software also maintains separate storage for file data and directory information, which cannot be reconciled with the remote file server node and other integrity warning messages. This is described in greater detail below;
  • At least one client node is provided with client manager software, which enables this node to function as the client manager node.
  • the purpose of the client manager node is to provide the customer who uses the service to manage and administer each of the virtual storage devices of that customer.
  • the customer designates one or more of the client nodes as client manager nodes with the ability to provide system wide client side management of the file service.
  • the client manager node is provided with the ability to create and delete entire virtual storage devices on the remote file server nodes.
  • the client manager node is provided with full access privileges for all of the files and directories on each virtual storage device created by the client manager node and therefore may read, write, modify or delete any file or directory on any of the virtual storage devices it creates.
  • the client manager node is able to designate new user accounts and to provide sufficient information to enable a client user to join one or more of the virtual storage devices ' managed by the client manager node.
  • the public server and file server software illustratively is deployed at the remote file server nodes, e.g., computer terminals h9 and blO.
  • the public server and file server software performs the following functions:
  • FIG 3 shows three client node software elements, namely, the volume management, file system and disk subsystem. These software elements are designed to integrate with a conventional operating system/native file system 48 which may be sold with the client node.
  • the manner by which the client node software is integrated with the operating system/native file system 48 may be specific to each operating system/native file system 48 and is normally dictated by specification and application programming interfaces of the operating system/native file system creator.
  • MicrosoftTM specifies an API for integrating software affecting the manner by which files are identified and retrieved by other applications and programs executed with the Windows NTTM operating system.
  • the specific details of the integration of the client node software are omitted below. Rather, the discussion below describes in general the operations carried out by the client node software to achieve certain ends according to the invention.
  • FIG 4 shows an illustrative image which is depicted on the display monitor of a client node while using the invention, e.g., with the MicrosoftTM Windows NTTM operating system.
  • the displayed image is the familiar image of a window 1000, including "buttons"
  • menu bar 1010 with selectable drop-down menu buttons 1012, "standard button bar” 1020 with selectable “navigation buttons” 1022, "address bar” 1025, "folders” sub-window 1030 and sub-window 1040.
  • the address bar 1025 includes a graphical icon representing a network connected storage device labeled "F”.
  • the "folders" sub-window 1030 displays a hierarchical list of identifiers 1032, 1034 for storage devices and folders thereof.
  • This list includes a corresponding entry 1034 for the network connected storage device "F” and provides further identification information for this device "Lets Work on '@v-drive” ⁇
  • Sub- window 1040 displays another hierarchical list of graphical icons representing files .1042 and folders (directories) 1044 contained on the connected storage device represented by the graphical icon 1034.
  • the hierarchical list of items 1032, 1 34, and sub-list shown in sub-window 1040 is intended to show individual files and a hierarchical organization for such files into directories and storage devices.
  • the storage devices shown graphically in the window 1000 can represent entire actual locally present physical storage devices, storage devices which are connected remotely, and virtual storage devices, typically implemented as partitions of the storage capacity of the actual local and remote physical storage devices.
  • the Windows NTTM operating system does not distinguish between such storage devices from the perspective of the graphical display to the user.
  • the identifiers "F" and "Lets Work on '@v-drive'" refer to a virtual storage device provided by the system and service according to the invention.
  • the client software provides the appropriate information according to the operating system API for providing the appearance of an actual physical storage device.
  • the operating system lists identifiers in the graphical display portion of the user interface (i.e., the images displayed on the display monitor of the client node) to the client user as any other storage device, with the appropriate properties.
  • the operating system enables the user to access these identifiers for the virtual storage device in the same identical fashion as the identifiers for any other storage device. The user can thus "click”, “double click,” “drag” and “drop” on such identifiers. These actions are well-known selection, activation, movement or re-organization operations achieved with the pointer device and therefore are not described further herein. It should be noted that the client user may also use the DOSTM command line interpreter to access.
  • the client node software also provides certain functionality for identifying and obtaining files and file data as the object of an action selected by one of the above pointer device actions. For example, if a client user "double-clicks" on an identifier for the virtual storage device "F" or a directory/folder hierarchically listed under virtual storage device "F", this indicates a user command to "open” and view the contents of the virtual storage device or directory/folder, respectively. This requires identification of the appropriate hierarchical sub-directory information for retrieval and listed display by the operating system.
  • the client node software provides such information to the operating system which performs the rest of the tasks. Likewise, if the user "double clicks" on the identifier of a file itself, this serves as a user command to execute an application represented by the file (if the file contains an executable application), or to execute an available application on the file as an object (if the file contains data). Again, the client node software identifies the appropriate file information for the operating system and provides such file data to the operating system which causes the appropriate execution.
  • the client node software provides sufficient integration of the functionality described below for identifying and obtaining the appropriate file and providing such information to the existing operating system to enable correct execution.
  • the client node software performs such tasks at all times for automatic application initiated file execution or retrieval. That is, suppose an application is currently executing. In the course of execution, the application causes an access to another file (e.g., attempts to execute an application contained in another file or attempts to read, write, modify, etc. the data contained in another data file). In so doing, the application generates the appropriate request to the operating system to perform the appropriate file access operations.
  • the- client node software intervenes and assists the operating system in identifying the appropriate file and in providing the data of the file to the operating system to complete the access to the file (i.e., read, write, modify, delete, etc.)
  • the client node software does this transparently and automatically without requiring intervention by the user. This has a net effect from the perspective of the client user and the applications executing on the client node. Specifically, the virtual storage device, and its contents (i.e., all of the files, directories/folders, etc. stored in the virtual storage device), appears, to the client node user and the application executing at the client node, to be locally present.
  • the client node user and applications executing at the client node access the virtual storage device and its contents in the same manner as an actual locally physically present storage device at which such contents are permanently and persistently stored/"homed".
  • the client user nor the application executing at the client node is aware of the actual location or home of the files as the integration is perfectly transparent and seamless.
  • the client node software merely serves to locate and obtain valid copies of remotely stored or homed directory/folder information and file data. As described in greater detail below, the performance of these tasks by the client node software often requires several steps.
  • the client node software may determine if a copy of the director /folder information or file data is cached locally (e.g., in a cache memory, main memory, or disk actually physically present at the client node).
  • the client node software may verify that the locally cached copy of the directory/folder information or file data is still valid.
  • the client node software may download a valid copy of the directory/folder information or file data. Periodically, the client node software may upload the directory /folder information or file data to permanently store modifications.
  • each client node has the ability to simultaneously write to a file or part of a file. To achieve this, each client node may actually perform its respective write indirectly, e.g., through a single intermediary node which actually performs each access on behalf of each client node.
  • a directory file is a file containing data for locating and accessing all of the files and subdirectories of a given directory.
  • the respective directory file must be modified to reflect the change.
  • Multiple client nodes must be able to perform such modifications simultaneously.
  • the directory file is not actually directly accessed by each client node. Instead, the accesses to the directory mode are performed by a single node, e.g., one of the remote file server nodes on behalf of each client node.
  • the remote file server node functions as an intermediary node which performs each required access (most notably a modification or write operation) on behalf of each client node.
  • each required access most notably a modification or write operation
  • the client node does not actually directly access the directory file: Instead, the directory file access is performed by the remote file server node as an intermediary.
  • the client node software assists in achieving such file accesses in a coherent fashion.
  • the client node software can transmit to the remote file server commands for "locking" files or portions of files to prevent access to such files or file portions according to incompatible modes. The net effect is to prevent another client node which desires to access the file from doing so.
  • the client node software can transmit query commands to the remote file server regarding the lock status of files and can receive and forward the response to such commands to the operating system to prevent an access by this client node which is incompatible with an access currently being performed by another client node.
  • the generation of file locking commands, and determination of when a certain file access can be performed in view of the lock status on files is achieved according to the operating system or other applications executing at the client node.
  • the client node software merely serves as a proxy for forwarding such commands and statuses between the client node and the appropriate remote file server node. All such functionality performed by the client node software is automatic and transparent to the client node user and applications executing at the client node.
  • FIG 5 shows a process for creating a virtual storage device and adding users.
  • the client manager node Under control of the user of the client manager node in step SI 00, the client manager node issues a message containing a command to invite a new user, the email address of the new user, a user name for the new user and an identifier of the virtual storage device ("drive id") of the virtual storage device on which the new. user is to be invited.
  • drive id an identifier of the virtual storage device
  • the remote file server node determines if the virtual storage device indicated by "drive id" exists but the user name is already contained on a list of users.
  • the remote file server node maintains a list of all user names who ever joined the virtual storage device, including active user names of users of the group permitted to access the virtual storage device, and deactivated user names. If the user name is not new, or the virtual storage device does not exist, then the remote file server node rejects the request in step SI 04, by transmitting back to the client manager node via the Internet, a rejection message.
  • the client manager node displays a failure message to the user.
  • this prevents multiple uses of the same user names for a given virtual storage device.
  • the remote file server node creates a record for the new user in step SI 06.
  • the remote file server node communicates the successful completion of this step to the client manager node.
  • the client manager node creates a one time password ("OTP").
  • OTP is a bidirectional encryption decryption key.
  • the client manager node communicates to the new client user an invitation to join the group of user permitted to access the virtual storage device, which invitation includes the user name ("user id"), the identifier of the virtual storage device ("drive id”), and optionally the OTP.
  • the client manager node can email the invitation to the new client user node via the Internet, by addressing the email message to an Internet address of the client user.
  • the email message is transferred in a secure fashion, e.g., in encrypted form, to prevent unauthorized discovery of the OTP.
  • the OTP may not be included in the email invitation.
  • the new client user may have to communicate with an intermediate Internet address to receive the OTP upon validation of the new client user.
  • the client manager node encrypts a data key (the purpose of which is described in greater detail below) with this OTP, to produce OTP(data key).
  • FIGs 6A and 6B each show a flowchart illustrating alternative processes by which a new client user joins a pre-subscribed user group permitted to access a virtual storage device.
  • the new client user receives the above-described invitation, e.g., as an encrypted email message, at a particular client node.
  • the client user activates the join process by clicking on the email message.
  • the email message includes the URL of the remote file server node at which the client node user can join the pre-subscribed user group for the virtual storage device.
  • the message includes the URL of another site from which the client node subscription request can be redirected to connect with the correct remote file server node specific to the virtual storage device of interest to the client node user.
  • the activation of the join process results in the transmission of a message from the client node to the appropriate remote file server node, e.g., communicating the user name and identifier for the virtual storage device to the remote file server node.
  • this is achieved using the so-called https protocol.
  • the remote file server node to be contacted may be registered with a trusted third party.
  • Such authentication services are provided by companies such as VerisignTM, a company located in Mountain View, California.
  • step SI 22 the remote file server node accesses the list of records to determine if it has an entry corresponding to this new client user. If not, in step SI 24, the remote file server node deems the message invalid and ceases processing. If desired, the remote file server node can be adapted to transmit a message to the client node indicating that the j oin request was invalid.
  • the client node receives a message indicating that the remote file server node can proceed with the subscription process. If the client node does not already have the appropriate client node software, this message may be in the form of, or include, a download of the appropriate software. This download can include one or more URL addresses of one or more remote file server nodes with which the client node should connect in the future to perform actual file access operations. In any event, the client node executes the client node software.
  • step SI 26 the client node creates a drive container to store information needed for authenticating information when connecting and for caching including files, folders, user objects, access permission objects, etc.
  • the client node also generates a public key/private key pair Puc, Pre.
  • the client node then transmits the public key Puc to the remote file server node.
  • this pair of keys is randomly generated according to any well-known algorithm for so doing.
  • the client node permanently stores the private key Pre for subsequent use as described below.
  • the remote file server node stores the public key of the client node in the record associated with the client node.
  • the remote file server node encrypts the already encrypted message OTP(data key) using the public key Puc to produce the twice encrypted message Puc(OTP(data key)).
  • the remote file server node then transmits this twice encrypted message Puc(OTP(data key)) to the client node.
  • the remote file server node also transfers it's own public key Pus to the client node.
  • the client node stores the remote file serve node's public key Pus for further use as described below.
  • step SI 32 the client node receives the twice encrypted message Puc(OTP(data key)).
  • the client node decrypts this twice encrypted message to obtain the data key.
  • step SI 34 the client node encrypts the clear text data key using its public key Puc to produce the encrypted data key Puc(data key).
  • the client node then transmits this encrypted data key Puc(data key) to the remote file server node.
  • step SI 36 the remote file server node receives the encrypted data key Puc(data key) and stores this information, along with the public key Puc of the new client user. This completes the join process.
  • the user upon receipt of an email invitation, activates the join process in step SI 50 by clicking on the email message.
  • the email message includes the user id, the drive id, and optionally a hash of the OTP.
  • a trusted third party such as VerisignTM, validates the "certificate" or authenticity of the remote file server identified by the drive id.
  • step S 154 the remote file server validates the user id, drive id, and the hash of the OTP. If there is a match, i.e., the remote server validates the above, then the process proceeds to step SI 64 which will be described below.
  • step SI 52 if the hash of the OTP was not included in the email invitation, then the remote file server validates only the user id and drive id. As stated above, the new client user obtains the OTP separate from the invitation email. If there is a match, then in step SI 60 the remote file server prompts the client user to supply the OTP which is validated in step SI 62. If there is no match in either step SI 56 or step SI 62, then the invite is invalidate in step 158. Otherwise, the process proceeds to step SI 64. In step S 164, the client node creates a drive container and generates a public key/private key pair Puc, Pre.
  • the client node then transmits the public key Puc to the remote file server node in step SI 66.
  • the client node permanently ' stores the private key Pre for subsequent use as described below.
  • step SI 68 a different, authenticated client user of the same pre-subscribed user group downloads the new client user's public key Puc and encrypts the data key Puc (data key).
  • step SI 70 the authenticated client user updates the new client user record at the server with the encrypted data key Puc (data key). At this point, the new client user may now decrypt the remote file server drive data corresponding to the data key, in step SI 72.
  • the data key is a two-way encryption/decryption key which is used to encrypt data prior to uploading it from a client node to the remote file server node or for decrypting data downloaded from the remote file server node.
  • the remote file server node At no time does the remote file server node have a clear-text version of the data key. Rather, the remote file server node only has encrypted versions of the data key, namely, either OTP(data key) or Puc(data key). In fact, the remote file server node has one encrypted version of the data key for each client node, as encrypted with the public key of that client node.
  • the public/private key pair Puc, Pre are one-way keys. That is, the public key Puc can be used to encrypt a message. However, such a message can only be decrypted with the corresponding private key Pre. Thus, while the remote file server node maintains the public key Puc and the data key encrypted by the respective public key Puc(data key), this information is not sufficient for the remote file server node to decrypt the data key.
  • the client node creates an identity profile which is a locally stored data file with sufficient information for enabling the client node to access the virtual storage device.
  • the identity profile includes the private key Pre which is necessary for a given user to authenticate a connection (as described below), and to retrieve (its copies of) the data key(s).
  • the copy of the identity profile is encrypted on the client node with a key derived from a user supplied password. This prevents an unauthorized user of the client node from posing as the actual user who joined the pre-subscribed user group of the virtual storage device.
  • the (encrypted) identity profile may be copied onto a removable storage medium (e.g., a floppy diskette) and/or placed on multiple client nodes.
  • the client node user can then access the virtual storage device from each client node provided with a copy of the identity profile.
  • a copy of the separately stored identity profile e.g., on a removable medium, enables the user to restore the identity profile on any given client node, should the client node software become damaged or corrupted. This is very important as the private key Pre is known only to the client node and the manner by which the data is stored at the remote file server node is unknown to the remote file server node. Absent backup copies of the client node identity profile, it will be impossible for that user to access the remote file server node under the given client user account should the client node software be damaged or corrupted.
  • FIG 7 shows a flowchart describing a process for authenticating a connection between a client node and a remote file sever node. This process is performed each time the client node and remote file server node establish a connection, assuming that the client node has already joined the pre-subscribed user group of the virtual storage device that it v/ishes to access by the respective connection.
  • the client node issues a connection request message via the Internet to the remote file server node.
  • the client node issues the message to a pre-established URL address assigned to the appropriate remote file server node implementing the virtual storage device to be accessed by the client node.
  • the message includes the user name of the client node user, the identifier of the virtual storage device to be accessed and a random string S.
  • the remote file server node receives the message and first determines if the user name and virtual storage device identifier are a valid combination by consulting a list of valid, pre-subscribed user names stored at, or otherwise accessible by, the remote file server node for the respective virtual storage device identified by the virtual storage device identifier.
  • the remote file server node If the remote file server node fails to confirm that the user name is contained in a list of active user names for the virtual storage device, the remote file server node denies the connection in step S204. In denying the connection, the remote file server node may issue an appropriate rejection message to the client node.
  • the remote file server node confirms that the user name is listed as active ⁇ on the list associated with the virtual storage device indicated by the identifier in the message.
  • the remote file server node encrypts the random string S with its private key Prs to produce the encrypted random string Prs(S).
  • the remote file server node transmits this encrypted random string Prs(S) and a second random string K to the client node.
  • step S210 the client node decrypts the encrypted random string Prs(S) with the public key Pus of the remote file server node in order to obtain the clear text message of the original string S.
  • step S212 the client node determines if this decryption of the received encrypted message using the servers public key, Pus(Prs(S)), yields S. If not, then the client node determines that it has failed to authenticate the identity of the remote file server and breaks the connection in step S214. On the other hand, if this decryption of the received encrypted message using the servers public key, Pus(Prs(S)), yields S, then the client node determines that it has successfully authenticated the identity of the remote file server node.
  • the client node presumes that only the remote file server node has the capability (most notably, the counterpart private key Prs) for encrypting S in a fashion that it can be perfectly decrypted using the server's public key Pus to recover S. Assume that the client node has successfully authenticated the identity of the remote file server node.
  • the client node encrypts the second random string K with the client node's private key Pre to produce the encrypted second random data string Prc(K). The client node then transmits the encrypted second random data string Prc(K) to the remote file server node.
  • step S2128 the remote file server node attempts to decrypt this received encrypted second random data string Prc(K) with the public key Puc stored for this client node (for accesses to this virtual storage device).
  • step S220 the remote file server determines whether or not the attempted decryption with the public data key of the client node, Puc(Prc(K)) yields the second random data string K. If not, then in step S222, the remote file server determines that it has failed to authenticate the identity of the client node and denies or breaks the connection.
  • the remote file server node determines that it has successfully authenticated the identity of the client node. That is, the remote file server node determines that only the client node has the capability (most notably, the appropriate private key Pre) for encrypting the random string K in a fashion such it is decrypted with the public key Puc, to yield the second random string K. In such a case, the remote file server node grants the connection in step S224.
  • the client node authenticates the identity of the remote file server node and the remote file server node authenticates the identity of the client node.
  • the connection is deemed authenticated only if the client node authenticates the identity of the remote file server node and the remote file server node authenticates the identity of the client node.
  • the client node can access file data at the remote file server node in a fashion which maintains the integrity of the file data (as described below).
  • file data and possibly other sensitive information, such as directory information, etc.
  • the Internet actual consists of several private networks maintained and operated by unknown parties.
  • the client node nor the remote file server node makes any assumptions regarding the security of data in transit over the Internet and instead the presence of unauthorized eavesdropping parties is presumed to be ever-present. Moreover, the client node also does not presume that the remote file server node is secured and takes measures to ensure that no unauthorized access to the file data can occur at the site of the remote file server node(s).
  • FIG 8 illustrates a process carried out for secured uploading of file data from the client node to the remote file server node.
  • the client node has file data to upload to the remote file server node.
  • the client node creates a file header including the information indicating the file size, segment size and number of segments. It may be possible to actually provide less information. For example, if the segment size is constant over the file transfer, but not known ahead of time, then the file size and segment size need only be specified (the number of segments being the quotient of the file size/segment size). Alternatively, only the number of segments and the segment size need be specified.
  • the file header illustratively includes an object identifier (OID) for the particular data key used for encrypting the file data to be uploaded.
  • OID object identifier
  • step S302 the client node transfers the next to-be-uploaded segment of file data to a buffer.
  • the buffer is a portion of main memory storage space of sufficient capacity for holding the segment data temporarily.
  • step S304 the client node compresses the file data segment in the buffer. This reduces the amount of information (i.e., number of bits) representing the file data segment.
  • a lossless entropy coding compression technique is used, such as Huffman encoding.
  • step S306 the client node encrypts the compressed data in the buffer using the data key.
  • the particular encryption technique used allows for decryption with the same data key.
  • step S308 the client node appends the header created in step S300 to the encrypted data and transmits the data via the (I/O device of the client node and the) Internet to the remote file server node.
  • the transmission control protocol and the Internet protocol are used to transmit and to acknowledge uncorrupted receipt of data.
  • step S310 the remote file server node receives the transmitted encrypted and compressed file data including the header. Using the offset information in the header, the remote file server locates the correct storage space, within the respective (master) copy of the file at the remote file server node, at which writing is to begin. The remote file server node then writes (causes the storage device to write) the encrypted, compressed file data segment beginning at the respective offset.
  • the client node determines if the transfer of the portion of the file has completed. If not, the client node returns to step S302 and transfers the next to-be-uploaded segment to the buffer. Note that in step S308, the client node may omit or suitably modify the file header in whole or in part for subsequently transmitted encrypted and compressed file data segments.
  • the upload process stops. It should be noted that the above-description presumes that the client node had the necessary file sharing rights and privileges access rights to perform the above noted upload operation. It is also presumed that the client node had the most recent or updated version of the data uploaded. A discussion as to how this is achieved is described below.
  • FIG 9 illustrates a download process for securely transferring file data from the remote file server node to the client node.
  • the process in FIG 9 presumes that an authenticated connection has been established and the client node transmits a request to the remote file server node to download part of the file.
  • the request can be a new request, i.e., a request not previously initiated, or a request to resume a partially completed process.
  • the former would occur if the communication channel between the remote file server and the client node is interrupted or closed before completion of the download request.
  • the remote file server node initially determines if the download request is new or if the download request is to resume/complete transfer of file data which request has been partially satisfied. If this is a new request, in step S322, the remote file server node sets an internal counter "Next Segment" to indicate the first to-be-downloaded segment, e.g., equal to zero.
  • step S324 the remote file server node sets the internal counter "Next Segment" to indicate the next to-be-downloaded segment following the last successfully downloaded segment, e.g., equal to the bytes already successfully downloaded divided by the segment size.
  • step S326 the remote file server node transmits to the client node the file header stored for the file from which the client node has requested file data.
  • the client node receives the file header and obtains the OID of the data key from the file header.
  • step S328 the client node uses the OID to retrieve the appropriate data key using the OID, including, if necessary, requesting that the remote file server download the appropriate data key. In such a case, the client node transmits a request for the appropriate data key to the remote file server node.
  • the remote file server node uses the OID to identify the appropriate encrypted data key and transmits this encrypted data key to the client node.
  • the encrypted data key is retrieved from a list of encrypted data keys stored in the client user record associated with the client user currently operating the client node.
  • the manner by which multiple data keys are stored at the remote file server node is described in greater detail below.
  • the client node obtains the appropriate encrypted data key and decrypts the data key using the private key specific to the client node.
  • the client node extracts the buffer size and header slot/offset information. Initially, such information is specified by the file header.
  • step S334 the client node transmits a request to the remote file server node to download a portion of file data, of a certain amount of information (e.g., a number of bytes equal to the capacity of a buffer set aside in the main memory of the client node for receiving downloaded data), beginning at a specified offset from the beginning of the data file.
  • the remote file server node responds to this request by retrieving the requested portion of file data from the appropriate storage device and transmitting the portion of file data to the client node, e.g., via TCP/IP.
  • step S336 the client node decrypts the data in the buffer using the data key obtained in step S330.
  • step S3308 the client node decompresses the decrypted data and transfers the decompressed, decrypted data to an appropriate storage location of an internal storage memory (the memory 12 and/or the disk memory 15). For example, considering that the file data is downloaded in segments, the client node illustratively pieces together in proper sequence the downloaded, decompressed and decrypted data segments to reproduce a replica copy of the requested file data.
  • step S340 the client node determines whether or not the all of the requested file data has been successfully downloaded. If not, then in step S342, the client node increments it's counter of the Next segment to be downloaded and causes steps S332-S340 to be repeated.
  • a client node capable of allocating a new data key for use by the client users of the group does so as follows. First, the client node generates the new data key.
  • This data key may be used to encrypt file data transferred to the remote file server node.
  • the client node then encrypts the new data key using is public key Puc to produce an encrypted new data key Puc(new data key).
  • the client node then transmits (e.g., via the Internet) the encrypted new data key Puc(new data key) to the remote file server with a command for instructing the remote file server node to store the new data key and to assign an OID to the new data key.
  • the remote file server responds by storing the encrypted new data key Puc(data key) in the list of keys associated with the client user operating this client node, e.g., in the client user record for the client user.
  • each client user in the pre-subscribed user group maintains a complete list of all public keys Puc', Puc",..., etc. of every other client user of the pre-subscribed user group.
  • the complete list is accurate since every time a new client user is added, the new client user's public key is transmitted to each client user in the pre-subscribed user group.
  • the client node sequentially requests (e.g., by transmitting request commands via the Internet to the remote file server node) the public key Puc', Puc",..., etc. of each client user of the group for which the client node desires to provide the new data key.
  • the remote file server node responds by retrieving and transmitting to the client node via the Internet the public key of each client user Puc', Puc", ... , etc. which this client user node has requested.
  • the client node then encrypts the new data key using each of these received public keys Puc', Puc",..., etc. to produce encrypted new data keys Puc'(new data key), Puc"(new data key),..., etc.
  • the client node then transmits to the remote file server node via the Internet each of these encrypted new data keys Puc'(new data key), Puc"(new data key),..., etc. for storage in the respective user records associated with the corresponding client user. That is, the encrypted new data key Puc'(new data key) is stored in the client user record associated with the client user having the public key Puc', the encrypted new data key Puc"(new data key) is stored in the client user record associated with the client user having the public key Puc", etc.
  • the remote file server node never has a clear-text, i.e., non-encrypted form, of any data key.
  • each data key is encrypted using the public key of a respective client node.
  • the possessor of the respective private key namely, the respective client node
  • only a given client node knows the respective methodology (in this case, the private key) for decrypting its respective copies of each data key.
  • the remote file server never has a clear-text copy of a data key, it maintains each public which can be used to encrypt such data keys for each client node.
  • the remote file server node and client nodes maintain the integrity of the group of files on the virtual storage device by ensuring that all accesses to the (master) copies of the files maintained on the virtual storage device occur on the most up to date version of these (master) file copies. This can be tricky considering that: (a) multiple users can access the group of files simultaneously;
  • a local copy of accessed file data is typically transferred to, and maintained at, the client node so that file accesses tend to occur on the local copy;
  • this embodiment of the invention supports "disconnected mode" file access, according to which a client node may continue to access the local copy of the file data even though the client node may be unable to communicate with the remote file server node.
  • file integrity maintenance provides a very predictable outcome for file and directory modifications-either the modification is achieved as expected or not permitted at all. This enables all native operating system application programming interfaces to operate so that all multi-user applications accessing the files function as if the remote file server node and the client nodes, at which such multi-user applications execute, were on the same local area network.
  • the remote file server node is separated from one or more of the client nodes by a wide area network, and although communication is not always possible between the remote file server node and any given client (and in fact is not guaranteed or even needed between any two of the client nodes), the same expected behavior is achieved as can be anticipated on a local area network which supports multi-user and shared file access.
  • a file version control is added to each file and each directory stored on the virtual storage device (i.e., both with the master copy at the remote file server node and the local copy at each client node).
  • the file version control is used to ensure that, whenever possible, the client node only performs an access on the most up-to-date version of the file data.
  • the file version control is also used to identify conflicting modifications to files and to reconcile them.
  • it is highly time consuming and inefficient for the system according to the invention to transfer updated file data and directory information for every opened file from the remote file server nodes to each respective client whenever a change occurs. Instead, the following update policy is performed instead.
  • a check is first performed as described below to ensure that the client node has the most up-to-date information.
  • a check is performed to ensure that the directory information is up-to-date as of the time of the access.
  • file sharing mode and privilege access right checks can also be performed at the same times.
  • the remote file server node can determine that the file is currently in use by the given client node. The remote file server node can then determine if the given client node is still in communication with the remote file server node or if it is out of co munication, i.e., closed its communication channel without closing the file. If the given client node is still in communication with the remote file server node, the remote file server node maintains the ownership or control of the file data by the given client node including enforcing any file sharing mode locking. In this latter case, the remote file server node would only permit access to the data in accordance with the file sharing mode explicitly or implicitly specified by the native application programming interfaces of that particular file.
  • the remote file server node can close the file on behalf of the given client node thereby relinquishing control of the file by that given client node and allowing access by the other client node.
  • this latter set of circumstances coupled with the given client node's ability to continue to modify its copy of the file while out of communication with the remote file server node, requires each client node to perform a reconciliation operation upon restoration of communication with the remote file server node.
  • a client node writes to, or modifies, its local copy of file data or directory information
  • the client node uploads its modifications to the remote file server node.
  • the uploading of modified file data is deferred until the client node closes the file. So long as a client node remains connected to the remote file server node, no version checking is needed for uploading and storing file data modifications as no other client node will be granted write access to the same file in a fashion which violates a file sharing mode of the file. However, if the communication channel between the client node and the remote file server node closes, the remote file server node will have closed the file vis-a-vis the client node.
  • the remote file server node prefferably has granted write access permission to another client node (as described above) and to have received and stored modifications from that other client.
  • the client node and remote file server node first perform a reconciliation process, including checking the version of the client node's locally stored copy of the modified file against the version of the (master) copy of the file stored at the remote file server node, as described in greater detail below.
  • FIG 10 illustrates a process executed by the client nodes and the remote file server nodes.
  • the client node and remote file server node have already authenticated the connection.
  • the client node determines if communications have been restored. This can occur by reason of establishment of a new connection or by reason of restoration of communication with the remote file server node after detection of a loss of communication with the remote file server node, even with an existing connection. If so, the client node and the remote file server node engage in a reconciliation operation in step S402. This is described in greater detail below.
  • step S404 the client node determines whether or not there is a need to access a file or directory of the file group stored on the virtual storage device.
  • the term "access” includes the operations of "read,” “modify/write,” “create,” and “delete.” If no such access is detected at the client node, the client node returns to step S400. Assume now that a file or directory access must be performed at the client node. In step S406, the client node determines if the requested operation is one which requires a version check. Illustratively, any access to directory information, or the operations of opening, creating or deleting a file require a version check. However, operations of examining or changing the contents of an already opened file do not require a version check.
  • the operations of closing a file and uploading the modifications to the file data made by the client node illustratively do not require a version check. If no version check is required, the client node proceeds to step S414 and attempts to perform the requested access operation. Many of the attempted requested access operations are simply performed according to the normal operation of the operating system and/or application executing at the client node through which the access request was generated. However, in the case of a close operation performed on a file modified by the client node, the upload process described above is also carried out for purposes of uploading the modifications to the file data.
  • step S408 the client node transmits via the Internet to the remote file server node a request to check the version of the local copy of the file data or directory information currently maintained at the client node (e.g., in the main memory 12 or disk memory 15).
  • the request includes the version number of the respective local copy of the file data or directory information, if a local copy of such information is possessed by the client node.
  • the client node can instead issue a request for the file data or directory information.
  • the loop of steps S409-S410 is continuously performed until a time-out timer expires in step S409 or the condition of step S410 is satisfied.
  • step S410 the client node determines whether or not the client node has received any response from the remote file server node. If the client node fails to receive a response form the remote file server node within the time limit of the time-out timer, the client node presumes that it is out of communication with the remote file server node. If so, then in step S412, the client node obtains its local copy of the file data or directory information, if any. In step S414, the client node attempts to perform the access operation on the file data or directory information, e.g., using the operating system or application which requested the access. In this case, the client node attempts to perform the requested access on its local copy of the file data or directory information if the client node has any.
  • the client node if the client node does not have the requisite file data or directory information, the attempted request fails in accordance with the normal operation of the operating system, or application.
  • the client node if the operation is a close file operation or any operation which modifies directory information, the client node illustratively defers uploading the modifications. As described below, the uploading of such modifications occurs during the reconciliation process S402, if at all.
  • step S410 the client node determines, in step S416, whether or not the access is permitted.
  • the client node lacks sufficient access right privileges to perform the access and/or the requested access conflicts with a file sharing mode of the file explicitly or implicitly specified by the native application programming interface of the file.
  • the client node illustratively provides an appropriate abort/failure message to the user indicating why the access was denied, e.g., displays the message on the display monitor 16, and then returns to the loop S400-S404.
  • Step S414 the client node performs the requested access, i.e., opening a file, creating a file, deleting a file, changing a directory attribute, etc.
  • Steps S420-S430 are performed by the remote file server node in response to receiving a version/access request message or a simple message to retrieve file data or directory information.
  • the remote file server node checks to determine if the client node has sufficient privilege access rights to perform the requested operation. For example, if the client node only has read access privilege rights on all files in a directory and the client node desires to open a file for writing to it, the client node lacks sufficient privilege access rights to perform the requested access.
  • the details for this check are performed using operating system software supplied with the remote file server node. If the client node user does not have the requisite access privilege rights, the remote file server node aborts the operation and transmits to the client node via the Internet a message indicating that the client node user lacks the requisite access privilege rights to perform the requested access in step S424. This message is detected by the client node in steps S410 and S416.
  • the remote file server node next checks to determine if the requested access adheres to implicit and explicit native file sharing modes specified by the native file application programming interface governing the file data or directory to be accessed. As noted, above, such a determination is made using the operating system supplied with the remote file server node. If the requested access does not adhere to the file sharing modes of the file, the remote file server node aborts the operations and transmits via the Internet to the client node a message indicating that the requested access could not be performed at this time as it conflicted with a file sharing mode of the file or directory in step S424. This message is detected by the client node in steps S410 and S416.
  • step S426 the remote file server node checks the version number (if any) in the message supplied by the client node against the version number of the (master) copy of the file or directory information stored at the remote file server node. If the version numbers match, then the client node has the most up-to-date version of the file data and/or directory information. In such a case, the file server node simply transmits via the Internet to the client node a message indicating that the client node has the most up-to-date copy of the file data and/or directory information and therefore approves the access in step S430. This approval is detected by the client node in steps S410 and S416.
  • the remote file server node performs step S428.
  • step S4208 the remote file server node downloads to the client node the requested file data or directory information, as described in connection with FIG 8.
  • this downloaded file data and/or directory information is detected by the client node in steps S410 and S416.
  • a client node can obtain the latest version of file data or directory information and store it as a local copy in order to perform accesses. This provides two benefits.
  • the local copy acts as a "cached copy" in that it is much easier to access the local copy than to perform the accesses via the Internet.
  • the client node in the event that the client node is incapable of communicating with the remote file server node, the client node can continue to perform accesses on its local copy.
  • a client node can specify a desire to "hoard" one or more files and/or directories. For example, a client node user can specify a desire to hoard specific files and/or directories. This results in the client node transmitting a message to the remote file server node indicating this hoarding request. In response, the remote file server node monitors each of the files or directories indicated as hoarded by each client node. Periodically, the remote file server node performs a pass over all of the files and directories indicated as hoarded.
  • the remote file server node If the remote file server node detects that such hoarded file data or directories contain recent changes, the remote file server node downloads appropriate modified file data or directory information to each respective client node hoarding the respective files and/or directories. The client node then updates its locally cached copy of the hoarded files and directories. As a result, the client node can ensure that between accesses to such hoarded files or directories, the remote file server node is continuously updating such files and directories. The net result is that the client node is likely to always have the latest or most updated version of the hoarded files and directories.
  • the client node when the client node desires to access such hoarded files or directories, the client node likely can avoid any delays in accessing such hoarded files or directories incurred while the latest or most updated version of the files or directory information is downloaded. Moreover, as described below, should the client node access an outdated version of a file while out of communication with the remote file server node, there is a possibility that, upon re-establishment of the communication channel with the remote file server node, the client node user will have to manually reconcile a conflict. By hoarding key files and directories, the client node reduces the risk that an outdated version of the file or directory will be accessed by the client node while out of communication with the remote file server node.
  • the communication channel is said to be closed. If a given client node closes its communication channel, or, alternatively, the remote file server node closes the communication channel with the given client node, prior to closing a file or directory last accessed by the given client node, the remote file server node can relinquish control of that file or directory by the given client node. This enables another client node to access the file or directory. Nevertheless, the given client node is enabled to access its local "cache" copy of the file or directory while out of communication with the remote file server node. As can be appreciated, it is possible that the two client nodes may perform incompatible modifications to the file data or directory information. According to the invention, an elaborate reconciliation mechanism is provided to reconcile such incompatible changes.
  • modifications made to the (master) copy of file data or directory information are given preference to modifications made by a client node while out of communication with the remote file server node. Nevertheless, there are certain circumstances where modifications made by the client node while out of communication with the remote file server node will be stored at the remote file server node.
  • the client node restores communication with the remote file server node, the client node performs a reconciliation operation. During this operation, the client node first identifies each local copy of file data and directory information maintained locally in a storage device (e.g., disk memory 15) physically present at the client node.
  • a storage device e.g., disk memory 15
  • the client node checks the version of each such locally maintained copy of file data and directory information by transmitting a message to the remote file server node.
  • the remote file server node checks the version of the respective file data or directory information to see if the same version number is recorded in the (master) copy of the respective file data or directory information maintained by the remote file server node in the virtual storage device. If so, then no modifications were made to the (master) copy of the respective file data or directory information maintained at the remote file server node while the client node was out of communication with the remote file server node. If a modification was made, then the version numbers will not match.
  • FIGs 11 and 12 The specific actions taken by the client node and remote file server node depend on which modifications were made to the (master) copy of the file data or directory information maintained at the remote file server node and the local copy at the client node. These actions are summarized in FIGs 11 and 12.
  • the client node often is required to perform some reconciliation action.
  • the remote file server node transmits appropriate sufficient messages regarding the outcome of the validity check described above for enabling the client node to perform the correct respective reconciliation action.
  • FIG 11 contains a chart summarizing the reconciliation actions taken by the remote file server node and the client node in regard to reconciling changes that affect file data or files.
  • each cell of the chart is labeled with a row number Rl, R2, R3, R4 and R5 and a column number CI, C2, C3, C4 and C5.
  • the rows R1-R5 contain cells indicating the actions taken when the client node: makes no changes to the file data (Rl); modifies the file data (R2); renames or moves the file (R3); deletes the file (R4); or deletes the directory containing the file (R5).
  • the columns contain cells indicating actions taken when: no changes were made to the copy of the file data at the remote file server node (CI); the copy of only the file data at the remote file server node was modified (C2); the copy of the file at the remote file server node was renamed or moved (C3); the copy of the file at the remote file server node was deleted (C4); or the directory containing the file at the remote file server node was deleted (C5).
  • the client node also makes no changes to the file (Rl, CI).
  • no action is taken by either the remote file server node or the client node. If the client node made a change to the contents of the file data, i.e., modified or wrote to the file (R2, CI), the modifications (or the entire modified file) are uploaded from the client node to the remote file server node using the upload process described above. The remote file server node saves this modified file data.
  • the client node renames the file or moves it to another directory (R3, CI)
  • the remote file server node performs the same renaming or movement action on the (master) copy of the file maintained at the remote file server node.
  • the client node deletes the file (R4, CI) or the entire directory containing the file (R5, CI)
  • the remote file server node deletes the
  • the client node's local copy of the file data is moved to a local directory physically stored at the client node (e.g., on the client node's disk memory 15) called the "conflict bin.”
  • the conflict bin is a directory (of the disk memory 15) at the client node in which the client node places information or file data indicative of unresolvable conflicts. This enables the client node user to examine such information or file data at its leisure and resolve conflicts in it.
  • the modified (master) copy of the file at the server is downloaded to the client node and placed in the conflict bin.
  • the (master) copy of the file at the remote file server node is renamed or moved (C3), e.g., by another client node. If the client node did not change its local copy of the file data (Rl, C3), then the client node performs the corresponding renaming or movement actions on its local copy of the file containing the unchanged file data. On the other hand, if the client node changed the file data, i.e., modified the file data or write to the file data (R2, C3), then the client's local copy of the file data is moved to the conflict bin.
  • the modifications to the file data are uploaded to the remote file server node.
  • the remote file server node stores the modified file data (or entire modified file) under the new name or moved location of the file. If the client node changed the name of the file or moved it (R3, C3) differently than was done to the (master) copy of the file at the remote file server node, then the client node places a warning message in the conflict bin indicating that the client node's renaming or movement was not performed for the file. If the client node deleted the file (R4, C3), the deletion operation is not performed at the remote file server node. Rather, the client node places a warning in the conflict bin indicating that the delete operation was not performed. If the client node deleted the directory containing the file (R5, C3), the file data (or entire file) is downloaded to the client node and placed in the conflict bin.
  • both are acts which delete the (master) copy of the file at the remote file server node. (The impact on reconciling the directories is different as will be described below.)
  • the client node did not change, i.e., modify or write to, its local copy of the file data
  • the client node simply deletes or invalidates its local copy of the file data.
  • the client node If the client node had changed, i.e., modified or written to, its local copy of the file data (R2, C4 or R2, C5), the client node moves its local copy of the file data (or entire file) to the conflict bin. Likewise, if the client node had renamed or moved the file (R3, C4 or R3, C5), then the client node moves its local copy of the file data (or entire file) to the conflict bin. In addition, in any of scenarios R2, C4; R2, C5; R3, C4; or R3, C5, the client node uploads the file to the remote file server node which stores the uploaded copy under the new name or moved directory location. In any of the scenarios where the client node deleted the file (R4,
  • FIG 12 contains a chart summarizing the reconciliation actions taken by the remote file server node and the client node in regard to reconciling changes that affect directories.
  • each cell of the chart is labeled with a row number Rl', R2', R3', R4' and R5' and a column number CI', C2*, C3', C4' and C5'.
  • the rows Rl*-R5' contain cells indicating the actions taken when the client node: makes no changes to the directory (Rl'); changes, i.e., modifies, a directory attribute (e.g., the privileges of one or more users or groups of users) (R2'); adds a file or child/subdirectory to a directory (R3'); renames or moves a directory (R4'); or deletes a directory (R5 1 ).
  • a directory attribute e.g., the privileges of one or more users or groups of users
  • the columns contain cells indicating actions taken when: no changes were made to the directory at the remote file server node (CI); the copy of the directory attributes at the remote file server node changed (C2); a file or child subdirectory was added to the copy of the directory at the remote file server node (C3); the copy of the directory at the remote file server node was renamed or moved (C4); or the copy of the directory at the remote file server node was deleted (C5).
  • the client node While the client node was out of communication with the •remote file server node, the (master) copy of the directory was not changed/modified at the remote file server node (CI 1 ).
  • the client node also has not changed/modified the directory (Rl', CI') in which case no action is needed. If the client node: changed/modified one or more attributes of the directory (R2', CI'); or added one or more new files and/or child/subdirectories to the directory (R3 1 , CI'); then the respective attribute modifications, e.g., changed attributes; or new file and or child/subdirectory entries; are uploaded to the remote file server node.
  • the remote file server node makes the corresponding attribute modifications or adds the corresponding new file and/or child/subdirectory entries, to the respective attribute in the (master) copy of the directory stored at the remote file server node. If the client node deleted the directory (R5' ? CI'), then the remote file server node deletes its (master) copy of the directory.
  • the remote file server node deletes its (master) copy of the directory.
  • the client node did not change/modify its local copy of the directory information (Rl', C2') in which case modifications to the (master) copy of the directory information at the remote file server is downloaded to the client node and the client node stores/makes the same modifications to its local copy of the directory information. If the client node also changed/modified its local copy of the directory (R2', C2') then, the client node places a warning in its conflict bin advising that the directory at the remote file server node was modified while the remote file server node was out of communication with the client node in a fashion which was incompatible with a change/ modification made by the client node under the same period of time.
  • the client node adds one or more files or child/subdirectories to the directory (R3', C2'). Such additions may be either compatible or incompatible with the attribute changes/modification made to the (master) copy of the directory information.
  • An example of incompatibility is where the attributes of the
  • the (master) copy of the directory information are changed to make the directory read only for at least the user of the client node. This would prohibit any modifications to the directory or its contents by the client node, including prohibiting the addition of new files or child/ subdirectories.
  • the client node additions are compatible, they are uploaded from the client node to the remote file server node and stored in the directory.
  • the attribute modifications are downloaded to the client node and stored locally. Otherwise, each incompatible newly added file and child/directory entry is moved to the conflict bin.
  • the client node renames or moves the directory (R4', C2') or deletes the directory (R5', C2'), the corresponding renaming/movement or deletion operation is also performed at the remote file server node.
  • An example of an incompatible entry is where both the client node and the remote file server node both attempted to add a file or child/subdirectory having the same name. If the additions made by the client node are compatible with the additions made at the remote file server node then the file and child/subdirectory entries made by the client node are uploaded to the remote file server node where they are stored and the file and child/subdirectory entries made by the remote file server node are downloaded to the client node where they are stored locally.
  • the client node moves each of the client node's file or child/subdirectory entries, which are incompatible with the file or child/subdirectory entries made at the remote file server node, to the conflict bin. If the client node renamed or moved the directory (R4', C3') then the remote file server node correspondingly renames or moves the directory. In addition, the new file and child/subdirectory entries are downloaded from the remote file server node to the client node. If the client node deleted the directory (R5', C3'), the new files and directories are downloaded from the remote file server to the client node and the client node places them in the conflict bin. The remote file server node then deletes the (master) copy of the directory at the remote file server node.
  • the (master) copy of the directory at the remote file server node is renamed or moved (C4'), e.g., by another client node. If the client node made no changes/modifications to its local copy of the directory (Rl', C4') then the client node correspondingly renames or moves its local copy of the directory in conformity with the remote file server node. If the client node change one or more attributes of the directory (R2 1 , C4') then the client node nevertheless correspondingly renames or moves its local copy of the directory in conformity with the remote file server node.
  • the client node also uploads the attribute changes to the remote file server node which stores them.
  • the client node adds one or more new files or child subdirectories (R3', C4') then the client node nevertheless correspondingly renames or moves its local copy of the directory in conformity with the remote file server node.
  • the client node also uploads the new file and child/subdirectory entries to the remote file server node which stores them. If the client node renamed or moved the directory (R4', C4'), a determination is first made to see if the client node performed an identical renaming and/or moving operation. If so, no action is taken.
  • the client node places a warning in the conflict bin indicating that the move or rename operation at the client node could not be effected at the remote file server node. If the client node deleted the directory (R5', C4') then the client node places a warning in the conflict bin indicating that the delete operation could not be performed at the remote file server node. In addition, the client node downloads from the remote file sever node a copy of the directory and stores it locally.
  • the (master) copy of the directory at the remote file server node is deleted (C5'), e.g., by another client node.
  • the client node If the client node made no changes to the directory (Rl 1 , C5') or only changed one or more attributes of the directory (R2', C5') then the client node simply deletes the directory. If the client node added one or more new files or child/subdirectories to the directory (R3', C5') then the client node moves the new files and child/subdirectory entries to the conflict bin. The client node also deletes the locally stored copy of the directory. If the client node moved or renamed the directory (R4', C5') then the client node stores a warning in the conflict bin indicating that the directory had been previously deleted at the remote file server node. In addition, the directory is uploaded from the client node to the remote file server node. Lastly, if the client node also deletes the directory (R5', C5') then no action is performed.
  • the remote file server nodes prior to enabling client nodes to access directories or file data (most notably, transmitting to client nodes copies of directory entries and file data for reading or writing, or storing modified directory entries and file data received from client nodes), perform two access checks on file data and directory entries. Specifically, the remote file server nodes check to make sure that the client node requesting the access operation has sufficient access privilege rights to perform the requested file data or directory access. In addition, the remote file server node also checks to make sure that the requested access adheres to explicit and implicit file sharing modes specified by the native file application programming interfaces for the respective files. These kinds of checks can be very time consuming.
  • FIG 13 shows an illustrative environment in which this embodiment of the invention can be used, namely, a wide area network 200, such as the Internet.
  • h20-h32 denote computer terminals
  • r20-r23 denote routers or switches.
  • computer terminals h20-h25 denote client nodes on a local area network, which, with router r20, form subnetwork 120.
  • Computer terminal h26 denotes a mobile client node forming subnetwork 121.
  • Computer terminals h27 is an access control node, which, with router r21 , form subnetwork 122.
  • Computer terminals h28-h30 are remote file server nodes, which , with switch r22, form subnetwork 123.
  • Computer terminals h3 l-h33 are remote file server nodes, which, with switch r23, form subnetwork 124.
  • subnetworks 122-124 contain remote file server nodes operated by the same virtual file service provider (although the subnetworks, themselves, can be owned by an independent access provider or ISP).
  • all of the client nodes h20-h26 are operated by client users who are part of the same group who have access to a particular virtual storage device.
  • this virtual storage device is accessible through any of the remote file server nodes h28-h33.
  • access control to at least one particular file is delegated to access control node h27.
  • FIG 14 illustrates a process carried out according to this embodiment of the invention.
  • FIG 14 is similar to the process of FIG 10. As such, only the differences between these two embodiments will be discussed in detail below.
  • the client node h26 desires to access a particular file or directory for which access control has been delegated to the access control node h27. As such, the node performs steps S400, S402, S404 and S406. Assume that the client node determines that a version check is necessary in step S406. Assume also initially, that the delegation of the access control is not known initially at the client node h26. In step S502, the client node h26 first determines whether or not the client node knows of an access control node delegated to the file or directory to be accessed.
  • the client node h26 transmits to remote file server node h28 via the Internet a request to access the particular file as in step S408 and waits to receive a response in steps S409-S410. Assume that a response is received.
  • the client node determines if the response was received from a node, other than the remote file server node h28, which identifies itself as the access control node (namely, the access control node h27).
  • the client node h26 authenticates a connection with this other node before communicating with it. If so, the client node stores (e.g.
  • step S510 an indication of the access control node h27 for the file or directory to be accessed in step S510.
  • the client node h26 then performs the remaining steps S416, S412, S414, S418, etc. Assume now that the client node h26 desires to access the same file or directory and requires a version check. On the next access to the file or directory, the client node h26 will determine that it knows the access control node for the respective file or directory in step S502. Thus, in step S504, the client node h26 transmits its request directly to the access control node h27 via the Internet. Illustratively, prior to actually transmitting the request, the client node h26 opens an authenticated connection with the access control node h27.
  • steps S505-S506 cause the client node h26 to wait until a time out timer expires or the condition of step S506 is satisfied.
  • the client node h26 determines whether or not a response was received. If not, it is possible that the access control node h27 is disabled or access control has been re-assigned to a different node. In such a case, the client node h26 sends its access request to the remote file server node h28 in step S408 as above. If a response is received, the client node h26 performs the remaining steps S416, S412, S414, S418, etc.
  • the remote file server node h28 initially determines whether or not access control has been delegated to another node for the file or directory for which access is requested. If not, the remote file server node h28 performs the steps S420, S422, S424, S426, S428 and S430 as necessary to check the privilege access rights and file sharing mode of the requested access as well as the version of the copy of the file or directory in the possession of the client node h2 ⁇ . In this case, however, the remote file server node h28 determines that access control has been delegated to another node, namely node h27.
  • step S514 the remote file server node h28 forwards via the Internet the request of the client node h26 to the access control node h27 to which access control for the particular file has been delegated. If the remote file server node h28 detects that the access control node h27 has approved the access (message "A"), then the remote file server node h28 performs a version check on the file or directory to be accessed in step S426, S428 and S430 as described above. To perform the version check in step S426, the remote file server node h28 might need the actual request information, which may have been transmitted directly from the client node h26 to the access control node h27.
  • the approval message transmitted by the access control node h27 to the remote file server node h28 illustratively provides sufficient information for performing the remaining steps.
  • the access control node does not approve the requested access (message "B").
  • the remote file server node h28 aborts the access in step S424.
  • the access control node h27 determines if the requesting client node h26 has sufficient privilege access rights to perform the request and whether or not the requested access adheres to implicit and explicit file sharing modes specified by the native file application programming interface associated with the file. If either of these checks fail, the access control node h27 transmits via the Internet a message to both the remote file server node h28 and the client node h26 informing them that the requested access could not be performed and the particular check which failed in step S528 (message "B").
  • the access control node h27 transmits via the Internet a message to both the client node h26 and the remote file server node h28 approving the access in step S530 (message "A").
  • version control is important for purposes of maintaining integrity of the files by ensuring that each access to a file at the remote file server nodes is performed on the latest version of the file data.
  • the version control node can be the same node as the access control node or a different node. Also, different version control nodes can be delegated for different files, different virtual storage devices, etc. However, in some applications is may be advantageous to have the same node perform both version control and access control for the same files.
  • FIG 15 shows a process which is a modification of the process shown in FIG 10. As such, only the differences between the process of FIG 10 and the process of FIG 15 are described in detail.
  • the client node h26 desires to access a file or a directory under conditions requiring a version check. As such, the node performs steps S400, S402, S404 and S406. Assume also initially, that the delegation of the version control is not known initially at the client node h26.
  • the client node h26 first determines whether or not the client node knows of a version control node delegated to the file or directory to be accessed. If not, the client node h26 transmits to remote file server node h28 via the Internet a request to access the particular file in step S408 and waits to receive a response in steps S409-S410. Assume that a response is received.
  • step S608 the client node determines if the response was received from a node, other than the remote file server node h28, which identifies itself as the version control node (namely, the version control node h31).
  • the client node h26 authenticates a connection with this other node prior to communicating with it. If so, the client node h26 stores (e.g. in memory 12 or disk 15) an indication of the version control node h31 for the file or directory to be accessed in step S610. The client node h26 then performs the remaining steps S416, S412, S414, S418, etc.
  • the client node h26 desires to access the same file or directory and requires a version check. On the next access to the file or directory, the client node h26 will determine that it knows the version control node for the respective file or directory in step
  • step S604 the client node h26 transmits its request directly to the version control node h31 via the Internet.
  • the client node h26 opens an authenticated connection with the version control node h31.
  • steps S605-S606 cause the client node h26 to wait until a time out timer expires or the condition of step S606 is satisfied.
  • step S606 the client node h26 determines whether or not a response was received. If not, it is possible that the version control node h27 is disabled or that version control has been re-assigned to a different node.
  • the client node h26 sends its access request to the remote file server node h28 in step S408 as above. If a response is received, the client node h26 performs the remaining steps S416, S412, S414, S418, etc.
  • the client node h26 determines if a version update is required for an accessed file of directory in step S640.
  • step S400 If not (e.g., the access was only to a local cache copy, the access did not result in storage of modifications to the copy of the file or directory at the remote file server node or no separate version control node has been assigned to the updated file or directory), then the client node h26 skips to step S400. On the other hand, if the client node h26 did upload for storage at the remote file server node modifications to a file or directory, for which a version control node has been delegated, the client node h26 performs step S642. In step S642, the client nod h26 transmits a version update message to the version control node h31.
  • the remote file server node h28 initially determines whether or not version control has been delegated to another node for the file or directory for which access is requested. If not, the remote file server node h28 performs the steps S420, S422 and S424 as necessary to check the privilege access rights and file sharing mode of the file or directory in the possession of the client node h26. In this case, however, the remote file server node h28 dete ⁇ nines that version control has been delegated to another node, namely node h27. Thus, in step S614, the remote file server node h28 forwards via the Internet the request of the client node h26 to the version control node h31 to which version control for the particular file has been delegated.
  • step S422 if the file or directory to be accessed is deemed to have passed the privilege access rights check and the file sharing mode check, the remote file server node h28 performs step S638. In step S638, the remote file server node h28 determines whether or not a version check has already been performed.
  • the remote file server node h28 performs step S426 as described above to determine if the client node h26 has the most up-to-date version of the file or directory to be accessed. If so, the remote file server node informs the client node h26 that the client has the most up-to-date version of the file or directory to be accessed (step S428) and, if not, the remote file server node h28 downloads the appropriate file data or directory information to the client node h26. In this case, however, the version check was performed by the version control node h31.
  • the remote file server node performs steps S430 or S428, respectively. Now consider the steps performed at the version control node h31.
  • the request from the remote file server node h28 or client node h26 is received at the version control node h31.
  • the version control node determines whether or not. the request is simply a request to update the version number of a file or directory recently modified at the remote file server node h28.
  • the version control node h31 updates the version number associated with this file or directory in step S624.
  • the message is a request to check the version of a copy of a file or directory to be accessed at the client node h26
  • the version control node h31 performs step S626.
  • the version control node h31 determines if the requesting client node h26 has the most up-to-date version of the file or directory to be accessed. As noted above, this is achieved by determining if the version number supplied by .the client node h26 matches the version number stored at the version control node as corresponding to the file or directory to be accessed.
  • the version control node h31 transmits via the Internet a message "C" to both the client node h26 and the remote file server node h28 indicating that the client node has the most up-to-date version of the file or directory to be accessed. If the versions do not match (client node h26 has an outdated copy), the version control node h31 transmits via the Internet a message "D" indicating that the client node h26 has an outdated or stale copy of the file or directory (or, possibly, no copy of the file or directory) to be accessed. In the case that both version and access control are implemented, the steps of both processes can be integrated.
  • steps S512 and S514 can be inserted before step S612, such that step S612 is performed only if the "No" branch of step S512 is taken.
  • a combined access control- version control node can implement all of steps S522, S524, S528, S530, S622, S5624, S628 and S630.
  • Such a node need only transmit the messages "B", "C” and “D", where messages "C” and "D” trigger the remote file server node to perform step S638.
  • a client node can be modified to contact an access control node, if one exists, and if the access is permitted, to contact a version control node, if one exists.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Storage Device Security (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

Un service et système de stockage de fichiers multi-utilisateur permet à chaque utilisateur d'un groupe d'utilisateurs abonnés de mettre en oeuvre un noeud client quelconque en un point géographique quelconque, de communiquer avec un noeud serveur de fichiers à distance via un réseau grandes distances, et d'accéder aux fichiers du groupe de fichiers via chacun des noeuds clients en communication avec le noeud serveur de fichiers à distance via le réseau grandes distances. Plusieurs utilisateurs du groupe d'utilisateurs abonnés peuvent accéder simultanément au groupe de fichiers au niveau du noeud serveur de fichiers à distance. Cela permet de préserver l'intégrité des fichiers du noeud de serveur de fichiers à distance grâce à un contrôle d'accès systématique aux fichiers du noeud serveur de fichiers à distance de façon que chaque accès à ce noeud s'exécute systématiquement sur la partie correspondante concernée du fichier dans l'état de sa dernière mise à jour. Ainsi, toutes les interfaces de programmation d'application du système d'exploitation natif fonctionnent comme si toutes les applications multi-utilisateur accédaient aux fonctions de fichier en voyant le serveur à distance et les noeuds clients sur un même réseau local. L'interface ainsi réalisée se charge d'adapter l'accès des fichiers aux différents noeuds clients. A cet effet, l'interface désigne, au niveau du noeud client, chaque fichier accessible du groupe comme stocké dans une mémoire virtuelle. L'interface permet d'accéder aux fichiers désignés d'une façon transparente, tant pour les utilisateurs du noeud client que pour les applications s'exécutant au niveau du noeud client, l'accès se faisant physiquement à l'un au moins des fichiers rangés dans la mémoire locale du noeud client. Cela permet de transférer à l'un des noeuds clients, via un canal sécurisé, une clé cryptée provenant d'un noeud serveur de fichiers à distance. Pour crypter la clé, on a utilisé une fonction de cryptage qui n'est pas connue localement au niveau du noeud de serveurs de fichiers à distance. Après transfert, la clé, décryptée au niveau du noeud client lui sert, soit à décrypter les fichiers téléchargés depuis le noeud serveur de fichiers à distance, soit à crypter les fichiers avant téléchargement en vue d'un stockage par le noeud de serveurs de fichiers à distance. Le contrôle d'accès à l'un des fichiers en particulier du groupe de fichiers peut être délégué à un noeud de contrôle d'accès.
PCT/US2000/030201 1999-11-01 2000-11-01 Service de fichiers partages a base d'internet avec semantique et acces client du pc natif et controle d'acces distribue WO2001033829A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU20413/01A AU2041301A (en) 1999-11-01 2000-11-01 Internet-based shared file service with native pc client access and semantics and distributed access control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16300899P 1999-11-01 1999-11-01
US60/163,008 1999-11-01

Publications (3)

Publication Number Publication Date
WO2001033829A2 WO2001033829A2 (fr) 2001-05-10
WO2001033829A3 WO2001033829A3 (fr) 2002-03-28
WO2001033829A9 true WO2001033829A9 (fr) 2002-07-04

Family

ID=22588064

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2000/030077 WO2001033361A1 (fr) 1999-11-01 2000-11-01 Service de fichiers communs sur internet a acces aux pc clients originels et semantique
PCT/US2000/030201 WO2001033829A2 (fr) 1999-11-01 2000-11-01 Service de fichiers partages a base d'internet avec semantique et acces client du pc natif et controle d'acces distribue
PCT/US2000/030078 WO2001033383A1 (fr) 1999-11-01 2000-11-01 Service de fichiers partages base sur internet a semantique et acces client pc natifs et controle de version reparti

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2000/030077 WO2001033361A1 (fr) 1999-11-01 2000-11-01 Service de fichiers communs sur internet a acces aux pc clients originels et semantique

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2000/030078 WO2001033383A1 (fr) 1999-11-01 2000-11-01 Service de fichiers partages base sur internet a semantique et acces client pc natifs et controle de version reparti

Country Status (3)

Country Link
AU (3) AU1451001A (fr)
TW (3) TW561735B (fr)
WO (3) WO2001033361A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8966080B2 (en) 2007-04-13 2015-02-24 Emc Corporation Systems and methods of managing resource utilization on a threaded computer system

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2299946A1 (fr) 2000-03-03 2001-09-03 Destiny Software Productions Inc. Methode et systeme de distribution de supports numeriques
US6715050B2 (en) * 2001-05-31 2004-03-30 Oracle International Corporation Storage access keys
US7685126B2 (en) 2001-08-03 2010-03-23 Isilon Systems, Inc. System and methods for providing a distributed file system utilizing metadata to track information about data stored throughout the system
AU2002366270A1 (en) * 2001-12-10 2003-09-09 Incipient, Inc. Fast path for performing data operations
US6986015B2 (en) 2001-12-10 2006-01-10 Incipient, Inc. Fast path caching
US7013379B1 (en) 2001-12-10 2006-03-14 Incipient, Inc. I/O primitives
US6959373B2 (en) 2001-12-10 2005-10-25 Incipient, Inc. Dynamic and variable length extents
US7173929B1 (en) 2001-12-10 2007-02-06 Incipient, Inc. Fast path for performing data operations
CA2407774C (fr) 2002-07-16 2005-01-04 Musicrypt Inc. Systeme et methode de distribution de contenu
DE10257819B4 (de) * 2002-12-10 2005-10-13 Web.De Ag Netzwerkbasierter Datenzugriff mit getrenntem Datenübergang und Datenübertragung
US7953794B2 (en) 2005-01-14 2011-05-31 Microsoft Corporation Method and system for transitioning between synchronous and asynchronous communication modes
US7593943B2 (en) 2005-01-14 2009-09-22 Microsoft Corporation Method and system for synchronizing multiple user revisions to a shared object
US8417666B2 (en) * 2008-06-25 2013-04-09 Microsoft Corporation Structured coauthoring
TWI447584B (zh) 2010-11-01 2014-08-01 Inst Information Industry 多人共享之網路儲存服務系統與方法
TW201315191A (zh) * 2011-09-27 2013-04-01 Jian Guo Hui 基於完整列矩陣之再加密方法
DE102012202382A1 (de) * 2012-02-16 2013-08-22 Cortado Ag Verfahren und Anordnung zur Verwaltung von Daten sowie ein entsprechendes Computerprogramm und ein entsprechendes computerlesbares Speichermedium
TWI571754B (zh) * 2015-02-02 2017-02-21 群暉科技股份有限公司 用來進行檔案同步控制之方法與裝置
CN106487761B (zh) * 2015-08-28 2020-03-10 华为终端有限公司 一种消息传输方法和网络设备
CN106446142A (zh) * 2016-09-21 2017-02-22 郑州云海信息技术有限公司 一种多区域间文件系统的设计方法
CN106933686A (zh) * 2017-03-10 2017-07-07 广东欧珀移动通信有限公司 一种调整广播消息队列的方法、装置及终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1337132C (fr) * 1988-07-15 1995-09-26 Robert Filepp Systeme de reception pour reseau informatique interatif et sa methode de fonctionnement
US5864683A (en) * 1994-10-12 1999-01-26 Secure Computing Corporartion System for providing secure internetwork by connecting type enforcing secure computers to external network for limiting access to data based on user and process access rights
US5966715A (en) * 1995-12-29 1999-10-12 Csg Systems, Inc. Application and database security and integrity system and method
US5838910A (en) * 1996-03-14 1998-11-17 Domenikos; Steven D. Systems and methods for executing application programs from a memory device linked to a server at an internet site
US5862346A (en) * 1996-06-28 1999-01-19 Metadigm Distributed group activity data network system and corresponding method
US5918019A (en) * 1996-07-29 1999-06-29 Cisco Technology, Inc. Virtual dial-up protocol for network communication
US5987506A (en) * 1996-11-22 1999-11-16 Mangosoft Corporation Remote access and geographically distributed computers in a globally addressable storage environment
US5889942A (en) * 1996-12-18 1999-03-30 Orenshteyn; Alexander S. Secured system for accessing application services from a remote station

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8966080B2 (en) 2007-04-13 2015-02-24 Emc Corporation Systems and methods of managing resource utilization on a threaded computer system

Also Published As

Publication number Publication date
TW498217B (en) 2002-08-11
TW561735B (en) 2003-11-11
WO2001033383A9 (fr) 2002-05-16
WO2001033361A1 (fr) 2001-05-10
WO2001033829A3 (fr) 2002-03-28
AU1451001A (en) 2001-05-14
WO2001033829A2 (fr) 2001-05-10
TW487843B (en) 2002-05-21
AU2041301A (en) 2001-05-14
WO2001033383A1 (fr) 2001-05-10
AU1450901A (en) 2001-05-14

Similar Documents

Publication Publication Date Title
US7136903B1 (en) Internet-based shared file service with native PC client access and semantics and distributed access control
US20060129627A1 (en) Internet-based shared file service with native PC client access and semantics and distributed version control
US11863380B2 (en) Community internet drive
WO2001033829A9 (fr) Service de fichiers partages a base d'internet avec semantique et acces client du pc natif et controle d'acces distribue
US8572757B1 (en) Seamless secure private collaboration across trust boundaries
US9015858B2 (en) Graphical user interface for seamless secure private collaboration
US7376711B2 (en) Smart card enabled mobile personal computing environment system
US6662198B2 (en) Method and system for asynchronous transmission, backup, distribution of data and file sharing
JP6810172B2 (ja) 文書管理およびアクセス制御を有する分散データシステム
US7222231B2 (en) Data security for distributed file systems
CN103931156B (zh) 具有用户不可知加密文件的服务器侧去重的云文件系统
US6981152B2 (en) Smart card security information configuration and recovery system
JP4335559B2 (ja) ピア・ツー・ピア・ファイル共有の方法及びその装置
US20150127607A1 (en) Distributed data system with document management and access control
US20160011990A1 (en) System and Method for Conflict-Free Cloud Storage Encryption
KR101971225B1 (ko) 클라우드 서버의 데이터 전송 보안 시스템 및 그 제공 방법
KR101623742B1 (ko) 파일 연관 메시지 공유 방법 및 메시지 공유 시스템
CN105450750A (zh) 智能终端安全交互方法
JP2002140239A (ja) 情報管理システム及び情報管理方法及びシステム制御装置
JP2015194888A (ja) データ管理方法及びデータ管理システム
Lu CloudChord: A P2P Network of Clients Cloud Storage for Data Access Pattern Privacy
Choudhari et al. Security and Privacy of AWS S3
Hakkala Consistency management in distributed storage systems
EP2918039A1 (fr) Collaboration privée sécurisée transparente à travers des limites de confiance

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: C2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGES 1/14 AND 10/14-14/14, DRAWINGS, REPLACED BY NEW PAGES 1/17 AND 10/17-17/17; PAGES 2/14-9/14, DRAWINGS, RENUMBERED AS PAGES 2/17-9/17; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase