WO2001032777A1 - Resin for high damping steel plate - Google Patents

Resin for high damping steel plate Download PDF

Info

Publication number
WO2001032777A1
WO2001032777A1 PCT/JP1999/006996 JP9906996W WO0132777A1 WO 2001032777 A1 WO2001032777 A1 WO 2001032777A1 JP 9906996 W JP9906996 W JP 9906996W WO 0132777 A1 WO0132777 A1 WO 0132777A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
ester
damping steel
vibration
group
Prior art date
Application number
PCT/JP1999/006996
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Ohira
Mitsuo Hori
Original Assignee
Shishiai-Kabushikigaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishiai-Kabushikigaisha filed Critical Shishiai-Kabushikigaisha
Publication of WO2001032777A1 publication Critical patent/WO2001032777A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin

Definitions

  • the present invention relates to a resin for vibration-damping steel sheets used as a structural member of a machine, a building, a vehicle, or the like, or a part thereof.
  • a damping steel sheet is a damping material having a multilayer structure in which an intermediate layer made of a rubber material is sandwiched between metal layers.
  • These vibration damping steel plates are used in automobile oil pans, engine covers, dash panel hopper chute, transport equipment stoppers, household appliances, and other vibration-reducing components of metalworking machinery.
  • the present invention has been made to solve the above-mentioned drawbacks of the conventional damping steel sheet and to provide a higher-performance damping steel sheet. It proposes a resin. Disclosure of the invention
  • the resin for vibration-damping steel sheets of the present invention can be used as an oil pan for automobiles, an engine cover, a chute for a dash panel hopper, a stopper for transport equipment, home electric appliances, and other vibration reducing members for metalworking machinery. It can be used for damping steel sheets applied to structural members of machines.
  • the resin for vibration damping steel sheets is characterized in that an ester-based resin is mixed with an active component that increases the amount of dipole moment in the resin.
  • the ester resin constitutes an intermediate layer of the damping steel sheet, and is made of polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin, or polybutylene naphthalate resin.
  • Thermoplastic saturated polyester resin selected from 1,4-cyclohexane dimethylene terephthalate resin, polyproprolactone resin, p-hydroxybenzoic acid polyester resin, and polyarylate resin is preferred. Can be used. Further, when the ester resin itself has adhesiveness, it is not necessary to bond the ester resin between the metal layers by interposing an adhesive between the ester resin and the metal layer. The above-mentioned ester resin itself has some adhesiveness, but in order to secure stronger adhesiveness, epoxy resin or other epoxy-based tackifier, glycerol ester or cured rosin, etc.
  • FIG. 1 shows an arrangement state of the dipoles 12 in the ester resin 11 before the vibration energy is transmitted. It can be said that the arrangement state of the dipoles 12 is in a stable state. However, when vibration energy is transmitted to this, displacement occurs in the dipoles 12 existing inside the ester-based resin 11, and as shown in FIG.
  • each dipole 1 inside the ester-based resin 11 is displaced. 2 will be placed in an unstable state, and each dipole 1 2 will try to return to a stable state as shown in Figure 1. At this time, energy is consumed. It is considered that the vibration energy is absorbed through the displacement of the dipole inside the ester resin 11 and the energy consumption due to the restoring action of the dipole. From the vibration damping mechanism, the larger the amount of dipole moment in the ester resin 11 as shown in FIGS. 1 and 2, the higher the damping property of the ester resin 11 It is considered to be.
  • the active component is a component that dramatically increases the amount of dipole moment in the ester resin.
  • the active component itself has a large dipole moment, or the active component itself has a dipole moment.
  • the amount of dipole moment generated in the ester-based resin 11 under the given temperature conditions and energy level can be increased by 3 times or 10 times as shown in Fig. 3 by adding an active ingredient to the ester resin.
  • the amount of power increases.
  • the energy consumption due to the restoring action of the dipole when energy is transmitted will also increase dramatically, and it is thought that the vibration suppression performance far exceeds the prediction.
  • active ingredients that induce such effects include N, N-dicyclohexylbenzothiazyl-2-sulfenamide (DCHB SA), 2-mercaptobenzothiazolyl (MBT), and dibenzothiazyl sulfide (MBT).
  • DCHB SA N-dicyclohexylbenzothiazyl-2-sulfenamide
  • MTT 2-mercaptobenzothiazolyl
  • MTT dibenzothiazyl sulfide
  • MBTS N-cyclohexyl benzothiazyl di-2-sulfenamide
  • CB S N-tert—Ptinolebenzothiazinole-1 2-snolefenamide
  • OB S N-oxyzetj Lenbenzothiaziru 2-sulfenamide
  • DPBS N-diisopropyl benzothiazyl-2-sulfenamide
  • DPBS N-diisopropyl benzothiazyl-2-sulfenamide
  • other benzothiazyl group-containing compounds containing one or more benzotriazoles with an azole group bonded to the benzene ring
  • the amount of dipole moment in the above-mentioned active ingredient varies depending on the kind of the active ingredient, similarly to the amount of dipole moment in the ester-based resin. Even when the same active component is used, the amount of dipole moment generated in the ester resin changes depending on the temperature when vibration energy is applied. Also, the amount of dipole moment changes depending on the magnitude of vibration energy applied to the ester resin.
  • the active ingredient that gives the largest amount of dipole moment in consideration of the temperature and energy at the time of application.
  • the active ingredient In deciding the active ingredient to be mixed in the ester resin, it is good to select the one having a similar value in consideration of the compatibility between the active ingredient and the ester resin, that is, the SP value.
  • This active ingredient is preferably blended in such a manner that the weight ratio with the above-mentioned ester-based resin becomes 907 10 to 50 50. If the ester-based resin Z active component is less than 90/10, the effect of dramatically increasing the amount of dipole moment in the ester resin cannot be obtained, and the weight ratio is 50 Z.
  • the ester resin may be filled with an inorganic filler such as calcium carbonate, talc, zeolite, silica, kaolin, alumina, titanium oxide, zinc white, myriki, and graphite.
  • an antioxidant in addition to the above-mentioned components, an antioxidant, a reinforcing agent, a reinforcing agent, an antistatic agent, a flame retardant, a lubricant, a foaming agent, a coloring agent, and the like can be added to the ester-based resin as necessary.
  • FIG. 1 is a schematic diagram showing dipoles in an ester-based resin.
  • FIG. 2 is a schematic diagram showing a state of a dipole in an ester resin when vibration energy is applied.
  • FIG. 3 is a schematic diagram showing a state of a dipole in an ester resin when an active ingredient is blended.
  • FIG. 4 is a graph showing mechanical properties E ′′ (dyne / cm 2 ) at each temperature under a frequency of 110 Hz for the samples of Examples 1 to 3 and Comparative Examples 1 to 4.
  • FIG. 5 is a graph showing the loss coefficient at each temperature of a damping steel sheet obtained by using the samples of Example 2 and Comparative Example and sandwiching them between two stainless steel sheets.
  • DCHB SA was added to an ester-based resin (Byron, manufactured by Toyobo Co., Ltd.) for 100/0 (Comparative Example), 90/10 (Example 1), 80Z20 (Example 2) and 70Z30 (Example 3). Each weight ratio was blended and formed into a sheet.
  • the loss elastic modulus tan 6 at each temperature (at 140 ° C. to 40 ° C.) under a frequency of 110 Hz was measured, and is shown in FIG.
  • the measurement of the loss elastic modulus tan S was performed using a dynamic viscoelasticity measurement test device (Rheovaiblon DDV-25FP, manufactured by Orientec Co., Ltd.). From Fig.
  • the comparative example using the ester resin alone has a loss elastic modulus tan S of about 1.7 with a peak at about 0 ° C
  • the example 1 has a peak tan S Moved about 2-3 ° C, and the level was between about 0 ° C and about 30 ° C, and tan S was about 0.1-0.3 higher than that of the comparative example.
  • the loss elastic modulus ta ⁇ increases from about 1.7 to about 2 or 2.4
  • the loss elastic modulus ta ⁇ ⁇ rose sharply to an unmeasurable level at about 10 ° C to 15 ° C.
  • damping steel sheets were manufactured using the samples of Example 3 and Comparative Example, respectively, and the results of measuring their loss coefficients are shown in FIG.
  • the damping steel sheet has a thickness of 0.5
  • the resin for vibration damping steel sheets formed into a sheet with a thickness of 2 mm is sandwiched between two stainless steel plates of 2 mm in thickness, and the loss coefficient is measured by a dynamic viscoelasticity measurement test. The measurement was performed using a device (Leo Vibron DDV-25FP, manufactured by Orientec Co., Ltd.). According to Fig.
  • the loss coefficient of the sample using the comparative example was in the range of about 0.1 to 0.14 between 20 ° C and 30 ° C, and the peak was at 110 ° C.
  • the sample using the sample of Example 3 had a loss coefficient in the range of about 0.08 to 0.27 between 20 ° C and 30 ° C, and its peak was about 15 ° C. Met. From this, it was confirmed that when the sample according to Example 3 was used, the damping performance was dramatically improved.

Abstract

A resin for a high damping steel plate usable as a structural member or a part thereof of a machine, a building, a vehicle and the like, characterized in that it comprises an ester-based resin and an active component which has a function to increase the dipole moment in the resin.

Description

糸田 制振鋼板用樹脂 技術分野  Itoda Resin for damping steel sheet Technical field
本発明は、 機械、 建築物、 乗物等の構造部材またはその一部として使用される 制振鋼板用樹脂に関する。 背景技術  The present invention relates to a resin for vibration-damping steel sheets used as a structural member of a machine, a building, a vehicle, or the like, or a part thereof. Background art
制振鋼板とは、 金属層間にゴム材料よりなる中間層を挟み込んだ複層構造を有 する制振材料である。 この制振鋼板は、 自動車のオイルパン、 エンジンカバー、 ダッシュパネルホッパーのシュート部、 搬送設備のストッパー、 家電機器、 その 他金属加工機械の振動低減部材ゃ振動防止が望まれる精密機械の構造部材等に適 用されている。 この制振鋼板の制振 ¾能は、 金属層間に挟み込んだ中間層を構成するゴム材料 の性能に依存しているため、 十分な制振性能が発揮されないという不具合があつ た。 本発明は、 このような従来の制振鋼板の持つ欠点を解消し、 より高性能な制振 鋼板を提供することを目的としてなされたものであり、 優れた制振性能を有する 制振鋼板用樹脂を提案するものである。 発明の開示  A damping steel sheet is a damping material having a multilayer structure in which an intermediate layer made of a rubber material is sandwiched between metal layers. These vibration damping steel plates are used in automobile oil pans, engine covers, dash panel hopper chute, transport equipment stoppers, household appliances, and other vibration-reducing components of metalworking machinery. Has been applied to Since the damping performance of the damping steel sheet depends on the performance of the rubber material constituting the intermediate layer sandwiched between the metal layers, there was a problem that sufficient damping performance was not exhibited. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks of the conventional damping steel sheet and to provide a higher-performance damping steel sheet. It proposes a resin. Disclosure of the invention
本発明の制振鋼板用樹脂は、 自動車のオイルパン、 エンジンカバー、 ダッシュ パネルホッパーのシュート部、 搬送設備のス トッパー、 家電機器、 その他金属加 ェ機械の振動低減部材ゃ振動防止が望まれる精密機械の構造部材等に適用される 制振鋼板に用いることができる。 この制振鋼板用樹脂は、 エステル系樹脂に前記樹脂における双極子モーメント 量を増大させる活性成分を配合したことを特徴としている。 エステル系樹脂は、 制振鋼板の中間層を構成するものであり、 ポリエチレンテ レフタレ一ト系樹脂、 ポリブチレンテレフタレ一ト系樹脂、 ポリエチレンナフタ レート系樹脂、 ポリブチレンナフタレート系樹脂、 ポリ一 1, 4ーシクロへキサ ンジメチレンテレフタレート系樹脂、 ポリ力プロラク トン系樹脂、 p—ヒ ドロキ シ安息香酸系ポリエステル樹脂、 及びポリアリ レート系樹脂の中から選ばれる熱 可塑性の飽和ポリエステル系樹脂が好適に使用できる。 またこのエステル系樹脂は、 それ自体が接着性を有していると、 エステル系樹 脂を金属層との間に接着剤を介在させて、 エステル系樹脂を金属層間に接着する 必要が無くなる。 上記エステル系樹脂自体、 多少の接着性を有するが、 さらに強 力な接着性を確保するため、 上記エステル系樹脂に、 エポキシ樹脂などのェポキ シ系粘着付与剤、 グリセロール 'エステルや硬化ロジンなどのロジン系粘着付与 剤、 クマ口ン樹脂にナフテン系油やフエノール樹脂等を混合したクマ口ン樹脂系 の粘着付与剤、 キシレン 'ホルムアルデヒ ド樹脂等のフ: ノール ·テルペン系樹 脂よりなる粘着付与剤といった粘着付与剤を必要に応じて適宜添加することもで きる。 本発明者は、 新たな振動エネルギーの吸収減衰のメカニズムを解明した。 その メカニズムは以下のとおりである。 すなわち、 図 1は、 振動エネルギーが伝達さ れる前のエステル系樹脂 1 1内部における双極子 1 2の配置状態を示している。 この双極子 1 2の配置状態は安定な状態にあると言える。 ところが、 これに振動 エネルギーが伝達されることで、 エステル系樹脂 1 1内部の存在する双極子 1 2 には変位が生じ、 図 2に示すように、 エステル系樹脂 1 1内部における各双極子 1 2は不安定な状態に置かれることになり、 各双極子 1 2は、 図 1に示すような 安定な状態に戻ろうとする。 このとき、 エネルギーの消費が生じることになる。 こうした、 エステル系樹脂 1 1内部における双極子の変位、 双極子の復元作用によるエネルギー消費を通じ て、 振動エネルギーの吸収が生じるものと考えられる。 このような振動減衰のメカニズムから、 図 1及び図 2に示すようなエステル系 樹脂 1 1内部における双極子モーメントの量が大きくなればなる程、 そのエステ ル系樹脂 1 1の持つ減衰性も高くなると考えられる。 活性成分とは、 前記エステル系樹脂における双極子モーメン卜の量を飛躍的に 増加させる成分であり、 当該活性成分そのものが双極子モーメント量が大きいも の、 あるいは活性成分そのものの双極子モーメント量は小さいが、 当該活性成分 を配合することで、 エステル系樹脂における双極子モーメント量を飛躍的に増加 させることができる成分をいう。 例えば所定の温度条件、 エネルギーの大きさと したときの、 エステル系樹脂 1 1に生じる双極子モーメントの量が、 これに活性 成分を配合することで、 図 3に示すように、 3倍とか 10倍と力レ、つた量に増加 することになるのである。 これに伴って、 エネルギーが伝わったときの双極子の 復元作用によるエネルギー消費量も飛躍的に増大することになり、 予測を遥かに 超えた制振性能が生じることになると考えられる。 このような作用効果を導く活性成分としては、 例えば N、 N—ジシクロへキシ ルベンゾチアジルー 2—スルフェンアミ ド (DCHB SA) 、 2—メルカプトべ ンゾチアゾ一ル (MBT) 、 ジベンゾチアジルスルフイ ド (MBTS) 、 N—シ クロへキシルベンゾチアジルー 2—スルフェンアミ ド (CB S) 、 N- t e r t —プチノレべンゾチアジノレ一 2—スノレフェンアミ ド (BB S) 、 N—ォキシジェチ レンべンゾチアジルー 2—スルフェンアミ ド (OB S) 、 N、 N—ジイソプロピ ルベンゾチアジルー 2—スルフェンアミ ド (DPB S) などのベンゾチアジル基 を含む化合物の中から選ばれた 1種若しくは 2種以上、 ベンゼン環にァゾール基が結合したベンゾトリアゾールを母核とし、 これにフ ェニル基が結合した 2— {2' 一ハイ ド口キシ一 3' ― (3" , A" , 5" , 6 " テトラハイ ドロフタリ ミデメチル) 一5' —メチルフエ二ル} —ベンゾトリア ゾール (2HPMMB) 、 2 - { 2' —ハイ ド口キシ一 5' —メチルフエ二ル} —ベンゾトリアゾール (2HMPB) 、 2— {2' —ハイ ド口キシ一 3' — t— ブチルー 5' —メチルフエ二ル} — 5—クロ口べンゾトリアゾール (2HBMP CB) 、 2— {2' —ハイ ド口キシ一 3' , 5' ージ一 t一ブチルフエ二ル} 一 5—クロ口べンゾトリアゾール ( 2 H D B P C B ) などのべンゾトリアゾール基 を持つ化合物の中から選ばれた 1種若しくは 2種以上、 ェチルー 2—シァノ一 3, 3ージ一フエ二ルァクリ レ一トなどのジフエニルァ クリ レート基を含む化合物の中から選ばれた 1種若しくは 2種以上、 あるレヽは 2—ハイ ドロキシ一 4—メ トキシベンゾフエノン (HMBP) 、 2 - ハイ ドロキシ一 4—メ トキシベンゾフエノン一 5—スルフォニックァシド (HM BP S) などのベンゾフヱノン基を持つ化合物の中から選ばれた 1種若しくは 2 種以上を挙げることができる。 尚、 前記エステル系樹脂の選択に際しては、 前記分子内部における双極子モー メン卜量の大小の他に、 用途や使用形態、 取り扱い性、 成形性、 入手容易性、 温 度性能 (耐熱性や耐寒性) 、 耐候性、 価格なども考慮するのが望ましい。 尚、 上記活性成分における双極子モーメント量は、 エステル系樹脂における双 極子モーメント量と同様に活性成分の種類により様々に異なる。 また、 同一の活 性成分を用いたとしても、 振動エネルギーが加わったときの温度により、 エステ ル系樹脂に生じる双極子モーメントの量も変わる。 また、 エステル系樹脂に加わ る振動エネルギーの大小によっても、 双極子モーメントの量は変わる。 このため、 適用時の温度、 エネルギーの大きさを考慮して、 そのとき最も大きな双極子モー メント量となる活性成分を選択して用いるのが望ましい。 尚、 エステル系樹脂に配合する活性成分を決定するに当たり、 活性成分とエス テル系樹脂との相溶し易さ、 すなわち S P値を考慮し、 その値の近いものを選択 すると良い。 この活性成分は、 前記エステル系樹脂との重量比が 9 07 1 0〜5 0ノ5 0と なるように配合するのがよい。 エステル系樹脂 Z活性成分が 9 0 / 1 0を下回る 場合には、 エステル樹脂における双極子モーメントの量を飛躍的に増加させると いう十分な効果を得ることができず、 重量比が 5 0 Z 5 0を上回る場合には、 活 性成分の配合量を多く しても、 多く した分だけの双極子モーメント量の増大が期 待できず、 しかも成形性が悪くなるという不具合を招く恐れがあるからである。 尚、 上記活性成分を 2種以上配合する場合、 ガラス転移点の異なる少なくとも 2種以上の活性成分を前記エステル系樹脂に配合して、 振動吸収性能の発揮され る温度領域を拡張することも可能である。 尚、 前記エステル系樹脂には、 炭酸カルシウム、 タルク、 ゼォライ ト、 シリカ、 カオリン、 アルミナ、 酸化チタン、 亜鉛華、 マイ力、 黒鉛等の無機充填剤を充填 することもできる。 尚、 エステル系樹脂には、 上記成分の他に、 必要に応じて酸化防止剤、 補強剤 -強化剤、 帯電防止剤、 難燃剤、 滑剤、 発泡剤、 着色剤などを配合することがで さる。 図面の簡単な説明 The resin for vibration-damping steel sheets of the present invention can be used as an oil pan for automobiles, an engine cover, a chute for a dash panel hopper, a stopper for transport equipment, home electric appliances, and other vibration reducing members for metalworking machinery. It can be used for damping steel sheets applied to structural members of machines. The resin for vibration damping steel sheets is characterized in that an ester-based resin is mixed with an active component that increases the amount of dipole moment in the resin. The ester resin constitutes an intermediate layer of the damping steel sheet, and is made of polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin, or polybutylene naphthalate resin. Thermoplastic saturated polyester resin selected from 1,4-cyclohexane dimethylene terephthalate resin, polyproprolactone resin, p-hydroxybenzoic acid polyester resin, and polyarylate resin is preferred. Can be used. Further, when the ester resin itself has adhesiveness, it is not necessary to bond the ester resin between the metal layers by interposing an adhesive between the ester resin and the metal layer. The above-mentioned ester resin itself has some adhesiveness, but in order to secure stronger adhesiveness, epoxy resin or other epoxy-based tackifier, glycerol ester or cured rosin, etc. Rosin-based tackifier, bear-mouth resin-based tackifier obtained by mixing naphthenic oil or phenolic resin with bear-mouth resin, xylene (formaldehyde resin, etc.) A tackifier such as an agent can be added as needed. The present inventors have elucidated a new mechanism of absorption and attenuation of vibration energy. The mechanism is as follows. That is, FIG. 1 shows an arrangement state of the dipoles 12 in the ester resin 11 before the vibration energy is transmitted. It can be said that the arrangement state of the dipoles 12 is in a stable state. However, when vibration energy is transmitted to this, displacement occurs in the dipoles 12 existing inside the ester-based resin 11, and as shown in FIG. 2, each dipole 1 inside the ester-based resin 11 is displaced. 2 will be placed in an unstable state, and each dipole 1 2 will try to return to a stable state as shown in Figure 1. At this time, energy is consumed. It is considered that the vibration energy is absorbed through the displacement of the dipole inside the ester resin 11 and the energy consumption due to the restoring action of the dipole. From the vibration damping mechanism, the larger the amount of dipole moment in the ester resin 11 as shown in FIGS. 1 and 2, the higher the damping property of the ester resin 11 It is considered to be. The active component is a component that dramatically increases the amount of dipole moment in the ester resin. The active component itself has a large dipole moment, or the active component itself has a dipole moment. Although it is small, it means a component that can dramatically increase the amount of dipole moment in the ester resin by blending the active component. For example, the amount of dipole moment generated in the ester-based resin 11 under the given temperature conditions and energy level can be increased by 3 times or 10 times as shown in Fig. 3 by adding an active ingredient to the ester resin. In other words, the amount of power increases. Along with this, the energy consumption due to the restoring action of the dipole when energy is transmitted will also increase dramatically, and it is thought that the vibration suppression performance far exceeds the prediction. Examples of active ingredients that induce such effects include N, N-dicyclohexylbenzothiazyl-2-sulfenamide (DCHB SA), 2-mercaptobenzothiazolyl (MBT), and dibenzothiazyl sulfide (MBT). MBTS), N-cyclohexyl benzothiazyl di-2-sulfenamide (CB S), N-tert—Ptinolebenzothiazinole-1 2-snolefenamide (BB S), N-oxyzetj Lenbenzothiaziru 2-sulfenamide (OB S), N, N-diisopropyl benzothiazyl-2-sulfenamide (DPBS) and other benzothiazyl group-containing compounds containing one or more benzotriazoles with an azole group bonded to the benzene ring With the mother nucleus Phenyl group-bonded 2— {2 'one-side oxy-one 3'-(3 ", A", 5 ", 6" tetrahydrophtalidamidemethyl) -5'-methylphenyl} -benzotriazole (2HPMMB), 2-{2 '—Hydrox xy-5' —methylphenyl} —Benzotriazole (2HMPB), 2- {2 '—Hydrox xy-1 3' — t—Butyl-5 '—Methylphenyl} — 5—Black mouth benzotriazole (2HBMP CB), 2— {2 ′ —Hide mouth xyl 3 ′, 5 ′ di-t-t-butylphenyl} 1—5—Black mouth benzotriazole (2 HDBPCB ) Or a compound containing a diphenyl acrylate group such as ethyl 2-cyano 1,3,3-diphenyl acrylate One or two or more selected from the group consisting of two hydroxy-2-4-methoxybenzenes One or more compounds selected from compounds having a benzophenone group, such as zophenone (HMBP) and 2-hydroxy-14-methoxybenzophenone-15-sulfonic acid (HMBPS) be able to. In addition, when selecting the ester-based resin, in addition to the magnitude of the dipole moment inside the molecule, the purpose, use form, handleability, moldability, availability, temperature performance (heat resistance and cold resistance) ), Weather resistance, price, etc. should be considered. Incidentally, the amount of dipole moment in the above-mentioned active ingredient varies depending on the kind of the active ingredient, similarly to the amount of dipole moment in the ester-based resin. Even when the same active component is used, the amount of dipole moment generated in the ester resin changes depending on the temperature when vibration energy is applied. Also, the amount of dipole moment changes depending on the magnitude of vibration energy applied to the ester resin. For this reason, it is desirable to select and use the active ingredient that gives the largest amount of dipole moment in consideration of the temperature and energy at the time of application. In deciding the active ingredient to be mixed in the ester resin, it is good to select the one having a similar value in consideration of the compatibility between the active ingredient and the ester resin, that is, the SP value. This active ingredient is preferably blended in such a manner that the weight ratio with the above-mentioned ester-based resin becomes 907 10 to 50 50. If the ester-based resin Z active component is less than 90/10, the effect of dramatically increasing the amount of dipole moment in the ester resin cannot be obtained, and the weight ratio is 50 Z. If it exceeds 50, even if the amount of the active ingredient is increased, an increase in the amount of the dipole moment cannot be expected by the increased amount, and there is a risk of causing a problem that the formability is deteriorated. Because. When two or more active ingredients are mixed, at least two or more active ingredients having different glass transition points can be added to the ester resin to extend the temperature range in which vibration absorption performance is exhibited. It is. The ester resin may be filled with an inorganic filler such as calcium carbonate, talc, zeolite, silica, kaolin, alumina, titanium oxide, zinc white, myriki, and graphite. In addition, in addition to the above-mentioned components, an antioxidant, a reinforcing agent, a reinforcing agent, an antistatic agent, a flame retardant, a lubricant, a foaming agent, a coloring agent, and the like can be added to the ester-based resin as necessary. . BRIEF DESCRIPTION OF THE FIGURES
図 1は、 エステル系樹脂における双極子を示した模式図である。  FIG. 1 is a schematic diagram showing dipoles in an ester-based resin.
図 2は、 振動エネルギーが加わったときのエステル系樹脂における双極子の状 態を示した模式図。  FIG. 2 is a schematic diagram showing a state of a dipole in an ester resin when vibration energy is applied.
図 3は、 活性成分が配合されたときのエステル系樹脂における双極子の状態を 示した模式図。 図 4は、 実施例 1〜 3並びに比較例 1〜 4のサンプルについて、 周波数 1 10 H zの下での各温度における力学的特性 E" (d y n e/cm2) を示したグラ フ。 FIG. 3 is a schematic diagram showing a state of a dipole in an ester resin when an active ingredient is blended. FIG. 4 is a graph showing mechanical properties E ″ (dyne / cm 2 ) at each temperature under a frequency of 110 Hz for the samples of Examples 1 to 3 and Comparative Examples 1 to 4.
図 5は、 実施例 2及び比較例の各サンプルを用いて、 これらを 2枚のステンレ ス板間に挟んで一体化した制振鋼板についての各温度における損失係数を示した グラフ。 実施例  FIG. 5 is a graph showing the loss coefficient at each temperature of a damping steel sheet obtained by using the samples of Example 2 and Comparative Example and sandwiching them between two stainless steel sheets. Example
エステル系樹脂 (バイロン、 東洋紡績株式会社製) に DCHB SAを、 1 00 /0 (比較例) 、 90/10 (実施例 1) 、 80Z20 (実施例 2) 及び 70Z 30 (実施例 3) の各重量比で配合し、 シート状に成形した。 上記実施例 1〜3、 並びに比較例の各サンプルについて、 周波数 1 10Hzの 下での各温度 (一 40°C〜40°C) における損失弾性率 t a n 6を測定し、 図 4 に示した。 尚、 損失弾性率 t a n Sの測定は、 動的粘弾性測定試験装置 (レオバ イブロン DDV— 25 FP、 株式会社オリエンテック製) を用いて行った。 図 4から、 エステル系樹脂単独の比較例のものは、 約 0°Cをピークとして損失 弾性率 t a n Sが約 1. 7前後にあるのに対し、 実施例 1のものは、 t a n Sの ピークが 2〜 3 °Cほど移動し、 そのレベルは約 0 °C〜約 30 °Cの間で比較例のも のを t a n Sが約 0. 1〜0. 3ほど上回っていた。 一方、 実施例 2及び 3のも のは、 約 0°Cから約 10°Cに温度が上昇するにつれて、 損失弾性率 t a η δが約 1. 7前後から約 2または 2. 4まで上がり、 さらに約 10°C〜1 5°Cを境にし て損失弾性率 t a η δが測定不能のレベルまで急上昇した。 以上の結果から、 D CHB S Αの配合がエステル系樹脂の制振性能を比較的に向上させていることが 確認された。 次に、 上記実施例 3と比較例の各サンプルを用いてそれぞれ制振鋼板を作製し、 それらの損失係数を測定した結果を図 5に示した。 尚、 制振鋼板は、 厚さ 0. 5 mmの 2枚のステンレス板間に、 厚さ◦. 2 mmのシート状に成形した制振鋼板 用樹脂を挟み込んで一体化したものとし、 その損失係数の測定は、 動的粘弾性測 定試験装置 (レオバイブロン DDV— 25 F P、 株式会社オリエンテック製) を 用いて行った。 図 5から、 比較例のサンプルを用いたものは、 一 20°C〜30°Cの間で損失係 数が約 0. 1〜0. 14の範囲となり、 そのピークが一 10°Cであったのに対し、 実施例 3のサンプルを用いたものは、 一20°C〜30°Cの間で損失係数が約 0. 08〜0. 27の範囲となり、 そのピークは約 1 5°Cであった。 このことから、 実施例 3に係るサンプルを用いた場合、 制振性能が飛躍的に高くなつていること が確認された。 DCHB SA was added to an ester-based resin (Byron, manufactured by Toyobo Co., Ltd.) for 100/0 (Comparative Example), 90/10 (Example 1), 80Z20 (Example 2) and 70Z30 (Example 3). Each weight ratio was blended and formed into a sheet. With respect to each of the samples of Examples 1 to 3 and Comparative Example, the loss elastic modulus tan 6 at each temperature (at 140 ° C. to 40 ° C.) under a frequency of 110 Hz was measured, and is shown in FIG. The measurement of the loss elastic modulus tan S was performed using a dynamic viscoelasticity measurement test device (Rheovaiblon DDV-25FP, manufactured by Orientec Co., Ltd.). From Fig. 4, it can be seen that the comparative example using the ester resin alone has a loss elastic modulus tan S of about 1.7 with a peak at about 0 ° C, whereas the example 1 has a peak tan S Moved about 2-3 ° C, and the level was between about 0 ° C and about 30 ° C, and tan S was about 0.1-0.3 higher than that of the comparative example. On the other hand, in Examples 2 and 3, as the temperature increases from about 0 ° C to about 10 ° C, the loss elastic modulus taηδ increases from about 1.7 to about 2 or 2.4, Furthermore, the loss elastic modulus ta η δ rose sharply to an unmeasurable level at about 10 ° C to 15 ° C. From the above results, it was confirmed that the compounding of D CHB S 比較 的 relatively improved the vibration damping performance of the ester resin. Next, damping steel sheets were manufactured using the samples of Example 3 and Comparative Example, respectively, and the results of measuring their loss coefficients are shown in FIG. The damping steel sheet has a thickness of 0.5 The resin for vibration damping steel sheets formed into a sheet with a thickness of 2 mm is sandwiched between two stainless steel plates of 2 mm in thickness, and the loss coefficient is measured by a dynamic viscoelasticity measurement test. The measurement was performed using a device (Leo Vibron DDV-25FP, manufactured by Orientec Co., Ltd.). According to Fig. 5, the loss coefficient of the sample using the comparative example was in the range of about 0.1 to 0.14 between 20 ° C and 30 ° C, and the peak was at 110 ° C. In contrast, the sample using the sample of Example 3 had a loss coefficient in the range of about 0.08 to 0.27 between 20 ° C and 30 ° C, and its peak was about 15 ° C. Met. From this, it was confirmed that when the sample according to Example 3 was used, the damping performance was dramatically improved.

Claims

言青求の範囲 Scope of word blue
1 . エステル系樹脂に前記樹脂における双極子モーメント量を増大させる活性 成分を配合したことを特徴とする制振鋼板用樹脂。 1. A resin for vibration-damping steel sheets, wherein an active ingredient that increases the amount of dipole moment in the resin is mixed with the ester resin.
2 . エステル系樹脂と活性成分の重量比を 9 0 / l O〜5 0 Z 5 0となるよう に配合したことを特徴とする請求項 1記載の制振銅板用榭脂。 2. The resin for damping copper plate according to claim 1, wherein the weight ratio between the ester resin and the active ingredient is 90 / lO to 50Z50.
3 . エステル系樹脂が、 ポリエチレンテレフタレート系樹脂、 ポリブチレンテ レフタレ一ト系樹脂、 ポリエチレンナフタレート系樹脂、 ポリプチレンナフタレ —ト系樹脂、 ポリ一 1, 4—シクロへキサンジメチレンテレフタレート系樹脂、 ポリ力プロラク トン系樹脂、 ρ —ヒ ドロキシ安息香酸系ポリエステル樹脂、 及び ポリアリレート系樹脂の中から選ばれる熱可塑性の飽和ポリエステル系樹脂であ ることを特徴とする請求項 1記載の制振鋼板用樹脂。 3. The ester resin is polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin, poly-1,4-cyclohexanedimethylene terephthalate resin, poly 2. The vibration-damping steel sheet according to claim 1, wherein the resin is a thermoplastic saturated polyester resin selected from the group consisting of a power prolactone resin, a ρ-hydroxybenzoic acid polyester resin, and a polyarylate resin. resin.
4 . 活性成分が、 ベンゾチアジル基を含む化合物、 ベンゾトリアゾール基を含 む化合物、 ジフエ二ルァク リ レート基を含む化合物、 あるいはベンゾフエノン基 を含む化合物の中から選ばれる 1種もしくは 2種以上であることを特徴とする請 求項 1記載の制振鋼板用樹脂。 4. The active ingredient is one or more compounds selected from a compound containing a benzothiazyl group, a compound containing a benzotriazole group, a compound containing a diphenylacrylate group, and a compound containing a benzophenone group. The resin for vibration-damping steel sheet according to claim 1, which is characterized in that:
PCT/JP1999/006996 1999-11-01 1999-12-13 Resin for high damping steel plate WO2001032777A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP99/06096 1999-11-01
PCT/JP1999/006096 WO2001032776A1 (en) 1999-11-01 1999-11-01 Resin for damping steel plate

Publications (1)

Publication Number Publication Date
WO2001032777A1 true WO2001032777A1 (en) 2001-05-10

Family

ID=14237187

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1999/006096 WO2001032776A1 (en) 1999-11-01 1999-11-01 Resin for damping steel plate
PCT/JP1999/006996 WO2001032777A1 (en) 1999-11-01 1999-12-13 Resin for high damping steel plate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006096 WO2001032776A1 (en) 1999-11-01 1999-11-01 Resin for damping steel plate

Country Status (1)

Country Link
WO (2) WO2001032776A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026645A1 (en) * 2006-08-30 2008-03-06 Koatsu Gas Kogyo Co., Ltd. Resin composition for damping material and damping material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117463A (en) * 1990-09-07 1992-04-17 Kawasaki Steel Corp Core resin for composite vibration-damping metal plate, composite vibration-damping metal plate using the same, and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117463A (en) * 1990-09-07 1992-04-17 Kawasaki Steel Corp Core resin for composite vibration-damping metal plate, composite vibration-damping metal plate using the same, and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026645A1 (en) * 2006-08-30 2008-03-06 Koatsu Gas Kogyo Co., Ltd. Resin composition for damping material and damping material
JP5159628B2 (en) * 2006-08-30 2013-03-06 高圧ガス工業株式会社 Resin composition for damping material and damping material
US8609763B2 (en) 2006-08-30 2013-12-17 Koatsu Gas Kogyo Co., Ltd. Resin composition for vibration damping material and vibration damping material

Also Published As

Publication number Publication date
WO2001032776A1 (en) 2001-05-10

Similar Documents

Publication Publication Date Title
CN101495302B (en) Steel plate-reinforcing material of type applying vibration-damping performance to steel plate
JP2009544799A (en) Vibration damping material, structural laminate, and manufacturing method thereof
JP2010536623A (en) Roofing board material
CN102695893A (en) Vibration damping sheet, method for damping vibration of vibrating member, and method for utilizing the vibrating member
JP2009544808A (en) Vibration damping materials for polyamides and mercaptobenzimidazoles
JP4460426B2 (en) Resin composition, resin sheet and laminated material
WO1999028394A1 (en) Vibration-damping paint
WO2001032777A1 (en) Resin for high damping steel plate
JP2008049702A (en) Molded article and its manufacturing method
JPH10138365A (en) Laminated damping steel material of unconstrained type
JP3613778B2 (en) Architectural board
JPH09302139A (en) Damping material
JP5530915B2 (en) Back sheet for solar cell panel and solar cell panel using the same
JP2006341243A (en) Coat-type steel plate reinforcing material
JPH10143164A (en) Sound absorbing sheet
JP2002297146A (en) Restrained vibration damping material
JPH03119063A (en) Viscoelastic resin composition for vibration damper
JP4460350B2 (en) Resin composition, resin sheet and laminated material
WO2000059719A1 (en) Constrained vibration damping material
JPH05220883A (en) Damping sheet
WO1999064535A1 (en) Damping self-adhesive
JP4384929B2 (en) Damping material
JP2002294208A (en) Vibration-damping adhesive composition, and vibration- damping steel plate using vibration-damping adhesive composition
WO2003082972A1 (en) Vibration-damping composition and process for producing vibration-damping composition
JPH0267130A (en) Composite type damping metal plate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 535465

Kind code of ref document: A

Format of ref document f/p: F