WO2001028982A1 - Diethylenetriaminepenta acetic acid derivatives - Google Patents

Diethylenetriaminepenta acetic acid derivatives Download PDF

Info

Publication number
WO2001028982A1
WO2001028982A1 PCT/JP1999/005860 JP9905860W WO0128982A1 WO 2001028982 A1 WO2001028982 A1 WO 2001028982A1 JP 9905860 W JP9905860 W JP 9905860W WO 0128982 A1 WO0128982 A1 WO 0128982A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
nhr
general formula
derivative according
Prior art date
Application number
PCT/JP1999/005860
Other languages
French (fr)
Japanese (ja)
Inventor
Hisao Takayanagi
Original Assignee
Mitsubishi Pharma Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pharma Corporation filed Critical Mitsubishi Pharma Corporation
Priority to PCT/JP1999/005860 priority Critical patent/WO2001028982A1/en
Priority to AU62293/99A priority patent/AU6229399A/en
Publication of WO2001028982A1 publication Critical patent/WO2001028982A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/08Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/10Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical

Definitions

  • the present invention relates to a novel diethylenetriaminepentaacetic acid (hereinafter abbreviated as DTPA) derivative containing four or more sugar chains as a sugar acid amide, and a derivative complexed with a metal ion.
  • DTPA diethylenetriaminepentaacetic acid
  • the present invention particularly relates to the use of a metal chelate as a contrast agent in X-ray imaging and magnetic resonance imaging (hereinafter abbreviated as MRI).
  • Chelating agents are used as metal carriers in X-ray and nuclear magnetic resonance scintigraphy diagnostics.
  • gadolinium (Gd) complexes of polyaminopolycarboxylic acids, including DTPA have already been used in clinical practice as MRI diagnostics as contrast agents.
  • MRI diagnostics as contrast agents.
  • contrast agents For example, by adding blood pooling properties to contrast agents, extracellular fluid properties, MR angiography that was impossible or limited with contrast agents, evaluation of capillary permeability (information on tumor malignancy, etc. Can be obtained), and myocardial ischemia can be evaluated.
  • contrast agents that are selectively taken into hepatocytes as an example, it will be possible to more easily detect liver tumors and differentiate the degree of differentiation of liver cancer, and MRI will be able to use dynamic CT and CTAP. It is expected to be a test that can be omitted (see Inner Vision, 12, 62 (19997)).
  • contrast agents Many attempts have been made to make organs and tissues specific to contrast agents.
  • blood pooling, liver-selective contrast agent research is active.
  • conventional blood boo Most of the contrast agents are biomolecules, such as proteins and polysaccharides, coupled with a chelator moiety, and are not a single compound for manufacturing, handling, or a single compound (a certain distribution where the binding position of the chelator moiety is uncertain)
  • An aggregate of compounds having different molecular weights having different molecular weights) caused metabolic and toxicity problems.
  • organ selectivity those targeting organs are best studied, but the mechanism of uptake into the liver is to add lipophilic groups to the structural formula to increase lipophilicity and increase transmembrane permeability.
  • GSGP-R asia oral glycoprotein receptor
  • Tc-chelate albumin an iron oxide colloid that resembles the ashia glycoprotein (hereinafter abbreviated as GSGP), which is the natural ligand of GSGP-R, and has a number of terminal galactose residues bonded to it, has been developed.
  • the present inventors have conducted intensive studies to achieve the above-mentioned object, and as a result, have found that in a molecule, four or more sugar chains that are recognized or bound to or not bound by a receptor existing in a living body are converted to sugar acid amides. For the first time found that the above problems can be achieved with the DT PA derivative contained as The present invention has been completed.
  • sugar chains that can be recognized as receptors in the body include, for example, the aforementioned galactose residues for hepatocytes, mannose residues for liver Kupffer cells and fibroblasts, and ⁇ -Darcose residues for Lewis lung cancer cells.
  • the compound of the present invention to which these groups are attached at the end makes it possible to selectively image a target organ or (lesion) tissue by the compound of the present invention, thereby diagnosing the presence of a lesion site.
  • function diagnosis of organs can be performed in some cases.
  • by selecting an arbitrary sugar chain that is not taken up by the receptor and binding it to a number having a high molecular weight sufficient to exhibit blood pooling properties it is possible to produce a contrast agent having blood bleeding properties.
  • the sugar chain identified as a receptor may be bound to the extent that blood pool properties appear, or rather, diffusion outside the target organ may be suppressed, and favorable effects such as a reduced dose may be obtained in some cases.
  • the sugar chain compound of the present invention is greatly characterized in that it is a single compound, unlike a conventional contrast agent bound with polysaccharide.
  • the gist of the present invention is represented by the following general formula (1)
  • R is a general formula—N ((CH 2) kNHR 1 ) 2 (where k represents an integer of 2 to 5, and R 1 is a benzyloxycarbonyl group (hereinafter referred to as “Z group” ), A t-butyloxycarbonyl group (hereinafter sometimes also referred to as a “B oc group”), a hydrogen atom, or a glycan residue of a sugar chain), one NH (CH 2) 1 N ( (CH 2) kNHR 1 ) 2 (wherein, k and R 1 have the same meanings as above, and 1 has the same meaning as k, which may be the same as or different from k.), -NHCHm (CH 2 AR 2 ) 3— m (where m represents 0 or 1, A represents a single bond, one (CH 2) 2, -CH 2 C 0, -O (CH 2) 3, one O (CH 2) 2 CO, or one CO, and R 2 is ⁇ NHR 1 , -NH (CH 2)
  • R is -N ((CH2) kNHR ") 2 (where k represents an integer of 2 to 5,
  • R 1 represents a sugar chain residue), wherein said diethylenetriamine 5 acetic acid derivative
  • the metal ion is selected from the group consisting of a paramagnetic metal ion and a radioactive metal ion;
  • a contrast agent containing the above derivative as an essential component A pharmaceutical composition for in vivo diagnosis comprising the derivative derivative and a pharmaceutically acceptable carrier;
  • R has the same meaning as described above.
  • R 1 in R represents a meaning excluding a hydrogen atom
  • R 1 is a sugar
  • R ' represents a hydrogen atom, a Z group, or a Boc group, but when R has a Z group or a Boc group, each of them does not represent their meaning.
  • the “sugar chain residue” defined by R 1 is not particularly limited as long as it is a single sugar carboxylic acid residue, but from the viewpoint of availability, for example, The following general formula (3)
  • the monosaccharide oligosaccharide (polysaccharide) represented by
  • a saccharide whose terminal is a saccharide unit exhibiting affinity for the receptor is selected.
  • Specific examples include acyl residues of monosaccharide acids such as D-dalconic acid, D-galactonic acid, D-mannonic acid, D-fuconic acid, D-maltobionic acid, and D-lactobionic acid.
  • Examples include the acyl residue of a sugar acid oxidized to an acid.
  • R -N ((CH2) 2NHZ) 2, 1N ((CH2) 2NHBoc) 2, 1N ((CH2) 2NH2) 2, 1N ((CH2) 2 NHG 1 c CO) 2, — N ((CH 2) 2 NHGa 1 CO) 2, 1 N ((CH 2) 2 NH (M an CO)) 2, 1 N ((CH 2) 2 NH ( G a 1 a 1 ⁇ 4 G 1 c CO)) 2, 1 N ((CH 2) 2 NH ((G 1 ca 1 ⁇ 4) 2 G 1 c CO) 2, 1 N ((CH 2) 2 NH ((G 1 ca 1- ⁇ 4) 3 G 1 c CO)) 2, N ((CH 2) 2 NH ((G 1 ca 1 ⁇ 4) 4 G 1 c CO)) 2, — N (( CH 2) 2 NH ((G 1 ca 1 ⁇ 4) 5 G lc CO)) 2, 1 N ((CH 2) 2 NH ((G 1 ca 1 ⁇ 4) 6 G 1 c CO)) 2 1 N ((CH 2)
  • the compound (2) in which R 'is a hydrogen atom can be produced via (2).
  • R — N ((CH 2) kNHR 1 ) 2
  • R 1 represents Z or B oc
  • X represents C 1 or B r
  • compound (A) can be prepared from a compound represented by the general formula (A) (hereinafter abbreviated as compound (A)) which can be easily produced from diamine H 2N (CH 2) k NH 2 and a hydrohalide of an alkylamine halide.
  • Compounds represented by the general formula (B) are combined with tetrahydrofuran in the presence of an organic base such as triethylamine and diisopropylethylamine and an inorganic base such as sodium hydrogencarbonate.
  • the compound (2a) can be produced by reacting in a suitable solvent such as drofuran and ethanol.
  • R. and R 4 represent Z or B oc and X represents C 1 or Br. That is, they can be prepared by the same reaction as used in the production of compound (A) or (B). Alternatively, the same compound represented by the general formulas (C) and (D) (abbreviated as the compounds (C) and (D), respectively) is subjected to the same reaction as in (1), and the compound represented by the general formula (E ) (Hereinafter abbreviated as compound (E)). At this time, a compound in which the Z group and the Boc group represented by R 3 and R 4 in the compounds (C) and (D) are different from each other is used. From compound (E), Shaku 3 was 80.
  • the group is a group
  • a method capable of deprotecting the Boc group in the presence of the Z group for example, by reacting trifluoroacetic acid in a suitable solvent such as methylene chloride or without solvent, or by reacting hydrogen chloride or hydrobromic acid in a suitable solvent such as acetic acid or ethyl acetate.
  • R 3 is removed by a method such as hydrogenolysis in the presence of a Pd catalyst to produce a compound (2b) in which R 1 is a Z group or a Boc group .
  • compound (F) the compound represented by the general formula (F)
  • compound (F) can be produced by removing R 4 using the above-mentioned method.
  • compound (F) For example, a sugar lactone compound represented by the following general formula (4) (hereinafter abbreviated as “compound (4)”), and p has the same meaning as described above.
  • a compound represented by the general formula (G) (hereinafter abbreviated as compound (G)) can be produced by a condensation reaction with
  • Compound (4) can be obtained as a commercial product, but can be produced from the corresponding commercially available saccharide by an ordinary method for dehydrating a sugar acid obtained by oxidation with, for example, bromine or iodine under alkaline conditions.
  • This dehydration reaction can be performed by a simple operation such as adding an alcohol such as methanol or ethanol to a sugar acid, repeating distillation under reduced pressure, and azeotropically dehydrating with toluene.
  • an alcohol-based solvent such as methanol, ethanol, and ethylene glycol
  • a non-protonic polar solvent such as dimethylformamide and dimethylsulfoxide.
  • a suitable solvent for example, at 150 ° C. to 200 ° C., preferably at room temperature to 150 ° C., and in some cases, in the presence of a suitable catalyst such as NaCN, for 10 minutes to 120 hours.
  • the reaction can be carried out preferably for 1 hour to 10 hours.
  • a reaction under high pressure see Bui 1. Soc. Chem. J pn., 62, 31 38 (19989) is also used. it can.
  • sugar acid ratatones such as sugar acid ⁇ -lactone and glucuronic acid lactone.
  • R ⁇ iZ represent B oc or carbohydrate Ashiru residues.
  • R 3 represents Z or B oc
  • R 1 and R 0 is represent different meanings from each other.
  • K is the same meaning
  • M s represents a methanesulfonyl group
  • the compound (J) is reacted with the compound (2a) produced in the above scheme 1 in the same manner as in the production of the compound (E) shown in the scheme 2 to give a compound represented by the general formula (K) (Hereinafter abbreviated as compound (K)).
  • R 1 in the compound (2a) to be reacted is Use a compound different from R 3 in compound (J).
  • R 3 can be removed in the same manner as above to produce compound (2c) in which R is Z or Boc.
  • the reaction of acid lactone, 3) can be prepared a compound wherein R 1 is a sugar acid Ashiru residue (2) by removal of R.
  • R 1 using literature known tristriethylene scan methane Sno Reho inert (non Dorokishimechiru) nitromethane (see S ynthesis, 7 4 2 (1 9 8 7)) instead of Ihigo product (J) is B
  • the carboxyl group can be reduced from commercially available dinitromethane tris-pionate (for example, sodium borohydride acts in the presence of methanol in tetrahydrofuran).
  • dinitromethane tris-pionate for example, sodium borohydride acts in the presence of methanol in tetrahydrofuran.
  • compound (2) can be produced by a similar reaction.
  • R 1 R 13 and k have the same meanings as R 1 , R °, and k in Scheme 3.
  • the compound (L) known in the literature (J. Org. Chem., 56) , 7162 (1991)) hydrolyze t-butyl ester, for example, by allowing trifluoroacetic acid to act at room temperature, or adding p-toluenesulfonic acid in acetic acid and heating.
  • Compound (M) can be produced by such a method. From the compound (M), a compound represented by the general formula (N) (hereinafter abbreviated as compound (N)) can be produced by a method used for Z-formation and Boc-formation of an amino group of an amino acid.
  • a compound represented by the general formula (O) (hereinafter, abbreviated as compound (O)) can be produced by a normal amide bond forming reaction such as activation of an anhydride or the like after activation.
  • R 1 represents a Z group or a glycan residue
  • the compound (R) can be produced by subjecting the known compound (P) to Boc to give the compound (Q), and then subjecting it to a reduction reaction such as catalytic hydrogenation reaction using a Raney nickel catalyst in the presence of ammonia. From the compound (R), the compound (2) in which R 1 is Z or a sugar chain residue can be produced by the method described above.
  • the compound (2) of the present invention is a single sugar derivative having an amino group or a compound useful for producing the same, and is given to a compound obtained by containing or using these. Targeting and blood pooling functions can also be exerted when applied to other diagnostic or therapeutic agents as well as chelating agents. For example, if the compound (2) of the present invention is added to a 5-amino-1,2,4,6-tridoisophthalic acid derivative used for X-ray diagnosis, organ selectivity or blood booting can be obtained. It is a new contrast agent for X-ray diagnostics.
  • a compound in which a metal ion is complexed with the compound represented by the general formula (1) obtained as described above is also included as a gist thereof.
  • the metal ion may be any of a paramagnetic metal ion and a radioactive metal ion.
  • lanthanide cations such as Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb have visible to near-infrared regions, long lifetimes, and narrow wavelengths.
  • the compound obtained by complexing the compound represented by the general formula (1) obtained as described above with a metal ion can be used as a contrast agent. Further, it can also be used as a pharmaceutical composition for in vivo diagnosis comprising a pharmaceutically acceptable carrier.
  • a parenteral administration method such as intravenous administration is usually used, but it can also be administered orally.
  • a parenteral administration method such as intravenous administration is usually used, but it can also be administered orally.
  • the preparation for parenteral administration that is, a solvent or a suspending agent used in the production of an injection or the like include water and water. Examples include propylene glycol cornole, polyethylene glycol cornole, penzinoleanol cornole, ethyl ethyl oleate, and lecithin. Preparation of the preparation may be performed by a conventional method.
  • a pharmaceutically acceptable carrier for example, granules, fine granules, powders, tablets, hard syrups, soft capsules, syrups, emulsions, Oral administration in the form of suspensions, ribosomes, solutions, etc.
  • excipients used in producing a solid preparation include lactose, sucrose, starch, talc, cell mouth, dextrin, kaolin, calcium carbonate and the like.
  • Liquid preparations for oral administration ie, emulsions, syrups, suspensions, solutions and the like, contain commonly used inert diluents such as vegetable oils.
  • the preparation may contain, in addition to the inert diluent, auxiliary substances such as wetting agents, suspending aids, sweetening agents, flavoring agents, coloring agents or preservatives. Can also be. Liquid preparations may be included in capsules of absorbable substances such as gelatin.
  • the MRI contrast agent according to the present invention is generally administered at a dose that provides the desired contrast effect without side effects.
  • the specific value should be determined at the discretion of the physician, but is generally 0.1 mg to 10 g, preferably 1 mg to 5 g per component per diagnosis.
  • the compound of the present invention may be administered as an active ingredient in an amount of 1 mg to 5 g, more preferably 3 mg to 3 g per adult per one diagnosis.
  • Lactone lactobionate 72 g was added to a solution of dimethylene triamine (260 mg) in DMS O (4 ml), and the mixture was stirred at room temperature. After the lactone had dissolved, stirring was continued for another 3 o'clock on a 50 ° C oil bath. Analysis of a very small portion revealed that the sugar amide was almost pure.
  • Triamine compound (420 mg) and D-gnorenolactone (572 mg) were dissolved in dimethyl sulfoxide (8 ml) and stirred at room temperature for 24 hours.
  • the residue obtained by concentration was retained on an ion exchange resin (Diaion WK-40), washed with water, developed with 0.5 N aqueous ammonia, and the desired fraction was collected and concentrated. Yield 446 mg (45%).
  • Lactone maltose is reacted with diethylene triamine and then with di-t-butyl dicarbonate, and the acetylated paracetyl Boc is treated with trifluoroacetic acid and then treated in a conventional manner to give a nearly quantitative yield of the free amine. I got it.
  • Example 3 Using the Gd complex of Example 3 and a tumor-bearing rat, an MR imaging test was performed on an animal machine (magnetic field strength: 2T). The measurement conditions were SE 500/18, multi-slice, dose, and drug concentration were 0.01 mmol / Kg and 0.05M. As a result, it was found that the Gd complex of Example 3 had a high signal in the solid part and a low signal in the cyst part. In the upper part of the liver (corresponding to the latter half slice of the multi-slice), the contrast effect was not so high as in the lower part. From this, the BP property of the Gd complex of Example 3 was estimated.
  • the renal imaging effect of the Gd complex of Example 3 was compared with DTPA (Aldrich) using healthy rats.
  • the measurement conditions were the same as in Example 13.
  • the Gd complex of Example 3 was clearer than DTPA.
  • the contrast of the nipple was delayed, and the renal contrast behavior was slightly different from that of DTPA.
  • the compound which has an organ and tissue selectivity and can be used as a novel contrast agent which has a blood pool property is obtained.

Abstract

Compounds represented by general formula (1), and contrast media containing the same as essential component. These contrast media are utilizable as novel ones exhibiting selectivity among organs and tissues and blood pooling property.

Description

明細書  Specification
ジエチレント リアミン 5酢酸誘導体  Diethylenetriamine 5-acetic acid derivative
技術分野 Technical field
本発明は、 4個以上の糖鎖を糖酸アミ ドとして含有する新規なジエチレントリ アミン五酢酸 (以下、 D T P Aと略記する。 ) 誘導体および金属イオンと錯化し た該誘導体に関し、 さらにはその製造中間体、 前記誘導体を必須成分とする造影 剤、 並びに体内診断用医薬組成物に存する。 本発明は、 特に、 X線造影および磁 気共鳴造影 (以下、 M R I と略記する。 ) におけるコントラス ト剤となる金属キ レー トの用途に関する。  The present invention relates to a novel diethylenetriaminepentaacetic acid (hereinafter abbreviated as DTPA) derivative containing four or more sugar chains as a sugar acid amide, and a derivative complexed with a metal ion. An intermediate, a contrast agent containing the derivative as an essential component, and a pharmaceutical composition for in vivo diagnosis. The present invention particularly relates to the use of a metal chelate as a contrast agent in X-ray imaging and magnetic resonance imaging (hereinafter abbreviated as MRI).
背景讓 Background
X線、 核磁気共鳴おょぴシンチフォ トグラフィ一診断における金属のキヤリァ 一としてキレート剤が用いられている。 と りわけ、 M R I診断において D T P A を含むポリアミノポリカルボン酸のガドリニウム (G d ) 錯体がコントラスト剤 としてすでに臨床の現場で利用されている。 しかし、 これら臨床応用されている G d錯体はその有用性は広く認められているものの、 その細胞外液性、 すなわち 静注投与後急速に血管からもれ出し、 細胞内に取り込まれることなく細胞間質に 拡散分布するという性質に由来する限界があった。 これを打破し、 臓器、 組織特 異的に M R I コントラス トを増強し、 あるいは緩和を増幅できれば、 投与量の削 減が可能となるのみならず、 従来の診断法では得難い情報が得られることが期待 されている。 たとえば、 造影剤に血液プール性を付与することで細胞外液性や、 造影剤では不可能、 あるいは限界のあった M Rアンギオグラフィー、 毛細血管透 過性の評価 (腫瘍の悪性度等の情報が得られる) 、 心筋虚血の評価などが行なえ る。 また、 肝細胞に選択的に取り込まれる造影剤を例に取れば、 肝腫瘤検出、 肝 癌の分化度の鑑別などをより容易に行なうことが可能となり、 M R I がダイナ : ック C Tや C T A Pを省略できる検査法となり得ると期待されている ( I n n e r V i s i o n , 1 2 , 6 2 ( 1 9 9 7 ) 参照) 。  Chelating agents are used as metal carriers in X-ray and nuclear magnetic resonance scintigraphy diagnostics. In particular, gadolinium (Gd) complexes of polyaminopolycarboxylic acids, including DTPA, have already been used in clinical practice as MRI diagnostics as contrast agents. However, although the usefulness of these clinically applied Gd complexes is widely recognized, their extracellular fluidity, i.e., the cells rapidly leak from blood vessels after intravenous administration and are not taken up by cells There was a limit due to the property of diffusion distribution in the interstitium. Breaking this down and increasing the MRI contrast or organ relaxation specific to organs and tissues could not only reduce the dose but also provide information that would be difficult to obtain with conventional diagnostic methods. It is expected. For example, by adding blood pooling properties to contrast agents, extracellular fluid properties, MR angiography that was impossible or limited with contrast agents, evaluation of capillary permeability (information on tumor malignancy, etc. Can be obtained), and myocardial ischemia can be evaluated. In addition, taking contrast agents that are selectively taken into hepatocytes as an example, it will be possible to more easily detect liver tumors and differentiate the degree of differentiation of liver cancer, and MRI will be able to use dynamic CT and CTAP. It is expected to be a test that can be omitted (see Inner Vision, 12, 62 (19997)).
造影剤に臓器、 組織特異性を持たせる試みは数多く行なわれている。 と りわけ 、 血液プール性、 肝選択性造影剤の研究は活発である。 しかし、 従来の血液ブー ル性造影剤の多くは蛋白質、 ポリサッカライ ドなどの生体分子にキレーター部を カップリ ングしたものであり、 製造、 取り扱い上の、 また単一化合物でない (キ レーター部の結合位置が不定な、 ある分布を持った分子量の異つた化合物の集合 体) ことによる代謝、 毒性上の問題点を有していた。 また、 臓器選択性に関して は臓器をターゲッ トとしたものが最も良く研究されているが、 肝臓への取り込み の機序として構造式に脂溶性の基を付加することで脂溶性を高め膜通過性を亢進 するようデザインした常磁性造影剤が多く、 一部は臨床治験が実施されているも のもあるが、 肝臓に取り込まれ胆汁排泄される効率もそれほど高くない。 一方、 肝細胞への取り込みの機序として肝細胞に存在するァシァ口糖蛋白レセプター ( 以下、 G S G P— Rと略記する) を標的とした造影剤の研究が行なわれている。 G S G P— Rの本来のリガンドであるァシァ口糖蛋白質 (以下、 G S G Pと略記 する) に似せ多数の末端ガラク ト一ス残基を結合した酸化鉄コロイ ド、 T cーキ レートアルブミンが開発されている (たとえば、 A J R, 1 5 5, 1 1 6 1 ( 1 9 9 0) ; R a d i o l o g y , 1 7 8, 7 6 9 ( 1 9 9 1 ) 参照) 。 最近、 2 個のガラク トース末端を持つ DTP A誘導体が報告されたが (C h e m i c a 1 J o u r n a l o f C n i n e s e Un i v e r s i t i e s , 1 8, 1 0 7 2 ( 1 9 9 7 ) 参照) 、 レセプターによる識別、 取り込み効率をより高め るためには多くの末端ガラク ト一ス残基を結合した分子であることが求められる 。 ちなみに、 レクチンと高い親和性を有するヒ ト血清中の代表的糖タンパク由来 のァシァロォロソムコイ ドには 1 4個の末端ガラク ト一ス残基があることが知ら れており、 上記の 2個のガラク トース末端を持つ DT P A誘導体ではレセプター による識別、 取り込み効率が不十分であることは、 このことからも予想できる。 従って、 レセプターによる識別、 取り込み効率が向上した新たな DT P A誘導体 が望まれていた。 Many attempts have been made to make organs and tissues specific to contrast agents. In particular, blood pooling, liver-selective contrast agent research is active. However, conventional blood boo Most of the contrast agents are biomolecules, such as proteins and polysaccharides, coupled with a chelator moiety, and are not a single compound for manufacturing, handling, or a single compound (a certain distribution where the binding position of the chelator moiety is uncertain) An aggregate of compounds having different molecular weights having different molecular weights) caused metabolic and toxicity problems. Regarding organ selectivity, those targeting organs are best studied, but the mechanism of uptake into the liver is to add lipophilic groups to the structural formula to increase lipophilicity and increase transmembrane permeability. There are many paramagnetic contrast agents designed to enhance the activity, and some of them have undergone clinical trials, but their efficiency in taking up into the liver and excreting bile is not so high. On the other hand, as a mechanism of incorporation into hepatocytes, studies of contrast agents targeting asia oral glycoprotein receptor (hereinafter abbreviated as GSGP-R) present in hepatocytes have been conducted. Tc-chelate albumin, an iron oxide colloid that resembles the ashia glycoprotein (hereinafter abbreviated as GSGP), which is the natural ligand of GSGP-R, and has a number of terminal galactose residues bonded to it, has been developed. (See, for example, AJR, 1550, 1161 (1990); Radiology, 178, 769 (1991)). Recently, a DTPA derivative with two galactose ends was reported (see Chemical 1 Journalof C ninese Universities, 18, 1072 (19997)). In order to further increase the efficiency, it is required that the molecule has many terminal galactose residues. Incidentally, it is known that a typical glycoprotein derived from human glycoprotein in human serum having a high affinity for lectin has 14 terminal galactose residues. This suggests that the DTPA derivative having two galactose terminals of the above lacks the efficiency of discrimination and uptake by the receptor. Therefore, a new DTPA derivative with improved receptor identification and uptake efficiency has been desired.
発明の開示 Disclosure of the invention
本発明者らは、 前述の目的を達成すべく鋭意検討を重ねた結果、 分子中に、 生 体内在の受容体に認識、 結合される、 またはされない 4個以上の糖鎖を糖酸アミ ドとして含有した DT P A誘導体で上記課題が達成できることを初めて見出し、 本発明を完成するに至った。 生体内在のレセプターに識別され得る糖鎖としては 、 たとえば前述の肝実質細胞に対するガラク トース残基をはじめ、 肝クッパー細 胞、 線維芽細胞に対するマンノース残基、 ルイス肺癌細胞に対する α—ダルコ一 ス残基などを末端に含むものが挙げられ、 これらを結合した本発明の化合物によ り対象とする臓器、 (病変) 組織を選択的に造影することが可能となり、 これに より病変部位の存在診断のみならず悪性度等の鑑別診断、 場合によれば臓器の機 能診断も行なえる。 一方、 レセプターに取り込まれることのない任意の糖鎖を選 び、 血液プール性を示すに充分な高分子量になる数だけ結合することで血液ブー ル性を付与された造影剤を製造できる。 もちろん、 レセプターに識別される糖鎖 を血液プール性が現れるほど結合することも構わないし、 むしろ対象臓器外への 拡散が抑えられ、 投与量の低減化等好ましい効果が得られる場合もある。 いずれ にしても、 本発明の含糖鎖化合物は、 ポリサッカライ ドを結合した従来の造影剤 と異なり単一化合物であるという大きな特徴がある。 The present inventors have conducted intensive studies to achieve the above-mentioned object, and as a result, have found that in a molecule, four or more sugar chains that are recognized or bound to or not bound by a receptor existing in a living body are converted to sugar acid amides. For the first time found that the above problems can be achieved with the DT PA derivative contained as The present invention has been completed. Examples of sugar chains that can be recognized as receptors in the body include, for example, the aforementioned galactose residues for hepatocytes, mannose residues for liver Kupffer cells and fibroblasts, and α-Darcose residues for Lewis lung cancer cells. The compound of the present invention to which these groups are attached at the end makes it possible to selectively image a target organ or (lesion) tissue by the compound of the present invention, thereby diagnosing the presence of a lesion site. In addition to differential diagnosis of malignancy, etc., function diagnosis of organs can be performed in some cases. On the other hand, by selecting an arbitrary sugar chain that is not taken up by the receptor and binding it to a number having a high molecular weight sufficient to exhibit blood pooling properties, it is possible to produce a contrast agent having blood bleeding properties. Of course, the sugar chain identified as a receptor may be bound to the extent that blood pool properties appear, or rather, diffusion outside the target organ may be suppressed, and favorable effects such as a reduced dose may be obtained in some cases. In any case, the sugar chain compound of the present invention is greatly characterized in that it is a single compound, unlike a conventional contrast agent bound with polysaccharide.
即ち本発明の要旨は、 下記一般式 ( 1 )  That is, the gist of the present invention is represented by the following general formula (1)
RCORCO
Figure imgf000005_0001
Figure imgf000005_0001
(式中、 Rは一般式— N ( (CH 2 ) kNHR 1) 2 (式中、 kは 2から 5の整 数を表わし、 R 1はべンジルォキシカルボニル基 (以下 「Z基」 と表すこともあ る) 、 t—ブチルォキシカルボニル基 (以下 「B o c基」 と表すこともある) 、 水素原子、 または糖鎖ァシル残基を表わす) 、 一 NH (C H 2 ) 1 N ( (CH 2 ) kNHR 1) 2 (式中、 k、 R 1は上記と同義を表わし、 1 は kと同義を表わ すが、 kと同一でも異なっていてもよい。 ) 、 -NHCHm (CH 2 AR 2) 3— m (式中、 mは 0または 1を表わし、 Aは単結合、 一 (CH 2) 2、 - C H 2 C 0、 -O (C H 2 ) 3、 一 O (C H 2 ) 2CO、 または一 COを表わし、 R 2 は "NHR 1 、 -NH (CH 2) kNHR 1 、 一 N ( (CH 2) kNHR 1) 2、 または— NH (CH 2) I N ( (CH 2) kNHR 1) 2 (式中、 k、 1および R 1 は前記と同義を表わす) 。 ただし、 mが 1 を表わす時、 Aは _COのみを表 わす。 ) (Wherein R is a general formula—N ((CH 2) kNHR 1 ) 2 (where k represents an integer of 2 to 5, and R 1 is a benzyloxycarbonyl group (hereinafter referred to as “Z group” ), A t-butyloxycarbonyl group (hereinafter sometimes also referred to as a “B oc group”), a hydrogen atom, or a glycan residue of a sugar chain), one NH (CH 2) 1 N ( (CH 2) kNHR 1 ) 2 (wherein, k and R 1 have the same meanings as above, and 1 has the same meaning as k, which may be the same as or different from k.), -NHCHm (CH 2 AR 2 ) 3— m (where m represents 0 or 1, A represents a single bond, one (CH 2) 2, -CH 2 C 0, -O (CH 2) 3, one O (CH 2) 2 CO, or one CO, and R 2 is `` NHR 1 , -NH (CH 2) kNHR 1 , one N ((CH 2) kNHR 1 ) 2, or — NH (CH 2) IN ((CH 2) kNHR 1 ) 2 (where k, 1 and R 1 have the same meanings as above), provided that when m represents 1, A is _CO only Is expressed.)
を表わす) で表わされるジエチレントリアミン五酢酸誘導体; A diethylenetriaminepentaacetic acid derivative represented by the formula:
Rがー N ( (CH 2) kNHR ") 2 (式中、 kは 2から 5の整数を表わし、 R is -N ((CH2) kNHR ") 2 (where k represents an integer of 2 to 5,
R 1 は糖鎖ァシル残基を表わす) ことを特徴とする上記ジエチレントリアミン 5 酢酸誘導体; R 1 represents a sugar chain residue), wherein said diethylenetriamine 5 acetic acid derivative;
糖鎖ァシル残基が下記一般式 (3) で表されることを特徴とする上記ジエチレン トリアミン 5齚酸誘導体 ;  The diethylene triamine pentaacid derivative described above, wherein the glycan residue is represented by the following general formula (3);
Figure imgf000006_0001
Figure imgf000006_0001
(上記式中、 pは 0〜 1 0の整数を表わす) (In the above formula, p represents an integer of 0 to 10)
金属イオンと錯化した上記誘導体;  The above derivative complexed with a metal ion;
金属イオンが常磁性金属イオンおよび放射性金属イオンのいずれかからなる群 より選択される上記誘導体;  The above derivative, wherein the metal ion is selected from the group consisting of a paramagnetic metal ion and a radioactive metal ion;
下記式 (5) で表されることを特徴とするジエチレントリアミン 5酢酸誘導体;  A diethylenetriaminepentaacetic acid derivative represented by the following formula (5):
Figure imgf000006_0002
上記誘導体を必須成分とする造影剤 ; 上記誘導体誘導体及び薬学的に許容される担体を含んでなる体内診断用医薬組 成物 ;
Figure imgf000006_0002
A contrast agent containing the above derivative as an essential component; A pharmaceutical composition for in vivo diagnosis comprising the derivative derivative and a pharmaceutically acceptable carrier;
及び、 下記一般式 (2).  And the following general formula (2).
R' — R ( 2 )  R '— R (2)
(式中、 Rは上記と同義を表わす。 但し、 R中 R 1 は水素原子を除いた意味を表 わし、 また Rがー N ( (CH 2 ) kNHR 1 ) 2の時、 R 1は糖鎖ァシル基を表 わさない。 R' は水素原子、 Z基、 B o c基を表わすが、 R中に Z基または B o c基を有する場合には、 おのおのそれらの意味を表わさない。 ) で表わされるァ ミノ化合物に存する。 (In the formula, R has the same meaning as described above. However, R 1 in R represents a meaning excluding a hydrogen atom, and when R is -N ((CH 2) kNHR 1 ) 2, R 1 is a sugar R 'represents a hydrogen atom, a Z group, or a Boc group, but when R has a Z group or a Boc group, each of them does not represent their meaning.) Present in the amino compound represented.
以下本発明につき詳細に説明する。  Hereinafter, the present invention will be described in detail.
上記の定義において、 R 1で定義される 「糖鎖ァシル残基」 としては、 単一の 糖カルボン酸のァシル残基であれば特に制限はされないが、 入手の容易さの点か ら、 たとえば下記一般式 (3) In the above definition, the “sugar chain residue” defined by R 1 is not particularly limited as long as it is a single sugar carboxylic acid residue, but from the viewpoint of availability, for example, The following general formula (3)
Figure imgf000007_0001
Figure imgf000007_0001
(式中、 pは 0〜 1 0の整数を表わす) (Where p represents an integer of 0 to 10)
で表わされる単糖オリゴ糖 (多糖) が好ましい。 また、 臓器、 組織選択性を付与 したい場合には末端が (単糖の場合にはそのものが) レセプターに対し親和性を 示す糖単位となった糖が選ばれる。 具体例としては、 D—ダルコン酸、 D—ガラ ク トン酸、 D—マンノン酸、 D—フコン酸等の単糖酸のァシル残基、 D—マルト ビオン酸、 D—ラク トビオン酸、 などの二糖酸のァシル残基、 (G l c a l→4 ) q G 1 c (G 1 c : グルコース) で表わされるマルト ト リォ一ス ( q = 2 ) 、 マノレトテ トラオース ( q = 3 ) 、 マノレトペンタオース ( q = 4 ) 、 マルトへキサ オース ( q = 5 ) 、 マルトへプタオース ( q = 6 ) 、 等のオリ ゴ (多) 糖の還元 末端がカルボン酸に酸化された糖酸のァシル残基などが挙げられる。 The monosaccharide oligosaccharide (polysaccharide) represented by In addition, when it is desired to impart organ or tissue selectivity, a saccharide whose terminal is a saccharide unit exhibiting affinity for the receptor (in the case of a monosaccharide itself) is selected. Specific examples include acyl residues of monosaccharide acids such as D-dalconic acid, D-galactonic acid, D-mannonic acid, D-fuconic acid, D-maltobionic acid, and D-lactobionic acid. Malt tris (q = 2), represented by the acyl residue of disaccharide acid, (Glcal → 4) qG1c (G1c: glucose) Manoletote traose (q = 3), manoleto pentaose (q = 4), maltohexaose (q = 5), maltoheptaose (q = 6), etc. Examples include the acyl residue of a sugar acid oxidized to an acid.
以下、 上記一般式 ( 1 ) で表わされる化合物の具体例を示す。 ただし、 糖鎖構 成単位糖を略記号 (G 1 c : グルコース、 G a 1 : ガラク トース、 M a n : マン ノース) で表わすが、 還元末端糖は C Oを付しァシル残基となっていることを示 す。  Hereinafter, specific examples of the compound represented by the general formula (1) will be shown. However, the sugars constituting the glycan are represented by abbreviations (G1c: glucose, Gal: galactose, Man: mannose), and the reducing terminal sugar is CO and is an acyl residue. Indicates that
( 1 ) R =— N ( (C H 2 ) k NHR 1 ) 2 の場合 (1) R = — N ((CH 2) k NHR 1 ) 2
R = - N ( (C H 2 ) 2 NH Z ) 2、 一 N ( (C H 2 ) 2 NH B o c ) 2 、 一 N ( (C H 2 ) 2 NH 2) 2 、 一 N ( (C H 2 ) 2 NHG 1 c C O) 2、 — N ( (C H 2 ) 2 NH G a 1 C O) 2 、 一 N ( (C H 2 ) 2 NH (M a n C O) ) 2 、 一 N ( (C H 2 ) 2 NH (G a 1 a 1→4 G 1 c C O) ) 2、 一 N ( (C H 2 ) 2 NH ( (G 1 c a 1→4 ) 2 G 1 c C O) 2 、 一 N ( (C H 2 ) 2 NH ( ( G 1 c a 1 -→4 ) 3 G 1 c C O) ) 2 、 一 N ( (C H 2 ) 2 NH ( (G 1 c a 1 →4 ) 4 G 1 c C O) ) 2、 — N ( (C H 2 ) 2 NH ( (G 1 c a 1→4 ) 5 G l c C O) ) 2、 一 N ( (C H 2 ) 2 NH ( (G 1 c a 1→4 ) 6 G 1 c C O) ) 2 一 N ( (C H 2 ) 3 NH Z ) 2、 一 N ( (C H 2 ) 3 NH B o c ) 2 、 一 N ( (C H 2 ) 3 NH 2) 2 、 一 N ( (C H 2 ) 3 NHG a I C O) 2、 一 N ( (C H 2 ) 3 NH (M a n C O) ) 2 、 - N ( (C H 2 ) 3 NH (G a 1 a 1→ 4 G 1 c C O) ) 2 、  R = -N ((CH2) 2NHZ) 2, 1N ((CH2) 2NHBoc) 2, 1N ((CH2) 2NH2) 2, 1N ((CH2) 2 NHG 1 c CO) 2, — N ((CH 2) 2 NHGa 1 CO) 2, 1 N ((CH 2) 2 NH (M an CO)) 2, 1 N ((CH 2) 2 NH ( G a 1 a 1 → 4 G 1 c CO)) 2, 1 N ((CH 2) 2 NH ((G 1 ca 1 → 4) 2 G 1 c CO) 2, 1 N ((CH 2) 2 NH ((G 1 ca 1-→ 4) 3 G 1 c CO)) 2, N ((CH 2) 2 NH ((G 1 ca 1 → 4) 4 G 1 c CO)) 2, — N (( CH 2) 2 NH ((G 1 ca 1 → 4) 5 G lc CO)) 2, 1 N ((CH 2) 2 NH ((G 1 ca 1 → 4) 6 G 1 c CO)) 2 1 N ((CH 2) 3 NH Z) 2, N ((CH 2) 3 NH B oc) 2, N ((CH 2) 3 NH 2) 2, N ((CH 2) 3 NHG a ICO) 2, one N ((CH 2) 3 NH (M an CO)) 2,-N ((CH 2) 3 NH (G a 1 a 1 → 4 G 1 c CO)) 2,
( 2 ) R =— NH (C H 2 ) 1 N ( (C H 2 ) k NHR 1 ) 2 の場合 一 NH (C H 2 ) 2 N ( (C H 2 ) 2 NH Z ) 2、 一 NH (C H 2 ) 2 N ( ( C H 2) 2 NH B o c ) 2 、 一 NH (C H 2 ) 2 N ( (C H 2 ) 2 NH 2) 2 、 - NH (C H 2 ) 2 N ( (C H 2 ) 2 NH G a 1 C O) 2、 NH ( C H 2 ) 2 N ( (C H 2 ) 2 NHM a n C O) 2 、 - NH (C H 2 ) 2 N ( (C H 2 ) 2 N H G l c C O) 2、 一 N H (C H 2 ) 2 N ( (C H 2 ) 2 NH (G a 1 a 1 →4 G l c C O) ) 2、 一 NH (C H 2 ) 2 N ( (C H 2 ) 2 NH ( (G 1 c a 1 → 4 ) 2 G 1 c C O ) ) 2 、 - N H (C H 2 ) 2 N ( (C H 2 ) 2 NH ( (G l c
Figure imgf000009_0001
(2) R = — NH (CH 2) 1 N ((CH 2) k NHR 1 ) 2 One NH (CH 2) 2 N ((CH 2) 2 NH Z) 2 One NH (CH 2) 2N ((CH2) 2NHBoc) 2,1NH (CH2) 2N ((CH2) 2NH2) 2, -NH (CH2) 2N ((CH2) 2NHGa 1 CO) 2, NH (CH 2) 2 N ((CH 2) 2 NHM an CO) 2, -NH (CH 2) 2 N ((CH 2) 2 NHG lc CO) 2, NH (CH 2) 2 N ((CH 2) 2 NH (G a 1 a 1 → 4 G lc CO)) 2, 1 NH (CH 2) 2 N ((CH 2) 2 NH ((G 1 ca 1 → 4) 2 G 1 c CO)) 2,-NH (CH 2) 2 N ((CH 2) 2 NH ((G lc
Figure imgf000009_0001
ο o ο o
O O
CO CO
Figure imgf000010_0001
Figure imgf000010_0001
( 〇 ϋ CHs Ηυ No H◦ ◦NN-Sus ( HN 〇〇 〇 No S H υ 〇 Kus u 983dso/66df/ OAV一 (〇 ϋ CHs Ηυ No H◦ ◦NN-Sus (HN 〇 〇 No SH υ 〇 Kus u 983dso / 66df / OAV one
1 o 1 o
o  o
o  o
o  o
 Re
1  1
o 山 山  o mountain mountain
プ U!  U!
Mountain
r ~) リ  r ~)
uu
Figure imgf000011_0001
Figure imgf000011_0001
o o
1 →4 G 1 c C O) 2) 3 、 - NH C (C H 20 (C H 2 ) 2 CO N ( (C H 2 ) 2 NH (G 1 c a 1→4 ) 2 G 1 c C O) 2) 3 、 - NH C (C H 20 (C H 2) 2 CO N ( (C H 2 ) . 2 NH (G 1 c a 1→4 ) 3 G l c C O) 2) 3 、 - NH C (C H 20 (C H 2 ) 2 CO N ( (C H 2 ) 2NH (G 1 c a 1→4 ) 4 G l c C O) 2) 3 、 - NH C (C H 2 O (C H 2 ) 2 CO N ( (C H 2 ) 3 N H Z ) 2) 3 、 -NH C (C H 20 (C H 2 ) 2 CO N ( (C H 2 ) 3 NH 2) 2) 3 、 - NH C (C H 20 (C H 2 ) 2 CO N ( (C H 2 ) 3 NH B o c ) 2 ) 3 、 - NH C (C H 2 O (C H 2 ) 2 CO N ( (C H 2 ) 4 NH Z ) 2) 3 、 - NH C (C H 20 (C H 2 ) 2 CO N ( (C H 2 ) 4 NH 2) 2) 3 1 → 4 G 1 c CO) 2) 3,-NH C (CH 20 (CH 2) 2 CO N ((CH 2) 2 NH (G 1 ca 1 → 4) 2 G 1 c CO) 2) 3, -NH C (CH 20 (CH 2) 2 CO N ((CH 2) .2 NH (G 1 ca 1 → 4) 3 G lc CO) 2) 3,-NH C (CH 20 (CH 2) 2 CO N ((CH 2) 2NH (G 1 ca 1 → 4) 4 G lc CO) 2) 3,-NH C (CH 2 O (CH 2) 2 CO N ((CH 2) 3 NHZ) 2) 3, -NH C (CH 20 (CH 2) 2 CO N ((CH 2) 3 NH 2) 2) 3,-NH C (CH 20 (CH 2) 2 CO N ((CH 2) 3 NH B oc) 2 ) 3,-NH C (CH 2 O (CH 2) 2 CO N ((CH 2) 4 NH Z) 2) 3,-NH C (CH 20 (CH 2) 2 CO N ((CH 2) 4 NH 2) 2) 3
2 ) m= 1の時 2) When m = 1
- NH C H (C H 2 CO N ( (C H 2 ) 2 NH Z) 2) 2 、 一 NH C H (C H 2 CO N ( (C H 2 ) 2 NH 2) 2) 2 、 一 NH C H (CH 2 CO N ( (C H 2 ) 2 NH G a 1 C O) 2) 2 、 - NH C H (C H 2 CO N ( (C H 2 ) 2 NHM a n C O) 2) 2 、 - N H C H (C H 2 CO N ( (C H 2 ) 2 NH (G a 1 a 1 →4 G 1 c C O) 2) 2) 2 、 一 NH C H (C H 2 CO N ( (C H 2 ) 2 NH ( G l c a l →4 G l c C O) 2) 2) 2 、 - NH C H (C H 2 CO N (C H 2 ) 2 NH (G 1 c a 1 →4 ) 2 G 1 c C O) 2) 2 、 一 NH C H (C H 2 CO N ( ( C H 2 ) 2 N ( (G 1 c a 1 →4 ) 4 G 1 c C O) 2) 2 、 - NH C H (C H 2 CO NH (C H 2 ) 2 NH Z ) 2 、 — NH C H (C H 2 CO N H (C H 2 ) 2 N H 2) 2 、 - NH C H ( C H 2 C O N H (C H 2 ) 2 NHG a l a l →4 G l c C O) 2 、 - NH C H (C H 2 CO NH (C H 2 ) 2 NH (G a 1 a 1→4 ) 4 G l c C O) 2 、 - NH C H ( C H 2 CO N H (C H 2 ) 2 N ( (C H 2 ) 2 NH Z ) 2) 2、 - NH C H (C H 2 CO NH (C H 2 ) 2 N ( (C H 2 ) 2 N H 2) 2) 2 、 - NH C H (C H 2 CO NH (C H 2 ) 2 N ( (C H 2 ) 2 NH G a 1 a 1 →4 G 1 c C〇) 2) 2、 - NH C H (C H 2 CO NH (C H 2 ) 2 N ( (C H 2 ) 2 NH (G 1 c a 1 →4 ) 4 G l c C O) 2) 2  -NH CH (CH 2 CO N ((CH 2) 2 NH Z) 2) 2, 1 NH CH (CH 2 CO N ((CH 2) 2 NH 2) 2) 2, 1 NH CH (CH 2 CO N ((CH 2) 2 NHG a 1 CO) 2) 2,-NH CH (CH 2 CO N ((CH 2) 2 NHM an CO) 2) 2,-NHCH (CH 2 CO N ((CH 2) 2 NH (G a 1 a 1 → 4 G 1 c CO) 2) 2) 2, 1 NH CH (CH 2 CO N ((CH 2) 2 NH (G lcal → 4 G lc CO) 2) 2) 2 ,-NH CH (CH 2 CO N (CH 2) 2 NH (G 1 ca 1 → 4) 2 G 1 c CO) 2) 2, 1 NH CH (CH 2 CO N ((CH 2) 2 N (( G 1 ca 1 → 4) 4 G 1 c CO) 2) 2,-NH CH (CH 2 CO NH (CH 2) 2 NH Z) 2, — NH CH (CH 2 CO NH (CH 2) 2 NH 2 ) 2,-NH CH (CH 2 CONH (CH 2) 2 NHG alal → 4 G lc CO) 2,-NH CH (CH 2 CO NH (CH 2) 2 NH (G a 1 a 1 → 4) 4 G lc CO) 2,-NH CH (CH 2 CO NH (CH 2) 2 N ((CH 2) 2 NH Z) 2) 2,-NH CH (CH 2 CO NH (CH 2) 2 N ((CH 2 ) 2 NH 2) 2) 2,-NH CH (CH 2 CO NH (CH 2) 2 N ((CH 2) 2 NH G a 1 a 1 → 4 G 1 c C〇) 2) 2,-NH CH (CH 2 CO N H (C H 2) 2 N ((C H 2) 2 NH (G 1 c a 1 → 4) 4 G l c C O) 2) 2
次に本発明の化合物の製法について説明する。 一般式 ( 1 ) で表わされる化合 物 (以下、 化合物 ( 1 ) と略記する) は、 たとえば一般式 (2 ) で表わされる化 合物 (以下、 化合物 (2) と略記する) の内 R' =水素原子である化合物と DT P Aジ無水物と水、 i 一プロピルアルコール、 ジメチルホルムアミ ド (DMF) 、 ジメチルスルホキシド .(DMS O) など適当な溶媒中、 一 5 0°Cから 2 0 0。C 、 好ましくは一 3 0°Cから 50°Cで、 3 0分から 5 日間、 好ましくは 1時間から 2 4時間反応させる方法により製造でき、 また、 R' が Z、 B o c基である化合 物 ( 2) を経て R' が水素原子である化合物 (2) が製造できるので、 まず、 R ' が水素原子である化合物 (2) の製法を説明する。 なお、 一般式 HN ( (CH 2) k NHR "で表わされるァミノ化合物の内、 R 1が G l c CO、 kが 3であ る化合物などは文献既知 (A n a l y t i c a l B i o c h e m i s t r y, 1 3 0 , 4 8 5 ( 1 98 3) 参照) であり、 文献に現れない他の糖鎖化合物も同 様の方法にて製造できる。 Next, the production method of the compound of the present invention will be described. The compound represented by the general formula (1) (hereinafter abbreviated as compound (1)) is, for example, a compound represented by the general formula (2) Compound (hereinafter abbreviated as compound (2)), R '= hydrogen atom, DTPA dianhydride and water, i-propyl alcohol, dimethylformamide (DMF), dimethylsulfoxide. (DMS O) in a suitable solvent such as 150 ° C to 200 ° C. C, preferably from 30 ° C to 50 ° C, for 30 minutes to 5 days, preferably from 1 hour to 24 hours, and R ′ is a Z or Boc group. The compound (2) in which R 'is a hydrogen atom can be produced via (2). First, a method for producing the compound (2) in which R' is a hydrogen atom will be described. Among the amino compounds represented by the general formula HN ((CH 2) k NHR ”, compounds in which R 1 is G lc CO and k is 3 are known in the literature (Analytical Biochemistry, 130, 4 85 (see 1983)), and other sugar chain compounds that do not appear in the literature can be produced by the same method.
( 1 ) R =— N ( (CH 2) kNHR 1 ) 2 の場合 (1) R = — N ((CH 2) kNHR 1 ) 2
たとえば、 スキーム 1の方法により製造できる。  For example, it can be manufactured by the method of Scheme 1.
スキーム 1 Scheme 1
R 1 HN (C H 2 ) k NH 2 + X (C H 2 ) kNHR 1 R 1 HN (CH 2) k NH 2 + X (CH 2) kNHR 1
(A) (B)  (A) (B)
→ HN ( (CH 2) kNHR 1 ) 2 → HN ((CH 2) kNHR 1 ) 2
(2 a )  (2 a)
(式中、 R 1 は Zまたは B o cを、 Xは C 1 または B rを表わす) (Wherein, R 1 represents Z or B oc, and X represents C 1 or B r)
すなわち、 ジァミン H 2N (CH 2) k N H 2から容易に製造できる一般式 ( A) で表わされる化合物 (以下、 化合物 (A) と略記) とハロゲン化アルキルァ ミンのハロゲン化水素酸塩より調製できる一般式 (B) で表わされる化合物 (以 下、 化合物 (B) と略記) とをトリエチルァミン、 ジイソプロピルェチルァミン 等の有機塩基、 炭酸水素ナトリ ウム等の無機塩基の存在下、 テ トラヒ ドロフラン 、 エタノール等適当な溶媒中、 反応させることにより化合物 ( 2 a ) が製造でき る。 3級ァミ ンの副生を抑えるためには化合物 (A) を過剰に用いるのが好まし い。 この場合、 過剰の化合物 (A) が塩基の役割をはたすため、 塩基を用いなく てもよい。 ( 2) R = -NH (CH 2) 1 N ( (CH 2 ) kNHR 1 ) 2 の場合 たとえば、 スキーム 2の経路によ り製造できる。 That is, it can be prepared from a compound represented by the general formula (A) (hereinafter abbreviated as compound (A)) which can be easily produced from diamine H 2N (CH 2) k NH 2 and a hydrohalide of an alkylamine halide. Compounds represented by the general formula (B) (hereinafter abbreviated as compound (B)) are combined with tetrahydrofuran in the presence of an organic base such as triethylamine and diisopropylethylamine and an inorganic base such as sodium hydrogencarbonate. The compound (2a) can be produced by reacting in a suitable solvent such as drofuran and ethanol. In order to suppress the tertiary amine by-product, it is preferable to use the compound (A) in excess. In this case, since the excess compound (A) plays the role of a base, it is not necessary to use a base. (2) In the case of R = -NH (CH 2) 1 N ((CH 2) kNHR 1 ) 2 For example, it can be produced by the route of Scheme 2.
スキーム 2 Scheme 2
R3HN (CH2) 1 NH2 + X (CH2) kNHR4 R 3 HN (CH2) 1 NH2 + X (CH2) kNHR 4
(C) (D)  (C) (D)
→ R°HN (CH2) 1 N( (CH2) k NHR 4 ) 2 → R3HN (CH2) 1 ( (CH2) kNH2)2 → R ° HN (CH2) 1 N ((CH2) k NHR 4 ) 2 → R 3 HN (CH2) 1 ((CH2) kNH2) 2
(E) (F)  (E) (F)
1 Ϊ  1 Ϊ
H2N (CH2) 1N( (CH2) k匿1) 2 ― R3HN (CH2) 1 N( (CH2) kNHR1)2 H2N (CH2) 1N ((CH2) k secret 1 ) 2 ― R 3 HN (CH2) 1 N ((CH2) kNHR 1 ) 2
( 2 b) (G)  (2 b) (G)
(式中、 R。 、 R 4 は Zまたは B o cを、 Xは C 1 または B rを表わす) すなわち、 化合物 (A) あるいは (B) の製造に用いたのと同様の反応で調製 できる、 あるいは同一の化合物である一般式 (C) 、 (D) で表わされる化合物 (それぞれ、 化合物 (C) 、 (D) と略記する) を ( 1 ) と同様な反応に付し、 一般式 (E) で表わされる化合物 (以下、 化合物 (E) と略記) を製造できる。 この際、 化合物 (C) および (D) 中の R 3と R 4が表わす Z基と B o c基は互い に異なる組み合わせとなる化合物を用いる。 化合物 (E) から、 尺 3が8 0 。 基である場合は、 Z基存在下 B o c基脱保護の行なえる方法 (P r o t e c c t i v e G r o u p s i n O r g a n i c S y n t h e s i s , T. W. G r e e n e , P. G. M. Wu t s , J o h n W i l e y & S o n s , I n c . 1 9 9 1, 参照) 、 たとえば塩化メチレン等適当な溶媒中、 あるいは無 溶媒でトリフルォロ酢酸を作用させる、 酢酸、 酢酸ェチル等適当な溶媒中、 塩化 水素あるいは臭化水素酸を作用させるなどにより、 また R 3が Z基である場合に は、 P d触媒の存在下、 加水素分解を行なう方法などにより R 3を除去し、 R 1 が Z基または B o c基である化合物 (2 b ) を製造できる。 また、 化合物 (E) から、 前記の方法を用い、 R 4の除去を行ない一般式 (F) で表わされる化合物 (以下、 化合物 (F) と略記する) を製造できる。 化合物 (F) からは、 たとえ ば、 下記一般式 (4) で表わされる糖ラク トン化合物 (以下、 「化合物 (4) 」 と略記する) 、 pは前記と同義を表わす。 (Wherein, R. and R 4 represent Z or B oc and X represents C 1 or Br). That is, they can be prepared by the same reaction as used in the production of compound (A) or (B). Alternatively, the same compound represented by the general formulas (C) and (D) (abbreviated as the compounds (C) and (D), respectively) is subjected to the same reaction as in (1), and the compound represented by the general formula (E ) (Hereinafter abbreviated as compound (E)). At this time, a compound in which the Z group and the Boc group represented by R 3 and R 4 in the compounds (C) and (D) are different from each other is used. From compound (E), Shaku 3 was 80. When the group is a group, a method capable of deprotecting the Boc group in the presence of the Z group (Protecctive Grupsin Organic Synthesis, TW Greene, PGM Wuts, John Wiley & Sons, Inc. 19) 91), for example, by reacting trifluoroacetic acid in a suitable solvent such as methylene chloride or without solvent, or by reacting hydrogen chloride or hydrobromic acid in a suitable solvent such as acetic acid or ethyl acetate. When 3 is a Z group, R 3 is removed by a method such as hydrogenolysis in the presence of a Pd catalyst to produce a compound (2b) in which R 1 is a Z group or a Boc group . Further, from the compound (E), the compound represented by the general formula (F) (hereinafter abbreviated as compound (F)) can be produced by removing R 4 using the above-mentioned method. From compound (F), For example, a sugar lactone compound represented by the following general formula (4) (hereinafter abbreviated as “compound (4)”), and p has the same meaning as described above.
Figure imgf000015_0001
との縮合反応により一般式 (G) で表わされる化合物 (以下、 化合物 (G) と略 記) を製造できる。
Figure imgf000015_0001
A compound represented by the general formula (G) (hereinafter abbreviated as compound (G)) can be produced by a condensation reaction with
化合物 (4) は市販品を入手できるものもあるが、 対応する市販の糖類から、 たとえばアルカリ性条件下、 臭素、 ヨウ素などで酸化して得られる糖酸を脱水す る通常の方法で製造できる。 この脱水反応はたとえば糖酸にメタノール、 ェタノ —ルなどのアルコールを加え減圧蒸留を繰り返しトルエンで共沸脱水するなど簡 単な操作によって行なえる。 化合物 (4) と化合物 (F) との縮合反応は、 たと えば両者をメタノール、 エタノール、 エチレングリ コ一ルなどのアルコール系溶 媒、 ジメチルホルムアミ ド、 ジメチルスルホキシドなどの非プロ トン性極性溶媒 など適当な溶媒中、 一 50°Cから 2 0 0°C、 好ましくは室温から 1 5 0°Cで、 場 合によっては N a CNなど適当な触媒の存在下、 1 0分から 1 2 0時間、 好まし くは 1時間から 1 0時間反応させ製造できる。 また、 反応性の低いァミ ンの場合 は、 高圧下の反応 (B u i 1 . S o c . C h e m. J p n . , 6 2 , 3 1 3 8 ( 1 9 8 9 ) 参照) も利用できる。 また、 化合物 (4) の代りに糖酸の γ—ラク ト ン、 グルクロン酸ラク トンなどの糖酸ラタ トンの使用も可能である。  Compound (4) can be obtained as a commercial product, but can be produced from the corresponding commercially available saccharide by an ordinary method for dehydrating a sugar acid obtained by oxidation with, for example, bromine or iodine under alkaline conditions. This dehydration reaction can be performed by a simple operation such as adding an alcohol such as methanol or ethanol to a sugar acid, repeating distillation under reduced pressure, and azeotropically dehydrating with toluene. In the condensation reaction between compound (4) and compound (F), for example, both are reacted with an alcohol-based solvent such as methanol, ethanol, and ethylene glycol, and a non-protonic polar solvent such as dimethylformamide and dimethylsulfoxide. In a suitable solvent, for example, at 150 ° C. to 200 ° C., preferably at room temperature to 150 ° C., and in some cases, in the presence of a suitable catalyst such as NaCN, for 10 minutes to 120 hours. The reaction can be carried out preferably for 1 hour to 10 hours. In addition, in the case of an amine having low reactivity, a reaction under high pressure (see Bui 1. Soc. Chem. J pn., 62, 31 38 (19989)) is also used. it can. In addition, instead of compound (4), it is also possible to use sugar acid ratatones such as sugar acid γ-lactone and glucuronic acid lactone.
化合物 (G) から、 前述した方法により Ζ基あるいは B o c基を除去し R 1が 糖鎖ァシル残基である化合物 ( 2 b) を製造できる。 From the compound (G), the Ζ group or the Boc group is removed by the method described above to produce a compound (2b) in which R 1 is a glycan residue.
2  Two
(3) R = -NHCHm (C H 2 A R 3— m の場合  (3) R = -NHCHm (C H 2 A R 3— m
1 ) m = 0の時  1) When m = 0
( a ) A =単結合の場合 たとえば、 スキーム 3の経路により製造できる, (a) A = single bond For example, it can be manufactured by the route of Scheme 3,
スキーム 3 Scheme 3
H2 NC (CH2 OH) 3 R3 HNC (CH2 OH) 3 H 2 NC (CH 2 OH) 3 R 3 HNC (CH 2 OH) 3
(H) (I)  (H) (I)
HN ( (CH2)k NHR1 )2 HN ((CH 2 ) k NHR 1 ) 2
(2 a)  (2 a)
R3 HNC (CH2 OMs)3 R 3 HNC (CH 2 OMs) 3
(J)  (J)
R3 HNC (CH2 N ( (CH2)k NHR1 )2)3 R 3 HNC (CH 2 N ((CH 2 ) k NHR 1 ) 2 ) 3
(K)  (K)
H2 NC (CH2 N ( (CH2)k NHR1 )2)3 H 2 NC (CH 2 N ((CH 2 ) k NHR 1 ) 2 ) 3
(2 c)  (2 c)
(式中、 R ^iZ、 B o cまたは糖鎖ァシル残基を表わす。 R 3は Zまたは B o cを表わすが、 R 1と R 0は互いに異なる意味を表わす。 kは前記と同義を、 M s はメタンスルホニル基を表わす) (Wherein, R ^ iZ, represent B oc or carbohydrate Ashiru residues. Although R 3 represents Z or B oc, R 1 and R 0 is represent different meanings from each other. K is the same meaning, M s represents a methanesulfonyl group)
すなわち、 市販のトリス (ヒ ドロキシメチル) ァミノメタン化合物 (H) より 容易に調製できる、 あるいは文献既知 (C h e m. E u r . J . , 2, 1 1 1 6 ( 1 9 9 6 ) 参照) の一般式 ( I ) で表わされる化合物 (以下、 化合物 ( I ) と 略記する) にピリジン中あるいは塩化メチレン、 テ トラヒ ドロフラン等適当な溶 媒中、 塩化メタンスルホニルを作用し、 一般式 (J ) で表わされる化合物 (以下 、 化合物 (J ) と略記する) を製造できる。 化合物 (J ) に、 上記スキーム 1で 製造した化合物 (2 a ) を、 スキーム 2に示した化合物 (E) の製造に用いたの と同様の方法で反応させ一般式 (K) で表わされる化合物 (以下、 化合物 (K) と略記する) を製造できる。 この際、 反応させる化合物 (2 a ) 中の R 1は、 化 合物 (J ) 中の R 3と異なるものを用いる。 化合物 (K) からは、 R 3を先と同 様な方法で除去し、 目的とする R が Zまたは B o cである化合物 (2 c ) を製 造できる。 また、 スキーム 2の化合物 (E) から、 化合物 (F) (G) を経て 化合物 (2 b) を得たのと同様な経路で、 化合物 (K) から 1 ) R 1の除去、 2 ) 糖酸ラク トンの反応、 3) R の除去により R 1が糖酸ァシル残基である化合 物 (2) を製造できる。 That is, it can be easily prepared from a commercially available tris (hydroxymethyl) aminoamino compound (H), or can be prepared by a method known in the literature (see Chem. Eur. J., 2, 1116 (1996)). The compound of the formula (I) is reacted with methanesulfonyl chloride in pyridine or in a suitable solvent such as methylene chloride or tetrahydrofuran to give the compound of the formula (J). (Hereinafter abbreviated as compound (J)) can be produced. The compound (J) is reacted with the compound (2a) produced in the above scheme 1 in the same manner as in the production of the compound (E) shown in the scheme 2 to give a compound represented by the general formula (K) (Hereinafter abbreviated as compound (K)). At this time, R 1 in the compound (2a) to be reacted is Use a compound different from R 3 in compound (J). From compound (K), R 3 can be removed in the same manner as above to produce compound (2c) in which R is Z or Boc. In addition, 1) removal of R 1 from compound (K), 2) sugar, from compound (E) in Scheme 2 via compound (F) (G) and compound (2b). the reaction of acid lactone, 3) can be prepared a compound wherein R 1 is a sugar acid Ashiru residue (2) by removal of R.
さらに、 ィヒ合物 ( J ) の代りに文献既知のトリス (ヒ ドロキシメチル) ニトロ メタンの トリ スメタンスノレホナート (S y n t h e s i s , 7 4 2 ( 1 9 8 7 ) 参照) を用い R 1が B o cである化合物 (2 a ) を作用させ、 化合物 (K) に相 当するニトロ体を製造できる。 この化合物から、 ニトロ基のアミノ基への還元で 化合物 (2 c ) (R 1 = B o c基) 、 または B o c を除去し、 糖酸ラク トンを反 応させた後、 ニトロ基のアミノ基への変換で、 R 1が糖酸ァシル残基である化合 物 (2 c ) を製造できる。 Furthermore, R 1 using literature known tristriethylene scan methane Sno Reho inert (non Dorokishimechiru) nitromethane (see S ynthesis, 7 4 2 (1 9 8 7)) instead of Ihigo product (J) is B By reacting the compound (2a) which is oc, a nitro compound corresponding to the compound (K) can be produced. The compound (2c) (R 1 = Boc group) or Boc is removed from this compound by reduction of the nitro group to an amino group, and after reacting the lactone sugar acid, the amino group of the nitro group is removed. in conversion to, compounds wherein R 1 is a sugar acid Ashiru residues (2 c) can be produced.
( b ) A =— (CH 2) 2 の場合  (b) A = — (CH 2) 2
たとえば、 前述スキーム 3において、 化合物 (H) の代りに市販品のビスホモ トリスを用いることで製造できる。 また、 トリス (ヒ ドロキシメチル) ニトロメ タンの代りに市販の二トロメタントリスプ口ピオン酸よりカルボキシル基の還元 (たとえば、 テトラヒ ドロフラン中、 メタノール存在下、 水素化ホウ素ナトリ ウ ムを作用する) によ り得られる ト リ ス ( 3—ヒ ドロキシプロピル) ニ トロメタン を用い、 同様な反応により化合物 ( 2) を製造できる。  For example, it can be produced by using a commercially available bishomotris in place of the compound (H) in the aforementioned scheme 3. In addition, instead of tris (hydroxymethyl) nitromethane, the carboxyl group can be reduced from commercially available dinitromethane tris-pionate (for example, sodium borohydride acts in the presence of methanol in tetrahydrofuran). Using the obtained tris (3-hydroxypropyl) nitromethane, compound (2) can be produced by a similar reaction.
( c ) A = -CH 2COの場合  (c) A = -CH 2CO
たとえば、 スキーム 4の経路により製造できる。 H2NC((CH2)2C02t - Bu)3 H2NC((CH2)2C02H)3 For example, it can be manufactured by the route of Scheme 4. H 2 NC ((CH 2 ) 2 C0 2 t-Bu) 3 H 2 NC ((CH 2 ) 2 C0 2 H) 3
(L) (M)  (L) (M)
HN((CH2)kNHR1)2 HN ((CH 2 ) k NHR 1 ) 2
(2 a)  (2 a)
R3HNC((CH2)2C02H)3 R 3 HNC ((CH 2 ) 2C0 2 H) 3
(N)  (N)
R3HNC((CH2)2CON((CH2)kNHR1)2 化合物 (2) R 3 HNC ((CH 2 ) 2 CON ((CH 2 ) k NHR 1 ) 2 Compound (2)
(0)  (0)
(式中、 R 1 R 13および kはスキーム 3での R 1、 R °, kと同義を表わす。 ) すなわち、 文献既知の化合物 (L) ( J . O r g . C h e m. , 5 6 , 7 1 6 2 ( 1 9 9 1 ) 参照) から、 t 一ブチルエステルを加水分解する方法、 たとえば ト リ フルォロ酢酸を室温で作用させる、 あるいは酢酸中、 p— トルエンスルホン 酸を加え加熱する、 などの方法により化合物 (M) を製造できる。 化合物 (M) から、 アミノ酸のァミノ基の Z化、 B o c化に用いられる方法により、 一般式 ( N) で表わされる化合物 (以下、 化合物 (N) と略記する) を製造でき、 これに ァミ ン、 化合物 (2 a ) をカルボニルジイ ミダゾ一ル、 ジシクロへキシルカルボ ニルジイ ミ ド等の縮合剤を用いる方法、 あるいは化合物 (N) を対応する酸塩化 物、 i 一ブチル炭酸無水物、 メタンスルホニル無水物等に活性化後作用させるな ど通常のアミ ド結合形成反応により、 一般式 (O) で表わされる化合物 (以下、 化合物 (O) と略記する) を製造できる。 この際、 ァミ ン反応剤として HN ( ( CH 2) k NHR 1 ) 2の代りに、 H 2N (CH 2) kNHR ^ H 2N (CH 2) I N (CH 2 ) k NHR L) 2 (いずれも前述) を使用すれば化合物 (O) に相当する対応するアミ ド化合物が製造できる。 これら化合物 (◦) および対応 する化合物から R 1あるいは R 3の除去を経て、 目的とする化合物 (2 ) を製造 できる。 ( d ) A = -0 (CH 2 ) 3 の場合 (Wherein, R 1 R 13 and k have the same meanings as R 1 , R °, and k in Scheme 3.) That is, the compound (L) known in the literature (J. Org. Chem., 56) , 7162 (1991)), hydrolyze t-butyl ester, for example, by allowing trifluoroacetic acid to act at room temperature, or adding p-toluenesulfonic acid in acetic acid and heating. Compound (M) can be produced by such a method. From the compound (M), a compound represented by the general formula (N) (hereinafter abbreviated as compound (N)) can be produced by a method used for Z-formation and Boc-formation of an amino group of an amino acid. A method using a condensing agent such as carbonyldiimidazole or dicyclohexylcarbonyldiimide, or a compound (N) with a corresponding acid chloride, i-butyl carbonate anhydride, methanesulfonyl A compound represented by the general formula (O) (hereinafter, abbreviated as compound (O)) can be produced by a normal amide bond forming reaction such as activation of an anhydride or the like after activation. In this case, instead HN of ((CH 2) k NHR 1 ) 2 as § Mi emissions reactant, H 2N (CH 2) kNHR ^ H 2N (CH 2) IN (CH 2) k NHR L) 2 ( any The corresponding amide compound corresponding to compound (O) can be produced by using the above. By removing R 1 or R 3 from these compound (◦) and the corresponding compound, the desired compound (2) can be produced. (d) A = -0 (CH 2) 3
たとえば、 スキーム 5の経路により製造できる。  For example, it can be manufactured by the route of Scheme 5.
スキーム 5 Scheme 5
H 2NC (CH 20 (CH 2 ) 2 CN) 3  H 2NC (CH 20 (CH 2) 2 CN) 3
(P)  (P)
→ B o c HNC (CH 2 O (C H 2 ) 2 CN) 3  → Boc HNC (CH 2 O (C H 2) 2 CN) 3
(Q)  (Q)
→ B o c HNC (CH 20 (C H 2 ) 3 NH 2) 3  → B o c HNC (CH 20 (C H 2) 3 NH 2) 3
(R)  (R)
→ B o c HNC (CH 20 (CH 2) 3 NHR 1 ) 3 → B oc HNC (CH 20 (CH 2) 3 NHR 1 ) 3
(S)  (S)
→ H 2NC (C H 2 O (CH 2 ) 3 NH R 1 ) 3 → H 2NC (CH 2 O (CH 2) 3 NH R 1 ) 3
(2 d)  (2 d)
(式中、 R 1は Z基または糖鎖ァシル残基を表わす) (In the formula, R 1 represents a Z group or a glycan residue)
すなわち、 既知の化合物 (P) を B o c化し化合物 (Q) とした後、 アンモニ ァ存在下のラネーニッケル触媒による接触水素添加反応などの還元反応により化 合物 (R) を製造できる。 化合物 (R) からは、 前述の方法により R 1が Zある いは糖鎖ァシル残基である化合物 ( 2) が製造できる。 That is, the compound (R) can be produced by subjecting the known compound (P) to Boc to give the compound (Q), and then subjecting it to a reduction reaction such as catalytic hydrogenation reaction using a Raney nickel catalyst in the presence of ammonia. From the compound (R), the compound (2) in which R 1 is Z or a sugar chain residue can be produced by the method described above.
( e ) A =— 0 (CH 2 ) 2COの場合  (e) A = — 0 (CH 2) 2CO
たとえば、 前述のスキーム 4における化合物 (L) の代りに既知のァミン、 H 2NC (CH 20 (CH 2 ) 2 C O 2 E t ) 3を用い、 同様の反応を繰り返すこ とにより製造できる。  For example, it can be produced by repeating the same reaction using a known amine, H 2NC (CH 20 (CH 2) 2 CO 2 Et) 3, instead of the compound (L) in the above-mentioned scheme 4.
本発明の化合物 (2) はアミノ基を有する単一の糖誘導体、 あるいはこれを製 造するために有用な化合物であり、 これらを含有する、 あるいは利用することに より得られる化合物に付与されるタ一ゲッティング、 血液プール性の機能は、 キ レー ト化剤のみならず他の診断薬あるいは治療薬に適応しても発揮可能である。 たとえば、 X線診断に用いられる 5—ァミノ一 2, 4, 6— ト リ ョ一ドイソフタ ル酸誘導体に本発明の化合物 ( 2) を含有させれば臓器選択性あるいは血液ブー ル性を持った新しい X線診断用の造影剤となる。 The compound (2) of the present invention is a single sugar derivative having an amino group or a compound useful for producing the same, and is given to a compound obtained by containing or using these. Targeting and blood pooling functions can also be exerted when applied to other diagnostic or therapeutic agents as well as chelating agents. For example, if the compound (2) of the present invention is added to a 5-amino-1,2,4,6-tridoisophthalic acid derivative used for X-ray diagnosis, organ selectivity or blood booting can be obtained. It is a new contrast agent for X-ray diagnostics.
本発明においては、 上記のようにして得られた一般式 ( 1 ) で表わされる化合 物に、 金属イオンを錯化させた化合物も、 その要旨として含まれる。 ここで金属 イオンとは、 常磁性金属イオン、 放射性金属イオンのいずれかであれば、 いずれ も使用可能である。 特に、 P r、 N d、 Sm、 E u、 T b、 D y、 H o、 E r、 Tm、 Y b等のランタノイ ド陽イオンは、 可視〜近赤外領域、 長い寿命、 狭い波 長幅等の特徴を持つ蛍光を発する点で好適であり、 MR I造影剤等陽イオンの常 磁性を利用する場合においては P r、 N d、 E u、 G d、 T b、 D y、 H o、 E r、 Tm、 Y b等のランタノイ ド陽イオンが好適である。 その他、 Mg、 C a、 S c、 T i、 V、 C r、 Mn、 F e、 C o、 N i 、 C u、 Z n、 G a、 S r、 Z r、 T c、 R u、 I n、 H f 、 W、 R e、 O s、 P d、 L a、 及び B i等のィォ ンも好ましい例として挙げることができる。  In the present invention, a compound in which a metal ion is complexed with the compound represented by the general formula (1) obtained as described above is also included as a gist thereof. Here, the metal ion may be any of a paramagnetic metal ion and a radioactive metal ion. In particular, lanthanide cations such as Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb have visible to near-infrared regions, long lifetimes, and narrow wavelengths. It is preferable in that it emits fluorescence having characteristics such as width, and when utilizing the paramagnetism of cations such as MRI contrast agents, Pr, Nd, Eu, Gd, Tb, Dy, H Lanthanide cations such as o, Er, Tm, and Yb are preferred. Others, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Sr, Zr, Tc, Ru, Icons such as In, Hf, W, Re, Os, Pd, La, and Bi can also be mentioned as preferred examples.
上記のようにして得られた一般式 ( 1 ) で表わされる化合物を金属イオンと錯 化した化合物は、 造影剤として使用可能である。 また、 薬学的に許容される担体 を含んでなる体内診断用医薬組成物としても利用可能である。  The compound obtained by complexing the compound represented by the general formula (1) obtained as described above with a metal ion can be used as a contrast agent. Further, it can also be used as a pharmaceutical composition for in vivo diagnosis comprising a pharmaceutically acceptable carrier.
本発明の化合物を MR I造影剤として用いる場合、 通常静脈内投与などの非経 口投与の方法が用いられるが、 経口投与することもできる。 非経口剤投与の製剤 、 即ち注射剤等の製造に用いられる溶剤、 または懸濁化剤としては、 たとえば水 、 フ。ロピレングリ コーノレ、 ポリエチレングリ コーノレ、 ペンジノレアノレコーノレ、 ォレ イン酸ェチル、 レシチン等が挙げられる。 製剤の調製は常法によればよい。 また 経口投与する場合、 単独または薬学的に許容される担体と複合して、 例えば顆粒 剤、 細粒剤、 散剤、 錠剤、 硬シロ ップ剤、 軟カプセル剤、 シロ ップ剤、 乳剤、 懸 濁剤、 リボソーム、 液剤等の剤形にして経口投与する。 固体製剤を製造する際に 用いられる賦形剤としては、 例えば乳糖、 ショ糖、 デンプン、 タルク、 セル口一 ス、 デキス トリ ン、 カオリ ン、 炭酸カルシウム等が挙げられる。 経口投与のため の液体製剤、 即ち乳剤、 シロ ップ剤、 懸濁剤、 液剤等は、 一般的に用いられる不 活性な希釈剤、 例えば植物油等を含む。 この製剤は不活性な希釈剤以外に補助剤 、 例えば湿潤剤、 懸濁補助剤、 甘味剤、 芳香剤、 着色剤または保存剤等を含むこ ともできる。 液体製剤にして、 ゼラチンのような吸収されうる物質のカプセル中 に含ませてもよい。 When the compound of the present invention is used as an MRI contrast medium, a parenteral administration method such as intravenous administration is usually used, but it can also be administered orally. Examples of the preparation for parenteral administration, that is, a solvent or a suspending agent used in the production of an injection or the like include water and water. Examples include propylene glycol cornole, polyethylene glycol cornole, penzinoleanol cornole, ethyl ethyl oleate, and lecithin. Preparation of the preparation may be performed by a conventional method. For oral administration, alone or in combination with a pharmaceutically acceptable carrier, for example, granules, fine granules, powders, tablets, hard syrups, soft capsules, syrups, emulsions, Oral administration in the form of suspensions, ribosomes, solutions, etc. Examples of excipients used in producing a solid preparation include lactose, sucrose, starch, talc, cell mouth, dextrin, kaolin, calcium carbonate and the like. Liquid preparations for oral administration, ie, emulsions, syrups, suspensions, solutions and the like, contain commonly used inert diluents such as vegetable oils. The preparation may contain, in addition to the inert diluent, auxiliary substances such as wetting agents, suspending aids, sweetening agents, flavoring agents, coloring agents or preservatives. Can also be. Liquid preparations may be included in capsules of absorbable substances such as gelatin.
本発明による MR I造影剤は、 一般に所望の造影効果が副作用を伴うことなく 得られる投与量で投与される。 その具体的な値は、 医師の判断で決定されるべき であるが、 一般に一回の診断につき成分当たり 0. 1 m g〜 1 0 g、 好ましくは l m g〜5 gである。 本発明の化合物は有効成分として一回の診断につき、 成人 当たり 1 m g〜 5 g、 更に好ましくは 3 m g〜3 g含有され投与されても良い。 発明を実施するための最良の形態  The MRI contrast agent according to the present invention is generally administered at a dose that provides the desired contrast effect without side effects. The specific value should be determined at the discretion of the physician, but is generally 0.1 mg to 10 g, preferably 1 mg to 5 g per component per diagnosis. The compound of the present invention may be administered as an active ingredient in an amount of 1 mg to 5 g, more preferably 3 mg to 3 g per adult per one diagnosis. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例によって本発明を具体的に説明するが、 本発明はその要旨を超え ない限り以下に限定されるものではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the following without departing from the gist thereof.
実施例 1
Figure imgf000021_0001
Example 1
Figure imgf000021_0001
ァミン 2. 2 5 g、 ブロム体 1. 0 g、 テ トラヒ ドロフラン 8m l の混合物を 2昼夜かきまぜながら加熱還流した。 反応混合物は一旦溶液となり、 次いで結晶 が析出してく る。 室温にまで冷却後、 結晶を濾別、 洗浄 (冷テトラヒ ドロフラン ) し、 濾液を濃縮して得た残渣を S i O 2カラムクロマ トグラフィー (展開液 C HC 1 3 : Me OH 20 : 1→5 : 2) に付し、 目的とする 2級アミノ化合物 1. 2 6 g (8 7%、 ブロム体を基にして) を得た。 A mixture of 2.25 g of the amine, 1.0 g of the bromo compound, and 8 ml of tetrahydrofuran was heated to reflux while stirring for 2 days and nights. The reaction mixture once becomes a solution, and then crystals precipitate. After cooling to room temperature, the crystals were separated by filtration, washed (cold tetrahydrofuran), and the filtrate was concentrated. The resulting residue was subjected to SiO 2 column chromatography (developing solution C HC 13: MeOH 20: 1 → 5 : 2) to give 1.26 g (87%, based on the bromo compound) of the desired secondary amino compound.
1 H-N R (3 0 0 MH z , CDC 1 3) δ 1. 3 2 (b s, 1 H) , 2 . 6 9 (b t , J = 5. 3 H z, 4 H) , 3. 24 ( b m, 4 H) , 5. 0 7 ( s , 4 H) , 5. 3 2 (b t, J = 5. 5 H z , 2 H) , 7 , 3 0 (m, 1 0 H ) . 1 HNR (300 MHz, CDC 13) δ 1.32 (bs, 1 H), 2.69 (bt, J = 5.3 Hz, 4 H), 3.24 (bm , 4H), 5.07 (s, 4H), 5.32 (bt, J = 5.5Hz, 2H), 7, 30 (m, 10H).
実施例 2
Figure imgf000022_0001
Example 2
Figure imgf000022_0001
アミン体 1. 24 gの DMF 4m l溶液にかきまぜながら D T P Aジ無水物を 加えた。 約 3 0DCにまで昇温し、 1時間程で均一溶液となった。 一晩室温に放置 後、 真空ポンプを用い溶媒を留去した。 残渣に水、 CH 2C 1 2を加え、 CH 2 C 1 2層を分液、 水洗、 濃縮し目的とするジァシド体 1. 7 5 g ( 9 5%) を得 た。 Amine 1. DTPA dianhydride was added to a solution of 24 g of DMF in 4 ml with stirring. The temperature was raised to about 3 0 D C, became a homogeneous solution in about 1 hour. After standing at room temperature overnight, the solvent was distilled off using a vacuum pump. Water and CH 2 C 12 were added to the residue, and the CH 2 C 12 layer was separated, washed with water and concentrated to obtain 1.75 g (95%) of the desired diacid.
1 H - NMR (3 0 0 MH z , DMS O - d 6) δ 2. 8 8 ( b m, 4 H) , 2. 9 4 ( b m, 4 H) , 3. 1 5 ( b m, 8 H) , 3. 2 9 ( b m, 8 H) , 3. 4 2 (b s, 4 H) , 3. 4 6 (b s , 2 H) , 3. 6 0 (b s, 4 H) , 5. 0 1 a n d 5. 0 2 (おのおの s , 各 2 H) , 7. 3 3 (m, 2 H) , 7. 5 0 ( b t , J = 5. 6 H z, 2 H) . 1 H-NMR (300 MHz, DMS O-d 6) δ 2.88 (bm, 4 H), 2.94 (bm, 4 H), 3.15 (bm, 8 H) , 3.29 (bm, 8H), 3.42 (bs, 4H), 3.46 (bs, 2H), 3.60 (bs, 4H), 5.01 and 5.02 (each s, each 2H), 7.33 (m, 2H), 7.50 (bt, J = 5.6Hz, 2H).
実施例 3 Example 3
Figure imgf000023_0001
Figure imgf000023_0001
O' O '
Figure imgf000023_0002
Figure imgf000023_0002
ジェチレン ト リアミ ン 2 6 0 m gの DMS O 4 m 1溶液にラク トビオン酸ラク トン し 7 2 gを加え室温でかきまぜた。 ラク トンが溶解後、 50°C油浴上さら に 3時 かきまぜを続けた。 極一部を取り分析を行うと、 ほぼ純枠な糖酸ァミ ド 体であった。 Lactone lactobionate (72 g) was added to a solution of dimethylene triamine (260 mg) in DMS O (4 ml), and the mixture was stirred at room temperature. After the lactone had dissolved, stirring was continued for another 3 o'clock on a 50 ° C oil bath. Analysis of a very small portion revealed that the sugar amide was almost pure.
1 ° C - i\4 R ( 1 2 5MH z , D M S O - d 6 ) δ 3 8. 3 4 8. 1 6 0. 7 6 2. 4 6 8. 3 7 0. 5 7 1. 1 7 ] . 4 7 2. 1 7 3 . 2 , 7 5. 7 , 8 2. 9 , 1 0 4. 6 , 1 7 2. 3 1 ° C-i \ 4 R (125 MHz, DMSO-d 6) δ 3 8. 3 4 8.16 .0.7 6 2.4 6 8.3 7 0.5 .7 .1 7] 4 7 2. 1 7 3 .2, 7 5.7, 8 2.9, 10 4.6, 1 7 2.3
反応 ¾合物に DMI'、 1 2 m l を加え、 DT ΡΛジ無水物 4 5 0 m gの DMS O 1 0 m l 溶液を氷水浴上かきまぜながら滴下した。 浴を取り去り室温で一 S夜力 きまぜた。 溶媒を減圧留去 (7 0°C) し得た残渣を、 少量の水に溶解、 イオン交 換樹脂 (ダイアイオン WK— 4 0 ) にて精製し、 目的とするラク トビオン酸基を 4つ持つ DT P A誘導体 1. 5 5 g (6 5 %) を得た。 To the reaction mixture, 12 ml of DMI 'was added, and a solution of 450 mg of DT dianhydride in 10 ml of DMS O was added dropwise with stirring on an ice water bath. Remove the bath and use 1 S night power at room temperature I mixed. The residue obtained by distilling off the solvent under reduced pressure (70 ° C) is dissolved in a small amount of water, purified with an ion-exchange resin (Diaion WK-40), and the target lactobionic acid group is removed. 1.55 g (65%) of the DTPA derivative was obtained.
1 3 C -NMR ( 1 2 5 MH z , DMS O - d 6) δ 3 6. 6, 3 7. 0 , 4 5. 1 , 4 6. 5, 5 0. 2, 5 1 . 4 , 5 4. 9 , 5 6. 1 , 6 0. 7, 6 2 . 4 , 6 8. 3, 7 0. 6 , 7 1. 2, 7 1 . 4, 7 3. 3 , 7 5. 7 , 8 3. 0 , 1 0 4. 5 , 1 6 9. 5 , 1 7 0. 2 , 1 7 2. 7 , 1 7 2. 8 , 1 7 3. 0 13 C-NMR (125 MHz, DMS O-d 6) δ 36.6, 37.0, 45.1, 46.5, 50.2, 51.4, 5 4.9, 56.1, 60.7, 62.4, 68.3, 70.6, 71.2, 71.4, 73.3, 75.7, 8 3.0, 1 0 4.5, 1 69.5, 1 7 0.2, 1 72.7, 1 72.8, 1 73.0
上記で得た DT Ρ Α誘導体 1 · 4 gを水 5 m l に溶解し、 酸化ガドリニウム 1 3 2 m gを加えた後、 1 0 0 °Cの油浴上 6時間かきまぜた。 反応混合物を濃縮し ほぼ純粋な目的とする G d錯体を得た。  1.4 g of the DTDT derivative obtained above was dissolved in 5 ml of water, and 13 mg of gadolinium oxide was added thereto, followed by stirring for 6 hours in an oil bath at 100 ° C. The reaction mixture was concentrated to obtain an almost pure target Gd complex.
分析条件: L一 c o l u m n (OD S) 、 溶離液 2 0 mMリ ン酸バッファー ( p H 7. 0 ) — l %M e OH、 2 1 5 n m検出、 R t = 4. 5 m i n  Analysis conditions: L-column (ODS), eluent 20 mM phosphate buffer (pH 7.0) — l% MeOH, 215 nm detection, Rt = 4.5 min
実施例 4 員 Z、 Example 4 Member Z,
B r + HN AZ  B r + HN AZ
B o cHN^z  B o cHN ^ z
Figure imgf000024_0001
Figure imgf000024_0001
ブロム体 9. 6 6 g、 ァミ ン 3. 0 0 g、 ジ i —プロピルェチノレアミン 6. 5 m l 、 テトラヒ ドロフラン 2 5 m l の混合物をかきまぜながら 2昼夜加熱還流し た。 氷水浴で冷却後、 析出結晶を濾別、 冷テ トラヒ ドロフランにて洗浄した。 濾 液を濃縮して得た残渣を S i Ο 2カラムクロマト (展開液 n—へキサン :酢酸ェ チル 2 : 1→3 : 2→4 : 3 ) に付し、 目的とする 3級ァミン体 3. 9 3 g (4 0 %) を得た。 The mixture of 9.66 g of the bromo compound, 3.0 g of amide, 6.5 ml of di-propylethynoleamine and 25 ml of tetrahydrofuran was heated and refluxed for 2 days and night while stirring. After cooling in an ice-water bath, the precipitated crystals were separated by filtration and washed with cold tetrahydrofuran. The residue obtained by concentrating the filtrate was subjected to SiΟ2 column chromatography (developing solution n-hexane: ethyl acetate 2: 1: 3: 2 → 4: 3) to give the desired tertiary amine compound 3.93 g (4 0%).
1 H -NMR (3 0 0 MH z , CDC 1 3) δ 1. 3 7 ( s , 9 H) , 2. 5 2 (m, 6 H) , 3. 1 2 ( b m, 2 H) , 3. 20 (b m, 4 H) , 5. 0 6 (b s , 5 H) , 5. 5 1 (b s , 2 H) , 7. 2 8 (m, 1 0 H) 1 H-NMR (300 MHz, CDC 13) δ 1.37 (s, 9H), 2.52 (m, 6H), 3.12 (bm, 2H), 3 20 (bm, 4 H), 5.06 (bs, 5 H), 5.51 (bs, 2 H), 7.28 (m, 10 H)
実施例 5 Example 5
B o c HN B o c HN
NHZ、 NHZ,
Figure imgf000025_0001
Figure imgf000025_0001
B o c体 1. 7 5 gに氷水浴上かきまぜながら トリフルォロ酢酸 6 m 1 を滴下 した。 浴を取り去り、 室温でー晚かきまぜた後、 エバポレーターにて濃縮し、 残 渣に 1 N水酸化ナトリ ウム水溶液を加えた。 塩化メチレン抽出し、 有機層を水洗 、 濃縮すると目的とする一級アミン 1. 3 2 g (9 3%) が得られた。 To 1.75 g of the Boc form, 6 ml of trifluoroacetic acid was added dropwise while stirring on an ice water bath. The bath was removed, and the mixture was stirred at room temperature, concentrated by an evaporator, and a 1 N aqueous sodium hydroxide solution was added to the residue. Extraction with methylene chloride, washing of the organic layer with water and concentration gave 1.32 g (93%) of the desired primary amine.
1 ^ C -NMR ( 7 5MH z , CD C 1 3) δ 3 9. 1, 3 9. 6, 5 3. 9 , 5 6. 6, 6 6. 4 , 1 2 7. 8 5, 1 2 7. 8 9, 1 2 8. 3 1, 1 3 6. 7 , 1 5 6. 7 1 ^ C-NMR (75 MHz, CD C 13) δ 39.1, 39.6, 53.9, 56.6, 66.4, 12.77.85, 1 2 7.89, 1 2 8.31, 1 36.7, 15.6.7
実施例 6 Example 6
Figure imgf000026_0001
Figure imgf000026_0001
ジ Z体 9 20 m gをメタノ一ノレ 1 0 m 1溶液中、 P d/C ( 1 0 %) 8 0 m g にて室温で一昼夜反応させ加水素分解した。 触媒の濾去、 洗浄後、 濾液を濃縮し て目的とするフリーアミ ン体 44 6 mg (定量的) を得た。 920 mg of the di-Z form was reacted with 80 mg of Pd / C (10%) in 10 ml of a methanol solution at room temperature for 24 hours to undergo hydrogenolysis. After filtering off and washing the catalyst, the filtrate was concentrated to obtain 446 mg (quantitative) of the desired free amine compound.
H— NMR (3 0 0MH z , DMS O - d 6) δ 1. 3 5 ( s , 9 H) , 2. 40 ( t , J = 6. 0 H z, 6 H) , 2. 6 0 ( b m, 4 H) , 2. 94 ( bm, 2 H) , 3. 6 3 ( b m, 4 H) , 6. 8 0 (b s, 1 H) .  H—NMR (300 MHz, DMS O-d 6) δ 1.35 (s, 9H), 2.40 (t, J = 6.0Hz, 6H), 2.60 ( bm, 4H), 2.94 (bm, 2H), 3.63 (bm, 4H), 6.80 (bs, 1H).
上記で得た粗フリーァミン体 20 6 m gを DMS O 1 0 m 1 に溶解し、 これに D—ダルコノラク トン 3 0 O mgを加え室温で一昼夜かきまぜた。 濃縮後、 残渣 をイオン交換樹脂 (ダイアイオン WK— 40 ) に保存、 水洗後、 0. 5 Nアンモ ユア水で展開し、 目的物のフラクショ ンよ り 目的とする糖酸アミ ド 24 7 mg ( 4 9 %) を得た。  206 mg of the crude freeamine obtained above was dissolved in 10 ml of DMS O, and 30 mg of D-dalconolactone was added thereto, followed by stirring at room temperature for 24 hours. After concentration, the residue is stored in an ion-exchange resin (Diaion WK-40), washed with water, developed with 0.5 N aqueous ammonia, and the desired sugar fraction 247 mg ( 4 9%).
1 ° C -NMR ( 1 2 5MH z , DM S O - d 6 ) δ 2 8. 3, 3 6. 6, 3 8. 3, 5 3. 1 , 53. 4, 6 3. 4, 7 0. 1 , 7 1. 5, 7 2. 4, 7 3 . 7, 7 7. 6, 1 5 5. 7 , 1 7 2. 5 1 ° C-NMR (125 MHz, DMSO-d6) δ28.3, 36.6, 38.3, 53.1, 53.4, 63.4, 70. 1, 71.5, 72.4, 73.7, 77.6, 155.7, 172.5
実施例 Ί Example Ί
B o c HNC (CH 20 (C H 2 ) 2 CN) 3 → B o c H N C (C H 20 (C H 2 ) 3 NH Z ) 3 B oc HNC (CH 20 (CH 2) 2 CN) 3 → B oc HNC (CH 20 (CH 2) 3 NH Z) 3
トリスニ ト リル体 8. 1 5 g、 ラネー N i ( 5 0 %水スラ リー、 アルドリ ッチ 社製) 1 2 m 1 を水、 メタノールで洗浄、 デカントしたもの、 7 Nアンモニア/ メタノール 1 5 0 m l をォー トクレーブ中、 水素雰囲気下 ( 7 a t m) ではげし くかきまぜた。 反応終了後、 触媒を濾過、 洗浄し、 濾液を濃縮して得た残渣を水 2 0 m l に溶解した。 氷水浴上、 はげしくかきまぜながら、 Z C 1 1 0 . 1 m 1 と I N N a OH 7 0 m 1 を交互に加えた。 氷水浴でさらに 5時間かきまぜた 後、 塩化メチレン層を加え、 セライ ト濾過した。 濾液から塩化メチレン層を分液 し、 乾燥 (M g S O 4) 、 濃縮により得た残渣を S i 0 2カラムクロマ ト精製 ( n —へキサン : 酢酸ェチル = 5 : 1 → 1 : 1 ) に付し、 目的とする トリス Z体 9 . 1 g ( 5 3 %) を得た。  Trisnitrile 8.15 g, Raney Ni (50% water slurry, Aldrich) 12 ml washed and decanted with water and methanol, 7 N ammonia / methanol 150 The ml was stirred vigorously in an autoclave under a hydrogen atmosphere (7 atm). After completion of the reaction, the catalyst was filtered and washed, and the residue obtained by concentrating the filtrate was dissolved in 20 ml of water. On an ice water bath, ZC10.1 m1 and INNaOH 70 m1 were added alternately while stirring vigorously. After stirring for another 5 hours in an ice water bath, a methylene chloride layer was added, and the mixture was filtered through celite. The methylene chloride layer was separated from the filtrate, dried (MgSO 4), and the residue obtained by concentration was purified by SiO 2 column chromatography (n-hexane: ethyl acetate = 5: 1 → 1: 1). Then, 9.1 g (53%) of the desired Tris Z form was obtained.
1 H - NMR ( 3 0 0 MH z , C D C 1 3 ) δ 1 . 4 0 ( s , 9 Η) , 1 . 6 8 ( b m, 6 Η) , 3 . 2 3 ( b m, 6 Η) , 3 . 4 2 ( b s, 6 H) , 3. 5 9 ( s , 6 H) , 4. 9 0 ( s, 1 H) , 5. 0 7 ( s, 6 H) , 5. 2 5 ( b s , 3 H) , 7. 3 2 (m, 1 5 H) . 1 H-NMR (300 MHz, CDC 13) δ 1.40 (s, 9 9), 1.68 (bm, 6Η), 3.23 (bm, 6Η), 3 . 4 2 (bs, 6H), 3.59 (s, 6H), 4.90 (s, 1H), 5.07 (s, 6H), 5.25 (bs, 3 H), 7.32 (m, 15 H).
実施例 8 Example 8
B o c HN C (C H 2 O (C H 2 ) 3 NH Z ) 3  B o c HN C (C H 2 O (C H 2) 3 NH Z) 3
→ B o c H N C (C H 20 (C H 2 ) 3 NH 2) 3  → B o c H N C (C H 20 (C H 2) 3 NH 2) 3
Z体 1 . 9 4 g ( 2. 4 4 mm o l ) のメタノール ( 1 5 m l ) 溶液に 1 0 % P d 1 8 0 m gを加え、 水素雰囲気下 2 4時間、 室温にてはげしくかきまぜ た。 触媒を濾過、 メタノールにて洗浄し、 濾液を濃縮した。 目的とする トリアミ ン体 1 . 0 g (定量的) を得た。  To a solution of 1.94 g (2.44 mmol) of the Z form in methanol (15 ml) was added 180 mg of 10% Pd, and the mixture was vigorously stirred at room temperature for 24 hours in a hydrogen atmosphere. The catalyst was filtered, washed with methanol, and the filtrate was concentrated. 1.0 g (quantitative) of the target triamine was obtained.
1 H - NMR ( 5 0 0 MH z , DMS O - d 6 , 7 0 °C) δ 1 . 3 7 ( s, 9 H) , 1 . 5 8 (m, 6 H) , 2. 6 8 ( b s, 6 H) , 2. 9 4 ( b m, 6 H) , 3 . 4 2 ( t, J = 6. O H z , 6 H) , 3 . 5 0 ( s, 6 H) , 6. 0 1 ( b s , 1 H) . 1 H-NMR (500 MHz, DMS O-d 6, 70 ° C) δ 1.37 (s, 9 H), 1.58 (m, 6 H), 2.68 ( bs, 6H), 2.94 (bm, 6H), 3.42 (t, J = 6.OHz, 6H), 3.50 (s, 6H), 6.01 (bs, 1 H).
実施例 9 B o cHNC (CH20(CH2)3NH2)3 + 〈OH Example 9 B o cHNC (CH 2 0 ( CH 2) 3 NH 2) 3 + <OH
HO HO
OH OH
Figure imgf000028_0001
Figure imgf000028_0001
ト リアミン体 4 20 m g、 D—グノレコノラク トン 5 7 2mgをジメチルスルホ キシド 8 m l に溶解し、 室温にて一昼夜かきまぜた。 濃縮で得た残渣を、 イオン 交換樹脂 (ダイアイオン WK— 4 0) に保持し、 水洗後、 0. 5 Nアンモニア水 で展開し、 目的物のフラクショ ンを集め濃縮した。 収量 44 6 mg (4 5%) 。 Triamine compound (420 mg) and D-gnorenolactone (572 mg) were dissolved in dimethyl sulfoxide (8 ml) and stirred at room temperature for 24 hours. The residue obtained by concentration was retained on an ion exchange resin (Diaion WK-40), washed with water, developed with 0.5 N aqueous ammonia, and the desired fraction was collected and concentrated. Yield 446 mg (45%).
1 ° C - NMR ( 1 2 5 H z , DM S O - d 6 ) δ 2 8. 2 , 2 9. 2 , 3 5. 8, 5 8. 5, 6 3. 3 , 6 8 · 5, 6 8. 8, 7 0 · 0, 7 1. 5, 7 2 . 4, 7 3. 6, 1 54. 3, 1 7 2. 3 1 ° C-NMR (125 Hz, DMSO-d6) δ28.2, 29.2, 35.8, 58.5, 63.3, 68, 5, 6 8.8, 70 · 0, 71.5, 72.4, 73.6, 154.3, 172.3
実施例 1 0 Example 10
B o c HNC (C Η 2 Ο (CH 2 ) 3 ΝΗ Ζ) 3  B o c HNC (C Η 2 Ο (CH 2) 3 ΝΗ Ζ) 3
→ Η 2 NC (C Η 2 Ο (C Η 2 ) 3ΝΗ Ζ) 3  → Η 2 NC (C Η 2 Ο (C Η 2) 3 ΝΗ Ζ) 3
Β ο c体 5 7 Omgの塩化メチレン 0. 7 m l溶液に、 氷冷下、 かきまぜなが ら トリフルォロ酢酸 0. 6 m l を滴下した。 浴をはずし、 ー晚かきまぜた後、 ェ バポレーターにて濃縮、 残渣に 1 N水酸化ナトリ ウム水溶液を加え塩化メチレン 抽出した。 塩化メチレン層を水洗、 乾燥、 濃縮し、 目的とするアミン体 4 8 0 m g (定量的) を得た。 次工程には、 精製せず用いた。  To a solution of 57 Omg of the methylene chloride in 0.7 ml of methylene chloride, 0.6 ml of trifluoroacetic acid was added dropwise with stirring under ice-cooling. After removing the bath and stirring, the mixture was concentrated with an evaporator, and a 1 N aqueous sodium hydroxide solution was added to the residue, followed by extraction with methylene chloride. The methylene chloride layer was washed with water, dried and concentrated to obtain the desired amine compound (480 mg, quantitative). In the next step, it was used without purification.
H— NMR (3 0 0 MH z , CDC 1 3 ) δ 1. 6 9 ( b t , J = 5. 2 H z , 6 H) , 3. 2 5 ( t, J = 6. 3 H z , 6 H) , 3. 2 7 ( s , 6 H) , 3. 4 1 (b m, 6 H) , 5. 0 6 ( s, 6 H) , 5. 3 6 (b s, 3 H) 7. 3 1 (m, 1 5 H) H— NMR (300 MHz, CDC 13) δ 1.69 (bt, J = 5.2 Hz, 6 H), 3.25 (t, J = 6.3 Hz, 6 H), 3.27 (s, 6 H) , 3.41 (bm, 6H), 5.06 (s, 6H), 5.36 (bs, 3H) 7.31 (m, 15H)
実施例 1 1 Example 1 1
+ H2NC (CH20(CH2)3NHZ)3
Figure imgf000029_0001
+ H 2 NC (CH 20 (CH 2 ) 3 NHZ) 3
Figure imgf000029_0001
C02H C0 2 H
COゥ H  CO ゥ H
o  o
2  Two
(ZHN(CH2)30(CH2)3CHNC0v (ZHN (CH 2 ) 3 0 (CH 2 ) 3 CHNC0v
C0NHC(CH20(CH2)3NHZ)3 C0NHC (CH 2 0 (CH 2 ) 3NHZ) 3
実施例 1 0で合成したアミン体 4 3 8 m gのジメチルホルムアミ ド (DMF) 1. 5m l溶液に氷冷下、 かきまぜながら DT P Aジ無水物 1 1 3 mgを少量ず つ加えた。 2時間後、 浴を取り去り、 さらにー晚かきまぜを続けた。 DMFを留 去しほぼ純粋な目的物 5 5 6 m g (定量的) を得た。 To a 1.5 ml solution of 438 mg of the amine compound synthesized in Example 10 in dimethylformamide (DMF), 113 mg of DTPA dianhydride was added little by little while stirring under ice-cooling. Two hours later, I removed the bath and continued stirring. DMF was distilled off to obtain 5.56 mg (quantitative) of the almost pure target product.
1 ^ C -NMR ( 1 2 5MH z , DMSO d 6) δ 2 9. 1, 3 7. 5 , 5 2. 1 , 5 2. 2, 54. 8, 5 5. 2, 5 8. 4, 5 9. 0, 6 4. 7, 6 8 . 3, 6 8. 9, 1 2 6. 7 8, 1 2 6. 8 4, 1 2 7. 5, 1 3 6. 8 , 1 5 5. 4, 1 6 9. 4, 1 7 1. 1, 1 7 1. 3 1 ^ C-NMR (125 MHz, DMSO d 6) δ 29.1, 37.5, 52.1, 52.2, 54.8, 55.2, 58.4, 59.0, 64.7, 68.3, 68.9, 12.6.78, 12.6.68, 12.7.5, 13.6.8, 15.5. 4, 1 69.4, 17.1.1, 171.3
実施例 1 2 Example 1 2
麦芽糖酸ラク トンをジエチレントリアミン、 次いでジ -t ブチルジカーボネー トと 反応、 さらにァセチル化し得たパ一ァセチル Boc体をトリ フルォロ酢酸で処理後常 法処理し、 フリーアミン体をほぼ定量的収率で得た。 Lactone maltose is reacted with diethylene triamine and then with di-t-butyl dicarbonate, and the acetylated paracetyl Boc is treated with trifluoroacetic acid and then treated in a conventional manner to give a nearly quantitative yield of the free amine. I got it.
13C-NMR(300Mz, CDC13, 部分) 5 20.5, 20.7, 20.9, 39.1, 47, 9, 61.5, 62.4, 68.1, 68.2, 69.7, 70.2, 71.1, 71.2, 71.6, 97.3, 166.6, 169.4, 169.7, 16 9.8, 169.9, 170.4, 170.5, 171.0. ジメチルホルムアミ ド中、 上記フリーアミン体を 1/2当量の DTPA無水物と反応させ た。 溶媒を留去後、 2-プロパノールから結晶化し、 目的とする DTPAの糖付加化合 物のパーァセチル体を得た。 13 C-NMR (300Mz, CDC13, part) 5 20.5, 20.7, 20.9, 39.1, 47, 9, 61.5, 62.4, 68.1, 68.2, 69.7, 70.2, 71.1, 71.2, 71.6, 97.3, 166.6, 169.4, 169.7, 16 9.8, 169.9, 170.4, 170.5, 171.0. In dimethylformamide, the free amine was reacted with 1/2 equivalent of DTPA anhydride. After distilling off the solvent, the residue was crystallized from 2-propanol to obtain a peracetyl derivative of the target sugar-added DTPA compound.
1 C-NMR(300Mz, DMSO- d6, 部分) δ 20.26, 20.34, 20.5, 20.6, 36.5, 37.3, 45. 2, 46.2, 50.6, 51.4, 54.9. 55.7, 61.5, 67.7, 67.9, 69.0, 69.5, 70.0, 70. 6, 71.4, 75.4, 96.1, 166.0, 166.3, 169.2, 169.5, 169.7, 169.8, 170.0, 1 70.2, 170.3, 172.4. 1 C-NMR (300Mz, DMSO-d6, part) δ 20.26, 20.34, 20.5, 20.6, 36.5, 37.3, 45.2, 46.2, 50.6, 51.4, 54.9.55.7, 61.5, 67.7, 67.9, 69.0, 69.5, 70.0, 70.6, 71.4, 75.4, 96.1, 166.0, 166.3, 169.2, 169.5, 169.7, 169.8, 170.0, 1 70.2, 170.3, 172.4.
パーァセチル体 2· 0gのメタノ一ル 8mL溶液に氷冷下、 かき混ぜながら濃ァンモニァ 水 10mLを加えた。 室温で一昼夜放置後、 酢酸 5mLを加え濃縮した。 エタノールにて 白色個体を濾過、 洗浄、 乾燥し、 ほぼ定量的収率で目的とする麦芽糖酸を持つ DTP A誘導体を得た。 To a solution of 2.0 g of the percetyl compound in 8 mL of methanol was added 10 mL of concentrated ammonia water while stirring under ice-cooling. After standing overnight at room temperature, 5 mL of acetic acid was added and concentrated. The white solid was filtered with ethanol, washed, and dried to obtain the target DTPA derivative having maltose in almost quantitative yield.
13C -羅(300Mz, DMS0-d6) δ 36.8, 44.3, 46.4, 50.1, 51.6, 55.2, 57.2, 60.8, 62.7, 70.0, 71.7, 72.1, 72.2, 72.4, 72.3, 73.3, 73.4, 83.2, 100.9, 169. 6, 170.6, 172.8, 173.0, 174.5. 13 C - Luo (300Mz, DMS0-d6) δ 36.8, 44.3, 46.4, 50.1, 51.6, 55.2, 57.2, 60.8, 62.7, 70.0, 71.7, 72.1, 72.2, 72.4, 72.3, 73.3, 73.4, 83.2, 100.9, 169.6, 170.6, 172.8, 173.0, 174.5.
実施例 3 と同様に酸化ガドリニウムと反応し、 Gd錯体を得た。 It reacted with gadolinium oxide in the same manner as in Example 3 to obtain a Gd complex.
HPLC分析条件 : TSKgel Amide- 80, 溶離液 : 55%ァセトニト リル、 1.0mL/min, 検出 : 210nm,  HPLC analysis conditions: TSKgel Amide-80, eluent: 55% acetonitrile, 1.0 mL / min, detection: 210 nm,
Rt : 34 min. Rt: 34 min.
実施例 13 Example 13
実施例 3の Gd錯体を、 担癌ラッ トを用い、 MR造影試験を動物機 (磁場強度 : 2T) にて実施した。 測定条件は、 SE 500/18、 マルチスライス、 投与量、 薬剤濃度は、 0.01 mmol/Kg, 0.05M。 その結果、 実施例 3の Gd錯体は、 充実性部が高信号化し、 嚢胞部は低信号で残ることがわかった。 また、 肝上部 (マルチスライスの後半ス ライスに当たる) では下部程の造影効果が見られなかった。 これより、 実施例 3 の Gd錯体の BP性的性質が推測された。 Using the Gd complex of Example 3 and a tumor-bearing rat, an MR imaging test was performed on an animal machine (magnetic field strength: 2T). The measurement conditions were SE 500/18, multi-slice, dose, and drug concentration were 0.01 mmol / Kg and 0.05M. As a result, it was found that the Gd complex of Example 3 had a high signal in the solid part and a low signal in the cyst part. In the upper part of the liver (corresponding to the latter half slice of the multi-slice), the contrast effect was not so high as in the lower part. From this, the BP property of the Gd complex of Example 3 was estimated.
実施例 14 Example 14
実施例 3の Gd錯体の腎造影効果を、 健常ラッ トを用い、 DTPA (アルドリ ツチ社) と比較した。 測定条件等は、 実施例 13と同様。 実施例 3の Gd錯体は、 DTPAより明 瞭な造影効果を示すと共に、 乳頭部の造影が遅延し、 DTPAと若干異なった腎造影 挙動を示した。 The renal imaging effect of the Gd complex of Example 3 was compared with DTPA (Aldrich) using healthy rats. The measurement conditions were the same as in Example 13. The Gd complex of Example 3 was clearer than DTPA. In addition to showing a clear contrast effect, the contrast of the nipple was delayed, and the renal contrast behavior was slightly different from that of DTPA.
本発明によれば、 臓器、 組織選択性を有し、 かつ、 血液プール性を有する新規 な造影剤として利用可能な化合物が得られる。  ADVANTAGE OF THE INVENTION According to this invention, the compound which has an organ and tissue selectivity and can be used as a novel contrast agent which has a blood pool property is obtained.

Claims

請求の範囲 The scope of the claims
1. 下記の一般式 ( 1 )  1. The following general formula (1)
Figure imgf000032_0001
Figure imgf000032_0001
(式中、 Rは一 N ( (CH 2 ) k NHR 1 ) 2 (式中、 kは 2から 5の整数を表 わし、 R 1はべンジルォキシカルボニル基、 t 一ブチルォキシカルボニル基、 水 素原子、 または糖鎖ァシル残基を表わす) ; ー NH (C H 2) 1 N ( (CH 2 ) k HR 1 ) 2 (式中、 k R 1は上記と同義を表わし、 1 は k と同義を表わす 力 kと同一でも異なっていてもょレヽ。 ) ; ー NH CHm (C H 2AR 2) 3— m (式中、 mは 0または 1を表わし、 Aは単結合、 一 (CH 2) 2 - CH 2 CO O (CH 2 ) 3 -O (CH 2 ) 2 C〇、 または一 COを表わし、 R 2は一 NHR 1 , 一 NH (CH 2 ) kNHR 1、 一 N ( (CH 2) kNHR 1 ) 2、 ま たは— NH (C H 2 ) I N ( (CH 2) kNHR 1 ) 2 (式中、 k 1 および R 1 は前記と同義を表わす) 。 ただし、 mが 1 を表わす時、 Aは一 C Oのみを表わ す。 ) (Wherein, R represents 1 N ((CH 2) k NHR 1 ) 2 (where k represents an integer of 2 to 5, R 1 represents a benzyloxycarbonyl group, and a t-butyloxycarbonyl group. represents water atom or a sugar chain Ashiru residues); over NH (CH 2) 1 N ( (CH 2) k HR 1) 2 ( wherein, k R 1 represents the same meaning as defined above, 1 k Yo be the same or different from the force k representing the same meaning as Rere);. over NH CHm (CH 2AR 2) 3- m ( wherein, m represents 0 or 1, a represents a single bond, one (CH 2 ) 2-CH 2 CO O (CH 2) 3 -O (CH 2) 2 C〇 or one CO, R 2 is one NHR 1 , one NH (CH 2) kNHR 1 , one N ((CH 2 ) kNHR 1 ) 2 or —NH (CH 2) IN ((CH 2) kNHR 1 ) 2 (where k 1 and R 1 have the same meanings as above), provided that when m represents 1, , A represents only one CO.)
を表わす) で表わされるジエチレントリアミン 5酢酸誘導体。 A diethylenetriamine pentaacetic acid derivative represented by
2. Rがー N ( (C H 2 ) k NHR 1 ) 2 (式中、 kは 2から 5の整数を表わし、 R 1は糖鎖ァシル残基を表わす) ことを特徴とする請求の範囲第 1項に記載のジェ チレントリアミン 5酢酸誘導体。 2. The method according to claim 1, wherein R is -N ((CH 2) k NHR 1 ) 2, wherein k represents an integer of 2 to 5, and R 1 represents a glycan residue. 2. The ethylenetriamine pentaacetic acid derivative according to item 1.
3. 糖鎖ァシル残基が下記一般式 (3 ) で表されることを特徴とする請求の範囲第 1項または第 2項に記載のジエチレント リアミン 5酢酸誘導体。
Figure imgf000033_0001
3. The diethylenetriamine pentaacetic acid derivative according to claim 1 or 2, wherein the glycan residue is represented by the following general formula (3).
Figure imgf000033_0001
(上記式中、 pは 0〜 1 0の整数を表わす) (In the above formula, p represents an integer of 0 to 10)
4. 金属イオンと錯化した請求の範囲第 1項から第 3項のいずれかに記載の誘導 体。 4. The derivative according to any one of claims 1 to 3, which is complexed with a metal ion.
5. 金属イオンが常磁性金属イオンおよび放射性金属イオンのいずれかからなる 群より選択される請求の範囲第 4項に記載の誘導体。 · 5. The derivative according to claim 4, wherein the metal ion is selected from the group consisting of a paramagnetic metal ion and a radioactive metal ion. ·
6. 下記式 (5) で表されるジエチレントリアミン 5酢酸誘導体。 6. A diethylenetriaminepentaacetic acid derivative represented by the following formula (5).
Figure imgf000033_0002
Figure imgf000033_0002
7. 請求の範囲第 1項から第 5項のいずれかに記載の誘導体を必須成分とする造 影剤。 7. A contrast agent comprising the derivative according to any one of claims 1 to 5 as an essential component.
8. 請求の範囲第 1項から第 6項のいずれかに記載の誘導体及び薬学的に許容さ れる担体を含んでなる体内診断用医薬組成物。 8. A pharmaceutical composition for in-vivo diagnosis comprising the derivative according to any one of claims 1 to 6 and a pharmaceutically acceptable carrier.
9. 下記一般式 (2) 9. The following general formula (2)
R' — R ( 2 )  R '— R (2)
(式中、 Rは上記と同義を表わす。 但し、 R中 R 1は水素原子を除いた意味を表 わし、 また Rが— N ( (CH 2) k NHR 1 ) 2の時、 R 1は糖鎖ァシル基を表 わさない。 R' は水素原子、 Z基、 B o c基を表わすが、 R中に Z基または B o c基を有する場合には、 おのおのそれらの意味を表わさない。 ) で表わされるァ ミノ化合物。 (Wherein, R has the same meaning as above. However, R 1 in R represents a meaning excluding a hydrogen atom, and when R is —N ((CH 2) k NHR 1 ) 2, R 1 is R ′ represents a hydrogen atom, a Z group, or a Boc group, but when R has a Z group or a Boc group, it does not mean any of them.) An amino compound represented by
PCT/JP1999/005860 1999-10-22 1999-10-22 Diethylenetriaminepenta acetic acid derivatives WO2001028982A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1999/005860 WO2001028982A1 (en) 1999-10-22 1999-10-22 Diethylenetriaminepenta acetic acid derivatives
AU62293/99A AU6229399A (en) 1999-10-22 1999-10-22 Diethylenetriaminepenta acetic acid derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/005860 WO2001028982A1 (en) 1999-10-22 1999-10-22 Diethylenetriaminepenta acetic acid derivatives

Publications (1)

Publication Number Publication Date
WO2001028982A1 true WO2001028982A1 (en) 2001-04-26

Family

ID=14237074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005860 WO2001028982A1 (en) 1999-10-22 1999-10-22 Diethylenetriaminepenta acetic acid derivatives

Country Status (2)

Country Link
AU (1) AU6229399A (en)
WO (1) WO2001028982A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341468A (en) * 1986-07-28 1988-02-22 シエ−リング・アクチエンゲゼルシヤフト Macrocyclic compound, its production and agent for nmr diagnosis, x-ray diagnosis, ultrasonic diagnosis and radiation remedy containing the same
JPH11302243A (en) * 1998-04-24 1999-11-02 Mitsubishi Chemical Corp Diethylenetriamine pentaacetic acid derivative

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341468A (en) * 1986-07-28 1988-02-22 シエ−リング・アクチエンゲゼルシヤフト Macrocyclic compound, its production and agent for nmr diagnosis, x-ray diagnosis, ultrasonic diagnosis and radiation remedy containing the same
JPH11302243A (en) * 1998-04-24 1999-11-02 Mitsubishi Chemical Corp Diethylenetriamine pentaacetic acid derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIELSEN PETER E. ET AL.: "Photolytic Cleavage of DNA by nit Robenzamido Ligands Linked to 9-Aminocridines Gives DNA Polymerase Substrates in a Wavelength-Dependent Reaction", BIOCONJUGATE CHEM.,, vol. 2, no. 1, 1991, pages 57 - 66, XP002921956 *

Also Published As

Publication number Publication date
AU6229399A (en) 2001-04-30

Similar Documents

Publication Publication Date Title
US10882849B2 (en) Dimeric contrast agents
KR101440761B1 (en) Compounds comprising short aminoalcohol chains and metal complexes for medical imaging
EP0325762B1 (en) Macrocyclic chelating agents and chelates thereof
EP0451824B1 (en) Chelating compounds and their use
US5132409A (en) Macrocyclic chelating agents and chelates thereof
JP7145156B2 (en) dimer contrast agent
US20100166656A1 (en) Diagnostic And Radiotherapeutic Contrast Agents And Process For Their Preparation
US20150231281A1 (en) Inflammation imaging and therapy
TWI243170B (en) Perfluoroalkyl-containing complexes with sugar radicals, process for their production and their use
US20020052354A1 (en) Paramagnetic DOTA derivatives, pharmaceutical agents that contain the latter, process for their production, and their use for MR imaging of necrosis and infarction
US6641797B2 (en) Perfluoroalkyl-containing complexes with sugar radicals, process for their production and their use
WO2001028982A1 (en) Diethylenetriaminepenta acetic acid derivatives
TW200539894A (en) Trimeric, macrocyclically substituted halo-benzene derivatives
JPH11302243A (en) Diethylenetriamine pentaacetic acid derivative
KR20000070544A (en) Polymers
WO2006025304A1 (en) Mri contrast agent for arteriosclerosis detection
JP2008500293A (en) Trimeric macrocyclic substituted aminoisophthalic acid-halogen-benzene derivative
KR100762359B1 (en) Vascular-specific contrast media for magnetic resonance imaging and process for preparing the same
TWI382851B (en) Ligand and metal complex for preparing a blood pool and targeting contrast agent
US8299283B2 (en) Contrast agent containing silsesquioxane
JPH03197468A (en) Bifunctional large cyclic chelate ligand and its preparation
KR100762357B1 (en) Inflammation-specific contrast media for magnetic resonance imaging and process for preparing the same
JPH1112295A (en) Fluoroscaccharide derivative

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase