WO2001027664A1 - Dispositif optique de commande, en particulier de mise en forme, d'un faisceau de lumiere coherente - Google Patents

Dispositif optique de commande, en particulier de mise en forme, d'un faisceau de lumiere coherente Download PDF

Info

Publication number
WO2001027664A1
WO2001027664A1 PCT/FR2000/002859 FR0002859W WO0127664A1 WO 2001027664 A1 WO2001027664 A1 WO 2001027664A1 FR 0002859 W FR0002859 W FR 0002859W WO 0127664 A1 WO0127664 A1 WO 0127664A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
microlenses
diffraction
diffractive
diffracting object
Prior art date
Application number
PCT/FR2000/002859
Other languages
English (en)
Inventor
Serge Gidon
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO2001027664A1 publication Critical patent/WO2001027664A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1828Diffraction gratings having means for producing variable diffraction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials

Definitions

  • the present invention relates to an optical device for controlling, and in particular for shaping, a beam of coherent light.
  • the invention lies in the field of diffractive optics and, in a particular embodiment, constitutes a reconfigurable device.
  • the invention applies in particular to the dynamic shaping of laser beams for the generation of possibly holographic images or the obtaining of graphic signs such as logos for the marking of objects.
  • Diffractive optics is a branch of optics in which we consider optical components comprising elementary patterns whose characteristic dimensions are of the order of magnitude of the wavelength of light with which we uses these components.
  • diffraction gratings in general the shape of their surface
  • This dispersion can also be used in the case of diffractive lenses to compensate for the chromatic dispersion.
  • diffractive optics such as the realization of optical microsystems by integration of micro-optical elements.
  • the diffractive optics are often constituted by phase objects with which the amplitude of the diffracted wavelets is preserved.
  • diffractive optical elements are often designed using iterative calculations on a computer, in particular in the case of computer generated holograms (“computer generated holograms”), and are made of materials.
  • diffractive optical elements are fixed and, to change the diffraction conditions, these elements must be changed.
  • diffractive optical devices which are reconfigurable, that is to say whose diffractive structure can be changed over time.
  • Such devices are suitable for many needs such as dynamic control of the development of optical systems or dynamic modification of the shape and / or direction of a laser beam used for example for optical recording.
  • “Active” diffractive optical devices are already known, formed from photosensitive polymers, by the following document:
  • Switchable-focus lens in holographie polymer dispersed liquid crystal L.H. Domash et al., S.P.I.E. vol. 2689, p. 188 to 194
  • the object of the present invention is to remedy this drawback by proposing a device making it possible to obtain, in a simpler manner than in the prior art, an effective diffraction image, capable of containing a large number of very small patterns.
  • the invention transfers the complexity of a diffracting object with small patterns onto optical multiplying means which repeat an image of a diffracting object capable of being very simple, in order to obtain a large diffracting object. size and effective to achieve good image sharpness.
  • optical multiplying means which repeat an image of a diffracting object capable of being very simple, in order to obtain a large diffracting object. size and effective to achieve good image sharpness.
  • the subject of the present invention is an optical device, capable of controlling, in particular for shaping, a beam of coherent light, this device - comprising - a diffracting object which comprises a pattern, this device being characterized in that it further comprises optical multiplying means which are capable of giving the diffracting object, when this object is illuminated by the beam of coherent light, an image in which the pattern of the diffracting object is repeated several times.
  • the diffracting object is for example a diffractive optical element.
  • This diffractive optical element can be fixed or, on the contrary, reconfigurable (the device then itself being reconfigurable).
  • micro-opto-electro-mechanical System which is also called a MOEMS.
  • the reconfigurable diffractive optical element is formed, for example by a micro-machining technique, in a semiconductor material such as for example silicon, or else is formed by an electro-optically controlled liquid crystal cell.
  • the optical multiplier means can comprise an array ("array") of microlenses whose pitch and focal distance are fixed and calculated to obtain the desired multiplier effect.
  • the device object of the invention can be provided with a main lens placed between the diffracting object and the microlens array, at a distance from the latter equal to the sum of the focal distance of the main lens and the focal distance. microlenses.
  • the multiplier means can comprise a beam fanout made in diffractive optics.
  • the device can be provided with a lens for focusing the light from the optical multiplier means or use optical multiplier means comprising a network of microlenses whose pitch and focal distance are variable or even use optical multiplier means comprising a beam splitter intended to provide a near field diffraction image.
  • Figure 1 is a schematic front view of an example of a diffractive optical element
  • Figure 2 schematically illustrates the far field intensity distribution corresponding to the element of Figure 1
  • in Figure 3 is a schematic front view of another example of a diffractive optical element
  • FIG. 4 schematically illustrates the distribution of intensity in the far field corresponding to the element of FIG. 3
  • FIG. 5 is a schematic view of a particular embodiment of the device which is the subject of the invention
  • Figure 6 is a schematic view of another particular embodiment of the device object of the invention and "Figure 7 is a schematic view of yet another particular embodiment of the device object of the invention.
  • Diffractive optics are known for far field diffraction. On this subject we will refer to the following document:
  • These elements comprise a diffraction grating with periodic pattern as is schematically illustrated in FIGS. 1 and 3.
  • Figure 3 shows another periodic engraved pattern 4 which is calculated to obtain the distribution of intensity in the far field which one see in Figure 4 where the image obtained is also represented in a reference x, y.
  • FIG. 5 is a schematic view of a particular embodiment of the device object of
  • the device of FIG. 5 comprises a diffracting object which forms a phase element 6. It is for example a MOEMS in which case the device is reconfigurable.
  • this MOEMS comprises 256x256 elements over an area approximately equal to 1 cm 2 .
  • the device of FIG. 5 also comprises an array (“array”) 8 of microlenses 10 which allows the periodic repetition of the pattern of the phase element
  • the respective axes of the microlenses 10 have the reference X. These axes X are parallel to each other.
  • the optical axis of the device is noted Y.
  • the aerial image is also represented.
  • phase element 6 which is supplied by the microlens array when the phase element 6 is illuminated by a beam of coherent light F.
  • arterial image is meant a real image, not visible but capable of being materialized if necessary (as opposed to a virtual image which is non-real and which cannot be materialized).
  • this aerial image 12 is a set of patterns 14 each corresponding to the pattern of the phase element 6.
  • the patterns 14 have a size smaller than that of the pattern of the -phase element 6.
  • the device of FIG. 5 also comprises a main lens 16 which is disposed between the array 8 of microlenses and the phase element 6.
  • the array of microlenses is in the Fourier position relative to this main lens 16. This means that the distance between the microlens array and this main lens is equal to the sum of the focal distance of this main lens and the focal distance common to the microlenses.
  • the diffraction angle corresponding to the phase element 6 is denoted ⁇ .
  • the diffraction angle ⁇ at the exit of the array 8 of microlenses is greater than the angle ⁇ .
  • the microlens array and the main lens therefore allow a multiplication of the diffraction angle in the ratio of focal distances.
  • the optical device according to the invention which is shown in Figure 5, allows to generate the image of a diffracting object in a simple manner and with good diffraction efficiency.
  • this diffraction efficiency is the ratio of the light power in the directions of diffraction with respect to the order of diffraction 0, that is to say with respect to non-diffracted light.
  • This diffraction efficiency depends on the size of the elementary patterns of the diffracting object or on the image of the latter. It is all the better that this size is close to the wavelength of the light which interacts with the diffracting object.
  • the device of FIG. 5 makes it possible precisely to reduce the size of the pattern of the phase element 6 and to repeat this pattern to have an image with numerous small patterns.
  • microlens array we therefore report the complexity of a diffracting object on the microlens array. It should be noted that such a microlens array is now a common component.
  • Figure 6 is a schematic view of another example of the device object of the invention.
  • This device of FIG. 6 also comprises the phase element 6 used in the device of FIG. 5.
  • This device further comprises a beam fanout 18 which is produced in diffractive optics.
  • This beam splitter 18 is used for repeating the pattern of the phase element 6 (phase pattern).
  • This aerial image is formed of a large number of elementary patterns 14 which are replicas of the pattern of the phase element 6 but have a size smaller than that of this element 6.
  • the diffraction angle ⁇ obtained at the exit of the beam gap 18 is clearly greater than the diffraction angle ⁇ obtained following the phase element .
  • FIG. 7 An optical device according to the invention, more complete than that of FIG. 5, is schematically represented in FIG. 7.
  • the invention could be implemented with a device operating by transmission.
  • a diffracting object capable of transmitting and diffracting an incident laser beam would be used.
  • the device of FIG. 7 results from the addition of a separating blade 20 to the device shown in FIG. 5. This blade is placed. opposite the microlens array 8.
  • the arrow F in FIG. 7 represents the light beam of coherent light (laser beam) with which the phase element 6 is illuminated.
  • This beam propagates along the Y axis and successively crosses the separating plate 20, the microlens array 8 and the main lens 16 to interact with the phase element 6.
  • the light diffracted by the latter is recovered by the main lens 16 and then reaches the microlens array 8.
  • the arrow FI represents the light coming from the microlens array after reflection of this light on the separating plate 20.
  • the separating plate 20 makes it possible to recover the light FI by separating it from the incident beam F.
  • the blade 20 can be replaced by a polarization splitter. Quarter wave plates not shown can be added to the device of FIG. 7 to change the state of polarization of the wave between F and FI.
  • the plate 20 must then be sensitive to the two orthogonal polarization states of the light.
  • the phase element used in the devices of FIGS. 5 to 7 may include a micromechanical structure to be reconfigurable.
  • This MOEMS can be activated by all kinds of actuators, for example electrostatic force actuators, magnetic actuators, thermal actuators or hydraulic actuators.
  • a device according to the invention can be used to form an image projector, for example a logo projector.
  • one of the diffraction orders of the device is preferably used.
  • the device of FIG. 5 or the device of FIG. 6 can be provided with a focusing lens 22 (see FIG. 7) which is then placed downstream of the device. .
  • this lens 22 is arranged on the path of the beam FI opposite the blade 20 and parallel to the optical axis Y.
  • an optimized beam splitter can be used to perform a function analogous to that of a microlens array with variable pitch and focal length.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

Ce dispositif comprend un objet diffractant (6) et des moyens optiques (8) donnant de cet objet, lorsqu'il est éclairé par le faisceau (F), une image (12) où le motif de l'objet diffractant est répété. L'invention s'applique en particulier à la formation d'images.

Description

DISPOSITIF OPTIQUE DE COMMANDE, EN PARTICULIER DE MISE EN FORME, D'UN FAISCEAU DE LUMIÈRE COHÉRENTE
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne un dispositif optique de commande, et en particulier .. de mise en forme, d'un faisceau de lumière cohérente.
L'invention se situe dans le domaine de l'optique diffractive et, dans un mode de réalisation particulier, constitue un dispositif reconfigurable.
L'invention s'applique notamment à la mise en forme dynamique de faisceaux laser pour la génération d'images éventuellement holographiques ou l'obtention de signes graphiques tels que les logos pour le marquage d'objets.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
L'optique diffractive est une branche de l'optique dans laquelle on considère des composants optiques comportant des motifs (« patterns ») élémentaires dont les dimensions caractéristiques sont de l'ordre de grandeur de la longueur d'onde de la lumière avec laquelle on utilise ces composants.
La forme particulière de ces derniers (en général la forme de leur surface) leur confère des propriétés intéressantes comme, par exemple, dans le cas des réseaux de diffraction (« diffraction gratings ») qui conduisent à une dispersion chromatique de la lumière.
Cette dispersion peut également être mise à profit dans le cas des lentilles diffractives pour compenser la dispersion chromatique.
Bien d'autres besoins peuvent être satisfaits par l'optique diffractive, comme la réalisation de microsystemes optiques par intégration d'éléments de micro-optique. Très généralement, on recherche ,1a modification de la forme d'un faisceau lumineux pour :
- la mise au point contrôlée d'un dispositif optique,
- la commande de faisceaux laser par exemple pour le marquage par laser ou la formation de signes tels que les logos, et
- la génération d'hologrammes dynamiques.
Pour des questions d'efficacité de diffraction, les éléments d'optique diffractive sont souvent constitués par des objets de phase avec lesquels l'amplitude des ondelettes diffractées est conservée.
Ces éléments d'optique diffractive sont souvent conçus à l'aide de calculs itératifs sur ordinateur, en particulier dans le cas des hologrammes engendrés par ordinateur (« computer generated holograms ») , et sont réalisés dans des matériaux
(comme par exemple le silicium) qui peuvent être gravés ou dans des matériaux (comme par exemple certaines matières plastiques) qui peuvent être estampés (« embossed ») . Ces éléments d'optique diffractive sont fixes et, pour changer les conditions de diffraction, il faut changer ces éléments .
Dans la présente invention, on s'intéresse en particulier à un moyen d'obtenir des dispositifs optiques diffractifs qui soient reconfigurables, c'est- à-dire dont la structure diffractive puisse être changée au cours du temps .
De tels dispositifs sont adaptés à de nombreux besoins comme le contrôle dynamique de la mise au point de systèmes optiques ou la modification dynamique de la forme et/ou de la direction d'un faisceau laser utilisé par exemple pour l'enregistrement optique. On connaît déjà des dispositifs optiques diffractifs « actifs », formés à partir de polymères photosensibles, par le document suivant :
Switchable holograms in new photopolymer- liquid crystal composite materials, Richard L. Sutherland et al., S.P.I.E. vol.2404, p.132 à 143.
On connaît aussi des dispositifs optiques diffractifs actifs formés à partir . de cristaux liquides, par les documents suivants :
Switchable-focus lens in holographie polymer dispersed liquid crystal, L.H. Domash et al., S.P.I.E. vol.2689, p.188 à 194
Liquid crystal used in beam steering device, Optical processing and Computing, vol .9 n°l Smart spatial light odulators using liquid crystals on silicon, IEEE J. Quantum Electronics, 29(2) , 699 (1993) .
Ces dispositifs optiques diffractifs actifs connus nécessitent la mise en œuvre de techniques qui sont peu compatibles avec les micro-systèmes optiques ou avec une grande intégration.
Plus généralement, pour avoir des motifs de diffraction nombreux et très fins (de l'ordre de grandeur de la longueur d'onde de la lumière avec laquelle ils sont destinés à interagir) , en vue de l'obtention d'une image de diffraction efficace, il faut réaliser des dispositifs d'une grande finesse de motif particulièrement difficiles à mettre en œuvre, dans le cas de motifs reconfigurables.
EXPOSÉ DE L'INVENTION
La présente invention a pour but de remédier à cet inconvénient en proposant un dispositif permettant d'obtenir, de façon plus simple que dans l'art antérieur, une image de diffraction efficace, susceptible de contenir un grand nombre de motifs très petits .
Pour ce faire, l'invention transfère la complexité d'un objet diffractant à motifs de petite taille sur des moyens optiques multiplicateurs qui répètent une image d'un objet diffractant susceptible d'être très simple, afin d'obtenir un objet diffractant de grande taille et efficace pour atteindre une bonne finesse d'image. On comprend tout l'intérêt de l'invention dans le domaine des dispositifs reconfigurables car il suffit alors d'utiliser, en association avec les moyens optiques multiplicateurs, un objet diffractant reconfigurable et simple, que l'on est capable de fabriquer facilement, par exemple avec des techniques de micro-usinage du silicium.
De façon précise, la présente invention a pour objet un dispositif optique, apte à commander, en particulier à mettre en forme, un faisceau de lumière cohérente, ce dispositif -comprenant - un objet diffractant qui comporte un motif, ce dispositif étant caractérisé en ce qu'il comprend en outre des moyens optiques multiplicateurs qui sont aptes à donner de l'objet diffractant, lorsque cet objet est éclairé par le faisceau de lumière cohérente, une image dans laquelle le motif de l'objet diffractant est répété plusieurs fois.
L'objet diffractant est par exemple un élément d'optique diffractive.
Cet élément d'optique diffractive peut être fixe ou, au contraire, reconfigurable (le dispositif étant alors lui-même reconfigurable) .
En tant qu'élément d'optique diffractive reconfigurable, on peut utiliser un système micro-opto- électro-mécanique (« micro-opto-electro-mechanical System ») que l'on appelle aussi un MOEMS .
Au sujet des MOEMS on peut consulter le document suivant : Design and testing of polysilicon surface- micromachined piston micromirror arrays , W.S. Co an et al., SPIE vol.3292, p.60 à 70.
En variante, l'élément d'optique diffractive reconfigurable est formé, par exemple par une technique de micro-usinage, dans un matériau semiconducteur comme par exemple le silicium, ou bien est formé d'une cellule à cristal liquide commandée électro-optiquement . Pour obtenir une diffraction en champ lointain, encore appelée diffraction de Fraunhofer, les moyens optiques multiplicateurs peuvent comprendre un réseau (« array ») de microlentilles dont le pas et la distance focale sont fixes et calculés pour obtenir l'effet multiplicateur souhaité.
On peut munir le dispositif objet de l'invention d'une lentille principale placée entre l'objet diffractant et le réseau de microlentilles, à une distance de ce dernier égale à la somme de la distance focale de la lentille principale et de la distance focale des microlentilles.
Cela permet de conserver des conditions de cohérence .
En variante, pour obtenir une diffraction en champ lointain, les moyens multiplicateur peuvent comprendre un éclateur de faisceau (« beam fanout ») réalisé en optique diffractive.
Pour obtenir une diffraction en champ proche, encore appelée diffraction de Fresnel, on peut munir le dispositif d'une lentille de focalisation de la lumière issue des moyens optiques multiplicateurs ou utiliser des moyens optiques multiplicateurs comprenant un réseau de microlentilles dont le pas et la distance focale sont variables ou même utiliser des moyens optiques multiplicateurs comprenant un éclateur de faisceau prévu pour fournir une image de diffraction en champ proche .
BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise à la lecture de la description d'-exemples de- réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :
" la figure 1 est une vue de face schématique d'un exemple d'élément d'optique diffractive, " la figure 2 illustre schématiquement la répartition d'intensité en champ lointain correspondant à l'élément de la figure 1, a la figure 3 est une vue de face schématique d'un autre exemple d'élément d'optique diffractive,^ " la figure 4 illustre schématiquement la répartition d'intensité en champ lointain correspondant à l'élément de la figure 3, " la figure 5 est une vue schématique d'un mode de réalisation particulier du dispositif objet de l'invention,
" la figure 6 est une vue schématique d'un autre mode de réalisation particulier du dispositif objet de l'invention et " la figure 7 est une vue schématique d'encore un autre mode de réalisation particulier du dispositif objet de l'invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
On rappelle que les phénomènes de diffraction sont divisés en deux catégories :
- les phénomènes de diffraction en champ proche ou phénomènes de diffraction de Fresnel et
- les phénomènes de diffraction en champ "lointain ou phénomènes de diffraction de Fraunhofer.
On considère tout d'abord les modes de réalisation particuliers de l'invention correspondant à une diffraction en champ lointain.
On connaît des éléments d'optique diffractive pour la diffraction en champ lointain. A ce sujet on se reportera au document suivant :
Micro-optics , Hans Peter Herzig, Taylor & Francis, ISBN 0-7484-0481-3, p.314.
Ces éléments comprennent un réseau de diffraction à motif périodique comme cela est schématiquement illustré sur les figures 1 et 3.
Dans le cas de la figure 1 on voit un motif périodique gravé 2 qui est calculé pour obtenir la répartition d'intensité dans le champ lointain que l'on voit sur la figure 2 où l'image obtenue est représentée dans un repère x, y.
La figure 3 montre un autre motif périodique gravé 4 qui est calculé pour obtenir la répartition d'intensité dans le champ lointain que l'on voit sur la figure 4 où l'image obtenue est également représentée dans un repère x, y.
C'est principalement la répartition de phase dans le motif élémentaire (qui est répété dans les motifs 2 et 4) qui définit la distribution du champ lointain. La dimension totale de l'élément d'optique diffractive n'influence que la « finesse » de l'image dans le champ lointain. En cela il existe une analogie avec la transformation de Fourier. La figure 5 est une vue schématique d'un mode de réalisation particulier du dispositif objet de
1 ' invention.
Le dispositif de la figure 5 comprend un objet diffractant qui forme un élément de phase 6. Il s'agit par exemple d'un MOEMS auquel cas le dispositif est reconfigurable.
A titre purement indicatif et nullement limitatif, ce MOEMS comprend 256x256 éléments sur une surface environ égale à 1 cm2. Le dispositif de la figure 5 comprend aussi un réseau (« array ») 8 de microlentilles 10 qui permet la répétition périodique du motif de l'élément de phase
6.
Sur la figure 5 les axes respectifs des microlentilles 10 ont la référence X. Ces axes X sont parallèles les uns aux autres. De plus, on note Y l'axe optique du dispositif.
On a en outre représenté l'image aérienne
12 de l'élément de phase 6 qui est fournie par le réseau de microlentilles lorsque l'élément de phase 6 est éclairé par un faisceau de lumière cohérente F. Par « image aérienne » on entend une image réelle, non visible mais susceptible d'être matérialisée si nécessaire (par opposition à une image virtuelle qui est non réelle et qui ne peut pas être matérialisée) .
On voit que cette image aérienne 12 est un ensemble de motifs 14 correspondant chacun au motif de l'élément de phase 6.
De plus, dans l'image fournie par le réseau de microlentilles, les motifs 14 ont une taille inférieure à celle du motif de l'élément de -phase 6.
Le dispositif de la figure 5 comprend aussi une lentille principale 16 qui est disposée entre le réseau 8 de microlentilles et l'élément de phase 6. Le réseau de microlentilles est en position de Fourier par rapport à cette lentille principale 16. Cela signifie que la distance entre le réseau de microlentilles et cette lentille principale est égale à la somme de la distance focale de cette lentille principale et de la distance focale commune aux microlentilles .
Sur la figure 5 l'angle de diffraction correspondant à l'élément de phase 6 est noté α. L'angle de diffraction β à la sortie du réseau 8 de microlentilles est supérieur à l'angle α. Le réseau de microlentilles et la lentille principale permettent donc une multiplication de l'angle de diffraction dans le rapport des distances focales.
Le dispositif optique conforme à l'invention, qui est représenté sur la figure 5, permet d'engendrer l'image d'un objet diffractant de manière simple et avec un bon rendement de diffraction.
On rappelle que ce rendement de diffraction est le rapport de la puissance lumineuse dans les directions de diffraction par rapport à l'ordre de diffraction 0 c'est-à-dire par rapport à la lumière non diffractée .
Ce rendement diffraction dépend de la taille des motifs élémentaires de l'objet diffractant ou de l'image de ce dernier. Il est d'autant meilleur que cette taille est proche de la longueur d'onde de la lumière qui interagit avec l'objet diffractant.
Le dispositif de la figure 5 permet justement de réduire la taille du motif de l'élément de phase 6 et de répéter ce motif pour disposer d'une image à nombreux petits motifs.
Ainsi, dans la présente invention, à partir d'un objet diffractant initial relativement simple, comprenant peu de motifs élémentaires et donc intrinsèquement à faible efficacité de diffraction on est capable d'engendrer par réplication optique une image qui, quant à elle, offre une bonne efficacité de diffraction.
On reporte donc la complexité d'un objet diffractant sur le réseau de microlentilles. Il convient de noter qu'un tel réseau de microlentilles est maintenant un composant commun.
La configuration utilisée (configuration en position de Fourier) permet une restitution de conditions cohérentes de diffraction en champ lointain. La figure 6 est une vue schématique d'un autre exemple du dispositif objet de l'invention.
Ce dispositif de la figure 6 comprend encore l'élément de phase 6 utilisé dans le dispositif de la figure 5.
On note encore Y l'axe optique du dispositif de la figure 6.
Ce dispositif comprend en outre un éclateur de faisceau (« beam fanout ») 18 qui est réalisé en optique diffractive.
Cet éclateur de faisceau 18 -est utilisé pour la répétition du motif de l'élément de phase 6 (motif de phase) .
On voit encore l'image aérienne 12 qui est fournie par cet éclateur de faisceau lorsque l'élément 6 est éclairé par un faisceau laser F.
Cette image aérienne est formée d'un grand nombre de motifs élémentaires 14 qui sont des répliques du motif de l'élément de phase 6 mais ont une taille inférieure à celle de cet élément 6.
On note encore l'amplification de l'angle de diffraction : l'angle β de diffraction obtenu à la sortie de l'éclateur de faisceau 18 est nettement supérieur à l'angle α de diffraction obtenu à la suite de l'élément de phase.
Un dispositif optique conforme à l'invention, plus complet que celui de la figure 5, est schématiquement représenté sur la figure 7.
Dans l'exemple de la figure 7 (comme d'ailleurs dans les exemples des figures 5 et 6) il s'agit d'un dispositif optique fonctionnant par réflexion.
Il convient toutefois de noter que l'invention pourrait être mise en œuvre avec un dispositif fonctionnant par transmission. Dans ce cas, on utiliserait un objet diffractant apte à transmettre et diffracter un faisceau laser incident.
Le dispositif de la figure 7 résulte de l'addition d'une lame séparatrice 20 au dispositif représenté sur la figure 5. Cette lame est placée . en regard du réseau de microlentilles 8.
On peut utiliser d'autres moyens de séparation comme par exemple un prisme.
La flèche F de la figure 7 représente le faisceau lumineux de lumière cohérente (faisceau laser) avec lequel on éclaire l'élément de phase 6.
Ce faisceau se propage suivant l'axe Y et traverse successivement la lame séparatrice 20, le réseau de microlentilles 8 et la lentille principale 16 pour interagir avec l'élément de phase 6.
La lumière diffractée par ce dernier est récupérée par la lentille principale 16 puis atteint le réseau de microlentilles 8.
La flèche FI représente la lumière issue du réseau de microlentilles après réflexion de cette lumière sur la lame séparatrice 20.
La lame séparatrice 20 permet de récupérer la lumière FI en la séparant du faisceau incident F.
La lame 20 peut être remplacée par un séparateur de polarisation. Des lames quart d'onde non représentées peuvent être ajoutées au dispositif de la figure 7 pour changer l'état de polarisation de l'onde entre F et FI.
La lame 20 doit alors être sensible aux deux états de polarisation orthogonaux de la lumière.
L'élément de phase utilisé dans les dispositifs des figures 5 à 7 peut comporter une structure micromécanique pour être reconfigurable.
Il est avantageusement obtenu grâce aux techniques d'usinage du silicium pour former un MOEMS.
Ce MOEMS peut être - activé grâce à toutes sortes d' actionneurs , par exemple les actionneurs à force électrostatique, les actionneurs magnétiques, les actionneurs thermiques ou les actionneurs hydrauliques. Un dispositif conforme à l'invention peut être utilisé pour former un projecteur d'images, par exemple un projecteur de logos. Dans ce cas on exploite préferentiellement l'un des ordres de diffraction du dispositif . Pour la mise en œuvre d'une diffraction en champ proche on peut munir le dispositif de la figure 5 ou le dispositif de la figure 6 d'une lentille de focalisation 22 (voir figure 7) que l'on place alors en aval du dispositif. Dans l'exemple de la figure 7 cette lentille 22 est disposée sur le trajet du faisceau FI en regard de la lame 20 et parallèlement à l'axe optique Y.
Pour mettre en œuvre une diffraction en champ proche, on peut aussi utiliser un réseau de microlentilles dont le pas et la longueur focale sont variables et calculés pour reconstituer un front d'onde convergent .
Au lieu de cela, on peut utiliser un éclateur de faisceau optimisé pour assurer une fonction analogue à celle d'un réseau de microlentilles à pas et focale variables.

Claims

REVENDICATIONS
1. Dispositif optique, apte à commander, en particulier à mettre en forme, un faisceau (F) de lumière cohérente, ce dispositif comprenant un objet diffractant (6) qui comporte un motif, ce dispositif étant caractérisé en ce qu'il comprend en outre des moyens optiques multiplicateurs (8, 18) qui sont aptes à donner de l'objet diffractant, lorsque cet objet est éclairé par le faisceau de lumière cohérente, une image (12) dans laquelle le motif de l'objet diffractant =est répété plusieurs fois.
2. Dispositif selon la revendication 1, dans lequel l'objet diffractant est un élément d'optique diffractive (6).
3. Dispositif selon la revendication 2, dans lequel cet élément d'optique diffractive (6) est reconfigurable .
4. Dispositif selon la revendication 3, dans lequel cet élément d'optique diffractive est un système micro-opto-électro-mécanique (6).
5. Dispositif selon la revendication -3, dans lequel cet élément d'optique diffractive (6) est formé dans un matériau semiconducteur.
6. Dispositif selon la revendication 3, dans lequel cet élément d'optique diffractive est une cellule à cristal liquide commandée électro- optiquement .
7. Dispositif selon l'une quelconque des revendications 1 à 6, dans lequel les moyens optiques multiplicateurs comprennent un réseau de microlentilles (8) dont le pas et la distance focale sont fixes.
8. Dispositif selon la revendication 7, comprenant en outre une lentille principale (16) placée entre l'objet diffractant (6) et le réseau de microlentilles (8) , à une distance de ce dernier égale à la somme de la distance focale de la lentille principale et de la distance focale des microlentilles.
9. Dispositif selon l'une quelconque des revendications 1 à 6, dans lequel les moyens optiques multiplicateurs comprennent un éclateur de faisceau (18) réalisé en optique diffractive.
10. Dispositif selon l'une quelconque des revendications 7 et 9, comprenant en outre une lentille (22) de focalisation de la lumière issue des moyens optiques multiplicateurs (8, 18) .
11. Dispositif selon l'une quelconque des revendications 1 à 6, dans lequel les moyens optiques multiplicateurs comprennent un réseau de microlentilles dont le pas et la distance focale sont variables et une lentille principale placée entre l'objet diffractant et le réseau de microlentilles, à une distance de ce dernier égale à la somme de la distance focale de ^la lentille principale et de la distance focale des microlentilles .
12. Dispositif selon l'une quelconque des revendications 1 à 6, dans lequel les moyens optiques multiplicateurs comprennent un éclateur de faisceau prévu pour fournir une image de diffraction en champ proche .
PCT/FR2000/002859 1999-10-14 2000-10-13 Dispositif optique de commande, en particulier de mise en forme, d'un faisceau de lumiere coherente WO2001027664A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9912821A FR2799844B1 (fr) 1999-10-14 1999-10-14 Dispositif optique de commande, en particulier de mise en forme, d'un faisceau de lumiere coherente
FR99/12821 1999-10-14

Publications (1)

Publication Number Publication Date
WO2001027664A1 true WO2001027664A1 (fr) 2001-04-19

Family

ID=9550926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002859 WO2001027664A1 (fr) 1999-10-14 2000-10-13 Dispositif optique de commande, en particulier de mise en forme, d'un faisceau de lumiere coherente

Country Status (2)

Country Link
FR (1) FR2799844B1 (fr)
WO (1) WO2001027664A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529887A (en) * 1967-02-20 1970-09-22 Texas Instruments Inc Multiple image system
US3743422A (en) * 1970-06-18 1973-07-03 Westinghouse Electric Corp Optical image processor
US4878735A (en) * 1988-01-15 1989-11-07 Lookingglass Technology, Inc. Optical imaging system using lenticular tone-plate elements
EP0798586A1 (fr) * 1996-03-27 1997-10-01 C.R.F. Società Consortile per Azioni Dispositifs avec micro-filtres pour sélection de couleurs et d'images
WO1999030200A1 (fr) * 1997-12-09 1999-06-17 Commonwealth Scientific And Industrial Research Organisation Dispositif de diffraction a effets tridimensionnels
WO1999038046A1 (fr) * 1998-01-23 1999-07-29 Burger Robert J Systemes de reseaux de lentilles de petite taille et procedes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69709709D1 (de) * 1996-03-15 2002-02-21 Retinal Display Cayman Ltd Verfahren und vorrichtung zur betrachtung eines bildes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529887A (en) * 1967-02-20 1970-09-22 Texas Instruments Inc Multiple image system
US3743422A (en) * 1970-06-18 1973-07-03 Westinghouse Electric Corp Optical image processor
US4878735A (en) * 1988-01-15 1989-11-07 Lookingglass Technology, Inc. Optical imaging system using lenticular tone-plate elements
EP0798586A1 (fr) * 1996-03-27 1997-10-01 C.R.F. Società Consortile per Azioni Dispositifs avec micro-filtres pour sélection de couleurs et d'images
WO1999030200A1 (fr) * 1997-12-09 1999-06-17 Commonwealth Scientific And Industrial Research Organisation Dispositif de diffraction a effets tridimensionnels
WO1999038046A1 (fr) * 1998-01-23 1999-07-29 Burger Robert J Systemes de reseaux de lentilles de petite taille et procedes

Also Published As

Publication number Publication date
FR2799844A1 (fr) 2001-04-20
FR2799844B1 (fr) 2001-12-28

Similar Documents

Publication Publication Date Title
EP2960715B1 (fr) Dispositif de projection d'une image
EP1500311B1 (fr) Dispositif et procede destines a produire et commander des pieges optiques pour la manipulation de petites particules
EP2112485A1 (fr) Procédé, réseau de phase et dispositif d'analyse de surface d'onde d'un faisceau de lumiére
FR2755530A1 (fr) Dispositif de visualisation et ecran plat de television utilisant ce dispositif
FR2632086A1 (fr) Appareil et procede d'affichage
FR2861183A1 (fr) Elements d'optique diffractive de type binaire pour une utilisation sur une large bande spectrale
FR2896583A1 (fr) Interferometre optique achromatique et compact, du type a decalage trilateral
EP3924757B1 (fr) Métasurfaces optiques, procédés et systèmes de fabrication associés
EP0028548A1 (fr) Système de correlation optique en temps réel
EP1061349A1 (fr) Interféromètre optique achromatique, du type à sensibilité continûment réglable
EP0102272A1 (fr) Procédé de focalisation des réseaux de diffraction sphériques holographiques travaillant par réflexion, objectifs dispersifs et spectromètres en faisant application
EP3602201B1 (fr) Dispositifs et methodes d'imagerie optique par holographie numerique hors axe
EP2502112B1 (fr) Dispositif et procede de faconnage d'impulsions laser
EP1043632A1 (fr) Dispositif d'holographie numérique
EP3149524B1 (fr) Systeme de recombinaison spatiale d'impulsions laser ultra-breves par un element diffractif
EP3855068A1 (fr) Dispositif de projection distribuée de lumière
WO2001027664A1 (fr) Dispositif optique de commande, en particulier de mise en forme, d'un faisceau de lumiere coherente
EP0708509A1 (fr) Dispositif d'émission mono-longueur d'onde
Dolfi et al. Optical architectures for programmable filtering and correlation of microwave signals
EP3938836B1 (fr) Dispositif séparateur de polarisation, interféromètre différentiel et microscope optique à contraste différentiel comprenant un tel dispositif
EP3657224B1 (fr) Dispositif de ligne à retard optique fixe ou variable
EP1550901A1 (fr) Dispositif d'égalisation de la puissance optique et système correspondant
FR3122929A1 (fr) Dispositif de projection d’une image dans l’œil dans utilisateur
WO2023126382A1 (fr) Dispositif de projection d'une image dans l'œil dans utilisateur
FR2528993A1 (fr) Dispositif d'eclairement d'un milieu electro-optique pour enregistrer des hologrammes en temps reel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase