WO2001027196A1 - Rubber composition, composite material, and process for producing composite material - Google Patents

Rubber composition, composite material, and process for producing composite material Download PDF

Info

Publication number
WO2001027196A1
WO2001027196A1 PCT/JP2000/007042 JP0007042W WO0127196A1 WO 2001027196 A1 WO2001027196 A1 WO 2001027196A1 JP 0007042 W JP0007042 W JP 0007042W WO 0127196 A1 WO0127196 A1 WO 0127196A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
metal
rubber composition
formula
equation
Prior art date
Application number
PCT/JP2000/007042
Other languages
French (fr)
Japanese (ja)
Inventor
Kunio Mori
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Publication of WO2001027196A1 publication Critical patent/WO2001027196A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers

Definitions

  • the present invention relates to a rubber composition having excellent adhesion to a metal material, a composite material of rubber and a metal material (adhesive body of rubber and a metal material), and a method for producing the composite neo.
  • the composite material of the present invention can be applied to a wide range of fields as, for example, seismic isolation rubber, vibration damping rubber, packing, diaphragm, rubber roll, belt, and automobile tire. Background art
  • the bonding technology between rubber and metal materials for example, the surface of metal materials such as ebony method, cyclized rubber method, phenolic resin method, halogenated rubber method, brass plating method, and electroless plating method Processing methods are known. However, none of these surface treatment methods was fully satisfactory.
  • the ebonite method is a method in which a rubber material is coated on a surface of a metal material, and a rubber compound is put on the sheet and heat-pressed.
  • the cyclized rubber method is a method in which a cyclized rubber solution is applied to the surface of a metal material, the solvent is dried, and then the rubber compound is pressed and vulcanized and bonded.
  • the phenol resin method is a method in which a resol-type phenol resin solution is applied to the surface of a metal material, the solvent is dried, and a rubber compound is pressed and bonded by vulcanization.
  • the halogenated rubber method is a method of applying a chlorinated rubber solution or a mixed solution of chlorinated rubber and isocyanate to the surface of a metal material, drying the solvent, and pressing and bonding the rubber compound by vulcanization.
  • the brass plating method is a method in which a brass plating treatment is performed on the surface of a metal material, and an unvulcanized rubber compound containing an organic acid cobalt or sulfur is vulcanized and bonded. This brass plating method is applied to the bonding between steel cord and rubber in a steel radial tire, but there is a problem in the hot water resistance of the obtained composite material.
  • the electroless plating method is a method in which an electroless palladium-phosphorus alloy plating or an electroless nickel-copper-phosphorus alloy plating is applied to the surface of a metal material, and a rubber compound is pressed and vulcanized to the plating-treated surface.
  • a method is known in which a zinc plating treatment is performed on the surface of a metal material, and a rubber compound containing cobalt naphthenate as an adhesion promoter is vulcanized and bonded.
  • this method has a problem in that thermal decomposition of rubber is promoted by cobalt.
  • the nickel plating method has excellent heat resistance and water resistance, has little rubber deterioration, and can be effectively vulcanized and bonded when combined with a rubber vulcanization method using triazine thiols.
  • these various plating methods have a problem that the plating process must be performed on the surface of the metal material, which is troublesome. Moreover, the plating process is mainly applied to metal materials made of iron, copper, brass, etc. There was a problem of being squeezed. For example, according to the nickel plating method, a composite material having excellent adhesiveness and physical properties can be obtained, but it is difficult to perform nickel plating on a metal material made of aluminum magnesium. Therefore, it is difficult to apply it. Disclosure of the invention
  • An object of the present invention is to provide a composite material having excellent adhesiveness at an interface with a metal material by a direct cross-linking (vulcanization) bonding method without applying a surface treatment such as an adhesive application and a plating process to the metal material. It is to provide a rubber composition which can be used.
  • Another object of the present invention is to provide an excellent adhesive property at the interface between rubber and a metal material by a direct cross-linking (vulcanization) bonding method without subjecting the metal material to surface treatment such as application of an adhesive and plating.
  • An object of the present invention is to provide a composite material and a method for producing the same.
  • the present inventor has made intensive studies to overcome the problems of the prior art, and as a result, came to a rubber composition in which a crosslinking agent and a specific organic nickel salt are mixed with rubber.
  • a rubber composition in which a crosslinking agent and a specific organic nickel salt are mixed with rubber.
  • peel strength bonding strength
  • Wood can be given.
  • the present inventor has presumed that when the rubber composition and the metal material are heated under contact, nickel plating due to the organic nickel salt is generated at the interface, whereby strong adhesiveness can be obtained. I have.
  • the present invention is not limited by the bonding mechanism or the bonding theory of the characteristics.
  • the rubber composition of the present invention can be used for aluminum or nickel which is difficult to nickel-plate. It can be directly cross-linked and adhered to a metal material composed of magnesium or an alloy containing these. The rubber composition of the present invention can directly cross-link and adhere to a metal having a greater ionization tendency than nickel or a metal material comprising an alloy containing the metal. The present invention has been completed based on these findings.
  • a rubber According to the present invention, a rubber, a crosslinking agent, and
  • R 2 are each independently a hydrogen atom, a saturated or unsaturated aliphatic hydrocarbon group having 1 to 24 carbon atoms, an aromatic hydrocarbon group, An alkyl-substituted aromatic hydrocarbon group or an alicyclic hydrocarbon group.
  • the present invention provides a rubber composition containing at least one organic nickel salt selected from the group consisting of compounds represented by the following formula:
  • a composite material obtained by directly cross-linking and bonding a rubber composition containing the organic nickel salt and a metal material having an ionization tendency greater than nickel or an alloy containing the metal.
  • the rubber composition containing the organic nickel salt and a metal material having a higher ionization tendency than nickel or a metal material made of an alloy containing the metal are heated in contact with each other.
  • a method for producing a composite material which is directly crosslinked and adhered is provided.
  • Examples of the rubber used in the present invention include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber, acrylonitrile-butadiene rubber (NBR), and styrene.
  • NR natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • SBR styrene-butadiene rubber
  • NBR acrylonitrile-butadiene rubber
  • EPR ethylene-propylene rubber
  • EPDM ethylene-propylene-gen rubber
  • acrylic rubber
  • cross-linking agent one suitable for the type of each rubber and the performance of the composite (adhesive) can be used.
  • specific examples of crosslinking agents include sulfur, triazine thiols, resin crosslinking agents, polyol crosslinking agents, peroxides, and combinations (mixtures) of two or more of these.
  • Can be The cross-linking agent content can be appropriately determined according to the type of rubber and the performance of the composite material, but in most cases, 0.1 to 5 parts by weight of rubber, which is generally used, is used in 100 parts by weight of rubber. Preferred results can be obtained within the range.
  • a crosslinking accelerator, a crosslinking aid, and the like can be added as necessary, in addition to the crosslinking agent.
  • sulfenamide-based crosslinking accelerators, thiuram-based crosslinking accelerators, thiazole-based crosslinking accelerators, amine-based crosslinking accelerators, polyfunctional monomers, etc. adjust the rubber crosslinking rate and use metal materials. It is effective in increasing the adhesive strength between and.
  • the content of the crosslinking accelerator and the crosslinking aid can be appropriately determined according to the type of the rubber and the performance of the composite material. In many cases, the content is 0.1 to 10 parts by weight based on 100 parts by weight of the rubber. Good results can be obtained in the range of parts by weight.
  • Metal activators such as Zn ⁇ , MgO, Ca ⁇ , and Ca (OH) 2 are used to adjust the vulcanization rate of rubber, improve the properties of vulcanized rubber, and improve adhesive strength.
  • the metal activators can be used alone or as a mixture of two or more.
  • the content of the metal activator can be appropriately determined according to the type of the rubber and the performance of the composite material. In many cases, the content is preferably in the range of 1 to 20 parts by weight relative to 100 parts by weight of the rubber. The result can be obtained.
  • a rubber is combined with a specific organic nickel salt in order to exhibit adhesiveness to a metal material and obtain a composite material of rubber and metal having good adhesive strength.
  • a nickel-plated metal material and a rubber compound containing triazine thiols by heating a nickel-plated metal material and a rubber compound containing triazine thiols by contact heating, the metal material composed of various metals and various rubbers are vulcanized and bonded without using an adhesive. can do.
  • this nickel plating method needs to apply nickel plating to a metal material, and in addition to a metal material made of aluminum or magnesium, which has a high ionization tendency, in particular. It was difficult to apply them, and it was a problem to be solved.
  • a rubber composition comprising a rubber and a cross-linking agent and an organic nickel salt
  • the rubber composition does not require an adhesive and a plating treatment, and thus can be treated with a rubber.
  • a composite material in which the metal material is firmly bonded can be obtained.
  • the organic nickel salt in the rubber composition and the metal on the surface of the metal material are replaced, nickel plating occurs, and the rubber and the metal material are strongly bonded through the nickel plating. Presumed.
  • the rubber contains at least one organic nickel salt selected from the group consisting of compounds represented by the following formulas (I), (II), (III), (IV) and (V). Let it.
  • R 2 each independently represent a hydrogen atom, a saturated or unsaturated aliphatic hydrocarbon group having 1 to 24 carbon atoms, an aromatic hydrocarbon group, an alkyl group, It is a group-substituted aromatic hydrocarbon group or alicyclic hydrocarbon group.
  • these compounds are organic nickel salts, in formulas (I) to (III), and and R 2 are not both hydrogen atoms.
  • R 1 and R 2 may be linear, but the branched one is more excellent in the expression of adhesive strength.
  • organic nickel salts those represented by the formulas (I) and (II) are particularly preferred.
  • organic nickel salt of the formula (I) include (iso—C 7 H 15 COO) 2 Ni.
  • organic nickel salt of the formula (II) include the following formula (Ila)
  • organic nickel salt of the formula (III) include the following formula (Ilia)
  • organic nickel salt of the formula (IV) include the following formula (IVa)
  • organic nickel salt of the formula (V) include the following formula (Va)
  • an organic nickel salt may be generated in situ, in addition to a method of adding the already synthesized organic nickel salt to the rubber.
  • an organic nickel salt is generated. Therefore, an embodiment in which an inorganic nickel compound or the like and an organic acid are added in combination also falls within the scope of the present invention.
  • the content of the organic nickel salt cannot be unambiguously determined as the nickel content because it is related to the molecular weight and the diffusivity of the molecule, but usually 0.1 to 15 parts by weight with respect to 100 parts by weight of rubber. It is preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight.
  • Each of the organic nickel salts can be used alone, but if desired, two or more can be used in combination. Use a combination of two or more organic nickel salts. Thus, a more favorable result can be obtained in terms of the balance between the adhesiveness and the crosslinkability.
  • the rubber composition of the present invention includes reinforcing agents, fillers, stabilizers, lubricants, softeners, crosslinking regulators, vulcanization retarders, processing aids, processing oils, and the like, which are generally used in the rubber technical field. Can be contained.
  • the reinforcing agent include various grades of carbon black such as HAF and ISA, and silica.
  • the filler include calcium carbonate, c these various additives and the like talc, are used in amounts required in accordance with the respective purposes.
  • the rubber composition of the present invention can be prepared by melt-kneading a rubber, a crosslinking agent, an organic nickel salt, and if necessary, other additives. To suppress premature cross-linking, it is preferable to melt-knead rubber and a reinforcing agent, and then mix and knead a bridging agent, a cross-linking accelerator, and an organic nickel salt. After kneading, the rubber composition can be shaped into a desired shape.
  • a metal material having a higher ionization tendency than nickel is preferably used.
  • the ionization tendency means the tendency of a metal to become a cation when it comes into contact with a liquid, particularly water, and can be quantitatively evaluated by the standard electrode potential of the metal.
  • the order of metal elements in which the ionization tendency with respect to water is arranged in the order of the size is called the ionization sequence, which is arranged in the order of Mg, Al, Zn, Cr, Fe (II), Ni, and the like.
  • a metal material composed of a metal having a higher ionization tendency than nickel or an alloy containing the metal is used.
  • Preferred materials include, for example, iron, chromium, brass (copper-zinc alloy), zinc, aluminum, aluminum alloy, and magnesium.
  • the metal material can have a desired shape such as a plate shape, a linear shape, a roll shape, and a net shape.
  • the metal material can be subjected to a pretreatment such as degreasing, washing with water, phosphate treatment, monochromic phosphate treatment, and chromate rinse.
  • a pretreatment such as degreasing, washing with water, phosphate treatment, monochromic phosphate treatment, and chromate rinse.
  • plating treatment of a metal material is not required, plating treatment may be performed if desired.
  • the rubber composition and the metal material may be cross-linked by heating under contact.
  • a rubber composition formed into a desired shape such as a sheet and a metal material are brought into contact with each other and heated and pressed, crosslinking and bonding occur simultaneously.
  • the specific method of direct cross-linking can be appropriately selected according to the shape of the metal material, the viscosity of the rubber composition, the type of the intended composite material, and the like.
  • the heating temperature and the heating time can also be appropriately set according to the type of the rubber, the type of the crosslinking agent, and the like.
  • a heating time of about 140 to 200 ° C and a heating time of about 5 to 60 minutes are sufficient.
  • a composite material having a high adhesive strength can be obtained.
  • Composite materials of rubber and metal materials include seismic isolation rubber, vibration damping rubber, vibration isolating rubber, packing, diaphragms, gaskets, large rubber rolls, rubber rolls for copiers, conveyor belts, reinforcing belts, and freeway escalators.
  • Examples include handrails, car tires, metal fiber reinforced hoses, etc., and can be used in many fields such as electrical products, electronic products, computer products, automotive 'bus' trucks and airplane parts.
  • t-butylbenzothiazylsulfenamide (BBS) was added as a vulcanization accelerator in the proportions shown in Table 1 when preparing an adhesive rubber sheet using a small experimental roll. Then, an adhesive rubber sheet was produced in the same manner as in the examples. Next, the aluminum sheet and the rubber sheet were bonded together, put into a mold, and heated and pressed at 160 ° C. for 10 minutes to directly crosslink and bond. Table 1 shows the results.
  • Table 1 shows the dibenzothiazyl disulfide (MBTS) used as a vulcanization accelerator when preparing rubber sheets for bonding using small rolls for experiments.
  • MBTS dibenzothiazyl disulfide
  • Example 2 The same procedure as in Example 2 was carried out except that no nickel salt was added and that the heating and pressing time was changed to 30 minutes when producing the rubber sheet for bonding. Table 1 shows the results.
  • Example 3 The same procedure as in Example 3 was carried out except that no nickel salt was added and that the heating and pressing time was changed to 30 minutes when producing the rubber sheet for bonding. Table 1 shows the results.
  • BVS t-butylbenzothiazylsulfenamide
  • MBTS dibenzothiazyldisulfide
  • An SBRZNR blended rubber masterbatch was prepared in the same manner as in Example 1. Next, using a small experimental roll, 4.0 parts of sulfur and the following nickel salt (Ila)
  • Nickel salt (Ila) is replaced with the following nickel salt (Ilia)
  • Nickel salt (Ila) is replaced with the following nickel salt (IVa)
  • Example 73 The same operation as in Example 4 was performed, except that CH 3 COCH— (CH 3 ) CO—Ni—OC (CH 3 ) —CHCOCH 3 (IVa) was used instead. Table 2 shows the results. [Example 73
  • Nickel salt (Ila) is replaced with the following nickel salt (Va)
  • Example 4 The same operation as in Example 4 was performed except that no nickel salt (Ila) was used. Table 2 shows the results.
  • a commercially available aluminum plate (30 ⁇ 50 ⁇ 1 mm) obtained by cutting a pure aluminum plate was degreased with acetone and then dried.
  • Table 3 shows the results.
  • NBR acrylonitrile butadiene rubber
  • EPDM ethylene-propylene-gen rubber
  • triazine trithiol 1.5 parts of 2 5-dimethyl Chiruji t- to Buchiruperuokishi relaxin 5 parts, and nickel salts [(iso _ C 7 H 15 C_ ⁇ _ ⁇ ) 2 N i] 4 parts EPDM rubber masterbatch
  • To prepare an adhesive rubber sheet (thickness 2.2 mm). Thereafter, a composite material was produced in the same manner as in Example 8. Table 3 shows the results.
  • Example 8 The same procedure as in Example 8 was carried out except that no nickel salt was added when producing the rubber sheet for bonding. Table 3 shows the results.
  • Example 9 The same procedure as in Example 9 was carried out except that no nickel salt was added when producing the rubber sheet for bonding. Table 3 shows the results.
  • each formulation shown in Comparative Examples 5 to 7 in Table 3 is a formulation that adheres to the nickel plating treated surface in the nickel plating method. However, as can be seen in Comparative Examples 5-7, these formulations did not Does not adhere at all. On the other hand, in each of the formulations of Examples 8 to 10, since the nickel salt is contained, it can be seen that the aluminum plate and various rubber sheets can be directly cross-linked and adhered.
  • Example 2 In the same manner as in Example 2, an SBRZNR blended rubber master batch and an adhesive rubber sheet were prepared.
  • a soft iron plate (30 ⁇ 50 ⁇ I mm) obtained by degreasing with acetone and then drying was used.
  • Table 4 shows the results.
  • Example 11 was repeated except that the soft iron plate was replaced by a brass plate (30 X 5 O X l mm) which was degreased with acetone and dried. Table 4 shows the results.
  • Example 11 was repeated except that the soft iron plate was replaced with a magnesium plate (30 X 5 O X l mm) which was degreased with acetone and dried. Table 4 shows the results.
  • the vulcanizing agent and (iso _ C 7 H 15 COO ) 2 N if i and was used Gomushi one you want to coexist (Example 1 1-1 3), iron, brass plate, and good in magnetic Shiumu plate It shows excellent adhesiveness. On the other hand, when a rubber sheet containing no nickel salt is used (Comparative Examples 8 to 10), no adhesion is made to these metal plates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

A rubber composition comprising a rubber, a crosslinking agent, and a specific organonickel salt; a composite material obtained by directly bonding the rubber composition to a metallic material comprising either a metal having higher ionization tendency than nickel or an alloy of the metal while crosslinking the composition; and a process for producing a composite material which comprises heating the rubber composition kept in contact with a metallic material comprising either a metal having higher ionization tendency than nickel or an alloy of the metal to thereby directly bond the composition to the metallic material and crosslink the composition. Thus, a composite material excellent in interfacial adhesion to the metallic material can be obtained by the direct crosslinking/bonding method without the need of subjecting the metallic material to a surface treatment such as coating with an adhesive or plating.

Description

明細書 ゴム組成物、 複合材、 及び複合材の製造方法 技術分野  Description Rubber composition, composite material, and method for producing composite material
本発明は、 金属材料との接着性に優れたゴム組成物、 ゴムと金属材料 との複合材 (ゴムと金属材料との接着体) 、 及び該複合ネオの製造方法に 関する。 本発明の複合材は、 例えば、 免震ゴム、 制振ゴム、 パッキング, ダイヤフラム、 ゴムロール、 ベルト、 自動車タイヤなどとして、 広範な 分野に適用することができる。 背景技術  The present invention relates to a rubber composition having excellent adhesion to a metal material, a composite material of rubber and a metal material (adhesive body of rubber and a metal material), and a method for producing the composite neo. The composite material of the present invention can be applied to a wide range of fields as, for example, seismic isolation rubber, vibration damping rubber, packing, diaphragm, rubber roll, belt, and automobile tire. Background art
各種ゴムは、 多くの場合、 金属材料、 繊維、 無機化合物、 プラスチッ クなどとの複合材として使用されている。 特に、 ゴムと金属材料とを接 着した複合材は、 例えば、 免震ゴム、 自動車タイヤ、 ベルト、 ゴム口一 ルなどの各種製品または部品として、 電気 ·電子機器、 自動車,航空機, 医療機器、 その他工業材料などの広範な分野で使用されている。 従来か ら、 ゴムと金属材料との複合材について、 性能の向上と機能化の観点か ら、 両者間の接着性の改良が図られてきている。  Various rubbers are often used as composites with metallic materials, fibers, inorganic compounds, and plastics. In particular, composite materials obtained by bonding rubber and metal materials are used in various products or parts such as seismic isolation rubber, automobile tires, belts, rubber mouths, etc., for electrical and electronic equipment, automobiles, aircraft, medical equipment, It is used in a wide range of other fields such as industrial materials. Conventionally, with respect to composites of rubber and metal materials, improvements in adhesion between the two have been attempted from the viewpoint of improving performance and functionalization.
従来、 ゴムと金属材料との接着技術として、 例えば、 エボナイ ト法、 環化ゴム法、 フエノール樹脂法、 ハロゲン化ゴム法、 黄銅 (真ちゆう) メツキ法、 無電解メツキ法など金属材料の表面処理法が知られている。 しかしながら、 これらの表面処理法は、 いずれも十分に満足できるもの ではなかった。  Conventionally, as the bonding technology between rubber and metal materials, for example, the surface of metal materials such as ebony method, cyclized rubber method, phenolic resin method, halogenated rubber method, brass plating method, and electroless plating method Processing methods are known. However, none of these surface treatment methods was fully satisfactory.
エボナイ ト法は、 金属材料の表面にエボナイ ト配合ゴムシートを被 覆し、 その上にゴム配合物を合わせて加熱圧着する方法であるが、 耐熱 性、 耐衝撃性に劣るという問題がある。 環化ゴム法は、 環化ゴム溶液を金属材料の表面に塗布し、 溶剤を乾燥 した後、 ゴム配合物を圧着して加硫接着する方法である。 フエノール樹 脂法は、 レゾール型フエノール樹脂溶液を金属材料の表面に塗布し、 溶 剤を乾燥した後、 ゴム配合物を圧着して加硫接着する方法である。 ハロ ゲン化ゴム法は、 塩化ゴム溶液、 または塩化ゴムとイソシァネートとの 混合溶液を金属材料の表面に塗布し、 溶剤を乾燥した後、 ゴム配合物を 圧着して加硫接着する方法である。 The ebonite method is a method in which a rubber material is coated on a surface of a metal material, and a rubber compound is put on the sheet and heat-pressed. However, there is a problem that heat resistance and impact resistance are poor. The cyclized rubber method is a method in which a cyclized rubber solution is applied to the surface of a metal material, the solvent is dried, and then the rubber compound is pressed and vulcanized and bonded. The phenol resin method is a method in which a resol-type phenol resin solution is applied to the surface of a metal material, the solvent is dried, and a rubber compound is pressed and bonded by vulcanization. The halogenated rubber method is a method of applying a chlorinated rubber solution or a mixed solution of chlorinated rubber and isocyanate to the surface of a metal material, drying the solvent, and pressing and bonding the rubber compound by vulcanization.
このような環化ゴム法または接着剤法によれば、 多種類のゴムと多 種類の金属材料とを一定水準の接着力で接着させることができるが、 溶 剤の使用に伴う環境汚染問題に加えて、 生産性が低いという問題がある。 黄銅メツキ法は、 金属材料の表面に黄銅メツキ処理を行い、 有機酸コ バル卜や硫黄を配合した未加硫ゴム配合物を加硫接着させる方法である。 この黄銅メツキ法は、 スチールラジアルタイヤにおけるスチールコ一ド とゴムとの接着に適用されているが、 得られる複合材の耐熱水性に問題 がある。  According to such a cyclized rubber method or an adhesive method, various types of rubber and various types of metal materials can be adhered with a certain level of adhesive strength. In addition, there is a problem of low productivity. The brass plating method is a method in which a brass plating treatment is performed on the surface of a metal material, and an unvulcanized rubber compound containing an organic acid cobalt or sulfur is vulcanized and bonded. This brass plating method is applied to the bonding between steel cord and rubber in a steel radial tire, but there is a problem in the hot water resistance of the obtained composite material.
無電解メツキ法は、 金属材料の表面に無電解パラジウム一リン合金 メツキや無電解ニッケル—銅一リン合金メツキを施し、 メツキ処理面に ゴム配合物を圧着して加硫接着する方法である。  The electroless plating method is a method in which an electroless palladium-phosphorus alloy plating or an electroless nickel-copper-phosphorus alloy plating is applied to the surface of a metal material, and a rubber compound is pressed and vulcanized to the plating-treated surface.
また、 メツキ法として、 金属材料の表面に亜鉛メツキ処理を行い、 接着促進剤としてナフテン酸コバルトを配合したゴム配合物を加硫接着 する方法が知られている。 しかし、 この方法は、 コバルトによるゴムの 熱分解促進という問題がある。 ニッケルメツキ法は、 耐熱性、 耐水性に 優れ、 ゴムの劣化が少なく、 トリアジンチオール類によるゴム加硫法と 組み合わせると、 加硫接着を効果的に行うことができる。  Further, as a plating method, a method is known in which a zinc plating treatment is performed on the surface of a metal material, and a rubber compound containing cobalt naphthenate as an adhesion promoter is vulcanized and bonded. However, this method has a problem in that thermal decomposition of rubber is promoted by cobalt. The nickel plating method has excellent heat resistance and water resistance, has little rubber deterioration, and can be effectively vulcanized and bonded when combined with a rubber vulcanization method using triazine thiols.
さらに、 これらの各種メツキ法は、 金属材料の表面にメツキ処理をし なければならないので、 手間がかかるという問題がある。 しかも、 メッ キ処理は、 主として、 鉄、 銅、 黄銅などからなる金属材料に適用対象が 絞られるという問題があった。 例えば、 ニッケルメツキ法によれば、 優 れた接着性と物性とを有する複合材を得ることができるものの、 アルミ 二ゥムゃマグネシウムからなる金属材料に対しては、 ニッケルメツキを 行うことが困難であるため、 適用対象とすることが難しい。 発明の開示 Furthermore, these various plating methods have a problem that the plating process must be performed on the surface of the metal material, which is troublesome. Moreover, the plating process is mainly applied to metal materials made of iron, copper, brass, etc. There was a problem of being squeezed. For example, according to the nickel plating method, a composite material having excellent adhesiveness and physical properties can be obtained, but it is difficult to perform nickel plating on a metal material made of aluminum magnesium. Therefore, it is difficult to apply it. Disclosure of the invention
本発明の目的は、 金属材料に接着剤塗布ゃメツキ処理など表面処理を 施すことなく、 直接架橋 (加硫) 接着法により、 金属材料との界面での 接着性に優れた複合材を与えることができるゴム組成物を提供すること にある。  An object of the present invention is to provide a composite material having excellent adhesiveness at an interface with a metal material by a direct cross-linking (vulcanization) bonding method without applying a surface treatment such as an adhesive application and a plating process to the metal material. It is to provide a rubber composition which can be used.
本発明の他の目的は、 金属材料に接着剤塗布ゃメツキ処理など表面処 理を施すことなく、 直接架橋 (加硫) 接着法により、 ゴムと金属材料と の界面での接着性に優れた複合材、 及びその製造方法を提供することに ある。  Another object of the present invention is to provide an excellent adhesive property at the interface between rubber and a metal material by a direct cross-linking (vulcanization) bonding method without subjecting the metal material to surface treatment such as application of an adhesive and plating. An object of the present invention is to provide a composite material and a method for producing the same.
本発明者は、 前記従来技術の問題点を克服するために鋭意研究した結 果、 ゴムに架橋剤と特定の有機ニッケル塩とを配合したゴム組成物に想 到した。 本発明のゴム組成物は、 金属材料と接触下に加熱することによ り、 ゴムの架橋と同時にゴムと金属材料との接着が起こり、 界面での接 着強度 (剥離強度) に優れた複合材を与えることができる。 本発明者は、 該ゴム組成物と金属材料とを接触下に加熱すると、 その界面で有機ニッ ケル塩によるニッケルメツキが生成し、 それによつて、 強固な接着性が 得られるものと推定している。 ただし、 本発明は、 特性の接着機構や接 着理論によって限定されるものではない。  The present inventor has made intensive studies to overcome the problems of the prior art, and as a result, came to a rubber composition in which a crosslinking agent and a specific organic nickel salt are mixed with rubber. By heating the rubber composition of the present invention in contact with a metal material, the rubber and the metal material are simultaneously bonded at the same time as the rubber is crosslinked, and a composite material having excellent bonding strength (peel strength) at the interface is obtained. Wood can be given. The present inventor has presumed that when the rubber composition and the metal material are heated under contact, nickel plating due to the organic nickel salt is generated at the interface, whereby strong adhesiveness can be obtained. I have. However, the present invention is not limited by the bonding mechanism or the bonding theory of the characteristics.
本発明によれば、 ニッケルメツキ法により、 ニッケルメツキした金属 材料とトリアジンチォ一ル類を含有するゴム配合物との架橋接着を行つ ていたのを、 ニッケルメツキ処理なしに達成することができる。 しかも、 本発明のゴム組成物は、 ニッケルメツキが困難であったアルミニウムや マグネシウムまたはこれらを含有する合金からなる金属材料と直接架橋 接着させることができる。 本発明のゴム組成物は、 ニッケルよりもィォ ン化傾向が大きい金属または該金属を含有する合金からなる金属材料と を直接架橋接着させることができる。 本発明は、 これらの知見に基づい て完成するに至ったものである。 According to the present invention, it is possible to achieve the cross-linking adhesion between a nickel-plated metal material and a rubber compound containing triazinediols by a nickel plating method without a nickel plating process. . In addition, the rubber composition of the present invention can be used for aluminum or nickel which is difficult to nickel-plate. It can be directly cross-linked and adhered to a metal material composed of magnesium or an alloy containing these. The rubber composition of the present invention can directly cross-link and adhere to a metal having a greater ionization tendency than nickel or a metal material comprising an alloy containing the metal. The present invention has been completed based on these findings.
本発明によれば、 ゴム、 架橋剤、 並びに  According to the present invention, a rubber, a crosslinking agent, and
(1) 式(I)  (1) Equation (I)
R! C O O -N i 一〇C〇R 2 (1)、 R! COO -N i 1〇C〇R 2 (1),
(2) 式(II)  (2) Equation (II)
R! O - N i - O R 2 (II) ,  R! O-N i-O R 2 (II),
(3) 式(III) (3) Formula (III)
i S 03 N i - O S O 9 R (III) 、 i S 0 3 N i-OSO 9 R (III),
(4) 式(IV) (4) Equation (IV)
Figure imgf000006_0001
及び
Figure imgf000006_0001
as well as
(5) 式(V)  Equation (5)
Figure imgf000006_0002
Figure imgf000006_0002
(各式中、 及び R 2 は、 それぞれ独立に、 水素原子、 炭素原子数 1〜 2 4の飽和または不飽和の脂肪族炭化水素基、 芳香族炭化水素基、 アルキル基置換芳香族炭化水素基、 または脂環族炭化水素基である。 ) で表される化合物からなる群より選ばれる少なくとも一種の有機ニッケ ル塩を含有するゴム組成物が提供される。 (In each formula, and R 2 are each independently a hydrogen atom, a saturated or unsaturated aliphatic hydrocarbon group having 1 to 24 carbon atoms, an aromatic hydrocarbon group, An alkyl-substituted aromatic hydrocarbon group or an alicyclic hydrocarbon group. The present invention provides a rubber composition containing at least one organic nickel salt selected from the group consisting of compounds represented by the following formula:
また、 本発明によれば、 前記有機ニッケル塩を含有するゴム組成物と. ニッケルよりもイオン化傾向が大きい金属または該金属を含有する合金 からなる金属材料とを直接架橋接着してなる複合材が提供される。 さら に、 本発明によれば、 前記有機ニッケル塩を含有するゴム組成物と、 二 ッケルよりもイオン化傾向が大きい金属または該金属を含有する合金か らなる金属材料とを接触下に加熱して、 直接架橋接着させる複合材の製 造方法が提供される。 発明を実施するための最良の形態  Further, according to the present invention, there is provided a composite material obtained by directly cross-linking and bonding a rubber composition containing the organic nickel salt and a metal material having an ionization tendency greater than nickel or an alloy containing the metal. Provided. Further, according to the present invention, the rubber composition containing the organic nickel salt and a metal material having a higher ionization tendency than nickel or a metal material made of an alloy containing the metal are heated in contact with each other. A method for producing a composite material which is directly crosslinked and adhered is provided. BEST MODE FOR CARRYING OUT THE INVENTION
本発明で使用するゴムとしては、 例えば、 天然ゴム (N R ) 、 イソプ レンゴム ( I R ) 、 ブタジエンゴム (B R ) 、 スチレン一ブタジエンゴ ム (S B R ) 、 クロロプレンゴム、 アクリロニトリル一ブタジエンゴム ( N B R ) 、 スチレン—イソプレンゴム、 ブタジエン一イソプレンゴム、 ブチルゴム、 ハロゲン化ブチルゴム、 エチレン一プロピレンゴム (E P R ) 、 エチレン一プロピレン一ジェンゴム (E P D M ) 、 アクリルゴム、 エチレン一アクリルゴム、 ェピクロルヒドリンゴム、 シリコーンゴム、 フッ素ゴム、 ウレタンゴムなどを挙げることができる。 これらのゴムは、 変性若しくは修飾を受けたものであってもよい。 また、 これらのゴムは、 それぞれ単独で、 あるいは 2種以上をプレンドして使用することができ る。  Examples of the rubber used in the present invention include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber, acrylonitrile-butadiene rubber (NBR), and styrene. Isoprene rubber, butadiene-isoprene rubber, butyl rubber, halogenated butyl rubber, ethylene-propylene rubber (EPR), ethylene-propylene-gen rubber (EPDM), acrylic rubber, ethylene-acrylic rubber, epichlorohydrin rubber, silicone rubber, fluorine rubber And urethane rubber. These rubbers may be modified or modified. These rubbers can be used alone or as a blend of two or more.
架橋剤 (加硫剤) としては、 それぞれのゴムの種類や複合材 (接着 体) の性能に適したものを使用することができる。 架橋剤の具体例とし ては、 硫黄、 トリアジンチオール類、 樹脂架橋剤、 ポリオール架橋剤、 ペルォキシド類、 これらの 2種以上の組み合わせ (混合物) などを挙げ ることができる。 架橋剤含有量は、 ゴムの種類や複合材の性能に応じて 適宜定めることができるが、 多くの場合、 ゴム 1 0 0重量部に対して、 一般に使用される 0 . 1〜 5重量部の範囲で好ましい結果を得ることが できる。 As the cross-linking agent (vulcanizing agent), one suitable for the type of each rubber and the performance of the composite (adhesive) can be used. Specific examples of crosslinking agents include sulfur, triazine thiols, resin crosslinking agents, polyol crosslinking agents, peroxides, and combinations (mixtures) of two or more of these. Can be The cross-linking agent content can be appropriately determined according to the type of rubber and the performance of the composite material, but in most cases, 0.1 to 5 parts by weight of rubber, which is generally used, is used in 100 parts by weight of rubber. Preferred results can be obtained within the range.
ゴムの架橋には、 架橋剤に加えて、 必要に応じて架橋促進剤や架橋助 剤などを加えることができる。 例えば、 スルフェンアミド系架橋促進剤、 チウラム系架橋促進剤、 チアゾ一ル系架橋促進剤、 アミン系架橋促進剤、 多官能性モノマ一などは、 ゴムの架橋速度を調整し、 かつ、 金属材料と の接着強度を高める上で有効である。 架橋促進剤や架橋助剤の含有量は、 ゴムの種類や複合材の性能に応じて適宜定めることができるが、 多くの 場合、 ゴム 1 0 0重量部に対して、 0 . 1〜 1 0重量部の範囲で良好な 結果を得ることができる。  For crosslinking of rubber, a crosslinking accelerator, a crosslinking aid, and the like can be added as necessary, in addition to the crosslinking agent. For example, sulfenamide-based crosslinking accelerators, thiuram-based crosslinking accelerators, thiazole-based crosslinking accelerators, amine-based crosslinking accelerators, polyfunctional monomers, etc., adjust the rubber crosslinking rate and use metal materials. It is effective in increasing the adhesive strength between and. The content of the crosslinking accelerator and the crosslinking aid can be appropriately determined according to the type of the rubber and the performance of the composite material. In many cases, the content is 0.1 to 10 parts by weight based on 100 parts by weight of the rubber. Good results can be obtained in the range of parts by weight.
Z n〇、 M g O、 C a〇、 C a ( O H ) 2 等の金属活性剤は、 ゴム の加硫速度の調整、 加硫ゴムの特性の向上、 接着強度の向上などを行う 上で好ましい。 金属活性剤は、 それぞれ単独で、 あるいは 2種以上の混 合物として使用することができる。 金属活性剤の含有量は、 ゴムの種類 や複合材の性能に応じて適宜定めることができるが、 多くの場合、 ゴム 1 0 0重量部に対して、 1〜 2 0重量部の範囲で好ましい結果を得るこ とができる。 Metal activators such as Zn〇, MgO, Ca〇, and Ca (OH) 2 are used to adjust the vulcanization rate of rubber, improve the properties of vulcanized rubber, and improve adhesive strength. preferable. The metal activators can be used alone or as a mixture of two or more. The content of the metal activator can be appropriately determined according to the type of the rubber and the performance of the composite material. In many cases, the content is preferably in the range of 1 to 20 parts by weight relative to 100 parts by weight of the rubber. The result can be obtained.
本発明では、 金属材料との接着性を発現し、 良好な接着強度を有する ゴムと金属との複合材を得るために、 ゴムに特定の有機ニッケル塩を配 合する。 前記したように、 ニッケルメツキした金属材料とトリアジンチ オール類を含むゴム配合物とを接触加熱することにより、 多種の金属か らなる金属材料と多種のゴムとを接着剤を使用しないで加硫接着するこ とができる。 しかしながら、 このニッケルメツキ法は、 ニッケルメツキ を金属材料に施す必要があることに加えて、 特にイオン化傾向の大きな アルミニウムやマグネシウムからなる金属材料に対してはニッケルメッ キを施すことが困難であり、 解決すべき課題であった。 しかしながら、 ゴムに架橋剤と有機ニッケル塩とを配合したゴム組成物は、 ニッケルよ りイオン化傾向の大きな金属を含む金属材料と接触加熱すると、 接着剤 及びメツキ処理を必要とすることなく、 ゴムと金属材料とが強固に接着 した複合材を得ることができる。 架橋接着過程で、 ゴム組成物中の有機 ニッケル塩と金属材料の表面の金属とが置換してニッケルメツキが起こ り、 ニッケルメツキを介してゴムと金属材料が強固に接着することにな ると推定される。 In the present invention, a rubber is combined with a specific organic nickel salt in order to exhibit adhesiveness to a metal material and obtain a composite material of rubber and metal having good adhesive strength. As described above, by heating a nickel-plated metal material and a rubber compound containing triazine thiols by contact heating, the metal material composed of various metals and various rubbers are vulcanized and bonded without using an adhesive. can do. However, this nickel plating method needs to apply nickel plating to a metal material, and in addition to a metal material made of aluminum or magnesium, which has a high ionization tendency, in particular. It was difficult to apply them, and it was a problem to be solved. However, when a rubber composition comprising a rubber and a cross-linking agent and an organic nickel salt is heated by contact with a metal material containing a metal having a higher ionization tendency than nickel, the rubber composition does not require an adhesive and a plating treatment, and thus can be treated with a rubber. A composite material in which the metal material is firmly bonded can be obtained. In the cross-linking and bonding process, when the organic nickel salt in the rubber composition and the metal on the surface of the metal material are replaced, nickel plating occurs, and the rubber and the metal material are strongly bonded through the nickel plating. Presumed.
本発明においては、 下記の式(I) 、 (II) 、 (III) 、 (IV) 及び (V) で表される化合物からなる群より選ばれる少なくとも一種の有機 ニッケル塩をゴム中に含有指させる。  In the present invention, the rubber contains at least one organic nickel salt selected from the group consisting of compounds represented by the following formulas (I), (II), (III), (IV) and (V). Let it.
(1) 式(I)  (1) Equation (I)
R! COO-N i -OCOR2 (1)、 R! COO-N i -OCOR 2 (1),
(2) 式(II)  (2) Equation (II)
R! O - N i - O R 2 (11)、 R! O-Ni-OR 2 (11),
(3) 式(III)  (3) Formula (III)
R , S O N i - O S 0 R (III)  R, S O N i-O S 0 R (III)
(4) 式(IV)  (4) Equation (IV)
Figure imgf000009_0001
(5) 式(V) )
Figure imgf000009_0001
Equation (5) )
Figure imgf000010_0001
これらの式 (I) 〜 (V) 中、 及び R 2 は、 それぞれ独立に、 水 素原子、 炭素原子数 1〜 24の飽和または不飽和の脂肪族炭化水素基、 芳香族炭化水素基、 アルキル基置換芳香族炭化水素基、 または脂環族炭 化水素基である。 ただし、 これらの化合物は、 有機ニッケル塩であるこ とから、 式 (I) 〜 (III) において、 及び R2 が共に水素原子と なることはない。
Figure imgf000010_0001
In these formulas (I) to (V), and R 2 each independently represent a hydrogen atom, a saturated or unsaturated aliphatic hydrocarbon group having 1 to 24 carbon atoms, an aromatic hydrocarbon group, an alkyl group, It is a group-substituted aromatic hydrocarbon group or alicyclic hydrocarbon group. However, since these compounds are organic nickel salts, in formulas (I) to (III), and and R 2 are not both hydrogen atoms.
R! 及び R2 の具体例として、 H、 CH3 ―、 C 2 H 5 一、 C 3 H 7 ―、 C 4 H 9 ―、 (CH3 ) 3 C C H 2 一、 n - C 7 H15—、 i s o 一 C 7 H15—、 n— C uH"―、 i s o— C nH23—、 n— C 17H25 ―、 i s o - C 17H25—、 i s o— C 24H49_、 C 8 H 17CH = CH C 7 H14 -、 CH3 [ (CH3 ) 2 C] 2 C 6 H4 ―、 C 8 H 17C 6 H4 ―、 C 9 H19CH = CH -、 CH3 C 6 H4 一、 (CH3 ) 3 C C6 H4 -、 [ (CH3 ) 3 C] 2 C6 H3 -、 n— C8 H17C 6 H4 一、 (CH3 ) 3 C C 6 H10—等を挙げることができる。 R! And R 2 include, for example, H, CH 3 —, C 2 H 5 , C 3 H 7 —, C 4 H 9 —, (CH 3 ) 3 CCH 2 , n-C 7 H 15 —, iso one C 7 H 15 -, n- C uH "-, iso- C nH 23 -, n- C 17 H 25 -, iso - C 17 H 25 -, iso- C 24 H 49 _, C 8 H 17 CH = CH C 7 H 14- , CH 3 [(CH 3 ) 2 C] 2 C 6 H 4 ―, C 8 H 17 C 6 H 4 ―, C 9 H 19 CH = CH-, CH 3 C 6 H 4 one, (CH 3) 3 CC 6 H 4 -, [(CH 3) 3 C] 2 C 6 H 3 -, n- C 8 H 17 C 6 H 4 one, (CH 3) 3 CC 6 H 10 - And the like.
R , 及び R 2 は、 直鎖状でもよいが、 分岐状のものの方が接着強度 の発現に優れている。 これらの有機ニッケル塩の中でも、 式 (I) 及び (II) で表されるものが特に好ましい。 R 1 and R 2 may be linear, but the branched one is more excellent in the expression of adhesive strength. Among these organic nickel salts, those represented by the formulas (I) and (II) are particularly preferred.
式 (I) の有機ニッケル塩の具体例としては、 ( i s o— C 7 H15 COO) 2 N iが挙げられる。 Specific examples of the organic nickel salt of the formula (I) include (iso—C 7 H 15 COO) 2 Ni.
式 (II) の有機ニッケル塩の具体例としては、 下記式 (Ila)  Specific examples of the organic nickel salt of the formula (II) include the following formula (Ila)
CH3 [( C )3C] 2C6H40- Ni-OC6H4 [ C ( CH3)3] 2CH3 (Ila) で表わされる化合物が挙げられる。 CH 3 [(C) 3 C ] 2 C 6 H 4 0- Ni-OC 6 H 4 [C (CH 3) 3] 2 CH 3 (Ila) The compound represented by these is mentioned.
式 (I I I ) の有機ニッケル塩の具体例としては、 下記式 (I l i a)  Specific examples of the organic nickel salt of the formula (III) include the following formula (Ilia)
CaH17C6H4S03- Ni- OS02C6H4C8H17 (Ilia) で表わされる化合物が挙げられる。 C a H 17 C 6 H 4 S0 3 - compound represented by Ni- OS0 2 C 6 H 4 C 8 H 17 (Ilia) can be mentioned.
式 (IV) の有機ニッケル塩の具体例としては、 下記式 (IVa)  Specific examples of the organic nickel salt of the formula (IV) include the following formula (IVa)
CH3COCH=( CH3) CO- Ni- OC ( CH3)= CHCOCH3 (IVa) で表わされる化合物が挙げられる。 CH 3 COCH = (CH 3 ) CO—Ni—OC (CH 3 ) = CHCOCH 3 (IVa)
式 (V) の有機ニッケル塩の具体例としては、 下記式 (Va)  Specific examples of the organic nickel salt of the formula (V) include the following formula (Va)
Figure imgf000011_0001
で表わされる化合物が挙げられる。
Figure imgf000011_0001
The compound represented by these is mentioned.
これらの有機ニッケル塩をゴム中に含有させる方法としては、 既に合 成した有機ニッケル塩をゴムに添加する方法のほかに、 i n s i t u で有機ニッケル塩を生成させてもよい。 例えば、 ニッケル酸化物または ニッケル粒子と有機酸とをゴム中に加えて混練及び加熱を行うと、 有機 ニッケル塩が生成する。 したがって、 無機ニッケル化合物などと有機酸 とを組み合わせて添加する態様も、 本発明の範囲内に入ることになる。 有機ニッケル塩の含有量は、 分子量や分子の拡散性とも関係するので, ニッケル量として一義的に決めることができないが、 ゴム 1 0 0重量部 に対して、 通常 0 . 1〜 1 5重量部、 好ましくは 0 . 5〜 1 0重量部、 より好ましくは 1〜 5重量部である。 有機ニッケル塩は、 それぞれ単独 で使用することができるが、 所望により、 2種以上を組み合わせて使用 することができる。 有機ニッケル塩を 2種以上組み合わせて使用するこ とにより、 接着性と架橋性のバランスの点で、 より好ましい結果を得る ことが可能である。 As a method of incorporating these organic nickel salts into the rubber, an organic nickel salt may be generated in situ, in addition to a method of adding the already synthesized organic nickel salt to the rubber. For example, when nickel oxide or nickel particles and an organic acid are added to rubber and kneaded and heated, an organic nickel salt is generated. Therefore, an embodiment in which an inorganic nickel compound or the like and an organic acid are added in combination also falls within the scope of the present invention. The content of the organic nickel salt cannot be unambiguously determined as the nickel content because it is related to the molecular weight and the diffusivity of the molecule, but usually 0.1 to 15 parts by weight with respect to 100 parts by weight of rubber. It is preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight. Each of the organic nickel salts can be used alone, but if desired, two or more can be used in combination. Use a combination of two or more organic nickel salts. Thus, a more favorable result can be obtained in terms of the balance between the adhesiveness and the crosslinkability.
本発明のゴム組成物には、 ゴムの技術分野で一般に使用されている補 強剤、 充填剤、 安定剤、 滑剤、 軟化剤、 架橋調整剤、 加硫遅延剤、 加工 助剤、 プロセス油などを含有させることができる。 補強剤としては、 H A F 、 I S Aなどの各種グレードのカーボンブラック、 シリカなどが挙 げられる。 充填剤としては、 炭酸カルシウム、 タルクなどが挙げられる c これらの各種添加剤は、 それぞれの目的に応じて必要な配合量で使用さ れる。 The rubber composition of the present invention includes reinforcing agents, fillers, stabilizers, lubricants, softeners, crosslinking regulators, vulcanization retarders, processing aids, processing oils, and the like, which are generally used in the rubber technical field. Can be contained. Examples of the reinforcing agent include various grades of carbon black such as HAF and ISA, and silica. Examples of the filler include calcium carbonate, c these various additives and the like talc, are used in amounts required in accordance with the respective purposes.
本発明のゴム組成物は、 ゴム、 架橋剤、 有機ニッケル塩、 及び必要に 応じてその他の添加剤を溶融混練することにより調製することができる。 早期架橋を抑制するために、 ゴムと補強剤などとを溶融混練した後、 架 橋剤や架橋促進剤、 有機ニッケル塩を配合してさらに混練することが好 ましい。 ゴム組成物は、 混練後、 所望の形状に賦形することができる。 本発明で使用する金属材料としては、 ニッケルよりもイオン化傾向の 大きいな金属からなるものが好適に使用される。 イオン化傾向とは、 金 属が液体とくに水と接するときに陽イオンになる傾向のことを意味し、 金属の標準電極電位により定量的に評価することができる。 水に対する イオン化傾向を大きさの順に並べた金属元素の序列をイオン化列といい、 M g 、 A l 、 Z n、 C r 、 F e ( I I ) 、 N iなどの順に並んでいる。 本発明では、 ニッケルよりもイオン化傾向が大きい金属または該金属 を含有する合金からなる金属材料を使用する。 好ましい材質としては、 例えば、 鉄、 クロム、 黄銅 (銅一亜鉛合金) 、 亜鉛、 アルミニウム、 ァ ルミニゥム合金、 マグネシウムなどを挙げることができる。 金属材料は、 板状、 線状、 ロール状、 網状など所望の形状とすることができる。 金属 材料は、 接着前に、 脱脂、 水洗、 リン酸塩処理、 リン酸一クロム処理、 クロム酸リンスなど前処理を行うことができる。 また、 本発明では、 金 属材料のメツキ処理等は必要ないけれども、 所望によりメツキ処理を行 つてもよい。 The rubber composition of the present invention can be prepared by melt-kneading a rubber, a crosslinking agent, an organic nickel salt, and if necessary, other additives. To suppress premature cross-linking, it is preferable to melt-knead rubber and a reinforcing agent, and then mix and knead a bridging agent, a cross-linking accelerator, and an organic nickel salt. After kneading, the rubber composition can be shaped into a desired shape. As the metal material used in the present invention, a metal material having a higher ionization tendency than nickel is preferably used. The ionization tendency means the tendency of a metal to become a cation when it comes into contact with a liquid, particularly water, and can be quantitatively evaluated by the standard electrode potential of the metal. The order of metal elements in which the ionization tendency with respect to water is arranged in the order of the size is called the ionization sequence, which is arranged in the order of Mg, Al, Zn, Cr, Fe (II), Ni, and the like. In the present invention, a metal material composed of a metal having a higher ionization tendency than nickel or an alloy containing the metal is used. Preferred materials include, for example, iron, chromium, brass (copper-zinc alloy), zinc, aluminum, aluminum alloy, and magnesium. The metal material can have a desired shape such as a plate shape, a linear shape, a roll shape, and a net shape. Before bonding, the metal material can be subjected to a pretreatment such as degreasing, washing with water, phosphate treatment, monochromic phosphate treatment, and chromate rinse. In the present invention, Although plating treatment of a metal material is not required, plating treatment may be performed if desired.
ゴム組成物と金属材料とを直接架橋接着させるには、 ゴム組成物と金 属材料とを接触下に加熱して架橋させればよい。 例えば、 シート状など の所望の形状に賦形したゴム組成物と金属材料とを接触させ、 加熱圧着 すれば、 架橋と接着とが同時に起こる。 直接架橋接着の具体的な方法は、 金属材料の形状、 ゴム組成物の粘度、 目的とする複合材の種類などに応 じて、 適宜選択することができる。 加熱温度及び加熱時間も、 ゴムの種 類や架橋剤の種類などに応じて適宜設定することができる。 例えば、 S B R、 N R、 N B R、 E P D Mなどの汎用のゴムを含むゴム組成物の場 合、 1 4 0〜 2 0 0 °C程度の加熱温度で、 5〜 6 0分間程度の加熱時間 により、 十分な接着強度を持つ複合材を得ることができる。  In order to directly cross-link and adhere the rubber composition and the metal material, the rubber composition and the metal material may be cross-linked by heating under contact. For example, if a rubber composition formed into a desired shape such as a sheet and a metal material are brought into contact with each other and heated and pressed, crosslinking and bonding occur simultaneously. The specific method of direct cross-linking can be appropriately selected according to the shape of the metal material, the viscosity of the rubber composition, the type of the intended composite material, and the like. The heating temperature and the heating time can also be appropriately set according to the type of the rubber, the type of the crosslinking agent, and the like. For example, in the case of a rubber composition containing a general-purpose rubber such as SBR, NR, NBR, EPDM, etc., a heating time of about 140 to 200 ° C and a heating time of about 5 to 60 minutes are sufficient. A composite material having a high adhesive strength can be obtained.
ゴムと金属材料との複合材としては、 免震ゴム、 制振ゴム、 防振ゴム、 パッキング、 ダイヤフラム、 ガスケット、 大型ゴムロール、 複写機用ゴ ムロール、 コンベアベルト、 補強ベルト、 自由歩道エスカレ一ターのハ ンドレール、 自動車タイヤ、 金属繊維補強ホースなどを挙げることがで き、 電気製品、 電子製品、 コンピューター製品、 自動車 'バス ' トラッ ク · 飛行機部品など多くの分野で使用することができる。 実施例  Composite materials of rubber and metal materials include seismic isolation rubber, vibration damping rubber, vibration isolating rubber, packing, diaphragms, gaskets, large rubber rolls, rubber rolls for copiers, conveyor belts, reinforcing belts, and freeway escalators. Examples include handrails, car tires, metal fiber reinforced hoses, etc., and can be used in many fields such as electrical products, electronic products, computer products, automotive 'bus' trucks and airplane parts. Example
以下に実施例及び比較例を挙げて、 本発明についてより具体的に説明 する。 なお、 実施例及び比較例において、 「部」 は、 重量部を表す。 ま た、 剥離強度 (接着強度) の測定法は、 次のとおりである。  Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. In Examples and Comparative Examples, “parts” indicates parts by weight. The method for measuring the peel strength (adhesive strength) is as follows.
<剥離強度 > <Peel strength>
金属板にゴム配合物シートを貼り合わせ、 金型 (厚さ = 3 mm ) 中で 直接架橋接着した後、 試料を取り出し、 架橋ゴム層に 1 O mmの切りを 入れて、 引張試験機 (引張速度 : 5 m m Z m i n ) を用いて剥離強度 (単位 = kNZm) を測定した。 After bonding the rubber compound sheet to the metal plate and directly cross-linking and bonding in a mold (thickness = 3 mm), take out the sample, cut a 1 Omm into the cross-linked rubber layer, and use a tensile tester (tensile Velocity: Peel strength using 5 mm Z min) (Unit = kNZm) was measured.
[実施例 1 ]  [Example 1]
表 1に示す配合処方に従って、 スチレン—ブタジエンゴム (S B R) 7 0部、 天然ゴム (NR) 3 0部、 HAF力一ボンブラック 5 0部、 ス テアリン酸 1部、 及び酸化亜鉛 (Z n〇) 5部をニーダ一中で混合し、 さらにニ本ロールで混練して、 S BRZNRブレンドゴムマスタ一バッ チを調製した。 次に、 実験用小型ロールを用いて、 硫黄 3. 5部、 ニッ ケル塩 [ ( i s o— C 7 H15C O〇) 2 N i ] 4部を S B RZNRブ レンドゴムマスターバッチに混合して、 接着用ゴムシート (厚さ = 2. 2 mm) を作製した。 金属材料として、 市販の純アルミニウム板を切断 したアルミニウム板 ( 3 0 X 5 0 X l mm) を使用し、 接着前にァセト ンで脱脂後乾燥した。 In accordance with the formulation shown in Table 1, 70 parts of styrene-butadiene rubber (SBR), 30 parts of natural rubber (NR), 50 parts of HAF bonbon black, 1 part of stearic acid, and zinc oxide (Zn〇 5 parts were mixed in a kneader and kneaded with two rolls to prepare an SBRZNR blended rubber master batch. Next, using a small experimental roll, 3.5 parts of sulfur and 4 parts of nickel salt [(iso—C 7 H 15 CO〇) 2 Ni] were mixed with the SB RZNR blend rubber masterbatch, An adhesive rubber sheet (thickness = 2.2 mm) was prepared. As a metal material, an aluminum plate (30 X 50 X lmm) obtained by cutting a commercially available pure aluminum plate was used, degreased with acetone and dried before bonding.
アルミニウム板と接着用ゴムシ一卜を貼り合わせて金型 (厚さ == 3 m m) に入れ、 1 6 O :で 3 0分間加熱圧着して、 直接架橋接着した。 接 着後、 複合材 (接着体) を取り出し、 架橋ゴムシートに 1 0mmの切り を入れ、 引張試験機 (引張速度 = 5 mmZm i n) を用いて剥離強度 (接着強度) を測定した。 結果を表 1に示す。  An aluminum plate and a rubber sheet for bonding were bonded together, placed in a mold (thickness == 3 mm), and heated and pressed with 16 O: for 30 minutes to directly crosslink and bond. After bonding, the composite material (adhesive) was taken out, a 10 mm cut was made in the crosslinked rubber sheet, and the peel strength (adhesive strength) was measured using a tensile tester (tensile speed = 5 mm Zmin). Table 1 shows the results.
[実施例 2]  [Example 2]
実験用小型ロールを用いて接着用ゴムシ一トを作製する際に、 加硫促 進剤として t一ブチルベンゾチアジルスルフェンアミ ド (B B S) を表 1に示す割合で更に添加したこと以外は、 実施例と同様にして接着用ゴ ムシートを作製した。 次いで、 アルミニウム板とゴムシートを貼り合わ せて金型に入れ、 1 6 0°Cで 1 0分間加熱圧着して、 直接架橋接着した。 結果を表 1に示す。  Except that t-butylbenzothiazylsulfenamide (BBS) was added as a vulcanization accelerator in the proportions shown in Table 1 when preparing an adhesive rubber sheet using a small experimental roll. Then, an adhesive rubber sheet was produced in the same manner as in the examples. Next, the aluminum sheet and the rubber sheet were bonded together, put into a mold, and heated and pressed at 160 ° C. for 10 minutes to directly crosslink and bond. Table 1 shows the results.
[実施例 3]  [Example 3]
実験用小型ロールを用いて接着用ゴムシ一トを作製する際に、 加硫促 進剤としてジベンゾチアジルジスルフイ ド (MBT S) を表 1に示す割 合で更に添加したこと以外は、 実施例と同様にして接着用ゴムシ一トを 作製した。 次いで、 アルミニウム板とゴムシートを貼り合わせて金型に 入れ、 1 6 0 °Cで 1 0分間加熱圧着して、 直接架橋接着した。 結果を表 1に示す。 Table 1 shows the dibenzothiazyl disulfide (MBTS) used as a vulcanization accelerator when preparing rubber sheets for bonding using small rolls for experiments. A rubber sheet for bonding was produced in the same manner as in Example except that the rubber sheet was further added. Next, the aluminum plate and the rubber sheet were bonded together, placed in a mold, and heated and pressed at 160 ° C. for 10 minutes to directly crosslink and bond. Table 1 shows the results.
[比較例 1 ]  [Comparative Example 1]
接着用ゴムシ一トを作製するに際し、 ニッケル塩を添加しなかったこ と以外は実施例 1と同様に行った。 結果を表 1に示す。  The production was performed in the same manner as in Example 1 except that no nickel salt was added when producing the bonding rubber sheet. Table 1 shows the results.
[比較例 2 ]  [Comparative Example 2]
接着用ゴムシ一トを作製するに際し、 ニッケル塩を添加しなかったこ と、 及び加熱圧着時間を 3 0分間に変更したこと以外は、 実施例 2と同 様に行った。 結果を表 1に示す。  The same procedure as in Example 2 was carried out except that no nickel salt was added and that the heating and pressing time was changed to 30 minutes when producing the rubber sheet for bonding. Table 1 shows the results.
[比較例 3 ]  [Comparative Example 3]
接着用ゴムシ一トを作製するに際し、 ニッケル塩を添加しなかったこ と、 及び加熱圧着時間を 3 0分間に変更したこと以外は実施例 3と同様 に行った。 結果を表 1に示す。 The same procedure as in Example 3 was carried out except that no nickel salt was added and that the heating and pressing time was changed to 30 minutes when producing the rubber sheet for bonding. Table 1 shows the results.
表 1 :アルミニウム板と SB RZNRブレンド物との直接架橋接着 Table 1: Direct cross-linking adhesion between aluminum plate and SB RZNR blend
Figure imgf000016_0001
表 1の結果から明らかなように、 ニッケル塩を添加しなかったゴムシ —トを用いた場合 (比較例 1〜 3) には、 ゴムシートは、 アルミニウム 板に接着しなかった。 これに対して、 ゴムシート中に加硫剤と ( i s o - C 7 H15COO) 2 N iが共存すると (実施例 1〜 3) 、 剥離強度 の高い複合材 (接着体) が得られる。 実施例 1の場合には、 ( i s o— C 7 H 15C OO) 2 N i は、 加硫促進剤の役割をも果たしている。 加 硫促進剤として、 t —ブチルベンゾチアジルスルフェンアミ ド (B B S ) ゃジベンゾチアジルジスルフイ ド (MBT S) を添加すると (実施 例 2〜 3) 、 接着速度がさらに速くなり、 かつ、 剥離強度も高くなる。
Figure imgf000016_0001
As is clear from the results in Table 1, when the rubber sheet to which the nickel salt was not added was used (Comparative Examples 1 to 3), the rubber sheet did not adhere to the aluminum plate. In contrast, a vulcanizing agent in the rubber sheet (iso - C 7 H 15 COO ) 2 N if i coexist (Examples 1 3), high peel strength composite (adhesin) is obtained. In the case of Example 1, (iso— C 7 H 15 C OO) 2 Ni also serves as a vulcanization accelerator. When t-butylbenzothiazylsulfenamide (BBS) and dibenzothiazyldisulfide (MBTS) are added as a vulcanization accelerator (Examples 2 and 3), the bonding speed is further increased, and The peel strength also increases.
[実施例 4]  [Example 4]
実施例 1と同様にして S B RZNRブレンドゴムマスターバッチを調 製した。 次に、 実験用小型ロールを用いて、 硫黄 4. 0部、 下記ニッケ ル塩 (Ila)  An SBRZNR blended rubber masterbatch was prepared in the same manner as in Example 1. Next, using a small experimental roll, 4.0 parts of sulfur and the following nickel salt (Ila)
CH3 [( CH3)3C]2C6 0 - Ni - OC6H4 [ C ( CH3)3] 2CH3 (Ila) 0. 5部、 及び t —ブチルベンゾチアジルスルフェンアミ ド (B B S ) 0. 5部を S BRZNRブレンドゴムマスタ一バッチに混合して、 接着用ゴムシート (厚さ = 2mm) を作製した。 金属材料として、 亜鉛 板 ( 3 0 X 5 0 X l mm) をアセトン脱脂、 酢酸水溶液で活性化後、 水 洗、 乾燥したものを使用した。 亜鉛板と接着用ゴムシートとを貼り合わ せ、 金型中、 1 6 0°Cで 3 0分間加熱圧着して、 直接架橋接着し、 複合 材 (接着体) を得た。 結果を表 2に示す。 CH 3 [(CH 3 ) 3 C] 2 C 60 -Ni-OC 6 H 4 [C (CH 3 ) 3 ] 2 CH 3 (Ila) 0.5 part, and t-butylbenzothiazylsulfenami (BBS) 0.5 part was mixed with one batch of S BRZNR blended rubber master to prepare an adhesive rubber sheet (thickness = 2 mm). As a metal material, a zinc plate (30 X 50 X lmm) that was degreased with acetone, activated with an aqueous acetic acid solution, washed with water, and dried was used. The zinc plate and the rubber sheet for bonding were bonded together, and heated and pressed in a mold at 160 ° C. for 30 minutes to directly crosslink and bond to obtain a composite material (adhesive). Table 2 shows the results.
[実施例 5]  [Example 5]
ニッケル塩 (Ila) を下記ニッケル塩 (Ilia)  Nickel salt (Ila) is replaced with the following nickel salt (Ilia)
C8H17C6H4S03- Ni - OS02C6H4CBH17 (Ilia) に代えたこと以外は、 実施例 4と同様に行った。 結果を表 2に示す。 C 8 H 17 C 6 H 4 S0 3 - Ni - OS0 except that instead of 2 C 6 H 4 C B H 17 (Ilia), was performed in the same manner as in Example 4. Table 2 shows the results.
[実施例 6]  [Example 6]
ニッケル塩 (Ila) を下記ニッケル塩 (IVa)  Nickel salt (Ila) is replaced with the following nickel salt (IVa)
CH3COCH-( CH3) CO - Ni - OC ( CH3)-CHCOCH3 (IVa) に代えたこと以外は、 実施例 4と同様に行った。 結果を表 2に示す。 [実施例 73 The same operation as in Example 4 was performed, except that CH 3 COCH— (CH 3 ) CO—Ni—OC (CH 3 ) —CHCOCH 3 (IVa) was used instead. Table 2 shows the results. [Example 73
ニッケル塩 (Ila) を下記ニッケル塩 (Va)  Nickel salt (Ila) is replaced with the following nickel salt (Va)
Figure imgf000018_0001
に代えたこと以外は、 実施例 4と同様に行った。 結果を表 2に示す。
Figure imgf000018_0001
The procedure was performed in the same manner as in Example 4 except that Table 2 shows the results.
[比較例 4]  [Comparative Example 4]
ニッケル塩 (Ila) を使用しなかったこと以外は、 実施例 4と同様 行った。 結果を表 2に示す。 The same operation as in Example 4 was performed except that no nickel salt (Ila) was used. Table 2 shows the results.
表 2 :亜鉛板と S B Rノ N Rプレンド物との直接架橋接着 Table 2: Direct cross-linking between zinc plate and SBR No NR blend
Figure imgf000019_0001
Figure imgf000019_0001
表 2の結果から明らかなように、 ゴム中に各種ニッケル塩が存在する 場合 (実施例 4〜 7) には、 良好な剥離強度の複合材を得ることができ る。 これに対して、 ゴム中にニッケル塩が存在しない場合 (比較例 4) には、 亜鉛板とゴムシートとは接着しない。  As is clear from the results in Table 2, when various nickel salts are present in the rubber (Examples 4 to 7), a composite material having good peel strength can be obtained. On the other hand, when the nickel salt is not present in the rubber (Comparative Example 4), the zinc plate and the rubber sheet do not adhere.
[実施例 8]  [Example 8]
表 3に示す配合処方に従って、 塩素系アクリルゴム (AR) 1 0 0部, HAFカーボンブラック 5 0部、 及びステアリン酸 1部をニーダ一中で 混合し、 さらに二本ロールで混練して、 ARゴムマスタ一バッチを調製 した。 次に、 実験用小型ロールを用いて、 トリアジントリチオール 0. 5部、 ベンゾチアゾール亜鉛塩 (B Z ) 1. 0部、 及びニッケル塩 [ ( i s o— C 7 H 15C〇〇) 2 N i ] 4部を ARゴムマスターバッ チに混合し、 接着用ゴムシート (厚さ = 2. 2mm) を作製した。 金属 材料として、 市販の純アルミニウム板を切断したアルミニウム板 (3 0 X 5 0 X 1 mm) をアセトンで脱脂後乾燥したものを用いた。 アルミ二 ゥム板と接着用ゴムシートを貼り合わせて金型 (厚さ = 3mm) に入れ、 1 6 0°Cで 3 0分間加熱圧着して、 直接架橋接着し、 複合材を得た。 結 果を表 3に示す。 According to the formulation shown in Table 3, 100 parts of chlorine-based acrylic rubber (AR), 50 parts of HAF carbon black and 1 part of stearic acid were mixed in a kneader and kneaded with two rolls to prepare one batch of AR rubber master. Next, using a laboratory size roll, triazine trithiol 0.5 parts, benzothiazole zinc salt (BZ) 1. 0 parts, and nickel salts [(iso- C 7 H 15 C_〇_〇) 2 N i] Four parts were mixed with an AR rubber masterbatch to produce an adhesive rubber sheet (thickness = 2.2 mm). As the metal material, a commercially available aluminum plate (30 × 50 × 1 mm) obtained by cutting a pure aluminum plate was degreased with acetone and then dried. The aluminum sheet and the rubber sheet for bonding were bonded together, placed in a mold (thickness = 3 mm), heated and pressed at 160 ° C for 30 minutes, and directly cross-linked to obtain a composite material. Table 3 shows the results.
[実施例 9]  [Example 9]
塩素系ァクリルゴムをァクリロニトリルーブタジエンゴム (NB R ; アクリロニトリル含量 = 3 1 %) に代えたこと以外は、 実施例 8と同様 にして、 NB Rゴムマスターバッチを調製した。 次に、 実験用小型口一 ルを用いて、 トリアジントリチオール 1. 5部、 ビス一 t —ブチルペル ォキシィソプロピルベンゼン 5部、 及びニッケル塩 [ ( i s o— C 7 H 15C〇〇) 2 N i ] 4部を NB Rゴムマス夕一バッチに混合し、 接 着用ゴムシート (厚さ = 2. 2 mm) を作製した。 その後、 実施例 8と 同様にして、 複合材を作製した。 結果を表 3に示す。 An NBR rubber masterbatch was prepared in the same manner as in Example 8, except that the chlorinated acryl rubber was changed to acrylonitrile butadiene rubber (NBR; acrylonitrile content = 31%). Next, using a laboratory size opening one Le, triazine trithiol 1.5 parts of bis one t - butyl per O key Consequences isopropyl benzene 5 parts, and nickel salts [(iso- C 7 H 15 C_〇_〇) [ 2Ni] 4 parts were mixed in a batch of NBR rubber mass to prepare an adhesive rubber sheet (thickness = 2.2 mm). Thereafter, a composite material was produced in the same manner as in Example 8. Table 3 shows the results.
[実施例 1 0]  [Example 10]
塩素系アクリルゴムをエチレン一プロピレン—ジェンゴム (E P D M ; ジェン =ェチリデンノルポルネン系) に代えたこと以外は、 実施例 8と同様にして E P DMゴムマスターバッチを調製した。 次に、 実験用 小型ロールを用いて、 トリアジントリチオール 1. 5部、 2, 5—ジメ チルージー t—ブチルペルォキシへキシン 5部、 及びニッケル塩 [ ( i s o _ C 7 H15C〇〇) 2 N i ] 4部を E PDMゴムマスターバッチ に混合し、 接着用ゴムシート (厚さ = 2. 2 mm) を作製した。 その後. 実施例 8と同様にして、 複合材を作製した。 結果を表 3に示す。 An EPDM rubber masterbatch was prepared in the same manner as in Example 8, except that the chlorine-based acrylic rubber was replaced by ethylene-propylene-gen rubber (EPDM; gen = ethylidene norporene). Next, using a laboratory size roll, triazine trithiol 1.5 parts of 2, 5-dimethyl Chiruji t- to Buchiruperuokishi relaxin 5 parts, and nickel salts [(iso _ C 7 H 15 C_〇_〇) 2 N i] 4 parts EPDM rubber masterbatch To prepare an adhesive rubber sheet (thickness = 2.2 mm). Thereafter, a composite material was produced in the same manner as in Example 8. Table 3 shows the results.
[比較例 5 ]  [Comparative Example 5]
接着用ゴムシ一トを作製するに際し、 ニッケル塩を添加しなかったこ と以外は実施例 8と同様に行った。 結果を表 3に示す。  The same procedure as in Example 8 was carried out except that no nickel salt was added when producing the rubber sheet for bonding. Table 3 shows the results.
[比較例 6 ]  [Comparative Example 6]
接着用ゴムシ一トを作製するに際し、 ニッケル塩を添加しなかったこ と以外は実施例 9と同様に行った。 結果を表 3に示す。  The same procedure as in Example 9 was carried out except that no nickel salt was added when producing the rubber sheet for bonding. Table 3 shows the results.
[比較例 7 ]  [Comparative Example 7]
接着用ゴムシートを作製するに際し、 ニッケル塩を添加しなかったこ と以外は実施例 1 0と同様に行った。 結果を表 3に示す。 The production was performed in the same manner as in Example 10 except that no nickel salt was added when producing the bonding rubber sheet. Table 3 shows the results.
表 3 : アルミニウム板との接着におけるゴムの種類と架橋系の影響 Table 3: Influence of rubber type and crosslinking system on adhesion to aluminum plate
Figure imgf000022_0001
表 3の比較例 5〜 7に示す各配合処方は、 いずれもニッケルメツキ法 においてニッケルメツキ処理面に接着する配合処方である。 しかし、 比 較例 5〜 7に見られるように、 これらの配合処方では、 アルミニウム板 に対して全く接着しない。 これに対して、 実施例 8〜 1 0の各配合処方 では、 ニッケル塩が含まれるため、 アルミニウム板と各種ゴムシートを 直接架橋接着できることが分かる。
Figure imgf000022_0001
Each formulation shown in Comparative Examples 5 to 7 in Table 3 is a formulation that adheres to the nickel plating treated surface in the nickel plating method. However, as can be seen in Comparative Examples 5-7, these formulations did not Does not adhere at all. On the other hand, in each of the formulations of Examples 8 to 10, since the nickel salt is contained, it can be seen that the aluminum plate and various rubber sheets can be directly cross-linked and adhered.
[実施例 1 1 ]  [Example 11]
実施例 2と同様にして、 S B RZNRブレンドゴムマスタ一バッチ及 び接着用ゴムシ一トを調製した。 金属材料として、 軟鉄板 ( 3 0 X 5 0 X I mm) をアセトン脱脂後乾燥したものを用いた。 軟鉄板と接着用ゴ ムシートとを貼り合わせて金型 (厚さ = 3mm) 内に入れ、 1 6 0°Cで 3 0分間加熱圧着して、 直接架橋接着した。 結果を表 4に示す。  In the same manner as in Example 2, an SBRZNR blended rubber master batch and an adhesive rubber sheet were prepared. As the metal material, a soft iron plate (30 × 50 × I mm) obtained by degreasing with acetone and then drying was used. The soft iron plate and the bonding rubber sheet were bonded together, placed in a mold (thickness = 3 mm), and heated and pressed at 160 ° C for 30 minutes to directly crosslink and bond. Table 4 shows the results.
[実施例 1 2]  [Example 12]
軟鉄板を、 黄銅板 (3 0 X 5 O X l mm) をアセトン脱脂後乾燥した ものに代えたこと以外は、 実施例 1 1と同様に行った。 結果を表 4に示 す。  Example 11 was repeated except that the soft iron plate was replaced by a brass plate (30 X 5 O X l mm) which was degreased with acetone and dried. Table 4 shows the results.
[実施例 1 3]  [Example 13]
軟鉄板を、 マグネシウム板 ( 3 0 X 5 O X l mm) をアセトン脱脂後 乾燥したものに代えたこと以外は、 実施例 1 1と同様に行った。 結果を 表 4に示す。  Example 11 was repeated except that the soft iron plate was replaced with a magnesium plate (30 X 5 O X l mm) which was degreased with acetone and dried. Table 4 shows the results.
[比較例 8]  [Comparative Example 8]
接着用ゴムシ一トを作製するに際し、 ニッケル塩を添加しなかったこ と以外は実施例 1 1と同様に行った。 結果を表 4に示す。  The production was performed in the same manner as in Example 11 except that no nickel salt was added when producing the rubber sheet for bonding. Table 4 shows the results.
[比較例 9]  [Comparative Example 9]
接着用ゴムシートを作製するに際し、 ニッケル塩を添加しなかったこ と以外は実施例 1 2と同様に行った。 結果を表 4に示す。  The production was performed in the same manner as in Example 12 except that no nickel salt was added when producing the bonding rubber sheet. Table 4 shows the results.
[比較例 1 0]  [Comparative Example 10]
接着用ゴムシートを作製するに際し、 ニッケル塩を添加しなかったこ と以外は実施例 1 3と同様に行った。 結果を表 4に示す。 表 4 :金属材料の種類と S B R/N Rブレンド物の直接架橋接着 The production was performed in the same manner as in Example 13 except that no nickel salt was added when producing the bonding rubber sheet. Table 4 shows the results. Table 4: Direct cross-linking of metal materials and SBR / NR blends
Figure imgf000024_0001
加硫剤と ( i s o _ C 7 H 15C O O) 2 N i とが共存するゴムシ一 トを用いた場合 (実施例 1 1〜 1 3) には、 鉄板、 黄銅板、 及びマグネ シゥム板に良好な接着性を示す。 これに対して、 ニッケル塩を含有しな いゴムシートを用いた場合 (比較例 8〜 1 0) には、 これらの金属板に 対して全く接着しない。
Figure imgf000024_0001
The vulcanizing agent and (iso _ C 7 H 15 COO ) 2 N if i and was used Gomushi one you want to coexist (Example 1 1-1 3), iron, brass plate, and good in magnetic Shiumu plate It shows excellent adhesiveness. On the other hand, when a rubber sheet containing no nickel salt is used (Comparative Examples 8 to 10), no adhesion is made to these metal plates.

Claims

産業上の利用可能性 本発明によれば、 架橋剤を含有する未架橋ゴム中に有機ニッケル塩を 含有させたゴム組成物を使用することにより、 ニッゲルよりイオン化傾 向の大きな金属からなる金属材料とゴムとの直接架橋接着が可能である, 従来は、 金属材料とゴムとを直接架橋接着させるために、 金属材料の表 面にメツキ処理を行っていたが、 本発明の製造方法によれば、 メツキと 接着を実質的に同時に行うことができ、 この点で従来技術に比べて飛躍 的な進歩がある。 特に、 ニッケルよりイオン化傾向の大きな金属のうちアルミニウム、 マグネシウム、 及びこれらの合金を使用する態様は、 2 1世紀の課題で あるリサイクルと省エネを実現する方法と材料を供給できる点でも意義 深いものである。 本発明は、 多くの種類のゴムと金属材料との複合材に 適用することができ、 しかも、 これらの複合材は、 安価でかつリサイク ルと省エネに特徴を持った製品となり得る。 請求の範囲 INDUSTRIAL APPLICABILITY According to the present invention, by using a rubber composition containing an organic nickel salt in an uncrosslinked rubber containing a crosslinking agent, a metal material comprising a metal having a higher ionization tendency than Nigel Cross-linking between rubber and rubber is possible. Conventionally, in order to directly cross-link and bond a metal material and a rubber, a surface treatment of the metal material is performed, but according to the manufacturing method of the present invention, In addition, plating and bonding can be performed substantially simultaneously, and there is a dramatic improvement over the prior art in this regard. In particular, the use of aluminum, magnesium, and alloys of these metals, which have a higher ionization tendency than nickel, is also significant in terms of supplying methods and materials for achieving the 21st century's challenges of recycling and energy saving. is there. INDUSTRIAL APPLICABILITY The present invention can be applied to many types of composites of rubber and metal materials, and these composites can be inexpensive products having features of recycling and energy saving. The scope of the claims
1. ゴム、 架橋剤、 並びに 1. rubber, crosslinker, and
(1) 式(I)  (1) Equation (I)
R! COO-N i -OCOR2 (1)、 R! COO-N i -OCOR 2 (1),
(2) 式(Π)  (2) Equation (Π)
R! O - N i - O R 2 (11)、 R! O-Ni-OR 2 (11),
(3) 式(III)  (3) Formula (III)
R J S O 3 - N i - O S O 2 R 2 (III) RJSO 3-Ni-OSO 2 R 2 (III)
(4) 式(IV)  (4) Equation (IV)
Figure imgf000026_0001
及び
Figure imgf000026_0001
as well as
(5) 式(V)  Equation (5)
Figure imgf000026_0002
(各式中、 ェ 及び R 2 は、 それぞれ独立に、 水素原子、 炭素原子数 1〜 2 4の飽和または不飽和の脂肪族炭化水素基、 芳香族炭化水素基、 アルキル基置換芳香族炭化水素基、 または脂環族炭化水素基である。 ) で表される化合物からなる群より選ばれる少なくとも一種の有機ニッケ ル塩を含有するゴム組成物。
Figure imgf000026_0002
(In each formula, ェ and R 2 are each independently a hydrogen atom, a saturated or unsaturated aliphatic hydrocarbon group having 1 to 24 carbon atoms, an aromatic hydrocarbon group, an alkyl-substituted aromatic hydrocarbon. A rubber composition comprising at least one organic nickel salt selected from the group consisting of compounds represented by the formula:
2. ゴムが、 天然ゴム、 イソプレンゴム、 ブタジエンゴム、 スチレン —ブタジエンゴム、 クロロプレンゴム、 アクリロニトリル—ブタジエン ゴム、 スチレン一イソプレンゴム、 ブタジエン—イソプレンゴム、 ブチ ルゴム、 ハロゲン化ブチルゴム、 エチレン一プロピレンゴム、 エチレン 一プロピレン一ジェンゴム、 アクリルゴム、 エチレン一アクリルゴム、 ェピクロルヒドリンゴム、 シリコーンゴム、 フッ素ゴム、 ウレタンゴム、 及びこれらの混合物から選ばれる請求項 1記載のゴム組成物。 2. Rubber is natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, chloroprene rubber, acrylonitrile-butadiene rubber, styrene-isoprene rubber, butadiene-isoprene rubber, butylene rubber, halogenated butyl rubber, ethylene-propylene rubber, ethylene 2. The rubber composition according to claim 1, wherein the rubber composition is selected from propylene-one-gen rubber, acrylic rubber, ethylene-acrylic rubber, epichlorohydrin rubber, silicone rubber, fluorine rubber, urethane rubber, and a mixture thereof.
3. 架橋剤が、 硫黄、 トリアジンチオール類、 樹脂架橋剤、 ポリオ一 ル架橋剤、 ペルォキシド類、 及びこれらの混合物から選ばれる請求項 1 記載のゴム組成物。 3. The rubber composition according to claim 1, wherein the crosslinking agent is selected from sulfur, triazinethiols, resin crosslinking agents, polyol crosslinking agents, peroxides, and mixtures thereof.
4. 架橋剤の含有量が、 ゴム 1 0 0重量部に対して、 0. 1〜 5重量 部である請求項 1記載のゴム組成物。 4. The rubber composition according to claim 1, wherein the content of the crosslinking agent is 0.1 to 5 parts by weight based on 100 parts by weight of the rubber.
5. Z n O、 M g O、 C a O、 C a (OH) 2 、 及びこれらの混合物 から選ばれる金属活性剤をさらに含有する請求項 1記載のゴム組成物。 5. The rubber composition according to claim 1, further comprising a metal activator selected from ZnO, MgO, CaO, Ca (OH) 2 , and a mixture thereof.
6. 金属活性剤の含有量が、 ゴム 1 0 0重量部に対して、 1〜 2 0重 量部である請求項 5記載のゴム組成物。 6. The rubber composition according to claim 5, wherein the content of the metal activator is 1 to 20 parts by weight based on 100 parts by weight of the rubber.
7. 式 (I) 乃至(V)で表わされる化合物において、 及び R2 が、 H、 CH3 -、 C 2 H5 -、 C 3 H7 -、 C4 H9 -、 (CH3 ) 3 C C H 2 一、 n - C 7 H15―、 i s o— C7 H15—、 n - C j jH 23- , i s o— C 11H23 _> n— C 17H25—、 i s o— C 17H25—、 i s o — C24H49 -、 C 8 H17CH=CHC7 H14 -、 CH3 [ (CH3 ) 2 C] 2 C 6 H4 一、 C 8 H 17C 6 H4 一、 C 9 H19CH=CH—、 C H 3 C 6 H 4 ( C H 3 ) 3 C C 6 H -、 [ (CH3 ) 3 C] 2 In 7. formula (I) to the compound represented by (V), and R 2, H, CH 3 -, C 2 H 5 -, C 3 H 7 -, C 4 H 9 -, (CH 3) 3 CCH 2 one, n - C 7 H 15 - , iso- C 7 H 15 -, n - C j jH 23 -, iso- C 11 H 23 _> n- C 17 H 25 -, iso- C 17 H 25 -, iso - C 24 H 49 -, C 8 H 17 CH = CHC 7 H 14 -, CH 3 [(CH 3) 2 C] 2 C 6 H 4 one, C 8 H 17 C 6 H 4 one, C 9 H 19 CH = CH—, C H 3 C 6 H 4 (CH 3) 3 CC 6 H-, [(CH 3 ) 3 C] 2
C R 6 H 1丄 3 n - C 8 H 17C 6 H 一、 及び (CH3 ) 3 C C 6 H10 一から選ばれる 〔ただし、 式(I)乃至 (III) において、 及び R2の いずれか一方は Hではない。 〕 請求項 1記載のゴム組成物。 Selected from C R 6 H 1丄 3 n -C 8 H 17 C 6 H 1 and (CH 3 ) 3 CC 6 H 10 [wherein in formulas (I) to (III), any one of R 2 One is not H. ] The rubber composition according to claim 1.
8. 式 (I) の有機ニッケル塩が、 ( i s o _ C 7 H 15C OO) 2 N iである請求項 1記載のゴム組成物。 Organic nickel salts of 8. formula (I), (iso _ C 7 H 15 C OO) according to claim 1 rubber composition wherein the 2 N i.
9. 式 (II) の有機ニッケル塩が、 式 (Ila) 9. The organic nickel salt of the formula (II) is
CH3[( CH3)3C] 2C6H40 -Ni- OC6H4 [ C ( CH3) 3] 2CH3 (Ila) で表わされる化合物である請求項 1記載のゴム組成物, CH 3 [(CH 3) 3 C] 2 C 6 H 4 0 -Ni- OC 6 H 4 [C (CH 3) 3] 2 CH 3 rubber composition of claim 1 wherein the is a compound represented by (Ila) object,
1 0. 式 (III) の有機ニッケル塩が、 式 (Ilia) 10 0. The organic nickel salt of formula (III) is
C8H17C6H4S03- Ni-OS02CeH4C8H17 (Ilia) で表わされる化合物である請求項 1記載のゴム組成物, 式 (IV) の有機ニッケル塩が、 式 (IVa) C 8 H 17 C 6 H 4 S0 3 - Ni-OS0 2 C e H 4 C 8 H 17 The rubber composition according to claim 1, wherein the compound represented by (Ilia), and organic nickel salts of formula (IV) , The formula (IVa)
CH3COCH=(CH3) CO - Ni - OC ( CH3) = CHCOCH3 (IVa) で表わされる化合物である請求項 1記載のゴム組成物, CH 3 COCH = (CH 3 ) CO-Ni-OC (CH 3 ) = CHCOCH 3 (IVa) is a compound represented by the rubber composition according to claim 1,
2. 式 (V) の有機ニッケル塩が、 式 (Va)
Figure imgf000029_0001
で表わされる化合物である請求項 1記載のゴム組成物。
2. The organic nickel salt of the formula (V) is converted to the formula (Va)
Figure imgf000029_0001
2. The rubber composition according to claim 1, which is a compound represented by the formula:
1 3. 有機ニッケル塩の含有量が、 ゴム 1 0 0重量部に対して、 0 1〜 1 5重量部である請求項 1記載のゴム組成物。 1 3. The rubber composition according to claim 1, wherein the content of the organic nickel salt is from 0.1 to 15 parts by weight based on 100 parts by weight of the rubber.
1 4. ゴム、 架橋剤、 並びに 1 4. Rubber, crosslinker, and
(1) 式(I)  (1) Equation (I)
R! COO-N i -OCOR2 (1)、 R! COO-N i -OCOR 2 (1),
(2) 式(II)  (2) Equation (II)
R! O - N i - O R 2 (11)、 R! O-Ni-OR 2 (11),
(3) 式(III)  (3) Formula (III)
R! S O 3 - N i - O S 02 R 2 (III)R! SO 3-Ni-OS 0 2 R 2 (III)
(4) 式(IV) (4) Equation (IV)
Figure imgf000029_0002
及び
Figure imgf000029_0002
as well as
(5) 式(V)
Figure imgf000030_0001
Equation (5)
Figure imgf000030_0001
(各式中、 及び R 2 は、 それぞれ独立に、 水素原子、 炭素原子数 1〜 2 4の飽和または不飽和の脂肪族炭化水素基、 芳香族炭化水素基、 アルキル基置換芳香族炭化水素基、 または脂環族炭化水素基である。 ) で表される化合物からなる群より選ばれる少なく とも一種の有機ニッケ ル塩を含有するゴム組成物 (A) と、 ニッケルよりもイオン化傾向が大 きい金属または該金属を含有する合金からなる金属材料 (B) とを直接 架橋接着してなる複合材。 1 5. ニッケルよりもイオン化傾向が大きい金属または該金属を含有 する合金が、 鉄、 クロム、 亜鉛、 アルミニウム、 マグネシウム、 及びこ れらの合金から選ばれる請求項 1 4記載の複合材。 (In each formula, and R 2 are each independently a hydrogen atom, a saturated or unsaturated aliphatic hydrocarbon group having 1 to 24 carbon atoms, an aromatic hydrocarbon group, an alkyl-substituted aromatic hydrocarbon group. Or an alicyclic hydrocarbon group.) A rubber composition (A) containing at least one kind of organic nickel salt selected from the group consisting of the compounds represented by), and having a greater ionization tendency than nickel. A composite material obtained by directly cross-linking and bonding a metal or a metal material (B) made of an alloy containing the metal. 15. The composite material according to claim 14, wherein the metal having a higher ionization tendency than nickel or an alloy containing the metal is selected from iron, chromium, zinc, aluminum, magnesium, and these alloys.
1 6. 合金が、 黄銅 (銅一亜鉛合金) またはアルミニウム合金である 請求項 1 5記載の複合材。 16. The composite material according to claim 15, wherein the alloy is brass (copper-zinc alloy) or an aluminum alloy.
1 7. ゴム、 架橋剤、 並びに 1 7. Rubber, crosslinker, and
(1) 式(I) (1) Equation (I)
R! C OO -N i - 0 C 0 R 2 (1)、 R! C OO -N i-0 C 0 R 2 (1),
(2) 式(Π) (2) Equation (Π)
R! O - N i - O R 2 (11)、 R! O-Ni-OR 2 (11),
(3) 式(III)  (3) Formula (III)
R , S 03 -N i - O S 02 R 2 (III) , (4) 式(IV) R, S 0 3 -N i-OS 0 2 R 2 (III), (4) Equation (IV)
Figure imgf000031_0001
及び
Figure imgf000031_0001
as well as
(5) 式(V)  Equation (5)
Figure imgf000031_0002
Figure imgf000031_0002
(各式中、 及び R 2 は、 それぞれ独立に、 水素原子、 炭素原子数 1〜 24の飽和または不飽和の脂肪族炭化水素基、 芳香族炭化水素基、 アルキル基置換芳香族炭化水素基、 または脂環族炭化水素基である。 ) で表される化合物からなる群より選ばれる少なくとも一種の有機ニッケ ル塩を含有するゴム組成物 (A) と、 ニッケルよりもイオン化傾向が大 きい金属または該金属を含有する合金からなる金属材料 (B) とを接触 下に加熱して、 直接架橋接着させる複合材の製造方法。 (In each formula, and R 2 are each independently a hydrogen atom, a saturated or unsaturated aliphatic hydrocarbon group having 1 to 24 carbon atoms, an aromatic hydrocarbon group, an alkyl-substituted aromatic hydrocarbon group, Or an alicyclic hydrocarbon group.) A rubber composition (A) containing at least one organic nickel salt selected from the group consisting of compounds represented by the following formulas: and a metal or a metal having a higher ionization tendency than nickel. A method for producing a composite material in which a metal material (B) made of an alloy containing the metal is heated in contact with and directly cross-linked and adhered.
1 8. ゴム組成物 (A) と金属材料 (B) とを接触下に 1 40〜2 0 0°Cの加熱温度で、 5〜6 0分間加熱する請求項 1 7記載の製造方法。 18. The production method according to claim 17, wherein the rubber composition (A) and the metal material (B) are heated in contact with each other at a heating temperature of 140 to 200 ° C for 5 to 60 minutes.
1 9. 金属材料 (B) が、 鉄、 クロム、 亜鉛、 アルミニウム、 マグネ シゥム、 及びこれらの合金から選ばれるものである請求項 1 7記載の製 造方法。 19. The method according to claim 17, wherein the metal material (B) is selected from iron, chromium, zinc, aluminum, magnesium, and alloys thereof.
PCT/JP2000/007042 1999-10-14 2000-10-11 Rubber composition, composite material, and process for producing composite material WO2001027196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29259999A JP2001114942A (en) 1999-10-14 1999-10-14 Rubber composition, composite material and production of composite material
JP11/292599 1999-10-14

Publications (1)

Publication Number Publication Date
WO2001027196A1 true WO2001027196A1 (en) 2001-04-19

Family

ID=17783882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007042 WO2001027196A1 (en) 1999-10-14 2000-10-11 Rubber composition, composite material, and process for producing composite material

Country Status (2)

Country Link
JP (1) JP2001114942A (en)
WO (1) WO2001027196A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153793A (en) * 2011-04-18 2011-08-17 青岛茂林橡胶制品有限公司 Rubber shock absorption buffering plug and preparation method of rubber shock absorption buffering plug
WO2024021647A1 (en) * 2022-07-23 2024-02-01 浙江天铁实业股份有限公司 Ballast bed resonant plate, and manufacturing method therefor and use thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617579B2 (en) * 2001-02-08 2011-01-26 横浜ゴム株式会社 Rubber composition for tire
JP2007098896A (en) * 2005-10-07 2007-04-19 Daiso Co Ltd Laminate for semiconductive rubber roller
JP2007186644A (en) * 2006-01-16 2007-07-26 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP4767239B2 (en) * 2007-10-25 2011-09-07 ゲイツ・ユニッタ・アジア株式会社 Belt and belt material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139970A (en) * 1986-12-03 1988-06-11 Bridgestone Corp Adhesive rubber composition for steel
JPS63289042A (en) * 1987-05-22 1988-11-25 Sankyo Kasei Kk Diene rubber composition
JPH02132133A (en) * 1989-05-26 1990-05-21 Oouchi Shinko Kagaku Kogyo Kk Polymer coloring composition stable to light
JPH1160820A (en) * 1997-08-12 1999-03-05 Japan Energy Corp Accelerator for adhesion between metal and rubber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2501700B1 (en) * 1981-03-16 1985-08-09 Michelin & Cie SULFUR VULCANIZABLE RUBBER COMPOSITIONS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139970A (en) * 1986-12-03 1988-06-11 Bridgestone Corp Adhesive rubber composition for steel
JPS63289042A (en) * 1987-05-22 1988-11-25 Sankyo Kasei Kk Diene rubber composition
JPH02132133A (en) * 1989-05-26 1990-05-21 Oouchi Shinko Kagaku Kogyo Kk Polymer coloring composition stable to light
JPH1160820A (en) * 1997-08-12 1999-03-05 Japan Energy Corp Accelerator for adhesion between metal and rubber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153793A (en) * 2011-04-18 2011-08-17 青岛茂林橡胶制品有限公司 Rubber shock absorption buffering plug and preparation method of rubber shock absorption buffering plug
CN102153793B (en) * 2011-04-18 2013-03-20 青岛茂林橡胶制品有限公司 Rubber shock absorption buffering plug and preparation method of rubber shock absorption buffering plug
WO2024021647A1 (en) * 2022-07-23 2024-02-01 浙江天铁实业股份有限公司 Ballast bed resonant plate, and manufacturing method therefor and use thereof

Also Published As

Publication number Publication date
JP2001114942A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
US5314741A (en) Rubber article having protective coating
US9441325B2 (en) Atmospheric plasma treatment of reinforcement cords and use in rubber articles
JP2011069020A (en) Adhesive composition for organic fiber cord, and rubber reinforcing material and tire as well as method of adhesion using the same
JP2000198974A (en) Vibration-damping or vibrationproof material
JP2013079348A (en) Resin composition
WO2001027196A1 (en) Rubber composition, composite material, and process for producing composite material
US4211824A (en) Bonding rubber to metal
PT793697E (en) ELASTOMERIC PRODUCTS WITH PROPERTIES OF SOUND INSULATION
JPH09111045A (en) Rubber composition and rubber hose therefrom
US20210230405A1 (en) Thermally expandable rubber composition
JPS591548A (en) Rubber composition
EP4082767A1 (en) Reinforcing material and reinforcing structure
WO1990008170A1 (en) Metal acrylates as rubber-to-metal adhesion promoters
JPH10298527A (en) Epoxy resin-based adhesive composition
JP4681092B2 (en) Adhesive composition for spot welds
JPS61181843A (en) Rubber composition improved in adhesiveness to metal
JP3511114B2 (en) Method for producing rubber-based composite material
JPS61204260A (en) Manufacture of chemical complex comprising forming composition based on polyphenylene ether on one hand and sulfur-vulcanizable double bond-containing rubber on the other hand
JPH0245585A (en) Adhesive composition of glass-pulling unit for belt
JP2917382B2 (en) Rubber compounding method
JPH0234978B2 (en)
JP3721955B2 (en) Rubber product with metal fittings and manufacturing method thereof
KR100303986B1 (en) method for manufacturing bond for damping driving force
WO2023061762A1 (en) Thermally expandable rubber composition
JP3993785B2 (en) Unvulcanized rubber sheet for rubber-laminated laminate and method for producing rubber-laminated laminate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase