WO2001026424A1 - Method for melting and solidifying without contact an electric conductor sample - Google Patents

Method for melting and solidifying without contact an electric conductor sample Download PDF

Info

Publication number
WO2001026424A1
WO2001026424A1 PCT/FR2000/002728 FR0002728W WO0126424A1 WO 2001026424 A1 WO2001026424 A1 WO 2001026424A1 FR 0002728 W FR0002728 W FR 0002728W WO 0126424 A1 WO0126424 A1 WO 0126424A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
magnetic field
intensity
gradient
solidification
Prior art date
Application number
PCT/FR2000/002728
Other languages
French (fr)
Inventor
Pascale Gillon
Original Assignee
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique filed Critical Centre National De La Recherche Scientifique
Priority to DE60016444T priority Critical patent/DE60016444D1/en
Priority to EP00966254A priority patent/EP1222841B1/en
Priority to JP2001528432A priority patent/JP2003511239A/en
Priority to AT00966254T priority patent/ATE284124T1/en
Priority to AU76703/00A priority patent/AU7670300A/en
Priority to KR1020027004369A priority patent/KR20020043611A/en
Publication of WO2001026424A1 publication Critical patent/WO2001026424A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/22Furnaces without an endless core
    • H05B6/32Arrangements for simultaneous levitation and heating

Definitions

  • the present invention relates to a process for melting and solidifying a conductive sample of elect ⁇ cite. as well as an application of this proceeds to the manufacture of samples comprising at least one metastable phase
  • a known technique for levitating a metallic material is electromagnetic lev itation, which consists in applying a high frequency alternating magnetic field to this material.
  • the application of the magnetic field i D produces two effects the generation of induced currents flowing in 1 sample. which orodoute a heating by Joule effect and thus make melt the sample, and the creation of an electromagnetic force of repulsion, which raised and maintains 1 sample in levitation
  • the sample has 1 melted state undergoes an intense electromagnetic stirring: o
  • This technique has the disadvantage of being able to levitate only a small sample.
  • the heating power and the levitation force are coupled because they are all proportional to the square of 1 ntensite of the alternating kinetic field applied in such a way that it is not possible to dissociate its effects
  • the sample undergoes instabilities, due in particular to internal mixing, which risk in particular causing significant lateral movements and even taking the sample out of the field area
  • the present invention relates to a process for melting and solidifying an electrically conductive sample, allowing contactless solidification of the sample while overcoming the constraints present in known techniques of contactless solidification.
  • the method of the invention thus makes it possible to process quantities of materials identical to those subjected to fusion, for the desired duration and economically, without being restricted by security measures linked to on-board systems.
  • the invention also relates to the application of such a method to the manufacture of samples comprising at least one metastable phase.
  • the invention relates to a process for melting and solidifying an electrically conductive sample, in which:
  • the sample is melted by induction by means of an alternating magnetic field
  • a gradient of a continuous magnetic field is superimposed on the alternating magnetic field, so as to cause the molten sample to levitate without contact with solid surfaces, and
  • a solidification of the sample is produced.
  • the intensity of the alternating magnetic field is reduced by varying the intensity of the gradient of the continuous magnetic field, so as to keep the sample in levitation without contact with solid surfaces and to reduce the temperature of the sample to obtain a contactless solidification of this sample.
  • the liquid phase can be overheated without contact to remove all solidification germs, then cooled without contact.
  • Solidification then does not take place at the thermodynamic solidification temperature, but the sample remains liquid below this temperature: this is the phenomenon of supercooling.
  • the out-of-equilibrium conditions make it possible to manufacture metal phases which cannot form at equilibrium. These conditions favor the production of metastable phases.
  • solidification can be very rapid and generate very fine microstructures based on small grains (for example nanograins), or even make it possible to obtain glasses.
  • the change of 1 "intensity of the magnetic field gradient is increased.
  • changes in magnetic susceptibility with temperature generates a magnetic force intensity increase, which requires maintenance or a decrease of the field continuous magnetic.
  • the alternating magnetic field is at high frequency, that is to say at a frequency greater than 1 kHz. and advantageously greater than
  • the continuous magnetic field preferably has a high maximum intensity, of induction greater than 0.3 T and advantageously greater than 3 T.
  • continuous magnetic field is meant a time invariant field.
  • the DC magnetic field preferably produces a strong gradient (spatial variation), the product of the magnetic induction continuous magnetic field by the magnetic induction gradient having an intensity greater than 1 T 2 / m and advantageously greater than 50 T 2 / m.
  • the method according to the invention is applicable not only to diamagnetic materials, but also paramagnetic or ferromagnetic.
  • the application of DC magnetic field in the second step produces the following two effects:
  • the combination of alternating and continuous magnetic fields keeps the sample levitating while controlling its position enough to avoid contact with solid surfaces. Thanks to this combination, it is possible to avoid the instabilities of positioning of the sample, while reducing its temperature.
  • the presence of the alternating field ensures a pa ⁇ ielle self-regulation of the system: if the sample is raised beyond the alternating field, it undergoes a lesser force of electromagnetic levitation. There is therefore a stable electromagnetic position along a vertical axis, which constitutes a so ⁇ e of potential wells.
  • the alternating field also makes it possible to compensate for radial instabilities, in particular when the continuous magnetic field generates a levitation force which is not perfectly vertical.
  • the reduction in intensity of the alternating magnetic field is compensated for by an adapted variation in intensity of the gradient of the continuous magnetic field, so as to exert on the sample an approximately constant levitation force.
  • the sample thus remains in substantially the same position during its solidification.
  • the variation in intensity of the gradient of the continuous magnetic field is advantageously produced by the variation in intensity of the continuous field himself. Such an operation is in fact simple to implement.
  • this variation of the gradient is obtained by modifying the relative positioning of the sample in the DC field or by moving the field or of the sample.
  • a third gradient of the variation in shape combines the first two techniques (modification of the field strength and the relative positioning of the sample).
  • the variation of the levitation force produced by the alternating magnetic field (induction) is evaluated over time, preferably taking into account the variations with the temperature of the magnetic properties of the sample. Indeed, these generally decrease with temperature, according to a function depending on the material considered.
  • the gradient of the continuous magnetic field is modified so as to compensate for the decrease in the levitation force and to keep it approximately constant.
  • the gradient of the continuous magnetic field is controlled by the variation of the levitation force evaluated.
  • the gradient of the continuous magnetic field is controlled by the movements of the sample.
  • the intensity of the gradient of the continuous magnetic field is automatically controlled.
  • the adjustments are made manually.
  • the intensity of the alternating magnetic field is adjusted so as to obtain an overheating of the sample. This overheating is preferably sufficient to produce a supercooling of the sample in the third step.
  • the intensity of the alternating magnetic field must then be high enough to overheat the liquid phase so as to dissolve all the germs solidification in the second step.
  • the cooling of the sample in the third step thus only causes solidification in a supercooled state. Obtaining such supercooling is obtained by the combination of two characteristics of the process: contactless melting, which makes it possible to rise very high in temperature in a very homogeneous manner in the sample, and contactless solidification, which avoids the appearance of solidification germs compromising supercooling.
  • a gradient of continuous magnetic field is applied from the first step, that is to say before and during the fusion of the sample. It is thus possible to melt the sample in levitation.
  • Such a method generally requires a gradual reduction of the DC field, as the AC field is increased to increase the heating of the sample. Indeed, it should preserve the spatial stability of the latter, and even preferentially to exercise on a sample approximately constant levitation force.
  • This technique is more complex to implement than the previous one (without any continuous field during the first step).
  • it is particularly advantageous when it is desired to avoid contact between the liquid sample and the container containing it, in order to preserve the purity of this sample.
  • it is advantageously used when using a refractory crucible as a container. In this way, it is in fact avoided to load the sample material with refractory impurities, which would be produced by reactions at the walls of the crucible during melting.
  • an advantageous mode of implementation consists in slightly reducing the intensity of induction, which can make it possible to considerably reduce the temperature without significantly disturbing the position of the sample.
  • the alternating and continuous magnetic fields are gradually reduced to zero, so as to recover the solidified sample.
  • the sample is preferably placed in a gradient zone of the continuous magnetic field, this gradient having an intensity decreasing upwards.
  • the continuous magnetic field is applied by means of a superconductive magnet.
  • the sample is melted in a cold crucible.
  • This crucible is, for example, cooled copper.
  • the use of a cold crucible makes it possible to rise very high in temperature and to avoid chemical reactions at the walls.
  • the levitation of the sample makes it possible to avoid heat exchanges at the walls and thus to raise the temperature substantially above the melting point of the material considered.
  • the sample is melted in a crucible made of refractory bricks.
  • This mode of implementation is however not applicable to materials capable of chemically attacking the walls of the crucible, and it is then necessary to melt the sample in levitation by applying from the first step a continuous magnetic field, as explained previously.
  • this cold crucible is inductive and is positioned in a magnetic field gradient area of the superconducting magnet, capable of producing an upward directed vertical force on the sample.
  • the invention also concerns the application of the melting process and solidifying the manufacture of samples comprising at least a metastable phase. This process indeed allows obtaining metastable phases which cannot be obtained other than by supercooling.
  • this metastable phase is based on a titanium alloy, preferably TiAl.
  • a contactless electromagnetic and magnetic levitation non-contact melting device comprises (figure) an inductor 1 placed in a superconductive coil 2 and surrounding a cold crucible 3.
  • the cold crucible 3 is, for example, a hemispherical crucible made of sectored copper having an internal diameter of 16 mm, inserted in the inductor 1.
  • the bottom of the crucible 3 is equipped with a retractable cooled finger 4, connected to a horizontal support 5 of vertical translation.
  • the inductor 1 is, for example, an inductor with four turns supplied with high frequency alternating current.
  • the inductive system comprising the inductor 1 and the cold crucible 3 is placed in a sealed enclosure 10, connected to a primary vacuum pump. This enclosure 10, resting on the support 5. is provided with an upper window 7 allowing monitoring by video camera 6 of the phenomena occurring in the enclosure 10.
  • the superconductive coil 2 is provided with a field hole of 120 mm in diameter and is capable of delivering a vertical magnetic field up to 8 T in the center.
  • the enclosure 10 is inserted in the center of this coil 2.
  • a solid sample is first placed in the cold crucible 3 and a vacuum is produced on this sample.
  • the following operations are carried out for treating the sample under a partial argon atmosphere.
  • the force responsible for levitation consists of a component from the alternating magnetic field (repulsion between inductor and metallic charge) and a component from the continuous magnetic field gradient related to the magnetic susceptibility of the material.
  • the temperature of the sample is lowered while keeping the total levitation force constant.
  • the decrease in temperature is obtained by gradual decrease in the intensity of the alternating magnetic field. This operation produces two effects: a decrease in the electromagnetic component of the levitation force and a variation in the magnetic susceptibility (which is a function of temperature) which acts on the value of the magnetic component of the levitation force.
  • Solidification without contact is therefore obtained by compensating in real time during cooling for the variation in the levitation force by a variation in the intensity of the corresponding gradient of the continuous magnetic field.
  • an infrared pyrometer preferably makes it possible to monitor the temperature of the sample during treatment. It is thus possible, if necessary, to determine the variations in the magnetic properties of the sample and to combine them with the variations in induction to determine the variation to be applied to the continuous magnetic field, therefore to the induced gradient.

Abstract

The invention concerns a method for melting and solidifying an electric conductor sample, which consists in: melting the sample by induction using a high frequency alternating magnetic field; superposing on the alternating magnetic field a continuous magnetic field gradient with high intensity, so as to levitate the melted sample without contact with solid surfaces; and in reducing the intensity of the alternating magnetic field by increasing the intensity of the continuous magnetic field, so as to maintain the sample in levitation without contact with the solid surfaces; and reducing the temperature of the sample to obtain solidification without contact of said sample. The invention is applicable to samples comprising at least a metastable phase.

Description

PROCEDE DE FUSION ET DE SOLIDIFICATION SANS PROCESS OF MELTING AND SOLIDIFICATION WITHOUT
CONTACT D'UN ECHANTILLON CONDUCTEURCONTACT OF A CONDUCTIVE SAMPLE
D'ELECTRICITE.ELECTRICITY.
La présente invention se rapporte a un procède de fusion et de solidification d un échantillon conducteur d'electπcite. ainsi qu a une application de ce procède a la fabrication d'échantillons comprenant au moins une phase metastableThe present invention relates to a process for melting and solidifying a conductive sample of electπcite. as well as an application of this proceeds to the manufacture of samples comprising at least one metastable phase
La lévitation de matériaux métalliques fondus est un phénomène d un grand intérêt en génie des procèdes d élaboration du tait de l'absence de parois en contact avec le matériau liquide Ainsi, une telle technique permet d'élaborer ou de transporter des métaux très reactifs, a très haut point de fusion, ou nécessitant une ties grande pureté, de mesurer a l'état liquide les propriétés physiques de o ceπains alliages ou encore de produire des taux de surfusion importants dans des hαuides. pouvant conduire a des phases metastables par solidification rapideThe levitation of molten metallic materials is a phenomenon of great interest in the engineering of processes for the preparation of the absence of walls in contact with liquid material. Thus, such a technique makes it possible to develop or transport very reactive metals, at a very high melting point, or requiring a high purity, to measure in the liquid state the physical properties of o ceπains alloys or to produce significant rates of supercooling in fluids. can lead to metastable phases by rapid solidification
Une technique connue ûe lévitation d un matériau métallique est la lév itation électromagnétique, qui consiste a appliquer un champ magnétique alternatif haute fréquence a ce matériau L'application du champ magnétique i D produit deux effets la génération de courants induits circulant dans 1 échantillon. qui oroduisent un chauffage par effet Joule et font ainsi fondre l'échantillon, et la création d'une force électromagnétique de repulsion, qui soulevé et maintient 1 ecnantillon en lévitation De plus, l'échantillon a 1 état fondu subit un brassage électromagnétique intense :o Cette technique présente l'inconvénient de ne pouvoir mettre en lévitation qu un échantillon de taille réduite De plus, la puissance de chauffage et la force de lévitation sont couplées car elles sont toutes
Figure imgf000003_0001
proportionnelles au carre de 1 ntensite du champ masnetique alternatif applique de telle sorte qu il n'est pas possible d en dissocier les effets Enfin, l'échantillon subit des instabilités, dues en z> particulier au brassage interne, qui risquent de provoquer notamment des mouvements latéraux importants et même d entramer l'échantillon hors de la zone de champ
A known technique for levitating a metallic material is electromagnetic lev itation, which consists in applying a high frequency alternating magnetic field to this material. The application of the magnetic field i D produces two effects the generation of induced currents flowing in 1 sample. which orodoute a heating by Joule effect and thus make melt the sample, and the creation of an electromagnetic force of repulsion, which raised and maintains 1 sample in levitation In addition, the sample has 1 melted state undergoes an intense electromagnetic stirring: o This technique has the disadvantage of being able to levitate only a small sample. In addition, the heating power and the levitation force are coupled because they are all
Figure imgf000003_0001
proportional to the square of 1 ntensite of the alternating kinetic field applied in such a way that it is not possible to dissociate its effects Finally, the sample undergoes instabilities, due in particular to internal mixing, which risk in particular causing significant lateral movements and even taking the sample out of the field area
Il a ete propose une technique de lévitation permettant de résoudre ces inconvénients, qui consiste a coupler un champ magnétique alternatif hauteIt has been proposed a levitation technique to resolve these drawbacks, which consists in coupling a high alternating magnetic field
:o fréquence avec un champ magnétique de forte intensité et présentant une forte v ariation spatiale Cette méthode est décrite par exemple, dans l'article: o frequency with a strong magnetic field with a strong spatial variation This method is described for example in the article
Stabilized lévitation melting of metallic mateπals de Pascale Gillon, deuxièmeStabilized levitation melting of metallic mateπals by Pascale Gillon, second
Conférence Internationale E P M . Pans. 27-29 mai 1997 Elle permet de produire une lévitation stable d'échantillons massifs pouvant peser jusqu'à une centaine deInternational Conference E P M. Pans. May 27-29, 1997 It produces a stable levitation of massive samples that can weigh up to a hundred
^ grammes, diamagnetiques ou paramagnetiques Cette stabilisation s explique par un freinage du brassage électromagnétique par le champ magnétique continu intense.^ grams, diamagnetic or paramagnetic This stabilization is explained by braking of the electromagnetic mixing by the intense continuous magnetic field.
Les avantages procurés par la lévitation de matériaux métalliques fondus sont cependant souvent limités, ou même compromis, lors de la solidification de ces matériaux. En effet, après fusion, l'échantillon fondu est récupéré dans un récipient où il se solidifie, de telle sorte qu'il est en contact avec des parois. Des germes de solidification apparaissent donc au niveau des contacts de l'échantillon avec les parois du récipient et, de plus, la pureté de l'échantillon ne peut pas être maintenue. Ceci porte préjudice à une surfusion et entraîne une solidification prématurée, empêchant d'obtenir tous les avantages escomptés.The advantages provided by the levitation of molten metallic materials are however often limited, or even compromised, during the solidification of these materials. Indeed, after fusion, the molten sample is collected in a container where it solidifies, so that it is in contact with walls. Solidification seeds therefore appear at the contacts of the sample with the walls of the container and, moreover, the purity of the sample cannot be maintained. This is detrimental to supercooling and leads to premature solidification, preventing all the expected benefits from being obtained.
Plusieurs techniques existent pour solidifier sans contact des échantillons. Toutes sont fondées sur l'élimination de l'effet de pesanteur : en navette spatiale, en chute libre ou en vols paraboliques. Cependant, de telles méthodes sont sujettes à des contraintes considérables : durées disponibles. quantités pouvant être mises en jeu et/ou coûts impliqués, auxquelles s'ajoutent pour les systèmes embarqués des problèmes liés à la présence de matériaux inflammables ou ayant des propriétés magnétiques perturbatrices.Several techniques exist for solidifying samples without contact. All are based on the elimination of the effect of gravity: in space shuttle, in free fall or in parabolic flights. However, such methods are subject to considerable constraints: available times. quantities that can be involved and / or costs involved, to which are added for on-board systems problems linked to the presence of flammable materials or materials with disturbing magnetic properties.
La présente invention concerne un procédé de fusion et de solidification d'un échantillon conducteur d'électricité, permettant une solidification sans contact de l'échantillon tout en s'affranchissant des contraintes présentes dans les techniques connues de solidification sans contact. Le procédé de l'invention permet ainsi de traiter des quantités de matériaux identiques à celles soumises à la fusion, pendant la durée désirée et de manière économique, sans être restreint par des mesures de sécurité liées à des systèmes embarqués. L'invention concerne également l'application d'un tel procédé à la fabrication d'échantillons comprenant au moins une phase metastable.The present invention relates to a process for melting and solidifying an electrically conductive sample, allowing contactless solidification of the sample while overcoming the constraints present in known techniques of contactless solidification. The method of the invention thus makes it possible to process quantities of materials identical to those subjected to fusion, for the desired duration and economically, without being restricted by security measures linked to on-board systems. The invention also relates to the application of such a method to the manufacture of samples comprising at least one metastable phase.
A cet effet, l'invention est relative à un procédé de fusion et de solidification d'un échantillon conducteur d'électricité, dans lequel :To this end, the invention relates to a process for melting and solidifying an electrically conductive sample, in which:
- dans une première étape, on fait fondre l'échantillon par induction au moyen d'un champ magnétique alternatif,- in a first step, the sample is melted by induction by means of an alternating magnetic field,
- dans une deuxième étape, on superpose au champ magnétique alternatif un gradient d'un champ magnétique continu, de manière à provoquer une lévitation de l'échantillon fondu sans contact avec des surfaces solides, etin a second step, a gradient of a continuous magnetic field is superimposed on the alternating magnetic field, so as to cause the molten sample to levitate without contact with solid surfaces, and
- dans une troisième étape, on produit une solidification de l'échantillon. Selon l'invention, dans la troisième étape, on réduit l'intensité du champ magnétique alternatif en variant l'intensité du gradient du champ magnétique continu, de manière à maintenir l'échantillon en lévitation sans contact avec des surfaces solides et à diminuer la température de l'échantillon pour obtenir une solidification sans contact de cet échantillon.- In a third step, a solidification of the sample is produced. According to the invention, in the third step, the intensity of the alternating magnetic field is reduced by varying the intensity of the gradient of the continuous magnetic field, so as to keep the sample in levitation without contact with solid surfaces and to reduce the temperature of the sample to obtain a contactless solidification of this sample.
Ainsi, de manière surprenante, on parvient à solidifier l'échantillon sans contact, au moyen du même dispositif que celui utilisé pour la fusion sans contact. Contrairement à toute attente, il n'est pas nécessaire de faire cesser la lévitation pour réduire la température et solidifier ainsi l'échantillon, et l'on peut s'abstenir de mettre en œuvre de complexes techniques d'apesanteur pour obtenir cette solidification sans contact.Thus, surprisingly, one succeeds in solidifying the sample without contact, by means of the same device as that used for the fusion without contact. Contrary to expectations, it is not necessary to stop the levitation to reduce the temperature and thereby solidify the sample, and can be to refrain from implementing complex technical weightless for this solidification without contact.
De cette manière, on peut surchauffer la phase liquide sans contact pour éliminer tous les germes de solidification, puis la refroidir sans contact. La solidification n'a alors pas lieu à la température thermodynamique de solidification, mais l'échantillon reste liquide en dessous de cette température : c'est le phénomène de surfusion. Quand la solidification intervient, les conditions hors équilibre permettent de fabriquer des phases métalliques qui ne peuvent pas se former à l'équilibre. Ces conditions favorisent la fabrication de phases métastables. De plus, la solidification peut être très rapide et engendrer des microstructures très fines à base de petits grains (par exemple des nanograins), ou même rendre possible l'obtention de verres.In this way, the liquid phase can be overheated without contact to remove all solidification germs, then cooled without contact. Solidification then does not take place at the thermodynamic solidification temperature, but the sample remains liquid below this temperature: this is the phenomenon of supercooling. When solidification occurs, the out-of-equilibrium conditions make it possible to manufacture metal phases which cannot form at equilibrium. These conditions favor the production of metastable phases. In addition, solidification can be very rapid and generate very fine microstructures based on small grains (for example nanograins), or even make it possible to obtain glasses.
Généralement, la variation de 1" intensité du gradient du champ magnétique est une augmentation. Cependant, pour certains matériaux, la variation de susceptibilité magnétique avec la température engendre une augmentation d'intensité de force magnétique, qui nécessite un maintien ou une diminution du champ magnétique continu.Generally, the change of 1 "intensity of the magnetic field gradient is increased. However, for some materials, changes in magnetic susceptibility with temperature generates a magnetic force intensity increase, which requires maintenance or a decrease of the field continuous magnetic.
Préférentiellement. le champ magnétique alternatif est à haute fréquence, c'est-à-dire à une fréquence supérieure à 1 kHz. et avantageusement supérieure àPreferentially. the alternating magnetic field is at high frequency, that is to say at a frequency greater than 1 kHz. and advantageously greater than
50 kHz. De plus, le champ magnétique continu a préférentiellement une forte intensité maximale, d'induction supérieure à 0.3 T et avantageusement supérieure à 3 T.50 kHz. In addition, the continuous magnetic field preferably has a high maximum intensity, of induction greater than 0.3 T and advantageously greater than 3 T.
Par "champ magnétique continu", on entend un champ invariant dans le temps.By "continuous magnetic field" is meant a time invariant field.
Le champ magnétique continu permet préférentiellement de produire un fort gradient (variation dans l'espace), le produit de l'induction magnétique du champ magnétique continu par le gradient d'induction magnétique ayant une intensité supérieure à 1 T2/m et avantageusement supérieure à 50 T2/m.The DC magnetic field preferably produces a strong gradient (spatial variation), the product of the magnetic induction continuous magnetic field by the magnetic induction gradient having an intensity greater than 1 T 2 / m and advantageously greater than 50 T 2 / m.
Le procédé selon l'invention est applicable non seulement à des matériaux diamagnétiques, mais aussi paramagnétiques ou ferromagnétiques. L'application du champ magnétique continu dans la deuxième étape produit les deux effets suivants :The method according to the invention is applicable not only to diamagnetic materials, but also paramagnetic or ferromagnetic. The application of DC magnetic field in the second step produces the following two effects:
- une lévitation qui soulève verticalement l'échantillon : en le détachant ainsi de son support, on réduit les pertes thermiques par contact et on peut donc obtenir une surchauffe importante ; cet effet est particulièrement avantageux dans le cas d'un creuset froid, car des peπes thermiques par contact empêcheraient alors toute surchauffe ;- a levitation which vertically raises the sample: thus detaching it from its support, it reduces heat loss by contact and can thus obtain a high overheating; this effect is particularly advantageous in the case of a cold crucible, for thermal contact peπes then prevent overheating;
- et une réduction, voire un arrêt du brassage électromagnétique, ce qui stabilise la forme du liquide et fixe sa position, permettant de mettre en lévitation l'échantillon liquide de manière stable. Par « surchauffe », on entend une élévation de température à une valeur supérieure à la température de fusion.- And a reduction, or even a stopping of the electromagnetic stirring, which stabilizes the shape of the liquid and fixes its position, making it possible to levitate the liquid sample in a stable manner. By "overheating" is meant a rise in temperature to a value greater than the melting temperature.
La combinaison des champs magnétiques alternatif et continu permet de maintenir l'échantillon en lévitation tout en contrôlant suffisamment sa position pour éviter des contacts avec des surfaces solides. Grâce à cette combinaison, on parvient à éviter les instabilités de positionnement de l'échantillon, tout en réduisant sa température.The combination of alternating and continuous magnetic fields keeps the sample levitating while controlling its position enough to avoid contact with solid surfaces. Thanks to this combination, it is possible to avoid the instabilities of positioning of the sample, while reducing its temperature.
De plus, la présence du champ alternatif assure une autorégulation paπielle du système : si l'échantillon est soulevé au delà du champ alternatif, il subit une force moindre de lévitation électromagnétique. Il existe donc une position électromagnétique stable le long d'un axe vertical, qui constitue une soπe de puits de potentiel. Qui plus est, le champ alternatif permet aussi de compenser des instabilités radiales, en particulier lorsque le champ magnétique continu génère une force de lévitation qui n'est pas parfaitement verticale.In addition, the presence of the alternating field ensures a paπielle self-regulation of the system: if the sample is raised beyond the alternating field, it undergoes a lesser force of electromagnetic levitation. There is therefore a stable electromagnetic position along a vertical axis, which constitutes a soπe of potential wells. What is more, the alternating field also makes it possible to compensate for radial instabilities, in particular when the continuous magnetic field generates a levitation force which is not perfectly vertical.
Préférentiellement, dans la troisième étape, on compense la réduction d'intensité du champ magnétique alternatif par une variation adaptée d'intensité du gradient du champ magnétique continu, de façon à exercer sur l'échantillon une force de lévitation approximativement constante. L'échantillon reste ainsi sensiblement à la même position durant sa solidification.Preferably, in the third step, the reduction in intensity of the alternating magnetic field is compensated for by an adapted variation in intensity of the gradient of the continuous magnetic field, so as to exert on the sample an approximately constant levitation force. The sample thus remains in substantially the same position during its solidification.
La variation d'intensité du gradient du champ magnétique continu est avantageusement produite par la variation d'intensité du champ continu lui-même. Une telle opération est en effet simple à mettre en oeuvre. Selon une autre technique, cette variation du gradient est obtenue en modifiant le positionnement relatif de l'échantillon dans le champ continu, soit par déplacement du champ, soit de l'échantillon. Enfin, une troisième forme de variation du gradient combine les deux premières techniques (modification de l'intensité du champ et du positionnement relatif de l'échantillon).The variation in intensity of the gradient of the continuous magnetic field is advantageously produced by the variation in intensity of the continuous field himself. Such an operation is in fact simple to implement. According to another technique, this variation of the gradient is obtained by modifying the relative positioning of the sample in the DC field or by moving the field or of the sample. Finally, a third gradient of the variation in shape combines the first two techniques (modification of the field strength and the relative positioning of the sample).
Selon une première forme de mise en œuvre de la combinaison des champs magnétiques alternatif et continu durant la troisième étape, on évalue la variation de la force de lévitation produite par le champ magnétique alternatif (induction) au cours du temps, en prenant préférentiellement en compte les v ariations avec la température des propriétés magnétiques de l'échantillon. En effet, celles-ci diminuent généralement avec la température, selon une fonction dépendant du matériau considéré. Une fois évaluée la variation de force de lévitation due à la diminution d'induction et de température, on modifie le gradient du champ magnétique continu de manière a compenser la diminution de la force de lévitation et à la maintenir approximativement constante. Préférentiellement, on asservit le gradient du champ magnétique continu à la variation de force de lévitation évaluée.According to a first form of implementation of the combination of alternating and continuous magnetic fields during the third step, the variation of the levitation force produced by the alternating magnetic field (induction) is evaluated over time, preferably taking into account the variations with the temperature of the magnetic properties of the sample. Indeed, these generally decrease with temperature, according to a function depending on the material considered. Once the variation in levitation force due to the decrease in induction and temperature has been evaluated, the gradient of the continuous magnetic field is modified so as to compensate for the decrease in the levitation force and to keep it approximately constant. Preferably, the gradient of the continuous magnetic field is controlled by the variation of the levitation force evaluated.
Il est avantageux que l'évaluation des variations de force de lévitation dues aux diminutions de l'induction et de la température soit calculée numériquement en temps réel, au moyen de tables donnant des données relatives aux propriétés magnétiques du matériau traité.It is advantageous that the evaluation of the variations in levitation force due to the decreases in induction and temperature is calculated numerically in real time, by means of tables giving data relating to the magnetic properties of the material treated.
Dans une seconde forme de mise en œuvre de la combinaison des champs magnétiques alternatif et continu durant la troisième étape, on asservit le gradient du champ magnétique continu aux mouvements de l'échantillon. On compense ainsi directement les effets des variations de la force de lévitation, qui se manifestent spatialement. Avantageusement, on asservit de manière automatique l'intensité du gradient du champ magnétique continu. Dans une variante de mise en œuvre, on effectue les ajustements manuellement. Préférentiellement, dans la deuxième étape, on ajuste l'intensité du champ magnétique alternatif de manière à obtenir une surchauffe de l'échantillon. Cette surchauffe est avantageusement suffisante pour produire une surfusion de l'échantillon dans la troisième étape.In a second form of implementation of the combination of alternating and continuous magnetic fields during the third step, the gradient of the continuous magnetic field is controlled by the movements of the sample. We thus directly compensate for the effects of variations in the force of levitation, which manifest spatially. Advantageously, the intensity of the gradient of the continuous magnetic field is automatically controlled. In an implementation variant, the adjustments are made manually. Preferably, in the second step, the intensity of the alternating magnetic field is adjusted so as to obtain an overheating of the sample. This overheating is preferably sufficient to produce a supercooling of the sample in the third step.
L'intensité du champ magnétique alternatif doit alors être suffisamment élevée pour surchauffer la phase liquide de manière à dissoudre tous les germes de solidification dans la deuxième étape. Le refroidissement de l'échantillon dans la troisième étape n'entraîne ainsi une solidification que dans un état de surfusion. L'obtention d'une telle surfusion est obtenue grâce à la combinaison de deux caractéristiques du procédé : la fusion sans contact, qui permet de monter très haut en température de manière très homogène dans l'échantillon, et la solidification sans contact, qui évite l'apparition de germes de solidification compromettant la surfusion.The intensity of the alternating magnetic field must then be high enough to overheat the liquid phase so as to dissolve all the germs solidification in the second step. The cooling of the sample in the third step thus only causes solidification in a supercooled state. Obtaining such supercooling is obtained by the combination of two characteristics of the process: contactless melting, which makes it possible to rise very high in temperature in a very homogeneous manner in the sample, and contactless solidification, which avoids the appearance of solidification germs compromising supercooling.
Avantageusement, dans la première étape, on n'applique aucun gradient de champ magnétique continu. Cette technique a le mérite de sa simplicité et est particulièrement appropriée lorsqu'on utilise un creuset froid pour faire fondre l'échantillon.Advantageously, in the first step, no continuous magnetic field gradient is applied. This technique has the merit of its simplicity and is particularly suitable when using a cold crucible to melt the sample.
Selon un autre mode d'application du champ magnétique continu, on applique un gradient de champ magnétique continu dès la première étape, c'est à dire avant et pendant la fusion de l'échantillon. On peut ainsi faire fondre l'échantillon en lévitation. Une telle méthode requiert généralement une réduction progressive du champ continu, à mesure qu'on augmente le champ alternatif pour accroître le chauffage de l'échantillon. En effet, il convient de préserver la stabilité spatiale de ce dernier, et même préférentiellement d'exercer sur l'échantillon une force de lévitation environ constante. On procède donc généralement en quatre temps pour l'application du champ continu : augmentation à partir de zéro pour obtenir la lévitation, réduction pour compenser l'augmentation du champ alternatif (première et deuxième étapes), augmentation pour compenser la diminution du champ alternatif (troisième étape) et de préférence réduction jusqu'à zéro pour récupérer l'échantillon solidifié.According to another mode of application of the continuous magnetic field, a gradient of continuous magnetic field is applied from the first step, that is to say before and during the fusion of the sample. It is thus possible to melt the sample in levitation. Such a method generally requires a gradual reduction of the DC field, as the AC field is increased to increase the heating of the sample. Indeed, it should preserve the spatial stability of the latter, and even preferentially to exercise on a sample approximately constant levitation force. We therefore generally proceed in four stages for the application of the continuous field: increase from zero to obtain levitation, reduction to compensate for the increase in the alternating field (first and second stages), increase to compensate for the decrease in the alternating field ( third step) and preferably reduction to zero to recover the solidified sample.
Cette technique est plus complexe à mettre en oeuvre que la précédente (sans aucun champ continu pendant la première étape). Cependant, elle s'avère particulièrement intéressante lorsqu'on souhaite éviter un contact entre l'échantillon liquide et le récipient le contenant, afin de préserver la pureté de cet échantillon. Notamment, on y a avantageusement recours lorsqu'on utilise un creuset réfractaire comme récipient. De cette manière, on évite en effet de charger le matériau de l'échantillon en impuretés réffactaires, qui seraient produites par des réactions aux parois du creuset lors de la fusion.This technique is more complex to implement than the previous one (without any continuous field during the first step). However, it is particularly advantageous when it is desired to avoid contact between the liquid sample and the container containing it, in order to preserve the purity of this sample. In particular, it is advantageously used when using a refractory crucible as a container. In this way, it is in fact avoided to load the sample material with refractory impurities, which would be produced by reactions at the walls of the crucible during melting.
Durant la deuxième étape, un mode avantageux de mise en œuvre consiste à réduire légèrement l'intensité d'induction, ce qui peut permettre de réduire considérablement la température sans perturber sensiblement la position de l'échantillon.During the second stage, an advantageous mode of implementation consists in slightly reducing the intensity of induction, which can make it possible to considerably reduce the temperature without significantly disturbing the position of the sample.
Préférentiellement, dans une quatrième étape, on réduit progressivement les champs magnétiques alternatif et continu jusqu'à zéro, de façon à récupérer l'échantillon solidifié.Preferably, in a fourth step, the alternating and continuous magnetic fields are gradually reduced to zero, so as to recover the solidified sample.
On dispose de préférence l'échantillon dans une zone de gradient du champ magnétique continu, ce gradient ayant une intensité décroissant vers le haut.The sample is preferably placed in a gradient zone of the continuous magnetic field, this gradient having an intensity decreasing upwards.
Cette décroissance s'entend comme couvrant en particulier la zone où on met l'échantillon en lévitation au moyen des champs magnétiques alternatif et continu. De cette manière, on complète l' autorégulation partielle obtenue au moyen du champ alternatif, qui conduit à une position électromagnétique stable le long d'un axe vertical. En effet, la composante de la force de lévitation due au champ continu est alors moindre quand l'échantillon s'élève. L'effet de la pesanteur se conjugue ainsi avec les effets du champ alternatif et du gradient du champ continu, de façon à prévenir des instabilités et à pouvoir maintenir l'échantillon en position.This decrease s' interpreted as covering in particular the area where the sample is brought in levitation using the AC and DC magnetic fields. In this way, is completed the partial obtained by means of the alternating field self-regulation, which results in a stable electromagnetic position along a vertical axis. Indeed, the component of the force of levitation due to the continuous field is less when the sample rises. The effect of gravity is thus combined with the effects of the alternating field and the gradient of the steady field, so as to prevent instabilities and to be able to maintain the sample in position.
De préférence, on applique le champ magnétique continu au moyen d'un aimant supraconducteur. Selon un mode préféré de mise en œuvre, on fait fondre l'échantillon dans un creuset froid. Ce creuset est, par exemple, en cuivre refroidi. L'utilisation d'un creuset froid permet de monter très haut en température et d'éviter des réactions chimiques aux parois. De plus, la lévitation de l'échantillon permet d'éviter les échanges thermiques aux parois et d'élever ainsi la température sensiblement au-dessus du point de fusion du matériau considéré.Preferably, the continuous magnetic field is applied by means of a superconductive magnet. According to a preferred mode of implementation, the sample is melted in a cold crucible. This crucible is, for example, cooled copper. The use of a cold crucible makes it possible to rise very high in temperature and to avoid chemical reactions at the walls. In addition, the levitation of the sample makes it possible to avoid heat exchanges at the walls and thus to raise the temperature substantially above the melting point of the material considered.
Dans un autre mode de mise en œuvre, on fait fondre l'échantillon dans un creuset en briques réfractaires. Ce mode de mise en œuvre n'est cependant pas applicable à des matériaux susceptibles d'attaquer chimiquement les parois du creuset, et il convient alors de faire fondre l'échantillon en lévitation en appliquant dès la première étape un champ magnétique continu, comme exposé précédemment.In another embodiment, the sample is melted in a crucible made of refractory bricks. This mode of implementation is however not applicable to materials capable of chemically attacking the walls of the crucible, and it is then necessary to melt the sample in levitation by applying from the first step a continuous magnetic field, as explained previously.
Dans un mode de mise en œuvre avantageux mettant en jeu un aimant supraconducteur pour l'application du champ magnétique continu et un creuset froid pour la fusion de l'échantillon, ce creuset froid est inductif et est positionné dans une zone de gradient de champ magnétique de l'aimant supraconducteur, capable de produire sur l'échantillon une force verticale dirigée vers le haut.In an advantageous embodiment using a superconductive magnet for the application of the continuous magnetic field and a cold crucible for melting the sample, this cold crucible is inductive and is positioned in a magnetic field gradient area of the superconducting magnet, capable of producing an upward directed vertical force on the sample.
L'invention concerne également l'application du procédé de fusion et de solidification à la fabrication d'échantillons comprenant au moins une phase metastable. Ce procédé autorise en effet l'obtention de phases métastables qui ne peuvent pas être obtenues autrement que par surfusion.The invention also concerns the application of the melting process and solidifying the manufacture of samples comprising at least a metastable phase. This process indeed allows obtaining metastable phases which cannot be obtained other than by supercooling.
Avantageusement, cette phase metastable est à base d'un alliage de titane, préférentiellement de TiAl.Advantageously, this metastable phase is based on a titanium alloy, preferably TiAl.
L'invention sera mieux comprise et illustrée au moyen d'un exemple de mise en œuvre nullement limitatif, en référence à la figure annexée, représentant un dispositif de fusion sans contact utilisé pour mettre en œuvre le procédé de l'invention.The invention will be better understood and illustrated by means of an exemplary implementation which is in no way limitative, with reference to the appended figure, representing a contactless melting device used to implement the method of the invention.
Un dispositif de fusion sans contact par lévitation couplée et électromagnétique et magnétique comprend (figure) un inducteur 1 placé dans une bobine supraconductrice 2 et entourant un creuset froid 3.A contactless electromagnetic and magnetic levitation non-contact melting device comprises (figure) an inductor 1 placed in a superconductive coil 2 and surrounding a cold crucible 3.
Le creuset froid 3 est, par exemple, un creuset hémisphérique en cuivre sectorisé ayant un diamètre intérieur de 16 mm, inséré dans l'inducteur 1. Le fond du creuset 3 est équipé d'un doigt refroidi 4 escamotable, relié à un support horizontal 5 de translation verticale. L'inducteur 1 est, par exemple, un inducteur à quatre spires alimenté en courant alternatif haute fréquence. Le système inductif comprenant l'inducteur 1 et le creuset froid 3 est placé dans une enceinte étanche 10, reliée à une pompe à vide primaire. Cette enceinte 10, reposant sur le support 5. est pourvue d'un hublot supérieur 7 autorisant un suivi par caméra vidéo 6 des phénomènes se produisant dans l'enceinte 10.The cold crucible 3 is, for example, a hemispherical crucible made of sectored copper having an internal diameter of 16 mm, inserted in the inductor 1. The bottom of the crucible 3 is equipped with a retractable cooled finger 4, connected to a horizontal support 5 of vertical translation. The inductor 1 is, for example, an inductor with four turns supplied with high frequency alternating current. The inductive system comprising the inductor 1 and the cold crucible 3 is placed in a sealed enclosure 10, connected to a primary vacuum pump. This enclosure 10, resting on the support 5. is provided with an upper window 7 allowing monitoring by video camera 6 of the phenomena occurring in the enclosure 10.
La bobine supraconductrice 2 est pourvue d'un trou de champ de 120 mm de diamètre et est capable de délivrer un champ magnétique vertical jusqu'à 8 T au centre. L'enceinte 10 est insérée au centre de cette bobine 2.The superconductive coil 2 is provided with a field hole of 120 mm in diameter and is capable of delivering a vertical magnetic field up to 8 T in the center. The enclosure 10 is inserted in the center of this coil 2.
En fonctionnement, un échantillon solide est tout d'abord placé dans le creuset froid 3 et on réalise le vide sur cet échantillon. On effectue les opérations suivantes de traitement de l'échantillon sous atmosphère partielle d'argon.In operation, a solid sample is first placed in the cold crucible 3 and a vacuum is produced on this sample. The following operations are carried out for treating the sample under a partial argon atmosphere.
A champ continu nul, l'échantillon est chauffé puis fondu par induction en augmentant l'intensité du champ magnétique alternatif. Une fois l'échantillon liquide, l'intensité du champ continu est progressivement augmentée jusqu'à l'obtention de la lévitation. Dès que l'échantillon quitte le creuset froid 3. il s'ensuit une surchauffe importante du liquide. La force responsable de la lévitation est constituée d'une composante issue du champ magnétique alternatif (répulsion entre inducteur et charge métallique) et d'une composante issue du gradient de champ magnétique continu liée à la susceptibilité magnétique du matériau.At zero continuous field, the sample is heated and then melted by induction by increasing the intensity of the alternating magnetic field. Once the sample is liquid, the intensity of the continuous field is gradually increased until the levitation is obtained. As soon as the sample leaves the cold crucible 3. it this results in significant overheating of the liquid. The force responsible for levitation consists of a component from the alternating magnetic field (repulsion between inductor and metallic charge) and a component from the continuous magnetic field gradient related to the magnetic susceptibility of the material.
Pour solidifier sans contact, on diminue la température de l'échantillon tout en conservant la force totale de lévitation constante. La diminution de la température est obtenue par diminution progressive de l'intensité du champ magnétique alternatif. Cette opération produit deux effets : une diminution de la composante électromagnétique de la force de lévitation et une variation de la susceptibilité magnétique (qui est fonction de la température) qui agit sur la valeur de la composante magnétique de la force de lévitation.To solidify without contact, the temperature of the sample is lowered while keeping the total levitation force constant. The decrease in temperature is obtained by gradual decrease in the intensity of the alternating magnetic field. This operation produces two effects: a decrease in the electromagnetic component of the levitation force and a variation in the magnetic susceptibility (which is a function of temperature) which acts on the value of the magnetic component of the levitation force.
La solidification sans contact est donc obtenue en compensant en temps réel au cours du refroidissement la variation de la force de lévitation par une variation de l'intensité du gradient du champ magnétique continu correspondante.Solidification without contact is therefore obtained by compensating in real time during cooling for the variation in the levitation force by a variation in the intensity of the corresponding gradient of the continuous magnetic field.
Grâce au suivi par caméra vidéo 6, on détecte la lévitation dès l'apparition de mouvements libres de l'échantillon et on peut ajuster l'intensité du champ magnétique continu en fonction de la position de l'échantillon. De plus, un pyromètre infrarouge permet préférentiellement de suivre la température de l'échantillon en cours de traitement. On peut ainsi, éventuellement, déterminer les variations des propriétés magnétiques de l'échantillon et les combiner avec les variations d'induction pour déterminer la variation à appliquer au champ magnétique continu, donc au gradient induit.Thanks to monitoring by video camera 6, levitation is detected as soon as free movements of the sample appear and the intensity of the continuous magnetic field can be adjusted as a function of the position of the sample. In addition, an infrared pyrometer preferably makes it possible to monitor the temperature of the sample during treatment. It is thus possible, if necessary, to determine the variations in the magnetic properties of the sample and to combine them with the variations in induction to determine the variation to be applied to the continuous magnetic field, therefore to the induced gradient.
Plusieurs échantillons de titane pur et d'un alliage de TiAl (50 %) ont été réalisés. Ils se présentent sous la forme d'un œuf, sans aucune trace de contact avec une surface solide. Le suivi de la température de surface par pyrométrie infrarouge a révélé l'obtention de surfusions. Several samples of pure titanium and a TiAl alloy (50%) were made. They are in the form of an egg, without any trace of contact with a solid surface. Monitoring the surface temperature by infrared pyrometry revealed that supercooling was obtained.

Claims

REVENDICATIONS 1. Procédé de fusion et de solidification d'un échantillon conducteur d'électricité, dans lequel : CLAIMS 1. Process for melting and solidifying an electrically conductive sample, in which:
- dans une première étape, on fait fondre l'échantillon par induction au moyen d'un champ magnétique alternatif,- in a first step, the sample is melted by induction by means of an alternating magnetic field,
- dans une deuxième étape, on superpose au champ magnétique alternatif un gradient d'un champ magnétique continu, de manière à provoquer une lévitation de l'échantillon fondu sans contact avec des surfaces solides, etin a second step, a gradient of a continuous magnetic field is superimposed on the alternating magnetic field, so as to cause the molten sample to levitate without contact with solid surfaces, and
- dans une troisième étape, on produit une solidification de l'échantillon, caractérisé en ce que dans la troisième étape, on réduit l'intensité du champ magnétique alternatif en variant l'intensité du gradient du champ magnétique continu, de manière à maintenir l'échantillon en lévitation sans contact avec des surfaces solides et à diminuer la température de l'échantillon pour obtenir une solidification sans contact dudit échantillon. - In a third step, a solidification of the sample is produced, characterized in that in the third step, the intensity of the alternating magnetic field is reduced by varying the intensity of the gradient of the continuous magnetic field, so as to maintain the sample in levitation without contact with solid surfaces and to decrease the temperature of the sample to obtain a contactless solidification of said sample.
2. Procédé de fusion et de solidification selon la revendication 1, caractérisé en ce que dans la troisième étape, on compense la réduction d'intensité du champ magnétique alternatif par une variation adaptée d'intensité du gradient du champ magnétique continu, de façon à exercer sur l'échantillon une force de lévitation environ constante. 2. A method of fusion and solidification according to claim 1, characterized in that in the third step, the reduction in intensity of the alternating magnetic field is compensated for by an adapted variation in intensity of the gradient of the continuous magnetic field, so as to exert an approximately constant levitation force on the sample.
3. Procédé de fusion et de solidification selon l'une des revendications 1 ou 2. caractérisé en ce que dans la deuxième étape, on ajuste l'intensité du champ magnétique alternatif de manière à obtenir une surchauffe de l'échantillon.3. A method of fusion and solidification according to one of claims 1 or 2. characterized in that in the second step, the intensity of the alternating magnetic field is adjusted so as to obtain an overheating of the sample.
4. Procédé de fusion et de solidification selon la revendication 3, caractérisé en ce que ladite surchauffe est suffisante pour produire une surfusion de l'échantillon dans la troisième étape.4. A method of melting and solidifying according to claim 3, characterized in that said overheating is sufficient to produce a supercooling of the sample in the third step.
5. Procédé de fusion et de solidification selon l'une quelconque des revendications 1 à 4, caractérisé en ce que dans la première étape, on n'applique aucun gradient de champ magnétique continu.5. A method of fusion and solidification according to any one of claims 1 to 4, characterized in that in the first step, no gradient of continuous magnetic field is applied.
6. Procédé de fusion et de solidification selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'on dispose l'échantillon dans une zone de gradient du champ magnétique continu, ledit gradient ayant une intensité décroissant vers le haut.6. A method of fusion and solidification according to any one of claims 1 to 5, characterized in that the sample is placed in a gradient zone of the continuous magnetic field, said gradient having an intensity decreasing upwards.
7. Procédé de fusion et de solidification selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on fait fondre l'échantillon dans un creuset froid (3). 7. A method of fusion and solidification according to any one of the preceding claims, characterized in that the sample is melted in a cold crucible (3).
8. Procédé de fusion et de solidification selon la revendication 7, caractérisé en ce que le creuset froid (3) est inductif et est positionné dans une zone de gradient de champ magnétique continu d'un aimant supraconducteur (2), capable de produire sur l'échantillon une force verticale dirigée vers le haut.8. A method of fusion and solidification according to claim 7, characterized in that the cold crucible (3) is inductive and is positioned in a continuous magnetic field gradient zone of a superconductive magnet (2), capable of producing on the sample a vertical force directed upwards.
9. Application du procédé selon l'une quelconque des revendications précédentes à la fabrication d'échantillons comprenant au moins une phase metastable.9. Application of the method according to any one of the preceding claims to the manufacture of samples comprising at least one metastable phase.
10. Application selon la revendication 9, caractérisée en ce que la phase metastable est à base d'un alliage de titane, préférentiellement de TiAl. 10. Application according to claim 9, characterized in that the metastable phase is based on a titanium alloy, preferably TiAl.
PCT/FR2000/002728 1999-10-04 2000-10-02 Method for melting and solidifying without contact an electric conductor sample WO2001026424A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60016444T DE60016444D1 (en) 1999-10-04 2000-10-02 PROCESS FOR TOUCH-FREE MELTING AND STARTERING OF AN ELECTRICALLY CONDUCTIVE SAMPLE
EP00966254A EP1222841B1 (en) 1999-10-04 2000-10-02 Method for melting and solidifying without contact an electric conductor sample
JP2001528432A JP2003511239A (en) 1999-10-04 2000-10-02 Method for melting and solidifying a conductor sample without contact
AT00966254T ATE284124T1 (en) 1999-10-04 2000-10-02 METHOD FOR NON-CONTACT MELTING AND SOLIDIZING AN ELECTRICALLY CONDUCTIVE SAMPLE
AU76703/00A AU7670300A (en) 1999-10-04 2000-10-02 Method for melting and solidifying without contact an electric conductor sample
KR1020027004369A KR20020043611A (en) 1999-10-04 2000-10-02 Method for melting and solidifying without contact an electric conductor sample

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/12367 1999-10-04
FR9912367A FR2799335B1 (en) 1999-10-04 1999-10-04 METHOD OF NON-CONTACT MELTING AND SOLIDIFICATION OF AN ELECTRICALLY CONDUCTIVE SAMPLE

Publications (1)

Publication Number Publication Date
WO2001026424A1 true WO2001026424A1 (en) 2001-04-12

Family

ID=9550558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002728 WO2001026424A1 (en) 1999-10-04 2000-10-02 Method for melting and solidifying without contact an electric conductor sample

Country Status (8)

Country Link
EP (1) EP1222841B1 (en)
JP (1) JP2003511239A (en)
KR (1) KR20020043611A (en)
AT (1) ATE284124T1 (en)
AU (1) AU7670300A (en)
DE (1) DE60016444D1 (en)
FR (1) FR2799335B1 (en)
WO (1) WO2001026424A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042972A1 (en) 2009-09-16 2011-03-24 Technische Universität Ilmenau Device for manipulating levitated electrically conductive substance in high frequency electromagnetic alternating field, has modification unit provided for spatial modification in effective area of electromagnetic alternating field
DE102011018675A1 (en) 2011-04-18 2012-10-18 Technische Universität Ilmenau Device for active manipulation of floating electrically conductive substance e.g. liquid metal melt in high-frequency alternating electromagnetic field, has primary winding and secondary winding that are separated at specified angle
CN105970135A (en) * 2016-05-11 2016-09-28 上海大学 Method and device for manufacturing gradient composed block material through gradient high-intensity magnetic field
CN113758789A (en) * 2021-09-10 2021-12-07 西北工业大学 Device and system for supporting and heating metal sample
GB2598523A (en) * 2014-10-16 2022-03-02 Glassy Metals Llc Method and apparatus for supercooling of metal/ alloy melts and for the formation of amorphous metals therefrom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113981273B (en) * 2021-11-04 2022-05-27 四川大学 Multi-orientation lamellar structure TiAl alloy with initial solidification phase as alpha phase and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0294913A2 (en) * 1987-06-12 1988-12-14 Inductotherm Corp. Polyphase power supply for continuous levitation casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0294913A2 (en) * 1987-06-12 1988-12-14 Inductotherm Corp. Polyphase power supply for continuous levitation casting

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BONVALOT M ET AL: "Combined electromagnetic and magnetic levitation", MAGNITNAYA GIDRODINAMIKA, APRIL-JUNE 1996, PLENUM, LATVIA, vol. 32, no. 2, pages 216 - 219, XP002139106, ISSN: 0025-0015 *
BONVALOT M ET AL: "Magnetic levitation stabilized by eddy currents", JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, NOV. 1995, ELSEVIER, NETHERLANDS, vol. 151, no. 1-2, pages 283 - 289, XP002139107, ISSN: 0304-8853 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042972A1 (en) 2009-09-16 2011-03-24 Technische Universität Ilmenau Device for manipulating levitated electrically conductive substance in high frequency electromagnetic alternating field, has modification unit provided for spatial modification in effective area of electromagnetic alternating field
DE102011018675A1 (en) 2011-04-18 2012-10-18 Technische Universität Ilmenau Device for active manipulation of floating electrically conductive substance e.g. liquid metal melt in high-frequency alternating electromagnetic field, has primary winding and secondary winding that are separated at specified angle
GB2598523A (en) * 2014-10-16 2022-03-02 Glassy Metals Llc Method and apparatus for supercooling of metal/ alloy melts and for the formation of amorphous metals therefrom
GB2598523B (en) * 2014-10-16 2022-06-01 Glassy Metals Llc Method and apparatus for supercooling of metal/ alloy melts and for the formation of amorphous metals therefrom
CN105970135A (en) * 2016-05-11 2016-09-28 上海大学 Method and device for manufacturing gradient composed block material through gradient high-intensity magnetic field
CN105970135B (en) * 2016-05-11 2019-02-22 上海大学 Utilize the method and apparatus of strong magnetic field gradient preparation gradient composition block materials
CN113758789A (en) * 2021-09-10 2021-12-07 西北工业大学 Device and system for supporting and heating metal sample
CN113758789B (en) * 2021-09-10 2022-07-22 西北工业大学 Device and system for supporting and heating metal sample

Also Published As

Publication number Publication date
EP1222841A1 (en) 2002-07-17
FR2799335B1 (en) 2001-12-14
AU7670300A (en) 2001-05-10
ATE284124T1 (en) 2004-12-15
FR2799335A1 (en) 2001-04-06
JP2003511239A (en) 2003-03-25
KR20020043611A (en) 2002-06-10
EP1222841B1 (en) 2004-12-01
DE60016444D1 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
Kenel et al. Influence of cooling rate on microstructure formation during rapid solidification of binary TiAl alloys
Xu et al. Growth velocity-undercooling relationship and structure refinement mechanism of undercooled Ni-Cu alloys
EP1222841B1 (en) Method for melting and solidifying without contact an electric conductor sample
Yu et al. Si purification by removal of entrapped Al during electromagnetic solidification refining of Si-Al alloy
FR2688516A1 (en) Device for the manufacture of metals and metal alloys of high purity
Huang et al. Segregation behavior of iron in metallurgical grade silicon during SiCu solvent refining
Toropova et al. Microstructure and morphology of Si crystals grown in pure Si and Al–Si melts
Bruce et al. Microwave sintering and melting of titanium powder for low-cost processing
Jian et al. Direct observation of the crystal-growth transition in undercooled silicon
Wang et al. Growth interface of CdZnTe grown from Te solution with THM technique under static magnetic field
CA2569755A1 (en) Silicon refining installation
Einhaus et al. Hydrogen passivation of newly developed EMC-multi-crystalline silicon
EP0448482B1 (en) Preparation process of an oriented and textured magnetic body
Wu et al. Electromagnetic levitation of silicon and silicon-iron alloy droplets
Shen et al. Study on the High‐Temperature Evolution and Formation Mechanism of Inclusions in Te‐Treated Resulfurized Special Steel
Pan et al. Microstructure evolution of Cu–Mn alloy under laser rapid solidification conditions
FR2591135A1 (en) IMPROVED METHOD OF ADJUSTING CONTINUOUS CASTING CONDITIONS.
CN112813282B (en) Method for removing high-density inclusions in high-temperature alloy
Liu et al. Grain refinement and grain coarsening of undercooled Fe–Co alloy
Li et al. Effect of wettability on the bulk Si growth from Si–Sn melts via zone melting directional solidification
Yin et al. “In-situ” Observation of Remelting Phenomenon after Solidification of Fe–B Alloy and B-bearing Commercial Steels
Hao et al. Study on the microstructure evolution mechanism of copper single phase alloys under deep undercooling conditions
Lee et al. Impurity segregation behavior in polycrystalline silicon ingot grown with variation of electron-beam power
Nagashio et al. Fragmentation of faceted dendrite in solidification of undercooled B-doped Si melts
Sha et al. Metastable coupled growth kinetics between primary and peritectic intermetallic compounds within the liquid Mo-37 wt% Co refractory alloy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000966254

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 528432

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027004369

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027004369

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000966254

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10089730

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000966254

Country of ref document: EP