WO2001022111A1 - Système de navigation satellitaire global et techniques afférentes - Google Patents

Système de navigation satellitaire global et techniques afférentes Download PDF

Info

Publication number
WO2001022111A1
WO2001022111A1 PCT/GB2000/003633 GB0003633W WO0122111A1 WO 2001022111 A1 WO2001022111 A1 WO 2001022111A1 GB 0003633 W GB0003633 W GB 0003633W WO 0122111 A1 WO0122111 A1 WO 0122111A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
carrier
double
data
ambiguity
Prior art date
Application number
PCT/GB2000/003633
Other languages
English (en)
Inventor
Andrew Edward Vooght
Andrew Batchelor
Gordon Thomas Johnston
Original Assignee
Thales Geosolutions Group Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Geosolutions Group Limited filed Critical Thales Geosolutions Group Limited
Priority to AU74351/00A priority Critical patent/AU7435100A/en
Publication of WO2001022111A1 publication Critical patent/WO2001022111A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/04Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing carrier phase data

Definitions

  • This invention relates to global navigation satellite systems (GNSS), particularly,
  • GPS global positioning system
  • the invention also relates to receiver stations used in global navigation satellite
  • system including at least one reference receiver station having a fixed geographical
  • receiver station are capable of measuring code-and carrier-phase data received from
  • each said receiver station includes pre-processor means for pre-processing received
  • code-phase and carrier phase data to generate pre-processed, line-of-sight, code-phase
  • each said pre-processing means including carrier-phase
  • filtering means for subjecting received code-phase data to carrier-phase filtering
  • receiver station further includes data compression means for compressing said pre-
  • said user's receiver station via data communication means, and wherein said user's receiver station further includes data decompression means for decompressing said
  • Figure 1 shows a schematic representation of a GNSS according to the invention
  • Figure 2 is a block schematic representation of a user's receiver station of the GNSS
  • Figure 3 is a block schematic representation of a pre-processor in a reference receiver
  • Figure 4 is a block schematic representation of a data compression circuit for use with
  • FIG. 5 shows a data transmission scheme used in the GNSS of Figure 1
  • FIG. 6 shows an alternative data transmission scheme
  • Figure 7 is a block schematic representation of an alternative data compression circuit
  • Figure 8 shows yet another data transmission scheme for use in conjunction with the
  • Figure 9a is a block schematic representation of an ambiguity search unit in the user's
  • Figure 9b is a flow diagram illustrating a matrix diagonalisation process used in the
  • Figure 10 is a block schematic representation of a processor of the user's receiver
  • Figure 1 of the drawings shows a schematic representation of an embodiment of a
  • the GNSS comprises a plurality of GPS satellites S, at least one (in this embodiment
  • a master control station M which receives GPS data from each of
  • the reference receiver stations R transmits that data to the user's receiver station
  • GPS data is transmitted to the user's receiver station U
  • a geostationary communications satellite C via a geostationary communications satellite C.
  • a geostationary communications satellite C via a geostationary communications satellite C.
  • each reference receiver station R could be omitted.
  • each reference receiver station R could be omitted.
  • the GPS satellites S and the receiver stations have internal clocks facilitating timing
  • a receiver station may be subject to systematic synchronisation error, known as time
  • receiver stations R is combined differentially with GPS data measured at the user's
  • the time bias of a receiving station can be eliminated by
  • GPS satellite can be eliminated by differencing GPS data derived from that satellite
  • receiver station R are, of course, known and so the resultant differential
  • the double-differencing technique can be applied to different
  • each GPS satellite S transmits a first carrier wave (known as LI) at the
  • L2 carrier wave
  • Each carrier wave has a quadrature phase modulation defining a
  • pseudorandom code which will be referred to as the LI code and the L2 code
  • the received satellite signals are correlated with complementary
  • the GPS satellites S shown in Figure 1 form that part of a constellation of satellites
  • the observed carrier-phase measurements provides a count ofthe number of cycles
  • lane carrier-phase has an effective wavelength of about 86cm.
  • the carrier-phase ambiguity can be made with less filtering required.
  • carrier-phase combination is formed by combining the LI and L2 carrier phases
  • carrier-phase combination is increased to about 10.7cm.
  • receiver station U processes code-phase data and carrier-phase data measured by the
  • Each reference receiver station R includes a pre-processor shown in Figure 3 which
  • the user's receiver station U also has a pre-processor 10 which is exactly the same as
  • a clock jump removal circuit 31 removes clock jumps from the
  • the corrected code-phase data (p,,p 2 ) undergo further processing in multipath map generation and correction circuit 33 to remove or
  • Filter 34 is supplied with the corrected carrier-phase data
  • the carrier-phase filter 34 is a recursive, 2-state
  • least squares estimator e.g. a Kalman filter
  • the precalibrated weighing function provides a measure ofthe quality ofthe received
  • SNR measured signal-to-noise ratio
  • the weighting function is defined by a covariance calibration matrix for the receiver
  • the matrix is stored in the
  • weighting circuit 35 and, in effect, serves as a ook-up' table from which the
  • the covariance calibration matrix is constructed using the following steps:
  • the reference receiver stations include a multipath
  • map generation and correction circuit 33 which is used to reduce the level of multipath
  • circuit 33 which can be used to remove/reduce specular multipath error on subsequent > measurements. This is the function of circuit 33.
  • step (i) the observations are made over a period
  • the data used in this process should be accumulated over a longer period than one day, ideally three days.
  • receiver station may change in the long term and the satellite orbits precess.
  • the 'multipath map' should ideally be generated using data accumulated over the
  • processing is based.
  • reference receiver station R is compressed prior to transmission via the
  • a subtraction circuit 51 is provided to form the code-phase difference p, r - p 2 r and
  • subtraction circuits 52,53 are provided to form code-carrier phase differences p, r - ⁇ ,,
  • a subtraction circuit 54 is used to remove geometric range
  • satellite consists of a full set of pre-processed data (as illustrated in Figure 4) which
  • N s epochs maximum initialisation or reset time needed if data is lost.
  • the number of satellites i.e. 5 in this example.
  • Figure 6 shows an example of this, for which full sets of data derived from respective
  • pairs of satellites selected cyclically in turn, is transmitted during each successive
  • the initialisation/reset time is reduced from 5 epochs to a
  • Figure 7 illustrates an example of the processing
  • phase prediction model 81 predicts the carrier-phase ⁇ cl and the first and
  • R and the pre-processor 10 in the user's receiver station U pre-processes raw code-
  • R are also supplied to double-differencer 11 after application of a decompression
  • line-of-sight data that is, data derived from measurements made between a single
  • the double-differencer 11 combines
  • sight combinations e.g. wide-lane (L1-L2) and iono-free 77L1 - 60L2 combinations.
  • the double-differencer 11 then combines these line-of-sight combinations to form sets
  • the double-differencer 11 generates four types of double-
  • the second processing stage (II) is based on an analysis of the double-differenced
  • ambiguity search carried out in search unit 14 includes a decorrelation process
  • processor 15 to the (now integer-ambiguity-resolved) double-differenced, wide-lane
  • transformation matrix Z is then applied to the real-valued, double-differenced, wide-
  • transformation unit 103 in transformation unit 103 to generate a transformed (now more diagonal) co- variance
  • Figure 9b is a flow diagram illustrating in greater detail how the ambiguity
  • transformation matrix Z is derived from the co-variance matrix Q. This process
  • the transformation matrix used in this process is based on the Gauss transformation
  • the third rocessing stage (III) is based on an analysis of double-differenced carrier-
  • the iono-free carrier-phase data is formed by differencing the LI and L2
  • Kalman filter 20 is supplied to a Kalman filter 20 along with the double-differenced iono-free carrier-
  • double-difference iono-free carrier-phase data D is increased from 6mm to 10.7cm.
  • the output from the Kalman filter 20 gives a final ionospherically free, carrier-phase
  • the first processing stage (I) generates an initial estimate

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Ce système de navigation satellitaire global comporte au moins une station de réception de référence (R) stationnaire au plan géographique, une station de réception utilisateur (U) dont les coordonnées de position sont à déterminer et une constellation de satellites à navigation globale (S) dont plusieurs au moins restent toujours dans la zone de desserte des stations de réception (R, U). La station de réception utilisateur (U) comporte des moyens (10) permettant de mesurer des données code-phase et porteuse-phase dérivées des satellites (S), des moyens (12) permettant de recevoir des données code-phase et porteuse-phase provenant de la station de réception de référence (R), des moyens (11) permettant de dériver, à partir des données reçues et mesurées, une première série de mesures de données porteuse-phase à double différence, plusieurs valeurs estimatives respectives d'ambiguïté d'entier pour chacune des premières et des secondes mesures de données porteuse-phase à double différence correspondant aux premières mesures de données porteuse-phase à double différence, un premier processeur (14, 15) destiné à traiter ces valeurs estimatives d'ambiguïté d'entier à double différence afin de dériver une valeur estimative unique d'ambiguïté d'entier pour chaque première mesure porteuse-phase à double différence ainsi que pour chaque seconde mesure correspondante, un second processeur (16) utilisant ces secondes mesures de porteuse-phase à double différence ainsi que les valeurs d'ambiguïté d'entier afin d'évaluer une valeur estimative des coordonnées de position P1r.
PCT/GB2000/003633 1999-09-24 2000-09-21 Système de navigation satellitaire global et techniques afférentes WO2001022111A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU74351/00A AU7435100A (en) 1999-09-24 2000-09-21 Global navigation satellite systems and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9922736.5 1999-09-24
GBGB9922736.5A GB9922736D0 (en) 1999-09-24 1999-09-24 Global navigation satellite systems and methods

Publications (1)

Publication Number Publication Date
WO2001022111A1 true WO2001022111A1 (fr) 2001-03-29

Family

ID=10861611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2000/003633 WO2001022111A1 (fr) 1999-09-24 2000-09-21 Système de navigation satellitaire global et techniques afférentes

Country Status (3)

Country Link
AU (1) AU7435100A (fr)
GB (1) GB9922736D0 (fr)
WO (1) WO2001022111A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1380852A1 (fr) * 2001-04-11 2004-01-14 Mitsui & Co., Ltd. Systeme de mesure de la localisation satellite
WO2004028060A2 (fr) 2002-09-23 2004-04-01 Topcon Gps Llc Estimation de position par un reseau de recepteurs d'un systeme mondial de localisation
CN103698790A (zh) * 2013-12-30 2014-04-02 辽宁工程技术大学 北斗与gps双系统宽巷载波相位混频星间差分组合方法
EP2899568A1 (fr) * 2014-01-23 2015-07-29 Trimble Navigation Limited Système et procédé pour fournir des informations à partir de stations de référence à des récepteurs itinérants dans un système de navigation par satellite
CN109154670A (zh) * 2016-03-18 2019-01-04 迪尔公司 导航卫星宽巷偏差确定系统和方法
CN109196381A (zh) * 2016-03-18 2019-01-11 迪尔公司 通过辅助数据对精确位置的快速确定
CN109444935A (zh) * 2018-10-17 2019-03-08 桂林电子科技大学 一种低采样率的多普勒周跳探测和修复方法
US10514463B2 (en) 2016-01-26 2019-12-24 Honeywell International Inc. Ground-based system and method to monitor for excessive delay gradients using long reference receiver separation distances
CN110824522A (zh) * 2019-11-07 2020-02-21 广东星舆科技有限公司 双差模糊度的约束方法、存储介质和装置
CN111751855A (zh) * 2020-06-28 2020-10-09 北京建筑大学 Gnss单历元双差整周模糊度快速确定方法
CN113009530A (zh) * 2021-02-18 2021-06-22 中国民航科学技术研究院 一种用于机场应急救援的导航定位快速解算方法和系统
CN113189624A (zh) * 2021-04-30 2021-07-30 中山大学 一种自适应分类的多径误差提取方法及装置
WO2023065840A1 (fr) * 2021-10-19 2023-04-27 千寻位置网络有限公司 Procédé et système de fixation d'ambiguïtés et support de stockage

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485813B (zh) * 2020-11-17 2024-01-02 中国人民解放军战略支援部队航天工程大学 Glonass测站间非组合测距码频间偏差校正方法及系统
CN113759407B (zh) * 2021-09-08 2022-11-22 广东汇天航空航天科技有限公司 Gnss整周模糊度的固定方法、定位装置及移动站
CN115900527B (zh) * 2023-01-06 2023-05-05 中南大学 基于gnss系统误差递推半参数建模的变形监测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037433A1 (fr) * 1997-02-20 1998-08-27 Ratheon Aircraft Montek Company Systeme et procede servant a determiner des solutions relatives extremement precises de position entre deux plates-formes mobiles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037433A1 (fr) * 1997-02-20 1998-08-27 Ratheon Aircraft Montek Company Systeme et procede servant a determiner des solutions relatives extremement precises de position entre deux plates-formes mobiles

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOHNSTON G T: "RESULTS AND PERFORMANCE OF MULTI-SITE REFERENCE STATION DIFFERENTIAL GPS", INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS, vol. 12, September 1994 (1994-09-01), pages 475 - 488, XP000978124 *
MORGAN-OWEN G J ET AL: "DIFFERENTIAL GPS POSITIONING", ELECTRONICS AND COMMUNICATION ENGINEERING JOURNAL,GB,INSTITUTION OF ELECTRICAL ENGINEERS, LONDON, vol. 7, no. 1, 1 February 1995 (1995-02-01), pages 11 - 22, XP000500767, ISSN: 0954-0695 *
TEUNISSEN P J G: "A NEW METHOD FOR FAST CARRIER PHASE AMBIGUITY ESTIMATION", POSITION LOCATION AND NAVIGATION SYMPOSIUM (PLANS),US,NEW YORK, IEEE, vol. -, 11 April 1994 (1994-04-11), pages 562 - 573, XP000489392, ISBN: 0-7803-1436-0 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1380852A4 (fr) * 2001-04-11 2010-06-23 Topcon Corp Systeme de mesure de la localisation satellite
EP1380852A1 (fr) * 2001-04-11 2004-01-14 Mitsui & Co., Ltd. Systeme de mesure de la localisation satellite
WO2004028060A2 (fr) 2002-09-23 2004-04-01 Topcon Gps Llc Estimation de position par un reseau de recepteurs d'un systeme mondial de localisation
EP1550241A2 (fr) * 2002-09-23 2005-07-06 Topcon GPS LLC Estimation de position par un reseau de recepteurs d'un systeme mondial de localisation
EP1550241A4 (fr) * 2002-09-23 2010-06-23 Topcon Gps Llc Estimation de position par un reseau de recepteurs d'un systeme mondial de localisation
EP2575271A1 (fr) * 2002-09-23 2013-04-03 Topcon GPS LLC Estimation de position par un réseau de récepteurs de positionnement global
CN103698790A (zh) * 2013-12-30 2014-04-02 辽宁工程技术大学 北斗与gps双系统宽巷载波相位混频星间差分组合方法
EP2899568A1 (fr) * 2014-01-23 2015-07-29 Trimble Navigation Limited Système et procédé pour fournir des informations à partir de stations de référence à des récepteurs itinérants dans un système de navigation par satellite
US10514463B2 (en) 2016-01-26 2019-12-24 Honeywell International Inc. Ground-based system and method to monitor for excessive delay gradients using long reference receiver separation distances
CN109196381B (zh) * 2016-03-18 2023-10-20 迪尔公司 通过辅助数据对精确位置的快速确定
CN109154670A (zh) * 2016-03-18 2019-01-04 迪尔公司 导航卫星宽巷偏差确定系统和方法
CN109196381A (zh) * 2016-03-18 2019-01-11 迪尔公司 通过辅助数据对精确位置的快速确定
CN109444935A (zh) * 2018-10-17 2019-03-08 桂林电子科技大学 一种低采样率的多普勒周跳探测和修复方法
CN109444935B (zh) * 2018-10-17 2022-10-21 桂林电子科技大学 一种低采样率的多普勒周跳探测和修复方法
CN110824522B (zh) * 2019-11-07 2021-11-23 广东星舆科技有限公司 双差模糊度的约束方法、存储介质和装置
CN110824522A (zh) * 2019-11-07 2020-02-21 广东星舆科技有限公司 双差模糊度的约束方法、存储介质和装置
CN111751855A (zh) * 2020-06-28 2020-10-09 北京建筑大学 Gnss单历元双差整周模糊度快速确定方法
CN111751855B (zh) * 2020-06-28 2023-03-14 北京建筑大学 Gnss单历元双差整周模糊度快速确定方法
CN113009530A (zh) * 2021-02-18 2021-06-22 中国民航科学技术研究院 一种用于机场应急救援的导航定位快速解算方法和系统
CN113009530B (zh) * 2021-02-18 2023-03-03 中国民航科学技术研究院 一种用于机场应急救援的导航定位快速解算方法和系统
CN113189624A (zh) * 2021-04-30 2021-07-30 中山大学 一种自适应分类的多径误差提取方法及装置
CN113189624B (zh) * 2021-04-30 2023-10-03 中山大学 一种自适应分类的多径误差提取方法及装置
WO2023065840A1 (fr) * 2021-10-19 2023-04-27 千寻位置网络有限公司 Procédé et système de fixation d'ambiguïtés et support de stockage

Also Published As

Publication number Publication date
GB9922736D0 (en) 1999-11-24
AU7435100A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
Hatch Instantaneous ambiguity resolution
Collins Isolating and estimating undifferenced GPS integer ambiguities
US6127968A (en) On-the-fly RTK positioning system with single frequency receiver
US8451168B2 (en) Method for determining biases of satellite signals
EP1654559B1 (fr) Procede de generation de corrections d'horloges pour systeme gps differentiel a grande distance ou mondial
CN1902505B (zh) 组合使用本地rtk系统与区域性、广域或全球载波相位定位系统的方法
Wang et al. GPS and GLONASS integration: modeling and ambiguity resolution issues
CN111965673B (zh) 基于多gnss的单频精密单点定位算法的时间频率传递方法
CN101371159B (zh) 组合使用本地定位系统、本地rtk系统与区域、广域或全球载波相位定位系统的方法
AU2008260579B2 (en) Partial search carrier-phase integer ambiguity resolution
EP2995975A1 (fr) Système de positionnement précis gnss avec une meilleure estimation d'ambiguïté
US5917445A (en) GPS multipath detection method and system
WO2001022111A1 (fr) Système de navigation satellitaire global et techniques afférentes
EP1336864B1 (fr) Procédé et système de localisation GPS à partir du temps calculé
CN109765589B (zh) 一种基于无电离层组合的三频gnss实时周跳固定技术
RU2487371C2 (ru) Обработка радионавигационных сигналов с использованием широкополосной комбинации
WO2006108227A1 (fr) Levee d'ambiguite amelioree par l'utilisation de trois signaux gnss
CA2557984A1 (fr) Procede de navigation double frequence de soutien pendant des periodes breves en cas de non disponibilite de donnees de mesure sur l'une de deux frequences
CA2535713A1 (fr) Procede servant a controler l'integrite de l'autonomie d'un recepteur, detection et elimination de defauts
EP1540367A1 (fr) Procede et appareil de navigation utilisant des mesures doppler instantanees provenant de satellites
US8542714B2 (en) Method and system for reconstructing time of transmit from assisted or weak signal GPS observations
KR20230031239A (ko) 현대화된 소비자 등급 gnss 2차 코드 취득 및 신호 추적
Werner et al. TCAR and MCAR options with Galileo and GPS
US20080180318A1 (en) Method and Apparatus for Reconstructing Time of Transmit from Assisted or Weak Signal GPS Type Observations
US20070024500A1 (en) Method and apparatus for reconstructing time of transmit from assisted or weak signal gps observations

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP