WO2001019423A1 - Resorbable implant materials - Google Patents
Resorbable implant materials Download PDFInfo
- Publication number
- WO2001019423A1 WO2001019423A1 PCT/US2000/025234 US0025234W WO0119423A1 WO 2001019423 A1 WO2001019423 A1 WO 2001019423A1 US 0025234 W US0025234 W US 0025234W WO 0119423 A1 WO0119423 A1 WO 0119423A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tissue
- alkylating agent
- material according
- resorbable
- treated
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3683—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
- A61L27/3687—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by the use of chemical agents in the treatment, e.g. specific enzymes, detergents, capping agents, crosslinkers, anticalcification agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/227—Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/24—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
- A61L27/362—Skin, e.g. dermal papillae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
- A61L27/3629—Intestinal tissue, e.g. small intestinal submucosa
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/043—Proteins; Polypeptides; Degradation products thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/043—Proteins; Polypeptides; Degradation products thereof
- A61L31/044—Collagen
Definitions
- the invention relates to materials for the use as implants within the body, and in particular, to resorbable and remodelable materials for such use.
- collagenous materials may be produced as membranes or as woven mesh in the case of producing resorbable suture.
- synthetic resorbable materials are a rather recent phenomenon
- collagenous materials have been used as prosthetic grafting for many years; as in the case of lyophilized human dura, dating back to 1954.
- an agent such as glutaraldehyde, in order to diminish the antigenicity of a xenograft while increasing its resistance to enzymatic degradation produced by host tissue responses (Gratzer, P.F., et al., J. Biomed. Mater. Res., 31 : 533-543; 1996).
- Polyepoxy compounds have also been used for such purposes, however are more stable with regard to the resulting alkylated amines in the collagen (Sung, H-W., et al., J. Biomater. Sci. Polymer Edn., 8: 587-600; 1997). While crosslinked tissues work well as long-term implants, they are not resorbable and as such, do not promote host tissue remodeling, or in turn, the eventual replacement of a graft by the body itself.
- Lyoplant® offers products under the tradename Lyoplant®, in the form of a bovine pericardium-based resorbable replacement for dura mater.
- Lyoplant® is produced by a process that involves mechanical removal of adherent fat and connective tissue, chemical treatment to inactivate enzymes and potential pathogens, freeze-drying, cutting to various sizes, packaging and terminal sterilization with ethylene oxide.
- the product is indicated to be used for covering cerebral and cerebellar dural defects, for decompressive duraplasty in cases of increased intracranial pressure, for covering spinal dural defects and for spinal decompressive duraplasty. This material has been observed to be fully remodeled within one year after implant.
- Tutogen Medical, Inc. provides processed pericardium products under the tradename Tutoplast®, in the form of a solvent-dehydrated, gamma-irradiated preserved human pericardium.
- the processing of Tutoplast® tissue involves thorough cleaning, processing, dehydration and preservation. The process is said to leave no deleterious residue and minimizes antigenic potential.
- Collagenous connective tissue with multidirectional fibers retains the mechanical strength and elasticity of native pericardium, while providing the basic formative structure to support replacement by new endogenous tissue. This tissue is indicated for use in a variety of surgical applications, including duraplasty (as a substitute for human dura mater), and in abdominal, urological, opthalmological, and vascular surgery.
- Bioresorbable Heart Valve Support which, relates to bioprosthetic heart valve stents that are fashioned of resorbable materials. Such stents may be configured as sheaths or frames contoured to the shape of a valvular graft. The stents are eventually resorbed by the patient, leaving a functional "stentless” valve with improved hemodynamic characteristics compared to stented valve implants.
- Various other resorbable materials have been suggested or proposed for use with vascular of non-vascular implants. For example, Goldberg et al., US Pat. No. 5,085,629 discloses a biodegradable infusion stent for use in ' treating ureteral obstructions. Stack, et al., US Pat.
- No. 5,306,286 discloses an absorbable stent for placement within a blood vessel during coronary angioplasty.
- Duran, US Pat. No. 5,376,112 discloses an annuloplasty ring to be implanted into the heart to function together with the native heart valve.
- US Patent No. 5,837,278 (Geistlich, et al, "Resorbable Collagen Membrane for Use in Guided Tissue Regeneration"), describes the use of a collagen-containing membrane in guided tissue regeneration.
- the patent provides a resorbable collagen membrane for use in guided tissue regeneration wherein one face of the membrane is fibrous thereby allowing cell growth thereon and the opposite face of the membrane is smooth, thereby inhibiting cell adhesion thereon.
- pericardium materials are crosslinked, e.g., using glutaraldehyde, and hence are typically considered non-resorbable. Such materials have been used in a variety of applications, including as patches, suture and staple line buttress members, and pledgets.
- the present invention provides a non-crosslinked, decellularized and purified mammalian tissue (e.g., bovine pericardium) having particular use as an implantable material in a manner that is both resorbable and remodelable.
- the material is prepared by alkylating the primary amine groups of natural tissue in a manner sufficient to reduce the antigenicity of the tissue, and in turn, to an extent that permits the treated tissue to be used in vivo and without crosslinking, thereby permitting it to be resorbable.
- the material can be used, for instance, in surgical repair of soft tissue deficiencies, for a period of time, while the implant itself is gradually remodeled or absorbed by the host.
- the invention provides a method of preparing such a material, as well as a method of using such a material for surgical repair.
- the word "resorb" and inflections thereof will refer to a material that, once implanted in vivo, is absorbed by the body over time and without undue deleterious effects on or within the body itself.
- remodeling and inflections thereof, as used with regard to a material of the present invention, will refer to a resorbable material that is adapted, e.g., by virtue of its location and method of implantation within the body, to encourage and/or permit the body to replace some or all of the structure and/or function of the implant with newly formed natural tissue. While not intending to be bound by theory, at least in some embodiments of the present invention, remodeling appears to occur by gradual bodily processes in which substantial portions of the implant material are gradually resorbed, while an inherent fibrous network of the implant is retained at the site. The network, in turn, is used by the body as essentially scaffolding for the generation of new tissue or tissue components.
- the invention provides a resorbable implantable material comprising a non-crosslinked, decellularized and purified mammalian tissue having most of its free amine groups alkylated.
- the tissue is selected from the group consisting of pericardium, peritoneum, fascia lata, dura mater, dermis and small intestinal submucosa, and the material has been alkylated by an alkylating agent selected from the group consisting of 1,2-epoxy-R compounds where R is an alkyl group up to 6 carbon atoms.
- Such a material can be provided in any suitable form, e.g., as flat or textured sheets or strips, and can be adapted for use in a variety of surgical applications, including those selected from the group consisting of duraplasty, thoracic, abdominal, urological, opthalmological, cardiac, and vascular surgery.
- a tissue of the present invention can be obtained from any suitable source including mammalian sources, e.g., in the form of collagenous connective tissue with three dimensional intertwined fibers. Such tissues generally include serous and fibro- serous membranes.
- the tissue source is selected from bovine pericardium, peritoneum, fascia lata, dura mater, dermis, and small intestinal submucosa.
- the tissue is bovine pericardium, and is treated using a method as described herein to provide the treated tissue with an optimal combination of biocompatability, thickness, and other physical and physiological properties.
- Tissues of the present invention can be provided from dura mater, for instance, for use in neurosurgical applications.
- Collagenous connective tissue with three dimensional intertwined fibers when treated in the manner described herein, retains the multidirectional and mechanical strength of native dura matter, while providing the basic formative structure to support replacement by new endogenous tissue. While it is desirable to reduce or eliminate antigenic properties of xenografic or even allografic tissue-based material to be implanted into a body, if the body's absorption and/or remodeling of the material are desired, crosslinking cannot be performed. In order to specifically perform such modification of a collagen-based material, a monofunctional reagent is therefore used. The reagent is "monofunctional" in that it is adapted to react with, and therefore terminate or “cap” the available amine functionalities of tissue proteins, but will not further react with adjacent groups.
- An optimal reagent of this invention is preferably a relatively small and structurally simple compound that, upon reaction with protein groups such as amines, will bind to those groups but will not otherwise alter the biological properties of the collagen matrix to an extent that renders the tissue unsuitable for its intended use.
- a tissue of the present invention is treated by a process that includes alkylating a major percentage of its available amine groups to an extent sufficient to permit the tissue to be implanted and used in vivo.
- a tissue is processed by alkylating its amines to an extent sufficient to react 80% or more, preferably 90% or more, and most preferably 95% or more of the amine groups originally present.
- the efficacy and extent of alkylation can be determined by a variety of means, as described herein, including the use of a ninny drin-based assay ("amine index") to determine a comparative level of amine groups, before and after treatment (see, e.g., Sung H-W, et al. Art Org., 21 : 50-58; 1997. Sung, H-W, et al., J. Biomed. Mater. Res. 33: 177-186. 1996).
- amine index ninny drin-based assay
- Preferred alkylating agents can be used, for instance, at a pH of between about 9 and about 11, and at a concentration of between about 2% (v/v) and about 5% (v/v), by exposing the tissue to a solution containing the agent for at least 48 hours.
- Preferred alkylating agents include small and reactive amine alkylating agents, such as formaldehyde, and 1,2-epoxy compounds.
- the epoxy agents offer an advantage over formaldehyde in that they tend to produce more stable adducts in their reactions with amines (Sung, H-W., et al., Biomater., 17: 2357-2365; 1996). 1,2- epoxy agents can react with a primary amine at alkaline pH to produce an extremely stable 2-hydroxy secondary amine.
- an aldehyde such as formaldehyde reacts with a primary amine to produce a marginally unstable, reversible double- bonded aldimine (Girardot, J-M. and Girardot, M-N., J. Heart Valve Dis., 5: 518-525; 1996).
- propylene oxide is particularly prefe ⁇ ed since it possesses properties that render its inclusion into a material process simple, yet effective.
- Propylene oxide epoxypropane
- PO was revealed to directly modify carboxylic, thiol, phenolic and amine groups of proteins under certain conditions (Fraenkal-Conrat, H., J. Biol. Chem., 154: 227-238; 1944).
- propylene oxide reacts predominantly with amines at alkaline pH. Collagen swells at alkaline pH rendering it more accessible to be alkylated with a water-soluble agent such as propylene oxide.
- Another prefe ⁇ ed monofunctional epoxy reagent for use in the present invention is methyl glycidyl ether, as is produced by the Nagase Corp. of Osaka, Japan and sold under the product name Denacol® EX-131.
- This product has a low molecular weight, is water-soluble and was shown to be a more potent alkylator of porcine pericardium than formaldehyde (Sung, H-W., et al., J. Biomed. Mater. Res., 35: 147-155; 1997).
- another test may be used to confirm tissue modification by an amine alkylating agent.
- the denaturation (shrink) temperature (Ta) is often used to verify the crosslinking of collagen by an agent such as glutaraldehyde. It is typically observed that upon chemical crosslinking, the T d increases significantly, apparently due to increased stabilization of the hydrogen bonds present in the collagen. In contrast, upon alkylation with a monofunctional agent such as propylene oxide, the T d decreases significantly. This phenomenon is believed to occur due to branching of the collagen polymer by the action of the alkylating agent and the subsequent alteration of the collagen matrix (Tu, R., et al., J. Biomed. Mater. Res., 28: 677-684; 1994).
- a tissue of the present invention is also treated with a base such as sodium hydroxide (NaOH), in order to further lesson the already minimal possibility of Bovine Spongiform Encephalopathy (BSE) transmission.
- a base such as sodium hydroxide (NaOH)
- BSE Bovine Spongiform Encephalopathy
- a tissue of the present invention can be used to fabricate a prosthetic article having any suitable shape or configuration, and in any suitable dimensions for its intended use.
- the tissue can be provided and packaged in a flat configuration (e.g., sheet or tape-like), with either or both major surfaces thereof being optimally textured or modified (e.g., by the covalent attachment, entrapment, and/or adsorption of biologically active factors, lubricious agents, antimicrobial agents and the like).
- a process of the present invention includes the steps of: a) obtaining pericardium from a suitable (e.g., USDA-approved) source, b) cleaning the tissue and optionally, and preferably, treating the tissue, e.g., in order to decellularize it and/or to reduce/eliminate potential BSE infectivity, c) alkylating the tissue (e.g., hydroxypropylation using propylene oxide) to cap a major percentage of available (e.g., potentially reactive) amine groups, and optionally, d) final processing, including one or more of the following steps: washing, drying, sterilizing and packaging the tissue.
- a suitable e.g., USDA-approved
- Natural tissues suitable for use in the process of this invention preferably meet stringent specifications during donor screening and laboratory testing to reduce the risk of transmitting infectious disease. Processing of tissue involves a strict, quality- controlled procedure, which involves thorough cleaning, processing, dehydration and preservation. The process leaves no deleterious residue and minimizes antigenic potential. Sterilization is preferably achieved with the use of gamma or electron beam radiation (typically 2.5 Mrad) or ethylene oxide gas.
- a treated tissue of the present invention is indicated for implantation with a spectrum of indications.
- Collagenous connective tissue of this sort having multidirectional fibers, is able to retain a substantial amount of the mechanical strength and elasticity of native pericardium, while providing the basic formative structure in situ to support replacement by new endogenous tissue.
- This tissue is indicated for use in a variety of surgical applications, including duraplasty (as a substitute for human dura mater), and in thoracic, abdominal, urological, opthalmological, cardiac and vascular surgery.
- Implantation should be avoided into areas with active or latent infection or signs of tissue necrosis, as well as into areas with compromised circulation or in any disorder that would create an unacceptable risk of post-operative complications.
- the tissue can be packaged using conventional means, such that the tissue and package contents remain sterile and non-pyrogenic as long as the package is not opened and/or damaged.
- the graft must be used before the expiration date.
- a tissue of this invention can be prepared and packaged in various sizes (e.g., thickness, length and width). The dimensions of tissue used should correspond to the size of the respective defect.
- the absorption process and reformation of endogenous tissue begins one to two days after implantation and continues for weeks, months, or years, depending on the size of the graft and the responsiveness of the graft site. It is recommended that, if packaged in a dry or dehydrated condition, the tissue be rehydrated prior to use for about 2 to about 30 minutes, depending on the consistency desired, using aseptic/sterile technique. The surgeon should also monitor the effect of rehydration by visual inspection, both in the course of rehydration and while cutting and shaping the graft. Implantation should be performed in such a way that the free edges of the implant do not extend into areas where the possibility of adhesion may present a problem.
- Absorbable or nonabsorbable suture material, glue, etc. can be used to fix the tissue in place.
- absorbable suture material and round atraumatic needles are recommended, while suture gauge depends on the surgical indication.
- the suture should be located two to three millimeters from the edge of the graft. Better results are obtained by doubling the section at suture sites that are under moderate to high stress.
- Tissues of the present invention provide a variety of features and advantages, including the fact that they are immediately available for surgery and can save valuable operating room time. Moreover, there is no secondary surgery site and less stress for the patient; which can result in less time under anesthesia, no donor site pain or morbidity, and less cost. Since the tissues can be made available in a wide range of sizes, the surgeon can choose the size needed, leading to minimal waste. As with all biological products, it is not possible to provide an absolute guarantee of freedom from contaminating infectious diseases such as hepatitis, Creutzfeld- Jakob Disease (CJD) or Bovine Spongiform Encephalopathy (BSE).
- CJD Creutzfeld- Jakob Disease
- BSE Bovine Spongiform Encephalopathy
- Treated tissues of the present invention can be stored in a clean, dry environment and at controlled temperatures between 4°C and 30°C (59° to 86 °F).
- collagenase The enzyme class referred to as collagenase has been used for several years in studying its effects on collagenous biomaterials.
- Bacterial collagenase e.g., from Clostridium histolyticum, can be used as an accurate predictor of the propensity and rate of resorption of a material by a mammalian host (Yannas, I. V., et al., J. Biomed. Mater. Res., 9: 623-628; 1975). Since modification of collagen by a crosslinking agent results in greatly diminished susceptibility to the action of collagenase, it is important that such modification not be performed on tissue to be resorbed.
- the mechanism by which crosslinking hinders the activity of collagenase is not completely understood.
- tissue alkylated by an agent such as PO possesses pertinent and functional properties, and the collagenase assay remains a useful tool for confirming the utility of thus- treated tissue.
- the collagenase assay is a ninhydrin-based assay for the indication of soluble collagen peptides produced by the action of the collagenase enzyme, and can be performed as follows:
- TES N-tris[hydroxymethyl]methyl-2 aminoethane sulfonic acid
- the absorbance at 570 nm is divided by the weight of the piece of tissue to give the OD/mg.
- the OD/mg is the value for the amount of collagen peptides that has been degraded by the action of the collagenase enzyme.
- the results of the collagenase assay are determined by comparing the sample with both positive (untreated) and negative (glutaraldehyde crosslinked) control samples.
- the amine index can be defined as the percentage of initially available amines that have been modified (and thereby rendered substantially nonreactive in vivo) by reaction with amine reagents. Such modification will render the amine unable to produce "Ruhemann's purple” when introduced to ninhydrin, and the relevant assay can be performed as follows:
- the amine index is calculated.
- the OD/mg is found by dividing the OD @ 570 by the weight of the piece of tissue.
- this assay is to confirm that although 100% amine alkylation is typically not attained, it is not due to the lack of adequate alkylating agent. In essence, this assay is used to confirm that detectable levels of alkylating agent remain in the incubation solution upon exhaustive exposure to the tissue. Upon exposure of tissue to an alkylating agent, the agent solution can be sampled in order to quantitate the percentage remaining. This test is in part performed for the purpose of assessing the efficiency of alkylation.
- Quantitation is assessed using a standard curve.
- 10 mM Glycine solution is prepared by adding 0.0375 grams of glycine to 50 milliliters of 0.2 M carbonate (Na +2 ) buffer.
- Propylene oxide (PO) standards are prepared (e.g., ranging from 0.5% PO to 5% PO). The standards are prepared by adding the co ⁇ ect amount of PO to the carbonate buffer for a total of five milliliters.
- Moisture content was analyzed on a Mettler- Toledo HG53 Halogen Moisture Analyzer. A temperature setting of 200°C was used. Results are recorded in % moisture content.
- Denaturation (shrink) Temperature Denaturation temperature is the temperature at which the collagen denatures.
- the test was performed on the ChemDyne MCI 000 tensile testing system.
- the denaturation temperature was measured using a 30 gram preload in a bath of water at steadily increasing temperature. Results are expressed in °C.
- Bovine pericardial sacs were harvested from USDA inspected healthy cows, minimum age of 12 months. Fresh pericardium was obtained and sent through a series of rinses, followed by a final ice cold water rinse. The tissue was cleaned of extraneous tissue, and used fresh or stored at -20 °C. The following general procedures were used to prepare treated tissue according to the present invention. All test procedures are performed at 20-25°C. NaOH & Neutralization
- tissue After hydroxypropylation of tissue, the amine index and the quantitation of unreacted alkylating agent assays are performed to verify sufficient alkylation and PO.
- the tissue was transferred onto wire mesh racks and dried in a Virtis Genesis vacuum dryer at 115 mtorr.
- the table below provides the results of a collagenase assay when resorbable tissue prepared in the manner described herein was incubated in 0.01 mg/ml collagenase for 24-96 hours.
- OD/mg is the relative value for the amount of collagen that has been degraded by the action of the collagenase enzyme. It can be seen that each of the tissues, including the alkylated tissue of this invention, are susceptible to collagenase digestion, indicating the likelihood that they would be resorbed within the body.
- the following table provides the amine index results of NaOH/PO-treated tissue when incubated in a 5% PO solution for a period of time at a pH of 10.5.
- the NaOH treated tissue was then put in large test tubes containing 100 ml of 0.2 M NaHCO 3 buffer at pH 10.5 and 2% propylene oxide. The tubes were gently shaken on an automatic rocker for 48 hours at room temperature. The tissue was thoroughly washed with saline to a pH level of 6.5-7.5, and then stored in 70% ethanol.
- GA crosslinked tissue Glutaraldehyde (GA) crosslinked bovine pericardium patches are commercially available under the tradename "Peri-Guard", including Supple Peri- Guard TM, and were obtained from Bio-Vascular, Inc., St. Paul, MN. Sterilization
- the wet tissue patches were cut into a sample size of 1 cm x 2 cm.
- the samples were laid flat on a plastic wrap (four each) and enclosed by folding the plastic wrap around.
- the wrapped samples were placed inside plastic/aluminum foil pouches that were subsequently purged with Argon gas and heat-sealed.
- the pouches were sent for sterilization by electron beam radiation at 25 ⁇ 2.5 KGy.
- Implantation The animals were 3 month old Fisher 344 male rats. Each animal received two different material implants. Upon the surgical procedures, the animals were anesthetized with pentobarbital (5 mg/lOOg), and the upper backs were shaved and washed with a butadiene solution. A 2 cm incision was made over the midline on the back of the animal.
- the subcutaneous tissue plains were dissected laterally to form a pouch on the left and right sides of the back.
- One sample was inserted and spread flat in each pouch. Wounds were closed with surgical sutures and washed with butadiene. The animals were returned to their cages after recovering from anesthesia.
- a suture retention test that determines the force necessary to pull a suture loop from the prosthesis was performed on the ChemDyne MCI 000 (Columbia Labs, Inc.) tensile testing system.
- a 5-0 Prolene suture was looped through the tissue with a 2 mm bite below the edge of the tissue. The suture loop was pulled at a rate of 100 mm/min with sampling rate of 20 Hz.
- tissue samples were immersed in 1.0 ml of 40 U/ml collagenase (Worthington, Biochem Corp.) and 1.0 ml of 0.05% trypsin/EDTA solution, respectively. The samples were incubated for 12 hours at 37 °C and scored visually for tissue integrity.
- the histological slides were evaluated under an optical microscope and scored under a scale of 1 to 4 (Table 7).
- the GA crosslinked samples induced a slight to moderate level of inflammatory response as characterized by considerable amounts of polymo ⁇ honuclear leukocytes (PMN's), macrophages, and foreign body giant cells, as well as lymphocytes, found mainly at the outer surfaces of the implant.
- PMN's polymo ⁇ honuclear leukocytes
- macrophages macrophages
- foreign body giant cells as well as lymphocytes
- Fibroplasia 0 0 0 0 0 0
- the PO capped, non-crosslinked bovine pericardium induced less inflammation as indicated by fewer inflammatory cells (such as PMNs and macrophages) present at 4 and 12 weeks post-implantation. While the GA crosslinked tissue maintained most of its physical and structural integrity throughout the implantation period, the PO capped tissue appeared to undergo significant changes during implantation. Following implantation, the PO capped tissue was partially degraded within the first few weeks resulting in decreases in suture retention. Interestingly, however, instead of being totally adsorbed in the body the material appeared to be remodeled over time with new host tissue and became stronger with increasing suture retention.
- New collagen formation probably occurred in the remodeling process as indicated by fibroblast proliferation and increased resistance of the explants to trypsin digestion at 12 weeks. Histological examination revealed that at later stages (e.g. 12 weeks) of implantation the matrix of PO capped bovine pericardium began to resemble the granulation tissue, which is the specialized type of tissue that is indicative of a normal healing process.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Transplantation (AREA)
- Medicinal Chemistry (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Botany (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Zoology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001523051A JP5362937B2 (en) | 1999-09-15 | 2000-09-14 | Resorbable implant material |
DE60010287T DE60010287T2 (en) | 1999-09-15 | 2000-09-14 | RESORBABLE IMPLANT MATERIALS |
EP00960099A EP1212105B1 (en) | 1999-09-15 | 2000-09-14 | Resorbable implant materials |
CA2384961A CA2384961C (en) | 1999-09-15 | 2000-09-14 | Resorbable implant materials |
AT00960099T ATE265241T1 (en) | 1999-09-15 | 2000-09-14 | ABSORBABLE IMPLANT MATERIALS |
AU71314/00A AU772182B2 (en) | 1999-09-15 | 2000-09-14 | Resorbable implant materials |
US10/099,425 US6652594B2 (en) | 1999-09-15 | 2002-03-14 | Resorbable implant materials |
US10/722,034 US20040107006A1 (en) | 1999-09-15 | 2003-11-24 | Resorbable implant materials |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/396,279 US6312474B1 (en) | 1999-09-15 | 1999-09-15 | Resorbable implant materials |
US09/396,279 | 1999-09-15 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/396,279 Continuation US6312474B1 (en) | 1999-09-15 | 1999-09-15 | Resorbable implant materials |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/099,425 Continuation US6652594B2 (en) | 1999-09-15 | 2002-03-14 | Resorbable implant materials |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001019423A1 true WO2001019423A1 (en) | 2001-03-22 |
Family
ID=23566590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/025234 WO2001019423A1 (en) | 1999-09-15 | 2000-09-14 | Resorbable implant materials |
Country Status (9)
Country | Link |
---|---|
US (3) | US6312474B1 (en) |
EP (1) | EP1212105B1 (en) |
JP (2) | JP5362937B2 (en) |
AT (1) | ATE265241T1 (en) |
AU (1) | AU772182B2 (en) |
CA (1) | CA2384961C (en) |
DE (1) | DE60010287T2 (en) |
ES (1) | ES2220530T3 (en) |
WO (1) | WO2001019423A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007037051A1 (en) * | 2007-07-24 | 2009-01-29 | Aesculap Ag | Flat implant |
WO2009049568A2 (en) * | 2007-10-17 | 2009-04-23 | Bio-Skin, A.S. | Sterile autologous, allogenic or xenogenic implant and the method of its production |
CN110420352A (en) * | 2019-07-01 | 2019-11-08 | 薛安全 | A kind of bion ocular tissue repair materials and preparation method thereof |
US20210060209A1 (en) * | 2019-08-29 | 2021-03-04 | Shanghai Baiyiyuan Bioengineering Co., Ltd | Dura mater biological patch and preparation method thereof |
Families Citing this family (304)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8603511B2 (en) | 1996-08-27 | 2013-12-10 | Baxter International, Inc. | Fragmented polymeric compositions and methods for their use |
US8303981B2 (en) | 1996-08-27 | 2012-11-06 | Baxter International Inc. | Fragmented polymeric compositions and methods for their use |
US6066325A (en) * | 1996-08-27 | 2000-05-23 | Fusion Medical Technologies, Inc. | Fragmented polymeric compositions and methods for their use |
US7435425B2 (en) | 2001-07-17 | 2008-10-14 | Baxter International, Inc. | Dry hemostatic compositions and methods for their preparation |
US8016823B2 (en) | 2003-01-18 | 2011-09-13 | Tsunami Medtech, Llc | Medical instrument and method of use |
US7892229B2 (en) | 2003-01-18 | 2011-02-22 | Tsunami Medtech, Llc | Medical instruments and techniques for treating pulmonary disorders |
WO1999058082A2 (en) * | 1998-05-14 | 1999-11-18 | The Cleveland Clinic Foundation | Processing of implantable animal tissues for dry storage |
US7452371B2 (en) * | 1999-06-02 | 2008-11-18 | Cook Incorporated | Implantable vascular device |
US6734018B2 (en) * | 1999-06-07 | 2004-05-11 | Lifenet | Process for decellularizing soft-tissue engineered medical implants, and decellularized soft-tissue medical implants produced |
US7063726B2 (en) * | 1998-06-30 | 2006-06-20 | Lifenet | Plasticized bone grafts and methods of making and using same |
US6293970B1 (en) * | 1998-06-30 | 2001-09-25 | Lifenet | Plasticized bone and soft tissue grafts and methods of making and using same |
US8563232B2 (en) * | 2000-09-12 | 2013-10-22 | Lifenet Health | Process for devitalizing soft-tissue engineered medical implants, and devitalized soft-tissue medical implants produced |
US6743574B1 (en) | 2000-09-12 | 2004-06-01 | Lifenet | Process for devitalizing soft-tissue engineered medical implants, and devitalized soft-tissue medical implants produced |
US6214054B1 (en) | 1998-09-21 | 2001-04-10 | Edwards Lifesciences Corporation | Method for fixation of biological tissues having mitigated propensity for post-implantation calcification and thrombosis and bioprosthetic devices prepared thereby |
US6312474B1 (en) * | 1999-09-15 | 2001-11-06 | Bio-Vascular, Inc. | Resorbable implant materials |
US8088060B2 (en) | 2000-03-15 | 2012-01-03 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
US8460367B2 (en) | 2000-03-15 | 2013-06-11 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
US9522217B2 (en) | 2000-03-15 | 2016-12-20 | Orbusneich Medical, Inc. | Medical device with coating for capturing genetically-altered cells and methods for using same |
US9433457B2 (en) | 2000-12-09 | 2016-09-06 | Tsunami Medtech, Llc | Medical instruments and techniques for thermally-mediated therapies |
US7549987B2 (en) | 2000-12-09 | 2009-06-23 | Tsunami Medtech, Llc | Thermotherapy device |
US8465516B2 (en) * | 2001-07-26 | 2013-06-18 | Oregon Health Science University | Bodily lumen closure apparatus and method |
AU2002326451B2 (en) * | 2001-07-26 | 2008-04-17 | Cook Biotech Incorporated | Vessel closure member and delivery apparatus |
US8444636B2 (en) | 2001-12-07 | 2013-05-21 | Tsunami Medtech, Llc | Medical instrument and method of use |
US6878168B2 (en) | 2002-01-03 | 2005-04-12 | Edwards Lifesciences Corporation | Treatment of bioprosthetic tissues to mitigate post implantation calcification |
US8308797B2 (en) | 2002-01-04 | 2012-11-13 | Colibri Heart Valve, LLC | Percutaneously implantable replacement heart valve device and method of making same |
US7128748B2 (en) * | 2002-03-26 | 2006-10-31 | Synovis Life Technologies, Inc. | Circular stapler buttress combination |
US20030187515A1 (en) * | 2002-03-26 | 2003-10-02 | Hariri Robert J. | Collagen biofabric and methods of preparing and using the collagen biofabric |
ES2540098T3 (en) * | 2002-05-10 | 2015-07-08 | Covidien Lp | Surgical stapling device that has a material applicator set for wound closure |
ES2268384T3 (en) | 2002-06-17 | 2007-03-16 | Tyco Healthcare Group Lp | ANNULAR SUPPORT STRUCTURES. |
US7682392B2 (en) | 2002-10-30 | 2010-03-23 | Depuy Spine, Inc. | Regenerative implants for stabilizing the spine and devices for attachment of said implants |
US7144588B2 (en) * | 2003-01-17 | 2006-12-05 | Synovis Life Technologies, Inc. | Method of preventing surgical adhesions |
US8834864B2 (en) | 2003-06-05 | 2014-09-16 | Baxter International Inc. | Methods for repairing and regenerating human dura mater |
AU2004245086B2 (en) * | 2003-06-05 | 2008-06-26 | Baxter Healthcare S.A. | Compositions for repairing and regenerating human dura mater |
US7927626B2 (en) | 2003-08-07 | 2011-04-19 | Ethicon, Inc. | Process of making flowable hemostatic compositions and devices containing such compositions |
US8579892B2 (en) | 2003-10-07 | 2013-11-12 | Tsunami Medtech, Llc | Medical system and method of use |
US8337545B2 (en) | 2004-02-09 | 2012-12-25 | Cook Medical Technologies Llc | Woven implantable device |
CA2576441A1 (en) * | 2004-08-17 | 2006-03-02 | Tyco Healthcare Group Lp | Stapling support structures |
US20060047291A1 (en) * | 2004-08-20 | 2006-03-02 | Uptake Medical Corporation | Non-foreign occlusion of an airway and lung collapse |
US8372094B2 (en) | 2004-10-15 | 2013-02-12 | Covidien Lp | Seal element for anastomosis |
AU2005295807B2 (en) | 2004-10-18 | 2011-09-01 | Covidien Lp | Annular adhesive structure |
US7455682B2 (en) | 2004-10-18 | 2008-11-25 | Tyco Healthcare Group Lp | Structure containing wound treatment material |
US7845536B2 (en) | 2004-10-18 | 2010-12-07 | Tyco Healthcare Group Lp | Annular adhesive structure |
US7938307B2 (en) | 2004-10-18 | 2011-05-10 | Tyco Healthcare Group Lp | Support structures and methods of using the same |
JP5020824B2 (en) | 2004-11-16 | 2012-09-05 | ロバート・エル・バリー | Lung therapy apparatus and method |
WO2006062862A1 (en) * | 2004-12-06 | 2006-06-15 | Cook Incorporated | Inflatable occlusion devices, methods, and systems |
US20060173470A1 (en) * | 2005-01-31 | 2006-08-03 | Oray B N | Surgical fastener buttress material |
US9364229B2 (en) | 2005-03-15 | 2016-06-14 | Covidien Lp | Circular anastomosis structures |
US20070203510A1 (en) * | 2006-02-28 | 2007-08-30 | Bettuchi Michael J | Annular disk for reduction of anastomotic tension and methods of using the same |
US7942890B2 (en) | 2005-03-15 | 2011-05-17 | Tyco Healthcare Group Lp | Anastomosis composite gasket |
US8197534B2 (en) * | 2005-03-31 | 2012-06-12 | Cook Medical Technologies Llc | Valve device with inflatable chamber |
US20100012703A1 (en) * | 2005-05-05 | 2010-01-21 | Allison Calabrese | Surgical Gasket |
KR20080026198A (en) * | 2005-06-30 | 2008-03-24 | 안트로제네시스 코포레이션 | Repair of tympanic membrane using placenta derived collagen biofabric |
CN1903144A (en) * | 2005-07-29 | 2007-01-31 | 广东冠昊生物科技有限公司 | Biological artificial ligamentum and method for preparing same |
CN1903143A (en) * | 2005-07-29 | 2007-01-31 | 广东冠昊生物科技有限公司 | Biological type artificial blood vessel and method for preparing the same |
US20070032785A1 (en) | 2005-08-03 | 2007-02-08 | Jennifer Diederich | Tissue evacuation device |
CN100482178C (en) * | 2005-08-04 | 2009-04-29 | 广东冠昊生物科技有限公司 | Blood vessel tumor clip with biological film |
US7658706B2 (en) * | 2005-12-05 | 2010-02-09 | Rti Biologics, Inc. | Vascular graft sterilization and decellularization |
CN1986001B (en) * | 2005-12-20 | 2011-09-14 | 广东冠昊生物科技股份有限公司 | Biological wound-protecting film |
CN1986006A (en) | 2005-12-20 | 2007-06-27 | 广州知光生物科技有限公司 | Biological nerve duct |
CN1985778B (en) * | 2005-12-20 | 2010-10-13 | 广东冠昊生物科技股份有限公司 | Artificial biological cornea |
CN1986007B (en) * | 2005-12-20 | 2011-09-14 | 广东冠昊生物科技股份有限公司 | Biological surgical patch |
US7670762B2 (en) * | 2006-01-17 | 2010-03-02 | Brennen Medical, Llc | Biocompatible tissue graft material for implant and method of making |
US9629626B2 (en) | 2006-02-02 | 2017-04-25 | Covidien Lp | Mechanically tuned buttress material to assist with proper formation of surgical element in diseased tissue |
US7793813B2 (en) | 2006-02-28 | 2010-09-14 | Tyco Healthcare Group Lp | Hub for positioning annular structure on a surgical device |
BRPI0712088B8 (en) | 2006-05-31 | 2021-06-22 | Baxter Healthcare Sa | use of a non-porous, fluid-tight, multi-layered, microscopic collagen lamina biomatrix |
CN101332316B (en) * | 2008-07-22 | 2012-12-26 | 广东冠昊生物科技股份有限公司 | Biotype nose bridge implantation body |
US20100023129A1 (en) * | 2008-07-22 | 2010-01-28 | Guo-Feng Xu | Jawbone prosthesis and method of manufacture |
CN101332314B (en) * | 2008-07-22 | 2012-11-14 | 广东冠昊生物科技股份有限公司 | Biotype articular cartilage repair piece |
TWI436793B (en) | 2006-08-02 | 2014-05-11 | Baxter Int | Rapidly acting dry sealant and methods for use and manufacture |
WO2008021391A1 (en) * | 2006-08-15 | 2008-02-21 | Anthrogenesis Corporation | Umbilical cord biomaterial for medical use |
US8071135B2 (en) | 2006-10-04 | 2011-12-06 | Anthrogenesis Corporation | Placental tissue compositions |
JP5769925B2 (en) | 2006-10-06 | 2015-08-26 | アントフロゲネシス コーポレーション | Human placental collagen compositions and methods for their production and use |
US7845533B2 (en) | 2007-06-22 | 2010-12-07 | Tyco Healthcare Group Lp | Detachable buttress material retention systems for use with a surgical stapling device |
US8028883B2 (en) | 2006-10-26 | 2011-10-04 | Tyco Healthcare Group Lp | Methods of using shape memory alloys for buttress attachment |
CN103933612B (en) | 2006-10-27 | 2016-06-22 | 爱德华兹生命科学公司 | Biological tissue for Srgery grafting |
US7993323B2 (en) | 2006-11-13 | 2011-08-09 | Uptake Medical Corp. | High pressure and high temperature vapor catheters and systems |
US8585645B2 (en) * | 2006-11-13 | 2013-11-19 | Uptake Medical Corp. | Treatment with high temperature vapor |
US8011550B2 (en) | 2009-03-31 | 2011-09-06 | Tyco Healthcare Group Lp | Surgical stapling apparatus |
US8011555B2 (en) | 2007-03-06 | 2011-09-06 | Tyco Healthcare Group Lp | Surgical stapling apparatus |
CA2680148C (en) | 2007-03-06 | 2015-09-01 | Tyco Healthcare Group Lp | Surgical stapling apparatus |
US8038045B2 (en) | 2007-05-25 | 2011-10-18 | Tyco Healthcare Group Lp | Staple buttress retention system |
US9101691B2 (en) | 2007-06-11 | 2015-08-11 | Edwards Lifesciences Corporation | Methods for pre-stressing and capping bioprosthetic tissue |
US7950561B2 (en) | 2007-06-18 | 2011-05-31 | Tyco Healthcare Group Lp | Structure for attachment of buttress material to anvils and cartridges of surgical staplers |
US7665646B2 (en) | 2007-06-18 | 2010-02-23 | Tyco Healthcare Group Lp | Interlocking buttress material retention system |
US8932619B2 (en) * | 2007-06-27 | 2015-01-13 | Sofradim Production | Dural repair material |
US8062330B2 (en) | 2007-06-27 | 2011-11-22 | Tyco Healthcare Group Lp | Buttress and surgical stapling apparatus |
US20090018655A1 (en) * | 2007-07-13 | 2009-01-15 | John Brunelle | Composite Implant for Surgical Repair |
US9744043B2 (en) | 2007-07-16 | 2017-08-29 | Lifenet Health | Crafting of cartilage |
ATE556667T1 (en) | 2007-08-23 | 2012-05-15 | Aegea Medical Inc | UTERUS THERAPY DEVICE |
US20090068250A1 (en) | 2007-09-07 | 2009-03-12 | Philippe Gravagna | Bioresorbable and biocompatible compounds for surgical use |
ES2456965T3 (en) | 2007-10-22 | 2014-04-24 | Uptake Medical Corp. | Determination of the parameters of the steam treatment and administration specific to the patient |
US8322335B2 (en) | 2007-10-22 | 2012-12-04 | Uptake Medical Corp. | Determining patient-specific vapor treatment and delivery parameters |
CA2703103C (en) * | 2007-10-30 | 2017-05-09 | Baxter Healthcare S.A. | Use of a regenerative biofunctional collagen biomatrix for treating visceral or parietal defects |
US9308068B2 (en) | 2007-12-03 | 2016-04-12 | Sofradim Production | Implant for parastomal hernia |
US8357387B2 (en) | 2007-12-21 | 2013-01-22 | Edwards Lifesciences Corporation | Capping bioprosthetic tissue to reduce calcification |
US9924992B2 (en) | 2008-02-20 | 2018-03-27 | Tsunami Medtech, Llc | Medical system and method of use |
EP2259803B2 (en) | 2008-02-29 | 2019-03-13 | Ferrosan Medical Devices A/S | Device for promotion of hemostasis and/or wound healing |
EP2113262B1 (en) * | 2008-04-29 | 2013-11-06 | Proxy Biomedical Limited | A Tissue Repair Implant |
GB2471632B (en) * | 2008-05-02 | 2012-04-18 | Cook Biotech Inc | Self deploying SIS in needle |
US8721632B2 (en) | 2008-09-09 | 2014-05-13 | Tsunami Medtech, Llc | Methods for delivering energy into a target tissue of a body |
US8579888B2 (en) | 2008-06-17 | 2013-11-12 | Tsunami Medtech, Llc | Medical probes for the treatment of blood vessels |
US9242026B2 (en) | 2008-06-27 | 2016-01-26 | Sofradim Production | Biosynthetic implant for soft tissue repair |
US9387280B2 (en) | 2008-09-05 | 2016-07-12 | Synovis Orthopedic And Woundcare, Inc. | Device for soft tissue repair or replacement |
US9561068B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
US10064697B2 (en) | 2008-10-06 | 2018-09-04 | Santa Anna Tech Llc | Vapor based ablation system for treating various indications |
CN102238920B (en) | 2008-10-06 | 2015-03-25 | 维兰德.K.沙马 | Method and apparatus for tissue ablation |
US10695126B2 (en) | 2008-10-06 | 2020-06-30 | Santa Anna Tech Llc | Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue |
US9561066B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
US20100147921A1 (en) | 2008-12-16 | 2010-06-17 | Lee Olson | Surgical Apparatus Including Surgical Buttress |
US11284931B2 (en) | 2009-02-03 | 2022-03-29 | Tsunami Medtech, Llc | Medical systems and methods for ablating and absorbing tissue |
US8365972B2 (en) | 2009-03-31 | 2013-02-05 | Covidien Lp | Surgical stapling apparatus |
US8348126B2 (en) | 2009-03-31 | 2013-01-08 | Covidien Lp | Crimp and release of suture holding buttress material |
US7988027B2 (en) | 2009-03-31 | 2011-08-02 | Tyco Healthcare Group Lp | Crimp and release of suture holding buttress material |
US9486215B2 (en) | 2009-03-31 | 2016-11-08 | Covidien Lp | Surgical stapling apparatus |
US7967179B2 (en) | 2009-03-31 | 2011-06-28 | Tyco Healthcare Group Lp | Center cinch and release of buttress material |
US8016178B2 (en) | 2009-03-31 | 2011-09-13 | Tyco Healthcare Group Lp | Surgical stapling apparatus |
WO2010129162A1 (en) | 2009-05-06 | 2010-11-11 | Hansa Medical Products, Inc. | Self-adjusting medical device |
US9039783B2 (en) | 2009-05-18 | 2015-05-26 | Baxter International, Inc. | Method for the improvement of mesh implant biocompatibility |
CN102802683B (en) | 2009-06-16 | 2015-11-25 | 巴克斯特国际公司 | Sthptic sponge |
FR2949688B1 (en) | 2009-09-04 | 2012-08-24 | Sofradim Production | FABRIC WITH PICOTS COATED WITH A BIORESORBABLE MICROPOROUS LAYER |
US20150231409A1 (en) | 2009-10-15 | 2015-08-20 | Covidien Lp | Buttress brachytherapy and integrated staple line markers for margin identification |
US9610080B2 (en) | 2009-10-15 | 2017-04-04 | Covidien Lp | Staple line reinforcement for anvil and cartridge |
US10842485B2 (en) | 2009-10-15 | 2020-11-24 | Covidien Lp | Brachytherapy buttress |
US10293553B2 (en) | 2009-10-15 | 2019-05-21 | Covidien Lp | Buttress brachytherapy and integrated staple line markers for margin identification |
US8157151B2 (en) | 2009-10-15 | 2012-04-17 | Tyco Healthcare Group Lp | Staple line reinforcement for anvil and cartridge |
US9693772B2 (en) | 2009-10-15 | 2017-07-04 | Covidien Lp | Staple line reinforcement for anvil and cartridge |
US8900223B2 (en) | 2009-11-06 | 2014-12-02 | Tsunami Medtech, Llc | Tissue ablation systems and methods of use |
US8771258B2 (en) | 2009-12-16 | 2014-07-08 | Baxter International Inc. | Hemostatic sponge |
US9161801B2 (en) | 2009-12-30 | 2015-10-20 | Tsunami Medtech, Llc | Medical system and method of use |
EP3028672A1 (en) | 2010-03-01 | 2016-06-08 | Colibri Heart Valve LLC | Percutaneously deliverable heart valve and method associated therewith |
US8679404B2 (en) | 2010-03-05 | 2014-03-25 | Edwards Lifesciences Corporation | Dry prosthetic heart valve packaging system |
CA2794121C (en) | 2010-03-23 | 2016-10-11 | Edwards Lifesciences Corporation | Methods of conditioning sheet bioprosthetic tissue |
SA111320355B1 (en) | 2010-04-07 | 2015-01-08 | Baxter Heathcare S A | Hemostatic sponge |
BR112012030455B1 (en) | 2010-06-01 | 2021-08-17 | Baxter Healthcare S.A. | PROCESS TO MANUFACTURE A DRY AND STABLE HEMOSTATIC COMPOSITION, FINAL FINISHED CONTAINER, AND KIT TO MANAGE A HEMOSTATIC COMPOSITION |
MX345479B (en) | 2010-06-01 | 2017-02-01 | Baxter Int Inc * | Process for making dry and stable hemostatic compositions. |
JP6289096B2 (en) | 2010-06-01 | 2018-03-07 | バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated | Process for making a dry and stable hemostatic composition |
US8906601B2 (en) | 2010-06-17 | 2014-12-09 | Edwardss Lifesciences Corporation | Methods for stabilizing a bioprosthetic tissue by chemical modification of antigenic carbohydrates |
WO2011160085A2 (en) | 2010-06-17 | 2011-12-22 | Edwards Lifesciences Corporation | Methods for stabilizing a bioprosthetic tissue by chemical modification of antigenic carbohydrates |
WO2012006124A2 (en) | 2010-06-28 | 2012-01-12 | Vela Biosystems Llc | Method and apparatus for the endoluminal delivery of intravascular devices |
US9943353B2 (en) | 2013-03-15 | 2018-04-17 | Tsunami Medtech, Llc | Medical system and method of use |
US9743974B2 (en) | 2010-11-09 | 2017-08-29 | Aegea Medical Inc. | Positioning method and apparatus for delivering vapor to the uterus |
US9351829B2 (en) | 2010-11-17 | 2016-05-31 | Edwards Lifesciences Corporation | Double cross-linkage process to enhance post-implantation bioprosthetic tissue durability |
US8348130B2 (en) | 2010-12-10 | 2013-01-08 | Covidien Lp | Surgical apparatus including surgical buttress |
CA3027755C (en) | 2010-12-14 | 2021-05-11 | Colibri Heart Valve Llc | Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets |
US9498317B2 (en) | 2010-12-16 | 2016-11-22 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery systems and packaging |
US9084602B2 (en) | 2011-01-26 | 2015-07-21 | Covidien Lp | Buttress film with hemostatic action for surgical stapling apparatus |
US8479968B2 (en) | 2011-03-10 | 2013-07-09 | Covidien Lp | Surgical instrument buttress attachment |
FR2972626B1 (en) | 2011-03-16 | 2014-04-11 | Sofradim Production | PROSTHETIC COMPRISING A THREE-DIMENSIONAL KNIT AND ADJUSTED |
US8789737B2 (en) | 2011-04-27 | 2014-07-29 | Covidien Lp | Circular stapler and staple line reinforcement material |
US8965499B2 (en) | 2011-04-29 | 2015-02-24 | Cyberonics, Inc. | Overwrap for nerve stimulation system |
FR2977789B1 (en) | 2011-07-13 | 2013-07-19 | Sofradim Production | PROSTHETIC FOR UMBILIC HERNIA |
FR2977790B1 (en) | 2011-07-13 | 2013-07-19 | Sofradim Production | PROSTHETIC FOR UMBILIC HERNIA |
US8998059B2 (en) | 2011-08-01 | 2015-04-07 | Ethicon Endo-Surgery, Inc. | Adjunct therapy device having driver with cavity for hemostatic agent |
EP2741676A1 (en) | 2011-08-09 | 2014-06-18 | Cook General Biotechnology LLC | Vial useable in tissue extraction procedures |
US9492170B2 (en) | 2011-08-10 | 2016-11-15 | Ethicon Endo-Surgery, Inc. | Device for applying adjunct in endoscopic procedure |
US8998060B2 (en) | 2011-09-13 | 2015-04-07 | Ethicon Endo-Surgery, Inc. | Resistive heated surgical staple cartridge with phase change sealant |
US9101359B2 (en) | 2011-09-13 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Surgical staple cartridge with self-dispensing staple buttress |
US9999408B2 (en) | 2011-09-14 | 2018-06-19 | Ethicon Endo-Surgery, Inc. | Surgical instrument with fluid fillable buttress |
US9125649B2 (en) | 2011-09-15 | 2015-09-08 | Ethicon Endo-Surgery, Inc. | Surgical instrument with filled staple |
US9254180B2 (en) | 2011-09-15 | 2016-02-09 | Ethicon Endo-Surgery, Inc. | Surgical instrument with staple reinforcement clip |
US8814025B2 (en) | 2011-09-15 | 2014-08-26 | Ethicon Endo-Surgery, Inc. | Fibrin pad matrix with suspended heat activated beads of adhesive |
US9393018B2 (en) | 2011-09-22 | 2016-07-19 | Ethicon Endo-Surgery, Inc. | Surgical staple assembly with hemostatic feature |
US9198644B2 (en) | 2011-09-22 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Anvil cartridge for surgical fastening device |
US8985429B2 (en) | 2011-09-23 | 2015-03-24 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with adjunct material application feature |
CA2849052C (en) | 2011-09-30 | 2019-11-05 | Sofradim Production | Reversible stiffening of light weight mesh |
US9867909B2 (en) | 2011-09-30 | 2018-01-16 | Sofradim Production | Multilayer implants for delivery of therapeutic agents |
US8899464B2 (en) | 2011-10-03 | 2014-12-02 | Ethicon Endo-Surgery, Inc. | Attachment of surgical staple buttress to cartridge |
US9089326B2 (en) | 2011-10-07 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Dual staple cartridge for surgical stapler |
JP6017568B2 (en) | 2011-10-07 | 2016-11-02 | イージー メディカル, インコーポレーテッド | Uterine treatment device |
WO2013053759A2 (en) | 2011-10-11 | 2013-04-18 | Baxter International Inc. | Hemostatic compositions |
KR102135484B1 (en) | 2011-10-11 | 2020-07-20 | 백스터 인터내셔널 인코포레이티드 | Hemostatic compositions |
US9675351B2 (en) | 2011-10-26 | 2017-06-13 | Covidien Lp | Buttress release from surgical stapler by knife pushing |
SA112330957B1 (en) | 2011-10-27 | 2015-08-09 | باكستر انترناشونال انك. | Hemostatic compositions |
US8584920B2 (en) | 2011-11-04 | 2013-11-19 | Covidien Lp | Surgical stapling apparatus including releasable buttress |
US8967448B2 (en) | 2011-12-14 | 2015-03-03 | Covidien Lp | Surgical stapling apparatus including buttress attachment via tabs |
US9351731B2 (en) | 2011-12-14 | 2016-05-31 | Covidien Lp | Surgical stapling apparatus including releasable surgical buttress |
US9351732B2 (en) | 2011-12-14 | 2016-05-31 | Covidien Lp | Buttress attachment to degradable polymer zones |
US9113885B2 (en) | 2011-12-14 | 2015-08-25 | Covidien Lp | Buttress assembly for use with surgical stapling device |
US9237892B2 (en) | 2011-12-14 | 2016-01-19 | Covidien Lp | Buttress attachment to the cartridge surface |
US9010608B2 (en) | 2011-12-14 | 2015-04-21 | Covidien Lp | Releasable buttress retention on a surgical stapler |
US9162011B2 (en) | 2011-12-19 | 2015-10-20 | Allosource | Flowable matrix compositions and methods |
FR2985170B1 (en) | 2011-12-29 | 2014-01-24 | Sofradim Production | PROSTHESIS FOR INGUINAL HERNIA |
FR2985271B1 (en) | 2011-12-29 | 2014-01-24 | Sofradim Production | KNITTED PICOTS |
US9010612B2 (en) | 2012-01-26 | 2015-04-21 | Covidien Lp | Buttress support design for EEA anvil |
US9326773B2 (en) | 2012-01-26 | 2016-05-03 | Covidien Lp | Surgical device including buttress material |
US9010609B2 (en) | 2012-01-26 | 2015-04-21 | Covidien Lp | Circular stapler including buttress |
EP2811939B8 (en) | 2012-02-10 | 2017-11-15 | CVDevices, LLC | Products made of biological tissues for stents and methods of manufacturing |
US9931116B2 (en) | 2012-02-10 | 2018-04-03 | Covidien Lp | Buttress composition |
US8820606B2 (en) | 2012-02-24 | 2014-09-02 | Covidien Lp | Buttress retention system for linear endostaplers |
CA2865349C (en) | 2012-03-06 | 2021-07-06 | Ferrosan Medical Devices A/S | Pressurized container containing haemostatic paste |
CA2874290C (en) | 2012-06-12 | 2020-02-25 | Ferrosan Medical Devices A/S | Dry haemostatic composition |
US20140005793A1 (en) * | 2012-06-21 | 2014-01-02 | Keith Cameron Koford | Novel biological implant compositions, implants and methods |
US9572576B2 (en) | 2012-07-18 | 2017-02-21 | Covidien Lp | Surgical apparatus including surgical buttress |
FR2994185B1 (en) | 2012-08-02 | 2015-07-31 | Sofradim Production | PROCESS FOR THE PREPARATION OF A POROUS CHITOSAN LAYER |
US20140048580A1 (en) | 2012-08-20 | 2014-02-20 | Covidien Lp | Buttress attachment features for surgical stapling apparatus |
FR2995788B1 (en) | 2012-09-25 | 2014-09-26 | Sofradim Production | HEMOSTATIC PATCH AND PREPARATION METHOD |
FR2995779B1 (en) | 2012-09-25 | 2015-09-25 | Sofradim Production | PROSTHETIC COMPRISING A TREILLIS AND A MEANS OF CONSOLIDATION |
FR2995778B1 (en) | 2012-09-25 | 2015-06-26 | Sofradim Production | ABDOMINAL WALL REINFORCING PROSTHESIS AND METHOD FOR MANUFACTURING THE SAME |
CA2880380C (en) | 2012-09-28 | 2020-09-15 | Sofradim Production | Packaging for a hernia repair device |
US9161753B2 (en) | 2012-10-10 | 2015-10-20 | Covidien Lp | Buttress fixation for a circular stapler |
US10238771B2 (en) | 2012-11-08 | 2019-03-26 | Edwards Lifesciences Corporation | Methods for treating bioprosthetic tissue using a nucleophile/electrophile in a catalytic system |
US20140131418A1 (en) | 2012-11-09 | 2014-05-15 | Covidien Lp | Surgical Stapling Apparatus Including Buttress Attachment |
US9192384B2 (en) | 2012-11-09 | 2015-11-24 | Covidien Lp | Recessed groove for better suture retention |
US9295466B2 (en) | 2012-11-30 | 2016-03-29 | Covidien Lp | Surgical apparatus including surgical buttress |
US9681936B2 (en) | 2012-11-30 | 2017-06-20 | Covidien Lp | Multi-layer porous film material |
US9402627B2 (en) | 2012-12-13 | 2016-08-02 | Covidien Lp | Folded buttress for use with a surgical apparatus |
US9522002B2 (en) | 2012-12-13 | 2016-12-20 | Covidien Lp | Surgical instrument with pressure distribution device |
US9204881B2 (en) | 2013-01-11 | 2015-12-08 | Covidien Lp | Buttress retainer for EEA anvil |
EP2945556A4 (en) | 2013-01-17 | 2016-08-31 | Virender K Sharma | Method and apparatus for tissue ablation |
US9433420B2 (en) | 2013-01-23 | 2016-09-06 | Covidien Lp | Surgical apparatus including surgical buttress |
US9414839B2 (en) | 2013-02-04 | 2016-08-16 | Covidien Lp | Buttress attachment for circular stapling device |
US9192383B2 (en) | 2013-02-04 | 2015-11-24 | Covidien Lp | Circular stapling device including buttress material |
AU2014214700B2 (en) | 2013-02-11 | 2018-01-18 | Cook Medical Technologies Llc | Expandable support frame and medical device |
US9504470B2 (en) | 2013-02-25 | 2016-11-29 | Covidien Lp | Circular stapling device with buttress |
US20140239047A1 (en) | 2013-02-28 | 2014-08-28 | Covidien Lp | Adherence concepts for non-woven absorbable felt buttresses |
US9782173B2 (en) | 2013-03-07 | 2017-10-10 | Covidien Lp | Circular stapling device including buttress release mechanism |
CA2899713C (en) | 2013-03-15 | 2022-07-19 | Allosource | Cell repopulated collagen matrix for soft tissue repair and regeneration |
FR3006581B1 (en) | 2013-06-07 | 2016-07-22 | Sofradim Production | PROSTHESIS BASED ON TEXTILE FOR LAPAROSCOPIC PATHWAY |
FR3006578B1 (en) | 2013-06-07 | 2015-05-29 | Sofradim Production | PROSTHESIS BASED ON TEXTILE FOR LAPAROSCOPIC PATHWAY |
US9724078B2 (en) | 2013-06-21 | 2017-08-08 | Ferrosan Medical Devices A/S | Vacuum expanded dry composition and syringe for retaining same |
US9615922B2 (en) | 2013-09-30 | 2017-04-11 | Edwards Lifesciences Corporation | Method and apparatus for preparing a contoured biological tissue |
US9782211B2 (en) | 2013-10-01 | 2017-10-10 | Uptake Medical Technology Inc. | Preferential volume reduction of diseased segments of a heterogeneous lobe |
US10959839B2 (en) | 2013-10-08 | 2021-03-30 | Edwards Lifesciences Corporation | Method for directing cellular migration patterns on a biological tissue |
US9655620B2 (en) | 2013-10-28 | 2017-05-23 | Covidien Lp | Circular surgical stapling device including buttress material |
CA2928963C (en) | 2013-12-11 | 2020-10-27 | Ferrosan Medical Devices A/S | Dry composition comprising an extrusion enhancer |
US9844378B2 (en) | 2014-04-29 | 2017-12-19 | Covidien Lp | Surgical stapling apparatus and methods of adhering a surgical buttress thereto |
US10179019B2 (en) | 2014-05-22 | 2019-01-15 | Aegea Medical Inc. | Integrity testing method and apparatus for delivering vapor to the uterus |
US9993290B2 (en) | 2014-05-22 | 2018-06-12 | Aegea Medical Inc. | Systems and methods for performing endometrial ablation |
EP3000489B1 (en) | 2014-09-24 | 2017-04-05 | Sofradim Production | Method for preparing an anti-adhesion barrier film |
EP3000432B1 (en) | 2014-09-29 | 2022-05-04 | Sofradim Production | Textile-based prosthesis for treatment of inguinal hernia |
EP3000433B1 (en) | 2014-09-29 | 2022-09-21 | Sofradim Production | Device for introducing a prosthesis for hernia treatment into an incision and flexible textile based prosthesis |
CN106999621B (en) | 2014-10-13 | 2020-07-03 | 弗罗桑医疗设备公司 | Dry composition for hemostasis and wound healing |
US10485604B2 (en) | 2014-12-02 | 2019-11-26 | Uptake Medical Technology Inc. | Vapor treatment of lung nodules and tumors |
EP3029189B1 (en) | 2014-12-05 | 2021-08-11 | Sofradim Production | Prosthetic porous knit, method of making same and hernia prosthesis |
US10835216B2 (en) | 2014-12-24 | 2020-11-17 | Covidien Lp | Spinneret for manufacture of melt blown nonwoven fabric |
US10653837B2 (en) | 2014-12-24 | 2020-05-19 | Ferrosan Medical Devices A/S | Syringe for retaining and mixing first and second substances |
US10531906B2 (en) | 2015-02-02 | 2020-01-14 | Uptake Medical Technology Inc. | Medical vapor generator |
US10470767B2 (en) | 2015-02-10 | 2019-11-12 | Covidien Lp | Surgical stapling instrument having ultrasonic energy delivery |
EP3059255B1 (en) | 2015-02-17 | 2020-05-13 | Sofradim Production | Method for preparing a chitosan-based matrix comprising a fiber reinforcement member |
EP3291745A4 (en) | 2015-04-10 | 2019-02-13 | Covidien LP | Surgical stapler with integrated bladder |
EP3085337B1 (en) | 2015-04-24 | 2022-09-14 | Sofradim Production | Prosthesis for supporting a breast structure |
ES2676072T3 (en) | 2015-06-19 | 2018-07-16 | Sofradim Production | Synthetic prosthesis comprising a knitted fabric and a non-porous film and method of forming it |
EP3316930B1 (en) | 2015-07-03 | 2019-07-31 | Ferrosan Medical Devices A/S | Syringe for mixing two components and for retaining a vacuum in a storage condition |
EP3195830B1 (en) | 2016-01-25 | 2020-11-18 | Sofradim Production | Prosthesis for hernia repair |
US11331037B2 (en) | 2016-02-19 | 2022-05-17 | Aegea Medical Inc. | Methods and apparatus for determining the integrity of a bodily cavity |
US11331140B2 (en) | 2016-05-19 | 2022-05-17 | Aqua Heart, Inc. | Heated vapor ablation systems and methods for treating cardiac conditions |
US10959731B2 (en) | 2016-06-14 | 2021-03-30 | Covidien Lp | Buttress attachment for surgical stapling instrument |
WO2018007849A1 (en) * | 2016-07-05 | 2018-01-11 | Carlos Alvarado | Serous membrane for ocular surface disorders |
EP3308829B1 (en) * | 2016-09-10 | 2020-04-29 | Cook Biotech Incorporated | Electrostimulative graft products |
EP3312325B1 (en) | 2016-10-21 | 2021-09-22 | Sofradim Production | Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained |
US11026686B2 (en) | 2016-11-08 | 2021-06-08 | Covidien Lp | Structure for attaching buttress to anvil and/or cartridge of surgical stapling instrument |
US10874768B2 (en) | 2017-01-20 | 2020-12-29 | Covidien Lp | Drug eluting medical device |
US10925607B2 (en) | 2017-02-28 | 2021-02-23 | Covidien Lp | Surgical stapling apparatus with staple sheath |
US10368868B2 (en) | 2017-03-09 | 2019-08-06 | Covidien Lp | Structure for attaching buttress material to anvil and cartridge of surgical stapling instrument |
US11096610B2 (en) | 2017-03-28 | 2021-08-24 | Covidien Lp | Surgical implants including sensing fibers |
EP3398554A1 (en) | 2017-05-02 | 2018-11-07 | Sofradim Production | Prosthesis for inguinal hernia repair |
US11129673B2 (en) | 2017-05-05 | 2021-09-28 | Uptake Medical Technology Inc. | Extra-airway vapor ablation for treating airway constriction in patients with asthma and COPD |
WO2018222434A1 (en) | 2017-05-31 | 2018-12-06 | Edwards Lifesciences Corporation | Collagen fibers and articles formed therefrom |
US10849625B2 (en) | 2017-08-07 | 2020-12-01 | Covidien Lp | Surgical buttress retention systems for surgical stapling apparatus |
US10945733B2 (en) | 2017-08-23 | 2021-03-16 | Covidien Lp | Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus |
US11344364B2 (en) | 2017-09-07 | 2022-05-31 | Uptake Medical Technology Inc. | Screening method for a target nerve to ablate for the treatment of inflammatory lung disease |
WO2019051476A1 (en) | 2017-09-11 | 2019-03-14 | Incubar, LLC | Conduit vascular implant sealing device for reducing endoleak |
US11350988B2 (en) | 2017-09-11 | 2022-06-07 | Uptake Medical Technology Inc. | Bronchoscopic multimodality lung tumor treatment |
USD845467S1 (en) | 2017-09-17 | 2019-04-09 | Uptake Medical Technology Inc. | Hand-piece for medical ablation catheter |
US11419658B2 (en) | 2017-11-06 | 2022-08-23 | Uptake Medical Technology Inc. | Method for treating emphysema with condensable thermal vapor |
US11141151B2 (en) | 2017-12-08 | 2021-10-12 | Covidien Lp | Surgical buttress for circular stapling |
US11490946B2 (en) | 2017-12-13 | 2022-11-08 | Uptake Medical Technology Inc. | Vapor ablation handpiece |
SG11202003938PA (en) | 2018-01-23 | 2020-08-28 | Edwards Lifesciences Corp | Method for pre-stretching implantable biocompatible materials, and materials and devices produced thereby |
US11065000B2 (en) | 2018-02-22 | 2021-07-20 | Covidien Lp | Surgical buttresses for surgical stapling apparatus |
US10758237B2 (en) | 2018-04-30 | 2020-09-01 | Covidien Lp | Circular stapling apparatus with pinned buttress |
US11426163B2 (en) | 2018-05-09 | 2022-08-30 | Covidien Lp | Universal linear surgical stapling buttress |
KR20210008479A (en) | 2018-05-09 | 2021-01-22 | 훼로산 메디칼 디바이스 에이/에스 | How to prepare a hemostatic composition |
US11432818B2 (en) | 2018-05-09 | 2022-09-06 | Covidien Lp | Surgical buttress assemblies |
US11284896B2 (en) | 2018-05-09 | 2022-03-29 | Covidien Lp | Surgical buttress loading and attaching/detaching assemblies |
JP2021525598A (en) | 2018-06-01 | 2021-09-27 | サンタ アナ テック エルエルシーSanta Anna Tech Llc | Multi-stage steam-based ablation processing method and steam generation and delivery system |
US11219460B2 (en) | 2018-07-02 | 2022-01-11 | Covidien Lp | Surgical stapling apparatus with anvil buttress |
US10806459B2 (en) | 2018-09-14 | 2020-10-20 | Covidien Lp | Drug patterned reinforcement material for circular anastomosis |
CN109260517B (en) * | 2018-09-19 | 2020-10-30 | 杭州启明医疗器械股份有限公司 | Prefillable dry biological heart valve and preparation method thereof |
US10952729B2 (en) | 2018-10-03 | 2021-03-23 | Covidien Lp | Universal linear buttress retention/release assemblies and methods |
EP3852683B1 (en) | 2018-11-01 | 2024-05-29 | Edwards Lifesciences Corporation | Transcatheter pulmonic regenerative valve |
EP3653171B1 (en) | 2018-11-16 | 2024-08-21 | Sofradim Production | Implants suitable for soft tissue repair |
US11653927B2 (en) | 2019-02-18 | 2023-05-23 | Uptake Medical Technology Inc. | Vapor ablation treatment of obstructive lung disease |
US11730472B2 (en) | 2019-04-25 | 2023-08-22 | Covidien Lp | Surgical system and surgical loading units thereof |
US11596403B2 (en) | 2019-05-08 | 2023-03-07 | Covidien Lp | Surgical stapling device |
US11478245B2 (en) | 2019-05-08 | 2022-10-25 | Covidien Lp | Surgical stapling device |
US11969169B2 (en) | 2019-09-10 | 2024-04-30 | Covidien Lp | Anvil buttress loading unit for a surgical stapling apparatus |
US11571208B2 (en) | 2019-10-11 | 2023-02-07 | Covidien Lp | Surgical buttress loading units |
US11523824B2 (en) | 2019-12-12 | 2022-12-13 | Covidien Lp | Anvil buttress loading for a surgical stapling apparatus |
US11547407B2 (en) | 2020-03-19 | 2023-01-10 | Covidien Lp | Staple line reinforcement for surgical stapling apparatus |
US12064330B2 (en) | 2020-04-28 | 2024-08-20 | Covidien Lp | Implantable prothesis for minimally invasive hernia repair |
US11337699B2 (en) | 2020-04-28 | 2022-05-24 | Covidien Lp | Magnesium infused surgical buttress for surgical stapler |
US11707276B2 (en) | 2020-09-08 | 2023-07-25 | Covidien Lp | Surgical buttress assemblies and techniques for surgical stapling |
US11399833B2 (en) | 2020-10-19 | 2022-08-02 | Covidien Lp | Anvil buttress attachment for surgical stapling apparatus |
US11534170B2 (en) | 2021-01-04 | 2022-12-27 | Covidien Lp | Anvil buttress attachment for surgical stapling apparatus |
US11510670B1 (en) | 2021-06-23 | 2022-11-29 | Covidien Lp | Buttress attachment for surgical stapling apparatus |
US11596399B2 (en) | 2021-06-23 | 2023-03-07 | Covidien Lp | Anvil buttress attachment for surgical stapling apparatus |
US11672538B2 (en) | 2021-06-24 | 2023-06-13 | Covidien Lp | Surgical stapling device including a buttress retention assembly |
US11678879B2 (en) | 2021-07-01 | 2023-06-20 | Covidien Lp | Buttress attachment for surgical stapling apparatus |
US11684368B2 (en) | 2021-07-14 | 2023-06-27 | Covidien Lp | Surgical stapling device including a buttress retention assembly |
US12076013B2 (en) | 2021-08-03 | 2024-09-03 | Covidien Lp | Surgical buttress attachment assemblies for surgical stapling apparatus |
US11801052B2 (en) | 2021-08-30 | 2023-10-31 | Covidien Lp | Assemblies for surgical stapling instruments |
US11751875B2 (en) | 2021-10-13 | 2023-09-12 | Coviden Lp | Surgical buttress attachment assemblies for surgical stapling apparatus |
US11806017B2 (en) | 2021-11-23 | 2023-11-07 | Covidien Lp | Anvil buttress loading system for surgical stapling apparatus |
WO2023164113A1 (en) | 2022-02-24 | 2023-08-31 | Covidien Lp | Surgical medical devices |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3991184A (en) * | 1973-10-05 | 1976-11-09 | Martin Kludas | Agent for the care of skin |
US5306286A (en) * | 1987-06-25 | 1994-04-26 | Duke University | Absorbable stent |
US5413798A (en) * | 1988-10-15 | 1995-05-09 | B. Braun Melsungen Aktiengesellschaft | Process for preparing bovine pericard materials and use thereof |
US5837278A (en) * | 1994-01-06 | 1998-11-17 | Ed Geistlich Sohne Ag Fur Chemische Industrie | Resorbable collagen membrane for use in guided tissue regeneration |
EP0897942A1 (en) * | 1997-08-18 | 1999-02-24 | Medtronic, Inc. | A method of crosslinking collagen-based material and bioprosthetic devices produced therefrom |
WO1999048540A1 (en) * | 1998-03-23 | 1999-09-30 | Bio-Vascular, Inc. | Implants and method of making |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4724199B1 (en) * | 1969-11-17 | 1972-07-04 | ||
JPH0679616B2 (en) * | 1985-07-25 | 1994-10-12 | 株式会社高研 | Crosslinked medical supplies |
US5634946A (en) * | 1988-08-24 | 1997-06-03 | Focal, Inc. | Polymeric endoluminal paving process |
US5085629A (en) | 1988-10-06 | 1992-02-04 | Medical Engineering Corporation | Biodegradable stent |
US4915113A (en) | 1988-12-16 | 1990-04-10 | Bio-Vascular, Inc. | Method and apparatus for monitoring the patency of vascular grafts |
US5258021A (en) | 1992-01-27 | 1993-11-02 | Duran Carlos G | Sigmoid valve annuloplasty ring |
US5411965A (en) * | 1993-08-23 | 1995-05-02 | Arizona Board Of Regents | Use of delta opioid receptor antagonists to treat cocaine abuse |
US5503638A (en) | 1994-02-10 | 1996-04-02 | Bio-Vascular, Inc. | Soft tissue stapling buttress |
JPH10503667A (en) * | 1994-05-24 | 1998-04-07 | スミス アンド ネフュー ピーエルシー | Disc implant |
US5783214A (en) * | 1994-06-13 | 1998-07-21 | Buford Biomedical, Inc. | Bio-erodible matrix for the controlled release of medicinals |
US5447922A (en) * | 1994-08-24 | 1995-09-05 | Bristol-Myers Squibb Company | α-phosphonosulfinic squalene synthetase inhibitors |
US5837533A (en) * | 1994-09-28 | 1998-11-17 | American Home Products Corporation | Complexes comprising a nucleic acid bound to a cationic polyamine having an endosome disruption agent |
US5599852A (en) * | 1994-10-18 | 1997-02-04 | Ethicon, Inc. | Injectable microdispersions for soft tissue repair and augmentation |
US5998401A (en) * | 1995-02-28 | 1999-12-07 | Eli Lilly And Company | Naphthyl compounds, intermediates, compositions, and methods |
US5728152A (en) | 1995-06-07 | 1998-03-17 | St. Jude Medical, Inc. | Bioresorbable heart valve support |
EP0925303B1 (en) * | 1996-08-28 | 2002-10-23 | The Procter & Gamble Company | Phosphinic acid amides as matrix metalloprotease inhibitors |
US5752965A (en) | 1996-10-21 | 1998-05-19 | Bio-Vascular, Inc. | Apparatus and method for producing a reinforced surgical fastener suture line |
US5932236A (en) | 1997-03-06 | 1999-08-03 | Bass; James S. | Pharmaceutical composition and methods for using it |
ATE277645T1 (en) * | 1997-05-22 | 2004-10-15 | Biomet Deutschland Gmbh | PEPTIDE-COATED IMPLANTS AND METHOD FOR THE PRODUCTION THEREOF |
US6106555A (en) * | 1998-12-15 | 2000-08-22 | Av Healing Llc | Method for tissue fixation |
US6274635B1 (en) * | 1999-03-22 | 2001-08-14 | Immugen Pharmaceuticals Inc. | Alkylated resorcinol derivatives for the treatment of immune diseases |
JP4559680B2 (en) * | 1999-06-25 | 2010-10-13 | 株式会社カネカ | Regenerated collagen fiber with reduced odor and improved setability, method for producing the same, and set method |
US6312474B1 (en) * | 1999-09-15 | 2001-11-06 | Bio-Vascular, Inc. | Resorbable implant materials |
-
1999
- 1999-09-15 US US09/396,279 patent/US6312474B1/en not_active Expired - Lifetime
-
2000
- 2000-09-14 CA CA2384961A patent/CA2384961C/en not_active Expired - Fee Related
- 2000-09-14 EP EP00960099A patent/EP1212105B1/en not_active Expired - Lifetime
- 2000-09-14 DE DE60010287T patent/DE60010287T2/en not_active Expired - Lifetime
- 2000-09-14 WO PCT/US2000/025234 patent/WO2001019423A1/en active IP Right Grant
- 2000-09-14 AT AT00960099T patent/ATE265241T1/en active
- 2000-09-14 ES ES00960099T patent/ES2220530T3/en not_active Expired - Lifetime
- 2000-09-14 JP JP2001523051A patent/JP5362937B2/en not_active Expired - Fee Related
- 2000-09-14 AU AU71314/00A patent/AU772182B2/en not_active Ceased
-
2002
- 2002-03-14 US US10/099,425 patent/US6652594B2/en not_active Expired - Lifetime
-
2003
- 2003-11-24 US US10/722,034 patent/US20040107006A1/en not_active Abandoned
-
2011
- 2011-10-28 JP JP2011237671A patent/JP2012040415A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3991184A (en) * | 1973-10-05 | 1976-11-09 | Martin Kludas | Agent for the care of skin |
US5306286A (en) * | 1987-06-25 | 1994-04-26 | Duke University | Absorbable stent |
US5413798A (en) * | 1988-10-15 | 1995-05-09 | B. Braun Melsungen Aktiengesellschaft | Process for preparing bovine pericard materials and use thereof |
US5837278A (en) * | 1994-01-06 | 1998-11-17 | Ed Geistlich Sohne Ag Fur Chemische Industrie | Resorbable collagen membrane for use in guided tissue regeneration |
EP0897942A1 (en) * | 1997-08-18 | 1999-02-24 | Medtronic, Inc. | A method of crosslinking collagen-based material and bioprosthetic devices produced therefrom |
WO1999048540A1 (en) * | 1998-03-23 | 1999-09-30 | Bio-Vascular, Inc. | Implants and method of making |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007037051A1 (en) * | 2007-07-24 | 2009-01-29 | Aesculap Ag | Flat implant |
US9370604B2 (en) | 2007-07-24 | 2016-06-21 | Aesculap Ag | Planar implant |
WO2009049568A2 (en) * | 2007-10-17 | 2009-04-23 | Bio-Skin, A.S. | Sterile autologous, allogenic or xenogenic implant and the method of its production |
WO2009049568A3 (en) * | 2007-10-17 | 2009-12-23 | Bio-Skin, A.S. | Anisotropic implant and its method of production |
KR20100101563A (en) * | 2007-10-17 | 2010-09-17 | 바이오스킨 에이에스 | Anisotropic implant and its method of production |
KR101668043B1 (en) | 2007-10-17 | 2016-10-20 | 메디셈 티슈 (씨와이) 리미티드 | Anisotropic implant and its method of production |
CN110420352A (en) * | 2019-07-01 | 2019-11-08 | 薛安全 | A kind of bion ocular tissue repair materials and preparation method thereof |
US20210060209A1 (en) * | 2019-08-29 | 2021-03-04 | Shanghai Baiyiyuan Bioengineering Co., Ltd | Dura mater biological patch and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5362937B2 (en) | 2013-12-11 |
ATE265241T1 (en) | 2004-05-15 |
AU7131400A (en) | 2001-04-17 |
EP1212105B1 (en) | 2004-04-28 |
AU772182B2 (en) | 2004-04-08 |
EP1212105A1 (en) | 2002-06-12 |
CA2384961C (en) | 2011-03-29 |
DE60010287T2 (en) | 2004-09-23 |
ES2220530T3 (en) | 2004-12-16 |
JP2003509129A (en) | 2003-03-11 |
JP2012040415A (en) | 2012-03-01 |
DE60010287D1 (en) | 2004-06-03 |
US20040107006A1 (en) | 2004-06-03 |
US20020138152A1 (en) | 2002-09-26 |
CA2384961A1 (en) | 2001-03-22 |
US6312474B1 (en) | 2001-11-06 |
US6652594B2 (en) | 2003-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2384961C (en) | Resorbable implant materials | |
EP2608815B1 (en) | Biomaterials with enhanced properties and devices made therefrom | |
US20200261222A1 (en) | Biological tissue for surgical implantation | |
US7318998B2 (en) | Tissue decellularization | |
EP1452150B1 (en) | Chemical cleaning of biological material | |
EP1098670B1 (en) | Crosslinking of bioprosthetic material to mitigate post-implantation calcification | |
EP2818046A1 (en) | Variably crosslinked tissue | |
US20080171906A1 (en) | Tissue performance via hydrolysis and cross-linking | |
AU2017201003B2 (en) | Biomaterials with enhanced properties and devices made therefrom | |
MXPA02002931A (en) | Resorbable implant materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 71314/00 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2001 523051 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2384961 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2002/002931 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000960099 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2000960099 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 2000960099 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 71314/00 Country of ref document: AU |