WO2001018278A1 - Method for producing a polysulfide - Google Patents

Method for producing a polysulfide Download PDF

Info

Publication number
WO2001018278A1
WO2001018278A1 PCT/JP2000/006034 JP0006034W WO0118278A1 WO 2001018278 A1 WO2001018278 A1 WO 2001018278A1 JP 0006034 W JP0006034 W JP 0006034W WO 0118278 A1 WO0118278 A1 WO 0118278A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
polysulfide
electrolytic
electrolytic cell
upstream
Prior art date
Application number
PCT/JP2000/006034
Other languages
French (fr)
Japanese (ja)
Inventor
Eiji Endoh
Tetsuji Shimohira
Tatsuya Andoh
Junji Tanaka
Keigo Watanabe
Original Assignee
Kawasaki Kasei Chemicals Ltd.
Nippon Paper Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Kasei Chemicals Ltd., Nippon Paper Industries Co., Ltd. filed Critical Kawasaki Kasei Chemicals Ltd.
Priority to AU68715/00A priority Critical patent/AU6871500A/en
Publication of WO2001018278A1 publication Critical patent/WO2001018278A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0057Oxidation of liquors, e.g. in order to reduce the losses of sulfur compounds, followed by evaporation or combustion if the liquor in question is a black liquor
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/02Pulping cellulose-containing materials with inorganic bases or alkaline reacting compounds, e.g. sulfate processes
    • D21C3/022Pulping cellulose-containing materials with inorganic bases or alkaline reacting compounds, e.g. sulfate processes in presence of S-containing compounds

Definitions

  • the present invention relates to a method for producing a polysulfide by electrolytic oxidation, and more particularly to a method for producing a polysulfide digest by electrolytically oxidizing a cooking liquor in a pulp production process.
  • the cooking liquor in the polysulfide cooking process is produced by oxidizing an alkaline aqueous solution containing sodium sulfide, a so-called white liquor, with molecular oxygen such as air in the presence of a catalyst such as activated carbon (for example, the following reaction formula 1).
  • a catalyst such as activated carbon
  • JP-A Japanese Patent Application Laid-Open
  • a polysulfide cooking liquor having a conversion of about 60%, a selectivity of about 60%, and a sulfur polysulfide concentration of about 5 g L on a sulfide ion base.
  • sulfur polysulfide refers Porisarufai Dosarufa (PS- S) and also called, for example, sulfur sodium polysulfide N a 2 S oxidation state of x 0, i.e. atoms - refers to sulfur (X 1) pieces minute.
  • sulfur (S x 2— sulfur equivalent to one atom) and sulfide (S 2 —), which are equivalent to sulfur having an oxidation number of 12 in polysulfide ions, are collectively referred to in this specification. in will be expressed as N a 2 S state sulfur.
  • WO9500701 describes an electrolytic production method of a polysulfide cooking liquor.
  • an anode obtained by coating an oxide of ruthenium, iridium, platinum, or palladium on a carrier is used as an anode.
  • a three-dimensional mesh electrode of a carrier in which a large number of expanded metals are combined is disclosed.
  • WO 97/412125 describes an electrolytic production method of a polysulfide cooking liquor using a porous anode having at least a surface made of carbon. 0 / zm carbon fiber aggregate is used
  • the present invention uses an electrolytic cell having an anode chamber in which an anode is arranged, a force sword chamber in which a force sword is arranged, and a diaphragm for partitioning the anode chamber and a cathode chamber, and a sulfide is contained in the anode chamber.
  • the oxidation progresses in accordance with the progress of the oxidation of the anolyte by providing the distribution of the electrolytic conditions in the flow direction of the sulfide-containing solution (hereinafter referred to as anolyte) flowing through the anode compartment.
  • anolyte the distribution of the electrolytic conditions in the flow direction of the sulfide-containing solution
  • FIG. 1 is an explanatory diagram showing one example of an apparatus for implementing the present invention.
  • electrolysis conditions in the flow direction of the anolyte in the electrolytic cell specifically, two or more electrolytic cells are arranged in series in the flow of the solution, and the electric angle of the upstream electrolytic cell It is preferable that the conditions and the electrolysis conditions of the downstream electrolyzer be different because the electrolyzer has a simple structure and its operation is easily controlled.
  • An electrolytic cell having a distribution of electrolysis conditions depending on the position in the electrolytic cell can be used alone or in combination with another electrolytic cell.
  • FIG. 1 shows an example of an apparatus for carrying out the present invention.
  • polysulfide is produced by combining two electrolytic cells in series, such as an upstream electrolyzer (1) and a downstream electrolyzer (2).
  • Each cell is composed of an anode chamber (11, 21), an anode current collector (12, 22), an anode (13, 23), a power sword chamber (14, 24), and a power sword. (15, 25) and a diaphragm (16, 26).
  • the electrolysis conditions to be changed in the flowing direction of the electrolytic solution include the following.
  • Oxidation of sulfide ions is believed to occur at the anode surface. As the current density on the anode surface increases, the diffusion of polysulfide ions and Na ions generated on the electrode surface cannot catch up, and the difference between the composition of the solution on the electrode surface and the composition of the entire solution increases. It becomes.
  • the composition of the solution on the anode surface remains within the range where the side reaction hardly occurs even if the current density on the anode surface is relatively high V.
  • the composition of the solution on the anode surface is in a range where a side reaction is likely to occur.
  • the distribution is provided so that the current density on the anode surface becomes lower toward the downstream side in the flowing direction of the solution in the electrolytic cell ⁇ .
  • the current density at the anode surface of the upstream electrolytic cell is greater than the current density at the anode surface of the downstream electrolytic cell
  • the anode surface of the upstream electrolytic cell current density 0 in. 0 0 5 to 2 0 k AZM are two der, such that the current density in ⁇ Roh once the surface of the electrolytic cell downstream is 0. 0 0 1 ⁇ 1 5 k AZ m 2 It is preferable to control.
  • the average superficial velocity in the anode chamber is preferably 1 to 30 cmZ seconds.
  • the flow rate of the catholyte is not limited, but is preferably determined according to the magnitude of the buoyancy of the generated gas.
  • a more preferable range of the average superficial velocity in the anode chamber is 1 to 15 cm / sec, and a particularly preferable range is 2 to 10 cmZ seconds.
  • the flow rate of the anode liquid in the upstream electrolytic cell is smaller than the flow rate of the anode liquid in the downstream electrolytic cell, and the flow rate of the anode liquid in the upstream electrolytic cell is two. It is more preferable that the flow rate is 0.5 to 20 cmZ seconds and the flow rate of the anode liquid in the downstream electrolytic cell is 1 to 30 cmZ seconds.
  • the material of the anode in the present invention is not particularly limited as long as it has oxidation resistance in an alkaline solution.
  • Non-metals include carbon materials, metals include base metals such as nickel, konokoleto, and titanium, and alloys thereof. And noble metals such as platinum, gold and rhodium, and alloys or oxides thereof.
  • nickel or nickel alloys have a higher potential for dissolving the oxides and forming oxides than the potential for forming the sulfur polysulfide and thiosulfate ions. In production, it has sufficient durability for practical use.
  • the anode is preferably a porous body.
  • the anode on the upstream side is a nickel porous body
  • the anode on the downstream side is a carbon porous body
  • side reactions are suppressed to efficiently convert polysulfide. It is preferable because it can be obtained.
  • the surface area of the anode per unit volume of the anode chamber is preferably 500 to 2000 Om 2 Zm 3 .
  • the volume of the anode chamber is the volume of a portion defined by the effective conducting surface of the diaphragm and the current collector plate of the anode. If the surface area of the anode is less than 50 O m 2 / !!! 3 , the current density on the anode surface will increase and not only will it be easier to generate by-products such as thiosulfate ions, but also nickel etc. It is not preferable to use a base metal or an alloy thereof as an anode because an anode dissolution easily occurs.
  • the surface area of the anode is set to be larger than 2000 Om 2 Xm 3 , the pressure loss of the liquid will increase, which may cause a problem in the electrolysis operation.
  • the anode of the surface area per unit volume of the anode compartment 1 0 0 0 ⁇ 1 0 0 0 O m 2 and even more preferably in the range of Zm 3.
  • the surface area of the anode is preferably 2 to 10 Om 2 Zm 2 per unit area of the diaphragm separating the anode chamber and the power source chamber.
  • the number of electrolytic cells is two, the anode surface area per unit area of the diaphragm of the upstream electrolytic cell is smaller than the anode surface area per unit area of the diaphragm of the downstream electrolytic cell, and
  • the surface area of the upstream node is 2 to 100 m 2 / m 2 per unit area of the diaphragm, and the surface area of the downstream node is 1 O to 500 0 per unit area of the diaphragm. 0 m 2 Z m 2 is more preferable.
  • a porous node having a physically continuous three-dimensional network structure is a physically continuous structure, and may be continuously connected by welding or the like.
  • porous nickel obtained by plating nickel on the skeleton of the foamed polymer material and then baking and removing the internal polymer material can be used.
  • the pores formed by the network structure preferably have an average pore diameter of 0.1 to 5 mm. If the average pore diameter is larger than 5 m ⁇ , the anode surface area cannot be increased, the current density on the anode surface will increase, and only the by-products such as thiosulfate ions will be easily generated. It is not preferable because anode dissolution tends to occur. If the average pore diameter of the pores is smaller than 0.1 mm, the pressure loss of the liquid increases, which may cause a problem in the electrolysis operation, which is not preferable. More preferably, the average pore size of the mesh of the anode is 0.2 to 2 mm.
  • An anode having a three-dimensional network structure has a network structure composed of linear materials.
  • the diameter of the filament material constituting the mesh is preferably 0.1 to 2 mm.
  • a wire having a diameter of less than 0.01 mm is not preferable because it is extremely difficult to manufacture and the installation is not easy. If the diameter of the wire exceeds 2 mm, a large surface area of the anode cannot be obtained, the current density on the anode surface increases, and by-products such as thiosulfate are easily generated, which is not preferable. . It is particularly preferable that the diameter of the filament material constituting the mesh is 0.02 to 1 mm. A current is supplied to the anode through the anode current collector.
  • the current collector As a material of the current collector, a material having excellent alkali resistance is preferable. For example, nickel, titanium, carbon, gold, platinum, stainless steel, and the like can be used.
  • the surface of the current collector may be planar.
  • the current may be supplied simply by mechanical contact with the anode, but it is preferable that the current is physically bonded by welding or the like.
  • the electrolytic cell is two, the current density at the diaphragm surface of the upstream side of the electrolytic cell is 0. 5 ⁇ 2 0 k A / m 2, at the diaphragm surface of the downstream electrolyzer Current density is 0 - 1 ⁇ 1 5 k A / m 2 a and even Shi favored. If the current density at the diaphragm surface of the electrolytic cell on the upstream side is less than 0.5 kA / m 2 , unnecessarily large electrolytic equipment is required, which is not preferable.
  • the anodic potential becomes higher due to a decrease in sulfide ions in the solution and an increase in concentration overvoltage due to mass transfer. Potential, and as a result not only increases by-products such as thiosulfuric acid, sulfuric acid, and oxygen, but when a base metal such as nickel or an alloy thereof is used as the anode, the electrode may cause anode dissolution. It's good because there is.
  • the sulfide can be selectively electrolyzed without shifting the anode potential to a noble potential. Preferred because it can be oxidized to produce polysulfides.
  • a cation exchange membrane as a diaphragm for partitioning the anode compartment and the cathode compartment.
  • the cation exchange membrane guides the cations from the anode compartment to the force sword compartment, and impedes the transfer of sulfide and polysulfide ions.
  • a polymer membrane in which a cation exchange group such as a sulfonic acid group or a carboxylic acid group is introduced into a hydrocarbon-based or fluororesin-based polymer is preferable. If there is no problem in terms of alkali resistance or the like, a bipolar membrane or an anion exchange membrane can be used.
  • the temperature of the anode compartment is in the range of 70 to 110 ° C.
  • the temperature of the anode chamber is lower than 70 ° C, not only the cell voltage increases, but also by-products are easily generated, and when a base metal such as nickel and their alloys are used as the anode, the anode melting is performed. Is not preferable because of the possibility that The upper temperature limit is practically limited by the material of the cell or diaphragm.
  • the distribution of the liquid composition is added in the flow direction of the solution in the electrolytic cell ⁇ ⁇ by diluting or adding an acid or an alkali. Can be given.
  • the force sword material in the present invention is preferably an alkali resistant material.
  • base metal-based materials such as nickel, Raney nickel, nickel sulfide, steel, and stainless steel
  • precious metals such as platinum, gold, and rhodium and alloys thereof. Can be used.
  • the force sword is used in the form of a single plate or a mesh, or a plurality of them in a multi-layer configuration.
  • a three-dimensional electrode combining linear electrodes can also be used.
  • As the electrolyzer a two-chamber electrolyzer comprising one anode chamber and one force source chamber is used. Electrolyzers combining three or more rooms are also used. If multiple electrolytic cells are used, the force and anode can be arranged in a monopolar or bipolar configuration.
  • electrolysis is performed so that the conversion rate of sulfide in the solution is 10 to 72% in the upstream electrolytic cell, and sulfurization in the solution is performed in the downstream electrolytic cell.
  • the electrolysis is preferably carried out so that the conversion of the product is 25 to 75%.
  • the conversion of sulfide in the solution in the upstream electrolytic cell is less than 10%, the load on the downstream electrolytic cell becomes too large when trying to achieve a high sulfur polysulfide concentration, which is not preferable. . If the conversion of sulfide in the solution in the upstream electrolytic cell exceeds 72%, side reactions are likely to occur in the upstream electrolytic cell, which is not desirable. If the conversion rate of sulfur sulfide in the solution in the downstream electrolytic cell is less than 25%, the polysulfide concentration in the solution is undesirably low.
  • the anode potential, S 2 2 _ as an oxidation product of sulfide ions, S 2 ", S, S 5 2 - polysulfide ions (S x 2) is produced, such as, to Chio sulfate ions do not byproduct Is preferably maintained.
  • the anolyte is a one-pass process (a process in which part of the anolyte exiting the electrolytic cell is circulated to the inlet of the electrolytic cell without flow) to produce a high-concentration sulfur polysulfide polysulfide digest.
  • an alkali metal ion is preferable as the countercation of sulfide ions.
  • sodium ion or sodium ion is preferable:
  • the method of the present invention is suitable for a method of treating a white liquor or a green liquor in a pulp production process to obtain a polysulfide cooking liquor. It is particularly suitable for processing white liquor.
  • the white liquor When incorporating the polysulfide production process of the present invention into the pulp production process, at least a part of the white liquor is extracted, treated in the polysulfide production process of the present invention, and then supplied to the digestion process.
  • the composition of white liquor which is currently used for kraft pulp digestion, usually contains 2 to 6 mo1 ZL as alkali metal ions, of which 90% or more is sodium ion. Yes, the rest is almost power-real ions.
  • Anions are mainly composed of hydroxide ion, sulfide ion and carbonate ion, and also include sulfate ion, thiosulfate ion, chloride ion and sulfite ion. In addition, it contains trace components such as calcium, silicon, aluminum, phosphorus, magnesium, copper, manganese, and iron.
  • white liquor is supplied to the anode chamber according to the present invention and electrolytic oxidation is performed, sulfide ions are oxidized to generate polysulfide ions.
  • metal ions move to the cathode chamber through the diaphragm.
  • the sulfur polysulfide strain in the solution obtained by electrolyzing white liquor is 5 to 15 g, depending on the sulfide ion concentration in the white liquor.
  • ZL is preferred. If the degree of sulfur polysulfide is less than 5 g / L, the effect of increasing the pulp yield during cooking may not be sufficiently obtained.
  • concentration of sulfur polysulfide is higher than 15 g ZL, the pulp yield does not increase because the Na 2 S form sulfur decreases.
  • the Na 2 S-form sulfur is preferably at least 10 g ZL.
  • the solution to be introduced into the cathode chamber is preferably a solution substantially consisting of water and an alkali metal hydroxide, and particularly preferably a solution consisting of water and a hydroxide of sodium or potassium.
  • concentration of the alkali metal hydroxide is not limited, but is, for example, 1 to 15 mo 1 L, and preferably 2 to 5 mo 1 / L.
  • the generated hydrogen gas can be used as a fuel or as a raw material for hydrogen peroxide.
  • the generated alkali hydroxide is Besides being used for pulp cooking, it can be used for pulp bleaching, especially since it has few impurities.
  • Nickel plate as anode current collector nickel foam as anode (Celmet, trade name, manufactured by Sumitomo Electric Industries, Ltd., 10 OmmX 2 OmmX 5 mm, average pore diameter of pores formed by the mesh structure of foam 0 8.3 mm)
  • a two-chamber electrolytic cell was assembled using a mesh-shaped Ra-nickel electrode as a force source and a fluororesin cation exchange membrane (Flemion, manufactured by Asahi Glass Co., Ltd.) as a diaphragm.
  • the anode compartment is 100 Omm high, 2 Omm wide and 5 mm thick
  • the cathode compartment is 100 Omm high, 2 Omm wide and 5 mm thick
  • the effective area of the diaphragm is 200 cm.
  • the nickel foam used as the anode was bonded to the nickel plate of the anode current collector by electric welding.
  • the electrolytic cell was assembled by pressing the diaphragm against the anode side with the cathode from the cathode chamber side.
  • the physical properties and electrolytic conditions of the anode are as follows.
  • Anode surface area per anode chamber volume 3 1 2 5 m 2 / ⁇ ',
  • Anode surface area to diaphragm area 12.5 m 2 / m 2 ,
  • Electrolysis temperature 85 ° C
  • model white liquor (N a 2 S: 1 6 g / L sulfur atom terms, N a OH: 9 0 g / L, N a 2 C0 3: 3 4 g / L) was prepared, an anode The solution was fed at a flow rate of 12 OmLZ (superficial velocity 2 cmZ seconds) while being introduced from the lower side of the chamber and withdrawn upward.
  • the power source solution a 3 N NaOH aqueous solution was used, and the solution was fed from the lower side of the cathode chamber at a flow rate of 80 mL / min, and sent out while being drawn out to the upper side.
  • Heat exchangers are installed on both the anode side and the force source side to raise the temperature of the anode and catholyte solutions to the cells. I introduced it.
  • a constant current electrolysis was performed at a current of 12 OA (current density at the diaphragm: 6 kA / m 2 ), a polysulfide digest was synthesized from the model white liquor, the cell voltage was measured, and the solution was sampled immediately after electrolysis. Then, sulfur polysulfide, Na 2 S form sulfur and thiosulfate ion in the solution were analyzed and quantified.
  • the quantitative values of the concentrations of various sulfur compounds and the cell voltage were as follows.
  • the composition of the polysulfide cooking liquor was 9. O gZL for sulfur polysulfide and 6.5 gZL for Na 2 S-form sulfur; the thiosulfate ion was 0.50 gZL in terms of sulfur atoms.
  • the average value of X of the polysulfide ion (S x 2 ) is 2.4, and the current efficiency is 90%, assuming no nickel elution, and the selectivity is 95%. %.
  • the average cell voltage was constant at 1.2-1.5 V. Attach a lugine tube near the anode, 10 cm above the bottom of the electrolyzer, at the center, and 10 cm below the top of the electrolyzer, and anode at 25 ° C for the saturated reference electrode. The electrode potential was measured. At the bottom of the cell, the voltage was -0.1 V, at the center it was +0.2 V, and at the top it was +0.5 V. Next, after a 24-hour test, the cell was disassembled and examined for the dissolution of the anode. As a result, it was found that the nickel anode at the top of the electrolytic cell was partially dissolved.
  • Two electrolytic cells equivalent to those of the comparative example were prepared except that the height of the anode chamber was 50 Omm, the height of the power sword chamber was 500 mm, the width was 20 mm, and the thickness was 5 mm. These are arranged in two stages in the height direction, and a model white liquor equivalent to that of the comparative example is prepared as an anolyte, and introduced from below the anode chamber of the lower electrolytic cell (this is called an upstream electrolytic cell). Then pull out to the top This was introduced from the lower part of the anode chamber of the upper electrolytic cell (this is called the downstream electrolytic cell), and it was sent at a flow rate of 12 OmLZ (superficial velocity 2 cniZ seconds) while extracting it upward.
  • a model white liquor equivalent to that of the comparative example is prepared as an anolyte, and introduced from below the anode chamber of the lower electrolytic cell (this is called an upstream electrolytic cell). Then pull out to the top
  • a 3 N NaOH aqueous solution was used as the power source solution, and it was separately introduced from the lower side of the power source chamber of the upstream electrolytic cell and the downstream electrolytic cell at a flow rate of 80 mLZ and extracted upward. While feeding.
  • the quantitative values of the concentrations of various sulfur compounds and the cell voltage were as follows.
  • the composition of the polysulfide cooking liquor was 9.4 gL for sulfur polysulfide, 6.3 g / L for Na 2 S form sulfur, and 0.30 gZL for added thiosulfate ion in terms of sulfur atoms.
  • the average value of X of the polysulfide ion (S x 2 —) is 2.5, and the current efficiency during that time is 94%, assuming that nickel is not eluted. 97%.
  • the average cell voltage of the upstream electrolyzer was constant at 1.5 to 1.8 V. Attach a lugine tube near the anode at 5 cm above the bottom of the electrolytic sodium carbonate, at the center, and 5 cm below the top of the electrolytic cell, and place the anode on a 25 ° C saturated sweet copper reference electrode. As a result of measuring the electrode potential of the electrode, it was found to be 0.01 V at the bottom of the electrolytic cell, +0.05 V at the center, and +0.15 V at the top.
  • the average cell voltage of the downstream electrolyzer is constant at 1.0 to 1.2 V, and as in the case of the upstream electrolyzer, a luggage tube was placed and the anode electrode potential was measured. It was 0.20V, 10V at the center and 0.14V at the top.
  • Example 2 Using the two-stage electrolytic cell used in Example 1 and changing the electrolytic current in the upstream electrolytic cell and the downstream electrolytic cell as follows, under the same operating conditions as in Example 1, Manufactured.
  • an electric current of 10 OA (current density of 10 kA / m 2 at the diaphragm) is supplied to the upstream electrolytic cell, and a current of 2 OA (current density of 2 k ⁇ 2 at the diaphragm) is supplied to the downstream electrolytic cell.
  • a polysulfite digestion solution was synthesized by performing constant current electrolysis, and the cell voltage and anode potential of each electrolytic cell were measured, and the solution immediately after the two-stage electrolysis was sampled, as in the comparative example. Sulfur polysulfide, Na 2 S form sulfur, and thiosulfate ion were analyzed and quantified.
  • Quantitative values of the concentrations of various sulfur compounds and cell voltages were as follows.
  • the composition of the polysulfide cooking liquor was 9.6 gZL for sulfur polysulfide, 6.2 gZL for Na 2 S-form sulfur, and 0.20 gZL for added thiosulfate ions in terms of sulfur atoms.
  • the average value of X of the polysulfide ion (S-) is 2.5, and the current efficiency during that period is 96%, assuming no nickel elution, and the selectivity is 98%. there were.
  • the average cell voltage of the upstream electrolytic cell was constant at 1.8 to 2.0 V.
  • the anode electrode potential was measured.
  • the voltage was +0.01 V at the bottom of the cell, +0.01 V at the center, and +0.18 V at the top.
  • the average cell voltage of the downstream electrolyzer is constant at 0.8 to 1.0 V, and as in the case of the upstream electrolyzer, a luggage tube was placed and the anode electrode potential was measured. 30V, -0.2V at the center and -0.2V at the top.
  • the present invention provides a method for obtaining a high concentration of sulfur polysulfide from a sulfide ion in a solution by an electrolysis method. Produce high selectivity and low power with extremely low production
  • the purpose is to:
  • Another object of the present invention is to provide a method capable of producing a polysulfide cooking liquor under conditions of low pressure loss in the electrolysis operation.
  • the production method of the present invention while preventing the anode material of the electrode material used for the anode from being dissolved, by-products of thiosulfate ions are extremely small, and the cooking liquor containing a high concentration of sulfur polysulfide is maintained at a high selectivity and high. It can be manufactured with current efficiency. By using the polysulfide cooking liquor thus obtained for cooking, the pulp yield can be effectively increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Paper (AREA)

Abstract

A method for producing a polysulfide by subjecting a solution containing a sulfide to electrolytic oxidation in an electrolytic bath (1,2) equipped with anode chambers (11, 21) having anodes (13, 23), cathode chambers (14, 24) having cathodes (15, 25), and diaphragms (16, 26) partitioning an anode chamber and a cathode chamber to, wherein conditions for electrolysis reaction are set depending upon the position in the direction of stream of a solution in the electrolytic bath. The method can be used for producing polysulfide sulfur in a high concentration while inhibiting the dissolution of an electrode material of an anode and the by-production of thiosulfate ion.

Description

明細書 多硫化物の製造方法 技術分野  Description Method for producing polysulfide Technical field
本発明は、 電解酸化による多硫化物の製造方法に関し、 特にパルプ製造工程に おける蒸解液を電解酸化して多硫化物蒸解液を製造する方法に関する。 背景技術  The present invention relates to a method for producing a polysulfide by electrolytic oxidation, and more particularly to a method for producing a polysulfide digest by electrolytically oxidizing a cooking liquor in a pulp production process. Background art
木材資源の有効利用の観点から、 化学パルプの高収率化は重要な課題である。 化学パルプの主流であるクラフトパルプの高収率化技術の一つとして、 多硫化物 蒸解プロセスがある。  From the viewpoint of effective utilization of wood resources, increasing the yield of chemical pulp is an important issue. One of the technologies for increasing the yield of kraft pulp, the mainstream of chemical pulp, is the polysulfide digestion process.
多硫化物蒸解プロセスにおける蒸解薬液は、 硫化ナトリゥムを含むアルカリ性 水溶液、 いわゆる白液を、 活性炭などの触媒の存在下に空気などの分子状酸素に より酸化する (例えば下記反応式 1) ことにより製造される (特開昭 6 1— 25 9754号、 特開昭 53— 9298 1号参照) 。 この方法により硫化物ィオンべ —スで転化率 60%、 選択率 60 %程度で多硫化硫黄濃度が 5 gノ L程度の多硫 化物蒸解液を得ることができる。 しかし、 この方法では副反応 (例えば下記反応 式 2、 3) により蒸解には全く寄与しないチォ硫酸イオンが副生するため、 高濃 度の多硫化硫黄を含む蒸解液を高選択率で製造することは困難であった。  The cooking liquor in the polysulfide cooking process is produced by oxidizing an alkaline aqueous solution containing sodium sulfide, a so-called white liquor, with molecular oxygen such as air in the presence of a catalyst such as activated carbon (for example, the following reaction formula 1). (See Japanese Patent Application Laid-Open (JP-A) No. 61-259754 and JP-A-53-92981). According to this method, it is possible to obtain a polysulfide cooking liquor having a conversion of about 60%, a selectivity of about 60%, and a sulfur polysulfide concentration of about 5 g L on a sulfide ion base. However, in this method, thiosulfate ions that do not contribute to cooking at all are produced as by-products due to side reactions (for example, the following reaction formulas 2 and 3), so that a cooking liquor containing a high concentration of sulfur polysulfide is produced with high selectivity. It was difficult.
4N a 2S + 02+ 2H20 → 2Na 2S2+4Na OH ( 1 )4N a 2 S + 0 2 + 2H 2 0 → 2Na 2 S 2 + 4Na OH (1)
2Na S+ 202 + H20 → N a 2 S 203+ 2 N a OH (2) 2 N a 2 S 2+ 302 → 2 N a 2 S 203 (3) ここで多硫化硫黄とは、 ポリサルファイ ドサルファ (P S— S) とも称され、 例えば多硫化ナトリウム N a 2 Sxにおける酸化数 0の硫黄、 すなわち原子 (X — 1) 個分の硫黄をいう。 また、 多硫化物イオン中の酸化数一 2の硫黄に相当する 硫黄 (Sx 2—にっき 1原子分の硫黄) および硫化物イオン (S2— ) を総称したも のを、 本明細書中では N a2 S態硫黄と表すことにする。 なお、 本明細書では容 量の単位リットルを Lで表す。 —方、 WO 9 5 0 0 7 0 1号には多硫化物蒸解液の電解製造方法について記 载されている。 この方法では、 アノードとして、 担体上にルテニウム、 イリジゥ ム、 白金、 パラジウムの酸化物を被覆したものを使用している。 具体的には、 多 数のエキスパンドメタルを組み合わせた担体の 3次元メッシュ電極が開示されて いる。 また、 WO 9 7 / 4 1 2 9 5号には、 少なくとも表面が炭素からなる多孔 性のアノードを用いる多硫化物蒸解液の電解製造方法について記載されており、 アノードとして、 特に直径 1〜3 0 0 /z mの炭素繊維の集積体が用いられている 2Na S + 20 2 + H 2 0 → Na 2 S 2 0 3 + 2 NaOH (2) 2 Na 2 S 2 + 30 2 → 2 Na 2 S 2 0 3 (3) where sulfur polysulfide refers Porisarufai Dosarufa (PS- S) and also called, for example, sulfur sodium polysulfide N a 2 S oxidation state of x 0, i.e. atoms - refers to sulfur (X 1) pieces minute. In this specification, sulfur (S x 2— sulfur equivalent to one atom) and sulfide (S 2 —), which are equivalent to sulfur having an oxidation number of 12 in polysulfide ions, are collectively referred to in this specification. in will be expressed as N a 2 S state sulfur. In this specification, the unit liter of capacity is represented by L. On the other hand, WO9500701 describes an electrolytic production method of a polysulfide cooking liquor. In this method, an anode obtained by coating an oxide of ruthenium, iridium, platinum, or palladium on a carrier is used as an anode. Specifically, a three-dimensional mesh electrode of a carrier in which a large number of expanded metals are combined is disclosed. WO 97/412125 describes an electrolytic production method of a polysulfide cooking liquor using a porous anode having at least a surface made of carbon. 0 / zm carbon fiber aggregate is used
発明の開示 Disclosure of the invention
本発明は、 アノードを配置したアノード室、 力ソードを配置した力ソード室お よびアノード室とカソ一ド室とを区画する隔膜を有する電解槽を用い、 前記ァノ ―ド室に硫化物を含む溶液を連続的に流しながら電解酸化することにより多硫化 物を製造する方法であって、 電解槽內の溶液の流通方向に電解条件の分布を付与 した多硫化物の製造方法を提供する。  The present invention uses an electrolytic cell having an anode chamber in which an anode is arranged, a force sword chamber in which a force sword is arranged, and a diaphragm for partitioning the anode chamber and a cathode chamber, and a sulfide is contained in the anode chamber. Provided is a method for producing a polysulfide by electrolytic oxidation while continuously flowing a solution containing the polysulfide, wherein the distribution of the electrolytic conditions is imparted in the flow direction of the solution in the electrolytic cell (2).
硫化物ィオンを含む溶液を定電流法で電解酸化する場合、 酸化が進んで溶液中 の硫化物ィオンの減少による濃度過電圧が増加したときに、 ァノ一ド電位が貴な 電位に移行し、 その結果、 チォ硫酸イオンの生成や、 電極のアノード溶解などの 問題が発生しやすくなる。 本発明においては、 アノード室に流通させる硫化物を 含む溶液 (以下アノード液という) の流通方向に電解条件の分布を付与すること により、 アノード液の酸化の進行状況に応じ、 酸化が進行していない段階では効 率を優先した条件で電解し、 酸化が進行した段階では副反応などの起こりにくい 条件で電解することができる。  When a solution containing sulfide ions is electrolytically oxidized by the galvanostatic method, when the oxidation proceeds and the concentration overpotential increases due to the decrease of sulfide ions in the solution, the anode potential shifts to a noble potential, As a result, problems such as formation of thiosulfate ions and dissolution of the anode in the electrode are likely to occur. In the present invention, the oxidation progresses in accordance with the progress of the oxidation of the anolyte by providing the distribution of the electrolytic conditions in the flow direction of the sulfide-containing solution (hereinafter referred to as anolyte) flowing through the anode compartment. When there is no oxidation, electrolysis can be performed under conditions that give priority to efficiency, and when oxidation has progressed, electrolysis can be performed under conditions that do not easily cause side reactions.
本発明者の検討では、 多硫化物イオン の Xの平均値 (以下平均多硫 化度という) が 4を超えるようになると、 電解時にチォ硫酸イオンが副生するよ うになり、 ニッケルアノードの場合はニッケルのアノード溶解も起りやすくなる  According to the study of the present inventor, when the average value of X of polysulfide ions (hereinafter referred to as average polysulfurization degree) exceeds 4, thiosulfate ions are produced as a by-product during electrolysis, and in the case of nickel anode. Easily dissolves anodic nickel
図面の簡単な説明 図 1は、 本発明を実施するための装置の 1例を示す説明図である。 BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is an explanatory diagram showing one example of an apparatus for implementing the present invention.
符号の説明 Explanation of reference numerals
1 :上流側電解槽  1: upstream electrolytic cell
2 :下流側電解槽  2: Downstream electrolyzer
1 1、 21 :アノード室  1 1, 21: Anode chamber
1 2、 22 :ァノ一ド集電体  1 2, 22: Anode current collector
1 3、 23 :アノード  1 3, 23: Anode
14、 24 :力ソード室  14, 24: Power Sword Room
1 5、 25 :力ソード  1 5, 25: Power Sword
1 6、 26 :隔膜 発明を実施するための最良の形態  1 6, 26: best mode for carrying out the invention
電解槽内のアノード液の流通方向に電解条件の分布を付与するには、 具体的に は、 2個以上の電解槽を溶液の流れに直列に配置し、 上流側の電解槽の電角军条件 と下流側の電解槽の電解条件を異なるものとするのが、 電解槽の構造が簡単で、 運転の制御も容易であるので好ましい。 電解槽内の位置によつて電解条件の分布 を有する電解槽を単独で、 または他の電解槽と組み合わせて使用することもでき る。  To impart a distribution of electrolysis conditions in the flow direction of the anolyte in the electrolytic cell, specifically, two or more electrolytic cells are arranged in series in the flow of the solution, and the electric angle of the upstream electrolytic cell It is preferable that the conditions and the electrolysis conditions of the downstream electrolyzer be different because the electrolyzer has a simple structure and its operation is easily controlled. An electrolytic cell having a distribution of electrolysis conditions depending on the position in the electrolytic cell can be used alone or in combination with another electrolytic cell.
本発明を実施するための装置の一例を図 1に示す。 図 1では、 上流側電角军槽 ( 1) と下流側電解槽 (2) というように電解槽を 2個直列に組み合わせて多硫化 物を製造する。 そしてそれぞれの電 ^槽が、 アノード室 (1 1、 21) 、 ァノ一 ド集電体 (1 2、 22) 、 アノード (1 3、 23) 、 力ソード室 (14、 24) 、 力ソード ( 1 5、 25) 、 隔膜 ( 1 6、 26) を有する。  FIG. 1 shows an example of an apparatus for carrying out the present invention. In Fig. 1, polysulfide is produced by combining two electrolytic cells in series, such as an upstream electrolyzer (1) and a downstream electrolyzer (2). Each cell is composed of an anode chamber (11, 21), an anode current collector (12, 22), an anode (13, 23), a power sword chamber (14, 24), and a power sword. (15, 25) and a diaphragm (16, 26).
本発明において、 電解溶液の流通方向に変化させる電解条件には、 次のような ものがある。  In the present invention, the electrolysis conditions to be changed in the flowing direction of the electrolytic solution include the following.
(アノード表面の電流密度)  (Current density on anode surface)
硫化物イオンの酸化は、 アノード表面において起こると考えられる。 アノード 表面の電流密度が高くなるにつれて、 電極表面で生成した多硫化物イオンや N a イオンの拡散が追いつかず、 電極表面の溶液の組成と溶液全体の組成の差が大き くなる。 Oxidation of sulfide ions is believed to occur at the anode surface. As the current density on the anode surface increases, the diffusion of polysulfide ions and Na ions generated on the electrode surface cannot catch up, and the difference between the composition of the solution on the electrode surface and the composition of the entire solution increases. It becomes.
溶液の酸化が充分進行していないときは、 アノード表面の電流密度が比較的高 V、場合でも、 ァノ一ド表面の溶液の組成が副反応の起こり難レ、範囲にとどまる。 し力 し、 溶液の酸化が充分進行した溶液では、 アノード表面の溶液の組成が副反 応の起こりやすい範囲になる。  If the oxidation of the solution has not progressed sufficiently, the composition of the solution on the anode surface remains within the range where the side reaction hardly occurs even if the current density on the anode surface is relatively high V. However, in a solution in which the oxidation of the solution has sufficiently proceeded, the composition of the solution on the anode surface is in a range where a side reaction is likely to occur.
一方、 アノード表面の電流密度が低い場合は、 同量の多硫化物を製造するため には、 より広い表面積のァノ一ドが必要になり、 電解槽が大きくなる問題点があ る。  On the other hand, when the current density on the anode surface is low, an anode having a larger surface area is required to produce the same amount of polysulfide, and the electrolytic cell becomes large.
したがって、 本発明の製造方法では、 電解槽內の溶液の流通方向の下流側に行 くにしたがってアノード表面の電流密度が低くなるように分布を付与する。 例え ば、 電解槽が 2個である場合には、 上流側の電解槽のアノード表面における電流 密度が下流側の電解槽のアノード表面における電流密度より大きく、 かつ、 上流 側の電解槽のアノード表面における電流密度が 0 . 0 0 5〜2 0 k AZm2であ り、 下流側の電解槽のァノ一ド表面における電流密度が 0 . 0 0 1〜 1 5 k AZ m2であるように制御するのが好ましい。 Therefore, in the production method of the present invention, the distribution is provided so that the current density on the anode surface becomes lower toward the downstream side in the flowing direction of the solution in the electrolytic cell 內. For example, if there are two electrolytic cells, the current density at the anode surface of the upstream electrolytic cell is greater than the current density at the anode surface of the downstream electrolytic cell, and the anode surface of the upstream electrolytic cell current density 0 in. 0 0 5 to 2 0 k AZM are two der, such that the current density in § Roh once the surface of the electrolytic cell downstream is 0. 0 0 1~ 1 5 k AZ m 2 It is preferable to control.
(ァノード室における流速)  (Flow velocity in the anode room)
アノード液は流速の小さい層流域に維持するのが、 圧力損失を小さくする意味 で好ましい。 しかし層流ではアノード室内のアノード液が撹拌されず、 場合によ つてはアノード室に面する隔膜に沈着物がたまりやすく、 槽電圧が経時的に上昇 しゃすくなる。 一方、 アノード液流速を大きく設定した場合に、 隔膜表面付近の アノード液が撹拌され沈着物がたまりにくくなる利点がある。 アノード室におけ る平均空塔速度は 1〜3 0 c mZ秒が好適である。 カソード液の流速は限定され ないが、 発生ガスの浮上力の大きさに応じて決定するのが好ましい。 アノード室 における平均空塔速度のより好ましい範囲は 1〜 1 5 c m/秒であり、 特に好ま しい範囲は 2〜 1 0 c mZ秒である。  It is preferable to maintain the anolyte in a laminar flow region with a small flow velocity in order to reduce pressure loss. However, in a laminar flow, the anolyte in the anode chamber is not agitated, and in some cases, deposits tend to accumulate on the diaphragm facing the anode chamber, and the cell voltage increases with time and becomes chewy. On the other hand, when the anolyte flow rate is set to be large, there is an advantage that the anolyte near the surface of the diaphragm is agitated and deposits are less likely to collect. The average superficial velocity in the anode chamber is preferably 1 to 30 cmZ seconds. The flow rate of the catholyte is not limited, but is preferably determined according to the magnitude of the buoyancy of the generated gas. A more preferable range of the average superficial velocity in the anode chamber is 1 to 15 cm / sec, and a particularly preferable range is 2 to 10 cmZ seconds.
電解槽が 2個であり、 上流側の電解槽におけるァノ一ド液の流速が下流側の電 解槽におけるァノード液の流速より小さく、 かつ、 上流側の電解槽におけるァノ ―ド液の流速が 0 . 5〜 2 0 c mZ秒であり、 下流側の電解槽におけるァノ一ド 液の流速が 1〜 3 0 c mZ秒である場合は、 さらに好ましいつ (アノードの性状など) There are two electrolytic cells, and the flow rate of the anode liquid in the upstream electrolytic cell is smaller than the flow rate of the anode liquid in the downstream electrolytic cell, and the flow rate of the anode liquid in the upstream electrolytic cell is two. It is more preferable that the flow rate is 0.5 to 20 cmZ seconds and the flow rate of the anode liquid in the downstream electrolytic cell is 1 to 30 cmZ seconds. (Anode properties, etc.)
本発明におけるァノ一ドの材質は、 アルカリ性の溶液中で耐酸化性があれば特 に限定されず、 非金属では炭素材料、 金属ではニッケル、 コノくノレト、 チタンなど の卑金属およびそれらの合金や、 白金、 金、 ロジウムなどの貴金属およびそれら の合金または酸化物を用いることができる。 このうちで卑金属系では、 ニッケノレ またはニッケル合金は、 そのァノ一ド溶解電位や酸化物の生成電位が多硫化硫黄 ゃチォ硫酸イオンの生成電位より貴な電位であることから、 多硫化物の製造にお いては実用的に充分な耐久性を有する。 アノードは、 多孔体であることが好まし レ、。  The material of the anode in the present invention is not particularly limited as long as it has oxidation resistance in an alkaline solution. Non-metals include carbon materials, metals include base metals such as nickel, konokoleto, and titanium, and alloys thereof. And noble metals such as platinum, gold and rhodium, and alloys or oxides thereof. Of these, in the case of base metals, nickel or nickel alloys have a higher potential for dissolving the oxides and forming oxides than the potential for forming the sulfur polysulfide and thiosulfate ions. In production, it has sufficient durability for practical use. The anode is preferably a porous body.
具体的には、 電解槽が 2個であり、 上流側のアノードがニッケル多孔体であり 、 下流側のアノードが炭素多孔体である場合は、 副反応を抑制して高効率で多硫 化物を得ることができるので好ましい。  Specifically, when the number of electrolytic cells is two, the anode on the upstream side is a nickel porous body, and the anode on the downstream side is a carbon porous body, side reactions are suppressed to efficiently convert polysulfide. It is preferable because it can be obtained.
本発明における、 アノード室の単位体積当りのアノードの表面積は、 5 0 0〜 2 0 0 0 O m2 Zm3であることが好ましい。 ここでアノード室の体積は、 隔膜の 有効通電面とアノードの集電板とで区画された部分の体積である。 アノードの表 面積が 5 0 O m2 /!!!3よりも小さレ、と、 アノード表面における電流密度が大きく なり、 チォ硫酸イオンのような副生物が生成しやすくなるだけでなく、 ニッケル などの卑金属またはそれらの合金をアノードとして用いた場合は、 ァノード溶解 を起しやすくなるので好ましくない。 アノードの表面積を 2 0 0 0 O m2 Xm3よ り大きくしょうとすると、 液の圧力損失が大きくなり、 電解操作上の問題が生じ るおそれがあるので好ましくない。 アノード室の単位体積当りのアノードの表面 積は、 1 0 0 0〜 1 0 0 0 O m2 Zm3の範囲であるのがさらに好ましい。 In the present invention, the surface area of the anode per unit volume of the anode chamber is preferably 500 to 2000 Om 2 Zm 3 . Here, the volume of the anode chamber is the volume of a portion defined by the effective conducting surface of the diaphragm and the current collector plate of the anode. If the surface area of the anode is less than 50 O m 2 / !!! 3 , the current density on the anode surface will increase and not only will it be easier to generate by-products such as thiosulfate ions, but also nickel etc. It is not preferable to use a base metal or an alloy thereof as an anode because an anode dissolution easily occurs. If the surface area of the anode is set to be larger than 2000 Om 2 Xm 3 , the pressure loss of the liquid will increase, which may cause a problem in the electrolysis operation. The anode of the surface area per unit volume of the anode compartment, 1 0 0 0~ 1 0 0 0 O m 2 and even more preferably in the range of Zm 3.
また、 アノードの表面積は、 アノード室と力ソード室を隔てる隔膜の単位面積 当り 2〜1 0 O m2 Zm2であるのが好ましい。 アノードの表面積は、 該隔膜の単 位面積当り 5〜5 O n^ Zm2であるのがさらに好ましい。 Further, the surface area of the anode is preferably 2 to 10 Om 2 Zm 2 per unit area of the diaphragm separating the anode chamber and the power source chamber. The surface area of the anode, and even more preferably unit area per 5~5 O n ^ Zm 2 of the septum.
具体的には、 電解槽が 2個であり、 上流側の電解槽の隔膜の単位面積当りのァ ノ一ド表面積が下流側の電解槽の隔膜の単位面積当りのァノード表面積より小さ く、 かつ、 上流側のァノ一ドの表面積が隔膜の単位面積当り 2〜 1 0 0 m2 /m2 であり、 下流側のァノ一ドの表面積が隔膜の単位面積当り 1 O〜5 0 0 0 m2 Z m2である場合は、 さらに好ましい。 Specifically, the number of electrolytic cells is two, the anode surface area per unit area of the diaphragm of the upstream electrolytic cell is smaller than the anode surface area per unit area of the diaphragm of the downstream electrolytic cell, and The surface area of the upstream node is 2 to 100 m 2 / m 2 per unit area of the diaphragm, and the surface area of the downstream node is 1 O to 500 0 per unit area of the diaphragm. 0 m 2 Z m 2 is more preferable.
本発明においては、 物理的に連続的な 3次元の網目構造を有する多孔性ァノー ドを用いることが好ましい。 網目構造は物理的に連続的な構造であり、 溶接など で連続的に結合していてもよい。 具体的には、 例えばニッケルアノード材質の場 合は、 発泡高分子材料の骨格にニッケルをメツキした後、 内部の高分子材料を焼 成除去して得られる多孔性ニッケルを挙げることができる。  In the present invention, it is preferable to use a porous node having a physically continuous three-dimensional network structure. The network structure is a physically continuous structure, and may be continuously connected by welding or the like. Specifically, for example, in the case of a nickel anode material, porous nickel obtained by plating nickel on the skeleton of the foamed polymer material and then baking and removing the internal polymer material can be used.
3次元網目構造を有する多孔性アノードの場合、 網目構造によって形成される 空孔の平均孔径は 0 . 1〜5 mmであることが好ましい。 空孔の平均孔径が 5 m πιよりも大きいと、 アノード表面積を大きくすることができず、 アノード表面に おける電流密度が大きくなり、 チォ硫酸イオンのような副生物が生成しやすくな るだけでなく、 アノード溶解を起しやすくなるので好ましくない。 空孔の平均孔 径が 0 . 1 mmより小さいと、 液の圧力損失が大きくなり、 電解操作上の問題が 生じるおそれがあるので好ましくない。 アノードの網目の平均孔径は 0 . 2〜2 mmであるのがさらに好ましい。  In the case of a porous anode having a three-dimensional network structure, the pores formed by the network structure preferably have an average pore diameter of 0.1 to 5 mm. If the average pore diameter is larger than 5 mπι, the anode surface area cannot be increased, the current density on the anode surface will increase, and only the by-products such as thiosulfate ions will be easily generated. It is not preferable because anode dissolution tends to occur. If the average pore diameter of the pores is smaller than 0.1 mm, the pressure loss of the liquid increases, which may cause a problem in the electrolysis operation, which is not preferable. More preferably, the average pore size of the mesh of the anode is 0.2 to 2 mm.
3次元網目構造のアノードは、 線条材により構成された網目構造を有するもの である。 その網目を構成する線条材の直径は、 0 . 0 1〜2 mmであることが好 ましレ、。 線条材の直径が 0 . 0 1 mmに満たないものは、 製造が極めて難しく、 取极いも容易でないので好ましくない。 線条材の直径が 2 mmを超える場合は、 アノードの表面積が大きいものが得られず、 アノード表面における電流密度が大 きくなり、 チォ硫酸ィオンのような副生物が生成しやすくなるので好ましくない 。 網目を構成する線条材の直径が 0 . 0 2〜1 mmである場合は特に好ましい。 アノードにはアノード集電体を通じて電流を供給する。 集電体の材質としては 耐アルカリ性に優れた材質が好ましい。 例えばニッケル、 チタン、 炭素、 金、 白 金、 ステンレス鋼などを用いることができる。 該集電体の表面は平面状でよい。 単にァノードとの機械的な接触により電流を供給するものでもよいが、 溶接など により物理的に接着させるのが好ましい。  An anode having a three-dimensional network structure has a network structure composed of linear materials. The diameter of the filament material constituting the mesh is preferably 0.1 to 2 mm. A wire having a diameter of less than 0.01 mm is not preferable because it is extremely difficult to manufacture and the installation is not easy. If the diameter of the wire exceeds 2 mm, a large surface area of the anode cannot be obtained, the current density on the anode surface increases, and by-products such as thiosulfate are easily generated, which is not preferable. . It is particularly preferable that the diameter of the filament material constituting the mesh is 0.02 to 1 mm. A current is supplied to the anode through the anode current collector. As a material of the current collector, a material having excellent alkali resistance is preferable. For example, nickel, titanium, carbon, gold, platinum, stainless steel, and the like can be used. The surface of the current collector may be planar. The current may be supplied simply by mechanical contact with the anode, but it is preferable that the current is physically bonded by welding or the like.
(隔膜面積当りの電流密度)  (Current density per diaphragm area)
本発明において電解槽が 2個である場合、 上流側の電解槽の隔膜面での電流密 度は 0 . 5〜 2 0 k A/m2であり、 下流側の電解槽の隔膜面での電流密度は 0 - 1〜 1 5 k A/m2であるのが好ましレ、。 上流側の電解槽の隔膜面での電流密 度が 0 . 5 k A/m2に満たない場合は不必要に大きな電解設備が必要となるの で好ましくない。 また上流側の電解槽の隔膜面での電流密度が 2 0 k A/m2を 超える場合は、 溶液中の硫化物イオンの減少や物質移動に伴う濃度過電圧の増加 に伴い、 アノード電位が貴な電位に移行し、 その結果、 チォ硫酸、 硫酸、 酸素な どの副生物を増加させるだけでなく、 ニッケルなどの卑金属およびそれらの合金 をアノードとして用いた場合は、 電極がアノード溶解を起すおそれがあるので好 ましくなレ、。 If in the present invention the electrolytic cell is two, the current density at the diaphragm surface of the upstream side of the electrolytic cell is 0. 5~ 2 0 k A / m 2, at the diaphragm surface of the downstream electrolyzer Current density is 0 - 1~ 1 5 k A / m 2 a and even Shi favored. If the current density at the diaphragm surface of the electrolytic cell on the upstream side is less than 0.5 kA / m 2 , unnecessarily large electrolytic equipment is required, which is not preferable. If the current density on the diaphragm surface of the upstream electrolytic cell exceeds 20 kA / m 2 , the anodic potential becomes higher due to a decrease in sulfide ions in the solution and an increase in concentration overvoltage due to mass transfer. Potential, and as a result not only increases by-products such as thiosulfuric acid, sulfuric acid, and oxygen, but when a base metal such as nickel or an alloy thereof is used as the anode, the electrode may cause anode dissolution. It's good because there is.
隔膜面での電流密度は、 下流側の電解槽の電流密度を上流側の電解槽の電流密 度より低くする場合は、 アノード電位を貴な電位に移行させることなく選択的に 硫化物を電解酸化して多硫化物を製造できるので好ましレ、。  When the current density on the diaphragm surface is lower than that of the upstream electrolytic cell, the sulfide can be selectively electrolyzed without shifting the anode potential to a noble potential. Preferred because it can be oxidized to produce polysulfides.
(隔膜の材質)  (Material of diaphragm)
アノード室とカソード室とを区画する隔膜としては、 カチオン交換膜を用いる のが好ましい。 カチオン交換膜は、 アノード室から力ソード室へカチオンを導き 、 —方で硫化物イオンおよび多硫化物イオンの移動を妨げる。 カチオン交換膜と して、 炭化水素系またはフッ素榭脂系の高分子に、 スルホン酸基、 カルボン酸基 などのカチオン交換基が導入された高分子膜が好ましい。 また、 耐アルカリ性な どの面で問題がなければ、 バイポーラ膜、 ァニオン交換膜などを使用することも できる。  It is preferable to use a cation exchange membrane as a diaphragm for partitioning the anode compartment and the cathode compartment. The cation exchange membrane guides the cations from the anode compartment to the force sword compartment, and impedes the transfer of sulfide and polysulfide ions. As the cation exchange membrane, a polymer membrane in which a cation exchange group such as a sulfonic acid group or a carboxylic acid group is introduced into a hydrocarbon-based or fluororesin-based polymer is preferable. If there is no problem in terms of alkali resistance or the like, a bipolar membrane or an anion exchange membrane can be used.
(温度)  (Temperature)
上流側と下流側でァノ一ド室の温度条件を変化させることもできる。 アノード 室の温度は 7 0〜1 1 0 °Cの範囲であるのが好ましい。 アノード室の温度が 7 0 °Cより低い場合は、 セル電圧が高くなるだけでなく、 副生物が生成しやすくなり 、 ニッケルなどの卑金属およびそれらの合金をアノードとして用いた場合は、 ァ ノード溶解が生じるおそれがあるので好ましくなレ、。 温度の上限は実際上、 電解 槽または隔膜の材質で制限される。  It is also possible to change the temperature condition of the anode chamber between the upstream side and the downstream side. Preferably, the temperature of the anode compartment is in the range of 70 to 110 ° C. When the temperature of the anode chamber is lower than 70 ° C, not only the cell voltage increases, but also by-products are easily generated, and when a base metal such as nickel and their alloys are used as the anode, the anode melting is performed. Is not preferable because of the possibility that The upper temperature limit is practically limited by the material of the cell or diaphragm.
(液糸且成)  (Liquid Katsunari)
また本発明においては、 下流側での反応をより容易にするために、 希釈したり 酸やアル力リを加えるなどして、 電解槽內の溶液の流通方向に液組成の分布を付 与できる。 Further, in the present invention, in order to make the reaction on the downstream side easier, the distribution of the liquid composition is added in the flow direction of the solution in the electrolytic cell し て by diluting or adding an acid or an alkali. Can be given.
(カソ一ドまたはカソード室)  (Cathode or cathode chamber)
本発明における力ソード材料は耐ァルカリ性の材料が好ましく、 ニッケル、 ラ ネーニッケル、 硫化ニッケル、 鋼、 ステンレス銅などの卑金属系材料の他に、 白 金、 金、 ロジウムなどの貴金属およびそれらの合金を用いることができる。  The force sword material in the present invention is preferably an alkali resistant material. In addition to base metal-based materials such as nickel, Raney nickel, nickel sulfide, steel, and stainless steel, precious metals such as platinum, gold, and rhodium and alloys thereof. Can be used.
力ソードは、 平板またはメッシュ状の形状のものを一つ、 またはその複数を多 層構成にして用いる。 線状の電極を複合した 3次元電極を用いることもできる。 電解槽としては 1つのアノード室と 1つの力ソ一ド室とからなる 2室型の電解槽 が用いられる。 3つまたはそれ以上の部屋を組み合わせた電解槽も用いられる。 多数の電解槽を用いる場合、 力ソ一ドおよびァノ一ドは単極構造または複極構造 に配置することができる。  The force sword is used in the form of a single plate or a mesh, or a plurality of them in a multi-layer configuration. A three-dimensional electrode combining linear electrodes can also be used. As the electrolyzer, a two-chamber electrolyzer comprising one anode chamber and one force source chamber is used. Electrolyzers combining three or more rooms are also used. If multiple electrolytic cells are used, the force and anode can be arranged in a monopolar or bipolar configuration.
(電解条件)  (Electrolysis conditions)
本発明において電解槽が 2個である場合、 上流側の電解槽において溶液中の硫 化物の転化率が 1 0〜7 2 %になるように電解し、 下流側の電解槽において溶液 中の硫化物の転化率が 2 5〜7 5 %になるように電解するのが好ましい。  When two electrolytic cells are used in the present invention, electrolysis is performed so that the conversion rate of sulfide in the solution is 10 to 72% in the upstream electrolytic cell, and sulfurization in the solution is performed in the downstream electrolytic cell. The electrolysis is preferably carried out so that the conversion of the product is 25 to 75%.
上流側の電解槽において溶液中の硫化物の転化率が 1 0 %未満の場合は、 高い 多硫化硫黄濃度を達成しようとするときに下流側の電解槽の負荷が大きくなりす ぎるので好ましくない。 上流側の電解槽において溶液中の硫化物の転化率が 7 2 %を超える場合は、 上流側の電解槽で副反応が生成しやすくなるので好ましくな レ、。 下流側の電解槽において溶液中の硫黄の硫化物の転化率が 2 5 %未満の場合 は、 溶液中の多硫化物濃度が低くなるので好ましくない。  If the conversion of sulfide in the solution in the upstream electrolytic cell is less than 10%, the load on the downstream electrolytic cell becomes too large when trying to achieve a high sulfur polysulfide concentration, which is not preferable. . If the conversion of sulfide in the solution in the upstream electrolytic cell exceeds 72%, side reactions are likely to occur in the upstream electrolytic cell, which is not desirable. If the conversion rate of sulfur sulfide in the solution in the downstream electrolytic cell is less than 25%, the polysulfide concentration in the solution is undesirably low.
アノード電位は、 硫化物イオンの酸化生成物として S 2 2 _、 S 2 " , S 、 S 5 2—などの多硫化物イオン (S x 2 ) が生成し、 チォ硫酸イオンが副生しないよう に維持されることが好ましい。 The anode potential, S 2 2 _ as an oxidation product of sulfide ions, S 2 ", S, S 5 2 - polysulfide ions (S x 2) is produced, such as, to Chio sulfate ions do not byproduct Is preferably maintained.
アノード液は、 ワンパス処理 (電解槽から出るアノード液の一部が、 電解槽の 入口に循環して供給される流れのない処理) で高濃度多硫化硫黄の多硫化物蒸解 液を製造することが好ましい。 本発明における、 硫化物イオンのカウンタ一カチ オンとしてはアルカリ金属イオンが好ましい。 アル力リ金属イオンとしてはナト リゥムイオンまたは力リゥムイオンが好ましい: 本発明の方法はパルプ製造工程における白液または緑液を処理して多硫化物蒸 解液を得る方法に適している。 特に白液の処理に好適である。 パルプ製造工程中 に、 本発明による多硫化物製造工程を組み入れる場合、 白液の少なくとも一部を 抜き出して本発明の多硫化物製造工程で処理したうえで、 蒸解工程に供給する。 白液の組成は、 現在行われているクラフトパルプ蒸解に用いられている白液の場 合、 通常、 アルカリ金属イオンとして 2〜 6 m o 1 Z Lを含有し、 そのうちの 9 0 %以上はナトリゥムイオンであり、 残りはほぼ力リゥムイオンである。 The anolyte is a one-pass process (a process in which part of the anolyte exiting the electrolytic cell is circulated to the inlet of the electrolytic cell without flow) to produce a high-concentration sulfur polysulfide polysulfide digest. Is preferred. In the present invention, an alkali metal ion is preferable as the countercation of sulfide ions. As the alkali metal ion, sodium ion or sodium ion is preferable: The method of the present invention is suitable for a method of treating a white liquor or a green liquor in a pulp production process to obtain a polysulfide cooking liquor. It is particularly suitable for processing white liquor. When incorporating the polysulfide production process of the present invention into the pulp production process, at least a part of the white liquor is extracted, treated in the polysulfide production process of the present invention, and then supplied to the digestion process. The composition of white liquor, which is currently used for kraft pulp digestion, usually contains 2 to 6 mo1 ZL as alkali metal ions, of which 90% or more is sodium ion. Yes, the rest is almost power-real ions.
またァニオンは、 水酸化物イオン、 硫化物イオン、 炭酸イオンを主成分とし、 他に硫酸イオン、 チォ硫酸イオン、 塩化物イオン、 亜硫酸イオンを含む。 さらに カルシウム、 ケィ素、 アルミニウム、 リン、 マグネシウム、 銅、 マンガン、 鉄の ような微量成分を含む。 このような白液を、 本発明によりアノード室に供給して 電解酸化を行った場合、 硫化物イオンが酸化されて多硫化物イオンが生成する。 それに伴いアル力リ金属イオンが隔膜を通してカソード室に移動する。  Anions are mainly composed of hydroxide ion, sulfide ion and carbonate ion, and also include sulfate ion, thiosulfate ion, chloride ion and sulfite ion. In addition, it contains trace components such as calcium, silicon, aluminum, phosphorus, magnesium, copper, manganese, and iron. When such white liquor is supplied to the anode chamber according to the present invention and electrolytic oxidation is performed, sulfide ions are oxidized to generate polysulfide ions. Along with this, metal ions move to the cathode chamber through the diaphragm.
パルプ蒸解工程で用いる場合、 白液中の硫化物イオン濃度にもよるが、 白液を 電解して得られる溶液 (多硫化物蒸解液) 中の多硫化硫黄漉度は、 5 ~ 1 5 g Z Lが好ましい。 多硫化硫黄の溏度が 5 gノ Lより少ない場合は、 蒸解時のパルプ 収率増加の効果が充分得られないおそれがある。 多硫化硫黄の濃度が 1 5 g Z L より大きい場合は、 N a 2 S態硫黄が少なくなるのでパルプ収率は增加しない。 N a 2 S態硫黄は、 1 0 g Z L以上であることが好ましい。 When used in the pulp cooking process, the sulfur polysulfide strain in the solution obtained by electrolyzing white liquor (polysulfide cooking liquor) is 5 to 15 g, depending on the sulfide ion concentration in the white liquor. ZL is preferred. If the degree of sulfur polysulfide is less than 5 g / L, the effect of increasing the pulp yield during cooking may not be sufficiently obtained. When the concentration of sulfur polysulfide is higher than 15 g ZL, the pulp yield does not increase because the Na 2 S form sulfur decreases. The Na 2 S-form sulfur is preferably at least 10 g ZL.
力ソード室の反応は、 種々選択することができるが、 水から水素ガスが生成す る反応を利用するのが好適である。 その結果生成する水酸化物イオンとアノード 室から移動してきたアルカリ金属イオンから、 水酸化アルカリが生成する。 カソ 一ド室に導入される溶液は、 実質的に水とアルカリ金属水酸化物とからなる溶液 が好ましく、 特に水とナトリゥムまたはカリゥムの水酸化物からなる溶液である のが好ましい。 アルカリ金属水酸化物の濃度は限定されないが、 例えば 1〜1 5 m o 1 L、 好ましくは 2〜5 m o 1 / Lである。 アノード室を流通する白液の イオン強度よりも低いイオン強度の溶液を力ソード液として用いれば、 隔膜に不 溶分が沈着することを防ぐことができる。 生成する水素ガスは燃料として用いた り、 過酸化水素の原料として用いることができる。 生成する水酸化アルカリは、 パルプ蒸解に用いる他、 特に不純物が少ないことからパルプ漂白に用いることが できる。 実施例 Although various reactions can be selected for the reaction in the power source chamber, it is preferable to use a reaction in which hydrogen gas is generated from water. Alkali hydroxide is generated from the resulting hydroxide ions and alkali metal ions that have migrated from the anode compartment. The solution to be introduced into the cathode chamber is preferably a solution substantially consisting of water and an alkali metal hydroxide, and particularly preferably a solution consisting of water and a hydroxide of sodium or potassium. The concentration of the alkali metal hydroxide is not limited, but is, for example, 1 to 15 mo 1 L, and preferably 2 to 5 mo 1 / L. If a solution having an ionic strength lower than the ionic strength of the white liquor flowing through the anode chamber is used as a power source solution, it is possible to prevent insolubles from being deposited on the diaphragm. The generated hydrogen gas can be used as a fuel or as a raw material for hydrogen peroxide. The generated alkali hydroxide is Besides being used for pulp cooking, it can be used for pulp bleaching, especially since it has few impurities. Example
[比較例]  [Comparative example]
ァノ一ド集電体としてニッケル板、 アノードとしてニッケル発泡体 (住友電工 社製、 商品名セルメット、 1 0 OmmX 2 OmmX 5 mm、 発泡体の網目構造に よって形成される空孔の平均孔径 0. 8 3 mm) 、 力ソードとしてメッシュ状ラ ネ一ニッケル電極、 隔膜としてフッ素樹脂系カチオン交換膜 (旭硝子社製、 商品 名フレミオン) を用いて 2室型の電解槽を組み立てた。 アノード室は高さ 1 00 Omm、 幅 2 Omm、 厚さ 5 mmであり、 カソ一ド室は高さ 1 00 Omm、 幅 2 Omm、 厚さ 5 mmで、 隔膜の有効面積は 2 0 0 c m2であった。 アノードとし て用いたニッケル発泡体は、 アノード集電体のニッケル板に電気溶接にて接着し た。 カソ一ド室側からカソードで隔膜をアノード側に押しつけるようにして電解 槽を組み立てた。 Nickel plate as anode current collector, nickel foam as anode (Celmet, trade name, manufactured by Sumitomo Electric Industries, Ltd., 10 OmmX 2 OmmX 5 mm, average pore diameter of pores formed by the mesh structure of foam 0 8.3 mm), a two-chamber electrolytic cell was assembled using a mesh-shaped Ra-nickel electrode as a force source and a fluororesin cation exchange membrane (Flemion, manufactured by Asahi Glass Co., Ltd.) as a diaphragm. The anode compartment is 100 Omm high, 2 Omm wide and 5 mm thick, and the cathode compartment is 100 Omm high, 2 Omm wide and 5 mm thick, and the effective area of the diaphragm is 200 cm. Was 2 . The nickel foam used as the anode was bonded to the nickel plate of the anode current collector by electric welding. The electrolytic cell was assembled by pressing the diaphragm against the anode side with the cathode from the cathode chamber side.
ァノ一ドの物性および電解条件などは次のとおりである。  The physical properties and electrolytic conditions of the anode are as follows.
ァノ一ド厚み: 5mm、  Anode thickness: 5mm,
ァノード室体積当りのァノ一ド表面積: 3 1 2 5m2 /χ '、 Anode surface area per anode chamber volume: 3 1 2 5 m 2 / χ ',
隔膜面積に対するアノード表面積: 1 2. 5m2/m2Anode surface area to diaphragm area: 12.5 m 2 / m 2 ,
アノード室空隙率: 9 5 %、  Anode chamber porosity: 95%,
ァノード液空塔速度: 2 c mZ秒、  Anode liquid superficial tower speed: 2 cmZ seconds,
電解温度: 8 5°C、  Electrolysis temperature: 85 ° C,
隔膜での電流密度: 6 k A/m2 0 Current density at the diaphragm: 6 k A / m 2 0
アノード液として、 モデル白液 (N a2 S :硫黄原子換算で 1 6 g/L、 N a OH : 9 0 g/L, N a2 C03 : 3 4 g/L) を調製し、 アノード室の下側から 導入し上側に抜き出しながら 1 2 OmLZ分の流速 (空塔速度 2 cmZ秒) で送 液した。 力ソード液は 3 Nの N a OH水溶液を用い、 8 0 m L /分の流速でカソ 一ド室の下側から導入し上側に抜き出しながら送液した。 ァノード側および力ソ 一ド側の両方に熱交換器を設け、 ァノード液およびカソード液を昇温してセルに 導入するようにした。 As anolyte, model white liquor (N a 2 S: 1 6 g / L sulfur atom terms, N a OH: 9 0 g / L, N a 2 C0 3: 3 4 g / L) was prepared, an anode The solution was fed at a flow rate of 12 OmLZ (superficial velocity 2 cmZ seconds) while being introduced from the lower side of the chamber and withdrawn upward. As the power source solution, a 3 N NaOH aqueous solution was used, and the solution was fed from the lower side of the cathode chamber at a flow rate of 80 mL / min, and sent out while being drawn out to the upper side. Heat exchangers are installed on both the anode side and the force source side to raise the temperature of the anode and catholyte solutions to the cells. I introduced it.
電流 12 OA (隔膜での電流密度 6 k A/m2) で定電流電解を行い、 モデル 白液から多硫化物蒸解液を合成し、 セル電圧の測定と、 電解直後の液のサンプリ ングを行い、 その溶液中の多硫化硫黄、 Na2 S態硫黄、 チォ硫酸イオンについ て分析定量した。 A constant current electrolysis was performed at a current of 12 OA (current density at the diaphragm: 6 kA / m 2 ), a polysulfide digest was synthesized from the model white liquor, the cell voltage was measured, and the solution was sampled immediately after electrolysis. Then, sulfur polysulfide, Na 2 S form sulfur and thiosulfate ion in the solution were analyzed and quantified.
電解操作中、 ニッケルが溶出する以外は、 生成物が多硫化硫黄とチォ硫酸ィォ ンのみであるので、 電流効率および選択率は、 生成した多硫化硫黄濃度が A (g ZL) 、 生成したチォ硫酸イオン濃度が硫黄原子に換算して B (g/L) である とき、 次のように定義される。  During the electrolysis operation, except that nickel was eluted, the only products were sulfur polysulfide and thiosulfate, so the current efficiency and selectivity were determined to be A (g ZL) when the generated sulfur polysulfide concentration was A (g ZL). When the thiosulfate ion concentration is B (g / L) in terms of sulfur atom, it is defined as follows.
電流効率 = [A/ (A+ 2B) 〕 X I 00%、  Current efficiency = (A / (A + 2B)) X I 00%,
選択率 = [A/ (A+B) 〕 X I 00%。  Selectivity = [A / (A + B)] X I 00%.
各種硫黄化合物の濃度の定量値および槽電圧つレ、ては以下のとおりであった。 多硫化物蒸解液の組成は、 多硫化硫黄が 9. O gZL、 Na2 S態硫黄が 6. 5 gZL、 増; ¾したチォ硫酸イオンが硫黄原子換算で 0. 50gZLであった。 ま た、 多硫化物イオン (Sx 2 ) の Xの平均値は 2. 4で、 その間の電流効率は二 ッケル溶出がないと仮定して求めると 90%であり、 同様に選択率は 95%であ つた。 The quantitative values of the concentrations of various sulfur compounds and the cell voltage were as follows. The composition of the polysulfide cooking liquor was 9. O gZL for sulfur polysulfide and 6.5 gZL for Na 2 S-form sulfur; the thiosulfate ion was 0.50 gZL in terms of sulfur atoms. The average value of X of the polysulfide ion (S x 2 ) is 2.4, and the current efficiency is 90%, assuming no nickel elution, and the selectivity is 95%. %.
平均セル電圧は 1. 2〜1. 5 Vで一定であった。 電解槽の最下部から 1 0 c m上の部分、 中央部、 および電解槽の最上部から 1 0 cm下の部分のァノード近 傍にルギン管を取り付け、 25 °Cの飽和甘コゥ参照電極に対するアノードの電極 電位を測定した。 電解槽の下部では— 0. I V、 中央部では + 0. 2V、 上部で は + 0. 5Vであった。 次に 24時間試験後セルを解体してアノードの溶解の有 無を調査した結果、 電解槽の上部のニッケルアノードが一部溶解していることが 判明した。  The average cell voltage was constant at 1.2-1.5 V. Attach a lugine tube near the anode, 10 cm above the bottom of the electrolyzer, at the center, and 10 cm below the top of the electrolyzer, and anode at 25 ° C for the saturated reference electrode. The electrode potential was measured. At the bottom of the cell, the voltage was -0.1 V, at the center it was +0.2 V, and at the top it was +0.5 V. Next, after a 24-hour test, the cell was disassembled and examined for the dissolution of the anode. As a result, it was found that the nickel anode at the top of the electrolytic cell was partially dissolved.
[例 1 ]  [Example 1 ]
アノード室の高さ 50 Omm、 力ソード室の高さ 500 mm、 幅 20mm、 厚 さ 5 mmとした以外は比較例と同等の電解槽を 2個作製した。 これを高さ方向に 二段に配置し、 アノード液として比較例と同等のモデル白液を調製し、 下部の電 解槽 (これを上流側電解槽と呼ぶ) のァノード室の下側から導入し上側に抜き出 し、 これを上部の電解槽 (これを下流側電解槽と呼ぶ) のアノード室の下側から 導入し上側に抜き出しながら 12 OmLZ分の流速 (空塔速度 2 cniZ秒) で送 液した。 力ソード液は比較例と同様に 3 Nの N a OH水溶液を用い、 80mLZ 分の流速で別々に上流側電解槽おょぴ下流側電解槽の力ソード室の下側から導入 し上側に抜き出しながら送液した。 Two electrolytic cells equivalent to those of the comparative example were prepared except that the height of the anode chamber was 50 Omm, the height of the power sword chamber was 500 mm, the width was 20 mm, and the thickness was 5 mm. These are arranged in two stages in the height direction, and a model white liquor equivalent to that of the comparative example is prepared as an anolyte, and introduced from below the anode chamber of the lower electrolytic cell (this is called an upstream electrolytic cell). Then pull out to the top This was introduced from the lower part of the anode chamber of the upper electrolytic cell (this is called the downstream electrolytic cell), and it was sent at a flow rate of 12 OmLZ (superficial velocity 2 cniZ seconds) while extracting it upward. As in the comparative example, a 3 N NaOH aqueous solution was used as the power source solution, and it was separately introduced from the lower side of the power source chamber of the upstream electrolytic cell and the downstream electrolytic cell at a flow rate of 80 mLZ and extracted upward. While feeding.
上流側電解槽には電流 8 OA (隔膜での電流密度 8 k AZm2) 、 下流側電解 槽には電流 4 OA (隔膜での電流密度 4 k AZm2) をそれぞれ通電して定電流 電解を行つて多硫化物蒸解液を合成した。 上記比較例と同様に各電解槽のセル電 圧およびアノード電位の測定と、 下流側電解槽から出てくる液のサンプリングを 行い、 溶液中の多硫化硫黄、 Na2 S態硫黄、 チォ硫酸イオンについて分析定量 した。 Current 8 OA on the upstream side electrolysis cell (current density 8 k AZM 2 in septum), a constant current electrolysis with electric current 4 OA (current density 4 k AZM 2 at diaphragm) each on the downstream side electrolyzer Then, a polysulfide cooking liquor was synthesized. As in the above comparative example, the cell voltage and anode potential of each electrolytic cell were measured, and the liquid coming out of the downstream electrolytic cell was sampled, and sulfur polysulfide, Na 2 S-type sulfur, and thiosulfate ions in the solution were measured. Was analyzed and quantified.
各種硫黄化合物の濃度の定量値および槽電圧ついては以下のとおりであった。 多硫化物蒸解液の組成は、 多硫化硫黄が 9. 4 g L、 Na2 S態硫黄が 6. 3 g/L、 增加したチォ硫酸イオンが硫黄原子換算で 0. 30 gZLであった。 ま た、 多硫化物イオン (Sx 2— ) の Xの平均値は 2. 5で、 その間の電流効率は二 ッケル溶出がないと仮定して求めると 94%であり、 同様に選択率は 97%であ つた。 The quantitative values of the concentrations of various sulfur compounds and the cell voltage were as follows. The composition of the polysulfide cooking liquor was 9.4 gL for sulfur polysulfide, 6.3 g / L for Na 2 S form sulfur, and 0.30 gZL for added thiosulfate ion in terms of sulfur atoms. The average value of X of the polysulfide ion (S x 2 —) is 2.5, and the current efficiency during that time is 94%, assuming that nickel is not eluted. 97%.
上流側電解槽の平均セル電圧は 1. 5〜1. 8 Vで一定であった。 電解†曹の最 下部から 5 cm上の部分、 中央部、 および電解槽の最上部から 5 c m下の部分の アノード近傍にルギン管を取り付け、 25 °Cの飽和甘コゥ参照電極に対するァノ ードの電極電位を測定した結果、 電解槽の下部では一 0. 01 V、 中央部では + 0. 05V、 上部では +0. 1 5Vであった。 下流側電解槽の平均セル電圧は 1 . 0〜1. 2 Vで一定であり、 上流側電解槽と同様にルギン管を配してアノード の電極電位を測定した結果、 電解槽の下部では一 0. 20V、 中央部では一〇. 15V、 上部では一 0. I Vであった。  The average cell voltage of the upstream electrolyzer was constant at 1.5 to 1.8 V. Attach a lugine tube near the anode at 5 cm above the bottom of the electrolytic sodium carbonate, at the center, and 5 cm below the top of the electrolytic cell, and place the anode on a 25 ° C saturated sweet copper reference electrode. As a result of measuring the electrode potential of the electrode, it was found to be 0.01 V at the bottom of the electrolytic cell, +0.05 V at the center, and +0.15 V at the top. The average cell voltage of the downstream electrolyzer is constant at 1.0 to 1.2 V, and as in the case of the upstream electrolyzer, a luggage tube was placed and the anode electrode potential was measured. It was 0.20V, 10V at the center and 0.14V at the top.
次に 24時間試験後セルを解体してアノードの溶解の有無を調査した結果、 上 流側電解槽、 下流側電解槽ともニッケルァノードの溶解は起きていないことが判 明した。  Next, after the 24-hour test, the cell was disassembled and the presence or absence of dissolution of the anode was investigated. As a result, it was found that dissolution of nickel anode did not occur in both the upstream electrolytic cell and the downstream electrolytic cell.
[例 2] 例 1で用いた二段の電解槽を用い、 上流側電解槽および下流側電解槽の電解電 流を、 次のように変更した以外は例 1と同等の運転条件で多硫化物蒸解液の製造 を行った。 [Example 2] Using the two-stage electrolytic cell used in Example 1 and changing the electrolytic current in the upstream electrolytic cell and the downstream electrolytic cell as follows, under the same operating conditions as in Example 1, Manufactured.
すなわち、 上流側電解槽には電流 10 OA (隔膜での電流密度 10 k A/m2 ) 、 下流側電解槽には電流 2 OA (隔膜での電流密度 2 k ΑΖιη2) をそれぞれ 通電して定電流電解を行って多硫ィヒ物蒸解液を合成し、 比較例と同様に各電解槽 のセル電圧およびアノード電位の測定と、 二段の電 直後の液のサンプリングを 行い、 溶液中の多硫化硫黄、 Na2 S態硫黄、 チォ硫酸イオンについて分析定量 した。 That is, an electric current of 10 OA (current density of 10 kA / m 2 at the diaphragm) is supplied to the upstream electrolytic cell, and a current of 2 OA (current density of 2 kΑΖιη 2 at the diaphragm) is supplied to the downstream electrolytic cell. A polysulfite digestion solution was synthesized by performing constant current electrolysis, and the cell voltage and anode potential of each electrolytic cell were measured, and the solution immediately after the two-stage electrolysis was sampled, as in the comparative example. Sulfur polysulfide, Na 2 S form sulfur, and thiosulfate ion were analyzed and quantified.
各種硫黄化合物の濃度の定量値およびセル電圧については、 以下のとおりであ つた。 多硫化物蒸解液の組成は、 多硫化硫黄が 9. 6 gZL、 Na2 S態硫黄が 6. 2 gZL、 增加したチォ硫酸イオンが硫黄原子換算で 0. 20 gZLであつ た。 また、 多硫化物イオン (S -) の Xの平均値は 2. 5で、 その間の電流効 率はニッケル溶出がないと仮定して求めると 96%であり、 同様に選択率は 98 %であった。 Quantitative values of the concentrations of various sulfur compounds and cell voltages were as follows. The composition of the polysulfide cooking liquor was 9.6 gZL for sulfur polysulfide, 6.2 gZL for Na 2 S-form sulfur, and 0.20 gZL for added thiosulfate ions in terms of sulfur atoms. The average value of X of the polysulfide ion (S-) is 2.5, and the current efficiency during that period is 96%, assuming no nickel elution, and the selectivity is 98%. there were.
上流側電解槽の平均セル電圧は 1. 8〜 2. 0 Vで一定であった。 アノードの 電極電位を測定した。 電解槽の下部では +0. 01 V、 中央部では +0. 01 V 、 上部では + 0. 18 Vであった。 下流側電解槽の平均セル電圧は 0. 8〜 1. 0Vで一定であり、 上流側電解槽と同様にルギン管を配してアノードの電極電位 を測定した結果、 電解槽の下部では一 0. 30V、 中央部では— 0, 25V、 上 部では—0. 2 Vであった。  The average cell voltage of the upstream electrolytic cell was constant at 1.8 to 2.0 V. The anode electrode potential was measured. The voltage was +0.01 V at the bottom of the cell, +0.01 V at the center, and +0.18 V at the top. The average cell voltage of the downstream electrolyzer is constant at 0.8 to 1.0 V, and as in the case of the upstream electrolyzer, a luggage tube was placed and the anode electrode potential was measured. 30V, -0.2V at the center and -0.2V at the top.
次に 24時間試験後セルを解体してアノードの溶解の有無を調査した結果、 上 流側電解槽、 下流側電解槽ともニッケルァノ一ドの溶解は起きていないことが判 明した。 産業上の利用可能性  Next, after the 24-hour test, the cell was disassembled and the presence or absence of dissolution of the anode was investigated. As a result, it was found that dissolution of nickel oxide did not occur in both the upstream electrolytic cell and the downstream electrolytic cell. Industrial applicability
本発明は、 溶液中の硫化物イオンから電解法により高濃度の多硫化硫黄を得る こと、 特に、 パルプ製造工程における白液から高濃度の多硫化硫黄を含む蒸解液 を、 チォ硫酸イオンの副生を極めて少なくして高選択率でかつ低電力で製造する ことを目的とする。 また本発明は、 電解操作上、 圧力損失の小さい条件で多硫化 物蒸解液を製造できる方法を供給することを目的とする。 The present invention provides a method for obtaining a high concentration of sulfur polysulfide from a sulfide ion in a solution by an electrolysis method. Produce high selectivity and low power with extremely low production The purpose is to: Another object of the present invention is to provide a method capable of producing a polysulfide cooking liquor under conditions of low pressure loss in the electrolysis operation.
本発明の製造方法では、 アノードに用いる電極材料のァノード溶解を防止しな がら、 チォ硫酸イオンの副生が極めて少なく、 高濃度の多硫化硫黄を含む蒸解液 を高い選択率を維持しかつ高い電流効率で製造することができる。 こうして得ら れた多硫化物蒸解液を蒸解に用いることによりパルプ収率を効果的に増加させる ことができる。  In the production method of the present invention, while preventing the anode material of the electrode material used for the anode from being dissolved, by-products of thiosulfate ions are extremely small, and the cooking liquor containing a high concentration of sulfur polysulfide is maintained at a high selectivity and high. It can be manufactured with current efficiency. By using the polysulfide cooking liquor thus obtained for cooking, the pulp yield can be effectively increased.

Claims

請求の範囲 The scope of the claims
1 . アノードを配置したアノード室、 力ソードを配置した力ソード室およびァ ノード室とカソード室とを区画する隔膜を有する電解槽を用い、 前記ァノード室 に硫ィヒ物を含む溶液を連続的に流しながら電解酸化することにより多硫化物を製 造する方法であって、 電解槽內の溶液の流通方向に電解条件の分布を付与した多 硫化物の製造方法。 1. An electrolytic chamber having an anode chamber in which an anode is arranged, a force-sword chamber in which a force sword is arranged, and a diaphragm separating the anode chamber and the cathode chamber, and a solution containing sulfuric acid is continuously supplied to the anode chamber. A method for producing polysulfide by subjecting it to electrolytic oxidation while flowing into a cell, wherein the distribution of electrolytic conditions is imparted in the flow direction of the solution in the electrolytic cell (2).
2 . 2個以上の電解槽を前記硫化物を含む溶液の流れに直列に配置し、 上流側 の電解槽の電解条件と下流側の電解槽の電解条件を異なるものとする請求項 1記 載の多硫化物の製造方法。  2. The method according to claim 1, wherein two or more electrolytic cells are arranged in series in the flow of the sulfide-containing solution, and the electrolytic conditions of the upstream electrolytic cell and the electrolytic cells of the downstream electrolytic cell are different. Method for producing polysulfide.
3 . 電解槽が 2個であり、 上流側の電解槽のァノ一ド表面における電流密度が 下流側の電解槽のァノ―ド表面における電流密度より大きく、 かつ、 上流側の電 解槽のアノード表面における電流密度が 0 . 0 0 5〜2 0 k AZm2であり、 下 流側の電解槽のアノード表面における電流密度が 0 . 0 0 1〜1 5 k AZm2で ある請求項 2記載の多硫化物の製造方法。 3. There are two electrolyzers, the current density on the anode surface of the upstream electrolyzer is greater than the current density on the anode surface of the downstream electrolyzer, and the upstream electrolyzer current density 0 at the anode surface. 0 0 5 to 2 0 k AZM is 2, claim 2 current density at the anode surface of the electrolytic cell of the lower stream side is 0. 0 0 1 to 1 5 k AZM 2 A method for producing the polysulfide according to the above.
4 . 電解槽が 2個であり、 上流側の電解槽において溶液中の硫化物の転^ f匕率が 1 0〜 7 2 %になるように電解し、 下流側の電解槽において溶液中の硫化物の転 化率が 2 5〜7 5 %になるように電解する請求項 2または 3記載の多硫化物の製 造方法。  4. There are two electrolyzers, and electrolysis is performed so that the conversion ratio of sulfide in the solution is 10 to 72% in the upstream electrolyzer, and the electrolysis is performed in the solution in the downstream electrolyzer. 4. The method for producing a polysulfide according to claim 2, wherein the electrolysis is performed so that the conversion of the sulfide is 25 to 75%.
5 . 電解槽が 2個であり、 上流側の電解槽の隔膜の単位面積当りのアノード表 面積が下流側の電解槽の隔膜の単位面積当りのァノード表面積より小さく、 かつ 、 上流側のァノードの表面積が隔膜の単位面積当り 2〜 1 0 0 m2 /m2であり、 下流側のアノードの表面積が隔膜の単位面積当り 1 0〜5 0 0 O m2 /m2である 請求項 2〜 4レ、ずれか 1記載の多硫化物の製造方法。 5. There are two electrolytic cells, the anode surface area per unit area of the upstream electrolytic cell diaphragm is smaller than the anode surface area per unit area of the downstream electrolytic cell diaphragm, and The surface area is 2 to 100 m 2 / m 2 per unit area of the diaphragm, and the surface area of the downstream anode is 10 to 500 O m 2 / m 2 per unit area of the diaphragm. 4. The method for producing polysulfide according to 1.
6 . 電解槽が 2個であり、 上流側の電解槽における前記硫化物を含む溶液の流 速が下流側の電解槽における前記硫化物を含む溶液の流速より小さく、 かつ、 上 流側の電解槽における前記硫化物を含む溶液の流速が 0 . 5〜 2 0 c mZ秒、であ り、 下流側の電解槽における前記硫化物を含む溶液の流速が 1〜 3 0 c mZ秒で ある請求項 2〜 5レ、ずれか 1記載の多硫化物の製造方法。 6. There are two electrolyzers, and the flow rate of the sulfide-containing solution in the upstream electrolyzer is smaller than the flow rate of the sulfide-containing solution in the downstream electrolyzer, and the upstream electrolysis is performed. The flow rate of the sulfide-containing solution in the cell is 0.5 to 20 cmZ seconds, and the flow rate of the sulfide-containing solution in the downstream electrolytic cell is 1 to 30 cmZ seconds. Item 2-5, the method for producing a polysulfide according to item 1.
7 . 電解槽が 2個であり、 上流側のアノードがニッケル多孔体であり、 下流側 のァノードが炭素多孔体である請求項 2〜 6いずれか 1記載の多硫化物の製造方 法。 7. The method for producing a polysulfide according to any one of claims 2 to 6, wherein there are two electrolytic cells, the anode on the upstream side is a porous nickel body, and the anode on the downstream side is a porous carbon body.
8. アノードの表面が、 ニッケルまたはニッケルを 5 0重量%以上含有する二 ッケル合金である請求項 1〜 7いずれか 1記載の多硫化物の製造方法。  8. The method for producing a polysulfide according to claim 1, wherein the surface of the anode is nickel or a nickel alloy containing 50% by weight or more of nickel.
PCT/JP2000/006034 1999-09-06 2000-09-06 Method for producing a polysulfide WO2001018278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU68715/00A AU6871500A (en) 1999-09-06 2000-09-06 Method for producing a polysulfide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/252198 1999-09-06
JP25219899A JP2001073180A (en) 1999-09-06 1999-09-06 Production of polysulfide

Publications (1)

Publication Number Publication Date
WO2001018278A1 true WO2001018278A1 (en) 2001-03-15

Family

ID=17233874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006034 WO2001018278A1 (en) 1999-09-06 2000-09-06 Method for producing a polysulfide

Country Status (3)

Country Link
JP (1) JP2001073180A (en)
AU (1) AU6871500A (en)
WO (1) WO2001018278A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975402B2 (en) * 2006-09-06 2012-07-11 クロリンエンジニアズ株式会社 Electrolysis method
JP5344278B2 (en) * 2008-06-27 2013-11-20 ダイソー株式会社 Indium metal production method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062818A1 (en) * 1998-05-29 1999-12-09 Asahi Glass Company Ltd. Method for producing polysulfide by electrolytic oxidation
JP2000247611A (en) * 1999-02-26 2000-09-12 Asahi Glass Co Ltd Production of polysulfide by electrolytic oxidation
JP2000247612A (en) * 1999-02-26 2000-09-12 Asahi Glass Co Ltd Production of polysulfide using electrolytic oxidation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062818A1 (en) * 1998-05-29 1999-12-09 Asahi Glass Company Ltd. Method for producing polysulfide by electrolytic oxidation
JP2000247611A (en) * 1999-02-26 2000-09-12 Asahi Glass Co Ltd Production of polysulfide by electrolytic oxidation
JP2000247612A (en) * 1999-02-26 2000-09-12 Asahi Glass Co Ltd Production of polysulfide using electrolytic oxidation

Also Published As

Publication number Publication date
JP2001073180A (en) 2001-03-21
AU6871500A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
US6203688B1 (en) Electrolytic process for producing chlorine dioxide
CA2023733C (en) Chlorine dioxide generation from chloric acid
JPH05504170A (en) Electrochemical production method of chloric acid/alkali metal chlorate mixture
JP4187826B2 (en) Method for producing polysulfide by electrolytic oxidation
JP4312869B2 (en) Method for producing polysulfide using electrolytic oxidation
US6740223B2 (en) Electrolytic process for the production of chlorine dioxide
US5972197A (en) Method for producing polysulfides by electrolytic oxidation
US5879521A (en) Gas-diffusion cathode and salt water electrolytic cell using the gas-diffusion cathode
Huissoud et al. Electrochemical reduction of 2-ethyl-9, 10-anthraquinone (EAQ) and mediated formation of hydrogen peroxide in a two-phase medium Part II: Production of alkaline hydrogen peroxide by the intermediate electroreduction of EAQ in a flow-by porous electrode in two-phase liquid–liquid flow
JP2022551135A (en) Method and electrolysis apparatus for producing chlorine, carbon monoxide and optionally hydrogen
CA2194609C (en) Process for production of chlorine dioxide
WO2001018278A1 (en) Method for producing a polysulfide
KR100313259B1 (en) Method for electrolysing a brine
EP1245723B1 (en) Method for recovering chemicals in a process of producing pulp by kraft process
JP2000247611A (en) Production of polysulfide by electrolytic oxidation
JP4447081B2 (en) Method for producing polysulfide
US5112452A (en) Removal of thiosulfate from hydrosulfite solutions
US4548694A (en) Catholyteless membrane electrolytic cell
JPH10121281A (en) Method and device for controlling concentration of aqueous alkaline hydrogen peroxide solution

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase