WO2001017333A1 - Transgenic fiber producing plants with increased expression of sucrose phosphate synthase - Google Patents

Transgenic fiber producing plants with increased expression of sucrose phosphate synthase Download PDF

Info

Publication number
WO2001017333A1
WO2001017333A1 PCT/US2000/024490 US0024490W WO0117333A1 WO 2001017333 A1 WO2001017333 A1 WO 2001017333A1 US 0024490 W US0024490 W US 0024490W WO 0117333 A1 WO0117333 A1 WO 0117333A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
fiber
phosphate synthase
sucrose phosphate
cotton
Prior art date
Application number
PCT/US2000/024490
Other languages
French (fr)
Other versions
WO2001017333A9 (en
Inventor
Candace H. Haigler
A. Scott Holaday
Original Assignee
Texas Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Tech University filed Critical Texas Tech University
Priority to EP00959960A priority Critical patent/EP1220602B1/en
Priority to DE60030453T priority patent/DE60030453D1/en
Priority to BR0013903-3A priority patent/BR0013903A/en
Priority to AU71190/00A priority patent/AU784405B2/en
Priority to MXPA02002497A priority patent/MXPA02002497A/en
Publication of WO2001017333A1 publication Critical patent/WO2001017333A1/en
Publication of WO2001017333A9 publication Critical patent/WO2001017333A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • C12N9/1066Sucrose phosphate synthase (2.4.1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • C12N15/8246Non-starch polysaccharides, e.g. cellulose, fructans, levans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to a method for increasing the yield or quality of product from a plant by altering the expression of sucrose phosphate synthase.
  • the present invention provides a transgenic cotton plant that has an increased level of sucrose phosphate synthetase relative to a non-transgenic cotton plant.
  • Methods are also provided for increasing the yield or the quality of cotton fiber and the yield of cotton seed produced from a cotton plant.
  • General methods are provided for regulating the thickness of cell walls, for increasing the yield and quality of other plant fibers, for regulating the ratio of cellulose to other dry weight components of the plant, for increasing seed yield, and for increasing tolerance of photosynthetic efficiency to cool night temperatures.
  • cotton fiber weight is more than 90% cellulose
  • cotton is one particular crop where enhancing the flow of carbon to cellulose production can increase yield and quality.
  • This will be an especially beneficial outcome if it is achievable under diverse environmental conditions encountered in cotton production fields, including cool night temperatures that hinder cotton fiber development.
  • cool night temperatures hinder the seasonal yield and quality of cotton fiber (Gipson, "Temperature Effects on Growth, Development, and Fiber Properties," in Mauney, eds., Cotton Physiology, The Cotton Foundation:Memphis, pp. 47-56) because they hinder the rate of cellulose synthesis (Roberts et al., "Effects of Cycling Temperatures on Fiber Metabolism in Cultured Cotton Ovules," Plant Phvsiol.. 100:979-986 (1992)).
  • the ability to manipulate cotton yield and fiber quality parameters and sustain or improve them under diverse and/or stressful environmental conditions will allow for beneficial changes in crop plants (improved product quality) through genetic engineering.
  • Cotton fiber yield is the most important determinant of the value of the crop to the producer. Reputable cotton breeders have recently pointed out that cotton production has reached a fiber yield plateau, which bodes ill for the financial success of producers given escalating costs. Potential contributors to this problem include the environmental sensitivity of cotton fiber and seed development, the narrow genetic base of commercial cotton, and the recent introduction of transgenic traits such as herbicide and insect resistance through back-crossing with transformed Gossypium hirsutum cv. Coker 312. Coker 312 (C312) is an old cultivar frequently used for transformation because of its high regeneration capacity. Use of genetic engineering to make cotton crop production more stress resistant, to expand the genetic potential of cultivated cotton, and to improve the yield of transformed cotton with diverse novel traits will bring needed increases in crop yield.
  • seed yield is of value to the cotton producer since seeds are sold for oil production and animal feed.
  • Another minor component, the short fuzz fibers on each seed provides added economic value to the seed crop.
  • Increased seed and fuzz fiber yield without sacrifice of lint fiber yield or quality would help the producer recover more profit per acre of cotton production.
  • increased yield of any seed crop will be of major benefit to agriculture.
  • Improved cotton fiber quality parameters such as micronaire, maturity ratio, length, length uniformity, bundle strength, and single fiber strength are desired by the textile industry to produce increasingly high quality products and to take full advantage of modern spinning technologies. Fiber quality parameters should also be high enough for the cotton producer to avoid price discounts when he sells his crop to the gin.
  • SPS Sucrose phosphate synthase
  • UDP-glucose and fructose 6-phosphate In the leaf, SPS is important in controlling the partitioning of reduced carbon between starch and translocatable sucrose (Huber et al., "Role and Regulation of Sucrose-Phosphate Synthase in Higher Plants," Annu. Rev. Plant Physiol. Plant Mol. Biol.. 47:431-44 (1996)).
  • the data in this invention demonstrate that SPS is involved in directing the flow of carbon to cellulose.
  • SPS within cellulose-storing sink cells can increase sink strength through an enhanced rate of cellulose synthesis by promoting sucrose synthesis in one or both of two cases: (a) if sucrose transported from the leaves is cleaved to release glucose and fructose before or after entering the sink cells; and/or (b) to reuse the fructose released by the activity of sucrose synthase to channel UDP-glucose and fructose to cellulose synthase.
  • a decreased level of SPS activity can decrease sink strength, by analogous mechanisms, in any case where sink filling is affected by sucrose levels.
  • Tomato fruits are essentially sacks of primary cell walls filled with water and soluble glucose, fructose, and sucrose as storage carbohydrates. These sugars crystallize upon drying, contributing to fruit dry weight.
  • tomato seeds are not a significant sink due to their small size, and they have no economic value except for propagation of tomato.
  • the fruit is the major sink in tomatoes; it constitutes almost all of tomato yield and is the only tomato part with significant economic value.
  • the cotton fruit is relatively dry and thin- walled. The fruit itself does not constitute any substantial sink in cotton or contribute to cotton yield.
  • Cotton seeds with attached fiber represent the two major sinks of substantial economic value in the cotton crop.
  • the cotton fiber is an elongated epidermal cell of the cotton seed coat; it is defined botanically as a trichome. Therefore, the two major sinks in seeds are: (1) the cotyledons of the seed embryo that store oil and protein; and (2) the secondary cell walls of the seed epidermal trichomes (cotton fibers) that store insoluble cellulose. Soluble sugars are not stored in any significant quantity in a mature cotton seed or fruit.
  • Cotton seeds with their attached fiber represent all of the yield in the cotton crop. Therefore, cotton, as well as other fiber producing plants, differ significantly from tomato.
  • Tomato leaves do not contain substantial fiber, being composed mainly of mesophyll cells and conducting vascular tissue.
  • Potato tubers do not contain substantial fiber. They are composed mainly of parenchyma cells with primary walls that store abundant starch and lesser amounts of protein. The major yield component of potato tubers is starch. All of these reports lack information on the effect of SPS over-expression on cell wall thickness, cellulose content, and fiber and seed yield of plants. However, the absence of demonstrated increase in stem weight argues against increased fiber content in the tomato plants analyzed.
  • the present invention generally relates to a method of controlling the cellulose synthesis in plants to optimize the level of production and quality of the products derived from the plants.
  • the invention includes the regulation in the cellulose content, thickness, or yield of any plant cell wall of agricultural or industrial use.
  • Such cell walls include typical thin primary cell walls such as those that are digested in forage and those that exist in useful agricultural residues, for example beet root parenchyma cells remaining after sugar extraction that can be converted into thickening agents.
  • Such cell walls include thick walls such as those of collenchyma and xylem parenchyma that can aid plant rigidity or contribute to yield and digestibility of forage or other agricultural products.
  • Such cell walls also include secondary cell walls such as are commonly found in fiber.
  • the present invention provides a transgenic cotton plant that has an increased level of sucrose phosphate synthetase relative to a non-transgenic cotton plant.
  • the invention also provides a method of increasing the yield of a cotton plant by introducing into the cotton plant a chimeric DNA construct that alters the level of sucrose phosphate synthase activity in an amount sufficient to increase the seed and fiber yield of the cotton plant.
  • the present invention can also be used to increase the quality of cotton fiber produced from a cotton plant by introducing into a cotton plant a chimeric DNA construct that alters the level of sucrose phosphate synthase activity in an amount sufficient to increase the quality of the cotton fiber produced by the cotton plant.
  • the invention includes a method of increasing tolerance of photosynthetic efficiency to cool night temperatures by introducing into a plant a chimeric DNA that alters the sucrose phosphate synthase activity in an amount sufficient to increase tolerance of photosynthetic efficiency to cool night temperatures.
  • the invention provides a method of regulating the ratio of cellulose to other dry weight components of the plant by introducing into a plant a chimeric DNA construct capable of altering sucrose phosphate synthase activity in an amount sufficient to regulate the ratio of cellulose to other dry weight components of the plant.
  • the invention also provides a method of regulating the thickness of cell walls in a plant by introducing into a plant a chimeric DNA construct that alters sucrose phosphate synthase activity in an amount sufficient to regulate the thickness of cell walls.
  • the invention provides a method of increasing the harvestable yield of fiber from a fiber containing plant by introducing into a plant a chimeric DNA construct that alters sucrose phosphate synthase activity in an amount sufficient to increase the harvestable yield of fiber from a fiber producing plant.
  • the invention provides a method of increasing the harvestable yield of seed from a seed producing plant by introducing into a plant a chimeric DNA construct that alters sucrose phosphate synthase activity in an amount sufficient to increase the harvestable yield of seed from a seed producing plant.
  • the invention provides a method of improving the quality of fiber from a fiber producing plant by introducing into a plant a chimeric DNA construct that alters sucrose phosphate synthase activity in an amount sufficient to regulate fiber quality.
  • improvement may be exemplified by changes in length, strength, and weight per unit length.
  • Figure 1 shows the pathways of carbon assimilation, starch synthesis and catabolism, and sucrose synthesis.
  • UDP-glucose pyrophosphorylase catalyzes the highly reversible reaction between glucose 1 -phosphate (G-l-P) and UDP-glucose.
  • Sucrose- phosphate synthase catalyzes the formation of sucrose-phosphate from UDP-glucose and fructose 6-phosphate.
  • Figure 2 shows the metabolic pathways and enzymes in sink cells related to the biosynthesis of cellulose.
  • Figure 3 is an amino acid alignment between SPS gene sequences from a number of plant species.
  • Figure 4 is an amino acid alignment between the spinach leaf SPS gene sequence and a homologous sequence from Synechocystis .
  • Figure 5 is a histogram of fiber weight per seed, which shows elevation in all three transgenic lines. (Here and in all subsequent histograms, the error bars are standard deviations of the average. The average values are printed above each bar.)
  • Figure 6 is a histogram of delinted seed weight per seed. It shows elevation in all three transgenic lines.
  • Figure 7 is a histogram of the ratio of fiber weight per seed and delinted seed weight per seed. It shows that these two yield parameters tend to increase in parallel, with a small preference for increased fiber weight in transgenic lines.
  • Figure 8 is a scatter plot of fiber weight per seed vs delinted seed weight per seed. It shows that these two parameters are interdependent at the 50% level. (Here and with all other scatter plots, R is the coefficient of determination calculated from the linear regression line. Also, data points from parental C312 are labeled to their right, whereas data point from the three transgenic lines are left unlabeled.) Note, however, that C312 does not shown any linear relationship because seed weight per seed shows little variability in the parental line. Therefore, the overall linear relationship among all the data points derives from the transgenic plants. The transgenic plants have more variability in and higher levels of delinted seed weight per seed and fiber weight per seed than parental C312 plants.
  • Figure 9 is a histogram of fuzz fiber weight per seed. It shows elevation in two of three transgenic lines, and a decrease in one transgenic line.
  • Figure 10 is a histogram of micronaire, which shows elevation in all three transgenic lines.
  • Figure 11 is a scatter plot of micronaire vs fiber weight per seed showing that these two parameters are interdependent at the 60% level. This is sensible since fiber weight per seed depends on 3 factors: number of fibers, length of fibers, and fiber wall thickness. Of these 3 factors, micronaire would depend only on fiber wall thickness. Note that this linear relationship also holds for C312, but the transgenics have higher values for fiber weight per seed and micronaire.
  • Figure 12 is a histogram of grams of force to break a single fiber (Tb; g). It shows elevation in all transgenic lines.
  • Figure 13 is a histogram of elongation to break a single fiber (% of original fiber length). It shows elevation in all transgenic lines. However, note that Elongation is highest in transgenic line 13 -3 a, which, among the transgenics, had the lowest increase in grams to break. This suggests that these two factors are primarily determined by different fiber properties, as would be predicted in theory and is confirmed by the scatter plots below.
  • Figure 14 is a histogram of work to break a single fiber ( ⁇ J). Work, which is a composite factor calculated from grams to break and elongation, is elevated in all transgenic lines.
  • Figure 15 is a scatter plot of grams of force to break a single fiber vs. micronaire.
  • the graph shows an interdependency for these parameters over all data points of 68%. Both of these parameters would be expected to increase with a thicker fiber wall.
  • Figure 16 is a scatter plot of grams of force to break a single fiber vs. fiber weight per seed. These parameters are interdependent at a level of 61%, which is similar to the dependence on micronaire (See Figure 15). This supports the hypothesis that increased fiber weight per seed is due in large part to increased fiber wall thickness, since the two other parameters that can increase fiber weight per seed (increased fiber number and increased fiber length) would not be expected to increase grams to break.
  • Figure 17 is a scatter plot of work to break a single fiber vs. micronaire. These parameters are interdependent at a level of 48%. The intermediary level of dependency compared to grams to break and elongation alone (See Figure 19) is reasonable for this composite factor.
  • Figure 18 is a scatter plot of work to break a single fiber vs. fiber weight per seed. These parameters are interdependent at a level of 39%, which is similar to the dependence on micronaire (See Figure 17). As just described for Figure 16, this supports the hypothesis that increased fiber weight per seed is due in large part to increased fiber wall thickness.
  • Figure 19 is a scatter plot of elongation to break vs. micronaire. The graph shows that these parameters are not interdependent. Therefore, over-expression of SPS is predicted to enhance elongation by a mechanism independent of fiber wall thickness, which is consistent with theory.
  • Figure 20 is four overlayed scatter plots of photosynthetic rate vs. internal CO2 concentration for parental C312 growing in the Phytotron. Empty symbols are for two plants growing at 30/15°C and filled symbols are for two plants growing at 30/28°C. All plants were assayed at 30°C. The graphs show that for parental C312, a previous cool night suppresses photosynthetic rate during the warm day.
  • Figure 21 is four overlayed scatter plots of photosynthetic rate vs. internal CO2 concentration for the transgenic line 13-3a-l growing in the Phytotron. Empty symbols are for two plants growing at 30/15°C and filled symbols are for two plants growing at 30/28°C. All plants were assayed at 30°C. The graphs show that for this transgenic line, a previous cool has no effect on the rate of photosynthesis during the next warm day.
  • Figure 22 is four overlayed scatter plots of photosynthetic rate vs. internal CO2 concentration for the transgenic line 225-17a growing in the Phytotron. Empty symbols are for two plants growing at 30/15°C and filled symbols are for two plants growing at 30/28°C. All plants were assayed at 30°C. The graphs show that for this transgenic line, a previous cool has no effect on the rate of photosynthesis during the next warm day.
  • the present invention relates to a method of controlling the cellulose synthesis in plants to optimize the level of production and quality of the products, in particular fiber, derived from the plants.
  • the word "fiber” is often used to unify a diverse group of plant cell types that share in common the features of having an elongated shape and abundant cellulose in thick cell walls, usually, but not always, described as secondary walls. Such walls may or may not be lignified, and the protoplast of such cells may or may not remain alive at maturity.
  • Such fibers have many industrial uses, for example in lumber and manufactured wood products, paper, textiles, sacking and boxing material, cordage, brushes and brooms, filling and stuffing, caulking, reinforcement of other materials, and manufacture of cellulose derivatives.
  • the term "fiber” is usually inclusive of thick- walled conducting cells such as vessels and tracheids and to fibrillar aggregates of many individual fiber cells.
  • the term “fiber” is used in its most inclusive sense, for example including: (a) thick- walled conducting and non-conducting cells of the xylem; (b) fibers of extraxylary origin, including those from phloem, bark, ground tissue, and epidermis; and (c) fibers from stems, leaves, roots, seeds, and flowers or inflorescences (such as those of Sorghum vulgar e used in the manufacture of brushes and brooms).
  • the invention is applicable to all fibers, including, but not exclusively, those in agricultural residues such as corn, sugar cane, and rice stems that can be used in pulping, flax, hemp, ramie, jute, kenaf, kapok, coir, bamboo, Spanish moss, abaca, and Agave spp. (e.g. sisal).
  • the invention provides a transgenic cotton plant wherein the transgenic cotton plant has an increased level of sucrose phosphate synthetase relative to a non-transgenic cotton plant. Table 1 shows the level of SPS activity from untransformed C312 plants and four transformed plant lines.
  • sucrose phosphate synthase plays a key role in the metabolic flux of carbon within plant cells. Genes encoding sucrose phosphate synthase have been isolated and sequenced from a number of plant species. [Spinacia oleracea: Salvucci et al., Plant PhysioL, 102:529-536 (1993); Sonnewald et al, Planta, 189(2): 174-181 (1993); Oryza sativa: Valdez-Alarcon et al., Gene, 170(2):217-222 (1996); Craterostigma plantaqineum: Ingram et al..
  • sucrose phosphate synthase genes include the genes isolated from spinach, Arabidopsis, beet, bean, citrus, maize, moss, potato, rice, sugar cane, and Synechocystis.
  • the most preferred sucrose phosphate synthetase is spinach sucrose phosphate synthetase.
  • sucrose phosphate synthase modifications of the known sequences are also within the scope of the invention. Variations in the sequence including substitutions, insertions and deletions may be made to the known sequences of sucrose phosphate synthase. Comparisons of all the available sequences indicate which amino acids are highly conserved and those that are variable. Using that information, it is possible to choose variations that should still produce functional proteins.
  • sucrose phosphate-synthase The maximum activity of sucrose phosphate-synthase may be determined colorimetrically according to the formation of sucrose-6-P (+ sucrose) from fructose-6-P and UDP-glucose by the method as described in (Copeland, "Enzymes of Sucrose Metabolism,” Methods in Plant Biochemistry, 3:73-83 (1990), which is hereby incorporated by reference). Frozen leaf or fiber tissue was pulverized under liquid nitrogen, then ground in 50 mM HEPES (pH 7.4), 10 mM MgC12, 1 mM EDTA, 1 mM EGTA, 10% glycerol, and 0.1% Triton-X-100.
  • a 70 ⁇ l assay mixture contained 50 mM HEPES (pH 7.4), 10 mM UDPG, 6 mM fructose-6-P, 20 mM glucose- 6-P (an SPS activator), 10 mM MgC12, 1 mM EDTA, 0.40 mM EGTA, 4.0% glycerol, and 0.04% Triton-X-100.
  • the assay was conducted for 10 min at 32 - 34°C (on the plateau of maximal activity) then terminated by addition of 70 ⁇ l of IN NaOH.
  • sucrose phosphate-synthase may be determined spectrophotometrically according to liberation of uridine-5'-diphosphate detected by a pyruvate-kinase coupling enzyme reaction as also described in (Copeland, "Enzymes of Sucrose Metabolism,” Methods in Plant Biochemistry. 3:73-83 (1990), which is hereby incorporated by reference).
  • transgenic plants carrying the gene encoding a sucrose phosphate synthase are produced by transforming a plant with a chimeric DNA construct that expresses sucrose phosphate synthase.
  • the construct should include a plant specific promoter.
  • the promoter should ensure that the foreign gene is expressed in the plant.
  • the promoter can be chosen so that the expression occurs only in specified tissues, at a determined time point in the plant's development or at a time point determined by outside influences.
  • the promoter can be homologous or heterologous to the plant. Suitable promoters include e.g. the RUBISCO small subunit promoter, fiber- specific promoters, the promoter of the 35S RNA of the cauliflower mosaic virus described in U.S. Patent No. 5,034,322 (which is hereby incorporated by reference), the enhanced 35S promoter described in U.S. Patent No.
  • Preferred promoters include the RUBISCO small subunit promoter, the 35S promoters, fiber enhanced promoters, vascular cell enhanced promoters, stem cell enhanced promoters, or seed enhanced promoters.
  • Such promoters may ensure expression in a tissue specific or tissue-enhanced manner, but may allow expression in other cell types. For example it may ensure enhanced expression in photosynthetically active tissues (RUBISCO (Worrell et al., The Plant Cell. 3:1 121-1130 (1991), which is hereby inco ⁇ orated by reference)) or other mesophyll-cell-specific promoter (Datta et al., Theor. Appl.
  • tissue specific promoter is the RB7 promoter that is root specific (U.S. Patent No. 5,459,252, which is hereby inco ⁇ orated by reference).
  • Such promoters may be used either alone or in combination to optimize over-expression in the most desirable set of tissues or organs.
  • Preferred cotton fiber-enhanced promoters include those of the cotton fiber- expressed genes E6 (John et al., Plant Mol. Biol.. 30:297-306 (1996) and John et al., Proc. Natl. Acad. Sci., 93: 12768-12773 ( 1996), which are hereby inco ⁇ orated by reference), H6 (John et al., Plant PhysioL, 108:669-676, (1995), which is hereby inco ⁇ orated by reference), FbL2A (Rinehart et al., Plant PhysioL. 1 12:1331-1341 (1996) and John et al, Proc. Natl. Acad. Sci. USA.
  • Preferred promoters enhancing expression in vascular tissue include the CAD 2 promoter (Samaj et al., Planta, 204:437-443 (1998), which is hereby inco ⁇ orated by reference), the P.4C11 promoter (Hu et al., Proc. Natl. Acad. Sci. USA, 95:5407-5412 (1998), which is hereby incorporated by reference), the C4H promoter (Meyer et al., Proc. Natl. Acad. Sci. USA, 95:6619-6623 (1998), which is hereby inco ⁇ orated by reference), the PtX3H6 and PLX14A9 promoters (Loopstra et al., Plant Mol. Biol..
  • Preferred promoters enhancing expression in stem tissue include pith promoters (Datta, Theor. Appl. Genet.. 97:20-30 (1998) and Ohta et al., Mol. Gen. Genet., 225:369- 378 (1991), which are hereby inco ⁇ orated by reference), and the anionic peroxidase promoter (Klotz et al., Plant Mol. Biol.. 36:509-520 (1998), which is hereby inco ⁇ orated by reference).
  • Preferred promoters enhancing expression in phloem, cortex and cork, but not xylem or pith include the Psam-1 promoter (Mijnsbrugge et al., Plant and Cell PhysioL, 37: 1108-1 1 15 (1996), which is hereby inco ⁇ orated by reference).
  • Preferred promoters enhancing expression in seeds include the phas promoter
  • Truncated or synthetic promoters including specific nucleotide regions conferring tissue-enhanced expression may also be used, as exemplified by identification of regulatory elements within larger promoters conferring xylem-enhanced expression (Seguin et al., Plant Mol. Biol.. 35:281-291 (1997); Torres-Schumann et al., The Plant Journal. 9:283-296 (1996); and Leyva et al., The Plant Cell. 4:263-271 (1992), which are hereby inco ⁇ orated by reference).
  • the chimeric DNA construct is stablely integrated into the genome of the cotton plant.
  • Agrobacterium mediated transformation a portion of the Ti plasmid integrates into the plant genome and is stablely passed on to future generations of plant cells.
  • the vector described above can be microinjected directly into plant cells by use of micropipettes to transfer mechanically the recombinant DNA (Crossway, Mol. Gen. Genetics, 202:179-185 (1985), which is hereby inco ⁇ orated by reference).
  • the genetic material may also be transferred into the plant cell using polyethylene glycol (Krens et al., Nature, 296:72-74 (1982), which is hereby inco ⁇ orated by reference).
  • particle bombardment also known as biolistic transformation
  • the first involves propelling inert or biologically active particles at cells. This technique is disclosed in U.S. Patent Nos.
  • the DNA molecule may also be introduced into the plant cells by electroporation (Fromm et al., Proc. Natl. Acad. Sci. USA, 82:5824 (1985), which is hereby inco ⁇ orated by reference).
  • plant protoplasts are electroporated in the presence of plasmids containing the expression cassette. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and regenerate.
  • Another method of introducing the DNA molecule into plant cells is to infect a plant cell with Agrobacterium tumefaciens or A. rhizogenes previously transformed with the gene. Under appropriate conditions known in the art, the transformed plant cells are grown to form shoots or roots, and develop further into plants. Generally, this procedure involves inoculating the plant tissue with a suspension of bacteria and incubating the tissue for 48 to 72 hours on regeneration medium without antibiotics at 25-28°C.
  • Agrobacterium is a representative genus of the gram-negative family
  • Rhizobiaceae Its species are responsible for crown gall (A. tumefaciens) and hairy root disease (A. rhizogenes).
  • the plant cells in crown gall tumors and hairy roots are induced to produce amino acid derivatives known as opines, which are catabolized only by the bacteria.
  • the bacterial genes responsible for expression of opines are a convenient source of control elements for chimeric expression cassettes.
  • assaying for the presence of opines can be used to identify transformed tissue.
  • Heterologous genetic sequences can be introduced into appropriate plant cells, by means of the Ti plasmid of A. tumefaciens or the Ri plasmid of A. rhizogenes.
  • the Ti or Ri plasmid is transmitted to plant cells on infection by Agrobacterium and is stably integrated into the plant genome (Schell, Science, 237:1176-83 (1987), which is hereby inco ⁇ orated by reference).
  • transformed plants After transformation, whole transformed plants can be recovered. If transformed seeds were produced directly, these can be selected by germination on selection medium and grown into plants (Glough et al. The Plant Journal 16:735-743 (1998), which is hereby inco ⁇ orated by reference). If transformed pollen was produced directly, this can be used for in vivo pollination followed by selection of transformed seeds (Touraev et al., The Plant Journal 12:949-956 (1997), which is hereby incorporated by reference). If meristems were transformed, these can be grown into plants in culture then transferred to soil (Gould, J. et al., Plant Cell Rep. 10:12-16 (1991), which is hereby inco ⁇ orated by reference).
  • plants can be regenerated. Plant regeneration from cultured protoplasts is described in Evans et al., Handbook of Plant Cell Cultures, Vol. 1, New York, New York:MacMillan Publishing Co., (1983); and
  • Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts or a petri plate containing transformed explants is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced in the callus tissue. These embryos germinate as natural embryos to form plants.
  • the culture media will generally contain various amino acids and hormones, such as auxin and cytokinins.
  • glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is usually reproducible and repeatable. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to, species of sugarcane, sugar beets, cotton, forest trees, forage crops, and fiber producing plants. Regeneration is also possible in seed-producing plants including, but not limited to, maize, rice, wheat, soybean, rape, sunflower, and peanut.
  • the expression cassette After the expression cassette is stably inco ⁇ orated in transgenic plants, it can be transferred to other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed.
  • transgenic plants of this type are produced, the plants themselves can be cultivated in accordance with conventional procedure with the presence of the gene encoding the sucrose phosphate synthase resulting in enhanced seed yield and/or enhanced fiber yield and/or enhanced fiber quality.
  • transgenic seeds are recovered from the transgenic plants. These seeds can then be planted in the soil and cultivated using conventional procedures to produce transgenic plants.
  • the present invention also provides seeds produced from the transgenic plant having increased synthesis of sucrose phosphate synthase.
  • the invention provides a method of increasing the yield of cotton plant by introducing into a cotton plant a chimeric DNA construct that alters sucrose phosphate synthase activity in an amount sufficient to increase the yield of the cotton plant.
  • a chimeric gene may be introduced into plant cells or tissue. Transformed cells are selected, usually by the use of a selectable marker. The transformed cells are then used to generate a transformed plant (Fraley et al., Proc. Natl. Acad. Sci. USA. 79: 1859-1863 (1982), which is hereby inco ⁇ orated by reference).
  • Preferred plants are cotton plants.
  • the transformed plants may have an increase in the yield of cotton seeds or cotton fiber.
  • the present invention also provides a method of increasing the quality of cotton fiber produced from a cotton plant by introducing into a cotton plant a chimeric DNA construct that alters the sucrose phosphate synthase activity in an amount sufficient to increase the quality of the cotton fiber produced by the cotton plant.
  • the level of sucrose phosphate synthase may be increased by expressing factors that increase the level of expression of the gene. Such factors may act on regulatory sites controlling expression that are normally located near the sucrose phosphate synthase gene or heterologous regulatory sites located near the gene in a chimeric construct.
  • the level of sucrose phosphate synthase may be increased by introducing a chimeric DNA construct that directly expresses a sucrose phosphate synthase.
  • the present invention can be used to change the ratio of cellulose to the dry weight of the whole plant or to the dry weight of plant components by introducing into a plant a chimeric DNA construct capable of altering sucrose phosphate synthase activity in an amount sufficient to change the ratio of cellulose to the dry weight of the whole plant or plant components.
  • the change in cellulose can be observed in relation to total weight of the plant or fractionated parts of plants including, but not exclusively, starch, total cell walls, cell wall of fibers, particular organs such as stems, or cell wall components such as pectins, hemicelluloses, proteins, extractives, and lignin.
  • the change in the ratio of cellulose to the fractionated parts of plants can be observed when the fractionated parts are considered alone or in any additive combination.
  • Changes in qualities as claimed in this invention refer to changes of at least 10% compared to a plant lacking the transgene.
  • the ratio of cellulose in cell walls may be changed from 20% to 18% or lower or 22% or higher.
  • Such change compared to parental level could apply to all cell walls or any cell wall fraction of a plant.
  • the dry weight of cellulose may be increased so that its ratio to other dry weight components exceeds 40%.
  • Such increase to exceed 40% could apply to wood, fibers, and other cellulose-rich cell walls such as collenchyma and thickened xylem parenchyma.
  • the level of sucrose phosphate synthase may be decreased by expressing factors that decrease the level of expression of the gene. Such factors may act on regulatory sites controlling expression that are normally located near the sucrose phosphate synthase gene or heterologous regulatory sites located near the gene in a chimeric construct.
  • factors may act on regulatory sites controlling expression that are normally located near the sucrose phosphate synthase gene or heterologous regulatory sites located near the gene in a chimeric construct.
  • the level of sucrose phosphate synthase may be decreased by introducing a chimeric DNA construct that contains the complementary cDNA of a sucrose phosphate synthase (Arndt et al., Genome, 40:785-797 (1997), which is hereby inco ⁇ orated by reference).
  • decreased SPS activity might be induced by homology dependent gene silencing (Wassenegger et al. Plant Mol. Biol. 37:349-362 (1998), which is hereby inco ⁇ orated by reference), virus-induced gene silencing (Baulcombe, Curr. Op. Plant Biol. 2: 109-113 (1999), which is hereby inco ⁇ orated by reference), chimeric RNA/DNA oligonucleotides (Zhu et al., Proc. Natl. Acad. Sci. USA 15:8768-8773 (1999), which is hereby inco ⁇ orated by reference), or homologous recombination (Shalev et al. Proc. Natl. Acad. Sci. USA 96:7398-7402 (1999), which is hereby inco ⁇ orated by reference).
  • the invention provides a method of increasing tolerance of photosynthetic efficiency to cool night temperatures by introducing into a plant a chimeric DNA construct capable of altering sucrose phosphate synthase activity in an amount sufficient to increase tolerance of photosynthetic efficiency to cool night temperatures.
  • the present invention can be used to regulate the thickness of cell walls in a plant by introducing into the plant a chimeric DNA construct that will change the sucrose phosphate synthase activity.
  • the method can be used to increase the yield of harvestable fiber from any fiber producing plant.
  • the plant is a fiber producing plant. More preferred fiber producing plants are sugarcane, sugar beets, forest trees, forage crops, fiber producing plants, and seed producing plants.
  • the present invention can be used to increase the harvestable yield of fiber from a plant. The invention may also be used to alter the quality of fiber isolated from the plant. Changes in sucrose phosphate synthase can change fiber strength, fiber length, or weight per unit length. Changes may either increase or decrease the strength, length or weight per unit length.
  • the present invention can be used to increase the yield of seed harvested from a seed producing plant by introducing into the plant a chimeric DNA construct that will increase the sucrose phosphate synthase activity.
  • the methods of the invention are broadly applicable and can be used in a wide variety of plants including cotton, forest trees, forage crops, beets, flax, hemp, jute, and other fiber-producing plants. They can also be used in seed producing plants including cotton, flax, wheat, rice, corn, soybean, Brassica sp. (e.g. rape), sunflower, safflower, peanut, palm, and other seed producing plants.
  • seed producing plants including cotton, flax, wheat, rice, corn, soybean, Brassica sp. (e.g. rape), sunflower, safflower, peanut, palm, and other seed producing plants.
  • Example 1 Materials and Methods Most plants described were grown in one chamber at the Duke University
  • Phytotron 360 ppm (normal) CO 2 ; 30 15-19°C day/night cycle; 14h day/lOh night; 1200 ⁇ mol m ' V (metal halide) illumination; irrigation 2x daily with 1/2 strength Hoagland's solution; potted in a mixture of gravel and sand in 4 gallon pots.
  • a change to 30/19°C from 30/15°C occurred after about 4 months growth, which was about half-way through the maturation of first bolls in C312 and all transgenic lines.
  • This temperature condition is subsequently referred to as 30/15°C for simplicity.
  • This chamber is emphasized because its temperature and CO 2 conditions represent those likely to be encountered by cotton crops in the field, for example but not exclusively on the Texas Southern High Plains.
  • Lint fiber was removed from the seeds by hand-stripping. Cotton seeds are covered with lint fiber (the long fiber used for textiles) and fuzz fiber (short fibers used in various industrial applications). (Lint) fiber weight and fuzzy seed weight from each plant was determined by weighing. Hereafter, 'fiber' refers to lint fiber, with fuzz fiber specified when necessary. Seed number per plant was determined by counting. (Seeds and fiber of underdeveloped "motes" were not included.) Fiber was sent to Cotton Inco ⁇ orated, Raleigh, NC for HVI, AFIS, and Mantis fiber quality analysis.
  • the plant line used is a Coker 312 wild-type (untransformed parent) and four transgenic lines.
  • Transgenic plant lines each known to represent separate transformation events, are designated 13-3a, 225-17a, 40-4b, and 40-6a.
  • TO, TI, or T2 represent primary transformants and the first and second filial generations, respectively. All transgenic plants tested were Kanamycin resistant as determined from formation of lateral roots of germinating seedlings within agar containing Kanamycin. The segregation ratio of seeds germinated on kanamycin is expressed as resistant/sensitive ratio (Table 1). Ratios were assessed after 7 - 14 days to include most slow-germinating seeds.
  • Leaf and fiber RNA levels were determined by Northern analysis of the mRNA for foreign SPS in the leaf, scored as positive or negative (Table 1 ). Extractable SPS activity (production of sucrose) is standardized as ⁇ mol sucrose/mg chlorophyll/hour for leaf activity or as ⁇ mol sucrose/mg protein/hour for fiber activity (Table 1).
  • the Boll # per Plant is the number of non-aborted bolls on each plant.
  • the Delinted Seed Weight per Seed (g) and (Lint) Fiber Weight per Seed (g) are data derived from all open bolls of each plant at the time the experiment was terminated. Under 30/28°C, all bolls had opened, but under 30/15°C, some unopened bolls were left on each plant at termination. Each data point represented 192 - 487 seeds yielding 24.5 - 48.5 g lint fiber.
  • the fiber micronaire (by HVI) is a unitless measurement that depends both on fiber maturity (or wall thickness determined by secondary wall cellulose content) and fiber diameter.
  • Fiber bundle strength (by HVI) is expressed in units of (cN/tex). It is the specific strength of the fiber bundle is which the individual fiber fineness (tex) is calculated from the Micronaire value.
  • Fiber fineness (by AFIS) is expressed as (mTex). It represents the weight, in milligrams, of one kilometer of the fiber. One thousand meters of fibers with a mass of 1 milligram equals 1 millitex.
  • the fiber maturity ratio (by AFIS) is an expression of the degree of cell wall thickening (depending on secondary cell wall cellulose deposition). It is the ratio of fibers with a 0.5 (or more) circularity ratio divided by the amount of fibers with 0.25 (or less) circularity. (Fibers with thicker walls are less prone to collapse and remain more circular upon drying.) The higher the maturity ratio, the more mature the fibers are and the better the fibers are for dyeing.
  • the immature fiber content (“IFC%”, by AFIS) is the percentage of fibers with less than 0.25 maturity. The lower the IFC%, the more suitable the fiber is for dyeing. Several different units are used as indicators of fiber length. Table 3 shows values for three of these as now described. Upper half mean (“UHM”, by HVI) is the mean length of the longest one half of the fibers (weight biased).
  • the fiber Uniformity Index (“UI”, by HVI) expresses the ratio of the mean value (Mean Length) to the Upper Half Mean Length. It is a measure of the fiber length scatter within the population; if all fibers were the same length UI would equal 100%.
  • Short Fiber Content (“SFC %”, by HVI) is the percentage of fibers less than 1/2" long on a weight basis. HVI is thought to measure Short Fiber Content as determined by genetics only since the measurement does not impose additional potential fiber breaking stress.
  • the weight basis length (“L(w)” [in], by AFIS] is the average length of fibers calculated on a weight basis.
  • the number basis length (“L(n)” [in], by AFIS) is the mean length of fibers calculated by number.
  • the length "L5% (n)” [in] (by AFIS) is the 5% span length, or the length spanned by 5% of the fibers when they are parallel and randomly distributed.
  • the length "L2.5% (n)” [in] (by AFIS) is the 2.5% span length, or the length spanned by 2.5% of the fibers when they are parallel and randomly distributed.
  • the "UQL (w)" [in] (by AFIS) is the upper quartile length of fibers by weight, or the length exceeded by 25% of the fibers by weight.
  • the "SFC (n)” [in] and “SFC (w)” [in] are the percentage of fibers less than 0.50 inches long on a number and weight basis, respectively. In contrast to HVI, AFIS beats the fibers before taking these measurements, which has potential to cause fiber breakage. Therefore, AFIS SFC values are a good indication of the characteristics of the fiber after normal processing.
  • Tb grams of force to break a single fiber.
  • Elongation [%] is single fiber elongation before break as % of original length.
  • Work [ ⁇ J] is a composite of Tb and Elongation, representing the work expended to break a single fiber.
  • Transgenic cotton plants with spinach SPS under the control of a constitutive promoter showed foreign gene expression in the leaf and fiber as demonstrated by Northern analysis. At the T1/T2 generation, they showed average increased SPS enzyme activity of 3.3 times and 2.3 times in the leaf and fiber, respectively, compared to parental C312 (Table 1). In this and all following tables, values indicating superior features of transgenic plants compared to parental C312 are shown in bold.
  • c Excludes values for line 40-6a and uses a composite average value for line 40-4b to parallel the procedures used in analysis of fiber quality data.
  • Both cotton fiber and cotton seeds are valuable crops, the lint fibers for use in textiles and other applications and the seeds as a source of oil and seed meal.
  • short fuzz fibers also called linters
  • Increases were observed in number of bolls per plant, seed weight per seed, fiber weight per seed, and fuzz fiber weight per seed.
  • Boll number per plant indicates overall capacity for production of seeds with attached fiber.
  • increased weight of seed and fiber per seed generates increased yield.
  • Transgenic plants over-expressing SPS achieve increased yield of two types of crops at the same time: seed yield based primarily on storage of protein and oil and fiber yield based on storage of cellulose.
  • plants that over-express SPS can be predicted to generate more income per acre for the cotton producer based on crop yield alone.
  • Coker 312 plants over-expressing SPS can also be used for future transformations to help overcome any potential yield drag from use of this old cultiver in genetic engineering. Seed and fiber yield can be maximized at the same time in other crop plants, and stiffer stems can be generated to resist lodging without sacrifice of seed yield.
  • Fiber weight per seed is a composite of fiber number, fiber length, and fiber wall thickness. Since average fiber micronaire (indicating increased wall thickness) and other related factors do increase in all transgenic lines across all chambers (see below), one may infer that unmeasured factors such as changing fiber number might impact fiber weight per seed under nearly constant warm temperature or elevated CO .
  • the ratio of Fiber Weight per Seed to Delinted Seed Weight per Seed in the 30/15°C, 360 ppm CO chamber was increased by an average of 9.0% in three transgenic lines (Fig. 7).
  • a scatter plot of fiber weight per seed vs. delinted seed weight per seed shows that transgenic plants separate from parental C312 through increases in both of these yield components together (Fig. 8).
  • Fig. 8 there is preferential enhancement of fiber weight compared to seed weight in SPS transgenic plants.
  • Fuzz fiber weight per seed was obtained by subtracting the unit seed weight of delinted seed from the unit seed weight of fuzzy seeds from the 30/15°C, 360 ppm CO chamber (Fig. 9).
  • Two transgenic lines (225- 17a and 40-4b) showed increases (averaging 19% increase compared to parental C312) and one transgenic line (13-3a) showed a decrease (19% decrease compared to parental C312).
  • Seeds of line 13-3a also looked blacker before delinting, suggesting initiation of fewer fuzz fibers than on seeds of either parental C312 or the other two transgenic lines. Therefore, transgenic lines show some variation in numbers of fuzz fibers initiated, but, once initiated, over-expressed SPS enhances their yield similarly to lint fibers.
  • Example 3 Summary of Results Demonstrating Increased Fiber Quality as Analyzed by Automated HVI and AFIS on Bulk Samples Many spinning properties of cotton depend on its properties as a bulk sample.
  • HVI and AFIS are automated systems that analyze these properties, yielding complementary information. These analyses show that the quality parameters of fiber produced by SPS transgenic plants are moving as a set into the premium quality range. Fiber from SPS transgenic plants is longer, stronger, and more mature — all these features are currently valued by the cotton processing and textile industries to make high quality fabrics. Even under a stressful 30/15-19°C temperature cycle typical of the Texas Southern High Plains, the quality of fiber from SPS transgenic plants resembles that of premium cotton such as is traditionally grown in California. Therefore, cotton fiber from SPS transgenic plants can serve an expanded set of end-use markets and sell for a premium price.
  • SPS transgenic cotton should also be able to avoid price discounts for inferior quality such a low micronaire that can result from traditional cotton grown on the Texas Southern High Plains. Therefore, SPS transgenic cotton should stabilize or enhance income per acre for the cotton producer based on improved fiber quality.
  • Micronaire Three transgenic lines showed an average increase of 28% to attain an average micronaire of 4.72 (Fig. 10). Micronaire depends on secondary wall thickness and fiber diameter. It is desirable that increases in micronaire occur because of increased secondary wall thickness, not because of increased fiber diameter. The fiber diameter is estimated from the standardized relationship between Fiber Fineness and Fiber Maturity Ratio (Table 3) and found to be little-changed in transgenic lines. Both parental C312 and the transgenic lines had estimated fiber diameter between 16.5 - 17.0 ⁇ m. Furthermore, a plot of Micronaire vs. Fiber Weight per Seed shows an interdependence at the 59% level (Fig. 11), supporting the existence of thicker walls in fibers of SPS transgenic plants.
  • Fiber Bundle Strength Three transgenic lines showed an average increase of 12% to attain an average bundle strength of 30.3 cN/tex.
  • Fiber Fineness Three transgenic lines showed an average increase of 8% to attain an average fineness of 180.
  • Higher fiber fineness is traditionally undesirable because it is usually attributed to larger fiber diameter.
  • fiber of SPS transgenic plants has diameter approximately equal to parental C312 (see above), the increased fineness is likely attributable to increased fiber wall thickness yielding more weight per unit length. Therefore, increased fineness of fiber from SPS transgenic plants is expected to be a neutral or positive fiber quality factor.
  • Fiber Maturity Ratio Three transgenic lines showed an average increase of 7% to attain an average maturity ratio of 0.95, which falls in the "above average” range (0.95 - 1.00). This is superior to parental C312 with its average value of 0.89 in the "mature” range (0.85 - 0.95).
  • Transgenic fibers are superior to those of parental C312, which contain an average of 1.45% immature fibers.
  • L(w) increases 7% to 1.06 inches
  • L(n) increases 9% to 0.96 inches
  • UQL (w) increases 6% to 1.19 inches
  • L5% (n) [in] increases 6% to 1.34 inches
  • L2.5% (n) increases 5% to 1.46 inches.
  • AFIS showed that on average three transgenic lines had decreased short fiber content with SFC% (w) decreasing 1.0% to 3.1% and SFC% (n) decreasing 2.0% to 10.6%.
  • Cotton fibers with higher individual fiber strength are highly valued by the textile industry because they break less frequently during processing. Therefore, average fiber length can be maintained at a higher value throughout processing and higher quality fabrics can be manufactured with fewer defects. Increasing individual fiber strength is a major goal of the cotton industry.
  • Tb grams of force to break a single fiber
  • Elong % single fiber elongation before break as % of original length
  • Table 5 shows that single fiber strength as manifested in Tb, Elongation, and Work is consistently improved in all 3 transgenic lines compared to parental C312.
  • Tb is increased 24% to 6.56 g (Fig. 12)
  • Elongation is increased 1.94% to 16.99% (Fig. 13)
  • Work is increased 29% to 17.10 ⁇ j (Fig. 14).
  • HVI did not show any increase in Elongation % of transgenic lines compared to parental C312 because the bundle-based HVI test will reflect only the elongation of the weakest fibers in the bundle.
  • the standard deviation is a lower percentage of the transgenic single fiber strength values (averaging 14.6% lower for Work), demonstrating improved uniformity of single fiber strength. (Results of Mantis single fiber tests are expected to have high standard deviations).
  • Figs. 15 - 19 show correlations between single fiber strength parameters and Micronaire or Fiber Weight per Seed from the 30/15°C, 360 ppm CO chamber. These illustrate positive correlations between Tb and Work and Micronaire and Fiber Weight per Seed (Figs. 15-18). In contrast, no positive correlations were observed between Elongation and Micronaire (Fig. 19) or Fiber Weight per Seed. Coefficients of determination show that 39 - 68%) of the increases in Tb and Work are determined by increases in Micronaire and Fiber Weight per Seed. These positive correlations are primarily determined by distinctly separated groups of data points from the fibers of SPS transgenic plants. This point is emphasized by Table 6 showing coefficients of determination (R 2 ) for each plant line considered separately. In contrast to the transgenic lines, parental C312 shows no substantial, positive R values. Therefore, over-expression of SPS causes increased values of Micronaire in transgenic fibers that are correlated with increased values of single fiber strength compared to parental C312.
  • Plants growing at 30/28°C were assayed between 7 - 10 weeks of age and plants growing at 30/15°C were assayed between 10 - 14 weeks of age. In the earliest case, the plants would have been exposed to the experimental conditions for about 4 weeks.
  • the plants were assayed at 30°C and at 4 h into the photoperiod, which also represented 3 h after complete rewarming from 28°C or 15°C to 30°C.
  • Two plants were assayed for each line in each chamber.
  • the graphs show photosynthetic rates over a range of internal CO concentrations for parental C312 (Fig. 21) and two transgenic lines, 13-3a-l (Fig. 22) and 225- 17a (Fig. 23).
  • Normal atmospheric CO concentration corresponds to internal CO concentration of about 270 ⁇ L L "1 .
  • Each graph is a compilation of four scatter plots, one for each plant of the line that was tested. The relative placement of empty symbols (30/15°C condition) and filled symbols (30/28°C condition) should be compared between the lines. Comparing photosynthetic rate below internal CO 2 concentrations of 500 ⁇ L L ', all four plants in the two transgenic lines tested maintained, when growing under a 30/15°C cycle, the same photosynthetic rate during the warm day as was observed for plants growing under 30/28°C cycling. In contrast, parental C312 showed the expected cool-night-induced reduction in photosynthetic rate, even though the assay was always done during the warm day. For three of the four transgenic plants tested, this difference was maintained at all internal CO concentrations tested.
  • Tables 2 and 3 show that fiber properties depending on cellulose content, including fiber weight/seed, micronaire, and fiber maturity ratio, increase in transgenic plants when SPS activity is elevated both in the leaves and the fibers. Therefore, with whole-plant analyses, one cannot judge whether these improvements are aided by enhanced export of sucrose from the leaves to the fibers or enhanced synthesis of sucrose in fiber (sink) cells, or both. Since cellulose synthesis has been proposed to use sucrose as an obligatory substrate from which UDP-glucose is generated by the enzyme sucrose synthase, SPS within sink cells can promote metabolic flux toward cellulose by one or both of two mechanisms.
  • SPS could resynthesize sucrose within sink cells because translocated sucrose is cleaved before or soon after entering them, and/or SPS could reuse the fructose released by the activity of sucrose synthase to synthesize more sucrose (Fig- 2).
  • Plants yielding the results in Table 7 were flowering in the greenhouse between July and December. Ovules were dissected from flowers and cultured at 34°C on 1 DPA. The ovules of one flower were split between the 34°C and 15°C comparison in each case. Comparison within one flower better controlled the variability that was observed in the rates of cellulose synthesis on 21 DPA between cultures from different flowers of the same plant line. Each test at each temperature included 12 - 18 ovules split between three replicate dishes. Cultures were shifted from constant 34°C to a 34/15°C 12h/12h cycle on 18 DPA when secondary wall deposition had commenced. C-glucose was used to label developing ovules and fibers on 21 DPA at 34°C and 15°C.
  • C/R 34 the ratio between dpm 14 C-cellulose and dpm 14 CO 2 at 34°C.
  • R% and C% describe the proportion of the 34°C rate of respiration or cellulose synthesis, respectively, that can be maintained at 15°C.
  • C/R 15 and C/R 34 describe the proportion of metabolic flux directed toward cellulose synthesis vs. respiration at 15°C or 34°C, respectively.
  • Example 7 Higher Rate of Weight Gain in Sink Cells (Cotton Fibers) During Primary and Secondary Wall Deposition
  • the in vitro ovule/fiber culture system has provided direct evidence that over-expression of SPS in sink cells can lead to higher rates of fiber weight gain at both warm and cool temperatures by mechanisms independent of photosynthesis.
  • Ovules of transgenic and control C312 were cultured in vitro at constant 34°C or cycling 34/15°C from the beginning of culture.
  • Ovules/fibers (8-10 per data point) were harvested from parallel cultures (containing equal representation of 5-8 flowers from at least 3 plants) at intervals during fiber maturation (12 - 45 DPA). Fibers were stripped from ovules, oven-dried, and weighed. Fiber weight was plotted against time and the slope of weight gain during the period of high-rate secondary wall cellulose synthesis was determined under both temperature regimes. A ratio for the 34/15°C:34°C slopes within one plant line was also calculated, which will normalize for any inherent differences in rates of fiber weight gain in cultures of particular lines.
  • KS* * ⁇ kanamycin-sensitive sibling of the kanamycin-resistant plant described immediately above; the kanamycin-sensitive sibling from a population of segregating seeds is expected not to carry a copy of the foreign genes. Note that the slopes from the kanamycin-sensitive and kanamycin-resistant siblings of 40-4b-2 are almost identical, and the differences between these and slopes from the parental C312 cannot be related to expression of the foreign gene.
  • Line 40-6a and 40- 17a are listed together and counted as one line because they likely represent the same transformation event based on derivation from the same parent callus and the same segregation ratio at TI .
  • Two of the transgenic lines (414- la and 619- la) had rates of fiber weight gain at 34°C higher than parental C312, and several more had higher rates than and the non-SPS- expressing transgenic line, 40-4b-2-KS.
  • Four transgenic lines (13-3a, 58-3a, 414-la, and 619- 1 a) had rates of fiber weight gain at 34/15°C higher than parental C312.
  • one transgenic line shows greater fiber weight gain than parental C312 under 34/15°C.
  • Two transgenic lines show greater ratio of 34/15°C to 34°C weights.
  • Fiber dry weight at 30 DPA is largely cellulose. Therefore, SPS over- expression within transgenic fibers promotes cellulose deposition, including its deposition under adverse cool temperatures.
  • the inconsistency of results for transgenic lines at 30 DPA is likely explained by the fact that secondary wall deposition in vitro is more hindered than fiber lengthening. However, all the transgenic lines tested in the Phytotron and showing improved fiber quality show some improvement in this in vitro test.
  • time of stem weight determination varied somewhat between plant lines for the 30/28°C chambers because each plant was harvested shortly after all bolls on it had opened. For the 30/15°C condition, plant growth was terminated at the same time when some immature bolls remained on all plants. All plants were 6- 7 months old at time of harvest.
  • parental and transgenic plants were randomized on two adjacent tables and grown for 30 weeks before simultaneous harvesting. Main stem diameter and height were also determined in the greenhouse plants.
  • stem weight increased by 10% or more in transgenic plants compared to parental C312 in 1 1 of 15 cases (representing the matrix of plant lines x chambers tested). The increases are particularly pronounced and consistent across three chambers for line 40-6a-4, although there were few replicate plants in the Phytotron for this line. Therefore, line 40-6a-4-3 was tested at the next generation (T3) in the Texas Tech greenhouse with more replication in parallel with parental C312 and another transgenic line, 357-6a-l at T2. Line 40-6a-4-3 again showed average increased stem weight with a similar magnitude of change as observed in the Phytotron chambers at 30/15°C and both 360 and 700 ppm CO 2 .
  • line 40-6a-4-3 showed average increased stem height and stem diameter compared to parental C312 and the transgenic line 357-6a-l, which was smaller than C312. Therefore, transgenic lines do not all show increased stem weight, probably because of differences in tissue-specific gene expression.
  • line 40-6a-4-3 would have increased volume of 1.31 times compared to parental C312. The similarity of this to the observed weight increase of 1.27 times suggests that much of the weight increase is associated with increased volume of the main stem containing abundant fibers. The 4% difference between the theoretical prediction and the observation could be due to different degrees of branching or changes in stem density that have not been determined.
  • Fiber crops that over-express SPS can convert normal CO 2 more efficiently into economically valuable fiber.
  • Such plants grown widely as crops should help to combat rising CO 2 levels in the atmosphere because they immobilize CO 2 into fiber cellulose with improved efficiency under normal CO 2 levels, and this efficiency of production is maintained (for cotton fiber) or enhanced (for stem fiber) under elevated CO 2 levels.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Artificial Filaments (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention relates to a method of controlling the cellulose synthesis in plants to optimize the level of production and quality of the products derived from the plant. In particular, the present invention provides a transgenic cotton plant that has higher yields of cotton fiber and seed. The invention also provides methods for increasing the quality of cotton fiber produced from a cotton plant. The invention also provides general methods of changing the ratio of cellulose to other dry weight components of the plant, for changing the thickness of cell walls, for increasing the yield and changing the quality of other plant fibers, for increasing seed yield, and for increasing the tolerance of photosynthetic efficiency to cool night temperatures.

Description

TRANSGENIC FIBER PRODUCING PLANTS WITH INCREASED EXPRESSION OF SUCROSE PHOSPHATE SYNTHASE
FIELD OF THE INVENTION
The present invention relates to a method for increasing the yield or quality of product from a plant by altering the expression of sucrose phosphate synthase. In particular, the present invention provides a transgenic cotton plant that has an increased level of sucrose phosphate synthetase relative to a non-transgenic cotton plant. Methods are also provided for increasing the yield or the quality of cotton fiber and the yield of cotton seed produced from a cotton plant. General methods are provided for regulating the thickness of cell walls, for increasing the yield and quality of other plant fibers, for regulating the ratio of cellulose to other dry weight components of the plant, for increasing seed yield, and for increasing tolerance of photosynthetic efficiency to cool night temperatures.
BACKGROUND OF THE INVENTION
The control of high-rate cellulose production and its regulation by temperature are critical to agriculture, since all plant growth (and hence the production of all food crops) depends on cellulose synthesis to build cell walls throughout the vegetative and reproductive parts of the plant. The cellulose within the primary walls of all cells of the plant body is also of direct industrial importance as a digestible part of animal forage and for manufacture of thickeners, ethanol, and other cellulose-based or cellulose-derived products. Furthermore, plant parts based on secondary cell walls with high cellulose content are contained in or compose economically important plant products, including cotton fibers, wood, and fibers in forage crops. The agronomic productivity and product quality of wood and cotton, as well as other fiber crops such as hemp and flax, are in large part determined by the biosynthesis of cellulose. Therefore, an understanding of the basic regulatory mechanisms of cellulose synthesis and how it responds to temperature stress allows for beneficial changes in crop plants (improved product yield and quality) through genetic engineering.
Since cotton fiber weight is more than 90% cellulose, cotton is one particular crop where enhancing the flow of carbon to cellulose production can increase yield and quality. This will be an especially beneficial outcome if it is achievable under diverse environmental conditions encountered in cotton production fields, including cool night temperatures that hinder cotton fiber development. For example, it is known that cool night temperatures hinder the seasonal yield and quality of cotton fiber (Gipson, "Temperature Effects on Growth, Development, and Fiber Properties," in Mauney, eds., Cotton Physiology, The Cotton Foundation:Memphis, pp. 47-56) because they hinder the rate of cellulose synthesis (Roberts et al., "Effects of Cycling Temperatures on Fiber Metabolism in Cultured Cotton Ovules," Plant Phvsiol.. 100:979-986 (1992)). The ability to manipulate cotton yield and fiber quality parameters and sustain or improve them under diverse and/or stressful environmental conditions will allow for beneficial changes in crop plants (improved product quality) through genetic engineering.
Cotton fiber yield is the most important determinant of the value of the crop to the producer. Reputable cotton breeders have recently pointed out that cotton production has reached a fiber yield plateau, which bodes ill for the financial success of producers given escalating costs. Potential contributors to this problem include the environmental sensitivity of cotton fiber and seed development, the narrow genetic base of commercial cotton, and the recent introduction of transgenic traits such as herbicide and insect resistance through back-crossing with transformed Gossypium hirsutum cv. Coker 312. Coker 312 (C312) is an old cultivar frequently used for transformation because of its high regeneration capacity. Use of genetic engineering to make cotton crop production more stress resistant, to expand the genetic potential of cultivated cotton, and to improve the yield of transformed cotton with diverse novel traits will bring needed increases in crop yield.
Similarly, seed yield is of value to the cotton producer since seeds are sold for oil production and animal feed. Another minor component, the short fuzz fibers on each seed, provides added economic value to the seed crop. Increased seed and fuzz fiber yield without sacrifice of lint fiber yield or quality would help the producer recover more profit per acre of cotton production. As for cotton seed, increased yield of any seed crop will be of major benefit to agriculture. Improved cotton fiber quality parameters such as micronaire, maturity ratio, length, length uniformity, bundle strength, and single fiber strength are desired by the textile industry to produce increasingly high quality products and to take full advantage of modern spinning technologies. Fiber quality parameters should also be high enough for the cotton producer to avoid price discounts when he sells his crop to the gin. For example, in a short growing season on the Texas Southern High Plains, producers often suffer price discounts due to low micronaire. Increasingly high fiber quality achieved through breeding has become a required standard in the cotton industry, and market forces may change so producers are more routinely rewarded with price premiums for higher quality cotton. Therefore, stabilizing or increasing fiber quality under diverse environmental conditions through genetic engineering will increase the profitablity of cotton crop production and provide a new spectrum of material properties for exploitation by the processing industries. Other plant fibers, although often of different tissue origin, share structural features in common with cotton fibers in being elongated cells with cellulose-rich walls. Like cotton fibers, other plant fibers of industrial use are required to have high quality as defined by factors such as cellulose content and wall thickness, diameter, fineness (or coarseness), length, strength, durability, uniformity, elasticity, and elongation. There is an optimum range of such parameters for each particular fiber source and industrial use. Taking examples from wood fibers used after pulping in paper production, longer fiber length and higher single fiber elongation both promote higher paper tear strength. In addition, thick fiber walls promote high pulp yield and production of absorbent paper with high tearing resistance. However, thinner fiber walls promote fiber collapse and better inter-fiber bonding that aids production of high quality writing paper. Therefore, there exists a need to control cell wall thickness and other fiber quality parameters in either negative or positive directions in diverse fibers to improve their yield or quality or expand the range of their industrial utility.
Maximizing crop productivity and utility per acre is a key component of sustainable agriculture. Enhanced production of multiple products from the same crop, such as seed and fiber, would be useful. Similarly, it will be an advantage to maximize the possibility of a successful crop harvest, for example by generating plants with stiffer stems that can better resist lodging in the field without sacrificing the yield of a seed crop. An increasing level of CO2 in the atmosphere is a concern due to predicted association of rising global temperatures. There exists a need for plants that are better able to immobilize CO2 by conversion of it into useful products, especially products that are typically not burned to regenerate CO . Cotton leaves assimilate most carbon into starch during the day, and the starch is converted to sucrose at night for translocation to sinks. As just described, cotton fibers are not well adapted to use this sucrose efficiently for cellulose synthesis during cool nights. Therefore, cool nights reduce cotton photosynthetic efficiency during the following warm day (Warner et al., "Response of Carbon Metabolism to Night
Temperatures in Cotton," Agron. J., 87:1193-1197 (1995)), possibly due to hindered use of carbohydrate at night. The resulting leaf carbohydrate accumulation could signal a down-regulation of photosynthetic genes. The excess starch remaining in the leaf after a cool night could be involved in some negative feedback mechanism reducing photosynthetic rates even after re-warming. There is a need to use genetic engineering to alleviate the cool-night-associated inhibition of photosynthesis during the following warm day.
Sucrose phosphate synthase ("SPS") is a key protein involved in carbon metabolism in plants (See Figure 1). SPS catalyzes the formation of sucrose phosphate from UDP-glucose and fructose 6-phosphate. In the leaf, SPS is important in controlling the partitioning of reduced carbon between starch and translocatable sucrose (Huber et al., "Role and Regulation of Sucrose-Phosphate Synthase in Higher Plants," Annu. Rev. Plant Physiol. Plant Mol. Biol.. 47:431-44 (1996)). In growing sink cells, the data in this invention demonstrate that SPS is involved in directing the flow of carbon to cellulose. Its level of activity can regulate the amount of metabolic flux directed toward cellulose synthesis compared to respiration (See Figure 2). According to this model, SPS within cellulose-storing sink cells can increase sink strength through an enhanced rate of cellulose synthesis by promoting sucrose synthesis in one or both of two cases: (a) if sucrose transported from the leaves is cleaved to release glucose and fructose before or after entering the sink cells; and/or (b) to reuse the fructose released by the activity of sucrose synthase to channel UDP-glucose and fructose to cellulose synthase. A decreased level of SPS activity can decrease sink strength, by analogous mechanisms, in any case where sink filling is affected by sucrose levels.
In tomato, over-expression of SPS has been shown sometimes to cause a 32% increase in total fruit dry weight. This increase was due not to an increase in individual fruit weight, but to a 50% increase in fruit number (Micallef et al., "Altered Photosynthesis, Flowering, and Fruiting in Transgenic Tomato Plants That Have an Increased Capacity for Sucrose Synthesis," Planta, 196:327-334 (1995)). These tomato plants have also sometimes been shown to have increased fresh fruit weight per fruit and increased fruit soluble solids (sugars) (Laporte et al., "Sucrose-Phosphate Synthase Activity and Yield Analysis of Tomato Plants Transformed with Maize Sucrose- Phosphate Synthase," Planta, 203:253-259 (1997)). These reports provide no information about seed yield since tomato seeds weigh little compared to tomato fruits and seeds were not separated from fruits for weighing.
It should be noted that although cotton bolls and tomatoes are both classified botanically as fruits, the nature of the fruits and the relative importance of the seeds they contain is very different. Tomato fruits are essentially sacks of primary cell walls filled with water and soluble glucose, fructose, and sucrose as storage carbohydrates. These sugars crystallize upon drying, contributing to fruit dry weight. Within the fruit, tomato seeds are not a significant sink due to their small size, and they have no economic value except for propagation of tomato. The fruit is the major sink in tomatoes; it constitutes almost all of tomato yield and is the only tomato part with significant economic value. In contrast, the cotton fruit is relatively dry and thin- walled. The fruit itself does not constitute any substantial sink in cotton or contribute to cotton yield. It protects the seeds only until boll opening, after which it withers. The fruit has no or little economic value (as compost). Cotton seeds with attached fiber represent the two major sinks of substantial economic value in the cotton crop. The cotton fiber is an elongated epidermal cell of the cotton seed coat; it is defined botanically as a trichome. Therefore, the two major sinks in seeds are: (1) the cotyledons of the seed embryo that store oil and protein; and (2) the secondary cell walls of the seed epidermal trichomes (cotton fibers) that store insoluble cellulose. Soluble sugars are not stored in any significant quantity in a mature cotton seed or fruit. Cotton seeds with their attached fiber represent all of the yield in the cotton crop. Therefore, cotton, as well as other fiber producing plants, differ significantly from tomato.
Increased total dry weight of vegetative parts of plants over-expressing SPS has been shown in tomato leaves. In the same study, no change was observed in dry weight of stems and root dry weight decreased (Galtier et al., "Effects of Elevated Sucrose- Phosphate Synthase Activity on Photosynthesis, Assimilate Partitioning, and Growth in Tomato (Lycopersicon esculentum var UC82B)," Plant Phvsiol.. 101 :535-543 (1993)). Tomato leaves do not contain substantial fiber, being composed mainly of mesophyll cells and conducting vascular tissue. The same plants were shown to sometimes have increased dry weight on a whole-plant basis (Ferrario-Mery et al., "Manipulation of the Pathways of Sucrose Biosynthesis and Nitrogen Assimilation in Transformed Plants to Improve Photosynthesis and Productivity," in Foyer, eds., A Molecular Approach to Primary Metabolism in Higher Plants, Taylor and Francis:New York, pp. 125-153 (1997)) and in above-ground parts including leaves plus stems (Laporte et al., "Sucrose- Phosphate Synthase Activity and Yield Analysis of Tomato Plants Transformed with Maize Sucrose-Phosphate Synthase," Planta, 203:253-259 (1997)). In potatoes over- expressing SPS, increased total dry weight of tubers has been shown (Shewmaker, "Modification of Soluble Solids Using Sucrose Phosphate Synthase Encoding Sequences," PCT International Publication Number WO 97/15678). Potato tubers do not contain substantial fiber. They are composed mainly of parenchyma cells with primary walls that store abundant starch and lesser amounts of protein. The major yield component of potato tubers is starch. All of these reports lack information on the effect of SPS over-expression on cell wall thickness, cellulose content, and fiber and seed yield of plants. However, the absence of demonstrated increase in stem weight argues against increased fiber content in the tomato plants analyzed.
Increased expression of SPS has been shown to exert other beneficial effects in tomato and Arabidopsis. In both species, leaf starch storage is reduced in preference for synthesis of sucrose. In both species, maximal rates of photosynthesis are enhanced, most significantly in elevated CO and saturating light (Galtier et al., "Effects of Light and Atmospheric Carbon Dioxide Enrichment on Photosynthesis and Carbon Partitioning in the Leaves of Tomato (Lycopersicon esculentum L.) Plant Over-Expressing Sucrose Phosphate Synthase," J. Expt. Bot., 46:1335-1344 (1995); Micallef et al., "Altered Photosynthesis, Flowering, and Fruiting in Transgenic Tomato Plants That Have an Increased Capacity for Sucrose Synthesis," Planta, 196:327-334 (1995); and Signora et al., "Over-Expression of Sucrose Phosphate Synthase in Arabidopsis thaliana Results in Increased Foliar Carbohydrate Accumulation in Plants After Prolonged Growth with CO Enrichment," J. Expt. Bot., 49:669-680 (1998)). However, these reports provide no information related to effects of cool nights on photosynthesis during the warm day. Thus, there exists a need for a method to control the level of synthesis of cellulose in fiber producing plants, in particular cotton. There exists a need to be able to control the yield and quality of fibers of commercial value, in particular cotton, under diverse environmental conditions. A general need exists to be able to control the synthesis of cellulose and the thickness of cell walls in plants. A general need exists to promote photosynthetic efficiency in plants growing under cool night temperatures. It is important to be able to increase seed yield in crops as well. The present invention addresses those needs and provides improved plants.
SUMMARY OF THE INVENTION
The present invention generally relates to a method of controlling the cellulose synthesis in plants to optimize the level of production and quality of the products derived from the plants.
The invention includes the regulation in the cellulose content, thickness, or yield of any plant cell wall of agricultural or industrial use. Such cell walls include typical thin primary cell walls such as those that are digested in forage and those that exist in useful agricultural residues, for example beet root parenchyma cells remaining after sugar extraction that can be converted into thickening agents. Such cell walls include thick walls such as those of collenchyma and xylem parenchyma that can aid plant rigidity or contribute to yield and digestibility of forage or other agricultural products. Such cell walls also include secondary cell walls such as are commonly found in fiber.
In particular, the present invention provides a transgenic cotton plant that has an increased level of sucrose phosphate synthetase relative to a non-transgenic cotton plant. The invention also provides a method of increasing the yield of a cotton plant by introducing into the cotton plant a chimeric DNA construct that alters the level of sucrose phosphate synthase activity in an amount sufficient to increase the seed and fiber yield of the cotton plant. The present invention can also be used to increase the quality of cotton fiber produced from a cotton plant by introducing into a cotton plant a chimeric DNA construct that alters the level of sucrose phosphate synthase activity in an amount sufficient to increase the quality of the cotton fiber produced by the cotton plant.
The invention includes a method of increasing tolerance of photosynthetic efficiency to cool night temperatures by introducing into a plant a chimeric DNA that alters the sucrose phosphate synthase activity in an amount sufficient to increase tolerance of photosynthetic efficiency to cool night temperatures. In yet another embodiment, the invention provides a method of regulating the ratio of cellulose to other dry weight components of the plant by introducing into a plant a chimeric DNA construct capable of altering sucrose phosphate synthase activity in an amount sufficient to regulate the ratio of cellulose to other dry weight components of the plant.
The invention also provides a method of regulating the thickness of cell walls in a plant by introducing into a plant a chimeric DNA construct that alters sucrose phosphate synthase activity in an amount sufficient to regulate the thickness of cell walls.
In yet another embodiment, the invention provides a method of increasing the harvestable yield of fiber from a fiber containing plant by introducing into a plant a chimeric DNA construct that alters sucrose phosphate synthase activity in an amount sufficient to increase the harvestable yield of fiber from a fiber producing plant.
In yet another embodiment, the invention provides a method of increasing the harvestable yield of seed from a seed producing plant by introducing into a plant a chimeric DNA construct that alters sucrose phosphate synthase activity in an amount sufficient to increase the harvestable yield of seed from a seed producing plant.
In yet another embodiment, the invention provides a method of improving the quality of fiber from a fiber producing plant by introducing into a plant a chimeric DNA construct that alters sucrose phosphate synthase activity in an amount sufficient to regulate fiber quality. Such improvement may be exemplified by changes in length, strength, and weight per unit length.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows the pathways of carbon assimilation, starch synthesis and catabolism, and sucrose synthesis. UDP-glucose pyrophosphorylase catalyzes the highly reversible reaction between glucose 1 -phosphate (G-l-P) and UDP-glucose. Sucrose- phosphate synthase catalyzes the formation of sucrose-phosphate from UDP-glucose and fructose 6-phosphate. Figure 2 shows the metabolic pathways and enzymes in sink cells related to the biosynthesis of cellulose.
Figure 3 is an amino acid alignment between SPS gene sequences from a number of plant species. Figure 4 is an amino acid alignment between the spinach leaf SPS gene sequence and a homologous sequence from Synechocystis .
Figure 5 is a histogram of fiber weight per seed, which shows elevation in all three transgenic lines. (Here and in all subsequent histograms, the error bars are standard deviations of the average. The average values are printed above each bar.)
Figure 6 is a histogram of delinted seed weight per seed. It shows elevation in all three transgenic lines.
Figure 7 is a histogram of the ratio of fiber weight per seed and delinted seed weight per seed. It shows that these two yield parameters tend to increase in parallel, with a small preference for increased fiber weight in transgenic lines.
Figure 8 is a scatter plot of fiber weight per seed vs delinted seed weight per seed. It shows that these two parameters are interdependent at the 50% level. (Here and with all other scatter plots, R is the coefficient of determination calculated from the linear regression line. Also, data points from parental C312 are labeled to their right, whereas data point from the three transgenic lines are left unlabeled.) Note, however, that C312 does not shown any linear relationship because seed weight per seed shows little variability in the parental line. Therefore, the overall linear relationship among all the data points derives from the transgenic plants. The transgenic plants have more variability in and higher levels of delinted seed weight per seed and fiber weight per seed than parental C312 plants.
Figure 9 is a histogram of fuzz fiber weight per seed. It shows elevation in two of three transgenic lines, and a decrease in one transgenic line.
Figure 10 is a histogram of micronaire, which shows elevation in all three transgenic lines. Figure 11 is a scatter plot of micronaire vs fiber weight per seed showing that these two parameters are interdependent at the 60% level. This is sensible since fiber weight per seed depends on 3 factors: number of fibers, length of fibers, and fiber wall thickness. Of these 3 factors, micronaire would depend only on fiber wall thickness. Note that this linear relationship also holds for C312, but the transgenics have higher values for fiber weight per seed and micronaire.
Figure 12 is a histogram of grams of force to break a single fiber (Tb; g). It shows elevation in all transgenic lines. Figure 13 is a histogram of elongation to break a single fiber (% of original fiber length). It shows elevation in all transgenic lines. However, note that Elongation is highest in transgenic line 13 -3 a, which, among the transgenics, had the lowest increase in grams to break. This suggests that these two factors are primarily determined by different fiber properties, as would be predicted in theory and is confirmed by the scatter plots below.
Figure 14 is a histogram of work to break a single fiber (μJ). Work, which is a composite factor calculated from grams to break and elongation, is elevated in all transgenic lines. Figure 15 is a scatter plot of grams of force to break a single fiber vs. micronaire.
The graph shows an interdependency for these parameters over all data points of 68%. Both of these parameters would be expected to increase with a thicker fiber wall.
Figure 16 is a scatter plot of grams of force to break a single fiber vs. fiber weight per seed. These parameters are interdependent at a level of 61%, which is similar to the dependence on micronaire (See Figure 15). This supports the hypothesis that increased fiber weight per seed is due in large part to increased fiber wall thickness, since the two other parameters that can increase fiber weight per seed (increased fiber number and increased fiber length) would not be expected to increase grams to break.
Figure 17 is a scatter plot of work to break a single fiber vs. micronaire. These parameters are interdependent at a level of 48%. The intermediary level of dependency compared to grams to break and elongation alone (See Figure 19) is reasonable for this composite factor.
Figure 18 is a scatter plot of work to break a single fiber vs. fiber weight per seed. These parameters are interdependent at a level of 39%, which is similar to the dependence on micronaire (See Figure 17). As just described for Figure 16, this supports the hypothesis that increased fiber weight per seed is due in large part to increased fiber wall thickness.
Figure 19 is a scatter plot of elongation to break vs. micronaire. The graph shows that these parameters are not interdependent. Therefore, over-expression of SPS is predicted to enhance elongation by a mechanism independent of fiber wall thickness, which is consistent with theory.
Figure 20 is four overlayed scatter plots of photosynthetic rate vs. internal CO2 concentration for parental C312 growing in the Phytotron. Empty symbols are for two plants growing at 30/15°C and filled symbols are for two plants growing at 30/28°C. All plants were assayed at 30°C. The graphs show that for parental C312, a previous cool night suppresses photosynthetic rate during the warm day.
Figure 21 is four overlayed scatter plots of photosynthetic rate vs. internal CO2 concentration for the transgenic line 13-3a-l growing in the Phytotron. Empty symbols are for two plants growing at 30/15°C and filled symbols are for two plants growing at 30/28°C. All plants were assayed at 30°C. The graphs show that for this transgenic line, a previous cool has no effect on the rate of photosynthesis during the next warm day.
Figure 22 is four overlayed scatter plots of photosynthetic rate vs. internal CO2 concentration for the transgenic line 225-17a growing in the Phytotron. Empty symbols are for two plants growing at 30/15°C and filled symbols are for two plants growing at 30/28°C. All plants were assayed at 30°C. The graphs show that for this transgenic line, a previous cool has no effect on the rate of photosynthesis during the next warm day.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method of controlling the cellulose synthesis in plants to optimize the level of production and quality of the products, in particular fiber, derived from the plants. The word "fiber" is often used to unify a diverse group of plant cell types that share in common the features of having an elongated shape and abundant cellulose in thick cell walls, usually, but not always, described as secondary walls. Such walls may or may not be lignified, and the protoplast of such cells may or may not remain alive at maturity. Such fibers have many industrial uses, for example in lumber and manufactured wood products, paper, textiles, sacking and boxing material, cordage, brushes and brooms, filling and stuffing, caulking, reinforcement of other materials, and manufacture of cellulose derivatives. In some industries, the term "fiber" is usually inclusive of thick- walled conducting cells such as vessels and tracheids and to fibrillar aggregates of many individual fiber cells. Here the term "fiber" is used in its most inclusive sense, for example including: (a) thick- walled conducting and non-conducting cells of the xylem; (b) fibers of extraxylary origin, including those from phloem, bark, ground tissue, and epidermis; and (c) fibers from stems, leaves, roots, seeds, and flowers or inflorescences (such as those of Sorghum vulgar e used in the manufacture of brushes and brooms). In addition to wood from trees, cotton, and forage crops, the invention is applicable to all fibers, including, but not exclusively, those in agricultural residues such as corn, sugar cane, and rice stems that can be used in pulping, flax, hemp, ramie, jute, kenaf, kapok, coir, bamboo, Spanish moss, abaca, and Agave spp. (e.g. sisal). In a preferred embodiment, the invention provides a transgenic cotton plant wherein the transgenic cotton plant has an increased level of sucrose phosphate synthetase relative to a non-transgenic cotton plant. Table 1 shows the level of SPS activity from untransformed C312 plants and four transformed plant lines. All transformed plant lines show significant increases in SPS activity in both leaves and fiber. Sucrose phosphate synthase plays a key role in the metabolic flux of carbon within plant cells. Genes encoding sucrose phosphate synthase have been isolated and sequenced from a number of plant species. [Spinacia oleracea: Salvucci et al., Plant PhysioL, 102:529-536 (1993); Sonnewald et al, Planta, 189(2): 174-181 (1993); Oryza sativa: Valdez-Alarcon et al., Gene, 170(2):217-222 (1996); Craterostigma plantaqineum: Ingram et al.. Plant PhysioL, 115(0:1 13-121 ("1997); Viciafaba: Heim et al., Gene, 178(l-2):201-203 (1996); Solanum tuberosum: EMBL Accession No. X73477; Citrus unshiu: Akira et al., Mol. Gen. Genet., 252:346-351 (1996); Saccharum officinarum: Sugiharto et al., Plant Cell Physiol. 38:961-965 (1997); Beta vulgaris: Hesse et al., Mol. Gen. Genet., 247(4):515-520 (1995); Zea mays: Worrell et al., Plant Cell, 3:1 121-1 130 (1991); Arabidopsis thaliana, Bevan et al., NCBI Accession
No. AL049487; Synechocystis sp : Kaneko et al., DNA Res.. 2(4): 153-166 (1995); Kaneko et al., DNA Res., 3(3):109-136 (1996); and unknown organism: Van Assche et al., U.S. Patent No. 5,665,892-A, which are hereby incorporated by reference.] A comparison of several of the available SPS gene sequences from higher plants is provided in Figure 3. A comparison of a Synechocystis SPS (Kaneko et al., DNA Res., 2(4): 153- 166 (1995), which is hereby incoφorated by reference) with the spinach SPS is provided in Figure 4; this protein from a cyanobacterium has as strong a homology with spinach SPS as all the higher plant proteins have among themselves. Preferred sucrose phosphate synthase genes include the genes isolated from spinach, Arabidopsis, beet, bean, citrus, maize, moss, potato, rice, sugar cane, and Synechocystis. The most preferred sucrose phosphate synthetase is spinach sucrose phosphate synthetase.
In addition to the known sequences of sucrose phosphate synthase, modifications of the known sequences are also within the scope of the invention. Variations in the sequence including substitutions, insertions and deletions may be made to the known sequences of sucrose phosphate synthase. Comparisons of all the available sequences indicate which amino acids are highly conserved and those that are variable. Using that information, it is possible to choose variations that should still produce functional proteins.
The maximum activity of sucrose phosphate-synthase may be determined colorimetrically according to the formation of sucrose-6-P (+ sucrose) from fructose-6-P and UDP-glucose by the method as described in (Copeland, "Enzymes of Sucrose Metabolism," Methods in Plant Biochemistry, 3:73-83 (1990), which is hereby incorporated by reference). Frozen leaf or fiber tissue was pulverized under liquid nitrogen, then ground in 50 mM HEPES (pH 7.4), 10 mM MgC12, 1 mM EDTA, 1 mM EGTA, 10% glycerol, and 0.1% Triton-X-100. A 28 μl aliquot of each supernatant was used in each SPS assay, and each extract was tested in triplicate. A 70 μl assay mixture contained 50 mM HEPES (pH 7.4), 10 mM UDPG, 6 mM fructose-6-P, 20 mM glucose- 6-P (an SPS activator), 10 mM MgC12, 1 mM EDTA, 0.40 mM EGTA, 4.0% glycerol, and 0.04% Triton-X-100. The assay was conducted for 10 min at 32 - 34°C (on the plateau of maximal activity) then terminated by addition of 70 μl of IN NaOH. Unreacted hexoses or hexose phosphates were destroyed by immersion of tubes in a boiling water bath for 10 min. After cooling to room temperature, 250μl of 0.1% resorcinol in ethanol and 750 μl of concentrated HCI were added, followed by incubation for 8 min at 80°C. The tubes were quickly cooled to room temperature, A520 nm was measured in a spectrophotometer, and sucrose levels in plant extracts were determined in reference to a sucrose standard curve. Triplicate controls were made for each extract to normalize for possible different endogenous levels of sucrose in each extract. For controls, NaOH was added to the assay tube before the plant extract was added; then these tubes were processed in parallel as above except for the step of assay termination by NaOH that was already done. Plant extracts were also analyzed for protein content by Bradford protein assay and leaf extracts were analyzed for chlorophyll content by its absorbance to allow comparison of SPS activities between different samples. Alternatively, the activity of sucrose phosphate-synthase may be determined spectrophotometrically according to liberation of uridine-5'-diphosphate detected by a pyruvate-kinase coupling enzyme reaction as also described in (Copeland, "Enzymes of Sucrose Metabolism," Methods in Plant Biochemistry. 3:73-83 (1990), which is hereby incorporated by reference).
In order to express the sucrose phosphate synthase in plants, transgenic plants carrying the gene encoding a sucrose phosphate synthase are produced by transforming a plant with a chimeric DNA construct that expresses sucrose phosphate synthase.
In order to express the sucrose phosphate synthase gene from the chimeric DNA, the construct should include a plant specific promoter. The promoter should ensure that the foreign gene is expressed in the plant. The promoter can be chosen so that the expression occurs only in specified tissues, at a determined time point in the plant's development or at a time point determined by outside influences. The promoter can be homologous or heterologous to the plant. Suitable promoters include e.g. the RUBISCO small subunit promoter, fiber- specific promoters, the promoter of the 35S RNA of the cauliflower mosaic virus described in U.S. Patent No. 5,034,322 (which is hereby incorporated by reference), the enhanced 35S promoter described in U.S. Patent No. 5,106,739 (which is hereby incorporated by reference), the dual S35 promoter, the FMV promoter from figwort mosaic virus that is described in U.S. Patent No. 5,378,619 (which is hereby incorporated by reference), the RI T-DNA promoter described in U.S. Patent No. 5,466,792 (which is hereby incorporated by reference), the octopine T-DNA promoter described in U.S. Patent No. 5,428,147 (which is hereby incorporated by reference), the alcohol dehydrogenase 1 promoter (Callis et al., Genes Dev., 1 (10): 1183- 1200 (1987), which is hereby incorporated by reference), the patatin promoter B33 (Rocha-Sosa et al., EMBO J., 8:23-29 (1989), which is hereby incoφorated by reference), the E8 promoter (Deikman et al., EMBO J., 7(11):3315-3320 (1988), which is hereby incoφorated by reference), the beta-conglycin promoter (Tierney et al., Planta, 172:356- 363 (1987), which is hereby incorporated by reference), the acid chitinase promoter (Samac et al., Plant PhysioL, 93:907-914 (1990), which is hereby incoφorated by reference), the Arabidopsis histone H4 promoter described in U.S. Patent No. 5,491,288 (which is hereby incoφorated by reference), or the recombinant promoter for expression of genes in monocots described in U.S. Patent No. 5,290,924 (which is hereby incorporated by reference).
Preferred promoters include the RUBISCO small subunit promoter, the 35S promoters, fiber enhanced promoters, vascular cell enhanced promoters, stem cell enhanced promoters, or seed enhanced promoters. Such promoters may ensure expression in a tissue specific or tissue-enhanced manner, but may allow expression in other cell types. For example it may ensure enhanced expression in photosynthetically active tissues (RUBISCO (Worrell et al., The Plant Cell. 3:1 121-1130 (1991), which is hereby incoφorated by reference)) or other mesophyll-cell-specific promoter (Datta et al., Theor. Appl. Genet., 97:20-30 (1998), which is hereby incoφorated by reference) or fibers (cotton-fiber-, xylem fiber-, or extra-xylary-fiber-specific or enhanced promoters). Other promoters can be used that ensure expression only in specified organs, such as the leaf, root, tuber, seed, stem, flower or specified cell types such as parenchyma, epidermal, or vascular cells. One example of a tissue specific promoter is the RB7 promoter that is root specific (U.S. Patent No. 5,459,252, which is hereby incoφorated by reference).
Such promoters may be used either alone or in combination to optimize over-expression in the most desirable set of tissues or organs.
Preferred cotton fiber-enhanced promoters include those of the cotton fiber- expressed genes E6 (John et al., Plant Mol. Biol.. 30:297-306 (1996) and John et al., Proc. Natl. Acad. Sci., 93: 12768-12773 ( 1996), which are hereby incoφorated by reference), H6 (John et al., Plant PhysioL, 108:669-676, (1995), which is hereby incoφorated by reference), FbL2A (Rinehart et al., Plant PhysioL. 1 12:1331-1341 (1996) and John et al, Proc. Natl. Acad. Sci. USA. 93: 12768-12773 (1996), which are hereby incoφorated by reference), rac (Delmer et al., Mol. Gen. Genet., 248:43-51 (1995), which is hereby incorporated by reference); CelA (Pear et al., Proc. Natl. Acad. Sci USA. 93:12637-12642 (1996), which is hereby incoφorated by reference); CAP (Kawai et al., Plant Cell PhysioL 39:1380-1383 (1998)); ACP (Song et al., Biochim. Biophys. Acta 1351 :305-312 (1997); and LTP (Ma et al., Biochim. Biophys. Acta 1344:1 11-1 14 (1997)).
Preferred promoters enhancing expression in vascular tissue include the CAD 2 promoter (Samaj et al., Planta, 204:437-443 (1998), which is hereby incoφorated by reference), the P.4C11 promoter (Hu et al., Proc. Natl. Acad. Sci. USA, 95:5407-5412 (1998), which is hereby incorporated by reference), the C4H promoter (Meyer et al., Proc. Natl. Acad. Sci. USA, 95:6619-6623 (1998), which is hereby incoφorated by reference), the PtX3H6 and PLX14A9 promoters (Loopstra et al., Plant Mol. Biol.. 27:277-291 (1995), which is hereby incoφorated by reference), the RolC promoter (Graham, Plant Mol. Biol., 33:729-735 (1997), which is hereby incoφorated by reference), the Hvhspl7 promoter (Raho et al., J. Expt. Bot., 47:1587-1594 (1996), which is hereby incorporated by reference), and the COMT promoter (Capellades et al., Plant Mol. Biol., 31 :307-322 (1996), which is hereby incoφorated by reference).
Preferred promoters enhancing expression in stem tissue include pith promoters (Datta, Theor. Appl. Genet.. 97:20-30 (1998) and Ohta et al., Mol. Gen. Genet., 225:369- 378 (1991), which are hereby incoφorated by reference), and the anionic peroxidase promoter (Klotz et al., Plant Mol. Biol.. 36:509-520 (1998), which is hereby incoφorated by reference). Preferred promoters enhancing expression in phloem, cortex and cork, but not xylem or pith, include the Psam-1 promoter (Mijnsbrugge et al., Plant and Cell PhysioL, 37: 1108-1 1 15 (1996), which is hereby incoφorated by reference). Preferred promoters enhancing expression in seeds include the phas promoter
(Geest et al., Plant Mol. Biol. 32:579-588 (1996)); the GluB-1 promoter (Takaiwa et al., Plant Mol. Biol. 30:1207-1221 (1996)); the gamma-zein promoter (Torrent et al. Plant Mol. Biol. 34:139-149 (1997)), and the oleosin promoter (Sarmiento et al., The Plant Journal 11 :783-796 (1997)). Truncated or synthetic promoters including specific nucleotide regions conferring tissue-enhanced expression may also be used, as exemplified by identification of regulatory elements within larger promoters conferring xylem-enhanced expression (Seguin et al., Plant Mol. Biol.. 35:281-291 (1997); Torres-Schumann et al., The Plant Journal. 9:283-296 (1996); and Leyva et al., The Plant Cell. 4:263-271 (1992), which are hereby incoφorated by reference).
In one embodiment of the invention the chimeric DNA construct is stablely integrated into the genome of the cotton plant. When a plant is transformed by Agrobacterium mediated transformation, a portion of the Ti plasmid integrates into the plant genome and is stablely passed on to future generations of plant cells. Numerous methods exist for transforming plant cells. The preferred methods include electroporation, Agrobacterium mediated transformation, biolistic gene transformation, chemically mediated transformation, or microinjection.
The vector described above can be microinjected directly into plant cells by use of micropipettes to transfer mechanically the recombinant DNA (Crossway, Mol. Gen. Genetics, 202:179-185 (1985), which is hereby incoφorated by reference). The genetic material may also be transferred into the plant cell using polyethylene glycol (Krens et al., Nature, 296:72-74 (1982), which is hereby incoφorated by reference). Another approach to transforming plant cells with a gene that increases fiber and seed yield and fiber quality is particle bombardment (also known as biolistic transformation) of the host cell. This can be accomplished in one of several ways. The first involves propelling inert or biologically active particles at cells. This technique is disclosed in U.S. Patent Nos. 4,945,050, 5,036,006, and 5,100,792, all to Sanford et al., which are hereby incoφorated by reference. Generally, this procedure involves propelling inert or biologically active particles at the cells under conditions effective to penetrate the outer surface of the cell and to be incoφorated within the interior thereof. When inert particles are utilized, the vector can be introduced into the cell by coating the particles with the vector containing the heterologous DNA. Alternatively, the target cell can be surrounded by the vector so that the vector is carried into the cell by the wake of the particle. Biologically active particles (e.g., dried bacterial cells containing the vector and heterologous DNA) can also be propelled into plant cells.
Yet another method of introduction is fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies (Fraley et al., Proc. Natl. Acad. Sci. USA. 79: 1859-63 (1982), which is hereby incorporated by reference).
The DNA molecule may also be introduced into the plant cells by electroporation (Fromm et al., Proc. Natl. Acad. Sci. USA, 82:5824 (1985), which is hereby incoφorated by reference). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the expression cassette. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and regenerate.
Another method of introducing the DNA molecule into plant cells is to infect a plant cell with Agrobacterium tumefaciens or A. rhizogenes previously transformed with the gene. Under appropriate conditions known in the art, the transformed plant cells are grown to form shoots or roots, and develop further into plants. Generally, this procedure involves inoculating the plant tissue with a suspension of bacteria and incubating the tissue for 48 to 72 hours on regeneration medium without antibiotics at 25-28°C. Agrobacterium is a representative genus of the gram-negative family
Rhizobiaceae. Its species are responsible for crown gall (A. tumefaciens) and hairy root disease (A. rhizogenes). The plant cells in crown gall tumors and hairy roots are induced to produce amino acid derivatives known as opines, which are catabolized only by the bacteria. The bacterial genes responsible for expression of opines are a convenient source of control elements for chimeric expression cassettes. In addition, assaying for the presence of opines can be used to identify transformed tissue.
Heterologous genetic sequences can be introduced into appropriate plant cells, by means of the Ti plasmid of A. tumefaciens or the Ri plasmid of A. rhizogenes. The Ti or Ri plasmid is transmitted to plant cells on infection by Agrobacterium and is stably integrated into the plant genome (Schell, Science, 237:1176-83 (1987), which is hereby incoφorated by reference).
After transformation, whole transformed plants can be recovered. If transformed seeds were produced directly, these can be selected by germination on selection medium and grown into plants (Glough et al. The Plant Journal 16:735-743 (1998), which is hereby incoφorated by reference). If transformed pollen was produced directly, this can be used for in vivo pollination followed by selection of transformed seeds (Touraev et al., The Plant Journal 12:949-956 (1997), which is hereby incorporated by reference). If meristems were transformed, these can be grown into plants in culture then transferred to soil (Gould, J. et al., Plant Cell Rep. 10:12-16 (1991), which is hereby incoφorated by reference).
If protoplasts or explants were transformed, plants can be regenerated. Plant regeneration from cultured protoplasts is described in Evans et al., Handbook of Plant Cell Cultures, Vol. 1, New York, New York:MacMillan Publishing Co., (1983); and
Vasil, ed., Cell Culture and Somatic Cell Genetics of Plants, Orlando:Acad. Press, Vol. I (1984), and Vol. Ill (1986), which are hereby incoφorated by reference. Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts or a petri plate containing transformed explants is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced in the callus tissue. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is usually reproducible and repeatable. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to, species of sugarcane, sugar beets, cotton, forest trees, forage crops, and fiber producing plants. Regeneration is also possible in seed-producing plants including, but not limited to, maize, rice, wheat, soybean, rape, sunflower, and peanut.
After the expression cassette is stably incoφorated in transgenic plants, it can be transferred to other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed.
Once transgenic plants of this type are produced, the plants themselves can be cultivated in accordance with conventional procedure with the presence of the gene encoding the sucrose phosphate synthase resulting in enhanced seed yield and/or enhanced fiber yield and/or enhanced fiber quality. Alternatively, transgenic seeds are recovered from the transgenic plants. These seeds can then be planted in the soil and cultivated using conventional procedures to produce transgenic plants. The present invention also provides seeds produced from the transgenic plant having increased synthesis of sucrose phosphate synthase.
In another embodiment, the invention provides a method of increasing the yield of cotton plant by introducing into a cotton plant a chimeric DNA construct that alters sucrose phosphate synthase activity in an amount sufficient to increase the yield of the cotton plant. A chimeric gene may be introduced into plant cells or tissue. Transformed cells are selected, usually by the use of a selectable marker. The transformed cells are then used to generate a transformed plant (Fraley et al., Proc. Natl. Acad. Sci. USA. 79: 1859-1863 (1982), which is hereby incoφorated by reference).
Preferred plants are cotton plants. The transformed plants may have an increase in the yield of cotton seeds or cotton fiber.
The present invention also provides a method of increasing the quality of cotton fiber produced from a cotton plant by introducing into a cotton plant a chimeric DNA construct that alters the sucrose phosphate synthase activity in an amount sufficient to increase the quality of the cotton fiber produced by the cotton plant. The level of sucrose phosphate synthase may be increased by expressing factors that increase the level of expression of the gene. Such factors may act on regulatory sites controlling expression that are normally located near the sucrose phosphate synthase gene or heterologous regulatory sites located near the gene in a chimeric construct. Alternatively, the level of sucrose phosphate synthase may be increased by introducing a chimeric DNA construct that directly expresses a sucrose phosphate synthase.
Generally, the present invention can be used to change the ratio of cellulose to the dry weight of the whole plant or to the dry weight of plant components by introducing into a plant a chimeric DNA construct capable of altering sucrose phosphate synthase activity in an amount sufficient to change the ratio of cellulose to the dry weight of the whole plant or plant components. The change in cellulose can be observed in relation to total weight of the plant or fractionated parts of plants including, but not exclusively, starch, total cell walls, cell wall of fibers, particular organs such as stems, or cell wall components such as pectins, hemicelluloses, proteins, extractives, and lignin. The change in the ratio of cellulose to the fractionated parts of plants can be observed when the fractionated parts are considered alone or in any additive combination.
Changes in qualities as claimed in this invention refer to changes of at least 10% compared to a plant lacking the transgene. For example, the ratio of cellulose in cell walls may be changed from 20% to 18% or lower or 22% or higher. Such change compared to parental level could apply to all cell walls or any cell wall fraction of a plant.
In a preferred embodiment, the dry weight of cellulose may be increased so that its ratio to other dry weight components exceeds 40%. Such increase to exceed 40% could apply to wood, fibers, and other cellulose-rich cell walls such as collenchyma and thickened xylem parenchyma.
To accomplish certain changes, the level of sucrose phosphate synthase may be decreased by expressing factors that decrease the level of expression of the gene. Such factors may act on regulatory sites controlling expression that are normally located near the sucrose phosphate synthase gene or heterologous regulatory sites located near the gene in a chimeric construct. Alternatively, in anti-sense technology, the level of sucrose phosphate synthase may be decreased by introducing a chimeric DNA construct that contains the complementary cDNA of a sucrose phosphate synthase (Arndt et al., Genome, 40:785-797 (1997), which is hereby incoφorated by reference). Alternatively, decreased SPS activity might be induced by homology dependent gene silencing (Wassenegger et al. Plant Mol. Biol. 37:349-362 (1998), which is hereby incoφorated by reference), virus-induced gene silencing (Baulcombe, Curr. Op. Plant Biol. 2: 109-113 (1999), which is hereby incoφorated by reference), chimeric RNA/DNA oligonucleotides (Zhu et al., Proc. Natl. Acad. Sci. USA 15:8768-8773 (1999), which is hereby incoφorated by reference), or homologous recombination (Shalev et al. Proc. Natl. Acad. Sci. USA 96:7398-7402 (1999), which is hereby incoφorated by reference).
In yet another embodiment, the invention provides a method of increasing tolerance of photosynthetic efficiency to cool night temperatures by introducing into a plant a chimeric DNA construct capable of altering sucrose phosphate synthase activity in an amount sufficient to increase tolerance of photosynthetic efficiency to cool night temperatures.
The present invention can be used to regulate the thickness of cell walls in a plant by introducing into the plant a chimeric DNA construct that will change the sucrose phosphate synthase activity. In particular, the method can be used to increase the yield of harvestable fiber from any fiber producing plant.
In a preferred embodiment, the plant is a fiber producing plant. More preferred fiber producing plants are sugarcane, sugar beets, forest trees, forage crops, fiber producing plants, and seed producing plants. In yet another embodiment, the present invention can be used to increase the harvestable yield of fiber from a plant. The invention may also be used to alter the quality of fiber isolated from the plant... Changes in sucrose phosphate synthase can change fiber strength, fiber length, or weight per unit length. Changes may either increase or decrease the strength, length or weight per unit length. The present invention can be used to increase the yield of seed harvested from a seed producing plant by introducing into the plant a chimeric DNA construct that will increase the sucrose phosphate synthase activity.
The methods of the invention are broadly applicable and can be used in a wide variety of plants including cotton, forest trees, forage crops, beets, flax, hemp, jute, and other fiber-producing plants. They can also be used in seed producing plants including cotton, flax, wheat, rice, corn, soybean, Brassica sp. (e.g. rape), sunflower, safflower, peanut, palm, and other seed producing plants.
The methods of the invention are further described in the examples that follow. EXAMPLES
Example 1 - Materials and Methods Most plants described were grown in one chamber at the Duke University
Phytotron: 360 ppm (normal) CO2; 30 15-19°C day/night cycle; 14h day/lOh night; 1200 μmol m'V (metal halide) illumination; irrigation 2x daily with 1/2 strength Hoagland's solution; potted in a mixture of gravel and sand in 4 gallon pots. A change to 30/19°C from 30/15°C occurred after about 4 months growth, which was about half-way through the maturation of first bolls in C312 and all transgenic lines. This temperature condition is subsequently referred to as 30/15°C for simplicity. This chamber is emphasized because its temperature and CO2 conditions represent those likely to be encountered by cotton crops in the field, for example but not exclusively on the Texas Southern High Plains. Other plants were grown in the Duke University Phytotron in 3 other chambers as described except with the following changes: (a) 360 ppm CO2, 30 28°C day/night cycle; (b) 700 ppm (elevated) CO2, 30 15-19°C day/night cycle; and (c) 700 ppm CO2, 30 28°C day/night cycle.
Other plants were grown in the Texas Tech University greenhouse: natural CO and illumination; approximately 32/22°C day/night cycle; 2 gallon pots; irrigation 2-3x daily; slow-release fertilizer in the soil and soluble fertilizer applied lx weekly.
All open bolls were harvested from each plant from which seed and fiber parameters were evaluated. Lint fiber was removed from the seeds by hand-stripping. Cotton seeds are covered with lint fiber (the long fiber used for textiles) and fuzz fiber (short fibers used in various industrial applications). (Lint) fiber weight and fuzzy seed weight from each plant was determined by weighing. Hereafter, 'fiber' refers to lint fiber, with fuzz fiber specified when necessary. Seed number per plant was determined by counting. (Seeds and fiber of underdeveloped "motes" were not included.) Fiber was sent to Cotton Incoφorated, Raleigh, NC for HVI, AFIS, and Mantis fiber quality analysis. Seeds from the 30/15°C chamber were subsequently acid-delinted, air-dried, and weighed. From this chamber, fuzz fiber weight per seed was determined by subtraction of the weights of fuzzy and delinted seeds. For plants for which stem weight was determined, any unopened bolls and leaves and petioles were removed. Above-ground stems were oven-dried and weighed.
The plant line used is a Coker 312 wild-type (untransformed parent) and four transgenic lines. Transgenic plant lines, each known to represent separate transformation events, are designated 13-3a, 225-17a, 40-4b, and 40-6a. TO, TI, or T2 represent primary transformants and the first and second filial generations, respectively. All transgenic plants tested were Kanamycin resistant as determined from formation of lateral roots of germinating seedlings within agar containing Kanamycin. The segregation ratio of seeds germinated on kanamycin is expressed as resistant/sensitive ratio (Table 1). Ratios were assessed after 7 - 14 days to include most slow-germinating seeds.
The number of individual plants grown in the Phytotron to yield average data for each parameter (except for 40-6a-4) is indicated as Phytotron Plants (n) (Table 2). Line 40-6a-4, although it generally performed consistently with the other lines, was omitted from fiber quality averages because it was represented by only one plant in the 30/15°C, 360 ppm CO chamber. Values from two T2 lineages of line 40-4b were averaged together because Tl#l and Tl#4 are similar siblings (except for segregation ratio) that generated similar T2 progeny.
Leaf and fiber RNA levels were determined by Northern analysis of the mRNA for foreign SPS in the leaf, scored as positive or negative (Table 1 ). Extractable SPS activity (production of sucrose) is standardized as μmol sucrose/mg chlorophyll/hour for leaf activity or as μmol sucrose/mg protein/hour for fiber activity (Table 1).
The Boll # per Plant is the number of non-aborted bolls on each plant.
The Delinted Seed Weight per Seed (g) and (Lint) Fiber Weight per Seed (g) (Table 2) are data derived from all open bolls of each plant at the time the experiment was terminated. Under 30/28°C, all bolls had opened, but under 30/15°C, some unopened bolls were left on each plant at termination. Each data point represented 192 - 487 seeds yielding 24.5 - 48.5 g lint fiber.
Bulk (or bundle) fiber properties as determined by automated HVI and AFIS testing are summarized in Tables 3 and 4. The fiber micronaire (by HVI) is a unitless measurement that depends both on fiber maturity (or wall thickness determined by secondary wall cellulose content) and fiber diameter. Fiber bundle strength (by HVI) is expressed in units of (cN/tex). It is the specific strength of the fiber bundle is which the individual fiber fineness (tex) is calculated from the Micronaire value.
Fiber fineness (by AFIS) is expressed as (mTex). It represents the weight, in milligrams, of one kilometer of the fiber. One thousand meters of fibers with a mass of 1 milligram equals 1 millitex.
The fiber maturity ratio (by AFIS) is an expression of the degree of cell wall thickening (depending on secondary cell wall cellulose deposition). It is the ratio of fibers with a 0.5 (or more) circularity ratio divided by the amount of fibers with 0.25 (or less) circularity. (Fibers with thicker walls are less prone to collapse and remain more circular upon drying.) The higher the maturity ratio, the more mature the fibers are and the better the fibers are for dyeing.
The immature fiber content ("IFC%", by AFIS) is the percentage of fibers with less than 0.25 maturity. The lower the IFC%, the more suitable the fiber is for dyeing. Several different units are used as indicators of fiber length. Table 3 shows values for three of these as now described. Upper half mean ("UHM", by HVI) is the mean length of the longest one half of the fibers (weight biased). The fiber Uniformity Index ("UI", by HVI) expresses the ratio of the mean value (Mean Length) to the Upper Half Mean Length. It is a measure of the fiber length scatter within the population; if all fibers were the same length UI would equal 100%. Short Fiber Content ("SFC %", by HVI) is the percentage of fibers less than 1/2" long on a weight basis. HVI is thought to measure Short Fiber Content as determined by genetics only since the measurement does not impose additional potential fiber breaking stress.
Other fiber length indicators discussed in the text are as follows. The weight basis length ("L(w)" [in], by AFIS] is the average length of fibers calculated on a weight basis. The number basis length ("L(n)" [in], by AFIS) is the mean length of fibers calculated by number. The length "L5% (n)" [in] (by AFIS) is the 5% span length, or the length spanned by 5% of the fibers when they are parallel and randomly distributed. The length "L2.5% (n)" [in] (by AFIS) is the 2.5% span length, or the length spanned by 2.5% of the fibers when they are parallel and randomly distributed. The "UQL (w)" [in] (by AFIS) is the upper quartile length of fibers by weight, or the length exceeded by 25% of the fibers by weight. Finally, the "SFC (n)" [in] and "SFC (w)" [in] (by AFIS) are the percentage of fibers less than 0.50 inches long on a number and weight basis, respectively. In contrast to HVI, AFIS beats the fibers before taking these measurements, which has potential to cause fiber breakage. Therefore, AFIS SFC values are a good indication of the characteristics of the fiber after normal processing.
Single fiber strength and elongation parameters derived from Mantis testing are summarized in Table 5. "Tb" [g] is grams of force to break a single fiber. "Elongation" [%] is single fiber elongation before break as % of original length. "Work" [μJ] is a composite of Tb and Elongation, representing the work expended to break a single fiber.
Detailed methods for particular experiments are included under the Examples.
Example 2 - Summary of Results Demonstrating Increased Fiber and Seed Yield in Transgenic Plants with Increased SPS Activity
Transgenic cotton plants with spinach SPS under the control of a constitutive promoter showed foreign gene expression in the leaf and fiber as demonstrated by Northern analysis. At the T1/T2 generation, they showed average increased SPS enzyme activity of 3.3 times and 2.3 times in the leaf and fiber, respectively, compared to parental C312 (Table 1). In this and all following tables, values indicating superior features of transgenic plants compared to parental C312 are shown in bold.
Table 1
Characterization of Spinach SPS gene expression and Total SPS Activity in Transgenic Plants
Figure imgf000027_0001
a Value measured and used for TO comparisons. b Value measured and used for TI and T2 comparisons. c Excludes values for line 40-6a and uses a composite average value for line 40-4b to parallel the procedures used in analysis of fiber quality data.
Over the first 9 weeks of growth in the 30/15°C, 360 ppm CO2 Phytotron chamber during which plant height and leaf number were measured, the transgenic lines grew similarly to parental C312. The average height of the transgenic plants was 0.90 x the value for parental C312. The average leaf number of the transgenic plants was 1.02 x parental C312.
In the 30/15°C, 360 ppm CO2 Phytotron chamber, up-regulated SPS gene expression caused increases in yield components of the fiber and seed crop (Table 2). Table 2
Yield Components of SPS Transgenic Plants Compared to Parental C312 (at 30/15°C and 360 ppm CO2)
Figure imgf000028_0001
aAverage omits line 40-6a because of few replications.
Both cotton fiber and cotton seeds are valuable crops, the lint fibers for use in textiles and other applications and the seeds as a source of oil and seed meal. In addition, short fuzz fibers (also called linters) are harvested as a source of chemical cellulose, among other uses. Increases were observed in number of bolls per plant, seed weight per seed, fiber weight per seed, and fuzz fiber weight per seed. Boll number per plant indicates overall capacity for production of seeds with attached fiber. Furthermore, increased weight of seed and fiber per seed generates increased yield. Transgenic plants over-expressing SPS achieve increased yield of two types of crops at the same time: seed yield based primarily on storage of protein and oil and fiber yield based on storage of cellulose. Therefore, plants that over-express SPS can be predicted to generate more income per acre for the cotton producer based on crop yield alone. Coker 312 plants over-expressing SPS can also be used for future transformations to help overcome any potential yield drag from use of this old cultiver in genetic engineering. Seed and fiber yield can be maximized at the same time in other crop plants, and stiffer stems can be generated to resist lodging without sacrifice of seed yield.
Increased Boll Number per Plant:
Three transgenic lines tested in the 30/15°C, 360 ppm CO2 chamber with good replication showed 14 - 24% increase in boll number per plant compared to parental
C312, with an average increase of 18% (Table 2). Increased boll number of all transgenic lines was also observed in the 30/15°C, 700 ppm CO2 and 30/28°C, 700 PPM CO2 chambers.
Increased Fiber Weight per Seed:
Three transgenic lines tested in the 30/15°C, 360 ppm CO chamber showed 21 - 34% increase in fiber weight per seed compared to parental C312, with an average increase of 25% (Table 2, Fig. 5). This effect was not consistently observed in other chambers. Fiber weight per seed is a composite of fiber number, fiber length, and fiber wall thickness. Since average fiber micronaire (indicating increased wall thickness) and other related factors do increase in all transgenic lines across all chambers (see below), one may infer that unmeasured factors such as changing fiber number might impact fiber weight per seed under nearly constant warm temperature or elevated CO .
A measurement sometimes taken in lab-based yield analysis is "lint %" = (lint fiber weight)/(total seed and lint fiber weight). This parameter increases 1.8 - 2.7% for three transgenic lines above the parental C312 value of 31.14% (average increase for transgenics of 2.1 %). This value under-estimates fiber yield improvement in transgenic lines because seed weight also increases (see below).
Increased Seed Weight per Seed: Three transgenic lines tested in the 30/15°C, 360 ppm CO2 chamber showed 11 -
22%) increase in delinted seed weight per seed compared to parental C312, with an average increase of 18% (Table 2, Fig. 6). Only fuzzy seeds have been weighed from other chambers. However, comparing fuzzy and delinted values from the 30/15°C, 360 ppm CO2 chamber indicates that fuzzy seed values are representative of the trends in seed yield. Fuzzy seeds showed increased seed weight per seed in the transgenic lines growing in the other three chambers with only one exception (225-17a showed seed weight per seed equal to parental C312 in the 30/28°C, 700 ppm CO chamber).
The ratio of Fiber Weight per Seed to Delinted Seed Weight per Seed in the 30/15°C, 360 ppm CO chamber was increased by an average of 9.0% in three transgenic lines (Fig. 7). A scatter plot of fiber weight per seed vs. delinted seed weight per seed shows that transgenic plants separate from parental C312 through increases in both of these yield components together (Fig. 8). However, there is preferential enhancement of fiber weight compared to seed weight in SPS transgenic plants.
Increased Fuzz Fiber Weight per Seed:
Fuzz fiber weight per seed was obtained by subtracting the unit seed weight of delinted seed from the unit seed weight of fuzzy seeds from the 30/15°C, 360 ppm CO chamber (Fig. 9). Two transgenic lines (225- 17a and 40-4b) showed increases (averaging 19% increase compared to parental C312) and one transgenic line (13-3a) showed a decrease (19% decrease compared to parental C312). Seeds of line 13-3a also looked blacker before delinting, suggesting initiation of fewer fuzz fibers than on seeds of either parental C312 or the other two transgenic lines. Therefore, transgenic lines show some variation in numbers of fuzz fibers initiated, but, once initiated, over-expressed SPS enhances their yield similarly to lint fibers.
Example 3 - Summary of Results Demonstrating Increased Fiber Quality as Analyzed by Automated HVI and AFIS on Bulk Samples Many spinning properties of cotton depend on its properties as a bulk sample.
HVI and AFIS are automated systems that analyze these properties, yielding complementary information. These analyses show that the quality parameters of fiber produced by SPS transgenic plants are moving as a set into the premium quality range. Fiber from SPS transgenic plants is longer, stronger, and more mature — all these features are currently valued by the cotton processing and textile industries to make high quality fabrics. Even under a stressful 30/15-19°C temperature cycle typical of the Texas Southern High Plains, the quality of fiber from SPS transgenic plants resembles that of premium cotton such as is traditionally grown in California. Therefore, cotton fiber from SPS transgenic plants can serve an expanded set of end-use markets and sell for a premium price. Producers growing SPS transgenic cotton should also be able to avoid price discounts for inferior quality such a low micronaire that can result from traditional cotton grown on the Texas Southern High Plains. Therefore, SPS transgenic cotton should stabilize or enhance income per acre for the cotton producer based on improved fiber quality.
Improvements Under 30/15°C, 360 ppm CO?.:
Key bulk fiber quality parameters from fiber grown in the 30/15°C, 360 ppm CO2 chamber and analyzed by HVI and AFIS are shown in Table 3. Factors of increase for transgenic lines over parental C312 are shown in Table 4.
Table 3
Fiber Quality Parameters of SPS Transgenic Plants Compared to Parental C312
(at 30/15°C and 360 ppm CO2)
Figure imgf000031_0001
'Average omits line 40-6a because of few replications. Table 4
Changes in Fiber Quality Parameters of SPS Transgenic Plants (at 30/15°C and 360 ppm CO2)
(Values are shown normalized to C312-wt values set to 1.0 or as % changes from parental C312 values.)
Figure imgf000032_0001
a Average omits 40-6a because of few replications.
Micronaire. Three transgenic lines showed an average increase of 28% to attain an average micronaire of 4.72 (Fig. 10). Micronaire depends on secondary wall thickness and fiber diameter. It is desirable that increases in micronaire occur because of increased secondary wall thickness, not because of increased fiber diameter. The fiber diameter is estimated from the standardized relationship between Fiber Fineness and Fiber Maturity Ratio (Table 3) and found to be little-changed in transgenic lines. Both parental C312 and the transgenic lines had estimated fiber diameter between 16.5 - 17.0 μm. Furthermore, a plot of Micronaire vs. Fiber Weight per Seed shows an interdependence at the 59% level (Fig. 11), supporting the existence of thicker walls in fibers of SPS transgenic plants. Other data on fiber strength, maturity ratio, and immature fiber content (see below) also support an increase in wall thickness of fiber from SPS transgenic plants. Over 90% of the thickness of the cotton fiber wall is due to deposition of almost pure cellulose in the secondary cell wall. Therefore, over-expression of SPS has increased the cellulose content of cotton fibers.
Fiber Bundle Strength. Three transgenic lines showed an average increase of 12% to attain an average bundle strength of 30.3 cN/tex. Fiber Fineness. Three transgenic lines showed an average increase of 8% to attain an average fineness of 180. Higher fiber fineness is traditionally undesirable because it is usually attributed to larger fiber diameter. However, since fiber of SPS transgenic plants has diameter approximately equal to parental C312 (see above), the increased fineness is likely attributable to increased fiber wall thickness yielding more weight per unit length. Therefore, increased fineness of fiber from SPS transgenic plants is expected to be a neutral or positive fiber quality factor.
Fiber Maturity Ratio. Three transgenic lines showed an average increase of 7% to attain an average maturity ratio of 0.95, which falls in the "above average" range (0.95 - 1.00). This is superior to parental C312 with its average value of 0.89 in the "mature" range (0.85 - 0.95).
Immature Fiber Content. Three transgenic lines showed an average decrease of 1.84% to attain an average of 5.61% immature fibers. Transgenic fibers are superior to those of parental C312, which contain an average of 1.45% immature fibers.
Fiber length. Three transgenic lines showed an average increase in Upper Half Mean length of 10% to attain average UHM of 1.14 inches. The three lines also have more uniform fiber length, with average Uniformity Index increased 4.1% to attain average UI of 87.2%. The three lines also have fewer short fibers, with average Short Fiber Content by HVI decreasing 2.6% to attain average SFC% of 4.9 %. In addition to data summarized in Tables 3 and 4, other AFIS parameters support increased fiber length in fibers of SPS transgenic plants. For the average of three transgenic lines, L(w) increases 7% to 1.06 inches, L(n) increases 9% to 0.96 inches, UQL (w) increases 6% to 1.19 inches, L5% (n) [in] increases 6% to 1.34 inches, and L2.5% (n) increases 5% to 1.46 inches. Similarly, AFIS showed that on average three transgenic lines had decreased short fiber content with SFC% (w) decreasing 1.0% to 3.1% and SFC% (n) decreasing 2.0% to 10.6%. (These AFIS SFC% averages omit the values from one plant of line 40- 4b because they were extreme outliers that greatly skewed the averages away from the values for the other four plants in the line.) Since AFIS beats the fibers before taking the measurement, these reduced SFC% values are good indications for improved utility of fibers from SPS transgenic plants in normal fiber processing.
Improvements Under Diverse Environmental Conditions:
Many fiber quality parameters were enhanced most for transgenic lines compared to parental C312 in the 30/15°C, 360 CO ppm chamber, which was the only typical growing condition for cotton tested. However, fiber quality was also maintained or enhanced in transgenic plants growing in the other Phytotron chambers where temperature was varied from 30/15°C to 30/28°C and/or CO2 was varied from 360 ppm to
700 ppm. This is demonstrated by transgenic values and change from values for C312 of fiber quality data from the three transgenic lines growing in the other three chambers averaged together, excluding the 30/15°C, 360 ppm chamber that has been summarized independently. Over-expression of SPS maintains especially strong effects on Micronaire and average fiber length, L(n), with parallel consistent effects on UI and SFC.
Micronaire. 4.65; 1.13x compared to the C312 average value.
Fiber Bundle Strength. 30 cN/tex; 1.02x.
Fiber Maturity Ratio. 0.92, 1.03x.
Immature Fiber Content. 6.69%; decreased 1.1%. Length (n). 0.95 inches; 1.08x.
Upper Quartile Length. 1.21 inches; 1.03x.
Fiber Uniformity Index. 87.7%; increased 1.3%.
Short Fiber Content (w) by HVI. 3.77%; decreased 1%.
Short Fiber Content (w) by AFIS. 3.95%; decreased 1.75%.
Changes within each plant line are compared in average values for the quality parameters of Micronaire, UHM, UI, bundle strength, SFC%, UQL, L(n), IFC%, and maturity ratio when 30/15°C changed to 30/28°C (at 360 ppm CO2) or 360 ppm CO2 changed to 700 ppm CO2 (at 30/15°C). These calculations show that over-expression of SPS in transgenic lines promotes nearly maximum increases in fiber quality even at the most limiting 30/15°C, 360 ppm CO2 condition. In contrast, raising the minimum temperature or the CO2 level substantially enhanced the Micronaire, UHM, UI, and bundle strength of parental C312. Therefore, high fiber quality in SPS transgenic plants is more independent of environment. Example 4- Summary of Results Demonstrating Increased Fiber Quality as Analyzed by Mantis Single Fiber Tests
Cotton fibers with higher individual fiber strength are highly valued by the textile industry because they break less frequently during processing. Therefore, average fiber length can be maintained at a higher value throughout processing and higher quality fabrics can be manufactured with fewer defects. Increasing individual fiber strength is a major goal of the cotton industry.
Mantis tests to determine single fiber strength were run on 100 fibers (two independent groups of 50 fibers each) from at least 4 plants from each plant line. Therefore, data in Table 5 are averages from at least 400 total fibers from each plant line.
Table 5
Single Fiber Strength of SPS Transgenic Plants Compared to Parental C312
(at 30/15°C and 360 ppm CO2)
Figure imgf000035_0001
Tb: grams of force to break a single fiber
Elong %: single fiber elongation before break as % of original length
Work: a composite of Tb and Elongation = work expended to break a single fiber
XX S.D: Standard deviation of the value
XX S.D. %: % of the actual value represented by the standard deviation value
Table 5 shows that single fiber strength as manifested in Tb, Elongation, and Work is consistently improved in all 3 transgenic lines compared to parental C312. On average in three transgenic lines, Tb is increased 24% to 6.56 g (Fig. 12), Elongation is increased 1.94% to 16.99% (Fig. 13), and Work is increased 29% to 17.10 μj (Fig. 14). (HVI did not show any increase in Elongation % of transgenic lines compared to parental C312 because the bundle-based HVI test will reflect only the elongation of the weakest fibers in the bundle.) Also, the standard deviation is a lower percentage of the transgenic single fiber strength values (averaging 14.6% lower for Work), demonstrating improved uniformity of single fiber strength. (Results of Mantis single fiber tests are expected to have high standard deviations).
The scatter plots in Figs. 15 - 19 show correlations between single fiber strength parameters and Micronaire or Fiber Weight per Seed from the 30/15°C, 360 ppm CO chamber. These illustrate positive correlations between Tb and Work and Micronaire and Fiber Weight per Seed (Figs. 15-18). In contrast, no positive correlations were observed between Elongation and Micronaire (Fig. 19) or Fiber Weight per Seed. Coefficients of determination show that 39 - 68%) of the increases in Tb and Work are determined by increases in Micronaire and Fiber Weight per Seed. These positive correlations are primarily determined by distinctly separated groups of data points from the fibers of SPS transgenic plants. This point is emphasized by Table 6 showing coefficients of determination (R2) for each plant line considered separately. In contrast to the transgenic lines, parental C312 shows no substantial, positive R values. Therefore, over-expression of SPS causes increased values of Micronaire in transgenic fibers that are correlated with increased values of single fiber strength compared to parental C312.
Table 6
Coefficients of Determination (R2) from Linear Regression Plots of Single Fiber Strength Parameters of Individual Plant Lines Plotted Against
Micronaire and Fiber Weight Per Seed
Figure imgf000036_0001
The substantial positive correlations with Tb and Work for both Micronaire (in 3 transgenic lines) and Fiber Weight per Seed (in 2 transgenic lines) support the fact that the increases in Fiber Weight per Seed and Micronaire are due to increased cellulose deposition in the fiber wall. Increase in Fiber Weight per Seed due to increased fiber number or increase in Micronaire due to increased fiber diameter would not result in an increase in single fiber strength. (Note that fiber number per seed cannot be determined, whereas the data allow one to predict by standard methods that fiber diameter has not changed.) However, the lack of complete correlation between single fiber strength values and Micronaire and Fiber Weight per Seed suggests that over-expression of SPS also contributes independently to increased single fiber strength, with 52 - 61% of the increased work values being explained by factors other than increased wall thickness. Also, the tendency for elevated Elongation in transgenic fibers is, as expected, independent of increased cellulose content of the fiber wall. (Elongation is highly dependent on the orientation of cellulose microfibrils within the fiber wall.) This point is emphasized by comparing line 13-3a with other transgenic lines.
Example 5 - Photosynthetic Efficiency Under Cool Night Temperatures
Over-expression of SPS in the leaves increases tolerance to cool nights by maintaining photosynthetic rates equal to warm-grown plants during the warm days following a 15°C night. In contrast, untransformed cotton shows reduced photosynthetic rate in the warm day following a cool night. Transgenic plants and parental C312 plants growing in the Phytotron were assayed for photosynthetic efficiency between 7 - 14 weeks of age. The first fully expanded leaf from the apex (judged by dark green color, shape, and size—the 3rd or 4th leaf down) was clamped and assayed for photosynthetic efficiency using a ADC LCA-4 analyzer under variable internal CO2 concentrations. Plants growing at 30/28°C were assayed between 7 - 10 weeks of age and plants growing at 30/15°C were assayed between 10 - 14 weeks of age. In the earliest case, the plants would have been exposed to the experimental conditions for about 4 weeks. The plants were assayed at 30°C and at 4 h into the photoperiod, which also represented 3 h after complete rewarming from 28°C or 15°C to 30°C. Two plants were assayed for each line in each chamber. The graphs show photosynthetic rates over a range of internal CO concentrations for parental C312 (Fig. 21) and two transgenic lines, 13-3a-l (Fig. 22) and 225- 17a (Fig. 23). Normal atmospheric CO concentration corresponds to internal CO concentration of about 270 μL L"1. Each graph is a compilation of four scatter plots, one for each plant of the line that was tested. The relative placement of empty symbols (30/15°C condition) and filled symbols (30/28°C condition) should be compared between the lines. Comparing photosynthetic rate below internal CO2 concentrations of 500 μL L ', all four plants in the two transgenic lines tested maintained, when growing under a 30/15°C cycle, the same photosynthetic rate during the warm day as was observed for plants growing under 30/28°C cycling. In contrast, parental C312 showed the expected cool-night-induced reduction in photosynthetic rate, even though the assay was always done during the warm day. For three of the four transgenic plants tested, this difference was maintained at all internal CO concentrations tested.
The variability in plant age at the time of assay between 30/15°C and 30/28°C chambers means that the comparisons between temperature cycles should be considered tentative. However, use of the same type of leaf from actively growing plants in each case supports their usefulness.
It is not yet known why plants over-expressing SPS fail to acclimate photosynthesis in response to chilling as occurs in parental C312. Future analyses of leaf carbohydrate content will indicate whether more sucrose is synthesized during the warm day in transgenic plant leaves, which, coupled with higher rates of photosynthesis, might result in greater carbohydrate export from leaves to developing fibers during the day than occurs in parental C312. Such a mechanism could contribute to the increased seed and fiber yield and fiber quality of plants over-expressing SPS. It has also been observed that transgenic plants over-expressing SPS store less starch in their hypocotyls than parental C312. This indicates another source of extra carbohydrate that could help increase seed and fiber yield and fiber quality.
Example 6 - Shift of Metabolic Flux Toward Cellulose in Sink Cells
Tables 2 and 3 show that fiber properties depending on cellulose content, including fiber weight/seed, micronaire, and fiber maturity ratio, increase in transgenic plants when SPS activity is elevated both in the leaves and the fibers. Therefore, with whole-plant analyses, one cannot judge whether these improvements are aided by enhanced export of sucrose from the leaves to the fibers or enhanced synthesis of sucrose in fiber (sink) cells, or both. Since cellulose synthesis has been proposed to use sucrose as an obligatory substrate from which UDP-glucose is generated by the enzyme sucrose synthase, SPS within sink cells can promote metabolic flux toward cellulose by one or both of two mechanisms. SPS could resynthesize sucrose within sink cells because translocated sucrose is cleaved before or soon after entering them, and/or SPS could reuse the fructose released by the activity of sucrose synthase to synthesize more sucrose (Fig- 2).
Evidence that metabolic flux toward cellulose synthesis is enhanced in cellulose- storing sink cells (represented by cotton fibers) by over-expression of SPS was obtained from cotton ovules with attached developing fibers cultured in vitro. Cultured ovules/fibers are a non-photosynthetic system that uses external glucose in plant tissue culture medium as a carbon source to support metabolism required for seed and fiber maturation. Accepting that sucrose is an obligatory substrate for fiber cellulose synthesis, SPS synthesizes sucrose within tissue-cultured ovules/fibers supplied only with glucose. SPS could also reuse the fructose released by the activity of sucrose synthase to synthesize more sucrose. Positive effects of SPS over-expression observed in this system are necessarily independent of photosynthesis. However, the substrate supply in this tissue culture system is constant, implying that it is not possible to exclude enhanced supply of sucrose due to enhanced SPS expression in leaves or decreased starch storage in hypocotyls as also important in improvements observed in whole plants
Plants yielding the results in Table 7 were flowering in the greenhouse between July and December. Ovules were dissected from flowers and cultured at 34°C on 1 DPA. The ovules of one flower were split between the 34°C and 15°C comparison in each case. Comparison within one flower better controlled the variability that was observed in the rates of cellulose synthesis on 21 DPA between cultures from different flowers of the same plant line. Each test at each temperature included 12 - 18 ovules split between three replicate dishes. Cultures were shifted from constant 34°C to a 34/15°C 12h/12h cycle on 18 DPA when secondary wall deposition had commenced. C-glucose was used to label developing ovules and fibers on 21 DPA at 34°C and 15°C. Therefore, the cultures had 3 days to adjust to exposure to 15°C, and on 21 DPA the 15°C assay was run 4 h after the shift to 15°C. Cultures of parental C312 treated identically were almost always assayed in parallel with transgenic plant lines.
Rates of respiration ( CO evolution) and rates of crystalline cellulose synthesis (14C-cellulose remaining insoluble after boiling in acetic/nitric reagent) were determined at both temperatures. Metabolic activity of ovules (seeds) and cotton fibers is combined in the resulting data. However, previous work in which ovules and fibers were separated after the assay was completed demonstrated that under 34/15°C conditions, 82% of the
/ total cellulose dpm (in ovules + fibers) was attributable to the fibers alone.
From the 14CO and 14C-cellulose data, four values were calculated for each plant line: (1) R% - a percentage derived from the 15°C/34°C ratio of dpm 14CO2 trapped on a
KOH-soaked filter paper in the incubation chamber; (2) C% - a percentage derived from the 15°C/34°C ratio of dpm 1 C-cellulose remaining insoluble after boiling in acetic/nitric reagent; (3) C/R15 - the ratio between dpm 14C-cellulose and dpm 14CO at 15°C; and (4)
C/R34 - the ratio between dpm 14C-cellulose and dpm 14CO2 at 34°C. R% and C% describe the proportion of the 34°C rate of respiration or cellulose synthesis, respectively, that can be maintained at 15°C. C/R15 and C/R34 describe the proportion of metabolic flux directed toward cellulose synthesis vs. respiration at 15°C or 34°C, respectively.
Results from parental C312 and 7 transgenic lines tested with good replication in parallel are shown in Table 7 with values considered higher than parental C312 shown in bold.
Table 7
Data Calculated From Rates of Cellulose Synthesis and Respiration at 34°C and 15°C in in vitro Cultures
Figure imgf000040_0001
indicates lines shown in the Phytotron to have improved fiber quality.
The data in Table 7 show that over-expression of SPS reduces R% in 6 of 7 transgenic lines tested in parallel compared to parental C312. This is paralleled by an increase in C% in 5 of 7 transgenic lines tested, meaning that most SPS transgenic lines are able to synthesize cellulose more efficiently at 15°C than parental C312. Correspondingly, the ratio of cellulose synthesis rate to respiration rate at 15°C (C/R15) increases in 5 of 7 transgenic lines tested. One transgenic line showed an increase in C/R3 . Transgenic line 13-3a that showed improved fiber quality in the Phytotron did not show improvement in this assay except for reduction of R%. Perhaps this is because secondary wall production proceeds less vigorously in vitro than in planta.
Example 7 - Higher Rate of Weight Gain in Sink Cells (Cotton Fibers) During Primary and Secondary Wall Deposition
The in vitro ovule/fiber culture system has provided direct evidence that over- expression of SPS in sink cells can lead to higher rates of fiber weight gain at both warm and cool temperatures by mechanisms independent of photosynthesis.
Ovules of transgenic and control C312 were cultured in vitro at constant 34°C or cycling 34/15°C from the beginning of culture. Ovules/fibers (8-10 per data point) were harvested from parallel cultures (containing equal representation of 5-8 flowers from at least 3 plants) at intervals during fiber maturation (12 - 45 DPA). Fibers were stripped from ovules, oven-dried, and weighed. Fiber weight was plotted against time and the slope of weight gain during the period of high-rate secondary wall cellulose synthesis was determined under both temperature regimes. A ratio for the 34/15°C:34°C slopes within one plant line was also calculated, which will normalize for any inherent differences in rates of fiber weight gain in cultures of particular lines. For most plant lines tested, several replications of the experiment were conducted at various times allowing average slopes to be compared. A second experiment during a second compressed time interval included 3 complete time-course replications of fiber weight gain in the transgenic plant lines grown in the Phytotron, plus line 38-4a-l . The results of this second experiment, which indicate the repeatability of this assay, are shown as separate italic entries in the table. Values substantially greater than are found in the C312 parental line are highlighted in bold in Table 8. Table 8 Rates of Cellulose Deposition in Fibers Cultured in vitro at 34°C or 34/15°C
Figure imgf000042_0001
*Tested at the Phytotron; showing improved fiber quality.
KS* *; ^ kanamycin-sensitive sibling of the kanamycin-resistant plant described immediately above; the kanamycin-sensitive sibling from a population of segregating seeds is expected not to carry a copy of the foreign genes. Note that the slopes from the kanamycin-sensitive and kanamycin-resistant siblings of 40-4b-2 are almost identical, and the differences between these and slopes from the parental C312 cannot be related to expression of the foreign gene.
Line 40-6a and 40- 17a are listed together and counted as one line because they likely represent the same transformation event based on derivation from the same parent callus and the same segregation ratio at TI . Two of the transgenic lines (414- la and 619- la) had rates of fiber weight gain at 34°C higher than parental C312, and several more had higher rates than and the non-SPS- expressing transgenic line, 40-4b-2-KS. Four transgenic lines (13-3a, 58-3a, 414-la, and 619- 1 a) had rates of fiber weight gain at 34/15°C higher than parental C312. Three transgenic lines (13-3a-l, 40-6a-l = 40-17a-6, 58-3a) had a ratio for the 34/15°C:34°C slopes higher than parental C312 and the non-SPS-expressing transgenic line, 40-4b-2- KS. Lines 414-la and 619-la do not stand out in analysis of slope ratios because of greater slopes at both 34°C and 34/15°C, but these are promising lines for future fiber quality analysis. Some of the lines tested at the Phytotron and shown to have improved fiber quality are superior to parental C312 in this test. The lack of complete consistency may be due to the fact that secondary wall production proceeds less vigorously in vitro than in planta.
From replicated time-courses of fiber weight gain, absolute values of fiber dry weight were also compared at 15 DPA (end of primary wall deposition) and 30 DPA (after extensive secondary wall deposition) in the transgenic plant lines grown in the Phytotron, plus line 38-4a-l. Each data point is the average from three experiments, including fiber from a total of 24 - 30 ovules representing 15 - 24 flowers from 4 - 6 plants per line. The results are shown in Table 9.
Table 9 Weights of Fiber (mg/ovule) from in vitro Cultures
Figure imgf000043_0001
*Tested at the Phytotron; showing improved fiber quality. At 15 DPA, four transgenic lines show consistently greater weight gain than parental C312 under 34/15°C, and three of the four transgenic lines show greater weight gain under constant 34°C. The ratio of 34/15°C to 34°C weights is greater in all four transgenic lines, demonstrating improved fiber production in SPS transgenic plants under adverse cool temperatures by mechanisms independent of photosynthesis. At 15 DPA, fiber dry weight is composed mostly of primary walls, and greater fiber weight could be due to greater fiber length or greater primary wall thickness, or both.
At 30 DPA, one transgenic line shows greater fiber weight gain than parental C312 under 34/15°C. Two transgenic lines show greater ratio of 34/15°C to 34°C weights. Fiber dry weight at 30 DPA is largely cellulose. Therefore, SPS over- expression within transgenic fibers promotes cellulose deposition, including its deposition under adverse cool temperatures. The inconsistency of results for transgenic lines at 30 DPA is likely explained by the fact that secondary wall deposition in vitro is more hindered than fiber lengthening. However, all the transgenic lines tested in the Phytotron and showing improved fiber quality show some improvement in this in vitro test.
Example 8 - Enhanced Stem Weight of Transgenic Cotton Plants
The positive effects of SPS over-expression on cellulose synthesis in cotton fibers extends to other fibers. Fibers make up most of the weight of annual or perennial strong stems, such as are found in mature cotton plants. Therefore, the stem weight of cotton plants grown in the Phytotron and the Texas Tech greenhouse was determined (Table 10). The conditions of the Texas Tech greenhouse were most similar to the Phytotron 30/15°C, 360 ppm CO2 chamber.
Table 10 Normalized Values for Stem Weight, Diameter, and Height
(Average values for transgenic plants are normalized to the corresponding value for the Coker 312 wild-type parent set to 1.00.)
Figure imgf000045_0001
In the Phytotron, time of stem weight determination varied somewhat between plant lines for the 30/28°C chambers because each plant was harvested shortly after all bolls on it had opened. For the 30/15°C condition, plant growth was terminated at the same time when some immature bolls remained on all plants. All plants were 6- 7 months old at time of harvest. In the Texas Tech greenhouse, parental and transgenic plants were randomized on two adjacent tables and grown for 30 weeks before simultaneous harvesting. Main stem diameter and height were also determined in the greenhouse plants.
In the Phytotron, stem weight increased by 10% or more in transgenic plants compared to parental C312 in 1 1 of 15 cases (representing the matrix of plant lines x chambers tested). The increases are particularly pronounced and consistent across three chambers for line 40-6a-4, although there were few replicate plants in the Phytotron for this line. Therefore, line 40-6a-4-3 was tested at the next generation (T3) in the Texas Tech greenhouse with more replication in parallel with parental C312 and another transgenic line, 357-6a-l at T2. Line 40-6a-4-3 again showed average increased stem weight with a similar magnitude of change as observed in the Phytotron chambers at 30/15°C and both 360 and 700 ppm CO2. In addition, line 40-6a-4-3 showed average increased stem height and stem diameter compared to parental C312 and the transgenic line 357-6a-l, which was smaller than C312. Therefore, transgenic lines do not all show increased stem weight, probably because of differences in tissue-specific gene expression. Considering the main plant stem, excluding branches that were also weighed, as a right cone with volume = πr h 3, line 40-6a-4-3 would have increased volume of 1.31 times compared to parental C312. The similarity of this to the observed weight increase of 1.27 times suggests that much of the weight increase is associated with increased volume of the main stem containing abundant fibers. The 4% difference between the theoretical prediction and the observation could be due to different degrees of branching or changes in stem density that have not been determined.
Example 9 - Increased Stem Diameter in Multiple Lines of Transgenic Cotton
In addition to line 40-6a, some stems appeared bigger than others among transgenic cotton plants growing in the greenhouse. However, these plants were of different ages. To try to quantitate this observation, electronic calipers were used to measure stem diameter approximately two inches above the soil line in all plants in the greenhouse on 9/23/98 (which did not include all the plants of interest implicated by previous studies). Date of planting was also recorded for each plant measured. By analyzing values for the Coker 312 parent and transgenic line 58-3a(2) (TI individuals, number 1 -7) that had plants of several ages in the greenhouse, the following approximate values for rate of stem diameter increase per day were estimated. The rate decreases with time because, in the 2 gallon pots used for planting, stem diameter in parental C312 plants apparently slows or stops increasing at about 5 months.
Plant Age Rate of Stem Diameter Increase
< 150 days 0.13 mm/day
160 - 200 days 0.10 mm/day
>210 days 0.06 mm/day
Of 12 independent transgenic lines analyzed (each with several replicate pots), six had average values greater than the standards established for parental C312 (or at the upper end of the range) (Table 11). Transgenic lines that did not show increased rates of stem diameter increase may express spinach SPS less strongly in their stems. Table 11
Transgenic Plant Lines with Enhanced Rates of Stem Diameter Increase in the Greehouse
Figure imgf000047_0001
Note that Table 10 confirms through a second experiment the increased rate of stem diameter increase for line 40-6a-4-3. Increased stem diameter depends on more cellulose- containing fiber within the stem. Larger stem diameter at the end of a growing period could be explained by faster rate of diameter increase or longer persistence of diameter increase in one growing season. Either case will result in more harvestable stem fiber.
Example 10 - Enhanced Conversion of Atmospheric CO2 into Harvestable Crops, Preferentially Cellulose-based Fiber
As shown in Table 12, comparison of data between the 30/15°C Phytotron chambers with 360 and 700 ppm CO demonstrates that SPS transgenic plants convert normal levels of CO2 more efficiently into cellulose-based cotton fiber. At normal levels of CO2, SPS transgenic plants are able to more nearly reach their maximum possible fiber production potential (as shown by comparative changes in Lint Fiber Weight per Seed) so that raising CO2 to 700 ppm increases their fiber wall thickness less than parental C312 (as shown by comparative changes in Micronaire). However, when stem weight is considered as an indication of production potential for all types of fiber, transgenic plants remain superior to parental C312 at 30/15°C even under elevated CO2. In contrast, raising CO2 levels at 30/15°C tended to decrease seed weight in transgenics and parental C312 (although transgenic seed weight always remained higher than in parental C312 — see Example 2).
Therefore, over-expression of SPS has a preferential effect on cotton fiber production probably due to increasing sink demand of this cellulose-based sink. SPS over-expression in fiber can, as previously demonstrated, preferentially increase metabolic flux toward cellulose and fiber weight gain. Data supporting these conclusions are shown in Table 12, which shows the percentage change in values of various parameters when CO2 was increased from 300 to 700 ppm under 30/15 °C in the Phytotron.
Table 12
Percentage Change in Various Crop-Related Attributes With Increase from 300 to 700 ppm CO2 at 30/15°C
Figure imgf000048_0001
Fiber crops that over-express SPS can convert normal CO2 more efficiently into economically valuable fiber. Such plants grown widely as crops should help to combat rising CO2 levels in the atmosphere because they immobilize CO2 into fiber cellulose with improved efficiency under normal CO2 levels, and this efficiency of production is maintained (for cotton fiber) or enhanced (for stem fiber) under elevated CO2 levels. Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions, and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the scope of the invention as defined in the claims which follow.

Claims

What is claimed:
1. A transgenic cotton plant wherein the transgenic cotton plant has an increased level of sucrose phosphate synthase relative to a non-transgenic cotton plant.
2. The transgenic cotton plant according to claim 1 , wherein the cotton plant is transformed with a chimeric DNA construct that expresses sucrose phosphate synthase.
3. The transgenic cotton plant according to claim 1, wherein the chimeric DNA construct comprises a plant specific promoter.
4. The transgenic cotton plant according to claim 1 , wherein the chimeric DNA construct is stablely integrated into the genome of the cotton plant.
5. The transgenic cotton plant according to claim 1 , wherein the chimeric
DNA construct is introduced into the cotton plant by a method selected from the group consisting of electroporation, Agrobacterium mediated transformation, biolistic gene transformation, chemically mediated transformation, and microinjection.
6. The transgenic cotton plant according to claim 1, wherein the sucrose phosphate synthase is selected from the group consisting of spinach, Arabidopsis, beet, bean, citrus, maize, moss, potato, rice, sugar cane, and Synechocystis sucrose phosphate synthase.
7. The transgenic cotton plant according to claim 6, wherein the sucrose phosphate synthase is spinach sucrose phosphate synthase.
8. The transgenic cotton plant according to claim 1, wherein cotton fibers from the plant have improved quality.
9. The transgenic cotton plant according to claim 1, wherein cotton fibers from the plant have an improved quality selected from the group consisting of increased strength, increased length, and increased micronaire, as compared to a cotton plant lacking the transgene.
10. Seed produced from the plant according to claim 1.
11. A method of increasing the yield of cotton plant comprising: introducing into a cotton plant a chimeric DNA construct capable of altering sucrose phosphate synthase activity in an amount sufficient to increase the yield of the cotton plant.
12. The method according to claim 1 1, further comprising: growing said cotton plant.
13. The method according to claim 11, wherein the yield of cotton seeds is increased.
14. The method according to claim 1 1, wherein the yield of cotton fiber is increased.
15. The method according to claim 11 , wherein the chimeric DNA construct expresses a sucrose phosphate synthase.
16. The method according to claim 15, wherein the sucrose phosphate synthase is selected from the group consisting of spinach, Arabidopsis, beet, bean, citrus, maize, moss, potato, rice, sugar cane, and Synechocystis sucrose phosphate synthase.
17. The method according to claim 16, wherein the sucrose phosphate synthase is spinach sucrose phosphate synthase.
18. The method according to claim 11 , wherein the chimeric DNA construct comprises a plant specific transcription initiation region.
19. The method according to claim 18, wherein the transcription initiation region is tissue specific.
20. The method according to claim 18, wherein the transcription initiation region is leaf specific.
21. The method according to claim 18, wherein the transcription initiation region is a RUBISCO small subunit promoter, a 35S promoter, a fiber enhanced promoter, a vascular cell enhanced promoter, a stem cell enhanced promoter, or a seed enhanced promoter.
22. The method according to claim 15, wherein the chimeric DNA construct is stablely integrated into the genome of the cotton plant.
23. The method according to claim 15, wherein said introducing of the chimeric DNA construct is into the plant is carried out by a method selected from the group consisting of electroporation, Agrobacterium mediated transformation, biolistic gene transformation, chemically mediated transformation, and microinjection.
24. A method of increasing the quality of cotton fiber produced from a cotton plant comprising: introducing into a cotton plant a chimeric DNA construct capable of altering sucrose phosphate synthase activity in an amount sufficient to increase the quality of the cotton fiber produced by the cotton plant.
25. The method according to claim 24, further comprising: growing said cotton plant.
26. The method according to claim 24, wherein cotton fiber has an improved quality selected from the group consisting of increased strength, increased length, and increased micronaire, as compared to a cotton plant lacking the transgene.
27. The method according to claim 24, wherein the chimeric DNA construct expresses a sucrose phosphate synthase.
28. The method according to claim 27, wherein the sucrose phosphate synthetase is selected from the group consisting of spinach, Arabidopsis, beet, bean, citrus, maize, moss, potato, rice, sugar cane, and Synechocystis sucrose phosphate synthase.
29. The method according to claim 28, wherein the sucrose phosphate synthase is spinach sucrose phosphate synthase.
30. The method according to claim 24, wherein the chimeric DNA construct comprises a plant specific transcription initiation region.
31. The method according to claim 30, wherein the transcription initiation region is tissue specific.
32. The method according to claim 30, wherein the transcription initiation region is leaf specific.
33. The method according to claim 30, wherein the transcription initiation region is a RUBISCO small subunit promoter, a 35S promoter, a fiber enhanced promoter, a vascular cell enhanced promoter, a stem cell enhanced promoter, or a seed enhanced promoter.
34. The method according to claim 24, wherein the chimeric DNA construct is stablely integrated into the genome of the cotton plant.
35. The method according to claim 24, wherein said introducing of the chimeric DNA construct into the plant is carried out by a method selected from the group consisting of electroporation, Agrobacterium mediated transformation, biolistic gene transformation, chemically mediated transformation, and microinjection.
36. A method of regulating the ratio of cellulose to other dry weight components of a plant, comprising: introducing into a plant a chimeric DNA construct capable of altering sucrose phosphate synthase activity in an amount sufficient to regulate the ratio of cellulose to other dry weight components of the plant.
37. The method according to claim 36, further compπsing: growing said plant.
38. The method according to claim 36, wherein the ratio of cellulose to other dry weight components of a plant is increased.
39. The method according to claim 36, wherein the chimeric DNA construct expresses a sucrose phosphate synthase.
40. The method according to claim 39, wherein the sucrose phosphate synthase is selected from the group consisting of spinach, Arabidopsis, beet, bean, citrus, maize, moss, potato, rice, sugar cane, and Synechocystis sucrose phosphate synthase.
41. The method according to claim 40, wherein the sucrose phosphate synthase is spinach sucrose phosphate synthase.
42. The method according to claim 36, wherein the chimeric DNA construct comprises a plant specific transcription initiation region.
43. The method according to claim 42, wherein the transcription initiation region is tissue specific.
44. The method according to claim 42, wherein the transcription initiation region is leaf specific.
45. The method according to claim 42, wherein the transcription initiation region is a RUBISCO small subunit promoter, a 35S promoter, a fiber enhanced promoter, a vascular cell enhanced promoter, a stem cell enhanced promoter, or a seed enhanced promoter.
46. The method according to claim 36, wherein the chimeric DNA construct is stablely integrated into the genome of the plant.
47. The method according to claim 36, wherein said introducing of the chimeric DNA construct into the plant is carried out by a method selected from the group consisting of electroporation, Agrobacterium mediated transformation, biolistic gene transformation, chemically mediated transformation, and microinjection.
48. The method according to claim 36, wherein the ratio of cellulose in dry weight components increases to exceed 40%.
49. The method according to claim 48, wherein the increase in cellulose ratio occurs in xylem cells.
50. The method according to claim 48, wherein the increase in cellulose ratio occurs in phloem cells.
51. The method according to claim 36, wherein the plant is selected from the group consisting of sugarcane, sugar beets, forest trees, forage crops, fiber producing plants, and seed producing plants.
52. A method of increasing tolerance of photosynthetic efficiency to cool night temperatures, comprising: introducing into a plant a chimeric DNA construct capable of altering sucrose phosphate synthase activity in an amount sufficient to increase tolerance of photosynthetic efficiency to cool night temperatures.
53. The method according to claim 52, further comprising: growing said plant.
54. The method according to claim 53, wherein the chimeric DNA construct expresses a sucrose phosphate synthase.
55. The method according to claim 54, wherein the sucrose phosphate synthetase is selected from the group consisting of spinach, Arabidopsis, beet, bean, citrus, maize, moss, potato, rice, sugar cane, and Synechocystis sucrose phosphate synthase.
56. The method according to claim 55, wherein the sucrose phosphate synthase is spinach sucrose phosphate synthase.
57. The method according to claim 52, wherein the chimeric DNA construct comprises a plant specific transcription initiation region.
58. The method according to claim 57, wherein the transcription initiation region is tissue specific.
59. The method according to claim 57, wherein the transcription initiation region is leaf specific.
60. The method according to claim 57, wherein the transcription initiation region is a RUBISCO small subunit promoter, a 35S promoter, a fiber enhanced promoter, a vascular cell enhanced promoter, a stem cell enhanced promoter, or a seed enhanced promoter.
61. The method according to claim 52, wherein the chimeric DNA construct is stablely integrated into the genome of the plant.
62. The method according to claim 52, wherein said introducing of the chimeric DNA construct into the plant is carried out by a method selected from the group consisting of electroporation, Agrobacterium mediated transformation, biolistic gene transformation, chemically mediated transformation, and microinjection.
63. A method of regulating the thickness of cell walls in a plant, comprising: introducing into a plant a chimeric DNA construct capable of altering sucrose phosphate synthase activity in an amount sufficient to regulate the thickness of cell walls in a plant.
64. The method according to claim 62, further comprising: growing said plant.
65. The method according to claim 62, wherein the plant is a fiber producing plant.
66. The method according to claim 62, wherein the plant is selected from the group consisting of sugarcane, sugar beets, forest trees, forage crops, fiber producing plants, and seed producing plants.
67. The method according to claim 62, wherein the chimeric DNA construct expresses a sucrose phosphate synthase.
68. The method according to claim 67, wherein the sucrose phosphate synthase is selected from the group consisting of spinach, Arabidopsis, beet, bean, citrus, maize, moss, potato, rice, sugar cane, and Synechocystis sucrose phosphate synthase.
69. The method according to claim 68, wherein the sucrose phosphate synthetase is spinach sucrose phosphate synthetase.
70. A method of increasing the harvestable yield of fiber from a fiber containing plant, comprising: introducing into a plant a chimeric DNA construct capable of altering sucrose phosphate synthase activity in an amount sufficient to increase the harvestable yield of fiber from a fiber containing plant.
71. The method according to claim 70, further comprising: growing said plant.
72. The method according to claim 70, wherein the chimeric DNA construct expresses a sucrose phosphate synthase.
73. The method according to claim 72, wherein the sucrose phosphate synthase is selected from the group consisting of spinach, Arabidopsis, beet, bean, citrus, maize, moss, potato, rice, sugar cane, and Synechocystis sucrose phosphate synthase.
74. The method according to claim 73, wherein the sucrose phosphate synthase is spinach sucrose phosphate synthase.
75. A method of increasing the harvestable yield of seed from a plant, comprising: introducing into a plant a chimeric DNA construct capable of altering sucrose phosphate synthase activity in an amount sufficient to increase the harvestable yield of seed from the plant.
76. The method according to claim 75, further comprising: growing said plant.
77. The method according to claim 75, wherein the chimeric DNA construct expresses a sucrose phosphate synthase.
78. The method according to claim 77, wherein the sucrose phosphate synthase is selected from the group consisting of spinach, Arabidopsis, beet, bean, citrus, maize, moss, potato, rice, sugar cane, and Synechocystis sucrose phosphate synthase.
79. The method according to claim 78, wherein the sucrose phosphate synthase is spinach sucrose phosphate synthase.
80. A method of altering the quality of fiber isolated from a fiber producing plant, comprising: introducing into a plant a chimeric DNA construct capable of altering sucrose phosphate synthase activity in an amount sufficient to alter the quality of fiber produced from the plant.
81. The method according to claim 80, wherein the fiber has an altered quality selected from the group consisting of increased strength, increased length, and increased weight per unit length, as compared to a plant lacking the transgene.
82. The method according to claim 80, wherein the fiber has an altered quality selected from the group consisting of decreased strength, decreased length, and decreased weight per unit length, as compared to a plant lacking the transgene.
PCT/US2000/024490 1999-09-10 2000-09-07 Transgenic fiber producing plants with increased expression of sucrose phosphate synthase WO2001017333A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP00959960A EP1220602B1 (en) 1999-09-10 2000-09-07 Transgenic fiber producing plants with increased expression of sucrose phosphate synthase
DE60030453T DE60030453D1 (en) 1999-09-10 2000-09-07 FASER-PRODUCING TRANSGENIC PLANTS WITH INCREASED EXPRESSION OF SACCHAROSEPHOSPHATE SYNTHASE
BR0013903-3A BR0013903A (en) 1999-09-10 2000-09-07 Transgenic cotton plant, seed and methods of increasing the yield of cotton plant, the quality of cotton fiber produced from a cotton plant, the tolerance of photosynthetic efficiency to cold night temperatures and the yield of fiber and seed from a plant, to regulate the ratio of cellulose to other components in a plant's dry weight and the thickness of cell walls in a plant and to change the quality of fiber isolated from a plant
AU71190/00A AU784405B2 (en) 1999-09-10 2000-09-07 Transgenic fiber producing plants with increased expression of sucrose phosphate synthase
MXPA02002497A MXPA02002497A (en) 1999-09-10 2000-09-07 Transgenic fiber producing plants with increased expression of sucrose phosphate synthase.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/394,272 US6472588B1 (en) 1999-09-10 1999-09-10 Transgenic cotton plants with altered fiber characteristics transformed with a sucrose phosphate synthase nucleic acid
US09/394,272 1999-09-10

Publications (2)

Publication Number Publication Date
WO2001017333A1 true WO2001017333A1 (en) 2001-03-15
WO2001017333A9 WO2001017333A9 (en) 2002-12-05

Family

ID=23558266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/024490 WO2001017333A1 (en) 1999-09-10 2000-09-07 Transgenic fiber producing plants with increased expression of sucrose phosphate synthase

Country Status (12)

Country Link
US (2) US6472588B1 (en)
EP (1) EP1220602B1 (en)
CN (2) CN101092632B (en)
AT (1) ATE337701T1 (en)
AU (1) AU784405B2 (en)
BR (1) BR0013903A (en)
DE (1) DE60030453D1 (en)
ES (1) ES2270869T3 (en)
MX (1) MXPA02002497A (en)
TR (1) TR200201477T2 (en)
WO (1) WO2001017333A1 (en)
ZA (1) ZA200201855B (en)

Cited By (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017157A1 (en) 2003-08-15 2005-02-24 Commonwealth Scientific And Industrial Research Organisation (Csiro) Methods and means for altering fiber characteristics in fiber-producing plants
EP1587359A2 (en) * 2003-01-08 2005-10-26 Delta And Pine Land Company Seed-oil suppression to enhance yield of commercially important macromolecules
WO2006040684A2 (en) * 2004-10-15 2006-04-20 Swetree Technologies Ab Methods for increasing plant growth
US7091398B2 (en) 2001-02-22 2006-08-15 Pioneer Hi-Bred International, Inc. Isolated sucrose sythase polynucleotides and uses thereof
EP1766058A2 (en) * 2004-06-14 2007-03-28 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
WO2006136351A3 (en) * 2005-06-24 2007-06-21 Bayer Bioscience Nv Methods for altering the reactivity of plant cell walls
EP2039771A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2039772A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants introduction
EP2039770A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2072506A1 (en) 2007-12-21 2009-06-24 Bayer CropScience AG Thiazolyloxyphenylamidine or thiadiazolyloxyphenylamidine und its use as fungicide
EP2090168A1 (en) 2008-02-12 2009-08-19 Bayer CropScience AG Method for improving plant growth
EP2168434A1 (en) 2008-08-02 2010-03-31 Bayer CropScience AG Use of azols to increase resistance of plants of parts of plants to abiotic stress
WO2010046423A2 (en) 2008-10-22 2010-04-29 Basf Se Use of sulfonylurea herbicides on cultivated plants
WO2010046422A2 (en) 2008-10-22 2010-04-29 Basf Se Use of auxin type herbicides on cultivated plants
EP2198709A1 (en) 2008-12-19 2010-06-23 Bayer CropScience AG Method for treating resistant animal pests
EP2201838A1 (en) 2008-12-05 2010-06-30 Bayer CropScience AG Active ingredient-beneficial organism combinations with insecticide and acaricide properties
EP2204094A1 (en) 2008-12-29 2010-07-07 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants Introduction
WO2010076756A2 (en) 2008-12-29 2010-07-08 Evogene Ltd. Polynucleotides, polypeptides encoded thereby, and methods of using same for increasing abiotic stress tolerance, biomass and/or yield in plants expressing same
WO2010083955A2 (en) 2009-01-23 2010-07-29 Bayer Cropscience Aktiengesellschaft Use of enaminocarboxylic compounds for fighting viruses transmitted by insects
WO2010086095A1 (en) 2009-01-29 2010-08-05 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants introduction
WO2010086311A1 (en) 2009-01-28 2010-08-05 Bayer Cropscience Ag Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives
EP2218717A1 (en) 2009-02-17 2010-08-18 Bayer CropScience AG Fungicidal N-((HET)Arylethyl)thiocarboxamide derivatives
WO2010094666A2 (en) 2009-02-17 2010-08-26 Bayer Cropscience Ag Fungicidal n-(phenylcycloalkyl)carboxamide, n-(benzylcycloalkyl)carboxamide and thiocarboxamide derivatives
WO2010094728A1 (en) 2009-02-19 2010-08-26 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
EP2223602A1 (en) 2009-02-23 2010-09-01 Bayer CropScience AG Method for improved utilisation of the production potential of genetically modified plants
EP2232995A1 (en) 2009-03-25 2010-09-29 Bayer CropScience AG Method for improved utilisation of the production potential of transgenic plants
EP2239331A1 (en) 2009-04-07 2010-10-13 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2251331A1 (en) 2009-05-15 2010-11-17 Bayer CropScience AG Fungicide pyrazole carboxamides derivatives
EP2255626A1 (en) 2009-05-27 2010-12-01 Bayer CropScience AG Use of succinate dehydrogenase inhibitors to increase resistance of plants or parts of plants to abiotic stress
WO2011006603A2 (en) 2009-07-16 2011-01-20 Bayer Cropscience Ag Synergistic active substance combinations containing phenyl triazoles
WO2011015524A2 (en) 2009-08-03 2011-02-10 Bayer Cropscience Ag Fungicide heterocycles derivatives
EP2292094A1 (en) 2009-09-02 2011-03-09 Bayer CropScience AG Active compound combinations
US7910800B2 (en) 2005-08-15 2011-03-22 Evogene Ltd. Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby
JP2011509085A (en) * 2008-01-03 2011-03-24 プロテロ インコーポレイテッド Transgenic photosynthetic microorganisms and photobioreactors
WO2011080255A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011080254A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011080674A2 (en) 2009-12-28 2011-07-07 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
WO2011080256A1 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2343280A1 (en) 2009-12-10 2011-07-13 Bayer CropScience AG Fungicide quinoline derivatives
WO2011089071A2 (en) 2010-01-22 2011-07-28 Bayer Cropscience Ag Acaricide and/or insecticide active substance combinations
WO2011107504A1 (en) 2010-03-04 2011-09-09 Bayer Cropscience Ag Fluoroalkyl-substituted 2-amidobenzimidazoles and the use thereof for boosting stress tolerance in plants
EP2374791A1 (en) 2008-08-14 2011-10-12 Bayer CropScience Aktiengesellschaft Insecticidal 4-phenyl-1H pyrazoles
WO2011124553A2 (en) 2010-04-09 2011-10-13 Bayer Cropscience Ag Use of derivatives of the (1-cyanocyclopropyl)phenylphosphinic acid, the esters thereof and/or the salts thereof for enhancing the tolerance of plants to abiotic stress
WO2011124554A2 (en) 2010-04-06 2011-10-13 Bayer Cropscience Ag Use of 4-phenylbutyric acid and/or the salts thereof for enhancing the stress tolerance of plants
EP2383345A1 (en) 2006-12-20 2011-11-02 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
WO2011134911A2 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011134912A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011134913A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011151370A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylalkyl)] pyrazole (thio)carboxamides and their heterosubstituted analogues
WO2011151369A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
WO2011151368A2 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2012010579A2 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Benzocycloalkenes as antifungal agents
WO2012028578A1 (en) 2010-09-03 2012-03-08 Bayer Cropscience Ag Substituted fused pyrimidinones and dihydropyrimidinones
WO2012038480A2 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of biological or chemical control agents for controlling insects and nematodes in resistant crops
WO2012045798A1 (en) 2010-10-07 2012-04-12 Bayer Cropscience Ag Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative
WO2012052490A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag N-benzyl heterocyclic carboxamides
WO2012052489A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag 1-(heterocyclic carbonyl) piperidines
WO2012059497A1 (en) 2010-11-02 2012-05-10 Bayer Cropscience Ag N-hetarylmethyl pyrazolylcarboxamides
WO2012065947A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazolecarboxamides
WO2012065945A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazole(thio)carboxamides
WO2012065944A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag N-aryl pyrazole(thio)carboxamides
EP2460407A1 (en) 2010-12-01 2012-06-06 Bayer CropScience AG Agent combinations comprising pyridylethyl benzamides and other agents
EP2460406A1 (en) 2010-12-01 2012-06-06 Bayer CropScience AG Use of fluopyram for controlling nematodes in nematode resistant crops
WO2012072660A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Use of fluopyram for controlling nematodes in crops and for increasing yield
AU2008255238B2 (en) * 2002-05-06 2012-06-28 Genesis Research And Development Corporation Limited Compositions isolated from forage grasses and methods for their use
WO2012089721A1 (en) 2010-12-30 2012-07-05 Bayer Cropscience Ag Use of substituted spirocyclic sulfonamidocarboxylic acids, carboxylic esters thereof, carboxamides thereof and carbonitriles thereof or salts thereof for enhancement of stress tolerance in plants
WO2012089757A1 (en) 2010-12-29 2012-07-05 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2474542A1 (en) 2010-12-29 2012-07-11 Bayer CropScience AG Fungicide hydroximoyl-tetrazole derivatives
EP2494867A1 (en) 2011-03-01 2012-09-05 Bayer CropScience AG Halogen-substituted compounds in combination with fungicides
WO2012120105A1 (en) 2011-03-10 2012-09-13 Bayer Cropscience Ag Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
WO2012123434A1 (en) 2011-03-14 2012-09-20 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012136581A1 (en) 2011-04-08 2012-10-11 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2511255A1 (en) 2011-04-15 2012-10-17 Bayer CropScience AG Substituted prop-2-in-1-ol and prop-2-en-1-ol derivatives
WO2012139892A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted 5-(bicyclo[4.1.0]hept-3-en-2-yl)-penta-2,4-dienes and 5-(bicyclo[4.1.0]hept-3-en-2-yl)-pent-2-ene-4-ines as active agents against abiotic stress in plants
WO2012139891A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted vinyl and alkinyl cyclohexenols as active agents against abiotic stress in plants
WO2012139890A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted 5-(cyclohex-2-en-1-yl)-penta-2,4-dienes and 5-(cyclohex-2-en-1-yl)-pent-2-en-4-ines as active agents against abiotic stress in plants
US8299302B2 (en) 2007-03-12 2012-10-30 Bayer Cropscience Ag 4-Cycloalkyl or 4-substituted phenoxyphenylamidines and use thereof as fungicides
WO2013004652A1 (en) 2011-07-04 2013-01-10 Bayer Intellectual Property Gmbh Use of substituted isoquinolinones, isoquinolindiones, isoquinolintriones and dihydroisoquinolinones or in each case salts thereof as active agents against abiotic stress in plants
WO2013020985A1 (en) 2011-08-10 2013-02-14 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
WO2013023992A1 (en) 2011-08-12 2013-02-21 Bayer Cropscience Nv Guard cell-specific expression of transgenes in cotton
EP2561759A1 (en) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth
WO2013026740A2 (en) 2011-08-22 2013-02-28 Bayer Cropscience Nv Methods and means to modify a plant genome
WO2013026836A1 (en) 2011-08-22 2013-02-28 Bayer Intellectual Property Gmbh Fungicide hydroximoyl-tetrazole derivatives
US8394991B2 (en) 2007-03-12 2013-03-12 Bayer Cropscience Ag Phenoxy substituted phenylamidine derivatives and their use as fungicides
WO2013034621A1 (en) 2011-09-09 2013-03-14 Bayer Intellectual Property Gmbh Acyl-homoserine lactone derivatives for improving plant yield
WO2013037717A1 (en) 2011-09-12 2013-03-21 Bayer Intellectual Property Gmbh Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives
WO2013037956A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield
WO2013037955A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of acylsulfonamides for improving plant yield
WO2013037958A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of phenylpyrazolin-3-carboxylates for improving plant yield
WO2013041602A1 (en) 2011-09-23 2013-03-28 Bayer Intellectual Property Gmbh Use of 4-substituted 1-phenyl-pyrazole-3-carboxylic-acid derivatives as agents against abiotic plant stress
WO2013050324A1 (en) 2011-10-06 2013-04-11 Bayer Intellectual Property Gmbh Combination, containing 4-phenylbutyric acid (4-pba) or a salt thereof (component (a)) and one or more selected additional agronomically active compounds (component(s) (b)), that reduces abiotic plant stress
WO2013050410A1 (en) 2011-10-04 2013-04-11 Bayer Intellectual Property Gmbh RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE
WO2013075817A1 (en) 2011-11-21 2013-05-30 Bayer Intellectual Property Gmbh Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
US8455480B2 (en) 2007-09-26 2013-06-04 Bayer Cropscience Ag Active agent combinations having insecticidal and acaricidal properties
WO2013079566A2 (en) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives
WO2013092519A1 (en) 2011-12-19 2013-06-27 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
WO2013098147A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013098146A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
US8487118B2 (en) 2009-01-19 2013-07-16 Bayer Cropscience Ag Cyclic diones and their use as insecticides, acaricides and/or fungicides
WO2013124275A1 (en) 2012-02-22 2013-08-29 Bayer Cropscience Ag Use of succinate dehydrogenase inhibitors (sdhis) for controlling wood diseases in grape.
WO2013127704A1 (en) 2012-02-27 2013-09-06 Bayer Intellectual Property Gmbh Active compound combinations containing a thiazoylisoxazoline and a fungicide
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
WO2013153143A1 (en) 2012-04-12 2013-10-17 Bayer Cropscience Ag N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides
WO2013156560A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives
WO2013156559A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives
EP2662370A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole benzofuranyl carboxamides
EP2662361A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol indanyl carboxamides
EP2662363A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole biphenylcarboxamides
EP2662364A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole tetrahydronaphthyl carboxamides
EP2662362A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole indanyl carboxamides
EP2662360A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole indanyl carboxamides
WO2013167544A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag 5-halogenopyrazole indanyl carboxamides
WO2013167545A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag Pyrazole indanyl carboxamides
WO2013174836A1 (en) 2012-05-22 2013-11-28 Bayer Cropscience Ag Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound
WO2014009322A1 (en) 2012-07-11 2014-01-16 Bayer Cropscience Ag Use of fungicidal combinations for increasing the tolerance of a plant towards abiotic stress
WO2014037340A1 (en) 2012-09-05 2014-03-13 Bayer Cropscience Ag Use of substituted 2-amidobenzimidazoles, 2-amidobenzoxazoles and 2-amidobenzothiazoles or salts thereof as active substances against abiotic plant stress
WO2014053395A1 (en) 2012-10-01 2014-04-10 Basf Se Use of n-thio-anthranilamide compounds on cultivated plants
WO2014060502A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
WO2014060518A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method of plant growth promotion using carboxamide derivatives
EP2735231A1 (en) 2012-11-23 2014-05-28 Bayer CropScience AG Active compound combinations
WO2014079820A1 (en) 2012-11-22 2014-05-30 Basf Se Use of anthranilamide compounds for reducing insect-vectored viral infections
WO2014079957A1 (en) 2012-11-23 2014-05-30 Bayer Cropscience Ag Selective inhibition of ethylene signal transduction
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
WO2014083031A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary pesticidal and fungicidal mixtures
WO2014083033A1 (en) 2012-11-30 2014-06-05 Bayer Cropsience Ag Binary fungicidal or pesticidal mixture
WO2014082950A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal mixtures
WO2014083089A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal and pesticidal mixtures
EP2740720A1 (en) 2012-12-05 2014-06-11 Bayer CropScience AG Substituted bicyclic and tricyclic pent-2-en-4-inic acid derivatives and their use for enhancing the stress tolerance in plants
EP2740356A1 (en) 2012-12-05 2014-06-11 Bayer CropScience AG Substituted (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-inic acid derivatives
WO2014086751A1 (en) 2012-12-05 2014-06-12 Bayer Cropscience Ag Use of substituted 1-(aryl ethynyl)-, 1-(heteroaryl ethynyl)-, 1-(heterocyclyl ethynyl)- and 1-(cyloalkenyl ethynyl)-cyclohexanols as active agents against abiotic plant stress
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
WO2014095677A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides
WO2014095826A1 (en) 2012-12-18 2014-06-26 Bayer Cropscience Ag Binary fungicidal and bactericidal combinations
US8785692B2 (en) 2007-03-12 2014-07-22 Bayer Cropscience Ag Substituted phenylamidines and the use thereof as fungicides
US8796175B2 (en) 2008-08-29 2014-08-05 Bayer Cropscience Ag Method for enhancing plant intrinsic defense
US8828906B2 (en) 2009-03-25 2014-09-09 Bayer Cropscience Ag Active compound combinations having insecticidal and acaricidal properties
US8828907B2 (en) 2009-03-25 2014-09-09 Bayer Cropscience Ag Active ingredient combinations having insecticidal and acaricidal properties
WO2014135608A1 (en) 2013-03-07 2014-09-12 Bayer Cropscience Ag Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives
US8835657B2 (en) 2009-05-06 2014-09-16 Bayer Cropscience Ag Cyclopentanedione compounds and their use as insecticides, acaricides and/or fungicides
US8846568B2 (en) 2009-03-25 2014-09-30 Bayer Cropscience Ag Active compound combinations having insecticidal and acaricidal properties
US8846567B2 (en) 2009-03-25 2014-09-30 Bayer Cropscience Ag Active compound combinations having insecticidal and acaricidal properties
WO2014167009A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazole derivatives
WO2014167008A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazolinthione derivatives
WO2014170364A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Binary insecticidal or pesticidal mixture
WO2014170345A2 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants
WO2014177582A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
WO2014206953A1 (en) 2013-06-26 2014-12-31 Bayer Cropscience Ag N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives
US8927583B2 (en) 2006-12-22 2015-01-06 Bayer Cropscience Ag Pesticidal composition comprising a 2-pyrdilmethylbenzamide derivative and an insecticide compound
WO2015004040A1 (en) 2013-07-09 2015-01-15 Bayer Cropscience Ag Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress
US9012360B2 (en) 2009-03-25 2015-04-21 Bayer Intellectual Property Gmbh Synergistic combinations of active ingredients
WO2015082586A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
WO2015082587A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
EP2936983A1 (en) 2014-04-25 2015-10-28 Bayer CropScience AG Compound for increase of yield in cotton
US9199922B2 (en) 2007-03-12 2015-12-01 Bayer Intellectual Property Gmbh Dihalophenoxyphenylamidines and use thereof as fungicides
WO2015118393A3 (en) * 2014-02-05 2015-12-17 University Of Calcutta Sequential enzymatic treatment of cotton
US9232794B2 (en) 2009-06-02 2016-01-12 Bayer Intellectual Property Gmbh Use of succinate dehydrogenase inhibitors for controlling Sclerotinia ssp
WO2016012362A1 (en) 2014-07-22 2016-01-28 Bayer Cropscience Aktiengesellschaft Substituted cyano cycloalkyl penta-2,4-dienes, cyano cycloalkyl pent-2-en-4-ynes, cyano heterocyclyl penta-2,4-dienes and cyano heterocyclyl pent-2-en-4-ynes as active substances against abiotic plant stress
EP2997825A1 (en) 2011-04-22 2016-03-23 Bayer Intellectual Property GmbH Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound
EP3000809A1 (en) 2009-05-15 2016-03-30 Bayer Intellectual Property GmbH Fungicide pyrazole carboxamides derivatives
EP3028573A1 (en) 2014-12-05 2016-06-08 Basf Se Use of a triazole fungicide on transgenic plants
WO2016091674A1 (en) 2014-12-12 2016-06-16 Basf Se Use of cyclaniliprole on cultivated plants
US9371564B2 (en) 2008-08-08 2016-06-21 Bayer Bioscience N.V. Methods for plant fiber characterization and identification
WO2016096942A1 (en) 2014-12-18 2016-06-23 Bayer Cropscience Aktiengesellschaft Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress
WO2016162371A1 (en) 2015-04-07 2016-10-13 Basf Agrochemical Products B.V. Use of an insecticidal carboxamide compound against pests on cultivated plants
WO2016166077A1 (en) 2015-04-13 2016-10-20 Bayer Cropscience Aktiengesellschaft N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives
US9487795B2 (en) 2009-03-02 2016-11-08 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield, biomass, oil content and/or growth rate
US9670501B2 (en) 2007-12-27 2017-06-06 Evogene Ltd. Isolated polypeptides, polynucleotides useful for modifying water user efficiency, fertilizer use efficiency, biotic/abiotic stress tolerance, yield and biomass in plants
US9763451B2 (en) 2008-12-29 2017-09-19 Bayer Intellectual Property Gmbh Method for improved use of the production potential of genetically modified plants
WO2018019676A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
WO2018054829A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives and their use as fungicides
WO2018054832A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
WO2018077711A2 (en) 2016-10-26 2018-05-03 Bayer Cropscience Aktiengesellschaft Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications
EP3332645A1 (en) 2016-12-12 2018-06-13 Bayer Cropscience AG Use of substituted pyrimidine diones or their salts as agents to combat abiotic plant stress
WO2018104392A1 (en) 2016-12-08 2018-06-14 Bayer Cropscience Aktiengesellschaft Use of insecticides for controlling wireworms
WO2018108627A1 (en) 2016-12-12 2018-06-21 Bayer Cropscience Aktiengesellschaft Use of substituted indolinylmethyl sulfonamides, or the salts thereof for increasing the stress tolerance of plants
EP3338552A1 (en) 2016-12-21 2018-06-27 Basf Se Use of a tetrazolinone fungicide on transgenic plants
DE102007045920B4 (en) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Synergistic drug combinations
DE102007045919B4 (en) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Drug combinations with insecticidal and acaricidal properties
DE102007045953B4 (en) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Drug combinations with insecticidal and acaricidal properties
US10093907B2 (en) 2013-09-24 2018-10-09 Basf Se Hetero-transglycosylase and uses thereof
WO2019025153A1 (en) 2017-07-31 2019-02-07 Bayer Cropscience Aktiengesellschaft Use of substituted n-sulfonyl-n'-aryl diaminoalkanes and n-sulfonyl-n'-heteroaryl diaminoalkanes or salts thereof for increasing the stress tolerance in plants
US10457954B2 (en) 2010-08-30 2019-10-29 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
WO2019233863A1 (en) 2018-06-04 2019-12-12 Bayer Aktiengesellschaft Herbicidally active bicyclic benzoylpyrazoles
US10760088B2 (en) 2011-05-03 2020-09-01 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030221218A1 (en) * 2002-05-17 2003-11-27 The Regents Of The University Of California Bioengineering cotton fiber properties
US7554007B2 (en) 2003-05-22 2009-06-30 Evogene Ltd. Methods of increasing abiotic stress tolerance and/or biomass in plants
CN101550419B (en) * 2004-06-01 2011-05-25 林忠平 Acacia AmCesA2 gene and method for improving plant cellulose content
US7312383B2 (en) * 2004-08-05 2007-12-25 Bayer Cropscience Gmbh Acala ULTIMA EF cultivar plant and seed
US9756798B2 (en) 2004-11-19 2017-09-12 Patti D. Rubin Burrow filling compressed growing medium
US20060107589A1 (en) 2004-11-19 2006-05-25 Rubin Patti D Compressed growing medium
US7247773B2 (en) * 2005-02-15 2007-07-24 Bayer Cropscience Gmbh Hammer cotton cultivar plant and seed
MX350551B (en) * 2005-10-24 2017-09-08 Evogene Ltd Isolated polypeptides, polynucleotides encoding same, transgenic plants expressing same and methods of using same.
US7626093B2 (en) 2006-03-14 2009-12-01 Bayer Cropscience Ag Cotton cultivar 04Y341
WO2007121467A2 (en) * 2006-04-18 2007-10-25 Rutgers, The State University Of New Jersey Compositions and methods for increasing transgene expression in the plastids of higher plants
US20100167040A1 (en) * 2006-07-25 2010-07-01 Bayer Bioscience N.V. Identification of a novel type of sucrose synthase and use thereof in fiber modification
US7622650B2 (en) * 2006-12-22 2009-11-24 Bayer Cropscience Lp Cotton variety ST 5283RF
CL2007003743A1 (en) 2006-12-22 2008-07-11 Bayer Cropscience Ag COMPOSITION THAT INCLUDES FENAMIDONA AND AN INSECTICIDE COMPOUND; AND METHOD TO CONTROL FITOPATOGENOS CULTURES AND INSECTS FACING OR PREVENTIVELY.
US7622652B2 (en) 2006-12-22 2009-11-24 Bayer Cropscience Lp Cotton variety ST 5327B2RF
US7714201B2 (en) * 2006-12-22 2010-05-11 Monsanto Technology Llc Cotton variety 781000G
US7622649B2 (en) * 2006-12-22 2009-11-24 Bayer Cropscience Lp Cotton variety STX0502RF
US7622651B2 (en) 2006-12-22 2009-11-24 Bayer Cropscience Lp Cotton variety ST 4427B2RF
EP1969931A1 (en) 2007-03-12 2008-09-17 Bayer CropScience Aktiengesellschaft Fluoroalkyl phenylamidines and their use as fungicides
WO2008110281A2 (en) * 2007-03-12 2008-09-18 Bayer Cropscience Ag 3,4-disubstituted phenoxyphenylamidines and use thereof as fungicides
MX2009010858A (en) 2007-04-09 2009-11-02 Evogene Ltd Polynucleotides, polypeptides and methods for increasing oil content, growth rate and biomass of plants.
JP2010524869A (en) 2007-04-19 2010-07-22 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト Thiadiazolyloxyphenylamidines and their use as fungicides
BR122020022203B1 (en) 2007-07-24 2021-04-20 Evogene Ltd method of increasing the growth rate of a plant
US7619144B2 (en) 2007-08-17 2009-11-17 Bayer Cropscience Ag Cotton variety 02T15
US7622653B2 (en) 2007-08-20 2009-11-24 Bayer Cropscience Ag Cotton variety 03Y047
US7709704B2 (en) 2007-08-20 2010-05-04 Bayer Cropscience Ag Cotton variety 04T048
US7622654B2 (en) * 2007-08-20 2009-11-24 Bayer Cropscience Ag Cotton variety 03Y062
US7622655B2 (en) * 2007-08-20 2009-11-24 Bayer Cropscience Ag Cotton variety 04W019
US7622657B2 (en) * 2007-08-20 2009-11-24 Bayer Cropscience Ag Cotton variety 05Z629
US7626097B2 (en) * 2007-08-20 2009-12-01 Bayer Cropscience Ag Cotton variety 05X460
US7622656B2 (en) 2007-08-20 2009-11-24 Bayer Cropscience Ag Cotton variety 05Y063
US7619145B2 (en) * 2007-08-20 2009-11-17 Bayer Cropscience Ag Cotton variety 03Y056
DE102007045922A1 (en) 2007-09-26 2009-04-02 Bayer Cropscience Ag Drug combinations with insecticidal and acaricidal properties
WO2009058869A1 (en) 2007-10-29 2009-05-07 Oms Investments, Inc. Compressed coconut coir pith granules and methods for the production and use thereof
US7709706B2 (en) * 2007-11-16 2010-05-04 Monsanto Technology Llc Cotton variety 04P024
US7709705B2 (en) * 2007-11-16 2010-05-04 Monsanto Technology Llc Cotton variety 04T056
US7718854B2 (en) * 2007-11-16 2010-05-18 Monsanto Technology Llc Cotton variety 04T042
US7825300B2 (en) * 2007-11-16 2010-11-02 Monsanto Technology Llc Cotton variety 04T067
US7728206B2 (en) * 2007-11-16 2010-06-01 Monsanto Technology Llc Cotton variety 05T103
US7750212B2 (en) * 2007-11-16 2010-07-06 Monsanto Technology Llc Cotton variety 04P011
US7750213B2 (en) * 2007-11-19 2010-07-06 Monsanto Technology Llc Cotton variety 04Z353
US7714202B2 (en) * 2007-11-19 2010-05-11 Monsanto Technology Llc Cotton variety 04Z007
US7825301B2 (en) 2007-11-19 2010-11-02 Monsanto Technology Llc Cotton variety 02Z89
US7737332B2 (en) * 2007-12-21 2010-06-15 Monsanto Technology Llc Cotton variety 05Z855
US7745704B2 (en) * 2007-12-21 2010-06-29 Monsanto Technology Llc Cotton variety 04V073
US7732679B2 (en) * 2007-12-21 2010-06-08 Monsanto Technology Llc Cotton variety 05H210
US7799972B2 (en) 2007-12-21 2010-09-21 Monsanto Technology Llc Cotton variety 05H284
US7737333B2 (en) * 2007-12-21 2010-06-15 Monsanto Technology Llc Cotton variety 00H29
US7737335B2 (en) * 2007-12-21 2010-06-15 Monsanto Technology Llc Cotton variety 05H270
US7741543B2 (en) * 2007-12-21 2010-06-22 Monsanto Technology Llc Cotton variety 03H070
US7737334B2 (en) * 2007-12-21 2010-06-15 Monsanto Technology Llc Cotton variety 05H229
US7803997B2 (en) * 2008-02-18 2010-09-28 Monsanto Technology Llc Cotton variety 05V341
US7923606B2 (en) * 2008-02-18 2011-04-12 Monsanto Technology Llc Cotton variety DP 161 B2RF
US7829766B2 (en) * 2008-02-18 2010-11-09 Monsanto Technology Llc Cotton variety PM 2141 B2RF
US7919689B2 (en) 2008-03-05 2011-04-05 Monsanto Technology Llc Cotton variety 09Q914DF
US7820887B2 (en) * 2008-03-13 2010-10-26 Monsanto Technology Llc Cotton variety 05Q153
US7829767B2 (en) * 2008-03-13 2010-11-09 Monsanto Technology Llc Cotton variety 04Q035
US7825302B2 (en) 2008-03-13 2010-11-02 Monsanto Technology Llc Cotton variety 03Q066
US7919690B2 (en) * 2008-03-14 2011-04-05 Monsanto Technology Llc Cotton variety 05Y067
US7923607B2 (en) * 2008-03-14 2011-04-12 Monsanto Technology Llc Cotton variety 05Y070
US7825303B2 (en) * 2008-03-14 2010-11-02 Monsanto Technology Llc Cotton variety 04Y288
US8039700B2 (en) * 2008-03-20 2011-10-18 Monsanto Technology Llc Cotton variety 468300G
US8039699B2 (en) 2008-03-20 2011-10-18 Monsanto Technology Llc Cotton variety 303308G
US8039698B2 (en) 2008-03-20 2011-10-18 Monsanto Technology Llc Cotton variety 779020G
US8039701B2 (en) * 2008-03-20 2011-10-18 Monsanto Technology Llc Cotton variety 565452G
CA3148194A1 (en) 2008-05-22 2009-11-26 Evogene Ltd. Isolated polynucleotides and peptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
BRPI0912898B1 (en) 2008-08-18 2022-04-12 Evogene Ltd Method for increasing nitrogen use efficiency and/or nitrogen deficiency tolerance of a plant
US7935872B2 (en) 2008-10-27 2011-05-03 Monsanto Technology Llc Cotton variety MX0622B2RF
US7820888B2 (en) * 2008-10-27 2010-10-26 Monsanto Technology Llc Cotton variety MCS0701B2RF
US7939727B2 (en) * 2008-10-27 2011-05-10 Monsanto Technology Llc Cotton variety MCS0747B2RF
US7935871B2 (en) 2008-10-27 2011-05-03 Monsanto Technology Llc Cotton variety MCS0711B2RF
US7947880B2 (en) 2008-10-27 2011-05-24 Monsanto Technology Llc Cotton variety MX0623B2RF
US7825304B2 (en) 2008-10-27 2010-11-02 Monsanto Technology Llc Cotton variety MCS0702B2RF
US7947881B2 (en) * 2008-10-30 2011-05-24 Monsanto Technology Llc Cotton variety 07W514DF
US7943830B2 (en) * 2008-10-30 2011-05-17 Monsanto Technology Llc Cotton variety 07W901DF
EP2347014B1 (en) 2008-10-30 2016-09-21 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficieny
US7960620B2 (en) * 2008-10-30 2011-06-14 Monsanto Technology Llc Cotton variety 07W903DF
US8183440B2 (en) * 2008-10-30 2012-05-22 Monsanto Technology Llc Cotton variety 07W902DF
US8044272B2 (en) 2008-10-30 2011-10-25 Monsanto Technology Llc Cotton variety 06T201F
US7943828B2 (en) * 2008-10-30 2011-05-17 Monsanto Technology Llc Cotton variety 07X440DF
US7943829B2 (en) * 2008-10-30 2011-05-17 Monsanto Technology Llc Cotton variety 07W590DF
US8022277B2 (en) * 2008-10-30 2011-09-20 Monsanto Technology Llc Cotton variety 07W505DF
EP2440033B1 (en) 2009-06-10 2017-03-15 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
AU2011246876B2 (en) 2010-04-28 2016-06-23 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
BR122021002248B1 (en) 2010-12-22 2022-02-15 Evogene Ltd METHOD TO INCREASE TOLERANCE TO ABIOTIC STRESS, PRODUCTION, BIOMASS, AND/OR GROWTH RATE OF A PLANT
US9410162B1 (en) 2012-07-24 2016-08-09 Arrowhead Center, Inc. Transgenic legumes
WO2016049531A1 (en) 2014-09-26 2016-03-31 Purecircle Usa Inc. Single nucleotide polymorphism (snp) markers for stevia
WO2016120889A1 (en) 2015-01-28 2016-08-04 Council Of Scientific & Industrial Research A novel formulation for improving the yield and quality of fiber in cotton plants
MX2022005295A (en) 2019-11-01 2022-05-24 Purecircle Usa Inc Stevia cultivar '18136109'.
CN113943744B (en) * 2021-11-02 2022-07-29 云南农业大学 Application of RCA gene of cymbidium floribundum and vector construction method thereof
US12004476B2 (en) 2022-01-26 2024-06-11 Monsanto Technology Llc. Cotton variety 20R750B3XF
CN115804338A (en) * 2022-12-19 2023-03-17 新疆农业科学院经济作物研究所 Sea island cotton breeding method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665892A (en) * 1990-07-20 1997-09-09 Calgene, Inc. Sucrose phosphate synthase (SPS), its process for preparation its cDNA, and utilization of cDNA to modify the expression of SPS in plant cells
US5914446A (en) * 1995-01-15 1999-06-22 Calgene, Llc Soluble solids modification using sucrose phosphate synthase encoding sequences

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004863B2 (en) 1986-12-03 2000-10-17 Agracetus Genetic engineering of cotton plants and lines
AU644619B2 (en) 1989-12-21 1993-12-16 Advanced Technologies (Cambridge) Limited Modification of plant metabolism
US5498830A (en) 1990-06-18 1996-03-12 Monsanto Company Decreased oil content in plant seeds
US5981852A (en) 1990-07-20 1999-11-09 Calgene Llc Modification of sucrose phosphate synthase in plants
US5714365A (en) 1990-07-20 1998-02-03 Roussel Uclaf Sucrose phosphate synthetase isolated from maize
DE4220758A1 (en) 1992-06-24 1994-01-05 Inst Genbiologische Forschung DNA sequence and plasmids for the production of plants with a modified sucrose concentration
GB9218185D0 (en) 1992-08-26 1992-10-14 Ici Plc Novel plants and processes for obtaining them
US5646023A (en) 1993-04-15 1997-07-08 J.R. Simplot Company Modulation of sugar content in plants
DE4317596A1 (en) 1993-05-24 1994-12-01 Schering Ag New DNA sequences encoding sucrose regulating enzymes of sugar beet
US5498831A (en) 1993-07-23 1996-03-12 Dna Plant Technology Corporation Pea ADP-glucose pyrophosphorylase subunit genes and their uses
US5693506A (en) 1993-11-16 1997-12-02 The Regents Of The University Of California Process for protein production in plants
US5605793A (en) * 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5536653A (en) 1994-11-04 1996-07-16 Monsanto Company Tomato fruit promoters
US5716837A (en) 1995-02-10 1998-02-10 Monsanto Company Expression of sucrose phosphorylase in plants
US5723752A (en) 1995-02-21 1998-03-03 University Of Kentucky Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase
US5880110A (en) * 1995-02-21 1999-03-09 Toyobo Co., Ltd. Production of cotton fibers with improved fiber characteristics by treatment with brassinosteroids
ES2340857T3 (en) * 1997-09-16 2010-06-10 Centocor Ortho Biotech Inc. METHOD FOR COMPLETE CHEMICAL SYNTHESIS AND EXEMPTION OF GENES AND GENOMES.
WO1999042813A1 (en) * 1998-02-23 1999-08-26 Wisconsin Alumni Research Foundation Method and apparatus for synthesis of arrays of dna probes
US6991922B2 (en) * 1998-08-12 2006-01-31 Proteus S.A. Process for in vitro creation of recombinant polynucleotide sequences by oriented ligation
US6917882B2 (en) * 1999-01-19 2005-07-12 Maxygen, Inc. Methods for making character strings, polynucleotides and polypeptides having desired characteristics
US20020042069A1 (en) * 2000-05-17 2002-04-11 Myer Vickesh E. Long-length oligonucleotide microarrays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665892A (en) * 1990-07-20 1997-09-09 Calgene, Inc. Sucrose phosphate synthase (SPS), its process for preparation its cDNA, and utilization of cDNA to modify the expression of SPS in plant cells
US5914446A (en) * 1995-01-15 1999-06-22 Calgene, Llc Soluble solids modification using sucrose phosphate synthase encoding sequences

Cited By (231)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091398B2 (en) 2001-02-22 2006-08-15 Pioneer Hi-Bred International, Inc. Isolated sucrose sythase polynucleotides and uses thereof
AU2008255238B2 (en) * 2002-05-06 2012-06-28 Genesis Research And Development Corporation Limited Compositions isolated from forage grasses and methods for their use
EP1587359A4 (en) * 2003-01-08 2007-09-19 Delta & Pine Land Co Seed-oil suppression to enhance yield of commercially important macromolecules
EP1587359A2 (en) * 2003-01-08 2005-10-26 Delta And Pine Land Company Seed-oil suppression to enhance yield of commercially important macromolecules
US7947875B2 (en) 2003-08-15 2011-05-24 Commonwealth Scientific & Industrial Research Organisation Methods and means for altering fiber characteristics in fiber-producing plants
EP1692285A1 (en) * 2003-08-15 2006-08-23 Commonwealth Scientific and Industrial Research Organization (CSIRO) Methods and means for altering fiber characteristics in fiber-producing plants
WO2005017157A1 (en) 2003-08-15 2005-02-24 Commonwealth Scientific And Industrial Research Organisation (Csiro) Methods and means for altering fiber characteristics in fiber-producing plants
AU2004264444B2 (en) * 2003-08-15 2008-12-11 Commonwealth Scientific And Industrial Research Organisation (Csiro) Methods and means for altering fiber characteristics in fiber-producing plants
EP1692285A4 (en) * 2003-08-15 2007-07-18 Commw Scient Ind Res Org Methods and means for altering fiber characteristics in fiber-producing plants
EP2186899A3 (en) * 2004-06-14 2010-09-08 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
US9834781B2 (en) 2004-06-14 2017-12-05 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
EP2336330A2 (en) 2004-06-14 2011-06-22 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
EP1766058A2 (en) * 2004-06-14 2007-03-28 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
EP2343373A1 (en) 2004-06-14 2011-07-13 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
EP2336330A3 (en) * 2004-06-14 2011-07-20 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
EP1766058A4 (en) * 2004-06-14 2008-05-21 Evogene Ltd Polynucleotides and polypeptides involved in plant fiber development and methods of using same
US7812218B2 (en) 2004-06-14 2010-10-12 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
US10774339B2 (en) 2004-06-14 2020-09-15 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
EP2186899A2 (en) * 2004-06-14 2010-05-19 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
WO2006040684A2 (en) * 2004-10-15 2006-04-20 Swetree Technologies Ab Methods for increasing plant growth
WO2006040684A3 (en) * 2004-10-15 2006-08-24 Swetree Technologies Ab Methods for increasing plant growth
US8008544B2 (en) 2005-06-24 2011-08-30 Bayer Bioscience N.V. Methods for altering the reactivity of plant cell walls
WO2006136351A3 (en) * 2005-06-24 2007-06-21 Bayer Bioscience Nv Methods for altering the reactivity of plant cell walls
US8507755B2 (en) 2005-06-24 2013-08-13 Bayer Cropscience N.V. Methods for altering the reactivity of plant cell walls
US9404119B2 (en) 2005-06-24 2016-08-02 Bayer Cropscience N.V. Cotton fibers having positively charged oligosaccharides
US7910800B2 (en) 2005-08-15 2011-03-22 Evogene Ltd. Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby
EP2383345A1 (en) 2006-12-20 2011-11-02 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
US9631000B2 (en) 2006-12-20 2017-04-25 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
US8927583B2 (en) 2006-12-22 2015-01-06 Bayer Cropscience Ag Pesticidal composition comprising a 2-pyrdilmethylbenzamide derivative and an insecticide compound
US8785692B2 (en) 2007-03-12 2014-07-22 Bayer Cropscience Ag Substituted phenylamidines and the use thereof as fungicides
US8299302B2 (en) 2007-03-12 2012-10-30 Bayer Cropscience Ag 4-Cycloalkyl or 4-substituted phenoxyphenylamidines and use thereof as fungicides
US8394991B2 (en) 2007-03-12 2013-03-12 Bayer Cropscience Ag Phenoxy substituted phenylamidine derivatives and their use as fungicides
US9199922B2 (en) 2007-03-12 2015-12-01 Bayer Intellectual Property Gmbh Dihalophenoxyphenylamidines and use thereof as fungicides
US8748662B2 (en) 2007-03-12 2014-06-10 Bayer Cropscience Ag 4-cycloalkyl or 4-aryl substituted phenoxyphenylamidines and use thereof as fungicides
DE102007045953B4 (en) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Drug combinations with insecticidal and acaricidal properties
DE102007045920B4 (en) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Synergistic drug combinations
DE102007045919B4 (en) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Drug combinations with insecticidal and acaricidal properties
US8455480B2 (en) 2007-09-26 2013-06-04 Bayer Cropscience Ag Active agent combinations having insecticidal and acaricidal properties
EP2072506A1 (en) 2007-12-21 2009-06-24 Bayer CropScience AG Thiazolyloxyphenylamidine or thiadiazolyloxyphenylamidine und its use as fungicide
US9670501B2 (en) 2007-12-27 2017-06-06 Evogene Ltd. Isolated polypeptides, polynucleotides useful for modifying water user efficiency, fertilizer use efficiency, biotic/abiotic stress tolerance, yield and biomass in plants
US8728783B2 (en) 2008-01-03 2014-05-20 Proterro, Inc. Photobioreactor
US9284519B2 (en) 2008-01-03 2016-03-15 Proterro, Inc. Photobioreactor
JP2011509085A (en) * 2008-01-03 2011-03-24 プロテロ インコーポレイテッド Transgenic photosynthetic microorganisms and photobioreactors
US8728821B2 (en) 2008-01-03 2014-05-20 Proterro, Inc. Transgenic photosynthetic microorganisms
EP2090168A1 (en) 2008-02-12 2009-08-19 Bayer CropScience AG Method for improving plant growth
EP2168434A1 (en) 2008-08-02 2010-03-31 Bayer CropScience AG Use of azols to increase resistance of plants of parts of plants to abiotic stress
US9371564B2 (en) 2008-08-08 2016-06-21 Bayer Bioscience N.V. Methods for plant fiber characterization and identification
EP2374791A1 (en) 2008-08-14 2011-10-12 Bayer CropScience Aktiengesellschaft Insecticidal 4-phenyl-1H pyrazoles
US8796175B2 (en) 2008-08-29 2014-08-05 Bayer Cropscience Ag Method for enhancing plant intrinsic defense
WO2010046423A2 (en) 2008-10-22 2010-04-29 Basf Se Use of sulfonylurea herbicides on cultivated plants
WO2010046422A2 (en) 2008-10-22 2010-04-29 Basf Se Use of auxin type herbicides on cultivated plants
EP2201838A1 (en) 2008-12-05 2010-06-30 Bayer CropScience AG Active ingredient-beneficial organism combinations with insecticide and acaricide properties
EP2198709A1 (en) 2008-12-19 2010-06-23 Bayer CropScience AG Method for treating resistant animal pests
EP2204094A1 (en) 2008-12-29 2010-07-07 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants Introduction
WO2010075994A1 (en) 2008-12-29 2010-07-08 Bayer Cropscience Aktiengesellschaft Treatment of transgenic crops with mixtures of fiproles and chloronicotinyls
WO2010076756A2 (en) 2008-12-29 2010-07-08 Evogene Ltd. Polynucleotides, polypeptides encoded thereby, and methods of using same for increasing abiotic stress tolerance, biomass and/or yield in plants expressing same
US9763451B2 (en) 2008-12-29 2017-09-19 Bayer Intellectual Property Gmbh Method for improved use of the production potential of genetically modified plants
EP2039770A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2039772A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants introduction
EP2039771A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
US8487118B2 (en) 2009-01-19 2013-07-16 Bayer Cropscience Ag Cyclic diones and their use as insecticides, acaricides and/or fungicides
EP2227951A1 (en) 2009-01-23 2010-09-15 Bayer CropScience AG Application of enaminocarbonyl compounds for combating viruses transmitted by insects
WO2010083955A2 (en) 2009-01-23 2010-07-29 Bayer Cropscience Aktiengesellschaft Use of enaminocarboxylic compounds for fighting viruses transmitted by insects
WO2010086311A1 (en) 2009-01-28 2010-08-05 Bayer Cropscience Ag Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives
WO2010086095A1 (en) 2009-01-29 2010-08-05 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants introduction
EP2218717A1 (en) 2009-02-17 2010-08-18 Bayer CropScience AG Fungicidal N-((HET)Arylethyl)thiocarboxamide derivatives
WO2010094666A2 (en) 2009-02-17 2010-08-26 Bayer Cropscience Ag Fungicidal n-(phenylcycloalkyl)carboxamide, n-(benzylcycloalkyl)carboxamide and thiocarboxamide derivatives
WO2010094728A1 (en) 2009-02-19 2010-08-26 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
EP2223602A1 (en) 2009-02-23 2010-09-01 Bayer CropScience AG Method for improved utilisation of the production potential of genetically modified plants
US9487795B2 (en) 2009-03-02 2016-11-08 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield, biomass, oil content and/or growth rate
US10597671B2 (en) 2009-03-02 2020-03-24 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield, biomass, oil content and/or growth rate
US8846567B2 (en) 2009-03-25 2014-09-30 Bayer Cropscience Ag Active compound combinations having insecticidal and acaricidal properties
US8828907B2 (en) 2009-03-25 2014-09-09 Bayer Cropscience Ag Active ingredient combinations having insecticidal and acaricidal properties
US8828906B2 (en) 2009-03-25 2014-09-09 Bayer Cropscience Ag Active compound combinations having insecticidal and acaricidal properties
US8846568B2 (en) 2009-03-25 2014-09-30 Bayer Cropscience Ag Active compound combinations having insecticidal and acaricidal properties
EP2232995A1 (en) 2009-03-25 2010-09-29 Bayer CropScience AG Method for improved utilisation of the production potential of transgenic plants
US9012360B2 (en) 2009-03-25 2015-04-21 Bayer Intellectual Property Gmbh Synergistic combinations of active ingredients
EP2239331A1 (en) 2009-04-07 2010-10-13 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
US8835657B2 (en) 2009-05-06 2014-09-16 Bayer Cropscience Ag Cyclopentanedione compounds and their use as insecticides, acaricides and/or fungicides
EP3000809A1 (en) 2009-05-15 2016-03-30 Bayer Intellectual Property GmbH Fungicide pyrazole carboxamides derivatives
EP2251331A1 (en) 2009-05-15 2010-11-17 Bayer CropScience AG Fungicide pyrazole carboxamides derivatives
EP2255626A1 (en) 2009-05-27 2010-12-01 Bayer CropScience AG Use of succinate dehydrogenase inhibitors to increase resistance of plants or parts of plants to abiotic stress
US9232794B2 (en) 2009-06-02 2016-01-12 Bayer Intellectual Property Gmbh Use of succinate dehydrogenase inhibitors for controlling Sclerotinia ssp
US9877482B2 (en) 2009-06-02 2018-01-30 Bayer Intellectual Property Gmbh Use of succinate dehydrogenase inhibitors for controlling Sclerotinia ssp
WO2011006603A2 (en) 2009-07-16 2011-01-20 Bayer Cropscience Ag Synergistic active substance combinations containing phenyl triazoles
WO2011015524A2 (en) 2009-08-03 2011-02-10 Bayer Cropscience Ag Fungicide heterocycles derivatives
EP2292094A1 (en) 2009-09-02 2011-03-09 Bayer CropScience AG Active compound combinations
WO2011035834A1 (en) 2009-09-02 2011-03-31 Bayer Cropscience Ag Active compound combinations
EP2343280A1 (en) 2009-12-10 2011-07-13 Bayer CropScience AG Fungicide quinoline derivatives
WO2011080674A2 (en) 2009-12-28 2011-07-07 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
WO2011080254A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011080256A1 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011080255A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
US10982224B2 (en) 2009-12-28 2021-04-20 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
US10351873B2 (en) 2009-12-28 2019-07-16 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
EP3056569A2 (en) 2009-12-28 2016-08-17 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
US8722072B2 (en) 2010-01-22 2014-05-13 Bayer Intellectual Property Gmbh Acaricidal and/or insecticidal active ingredient combinations
WO2011089071A2 (en) 2010-01-22 2011-07-28 Bayer Cropscience Ag Acaricide and/or insecticide active substance combinations
WO2011107504A1 (en) 2010-03-04 2011-09-09 Bayer Cropscience Ag Fluoroalkyl-substituted 2-amidobenzimidazoles and the use thereof for boosting stress tolerance in plants
WO2011124554A2 (en) 2010-04-06 2011-10-13 Bayer Cropscience Ag Use of 4-phenylbutyric acid and/or the salts thereof for enhancing the stress tolerance of plants
WO2011124553A2 (en) 2010-04-09 2011-10-13 Bayer Cropscience Ag Use of derivatives of the (1-cyanocyclopropyl)phenylphosphinic acid, the esters thereof and/or the salts thereof for enhancing the tolerance of plants to abiotic stress
WO2011134912A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011134913A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011134911A2 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011151370A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylalkyl)] pyrazole (thio)carboxamides and their heterosubstituted analogues
WO2011151369A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
WO2011151368A2 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2012010579A2 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Benzocycloalkenes as antifungal agents
US10457954B2 (en) 2010-08-30 2019-10-29 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
WO2012028578A1 (en) 2010-09-03 2012-03-08 Bayer Cropscience Ag Substituted fused pyrimidinones and dihydropyrimidinones
WO2012038480A2 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of biological or chemical control agents for controlling insects and nematodes in resistant crops
WO2012038476A1 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of active ingredients for controlling nematodes in nematode-resistant crops
WO2012045798A1 (en) 2010-10-07 2012-04-12 Bayer Cropscience Ag Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative
WO2012052490A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag N-benzyl heterocyclic carboxamides
WO2012052489A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag 1-(heterocyclic carbonyl) piperidines
WO2012059497A1 (en) 2010-11-02 2012-05-10 Bayer Cropscience Ag N-hetarylmethyl pyrazolylcarboxamides
WO2012065947A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazolecarboxamides
US9206137B2 (en) 2010-11-15 2015-12-08 Bayer Intellectual Property Gmbh N-Aryl pyrazole(thio)carboxamides
WO2012065944A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag N-aryl pyrazole(thio)carboxamides
WO2012065945A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazole(thio)carboxamides
EP3103338A1 (en) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Agent combinations comprising pyridylethyl benzamides and other agents
EP3103339A1 (en) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Agent combinations comprising pyridylethyl benzamides and other agents
WO2012072660A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Use of fluopyram for controlling nematodes in crops and for increasing yield
EP3092900A1 (en) 2010-12-01 2016-11-16 Bayer Intellectual Property GmbH Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients
EP3103334A1 (en) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Agent combinations comprising pyridylethyl benzamides and other agents
EP2460407A1 (en) 2010-12-01 2012-06-06 Bayer CropScience AG Agent combinations comprising pyridylethyl benzamides and other agents
EP3103340A1 (en) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Agent combinations comprising pyridylethyl benzamides and other agents
EP2460406A1 (en) 2010-12-01 2012-06-06 Bayer CropScience AG Use of fluopyram for controlling nematodes in nematode resistant crops
WO2012072696A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients
EP2474542A1 (en) 2010-12-29 2012-07-11 Bayer CropScience AG Fungicide hydroximoyl-tetrazole derivatives
WO2012089757A1 (en) 2010-12-29 2012-07-05 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012089721A1 (en) 2010-12-30 2012-07-05 Bayer Cropscience Ag Use of substituted spirocyclic sulfonamidocarboxylic acids, carboxylic esters thereof, carboxamides thereof and carbonitriles thereof or salts thereof for enhancement of stress tolerance in plants
WO2012089722A2 (en) 2010-12-30 2012-07-05 Bayer Cropscience Ag Use of open-chain carboxylic acids, carbonic esters, carboxamides and carbonitriles of aryl, heteroaryl and benzylsulfonamide or the salts thereof for improving the stress tolerance in plants
EP2494867A1 (en) 2011-03-01 2012-09-05 Bayer CropScience AG Halogen-substituted compounds in combination with fungicides
WO2012120105A1 (en) 2011-03-10 2012-09-13 Bayer Cropscience Ag Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
WO2012123434A1 (en) 2011-03-14 2012-09-20 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012136581A1 (en) 2011-04-08 2012-10-11 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012139892A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted 5-(bicyclo[4.1.0]hept-3-en-2-yl)-penta-2,4-dienes and 5-(bicyclo[4.1.0]hept-3-en-2-yl)-pent-2-ene-4-ines as active agents against abiotic stress in plants
EP2511255A1 (en) 2011-04-15 2012-10-17 Bayer CropScience AG Substituted prop-2-in-1-ol and prop-2-en-1-ol derivatives
WO2012139891A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted vinyl and alkinyl cyclohexenols as active agents against abiotic stress in plants
WO2012139890A1 (en) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituted 5-(cyclohex-2-en-1-yl)-penta-2,4-dienes and 5-(cyclohex-2-en-1-yl)-pent-2-en-4-ines as active agents against abiotic stress in plants
EP2997825A1 (en) 2011-04-22 2016-03-23 Bayer Intellectual Property GmbH Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound
US10760088B2 (en) 2011-05-03 2020-09-01 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
WO2013004652A1 (en) 2011-07-04 2013-01-10 Bayer Intellectual Property Gmbh Use of substituted isoquinolinones, isoquinolindiones, isoquinolintriones and dihydroisoquinolinones or in each case salts thereof as active agents against abiotic stress in plants
US9265252B2 (en) 2011-08-10 2016-02-23 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
WO2013020985A1 (en) 2011-08-10 2013-02-14 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
WO2013023992A1 (en) 2011-08-12 2013-02-21 Bayer Cropscience Nv Guard cell-specific expression of transgenes in cotton
US10538774B2 (en) 2011-08-22 2020-01-21 Basf Agricultural Solutions Seed, Us Llc Methods and means to modify a plant genome
US9670496B2 (en) 2011-08-22 2017-06-06 Bayer Cropscience N.V. Methods and means to modify a plant genome
WO2013026740A2 (en) 2011-08-22 2013-02-28 Bayer Cropscience Nv Methods and means to modify a plant genome
WO2013026836A1 (en) 2011-08-22 2013-02-28 Bayer Intellectual Property Gmbh Fungicide hydroximoyl-tetrazole derivatives
EP2561759A1 (en) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth
WO2013034621A1 (en) 2011-09-09 2013-03-14 Bayer Intellectual Property Gmbh Acyl-homoserine lactone derivatives for improving plant yield
WO2013037717A1 (en) 2011-09-12 2013-03-21 Bayer Intellectual Property Gmbh Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives
WO2013037956A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield
WO2013037955A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of acylsulfonamides for improving plant yield
WO2013037958A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of phenylpyrazolin-3-carboxylates for improving plant yield
WO2013041602A1 (en) 2011-09-23 2013-03-28 Bayer Intellectual Property Gmbh Use of 4-substituted 1-phenyl-pyrazole-3-carboxylic-acid derivatives as agents against abiotic plant stress
WO2013050410A1 (en) 2011-10-04 2013-04-11 Bayer Intellectual Property Gmbh RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE
WO2013050324A1 (en) 2011-10-06 2013-04-11 Bayer Intellectual Property Gmbh Combination, containing 4-phenylbutyric acid (4-pba) or a salt thereof (component (a)) and one or more selected additional agronomically active compounds (component(s) (b)), that reduces abiotic plant stress
WO2013075817A1 (en) 2011-11-21 2013-05-30 Bayer Intellectual Property Gmbh Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2013079566A2 (en) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives
WO2013092519A1 (en) 2011-12-19 2013-06-27 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
WO2013098147A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013098146A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013124275A1 (en) 2012-02-22 2013-08-29 Bayer Cropscience Ag Use of succinate dehydrogenase inhibitors (sdhis) for controlling wood diseases in grape.
WO2013127704A1 (en) 2012-02-27 2013-09-06 Bayer Intellectual Property Gmbh Active compound combinations containing a thiazoylisoxazoline and a fungicide
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
WO2013153143A1 (en) 2012-04-12 2013-10-17 Bayer Cropscience Ag N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides
WO2013156559A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2013156560A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives
EP2662361A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol indanyl carboxamides
WO2013167545A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag Pyrazole indanyl carboxamides
WO2013167544A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag 5-halogenopyrazole indanyl carboxamides
EP2662360A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole indanyl carboxamides
EP2662362A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole indanyl carboxamides
EP2662364A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole tetrahydronaphthyl carboxamides
EP2662363A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole biphenylcarboxamides
EP2662370A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole benzofuranyl carboxamides
WO2013174836A1 (en) 2012-05-22 2013-11-28 Bayer Cropscience Ag Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound
WO2014009322A1 (en) 2012-07-11 2014-01-16 Bayer Cropscience Ag Use of fungicidal combinations for increasing the tolerance of a plant towards abiotic stress
WO2014037340A1 (en) 2012-09-05 2014-03-13 Bayer Cropscience Ag Use of substituted 2-amidobenzimidazoles, 2-amidobenzoxazoles and 2-amidobenzothiazoles or salts thereof as active substances against abiotic plant stress
WO2014053395A1 (en) 2012-10-01 2014-04-10 Basf Se Use of n-thio-anthranilamide compounds on cultivated plants
WO2014060502A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
WO2014060518A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method of plant growth promotion using carboxamide derivatives
WO2014079820A1 (en) 2012-11-22 2014-05-30 Basf Se Use of anthranilamide compounds for reducing insect-vectored viral infections
WO2014079957A1 (en) 2012-11-23 2014-05-30 Bayer Cropscience Ag Selective inhibition of ethylene signal transduction
WO2014079789A1 (en) 2012-11-23 2014-05-30 Bayer Cropscience Ag Active compound combinations
EP2735231A1 (en) 2012-11-23 2014-05-28 Bayer CropScience AG Active compound combinations
WO2014083089A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal and pesticidal mixtures
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
WO2014083031A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary pesticidal and fungicidal mixtures
WO2014083033A1 (en) 2012-11-30 2014-06-05 Bayer Cropsience Ag Binary fungicidal or pesticidal mixture
WO2014082950A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal mixtures
EP2740356A1 (en) 2012-12-05 2014-06-11 Bayer CropScience AG Substituted (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-inic acid derivatives
EP2740720A1 (en) 2012-12-05 2014-06-11 Bayer CropScience AG Substituted bicyclic and tricyclic pent-2-en-4-inic acid derivatives and their use for enhancing the stress tolerance in plants
WO2014086751A1 (en) 2012-12-05 2014-06-12 Bayer Cropscience Ag Use of substituted 1-(aryl ethynyl)-, 1-(heteroaryl ethynyl)-, 1-(heterocyclyl ethynyl)- and 1-(cyloalkenyl ethynyl)-cyclohexanols as active agents against abiotic plant stress
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
WO2014095826A1 (en) 2012-12-18 2014-06-26 Bayer Cropscience Ag Binary fungicidal and bactericidal combinations
WO2014095677A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides
WO2014135608A1 (en) 2013-03-07 2014-09-12 Bayer Cropscience Ag Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives
WO2014167008A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazolinthione derivatives
WO2014167009A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazole derivatives
WO2014170345A2 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants
WO2014170364A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Binary insecticidal or pesticidal mixture
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
WO2014177582A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides
WO2014206953A1 (en) 2013-06-26 2014-12-31 Bayer Cropscience Ag N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2015004040A1 (en) 2013-07-09 2015-01-15 Bayer Cropscience Ag Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress
US10647965B2 (en) 2013-09-24 2020-05-12 Basf Se Hetero-transglycosylase and uses thereof
US10093907B2 (en) 2013-09-24 2018-10-09 Basf Se Hetero-transglycosylase and uses thereof
WO2015082587A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
WO2015082586A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
WO2015118393A3 (en) * 2014-02-05 2015-12-17 University Of Calcutta Sequential enzymatic treatment of cotton
EP2936983A1 (en) 2014-04-25 2015-10-28 Bayer CropScience AG Compound for increase of yield in cotton
WO2016012362A1 (en) 2014-07-22 2016-01-28 Bayer Cropscience Aktiengesellschaft Substituted cyano cycloalkyl penta-2,4-dienes, cyano cycloalkyl pent-2-en-4-ynes, cyano heterocyclyl penta-2,4-dienes and cyano heterocyclyl pent-2-en-4-ynes as active substances against abiotic plant stress
EP3028573A1 (en) 2014-12-05 2016-06-08 Basf Se Use of a triazole fungicide on transgenic plants
WO2016091674A1 (en) 2014-12-12 2016-06-16 Basf Se Use of cyclaniliprole on cultivated plants
WO2016096942A1 (en) 2014-12-18 2016-06-23 Bayer Cropscience Aktiengesellschaft Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress
WO2016162371A1 (en) 2015-04-07 2016-10-13 Basf Agrochemical Products B.V. Use of an insecticidal carboxamide compound against pests on cultivated plants
WO2016166077A1 (en) 2015-04-13 2016-10-20 Bayer Cropscience Aktiengesellschaft N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives
WO2018019676A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
WO2018054832A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
WO2018054829A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives and their use as fungicides
WO2018077711A2 (en) 2016-10-26 2018-05-03 Bayer Cropscience Aktiengesellschaft Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications
WO2018104392A1 (en) 2016-12-08 2018-06-14 Bayer Cropscience Aktiengesellschaft Use of insecticides for controlling wireworms
WO2018108627A1 (en) 2016-12-12 2018-06-21 Bayer Cropscience Aktiengesellschaft Use of substituted indolinylmethyl sulfonamides, or the salts thereof for increasing the stress tolerance of plants
EP3332645A1 (en) 2016-12-12 2018-06-13 Bayer Cropscience AG Use of substituted pyrimidine diones or their salts as agents to combat abiotic plant stress
EP3338552A1 (en) 2016-12-21 2018-06-27 Basf Se Use of a tetrazolinone fungicide on transgenic plants
WO2019025153A1 (en) 2017-07-31 2019-02-07 Bayer Cropscience Aktiengesellschaft Use of substituted n-sulfonyl-n'-aryl diaminoalkanes and n-sulfonyl-n'-heteroaryl diaminoalkanes or salts thereof for increasing the stress tolerance in plants
WO2019233863A1 (en) 2018-06-04 2019-12-12 Bayer Aktiengesellschaft Herbicidally active bicyclic benzoylpyrazoles

Also Published As

Publication number Publication date
EP1220602A4 (en) 2004-12-01
BR0013903A (en) 2002-06-11
CN101092632A (en) 2007-12-26
US20030070191A1 (en) 2003-04-10
DE60030453D1 (en) 2006-10-12
CN1250730C (en) 2006-04-12
ES2270869T3 (en) 2007-04-16
CN101092632B (en) 2011-01-26
ATE337701T1 (en) 2006-09-15
AU784405B2 (en) 2006-03-30
AU7119000A (en) 2001-04-10
CN1390089A (en) 2003-01-08
US6472588B1 (en) 2002-10-29
US7091400B2 (en) 2006-08-15
EP1220602B1 (en) 2006-08-30
EP1220602A1 (en) 2002-07-10
ZA200201855B (en) 2002-12-24
WO2001017333A9 (en) 2002-12-05
TR200201477T2 (en) 2002-11-21
MXPA02002497A (en) 2002-07-30

Similar Documents

Publication Publication Date Title
US6472588B1 (en) Transgenic cotton plants with altered fiber characteristics transformed with a sucrose phosphate synthase nucleic acid
Lu et al. Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools
Grof et al. Sugarcane sucrose metabolism: scope for molecular manipulation
Haigler et al. Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions
EP0677112B1 (en) Method for obtaining transgenic plants showing a modified fructan pattern
Li et al. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize
EP0664835A1 (en) Novel plants and processes for obtaining them
Park et al. Modification of sugar composition in strawberry fruit by antisense suppression of an ADP-glucose pyrophosphorylase
Li et al. The functions of cucumber sucrose phosphate synthases 4 (CsSPS4) in carbon metabolism and transport in sucrose-and stachyose-transporting plants
Li et al. Overexpression of UDP-glucose dehydrogenase from Larix gmelinii enhances growth and cold tolerance in transgenic Arabidopsis thaliana
US20090144858A1 (en) Genetic method
CN102203261B (en) Methods and means of increasing the water use efficiency of plants
WO2000029597A2 (en) Mutant genes encoding plant adp-glucose pyrophosphorylase and methods of use
US5750869A (en) Soluble solids modification using sucrose phosphate synthase encoding sequences
KR101541598B1 (en) PHD gene involved in development and formation of phloem in plants
Haigler Substrate supply for cellulose synthesis and its stress sensitivity in the cotton fiber
EP0912750A1 (en) Method for increasing sucrose content of plants
RU2152997C2 (en) Dna structure (variants), method of transgenic plant preparing and fructans
KR100833476B1 (en) Growth enhancement of atpfp transgenic plant
Rakoczy et al. Increased energy sequestration in Nicotiana tabacum overexpressing UGPase and SPP genes in mesophyll.
US7498492B2 (en) Modification of sucrose synthase gene expression in plant tissue and uses therefor
Vogel Genetic improvement of switchgrass and other herbaceous plants for use as biomass fuel feedstock
Holaday et al. Transgenic Cotton Over-Producing Spinach Sucrose Phosphate Synthase Showed Enhanced Leaf Sucrose Syntheis and Improved Fiber Quality Under Controlled Environmental Conditions
Sivasankar et al. 16 Maize

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/002497

Country of ref document: MX

Ref document number: IN/PCT/2002/353/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2000959960

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 71190/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 008155623

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002/01477

Country of ref document: TR

WWP Wipo information: published in national office

Ref document number: 2000959960

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

AK Designated states

Kind code of ref document: C2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004/00219

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 71190/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 2000959960

Country of ref document: EP