WO2001017149A1 - Appareil de communication ofdm et procede d'estimation du chemin de propagation - Google Patents

Appareil de communication ofdm et procede d'estimation du chemin de propagation Download PDF

Info

Publication number
WO2001017149A1
WO2001017149A1 PCT/JP2000/005599 JP0005599W WO0117149A1 WO 2001017149 A1 WO2001017149 A1 WO 2001017149A1 JP 0005599 W JP0005599 W JP 0005599W WO 0117149 A1 WO0117149 A1 WO 0117149A1
Authority
WO
WIPO (PCT)
Prior art keywords
estimation value
signal
propagation path
channel estimation
channel
Prior art date
Application number
PCT/JP2000/005599
Other languages
English (en)
French (fr)
Inventor
Daichi Imamura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU65980/00A priority Critical patent/AU6598000A/en
Priority to EP00953545A priority patent/EP1209836A4/en
Publication of WO2001017149A1 publication Critical patent/WO2001017149A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0238Channel estimation using blind estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0236Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols using estimation of the other symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to a 0 FDM communication apparatus and a propagation path estimation method in a digital radio communication system.
  • the OFDM Orthogonal Frequency Division Multiplexing
  • a received signal is subjected to time-to-frequency conversion by an FFT circuit, and a complex multiplication is performed between a pilot symbol included in the received signal and a known signal to obtain an estimated frequency response value of a propagation path. obtain. Then, channel distortion is compensated for by complex multiplication of the frequency response estimation value and the information OFDM symbol.
  • An error correction circuit demodulates and error-corrects the received signal, for which the propagation path distortion has been compensated, and obtains an information symbol sequence which is the received data.
  • pilot symbols for transmission path response estimation are inserted at certain intervals in the information OFDM symbol. Therefore, it follows the change of the propagation path response that fluctuates every moment. That is, as shown in FIG. 2, information OFDM symbols l to n are compensated for using channel estimation values obtained with pilot symbol A, and information ⁇ FDM symbols are used using channel estimation values obtained with pilot symbol B. Compensate for symbols n + 1 to 2n.
  • a known signal such as a pilot symbol
  • An object of the present invention is to improve reception characteristics by adaptively following the time variation of a transmission path without lowering the transmission efficiency even when the time variation of a propagation path response is large. And a channel estimation method.
  • the gist of the present invention is that even when long information is transmitted by adaptively estimating a propagation path response using a judgment value of a received signal, that is, using a judgment value of a received information signal as a known signal,
  • An object of the present invention is to achieve excellent reception characteristics by adaptively following a time variation of a transmission line without frequently introducing pilot symbols for channel estimation and without reducing transmission efficiency.
  • FIG. 1 is a diagram showing a symbol configuration used in a conventional channel estimation method
  • FIG. 2 is a diagram for explaining a conventional channel estimation method
  • FIG. 3 is a block diagram showing a configuration of a 0FD M communication device according to Embodiment 1 of the present invention.
  • FIG. 4 is a block diagram showing an internal configuration of a propagation path estimation / compensation circuit of the 0 FDM communication apparatus according to Embodiment 1 of the present invention
  • FIG. 5 is a block diagram showing an internal configuration of a channel estimation value updating circuit shown in FIG. 4;
  • FIG. 6 is a diagram showing a symbol configuration used in a channel estimation method according to the present invention.
  • FIG. 7 is a diagram for explaining a propagation path estimation method according to the present invention.
  • FIG. 8 is a block diagram showing an internal configuration of a channel estimation value updating circuit in a channel estimation / compensation circuit of the FDM communication apparatus according to Embodiment 2 of the present invention
  • FIG. 9 is a block diagram illustrating an internal configuration of a channel estimation value updating circuit in a channel estimation / compensation circuit of the FDM communication apparatus according to Embodiment 3 of the present invention
  • FIG. 10 is a block diagram showing an internal configuration of a channel estimation value updating circuit in a channel estimation / compensation circuit of an FDM communication apparatus according to Embodiment 4 of the present invention
  • FIG. FIG. 12 is a block diagram showing an internal configuration of a propagation path estimation value updating circuit in a propagation path estimation / compensation circuit of the 0 FDM communication apparatus according to Embodiment 4
  • FIG. 12 is a block diagram showing the 0 FDM communication apparatus according to Embodiment 5 of the present invention
  • FIG. 13 is a block diagram showing an internal configuration of a propagation path estimation value update circuit in the propagation path estimation / compensation circuit of the OFDM communication apparatus according to Embodiment 5 of the present invention.
  • FIG. 14 is a block diagram showing an internal configuration of a propagation path estimation value updating circuit in the propagation path estimation-compensation circuit of the OFDM communication apparatus according to Embodiment 6 of the present invention.
  • FIG. 15 is a block diagram showing an internal configuration of a propagation path estimation value updating circuit in a propagation path estimation / compensation circuit of the FDM communication apparatus according to Embodiment 7 of the present invention
  • FIG. FIG. 27 is a block diagram showing an internal configuration of a propagation path estimation value updating circuit in a propagation path estimation / compensation circuit of the 0 FDM communication apparatus according to Embodiment 7.
  • FIG. 3 is a block diagram showing a configuration of the 0 FDM communication apparatus according to Embodiment 1 of the present invention.
  • the signal used for OFDM communication has the configuration shown in FIG. That is, a preamble other than the pilot symbol is arranged, a pilot symbol for estimating the propagation path response, which is a known signal, is followed by an information OFDM symbol. In this way, the pilot symbol for propagation path estimation is added only to the head of the information symbol to be transmitted.
  • the OFDM signal received via 101 Normal radio reception processing is performed to obtain a baseband signal.
  • This baseband signal is subjected to quadrature detection processing by a quadrature detector, and unnecessary frequency components are removed by low-pass filtering and A / D conversion is performed.
  • the received signal is divided into an in-phase component and a quadrature component by the quadrature detection process.
  • the base signal is subjected to an FFT operation in an FFT (Fast Fourier Transform) circuit 103 to obtain a signal assigned to each subcarrier.
  • the signal subjected to the FFT operation in the FFT section 103 is sent to a propagation path estimation / compensation circuit 104, which performs complex multiplication between a pilot symbol included in the received OFDM signal and a known signal, thereby obtaining a propagation path. Estimation is performed to obtain the initial channel estimation value (initial value).
  • the propagation path distortion of the information OFDM symbol is sequentially performed for each 0FDDM symbol using the first propagation path estimation value.
  • the information symbol whose propagation path distortion has been compensated is sent to a sequential error correction circuit 105 to be corrected.
  • the error correction circuit 105 outputs an error-corrected information symbol sequence for each unit of transmission path coding. This information symbol sequence is sent to an error detection circuit 106, where error detection is performed and output as received data.
  • the information symbol sequence compensated for the propagation path distortion is periodically sent to hard decision circuit 107.
  • the hard decision circuit 107 performs a hard decision process on the information symbol whose propagation path distortion has been compensated. That is, the signal point of the information symbol at the time of transmission is hard-decided.
  • the information symbol sequence thus hard-decided is sent to propagation path estimation / compensation circuit 104.
  • the hard decision information symbol is used as a known signal, and a propagation path estimation is performed by performing complex multiplication with the signal subjected to the FFT operation, thereby obtaining a propagation path estimation value. This channel estimate is updated to the first channel estimate.
  • the new channel estimation value is complex-multiplied with the information 0 FDM symbol, thereby performing channel distortion compensation.
  • the received signal whose propagation path distortion has been compensated is sent to an error correction circuit 105, where the error is corrected.
  • Output from error correction circuit 105 The obtained information symbol sequence is sent to error detection circuit 106, where error detection is performed and output as received data.
  • Updating of the channel estimation value may be performed for each information symbol, or may be performed for a plurality of information symbols.
  • a switch or the like is provided after the error correction circuit 105, and the output to the hard decision circuit 107 and the output to the error detection circuit 106 are switched by a control signal. What should I do?
  • the information signal which is the transmission data for each subcarrier, is subjected to modulation by a modulator (not shown), for example, by quadrature phase shift keying (QPSK) or quadrature amplitude modulation (QAM).
  • a modulator not shown
  • QPSK quadrature phase shift keying
  • QAM quadrature amplitude modulation
  • An IFFT (Inverse Fast Fourier Transform) circuit 108 performs an IFFT calculation to obtain an OFDM signal. After the D / A conversion, the OFDM signal is sent to the radio transmission circuit 109, where it is subjected to normal radio transmission processing and transmitted as a transmission signal via the antenna 101.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM signal received via the antenna 101 is subjected to normal radio reception processing in the radio reception circuit 102 to become a baseband signal.
  • the FFT operation is performed, and the signal is assigned to each subcarrier.
  • the propagation path estimation / compensation circuit 104 includes a register 201 for storing an output from the FFT circuit 103, and the FFT output and a known signal or an output from the hard decision circuit 107.
  • the propagation path estimation / compensation circuit 104 includes a switch 205 for switching and outputting the FFT output to the multiplier 203 and the multiplier 202, and an output from the FFT circuit 103 and an FFT output stored in the register 201.
  • Switch to multiplier 20 And a switch 207 for switching between a known signal or an output from the hard decision circuit 107 and outputting the same to the multiplier 203.
  • the propagation path estimation value updating circuit 204 has a register 301 as shown in FIG.
  • Propagation path estimation The signal sent to the compensation circuit 104, that is, the FFT output, is first sent to the multiplier 203, where the pilot symbol of the FFT output and the known signal are complex-multiplied by the multiplier 203. Is done. As a result, the first channel estimation value (initial value) is obtained. At this time, the switches 205 to 207 take a state in which the FFT output and the known signal are input to the multiplier 203. This channel estimation value is stored in the register 301 of the channel estimation value updating circuit 204.
  • the estimated channel value is sent to a multiplier 202, where it is multiplied by the information symbol of the FFT output. As a result, propagation distortion compensation is performed on the information symbol. The information symbol thus compensated for the propagation path distortion is sent to the error correction circuit 105.
  • the information symbol for which the propagation path distortion has been compensated is sent to an error correction circuit 105 for error correction, and then sent to an error detection circuit 106 where error detection is performed and output as received data.
  • the information symbol whose propagation path distortion has been compensated is sent to the hard decision circuit 107, where the signal point of the information symbol at the time of transmission is determined.
  • ⁇ Sent to the compensation circuit 104 That is, the information symbols thus hard-decided are sent to the multiplier 203 of the propagation path estimation / compensation circuit 104. Then, channel estimation and compensation are performed using the hard-decided information symbols.
  • the propagation path estimation / compensation circuit 104 uses this hard decision information symbol instead of the known signal and performs complex multiplication with the FFT output. At this time, the FFT output is stored in the register 201. In this case, switches 205 to 207 assume a state in which the FFT output and the hard decision output stored in register 201 are output to multiplier 203. You.
  • the channel estimation value is obtained by performing a complex multiplication of the hard decision information symbol and the FFT output.
  • This channel estimation value is sent to the channel estimation value updating circuit 204. Then, using this channel estimation value, the channel estimation value Update the channel estimation value (initial value).
  • the updated propagation path estimation value is sent to multiplier 202, and multiplied by the information symbol of the FFT output in multiplier 202.
  • the information symbol is subjected to propagation path distortion compensation.
  • the information symbol thus compensated for the propagation path distortion is sent to the error correction circuit 105.
  • the information symbol compensated for the distortion of the propagation path is sent to an error correction circuit 105 to correct the error, and then sent to an error detection circuit 106 where error detection is performed. Is output.
  • propagation path distortion compensation is performed for information symbols l to n using propagation path estimation values (X) obtained using pilot symbols (hatched portions).
  • Channel distortion compensation is performed for information symbols n + 1 to 2n using the channel estimation value (Y) obtained using the hard decision outputs of information symbols l to n as known signals, and information symbols n + 1 to 2n
  • the propagation path distortion is compensated for information symbols 2 n + 1 to 3 n using the propagation path estimation value (Y) obtained by using the erroneous hard decision output as a known signal. Therefore, even when transmitting long information, it is possible to estimate the propagation path response without inserting a pilot symbol between continuously transmitted information 0 FDM symbols, thereby reducing transmission efficiency. And excellent reception characteristics can be obtained.
  • the 0 FDM communication apparatus employs a channel estimation value obtained by using the information symbol after hard decision in the channel estimation value updating circuit 204 and a past channel estimation value.
  • the channel estimation value is updated using both.
  • the configuration of the 0 FDM communication apparatus according to the present embodiment is the same as that of Embodiment 1 except for the channel estimation value updating circuit, and thus the channel estimation value updating circuit will be described.
  • FIG. 8 is a block diagram showing an internal configuration of a channel estimation value updating circuit in the channel estimation / compensation circuit of the 0 FDM communication apparatus according to Embodiment 2 of the present invention.
  • the propagation path estimation value updating circuit stores the propagation path estimation value, and weights the register 601 to be output to the multiplier 202 and the propagation path estimation value stored in the registration 602.
  • Multipliers 603 and 604 that multiply numbers, adders 605 that add the multiplication results of multipliers 603 and 604, multiplier 203 output and register 601
  • a subcarrier-specific coefficient selection section 602 for selecting a weight coefficient of the past propagation path estimation value stored in the sub-carrier by a control signal.
  • the channel estimation value updating circuit shown in Fig. 8 updates the channel estimation value using both the channel estimation value obtained using the information symbols after hard decision and the past channel estimation value.
  • the updated channel estimation value follows, for example, the following equation (1).
  • W is a weighting coefficient, which is given by the coefficient selection unit for each subcarrier 62.
  • the subcarrier coefficient selection section 602 gives a weighting coefficient for each subcarrier based on the past propagation path response estimation value.
  • the coefficient selection unit for each subcarrier is set in advance according to a control signal based on information such as line quality. Select a certain weighting factor. Note that the weighting coefficients in all cases may be the same.
  • the propagation path estimation value updating circuit 204 outputs the past (here, one past) propagation path estimation value from the register 601 to the multiplier 604.
  • the channel estimation value (the output of the multiplier 203) obtained by obtaining the current information symbol after the hard decision as a known signal is output to the multiplier 603.
  • the coefficient selection unit for each subcarrier 602 selects a weight coefficient (W) by which the current channel estimation value and the past channel estimation value are multiplied, and performs current channel estimation.
  • the weight coefficient of the value is output to the multiplier 603, and the weight coefficient of the past channel estimation value is output to the multiplier 604.
  • the adder 605 calculates a propagation path estimation value to be updated by adding the weighted propagation path estimation values. Then, the calculated propagation path estimation value is sent to the register 601, and the propagation path estimation value stored in the register is updated.
  • the OFDM communication apparatus is obtained by adding a process of averaging the propagation path estimation value using information symbols after hard decision for n symbols.
  • the configuration of the 0 FDM communication apparatus according to the present embodiment is the same as that of Embodiment 1 except for the channel estimation value updating circuit, and thus the channel estimation value updating circuit will be described.
  • FIG. 9 is a block diagram showing an internal configuration of a channel estimation value updating circuit in a channel estimation / compensation circuit of the 0 FDM communication apparatus according to Embodiment 3 of the present invention.
  • the propagation path estimation value update circuit stores the propagation path estimation value, and registers the register 701 output to the multiplier 202 and the propagation path estimation value obtained by using the information symbol after hard decision to n.
  • an averaging unit 702 for averaging the symbols.
  • the channel estimation value updating circuit includes a switch 703 that switches between outputting the channel estimation value (output of the multiplier 203) directly to the register 701 and outputting to the averaging unit 702. Including.
  • the switch 703 when the channel estimation value is obtained using the pilot symbols, the switch 703 sends the output of the multiplier 203 to the register 701, and the channel estimation value is obtained. Is sent to register 701 and stored in register 701. When the channel estimation value is obtained using the information symbols after the hard decision, the switch 703 sends the output of the multiplier 203 to the averaging unit 702, and the channel estimation value is obtained. Is sent to the averaging unit 702, and the channel estimation values for n symbols are averaged.c The averaged channel estimation value is sent to the register 701, and stored in the register 7101. The updated channel estimation value is updated. In the case where the amplitude of the transmission signal includes information such as multi-valued QAM, the averaging unit 702 does not include the value of the signal point having a small amplitude in the averaging, and adds Deterioration may be further reduced.
  • a newly obtained channel estimation value is averaged for a plurality of symbols, so that an estimation error due to additive noise can be reduced.
  • this channel estimation value high estimation accuracy can be obtained.
  • channel distortion compensation can be performed on information symbols with higher accuracy.
  • the 0 FDM communication apparatus has a process of averaging the channel estimation value obtained by using the information symbols after hard decision in the channel estimation value updating circuit 204 by n symbols. Then, the channel estimation value is updated using both the averaged channel estimation value and the past channel estimation value.
  • the configuration of the 0 FDM communication apparatus according to the present embodiment is the same as that of the first embodiment except for the channel estimation value updating circuit. I do.
  • FIG. 10 is a block diagram showing an internal configuration of a propagation path estimation value updating circuit in a propagation path estimation / compensation circuit of the OFDM communication apparatus according to Embodiment 4 of the present invention.
  • This propagation path estimation value updating circuit stores the propagation path estimation value, and weights the register 8001 to be output to the multiplier 202 and the propagation path estimation value stored in the register 202 by a weighting factor. 803, 804, an adder 805 for adding the multiplication results of the multipliers 803, 804, a multiplier 203 output, and a register 801.
  • a coefficient selection unit for each subcarrier 8002 that selects the weight coefficient of the stored past channel estimation value by a control signal, and averages the channel estimation values obtained using the information symbols after hard decision for n symbols.
  • the channel estimation value updating circuit outputs the channel estimation value (output of the multiplier 203) directly to the multiplier 803 or outputs it to the averaging unit 806 and outputs the multiplier 803 And a switch 807 for switching whether to output the data.
  • the channel estimation value update circuit shown in FIG. 10 averages the channel estimation values obtained using the information symbols after hard decision for n symbols, and furthermore, averages the averaged channel estimation value and the past channel estimation value.
  • the channel estimation value is updated using both the values, and the updated channel estimation value follows, for example, the following equation (2).
  • Equation (2) W is a weighting coefficient, and is given by the coefficient selection unit for each subcarrier 802.
  • the subcarrier coefficient selecting section 802 gives a weighting coefficient for each subcarrier based on the past propagation path response estimation value.
  • the coefficient selection unit for each subcarrier 802 selects a preset weight coefficient according to a control signal based on information such as channel quality. Note that the weighting coefficients in all cases may be the same.
  • the propagation path estimation value updating circuit 204 outputs the past (here, one past) propagation path estimation value from the register 801 to the multiplier 804.
  • the switch 807 sends the output of the multiplier 203 to the multiplier 803, and the channel estimation value becomes the multiplier 803. 3 and is multiplied by a weighting factor in a multiplier 803.
  • the switch 807 sends the output of the multiplier 203 to the averaging unit 806, and the channel estimation value is obtained. Is sent to averaging section 806, and the channel estimation values for n symbols are averaged.
  • the averaged propagation path estimation value is sent to a multiplier 803, where the weighted coefficient is multiplied.
  • the coefficient selection unit for each subcarrier 802 calculates a weighting coefficient (W) by which the averaged output of the current channel estimation value and the past channel estimation value are multiplied.
  • W weighting coefficient
  • the multipliers 803 and 804 respectively weight the averaged output of the current channel estimation value and the past channel estimation value, and output the result to the adder 805.
  • the adder 805 adds the weighted channel estimation values to calculate a new channel estimation value to be updated. Then, the calculated channel estimation value is sent to the register 8001, and the channel estimation value stored in the registry is updated.
  • the averaging unit 806 does not include the value of signal points with small amplitudes in the averaging, and adds additive noise. May be further reduced.
  • a newly obtained channel estimation value is averaged for a plurality of symbols, so that an estimation error due to additive noise can be reduced. Moreover, since a new channel estimation value is obtained by using the past channel response estimation value, higher estimation accuracy can be obtained. As a result, propagation path distortion compensation can be performed on information symbols with higher accuracy.
  • a CRC (Cyclic Redundancy Check) result may be input as external quality information. This is for setting so that the averaging block including the information symbol in which the error is detected by the CRC result is not used as the averaging output. At this time, the weighting factor W in the above equation (2) becomes zero.
  • the OFDM communication apparatus uses signals after propagation path distortion compensation as information OFDM symbols to be accumulated for use in successive propagation path estimation. Specifically, in the OFDM communication apparatus according to the present embodiment, the difference between the information after the channel distortion compensation accumulated in the register 0 and the FDM symbol and the hard decision output is calculated, and the past channel estimation value is calculated. Is updated by the difference.
  • the configuration of the 0 FDM communication apparatus according to the present embodiment is the same as that of Embodiment 1 except for the channel estimation / compensation circuit. Therefore, the channel estimation / compensation circuit will be described.
  • FIG. 12 is a block diagram showing the internal configuration of the propagation path estimation / compensation circuit of the OFDM communication apparatus according to Embodiment 5 of the present invention.
  • the propagation path estimation / compensation circuit 104 stores a multiplier 1001 for complexly multiplying the output from the FFT circuit 103 (FFT output) and the known signal, and stores the output of the multiplier 1001, that is, the propagation path estimation value.
  • a channel estimation value update circuit 1002 that updates the channel estimation value, a multiplier 1003 that performs complex multiplication of the output from the channel estimation value updating unit 1002 and the FFT output, and a channel distortion that is an output of the multiplier 1003. It includes a register 1004 for storing information symbols after compensation, and subtracters 1005 and 1006 for calculating a difference between the information symbol after propagation path distortion compensation and the output of the hard decision circuit 107.
  • the channel estimation / compensation circuit 104 switches switches 1007 and 1 for switching the FFT output to the multiplier 1003 and the multiplier 1001 and outputting the same. 008.
  • the FFT output, the known signal, and the hard decision output are represented by an I component and a Q component.
  • the propagation path estimation value updating circuit 1002 stores the propagation path estimation value (output of the multiplier 1001), and outputs the register outputs 1101 and 1102 to the adders 1103 and 1104, and the subtractor 1005. , 1006, and multipliers 1105, 1106, which multiply the outputs of the multipliers 1105, 1106, and the propagation path estimation values stored in the registers 1101, 1102, respectively. including.
  • the channel estimation value updating circuit 1002 has switches 1107 and 1108 for switching the output of the multiplier 1001 to the registers 1101 and 1102 and the adders 1103 and 1104.
  • the signal sent to the propagation path estimation / compensation circuit 104 is first sent to the multiplier 1001, where the I and Q components of the FFT output and the I and Q components of the known signal are converted. Complex multiplication is performed. As a result, a channel estimation value is obtained.
  • the switches 1007 and 1008 take a state in which the FFT output and the known signal are input to the multiplier 1001.
  • the channel estimation values are stored in the registers 1101 and 1102 of the channel estimation value updating circuit 1002, respectively.
  • the switches 1107 and 1108 of the propagation path estimation value updating circuit 1002 take a state in which the output of the multiplier 1001 is sent to the registers 1101 and 1102.
  • the propagation path estimation value is sent to a multiplier 1003, where the I and Q components of the FFT output and the I and Q components of the information symbol are complex-multiplied. As a result, channel distortion compensation is performed on the information symbol.
  • the information symbol thus compensated for the propagation path distortion is sent to the error correction circuit 105.
  • the information symbol on which the channel distortion compensation has been performed is stored in the register 1004.
  • the information symbol for which the propagation path distortion has been compensated is sent to an error correction circuit 105 to correct the error, and then sent to an error detection circuit 106, where the error is detected and output as received data. Further, the information symbol whose propagation path distortion has been compensated is sent to the hard decision circuit 107, where the signal point of the information symbol at the time of transmission is determined.
  • ⁇ Sent to the compensation circuit 104 That is, in the information symbol sequence thus hard-decided, the I component is sent to the subtractor 1005 of the propagation path estimation / compensation circuit 104, and the Q component is sent to the propagation path estimation / compensation circuit 104. It is sent to the subtractor 106.
  • the subtractor 1005 calculates the difference between the I component of the hard-decided information symbol sequence and the I component of the propagation path distortion compensated information symbol stored in the register, and the difference value is propagated. It is input to the multiplier 111 of the path estimation value update circuit 1002.
  • the subtractor 1006 calculates a difference between the Q component of the hard-decided information symbol sequence and the Q component of the information symbol whose propagation path distortion has been stored in the register, and the difference value is obtained. Is input to the multiplier 1 106 of the propagation path estimated value updating circuit 1002. In the multipliers 1105 and 1106, the difference value is multiplied by a weight coefficient (0 ⁇ W ⁇ 1).
  • the weight coefficient W may be fixed or may be set to be changed as appropriate according to the line state.
  • the difference value multiplied by the weight coefficient W in this manner is sent to the adders 1103 and 1104.
  • the adder 1103 adds the I component of the difference value and the I component of the channel estimation value (output of the multiplier 1001)
  • the adder 1104 adds the Q component of the difference value and The Q component of the channel estimation value (multiplier 1001 output) is added to become the new channel estimation value.
  • the new channel estimation value is sent to the register 110 1 and 110 2, updated, and sent to the multiplier 100 3 of the channel estimation / compensation circuit 104.
  • the I component and the Q component of the information symbol of the FFT output and the I component and the Q component of the channel estimation value are subjected to complex multiplication. As a result, channel distortion compensation is performed on the information symbol.
  • the information symbol for which the propagation path distortion has been compensated is sent to the error correction circuit 105.
  • the information symbol whose propagation path distortion has been compensated is sent to the error correction circuit 105 to correct the error. Corrected, and then sent to the error detection circuit 106, where error detection is performed and output as received data.
  • the present embodiment it is possible to estimate a channel response without inserting a pilot symbol between information OFDM symbols that are continuously transmitted, thereby reducing transmission efficiency. Excellent receiving characteristics can be obtained without any problem. Further, even when there is a residual phase error, only the difference is corrected while compensating for the residual phase error, so that deterioration of estimation accuracy due to the residual phase error can be reduced.
  • the weight coefficient is made variable using the past propagation path estimation value as quality information.
  • the configuration of the 0 FDM communication apparatus according to the present embodiment is the same as that of the fifth embodiment except for the channel estimation value updating circuit, and thus the channel estimation value updating circuit will be described.
  • FIG. 14 is a block diagram showing an internal configuration of a propagation path estimation value updating circuit in the propagation path estimation / compensation circuit of the 0 FDM communication apparatus according to Embodiment 6 of the present invention.
  • the propagation path estimation value updating circuit 1002 stores the propagation path estimation value (multiplier 1001 output) and outputs it to the adders 1204 and 1205.
  • multipliers 1 2 0 6, 1 2 0 7 for multiplying outputs of subtracters 1 0 0 5, 1 0 0 6 by weighting factors, multipliers 1 2 0 6, 1 2 0
  • Adders 1 2 0 4, 1 2 0 5 for adding the multiplication result of 7 and the channel estimation values stored in the registers 1 2 0 1, 1 2 0 2, and 1 2 0 1, 1 2 0 2 includes a coefficient selection unit for each subcarrier 1203 that selects a weight coefficient W k using the channel estimation value stored in 2 as quality information.
  • the propagation path estimation value updating circuit 1002 switches the output of the multiplier 1001 to the register 1 2 0 1 and 1 2 0 2 and the output to the adders 1 2 4 4 and 1 2 0 5 It has switches 122 and 122.
  • the operation of the 0 FDM communication device having the above configuration will be described.
  • the propagation path estimation value (multiplier 1001 output) is stored in the registers 1 2 0 1 and 1 2 0 2 of the propagation path estimation value updating circuit 100 2 respectively.
  • the switches 1 2 0 8 and 1 2 0 9 of the propagation path estimation value updating circuit 1 0 2 indicate that the output of the multiplier 1 0 1 is sent to the register 1 2 0 1 and 1 2 0 2. Take.
  • the difference values from the subtractors 1 0 5 and 1 0 6 are input to the multipliers 1 2 0 6 and 1 2 0 7, respectively.
  • the difference value is multiplied by a weight coefficient Wk.
  • the weight coefficient Wk is selected by the coefficient selection unit for each subcarrier 123.
  • the selection of the weight coefficient W k in the subcarrier coefficient selecting section 123 is performed by using the channel estimation values stored in the registers 122 and 122 as quality information. As described above, since the difference value is reduced by multiplying the difference value by the weight coefficient Wk, the effect of a large estimation error can be prevented.
  • the difference value multiplied by the weight coefficient Wk in this manner is sent to the adders 124 and 125.
  • the adder 1204 adds the I component of the difference value and the I component of the channel estimation value (output of the multiplier 1001), and the adder 125 adds the Q component of the difference value.
  • the Q component of the channel estimation value (multiplier 1001 output) are added to obtain a new channel estimation value.
  • the new channel estimation value is sent to registers 1201 and 1202, updated, and sent to multiplier 1003 of channel estimation / compensation circuit 104.
  • the present embodiment it is possible to estimate the channel response without inserting a pilot symbol between information FDM symbols that are continuously transmitted, and to change the weighting factor for each subcarrier. As a result, the rate of update of the difference value having low reliability can be reduced, so that excellent reception characteristics can be obtained without lowering the transmission efficiency. Further, even when there is a residual phase error, since only the difference is corrected while compensating for the residual phase error, deterioration of estimation accuracy due to the residual phase error can be reduced. (Embodiment 7)
  • the output of the subtractor is averaged in propagation path estimated value updating circuit 1002.
  • the configuration of the 0 FDM communication apparatus according to the present embodiment is the same as that of the sixth embodiment except for the channel estimation value updating circuit, and thus the channel estimation value updating circuit will be described.
  • FIG. 15 is a block diagram showing an internal configuration of a propagation path estimation value updating circuit in the propagation path estimation / compensation circuit of the 0 FDM communication apparatus according to Embodiment 7 of the present invention.
  • the I component of the difference value from the subtractor 1 0 5 is input to the averaging unit 1 3 0 1 and the Q value of the difference value from the subtractor 1 0 6
  • the components are input to the averaging unit 1302.
  • the averaging process of the difference values for n symbols is performed.
  • the I component of the averaged difference value is sent to a multiplier 1 206, and the Q component of the averaged difference value is
  • the value of the signal point having a small amplitude may not be included in the averaging, and the deterioration due to the Caro method noise may be further reduced.
  • the present embodiment by averaging the output of the subtractor, it is possible to more accurately obtain the estimated value of the change in the propagation path fluctuation, and thus to obtain excellent reception characteristics without lowering the transmission efficiency. Can be. In addition, even when there is a residual phase error, only the difference is corrected while compensating for the residual phase error, so that deterioration of estimation accuracy due to the residual phase error can be reduced.
  • a CRC (Cyclic Redundancy Check) result may be input to 203 as external quality information. This is for setting so that the averaged block in which an error is detected based on the CRC result is not used as the difference value of the estimated propagation path variation. In this way, by applying the external quality information to the selection of the weighting factor, it is possible to more accurately obtain the estimated value of the variation of the propagation path variation and to eliminate the difference value estimation error due to the bit error. Therefore, excellent reception characteristics can be obtained without reducing transmission efficiency. In addition, even when there is a residual phase error, only the difference is corrected while compensating for the residual phase error, so that deterioration of estimation accuracy due to the residual phase error can be reduced.
  • Embodiments 1 to 7 may be combined as appropriate.
  • An OFDM communication apparatus includes: an estimated value calculating unit that obtains a channel estimation value using the known signal of the OFDM signal including the known signal; and an ODM signal obtained from the 0 FDM signal using the channel estimation value.
  • a channel distortion compensating unit for compensating for channel distortion with respect to the information signal; and a hard decision unit for determining a transmission signal point using the information signal in which the channel distortion has been compensated.
  • the unit employs a configuration for calculating a channel estimation value by using the hard-decided signal instead of the known signal.
  • the channel estimation value is calculated by using the information signal after the hard decision instead of the known signal. Therefore, even when long information is transmitted, the information between continuously transmitted information OFDM symbols can be transmitted. Propagation path response can be estimated without inserting pilot symbols, and excellent reception characteristics can be obtained without reducing transmission efficiency.
  • An FDM communication apparatus includes: an estimated value calculating unit that obtains a channel estimation value using the known signal of the FDM signal including the known signal; and an OFDM signal obtained from the OFDM signal using the channel estimation value.
  • a channel distortion compensating unit for compensating for channel distortion with respect to the obtained information signal, and a hard decision unit for determining a transmission signal point using the information signal in which the channel distortion has been compensated.
  • the calculation unit employs a configuration in which a channel estimation value is calculated using a difference between the signal after the hard decision and the information signal on which channel distortion has been compensated.
  • the information transmitted continuously is transmitted between OFDM symbols. Since the channel response can be estimated without inserting a symbol, excellent reception characteristics can be obtained without lowering the transmission efficiency. Further, even when there is a residual phase error, only the difference is corrected while compensating for the residual phase error, so that it is possible to reduce deterioration in estimation accuracy due to the residual phase error.
  • the estimation value calculation unit calculates a new channel estimation value using a channel estimation value obtained from a current information signal after hard decision and a past information signal. Take the configuration.
  • the OFDM communication apparatus of the present invention employs, in the above configuration, a weighting means for weighting the current information signal after the hard decision and the past information signal.
  • a new channel estimation value is obtained by using the past channel response estimation value. Therefore, by using this channel estimation value, a high estimation accuracy can be obtained, and more accurate information can be obtained. It is possible to perform channel distortion compensation on symbols.
  • the OFDM communication apparatus of the present invention in the above configuration, employs a configuration in which the weighting unit performs weighting based on external quality information. According to this configuration, since the external quality information is applied to the selection of the weight coefficient, the estimation error due to the bit error can be reduced, and the dramatic estimation accuracy can be obtained.
  • the OFDM communication apparatus of the present invention in the above configuration, employs a configuration in which the estimated value calculation unit includes an averaging unit that averages information signals of a plurality of symbols after the hard decision.
  • a newly obtained channel estimation value is averaged for a plurality of symbols, so that an estimation error due to additive noise can be reduced.
  • this channel estimation value high estimation accuracy is obtained. This makes it possible to more accurately perform propagation path distortion compensation on the information symbol.
  • a communication terminal apparatus includes the above-mentioned configuration of the FDM communication apparatus. Further, the base station apparatus of the present invention includes the OFDM communication apparatus having the above configuration. It is characterized by the following.
  • the propagation path estimation method of the present invention includes: an estimation value calculation step of obtaining a propagation path estimation value using the known signal of the OFDM signal including the known signal; and an estimation value calculation step of obtaining the propagation path estimation value from the OFDM signal using the propagation path estimation value.
  • a channel estimation value is calculated by using the hard-decided signal instead of the known signal.
  • the channel estimation value is calculated by using the information signal after the hard decision instead of the known signal. Therefore, even when long information is transmitted, the information between continuously transmitted information OFDM symbols is transmitted.
  • the propagation path response can be estimated without introducing a pilot symbol, and excellent reception characteristics can be obtained without lowering the transmission efficiency.
  • the propagation path estimation method of the present invention includes: an estimation value calculating step of obtaining a propagation path estimation value using the known signal of the OFDM signal including the known signal; and And a hard decision step of determining a transmission signal point using the information signal in which the propagation path distortion has been compensated.
  • a channel estimation value is calculated using a difference between the signal after the hard decision and the information signal subjected to channel distortion compensation.
  • this method it is possible to estimate the propagation path response without inserting a pilot symbol between information OFDM symbols that are continuously transmitted, so that excellent reception characteristics can be obtained without reducing transmission efficiency. Can be obtained. Further, even when there is a residual phase error, only the difference is corrected while compensating for the residual phase error, so that it is possible to reduce deterioration in estimation accuracy due to the residual phase error.

Description

明 細 書
OFD M通信装置及び伝搬路推定方法 技術分野
本発明は、 ディジ夕ル無線通信システムにおける 0 F D M通信装置及び伝搬 路推定方法に関する。 背景技術
現在の地上波の伝送路における伝送特性の劣化の主な要因は、 マルチパス妨 害である。 このマルチパス妨害に対して強い O FDM ( Orthogonal Frequency Division Multiplexing) fe 力式が 年、注目されている。 この OFDMは、 ある信号区間で互いに直交する多数 (数十〜数百) のデイジ タル変調波を多重する方式である。
従来の OF DM通信装置では、 受信信号を F FT回路で時間一周波数変換し、 受信信号に含まれるパイロッ トシンボルと既知信号との間で複素乗算を行う ことにより、 伝搬路の周波数応答推定値を得る。 そして、 周波数応答推定値と、 情報 OFDMシンボルとを複素乗算することにより、 伝搬路歪を補償する。 こ の伝搬路歪補償された受信信号を誤り訂正回路で、 復調、 誤り訂正して受信デ 一夕である情報シンボル列を得る。
上記従来の OFDM通信装置においては、 長い情報を送信する場合に、 図 1 に示すように、 情報 OF DMシンボル中にある一定間隔で伝搬路応答推定用パ ィロットシンボル (斜線部) を挿入して、 時々刻々変動する伝搬路応答の変化 に追従させている。 すなわち、 図 2に示すように、 パイロットシンボル Aで得 られた伝搬路推定値を用いて情報 OFDMシンボル l〜nを補償し、 パイロッ トシンボル Bで得られた伝搬路推定値を用いて情報〇 F D Mシンボル n + 1 〜2nを補償する。 しかしながら、 このように長い情報を送信する場合において、 伝搬路の時間 変動に追従するためには、 頻繁にパイロットシンボルなどの既知信号を挿入す る必要があるため、 伝送効率が落ちるという問題がある。 発明の開示
本発明の目的は、 伝搬路応答の時間変動が大きい場合でも伝送効率を低下さ せずに、 伝送路の時間変動に適応的に追従して受信特性を向上させることがで きる 0 F D M通信装置及び伝搬路推定方法を提供することである。
本発明の骨子は、 受信信号の判定値を用いて、 すなわち受信した情報信号の 判定値を既知信号として用いて、 伝搬路応答を適応的に推定することにより、 長い情報を送信する場合でも、 伝搬路推定用のパイロットシンボルを頻繁に揷 入せずに、 伝送効率を低下させないで、 伝送路の時間変動に適応的に追従し、 優れた受信特性を実現することである。 図面の簡単な説明
図 1は、 従来の伝搬路推定方法において使用されるシンボル構成を示す図; 図 2は、 従来の伝搬路推定方法を説明するための図;
図 3は、 本発明の実施の形態 1に係る 0 F D M通信装置の構成を示すプロッ ク図;
図 4は、 本発明の実施の形態 1に係る 0 F D M通信装置の伝搬路推定 ·補償 回路の内部構成を示すブロック図;
図 5は、 図 4に示す伝搬路推定値更新回路の内部構成を示すブロック図; 図 6は、 本発明に係る伝搬路推定方法において使用されるシンボル構成を示 す図;
図 7は、 本発明に係る伝搬路推定方法を説明するための図;
図 8は、 本発明の実施の形態 2に係る 0 F D M通信装置の伝搬路推定 ·補償 回路における伝搬路推定値更新回路の内部構成を示すプロック図; 図 9は、 本発明の実施の形態 3に係る 0 F D M通信装置の伝搬路推定 ·補償 回路における伝搬路推定値更新回路の内部構成を示すプロック図;
図 1 0は、 本発明の実施の形態 4に係る 0 F D M通信装置の伝搬路推定 ·補 償回路における伝搬路推定値更新回路の内部構成を示すプロック図; 図 1 1は、 本発明の実施の形態 4に係る 0 F D M通信装置の伝搬路推定 ·補 償回路における伝搬路推定値更新回路の内部構成を示すプロック図; 図 1 2は、 本発明の実施の形態 5に係る 0 F D M通信装置の伝搬路推定 ·補 償回路の内部構成を示すブロック図;
図 1 3は、 本発明の実施の形態 5に係る O F D M通信装置の伝搬路推定 '補 償回路における伝搬路推定値更新回路の内部構成を示すプロック図;
図 1 4は、 本発明の実施の形態 6に係る O F D M通信装置の伝搬路推定-補 償回路における伝搬路推定値更新回路の内部構成を示すプロック図;
図 1 5は、 本発明の実施の形態 7に係る 0 F D M通信装置の伝搬路推定 ·補 償回路における伝搬路推定値更新回路の内部構成を示すブロック図;並びに 図 1 6は、 本発明の実施の形態 7に係る 0 F D M通信装置の伝搬路推定 ·補 償回路における伝搬路推定値更新回路の内部構成を示すブロック図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 添付図面を参照して詳細に説明する。 (実施の形態 1 )
図 3は、 本発明の実施の形態 1に係る 0 F D M通信装置の構成を示すプロッ ク図である。 O F D M通信に使用される信号は、 図 6に示す構成を有する。 す なわち、 パイロットシンボル以外のプリアンプルに続けて、 既知信号である伝 搬路応答推定用パイロヅトシンボルの後に、 情報 O F D Mシンボルが続く構成 となる。 このように、 送信する情報シンボルの先頭にのみ伝搬路推定用のパイ ロットシンボルを付加する。
1 0 1を介して受信された O F D M信号は、 無線受信回路 1 0 2で 通常の無線受信処理がなされてベースバンド信号となる。 このベースバンド信 号は、 直交検波器で直交検波処理され、 ローパス 'フィル夕で不要周波数成分 が除去され、 A/D変換される。 なお、 直交検波処理により受信信号は同相成 分と直交成分に分かれるが図面では一つの信号経路としている。
このべ一スノ、 'ンド信号は、 F F T (Fast Fourier Transform) 回路 1 0 3で F F T演算されて、 各サブキャリアに割り当てられた信号が得られる。 F F T部 1 0 3で F F T演算された信号は、 伝搬路推定 ·補償回路 1 0 4に送ら れ、 受信 O F D M信号に含まれるパイロットシンボルと既知信号との間で複素 乗算を行うことにより、 伝搬路推定を行い、 最初の伝搬路推定値 (初期値) を 得る。
伝搬路推定 ·補償回路 1 0 4では、 最初の伝搬路推定値を用いて情報 O F D Mシンボルの伝搬路歪補償を 0 F D Mシンボル毎に逐次行う。伝搬路歪補償さ れた情報シンボルは、 逐次誤り訂正回路 1 0 5に送られて誤り訂正される。 誤 り訂正回路 1 0 5からは、 伝送路符号化される単位毎に誤り訂正された情報シ ンボル列が出力される。 この情報シンボル列は、 誤り検出回路 1 0 6に送られ、 そこで誤り検出が行われて、 受信デ一夕として出力される。
伝搬路歪補償された情報シンボル列は、 定期的に硬判定回路 1 0 7に送られ る。 硬判定回路 1 0 7では、 伝搬路歪補償された情報シンボルに対して硬判定 処理が行われる。 すなわち、 送信時の情報シンボルの信号点が硬判定される。 このように硬判定された情報シンボル列は、 伝搬路推定 ·補償回路 1 0 4に送 られる。 伝搬路推定 ·補償回路 1 0 4では、 この硬判定情報シンボルを既知信 号として用い、 F F T演算された信号と複素乗算することにより伝搬路推定を 行い、 伝搬路推定値を求める。 この伝搬路推定値は、 最初の伝搬路推定値に更 新される。
この新しい伝搬路推定値が情報 0 F D Mシンボルと複素乗算されることに より、 伝搬路歪補償が行われる。 この伝搬路歪補償された受信信号は、 誤り訂 正回路 1 0 5に送られ、 そこで誤り訂正される。 誤り訂正回路 1 0 5から出力 された情報シンボル列は、 誤り検出回路 106に送られ、 そこで誤り検出が行 われて、 受信データとして出力される。
なお、 伝搬路推定値の更新は、 各情報シンボル毎に行っても良く、 複数情報 シンボル毎に行っても良い。複数情報シンボル毎に伝搬路推定値を更新する場 合には、 誤り訂正回路 105の後段にスィツチなどを設けて、 制御信号により 硬判定回路 107への出力と誤り検出回路 106への出力を切り替えるよう にすれば良い。
一方、 各サブキャリア毎の送信データである情報信号は、 図示しない変調部 で、 例えば、 QP SK ( Quadrature Phase Shift Keying) や QAM (Quadrature Amplitude Modulation) などでディ、ジ夕ノレ変調処理され た後、 I FFT (inverse Fast Fourier Transform) 回路 108で I F FT演算されて OFDM信号となる。 この OFDM信号は、 D/A変換された 後に、 無線送信回路 109に送られ、 そこで通常の無線送信処理がなされて送 信信号としてアンテナ 101を介して送信される。
次に、 上記構成を有する OFDM通信装置の動作について説明する。
アンテナ 101を介して受信された OFDM信号は、 無線受信回路 102で 通常の無線受信処理がなされてベースバンド信号となり、 ??で回路丄 03で F F T演算されて、 各サブキヤリアに割り当てられた信号となる。
この信号は、 伝搬路推定 ·補償回路 104に送られる。 伝搬路推定 ·補償回 路 104は、 図 4に示すように、 FFT回路 103からの出力を格納するレジ ス夕 201と、 この F FT出力と既知信号もしくは硬判定回路 107からの出 力とを複素乗算する乗算器 203と、 乗算器 203からの出力である伝搬路推 定値を格納すると共に、 新しい伝搬路推定値に更新する伝搬路推定値更新回路 204と、 伝搬路推定値と FFT出力とを複素乗算する乗算器 202とを含む。 また、 伝搬路推定 ·補償回路 104は、 F FT出力を乗算器 203及び乗算 器 202に切り替えて出力するためのスィツチ 205と、 F FT回路 103か らの出力及びレジス夕 201に格納した FFT出力を切り替えて乗算器 20 3に出力するためのスィツチ 2 0 6と、 既知信号又は硬判定回路 1 0 7からの 出力を切り替えて乗算器 2 0 3に出力するためのスィヅチ 2 0 7とを有する。 また、 伝搬路推定値更新回路 2 0 4は、 図 5に示すように、 レジス夕 3 0 1 を有する。
まず、 パイロットシンボルを用いて伝搬路推定 ·補償を行う。 伝搬路推定 - 補償回路 1 0 4に送られた信号、 すなわち F F T出力は、 まず乗算器 2 0 3に 送られ、 乗算器 2 0 3で F F T出力のうちのパイロットシンボルと既知信号と が複素乗算される。 これにより、 最初の伝搬路推定値 (初期値) が得られる。 このとき、 スィッチ 2 0 5〜2 0 7は、 F F T出力と既知信号が乗算器 2 0 3 に入力される状態をとる。 この伝搬路推定値を、 伝搬路推定値更新回路 2 0 4 のレジス夕 3 0 1に格納する。
また、 この伝搬路推定値は、 乗算器 2 0 2に送られ、 乗算器 2 0 2で F F T 出力の情報シンボルと乗算される。 これにより、 情報シンボルには、 伝搬路歪 補償がなされる。 このように伝搬路歪補償がなされた情報シンボルが誤り訂正 回路 1 0 5に送られる。
伝搬路歪補償された情報シンボルは、 誤り訂正回路 1 0 5に送られて誤り訂 正され、 その後、 誤り検出回路 1 0 6に送られ、 そこで誤り検出が行われて、 受信データとして出力される。
また、 伝搬路歪補償された情報シンボルは、 硬判定回路 1 0 7に送られ、 送 信時の情報シンボルの信号点が判定され、 この信号点が判定された結果は、 伝 搬路抄いて ·補償回路 1 0 4に送られる。 すなわち、 このように硬判定された 情報シンボルは、 伝搬路推定 ·補償回路 1 0 4の乗算器 2 0 3に送られる。 そ して、 この硬判定された情報シンボルを用いて伝搬路推定 ·補償を行う。 伝搬 路推定 ·補償回路 1 0 4では、 この硬判定情報シンボルを既知信号の代わりに 用い、 F F T出力と複素乗算する。 このとき、 F F T出力はレジス夕 2 0 1に 格納しておく。 この場合、 スィッチ 2 0 5〜2 0 7は、 レジス夕 2 0 1に格納 した F F T出力及び硬判定出力が乗算器 2 0 3に出力されるような状態をと る。
このようにして硬判定情報シンボルと F F T出力を複素乗算して伝搬路推 定値を求める。 この伝搬路推定値は、 伝搬路推定値更新回路 2 0 4に送られる c そして、 この伝搬路推定値を用いて、 伝搬路推定値更新回路 2 0 4のレジス夕 3 0 1に格納された伝搬路推定値 (初期値) を更新する。
また、 更新された伝搬路推定値は、 乗算器 2 0 2に送られ、 乗算器 2 0 2で F F T出力の情報シンボルと乗算される。 これにより、 情報シンボルには、 伝 搬路歪補償がなされる。 このように伝搬路歪補償がなされた情報シンボルが誤 り訂正回路 1 0 5に送られる。
伝搬路歪補償された情報シンボルは、 誤り訂正回路 1 0 5に送られて誤り訂 正され、 その後、 誤り検出回路 1 0 6に送られ、 そこで誤り検出が行われて、 受信デ一夕として出力される。
このような伝搬路推定方法では、図 7に示すように、パイロットシンボル(斜 線部) を用いて求めた伝搬路推定値 (X) で情報シンボル l〜nまでについて 伝搬路歪補償を行い、 情報シンボル l〜nの硬判定出力を既知信号として用い て求めた伝搬路推定値 (Y) で情報シンボル n + 1〜2 nまでについて伝搬路 歪補償を行い、 情報シンボル n + 1〜2 nの誤硬判定出力を既知信号として用 いて求めた伝搬路推定値 (Y) で情報シンボル 2 n + l〜3 nまでについて伝 搬路歪補償を行う。 したがって、 長い情報を送信する場合でも、 連続して送信 される情報 0 F D Mシンボルの間にパイロッ トシンボルを揷入することなし に、 伝搬路応答を推定することができるため、 伝送効率を低下させることなく 優れた受信特性を得ることができる。
また、 情報シンボルの硬判定出力を既知信号として用いる場合、 複数の情報 シンボルについての品質情報を求め、 その品質情報を伝搬路推定値更新回路 2 0 4に入力して、 どの情報シンボルの硬判定出力を伝搬路推定値算出用の既知 信号として適切であるかを判断するようにしても良い。 これにより、 最適な伝 搬路推定値を得ることができ、 情報シンボルに対する適切な伝搬路歪補償を行 うことができる。 したがって、 長い情報を送信する場合でも、 伝搬路応答の時 間変動が大きい場合でも、 伝送効率を低下させずに、 伝送路の時間変動に適応 的に追従して低い誤り率を維持することができる。
(実施の形態 2 )
本実施の形態に係る 0 F D M通信装置は、 伝搬路推定値更新回路 2 0 4にお いて硬判定後の情報シンボルを用いて得られた伝搬路推定値と、 過去の伝搬路 推定値との両方を用いて伝搬路推定値を更新するものである。
本実施の形態に係る 0 F D M通信装置の構成は、 伝搬路推定値更新回路以外 について実施の形態 1と同様であるので、 伝搬路推定値更新回路について説明 する。
図 8は、 本発明の実施の形態 2に係る 0 F D M通信装置の伝搬路推定 ·補償 回路における伝搬路推定値更新回路の内部構成を示すブロック図である。 この 伝搬路推定値更新回路は、 伝搬路推定値を格納すると共に、 乗算器 2 0 2に出 力するレジス夕 6 0 1と、 レジス夕 6 0 1に格納された伝搬路推定値に重み係 数を乗算する乗算器 6 0 3 , 6 0 4と、 各乗算器 6 0 3, 6 0 4の乗算結果を 加算する加算器 6 0 5と、 乗算器 2 0 3出力とレジス夕 6 0 1に格納された過 去の伝搬路推定値の重み係数を制御信号により選択するサブキヤリア毎係数 選択部 6 0 2とを含む。
図 8に示す伝搬路推定値更新回路は、 硬判定後の情報シンボルを用いて得ら れた伝搬路推定値と、 過去の伝搬路推定値の両方を用いて伝搬路推定値を更新 するものであり、 更新される伝搬路推定値は例えば下記式 ( 1 ) にしたがう。
(更新推定値) =W x (乗算器 2 0 3出力)
+ ( 1— W) ( 1つ過去の推定値) …式 ( 1 ) ここで、 Wは重み係数であり、 サブキャリア毎係数選択部 6 0 2により与え られる。 サブキヤリァ毎係数選択部 6 0 2では、 過去の伝搬路応答推定値に基 づいてサブキャリア毎に重み係数を与える。サブキャリア毎係数選択部 6 0 2 は、 回線品質などの情報に基づく制御信号にしたがって、 あらかじめ設定して ある重み係数を選択する。 なお、 すべての場合の重み係数が同じであっても良 い。
具体的に、 伝搬路推定値更新回路 2 0 4においては、 過去の (ここでは 1つ 過去の) 伝搬路推定値をレジス夕 6 0 1から乗算器 6 0 4に出力する。 一方、 硬判定後の現情報シンボルを既知信号として求めた伝搬路推定値 (乗算器 2 0 3出力) を乗算器 6 0 3に出力する。
回線品質などの情報に基づく制御信号にしたがってサブキヤリァ毎係数選 択部 6 0 2では、 現伝搬路推定値と過去の伝搬路推定値に乗算する重み係数 (W) を選択し、 現伝搬路推定値の重み係数については乗算器 6 0 3に出力し、 過去の伝搬路推定値の重み係数については乗算器 6 0 4に出力する。
乗算器 6 0 3 , 6 0 4では、 それそれ現伝搬路推定値と過去の伝搬路推定値 に対して重み付けが行われ、 その結果が加算器 6 0 5に出力される。加算器 6 0 5では、 重み付けされたそれそれの伝搬路推定値を加算して更新する伝搬路 推定値を算出する。 そして、 算出された伝搬路推定値がレジスタ 6 0 1に送ら れ、 レジス夕に格納されている伝搬路推定値が更新される。
本実施の形態によれば、 過去の伝搬路応答推定値も利用して新しい伝搬路推 定値を得るので、 この伝搬路推定値を用いることにより、 高い推定精度を得る ことができ、 より精度良く情報シンボルに対して伝搬路歪補償を行うことがで ぎる。
(実施の形態 3 )
本実施の形態に係る O F D M通信装置は、 硬判定後の情報シンボルを用いた 伝搬路推定値を nシンボル分平均化する処理を付加したものである。
本実施の形態に係る 0 F D M通信装置の構成は、 伝搬路推定値更新回路以外 について実施の形態 1と同様であるので、 伝搬路推定値更新回路について説明 する。
図 9は、 本発明の実施の形態 3に係る 0 F D M通信装置の伝搬路推定 ·補償 回路における伝搬路推定値更新回路の内部構成を示すプロック図である。 この 伝搬路推定値更新回路は、 伝搬路推定値を格納すると共に、 乗算器 2 0 2に出 力するレジスタ 7 0 1と、 硬判定後の情報シンボルを用いて得られた伝搬路推 定値を nシンボル分平均化する平均化部 7 0 2とを含む。 また、 伝搬路推定値 更新回路は、 伝搬路推定値 (乗算器 2 0 3出力) をレジス夕 7 0 1に直接出力 するか平均化部 7 0 2に出力するかを切り替えるスィツチ 7 0 3を含む。
この構成においては、 パイロットシンボルを用いて伝搬路推定値を求めた場 合には、 スイッチ 7 0 3はレジス夕 7 0 1に乗算器 2 0 3出力を送る状態とな り、 伝搬路推定値がレジスタ 7 0 1に送られ、 レジス夕 7 0 1に格納される。 また、 硬判定後の情報シンボルを用いて伝搬路推定値を求めた場合には、 スィ ツチ 7 0 3は平均化部 7 0 2に乗算器 2 0 3出力を送る状態となり、 伝搬路推 定値が平均化部 7 0 2に送られ、 nシンボル分の伝搬路推定値が平均化される c 平均化された伝搬路推定値はレジスタ 7 0 1に送られ、 レジス夕 7 0 1に格納 されている伝搬路推定値が更新される。 なお、 送信信号が多値 Q AMのように 振幅に情報が含まれている場合、 平均化部 7 0 2は、 振幅の小さな信号点の値 を平均化に含めないようにし、 加法性雑音による劣化をさらに低減するように しても良い。
本実施の形態によれば、 新しく得られる伝搬路推定値を複数シンボル分平均 化するため、 加法性雑音による推定誤差を低減することができ、 この伝搬路推 定値を用いることにより、 高い推定精度を得ることができ、 より精度良く情報 シンボルに対して伝搬路歪補償を行うことができる。
(実施の形態 4 )
本実施の形態に係る 0 F D M通信装置は、 伝搬路推定値更新回路 2 0 4にお いて硬判定後の情報シンボルを用いて得られた伝搬路推定値を nシンボル分 平均化する処理を付加し、 さらに平均化した伝搬路推定値と過去の伝搬路推定 値との両方を用いて伝搬路推定値を更新するものである。
本実施の形態に係る 0 F D M通信装置の構成は、 伝搬路推定値更新回路以外 について実施の形態 1と同様であるので、 伝搬路推定値更新回路について説明 する。
図 1 0は、 本発明の実施の形態 4に係る O F D M通信装置の伝搬路推定 '補 償回路における伝搬路推定値更新回路の内部構成を示すプロック図である。 こ の伝搬路推定値更新回路は、 伝搬路推定値を格納すると共に、 乗算器 2 0 2に 出力するレジス夕 8 0 1と、 レジス夕 8 0 1に格納された伝搬路推定値に重み 係数を乗算する乗算器 8 0 3 , 8 0 4と、 各乗算器 8 0 3 , 8 0 4の乗算結果 を加算する加算器 8 0 5と、 乗算器 2 0 3出力とレジス夕 8 0 1に格納された 過去の伝搬路推定値の重み係数を制御信号により選択するサブキヤリァ毎係 数選択部 8 0 2と、 硬判定後の情報シンボルを用いて得られた伝搬路推定値を nシンボル分平均化する平均化部 8 0 6とを含む。 また、 伝搬路推定値更新回 路は、 伝搬路推定値 (乗算器 2 0 3出力) を乗算器 8 0 3に直接出力するか平 均化部 8 0 6に出力して乗算器 8 0 3に出力するかを切り替えるスィツチ 8 0 7を含む。
図 1 0に示す伝搬路推定値更新回路は、 硬判定後の情報シンボルを用いて得 られた伝搬路推定値を nシンボル分平均化し、 さらに平均化した伝搬路推定値 と過去の伝搬路推定値の両方を用いて伝搬路推定値を更新するものであり、 更 新される伝搬路推定値は例えば下記式 (2 ) にしたがう。
(更新推定値) =W X (平均化回路出力)
+ ( 1— W) X ( 1つ過去の推定値) …式 ( 2 ) ここで、 Wは重み係数であり、 サブキャリア毎係数選択部 8 0 2により与え られる。 サブキャリア毎係数選択部 8 0 2では、 過去の伝搬路応答推定値に基 づいてサブキャリア毎に重み係数を与える。 サブキャリア毎係数選択部 8 0 2 は、 回線品質などの情報に基づく制御信号にしたがって、 あらかじめ設定して ある重み係数を選択する。 なお、 すべての場合の重み係数が同じであっても良 い。
具体的に、 伝搬路推定値更新回路 2 0 4においては、 過去の (ここでは 1つ 過去の) 伝搬路推定値をレジス夕 8 0 1から乗算器 8 0 4に出力する。 一方、 パイロットシンボルを用いて伝搬路推定値を求めた場合には、 スイツ チ 8 0 7は乗算器 2 0 3出力を乗算器 8 0 3に送る状態となり、 伝搬路推定値 が乗算器 8 0 3に送られ、 乗算器 8 0 3で重み係数が乗算される。 また、 硬判 定後の情報シンボルを用いて伝搬路推定値を求めた場合には、 スィツチ 8 0 7 は乗算器 2 0 3出力を平均化部 8 0 6に送る状態となり、 伝搬路推定値が平均 化部 8 0 6に送られ、 nシンボル分の伝搬路推定値が平均化される。 平均化さ れた伝搬路推定値は乗算器 8 0 3に送られ、 乗算器 8 0 3で重み係数が乗算さ れる。
このとき、 回線品質などの情報に基づく制御信号にしたがってサブキャリア 毎係数選択部 8 0 2では、 現伝搬路推定値の平均化出力と過去の伝搬路推定値 に乗算する重み係数 (W) を選択し、 現伝搬路推定値の平均化出力の重み係数 については乗算器 8 0 3に出力し、 過去の伝搬路推定値の重み係数については 乗算器 8 0 4に出力する。
乗算器 8 0 3 , 8 0 4では、 それそれ現伝搬路推定値の平均化出力と過去の 伝搬路推定値に対して重み付けが行われ、 その結果が加算器 8 0 5に出力され る。加算器 8 0 5では、 重み付けされたそれそれの伝搬路推定値を加算して更 新する新しい伝搬路推定値を算出する。 そして、 算出された伝搬路推定値がレ ジス夕 8 0 1に送られ、 レジス夕に格納されている伝搬路推定値が更新される。 なお、 送信信号が多値 Q AMのように振幅に情報が含まれている場合、 平均化 部 8 0 6は、 振幅の小さな信号点の値を平均化に含めないようにし、 加法性雑 音による劣化をさらに低減するようにしても良い。
本実施の形態によれば、 新しく得られる伝搬路推定値を複数シンボル分平均 化するため、 加法性雑音による推定誤差を低減することができる。 また、 過去 の伝搬路応答推定値も利用して新しい伝搬路推定値を得るので、 さらに高い推 定精度を得ることができる。 その結果、 より精度良く情報シンボルに対して伝 搬路歪補償を行うことができる。
本実施の形態において、 図 1 1に示すように、 サブキャリア毎係数選択部 8 02に外部品質情報として CRC (Cyclic Redundancy Check) 結果を入 力するようにしても良い。 これは、 CRC結果により誤りが検出された情報シ ンボルを含む平均化プロックを平均化出力として利用しないように設定する ためのものである。 このとき上記式 (2) における重み係数 Wは 0となる。 このように外部品質情報を重み係数選択に適用することにより、 ビット誤り による推定誤差を小さくすることができ、 飛躍的な推定精度を得ることができ る ο
(実施の形態 5 )
本実施の形態に係る OF DM通信装置は、 逐次伝搬路推定に用いるために蓄 積する情報 OFDMシンボルとして、 伝搬路歪補償後の信号を用いるものであ る。 具体的には、 本実施の形態に係る OF DM通信装置においては、 レジス夕 に蓄積された伝搬路歪補償後の情報 0 F D Mシンボルと硬判定出力との差分 をとり、 過去の伝搬路推定値に対してその差分だけ更新する。
本実施の形態に係る 0 F D M通信装置の構成は、 伝搬路推定 ·補償回路以外 について実施の形態 1と同様であるので、 伝搬路推定 ·補償回路について説明 する。
図 12は、 本発明の実施の形態 5に係る 0 F DM通信装置の伝搬路推定 ·補 償回路の内部構成を示すブロック図である。
伝搬路推定 ·補償回路 104は、 FFT回路 103からの出力(FFT出力) と既知信号を複素乗算する乗算器 1001と、 乗算器 1001の出力、 すなわ ち伝搬路推定値を格納すると共に、 新しい伝搬路推定値に更新する伝搬路推定 値更新回路 1002と、 伝搬路推定値更新部 1002からの出力と F FT出力 とを複素乗算する乗算器 1003と、 乗算器 1003の出力である伝搬路歪補 償後の情報シンボルを格納するレジス夕 1004と、 伝搬路歪補償後の情報シ ンボルと硬判定回路 107の出力との間の差を算出する減算器 1005, 10 06とを含む。 また、 伝搬路推定 ·補償回路 104は、 F FT出力を乗算器 1 003及び乗算器 1001に切り替えて出力するためのスィツチ 1007, 1 008を有する。 なお、 ここでは、 FFT出力、 既知信号、 及び硬判定出力に ついて I成分及び Q成分で表している。
この伝搬路推定値更新回路 1002は、 図 13に示すように、 伝搬路推定値 (乗算器 1001出力) を格納すると共に、 加算器 1103, 1104に出力 するレジス夕 1101, 1102と、 減算器 1005 , 1006の出力に重み 係数を乗算する乗算器 1105, 1106と、 乗算器 1105, 1106の乗 算結果とレジス夕 1101, 1102に格納した伝搬路推定値とを加算する加 算器 1103, 1104とを含む。 また、 伝搬路推定値更新回路 1002は、 乗算器 1001出力をレジスタ 1101, 1102及び加算器 1103, 11 04への出力を切り替えるスィッチ 1107 , 1108を有する。
上記構成を有する OF DM通信装置の動作について説明する。伝搬路推定 · 補償回路 104に送られた信号、 すなわち FFT出力は、 まず乗算器 1001 に送られ、 乗算器 1001で F FT出力の I成分と Q成分及び既知信号の I成 分と Q成分が複素乗算される。 これにより、 伝搬路推定値が得られる。 このと き、 スィッチ 1007, 1008は、 FFT出力と既知信号が乗算器 1001 に入力される状態をとる。 この伝搬路推定値を、 伝搬路推定値更新回路 100 2のレジス夕 1101, 1102にそれそれ格納する。 このとき、 伝搬路推定 値更新回路 1002のスィツチ 1107, 1108は、 乗算器 1001出力が レジス夕 1101, 1102に送られる状態をとる。
また、 この伝搬路推定値は、 乗算器 1003に送られ、 乗算器 1003で F FT出力の I成分と Q成分及び情報シンボルの I成分と Q成分が複素乗算さ れる。 これにより、 情報シンボルには、 伝搬路歪補償がなされる。 このように 伝搬路歪補償がなされた情報シンボルが誤り訂正回路 105に送られる。 また、 伝搬路歪補償がなされた情報シンボルを、 レジス夕 1004に格納する。
伝搬路歪補償された情報シンボルは、 誤り訂正回路 105に送られて誤り訂 正され、 その後、 誤り検出回路 106に送られ、 そこで誤り検出が行われて、 受信デ一夕として出力される。 また、 伝搬路歪補償された情報シンボルは、 硬判定回路 1 0 7に送られ、 送 信時の情報シンボルの信号点が判定され、 この信号点が判定された結果は、 伝 搬路抄いて ·補償回路 1 0 4に送られる。 すなわち、 このように硬判定された 情報シンボル列は、 I成分が伝搬路推定 ·補償回路 1 0 4の減算器 1 0 0 5に 送られ、 Q成分が伝搬路推定 ·補償回路 1 0 4の減算器 1 0 0 6に送られる。 減算器 1 0 0 5では、 硬判定された情報シンボル列の I成分と、 レジス夕に 格納した伝搬路歪補償された情報シンボルの I成分との間で差分が求められ、 その差分値が伝搬路推定値更新回路 1 0 0 2の乗算器 1 1 0 5に入力される。 減算器 1 0 0 6では、 硬判定された情報シンボル列の Q成分と、 レジス夕に格 納した伝搬路歪補償された情報シンボルの Q成分との間で差分が求められ、 そ の差分値が伝搬路推定値更新回路 1 0 0 2の乗算器 1 1 0 6に入力される。 乗算器 1 1 0 5 , 1 1 0 6では、 差分値に重み係数 ( 0 < W≤ 1 ) が乗算さ れる。 このように、 重み係数 Wを乗算することにより、 差分値を小さくしてい るので、 大きな推定誤りによる影響を防ぐことができる。 この重み係数 Wは、 固定であっても良く、 回線状態に応じて適宜変更するように設定しても良い。 このように重み係数 Wを乗算した差分値は、 加算器 1 1 0 3, 1 1 0 4に送 られる。 そして、 加算器 1 1 0 3では、 差分値の I成分と伝搬路推定値 (乗算 器 1 0 0 1出力) の I成分が加算され、 加算器 1 1 0 4では、 差分値の Q成分 と伝搬路推定値 (乗算器 1 0 0 1出力) の Q成分が加算され、 新しい伝搬路推 定値となる。 この新しい伝搬路推定値は、 レジス夕 1 1 0 1, 1 1 0 2に送ら れ、 更新されると共に、 伝搬路推定 ·補償回路 1 0 4の乗算器 1 0 0 3に送ら れる。
乗算器 1 0 0 3では、 F F T出力の情報シンボルの I成分と Q成分及び伝搬 路推定値の I成分と Q成分が複素乗算される。 これにより、 情報シンボルには、 伝搬路歪補償がなされる。 このように伝搬路歪補償がなされた情報シンボルが 誤り訂正回路 1 0 5に送られる。
伝搬路歪補償された情報シンボルは、 誤り訂正回路 1 0 5に送られて誤り訂 正され、 その後、 誤り検出回路 1 0 6に送られ、 そこで誤り検出が行われて、 受信データとして出力される。
このように、 本実施の形態によれば、 連続して送信される情報 O F D Mシン ボルの間にパイロットシンボルを挿入することなしに、 伝搬路応答を推定する ことができるため、 伝送効率を低下させることなく優れた受信特性を得ること ができる。 また、 残留位相誤差がある場合でも、 残留位相誤差を補償しながら 差分だけを修正するので、 残留位相誤差による推定精度の劣化を低減すること ができる。
(実施の形態 6 )
本実施の形態に係る O F D M通信装置は、 伝搬路推定値更新回路 1 0 0 2に おいて、 重み係数を過去の伝搬路推定値を品質情報として可変にしたものであ る。
本実施の形態に係る 0 F D M通信装置の構成は、 伝搬路推定値更新回路以外 について実施の形態 5と同様であるので、 伝搬路推定値更新回路について説明 する。
図 1 4は、 本発明の実施の形態 6に係る 0 F D M通信装置の伝搬路推定 ·補 償回路における伝搬路推定値更新回路の内部構成を示すブロック図である。 この伝搬路推定値更新回路 1 0 0 2は、伝搬路推定値(乗算器 1 0 0 1出力) を格納すると共に、 加算器 1 2 0 4, 1 2 0 5に出力するレジス夕 1 2 0 1 , 1 2 0 2と、 減算器 1 0 0 5 , 1 0 0 6の出力に重み係数を乗算する乗算器 1 2 0 6 , 1 2 0 7と、 乗算器 1 2 0 6, 1 2 0 7の乗算結果とレジス夕 1 2 0 1 , 1 2 0 2に格納した伝搬路推定値とを加算する加算器 1 2 0 4 , 1 2 0 5 と、 レジス夕 1 2 0 1, 1 2 0 2に格納された伝搬路推定値を品質情報として 利用して重み係数 W kを選択するサブキャリア毎係数選択部 1 2 0 3とを含 む。 また、 伝搬路推定値更新回路 1 0 0 2は、 乗算器 1 0 0 1出力をレジス夕 1 2 0 1 , 1 2 0 2及び加算器 1 2 0 4, 1 2 0 5への出力を切り替えるスィ ツチ 1 2 0 8 , 1 2 0 9を有する。 上記構成を有する 0 F D M通信装置の動作について説明する。伝搬路推定値 (乗算器 1 0 0 1出力) は、 伝搬路推定値更新回路 1 0 0 2のレジス夕 1 2 0 1 , 1 2 0 2にそれそれ格納される。 このとき、 伝搬路推定値更新回路 1 0 0 2のスィツチ 1 2 0 8 , 1 2 0 9は、 乗算器 1 0 0 1出力がレジス夕 1 2 0 1, 1 2 0 2に送られる状態をとる。
乗算器 1 2 0 6 , 1 2 0 7には、 それそれ減算器 1 0 0 5, 1 0 0 6からの 差分値が入力される。 乗算器 1 2 0 6 , 1 2 0 7では、 差分値に重み係数 Wk が乗算される。 この重み係数 Wkは、 サブキャリア毎係数選択部 1 2 0 3で選 択されたものである。 サブキヤリァ毎係数選択部 1 2 0 3における重み係数 W kの選択は、 レジス夕 1 2 0 1, 1 2 0 2に格納された伝搬路推定値を品質情 報として利用して行う。 このように、 重み係数 Wkを差分値に乗算することに より、 差分値を小さくしているので、 大きな推定誤りによる影響を防く、ことが できる。
このように重み係数 Wkを乗算した差分値は、 加算器 1 2 0 4, 1 2 0 5に 送られる。 そして、 加算器 1 2 0 4では、 差分値の I成分と伝搬路推定値 (乗 算器 1 0 0 1出力) の I成分が加算され、 加算器 1 2 0 5では、 差分値の Q成 分と伝搬路推定値 (乗算器 1 0 0 1出力) の Q成分が加算され、 新しい伝搬路 推定値となる。 この新しい伝搬路推定値は、 レジスタ 1 2 0 1 , 1 2 0 2に送 られ、 更新されると共に、 伝搬路推定 ·補償回路 1 0 4の乗算器 1 0 0 3に送 られる。
本実施の形態によれば、 連続して送信される情報 0 F D Mシンボルの間にノ イロットシンボルを挿入することなしに、 伝搬路応答を推定することができ、 さらにサブキヤリア毎に重み係数を変えることにより、 信頼性の低い差分値の 更新割—合を低くできるため、 伝送効率を低下させることなく優れた受信特性 を得ることができる。 また、 残留位相誤差がある場合でも、 残留位相誤差を補 償しながら差分だけ修正するので、 残留位相誤差による推定精度の劣化を低減 することができる。 (実施の形態 7 )
本実施の形態に係る O F D M通信装置は、 伝搬路推定値更新回路 1 0 0 2に おいて、 減算器の出力を平均化するものである。
本実施の形態に係る 0 F D M通信装置の構成は、 伝搬路推定値更新回路以外 について実施の形態 6と同様であるので、 伝搬路推定値更新回路について説明 する。
図 1 5は、 本発明の実施の形態 7に係る 0 F D M通信装置の伝搬路推定 ·補 償回路における伝搬路推定値更新回路の内部構成を示すブロック図である。 伝搬路推定値更新回路 1 0 0 2において、 減算器 1 0 0 5からの差分値の I 成分は、 平均化部 1 3 0 1に入力され、 減算器 1 0 0 6からの差分値の Q成分 は、 平均化部 1 3 0 2に入力される。 平均化部 1 3 0 1 , 1 3 0 2では、 nシ ンボル分の差分値の平均化処理が行われる。 この平均化された差分値の I成分 は、 乗算器 1 2 0 6に送られ、 平均化された差分値の Q成分は、 乗算器 1 2 0
7に送られる。 これ以降の処理については実施の形態 6と同じである。 なお、 送信信号が多値 Q AMのように振幅に情報が含まれている場合、 平均化部 1 3
0 1、 1 3 0 2は、 振幅の小さな信号点の値を平均化に含めないようにし、 カロ 法性雑音による劣化をさらに低減するようにしても良い。
本実施の形態によれば、 減算器出力を平均化することにより、 伝搬路変動の 変化量推定値をより正確に得ることができるため、 伝送効率を低下させること なく優れた受信特性を得ることができる。 また、 残留位相誤差がある場合でも、 残留位相誤差を補償しながら差分だけ修正するので、 残留位相誤差による推定 精度の劣化を低減することができる。
本実施の形態において、 図 1 6に示すように、 サブキャリア毎係数選択部 1
2 0 3に外部品質情報として C R C (Cyclic Redundancy Check) 結果を 入力するようにしても良い。 これは、 C R C結果により誤りが検出された平均 化ブロックを推定された伝搬路変動の差分値として利用しないように設定す るためのものである。 このように外部品質情報を重み係数選択に適用することにより、 伝搬路変動 の変化量推定値をより正確に得ることができることに加えて、 ビット誤りによ る差分値推定誤差を排除することができるため、 伝送効率を低下させることな く優れた受信特性を得ることができる。 また、 残留位相誤差がある場合でも、 残留位相誤差を補償しながら差分だけ修正するので、 残留位相誤差による推定 精度の劣化を低減できる。
本発明は上記実施の形態 1〜 Ίに限定されず、 種々変更して実施することが 可能である。 例えば、 本発明においては、 実施の形態 1〜7を適宜組み合わせ て実施しても良い。
本発明の O F D M通信装置は、 既知信号を含む O F D M信号の前記既知信号 を用いて伝搬路推定値を求める推定値算出部と、 前記伝搬路推定値を用いて前 記 0 F D M信号から得られた情報信号に対して伝搬路歪を補償する伝搬路歪 補償部と、 伝搬路歪が補償された情報信号を用いて送信信号点を判定する硬判 定部と、 を具備し、 前記推定値算出部は、 前記硬判定された信号を前記既知信 号の代わりに用いて伝搬路推定値を算出する構成を採る。
この構成によれば、 硬判定後の情報信号を既知信号の代わりに用いて伝搬路 推定値を算出するので、 長い情報を送信する場合でも、 連続して送信される情 報 O F D Mシンボルの間にパイロットシンボルを揷入することなしに、 伝搬路 応答を推定することができ、 伝送効率を低下させることなく優れた受信特性を 得ることができる。
本発明の 0 F D M通信装置は、 既知信号を含む〇 F D M信号の前記既知信号 を用いて伝搬路推定値を求める推定値算出部と、 前記伝搬路推定値を用いて前 記 O F D M信号から得られた情報信号に対して伝搬路歪を補償する伝搬路歪 補償部と、 伝搬路歪が補償された情報信号を用いて送信信号点を判定する硬判 定部と、 を具備し、 前記推定値算出部は、 前記硬判定後の信号と伝搬路歪補償 された情報信号との差分を用いて伝搬路推定値を算出する構成を採る。
この構成によれば、 連続して送信される情報 O F D Mシンボルの間にパイ口 ットシンボルを挿入することなしに、 伝搬路応答を推定することができるため、 伝送効率を低下させることなく優れた受信特性を得ることができる。 また、 残 留位相誤差がある場合でも、 残留位相誤差を補償しながら差分だけを修正する ので、 残留位相誤差による推定精度の劣化を低減することができる。
本発明の O F D M通信装置は、 上記構成において、 前記推定値算出部が、 硬 判定後の現情報信号及び過去の情報信号から得られた伝搬路推定値を用いて 新しい伝搬路推定値を算出する構成を採る。
本発明の O F D M通信装置は、 上記構成において、 硬判定後の現情報信号及 び過去の情報信号に対して重み付けを行う重み付け手段を具備する構成を採 る。
これらの構成によれば、 過去の伝搬路応答推定値も利用して新しい伝搬路推 定値を得るので、 この伝搬路推定値を用いることにより、 高い推定精度を得る ことができ、 より精度良く情報シンボルに対して伝搬路歪補償を行うことがで ぎる。
本発明の O F D M通信装置は、 上記構成において、 前記重み付け部が、 外部 の品質情報に基づいて重み付けを行う構成を採る。 この構成によれば、 外部品 質情報を重み係数選択に適用するので、 ビット誤りによる推定誤差を小さくす ることができ、 飛躍的な推定精度を得ることができる。
本発明の O F D M通信装置は、 上記構成において、 前記推定値算出部が、 硬 判定後の複数シンボルの情報信号を平均化する平均化部を具備する構成を採 る。
この構成によれば、 新しく得られる伝搬路推定値を複数シンボル分平均化す るため、 加法性雑音による推定誤差を低減することができ、 この伝搬路推定値 を用いることにより、 高い推定精度を得ることができ、 より精度良く情報シン ボルに対して伝搬路歪補償を行うことができる。
本発明の通信端末装置は、 上記構成の 0 F D M通信装置を備えたことを特徴 とする。 また、 本発明の基地局装置は、 上記構成の O F D M通信装置を備えた ことを特徴とする。
これらの構成によれば、 長い情報を送信する場合でも、 連続して送信される 情報 O F D Mシンボルの間にパイロットシンボルを揷入することなしに、 伝搬 路応答を推定することができ、 伝送効率を低下させることなく優れた受信特性 を得る無線通信システムを実現することができる。
本発明の伝搬路推定方法は、 既知信号を含む O F D M信号の前記既知信号を 用いて伝搬路推定値を求める推定値算出工程と、 前記伝搬路推定値を用いて前 記 O F D M信号から得られた情報信号に対して伝搬路歪を補償する伝搬路歪 補償工程と、 伝搬路歪が補償された情報信号を用いて送信信号点を判定する硬 判定工程と、 を具備し、 前記推定値算出工程において、 前記硬判定された信号 を前記既知信号の代わりに用いて伝搬路推定値を算出する。
この方法によれば、 硬判定後の情報信号を既知信号の代わりに用いて伝搬路 推定値を算出するので、 長い情報を送信する場合でも、 連続して送信される情 報 O F D Mシンボルの間にパイロッ トシンボルを揷入することなしに、 伝搬路 応答を推定することができ、 伝送効率を低下させることなく優れた受信特性を 得ることができる。
本発明の伝搬路推定方法は、 既知信号を含む O F D M信号の前記既知信号を 用いて伝搬路推定値を求める推定値算出工程と、 前記伝搬路推定値を用いて前 記 0 F D M信号から得られた情報信号に対して伝搬路歪を補償する伝搬路歪 補償工程と、 伝搬路歪が補償された情報信号を用いて送信信号点を判定する硬 判定工程と、 を具備し、 前記推定値算出工程において、 前記硬判定後の信号と 伝搬路歪補償された情報信号との差分を用いて伝搬路推定値を算出する。
この方法によれば、 連続して送信される情報 O F D Mシンボルの間にパイ口 ットシンボルを挿入することなしに、 伝搬路応答を推定することができるため、 伝送効率を低下させることなく優れた受信特性を得ることができる。 また、 残 留位相誤差がある場合でも、 残留位相誤差を補償しながら差分だけを修正する ので、 残留位相誤差による推定精度の劣化を低減することができる。

Claims

以上説明したように本発明の O F D M通信装置は、 硬判定後の信号を用いて、 すなわち受信した情報信号の判定値を既知信号として用いて、 伝搬路応答を適 応的に推定するので、 長い情報を送信する場合でも、 伝搬路応答の時間変動が 大きい場合でも、 伝送効率を低下させずに、 伝送路の時間変動に適応的に追従 して低い誤り率を維持することができる。 本明細書は、 1 9 9 9年 8月 3 1日出願の特願平 1 1— 2 4 5 2 9 9号に基 づく。 この内容はすべてここに含めておく。 産業上の利用可能性 本発明は、 ディジタル無線通信システムにおける基地局装置や通信端末装置 に適用することができる。 請求の範囲
1. 既知信号を含む OF DM信号の前記既知信号を用いて伝搬路推定値を求め る推定値算出手段と、 前記伝搬路推定値を用いて前記 0 F D M信号から得られ た情報信号に対して伝搬路歪を補償する伝搬路歪補償手段と、 伝搬路歪が補償 された情報信号を用いて送信信号点を判定する硬判定手段と、 を具備し、 前記 推定値算出手段は、 前記硬判定された信号を前記既知信号の代わりに用いて伝 搬路推定値を算出する 0 F D M通信装置。
2. 既知信号を含む OF DM信号の前記既知信号を用いて伝搬路推定値を求め る推定値算出手段と、 前記伝搬路推定値を用いて前記 0 F D M信号から得られ た情報信号に対して伝搬路歪を補償する伝搬路歪補償手段と、 伝搬路歪が補償 された情報信号を用いて送信信号点を判定する硬判定手段と、 を具備し、 前記 推定値算出手段は、 前記硬判定後の信号と伝搬歪補償された情報信号との差分 を用いて伝搬路推定値を算出する OF DM通信装置。
3. 前記推定値算出手段は、 硬判定後の現情報信号及び過去の情報信号から得 られた伝搬路推定値を用いて新しい伝搬路推定値を算出する請求項 1記載の
OFD M通信装置。
4. 硬判定後の現情報信号及び過去の情報信号に対して重み付けを行う重み付 け手段を具備する請求項 3記載の 0 F D M通信装置。
5. 前記重み付け手段は、 外部の品質情報に基づいて重み付けを行う請求項 4 記載の 0 F D M通信装置。
6. 前記推定値算出手段は、 硬判定後の複数シンボルの情報信号を平均化する 平均化手段を具備する請求項 1記載の 0 F D M通信装置。
7. OFDM通信装置を備えた通信端末装置であって、 前記 OFDM通信装置 は、 既知信号を含む OF DM信号の前記既知信号を用いて伝搬路推定値を求め る推定値算出手段と、 前記伝搬路推定値を用いて前記 OFDM信号から得られ た情報信号に対して伝搬路歪を補償する伝搬路歪補償手段と、 伝搬路歪が補償 された情報信号を用いて送信信号点を判定する硬判定手段と、 を具備し、 前記
PCT/JP2000/005599 1999-08-31 2000-08-22 Appareil de communication ofdm et procede d'estimation du chemin de propagation WO2001017149A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU65980/00A AU6598000A (en) 1999-08-31 2000-08-22 Ofdm communication apparatus and method for propagation path estimation
EP00953545A EP1209836A4 (en) 1999-08-31 2000-08-22 OFDM MESSAGE TRANSMISSION DEVICE AND METHOD FOR PATIENT ESTIMATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24529999A JP2001069118A (ja) 1999-08-31 1999-08-31 Ofdm通信装置及び伝搬路推定方法
JP11/245299 1999-08-31

Publications (1)

Publication Number Publication Date
WO2001017149A1 true WO2001017149A1 (fr) 2001-03-08

Family

ID=17131618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005599 WO2001017149A1 (fr) 1999-08-31 2000-08-22 Appareil de communication ofdm et procede d'estimation du chemin de propagation

Country Status (5)

Country Link
EP (1) EP1209836A4 (ja)
JP (1) JP2001069118A (ja)
CN (1) CN1370359A (ja)
AU (1) AU6598000A (ja)
WO (1) WO2001017149A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099270B2 (en) 2002-06-06 2006-08-29 Texas Instruments Incorporated Multi-path equalization for orthogonal frequency division multiplexing communication system
JP2006527562A (ja) 2003-06-11 2006-11-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マルチキャリア通信システム用受信機
WO2004110002A1 (en) * 2003-06-11 2004-12-16 Koninklijke Philips Electronics N.V. Receiver for a multi-carrier communication system
US7346129B2 (en) 2004-02-25 2008-03-18 Broadcom Corporation Payload based channel estimation of a wireless channel
JP5118488B2 (ja) * 2004-10-29 2013-01-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) チャネル推定
CN101772932B (zh) 2007-08-08 2014-12-10 知识产权之桥一号有限责任公司 无线通信基站装置和关联对应设定方法
JP2010220105A (ja) * 2009-03-18 2010-09-30 Toshiba Corp 無線受信装置および無線受信方法
CN103210694B (zh) * 2010-11-16 2016-05-25 松下电器(美国)知识产权公司 通信装置和探测参考信号发送控制方法
US9313059B2 (en) * 2012-12-21 2016-04-12 Qualcomm Incorporated Data-modulated pilots for phase and gain detectors
JP6486570B2 (ja) * 2016-10-13 2019-03-20 三菱電機株式会社 受信装置、通信装置および復調方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311192A (ja) * 1993-04-22 1994-11-04 Kokusai Electric Co Ltd ディジタル復調器
EP0700189A1 (en) * 1994-08-03 1996-03-06 NOKIA TECHNOLOGY GmbH Method and channel equalizer for the channel equalization of digital signals in the frequency domain
JPH10247889A (ja) * 1997-03-04 1998-09-14 Toshiba Corp 直交変換を使用した信号伝送システムとその信号伝送装置
JPH11203607A (ja) * 1998-01-07 1999-07-30 Nec Corp 判定帰還型等化器及びその等化制御方法並びにその制御プログラムを記録した記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311192A (ja) * 1993-04-22 1994-11-04 Kokusai Electric Co Ltd ディジタル復調器
EP0700189A1 (en) * 1994-08-03 1996-03-06 NOKIA TECHNOLOGY GmbH Method and channel equalizer for the channel equalization of digital signals in the frequency domain
JPH10247889A (ja) * 1997-03-04 1998-09-14 Toshiba Corp 直交変換を使用した信号伝送システムとその信号伝送装置
JPH11203607A (ja) * 1998-01-07 1999-07-30 Nec Corp 判定帰還型等化器及びその等化制御方法並びにその制御プログラムを記録した記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1209836A4 *

Also Published As

Publication number Publication date
AU6598000A (en) 2001-03-26
EP1209836A4 (en) 2006-07-26
CN1370359A (zh) 2002-09-18
JP2001069118A (ja) 2001-03-16
EP1209836A1 (en) 2002-05-29

Similar Documents

Publication Publication Date Title
KR100355326B1 (ko) Ofdm 통신 장치 및 전파로 추정 방법
US8937996B2 (en) Receiver with ICI noise estimation
US7885360B2 (en) Wireless communication apparatus and receiving method
EP1037442B1 (en) OFDM communication apparatus
US7161896B1 (en) Channel estimation in a multicarrier radio receiver
JP3492565B2 (ja) Ofdm通信装置および検波方法
US8213541B2 (en) Receiving method for receiving signals by a plurality of antennas, and a receiving apparatus and a radio apparatus using the same
US20020181390A1 (en) Estimating channel parameters in multi-input, multi-output (MIMO) systems
US6952570B2 (en) Wireless communication receiver that determines frequency offset
EP1551120A1 (en) Receiving device, receiving method, and device for measuring transmission channel characteristic
WO2003085869A1 (fr) Procede et dispositif de communication par multiplexage par repartition orthogonale de la frequence (ofdm)
US20100095180A1 (en) Receiving device, receiving method, program and wireless communication system
US20070127582A1 (en) Adaptive channel equalizer and method for equalizing channels therewith
JP3910956B2 (ja) Ofdm無線通信システムのための伝搬路推定器及びこれを用いた受信装置
JP2004508771A (ja) モバイル無線受信器の自動周波数補正
KR20070090800A (ko) 무선통신시스템에서 채널 추정 장치 및 방법
JP2000165341A (ja) Ofdm用復調回路
WO2001017149A1 (fr) Appareil de communication ofdm et procede d&#39;estimation du chemin de propagation
JP4091804B2 (ja) 極座標系を用いて具現したofdm受信装置及びその方法
JP2000286819A (ja) 復調装置
US7583770B2 (en) Multiplex signal error correction method and device
US7321550B2 (en) Method of equalization in an OFDM system
US20060140295A1 (en) Multi sub-carrier communication system and method providing improved frequency equalization performance
JP6028572B2 (ja) 受信装置
JP2004165990A (ja) Ofdm信号受信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 008119554

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2000953545

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10069479

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000953545

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000953545

Country of ref document: EP