WO2001012966A1 - Combustion chamber of direct injection diesel engine - Google Patents

Combustion chamber of direct injection diesel engine Download PDF

Info

Publication number
WO2001012966A1
WO2001012966A1 PCT/JP2000/005320 JP0005320W WO0112966A1 WO 2001012966 A1 WO2001012966 A1 WO 2001012966A1 JP 0005320 W JP0005320 W JP 0005320W WO 0112966 A1 WO0112966 A1 WO 0112966A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
fuel
diesel engine
diameter
direct injection
Prior art date
Application number
PCT/JP2000/005320
Other languages
French (fr)
Japanese (ja)
Inventor
Keiichiro Yuzaki
Michihiko Hara
Katsuhiko Nagakura
Original Assignee
Yanmar Diesel Engine Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11229202A external-priority patent/JP2001055923A/en
Priority claimed from JP29659599A external-priority patent/JP2001115844A/en
Priority claimed from JP29659299A external-priority patent/JP2001115843A/en
Application filed by Yanmar Diesel Engine Co., Ltd. filed Critical Yanmar Diesel Engine Co., Ltd.
Publication of WO2001012966A1 publication Critical patent/WO2001012966A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0678Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets
    • F02B23/0693Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets the combustion space consisting of step-wise widened multiple zones of different depth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a structure of a combustion chamber of a direct injection diesel engine.
  • a direct injection diesel engine capable of sufficiently mixing fuel injected from a fuel injection nozzle with air to generate a substantially uniform air-fuel mixture and performing substantially uniform combustion in the entire combustion chamber. It is an object to provide a combustion chamber of an engine.
  • an annular recessed portion through which fuel is injected from a fuel injection nozzle is provided on a wall of the combustion chamber, and the opening diameter of the opening of the combustion chamber is smaller than the maximum diameter of the annular recessed portion and the combustion chamber is larger than the annular recessed portion.
  • a plurality of annular recesses are provided in the combustion chamber of the direct injection diesel engine of the invention of claim 1.
  • a flat portion is provided between the wall of the combustion chamber below the annular recess and the annular recess. Provided.
  • an annular projection having a chamfered opening in the combustion chamber is provided.
  • the opening diameter of the combustion chamber is set to be smaller than that of the inside of the combustion chamber, and the annular shape is formed on the wall of the combustion chamber within a range where fuel is injected from the fuel injection nozzle.
  • a central projection that has a height that does not collide and that can change the direction of fuel flow so that the fuel that collides with the combustion chamber wall surface and proceeds from the combustion chamber wall surface to the center of the combustion chamber along the bottom of the combustion chamber is directed upward. was provided at the bottom of the combustion chamber.
  • the injection axis of the fuel injected from the fuel injection nozzle is set to be above the wall projection.
  • a concave portion having an annular and smooth surface is provided above the wall projection.
  • the wall projection and the depression are smoothly connected to each other, so that the path of the fuel that collides with the combustion chamber wall is divided into two directions: the cylinder head side and the combustion chamber bottom side.
  • the angle formed by the tangent to the depression in the wall projection and the candy line is 45 to 90 degrees. Was set within the range.
  • a value obtained by dividing the height from the bottom of the combustion chamber to the wall projection by the depth of the combustion chamber is 0.3. It was set in the range from 0.5 to 0.5.
  • the opening diameter of the opening of the combustion chamber, the inner diameter of the combustion chamber, and the maximum diameter of the hollow portion are provided. In order of increasing.
  • the bottom of the combustion chamber and the central projection are connected to each other with a smooth curved surface.
  • the combustion area of fuel in the central part was reduced.
  • the height of the central projection from the bottom of the combustion chamber is higher than the height of the wall projection from the bottom of the combustion chamber.
  • the invention according to claim 18 is characterized in that, in the combustion chamber of the direct injection diesel engine according to the invention according to claim 10, the combustion chamber depth and the screw are set so that the value obtained by dividing the combustion chamber depth by the biston diameter is smaller than 0.2.
  • the size of the ton diameter was set. (Effective effect than conventional technology)
  • sea urchin I indicated by the arrow A have A 2 and A 3 in FIG. 5, narrowed bottom 5 side of the combustion chamber 1 0 0 radially inwardly, and the opening 3 and the annular rather pot
  • the atomized fuel 2 collides with the annular recess 6 so that the particles of the fuel 2 are dispersed even when the cylinder diameter is relatively small. Splitting and evaporation can be promoted. Therefore, the swirl (air flow) generated in the combustion chamber 100 can mix the fuel and air satisfactorily to generate a uniform mixture. Further, as shown in FIG.
  • the air-fuel mixture flows out of the combustion chamber 100 to the squish area 95, and the uniformly mixed fuel 2c burns, and the exhaust smoke
  • the density can be improved.
  • the flow of fuel to the bottom 5 is suppressed in the initial stage of combustion, and the mixing with air is suppressed to suppress the combustion of fuel. Can be suppressed.
  • the depression 6 suppresses the diffusion of the air-fuel mixture to the bottom 5 in the latter stage of the combustion, the highly concentrated fuel does not stay in the bottom 5 and the exhaust smoke concentration is improved.
  • the invention of claim 1 can exert a remarkable effect particularly on the improvement of combustion of an engine having a relatively small cylinder diameter (50 to 150 mm).
  • a plurality of annular concave portions (the annular concave portion 6 and the concave portion 10 and the curved surface 11 in FIG. 8, and the annular concave portion 6 and the second concave portion 15 in FIG. 10) are provided.
  • the traveling direction of the fuel that collides with the wall surface (annular concave portion 6) and flows toward the bottom portion 5 can be directed toward the center of the combustion chamber. Therefore, fuel does not need to stay near the small bottom 5 of the swirl.
  • the central projection 7 the flow of fuel to the center of the combustion chamber where swirl is reduced can be prevented, and the fuel can be mixed well with air in a large swirl region to achieve uniformity. Since a mixture can be generated, good combustion can be performed.
  • the generation of the initial combustion by setting the V have V c and ⁇ so as to satisfy the equation (1), according to claim 1 ⁇ nitrogen oxides than combustion chamber of the invention of claim 3
  • the exhaust smoke concentration can be further reduced. Therefore, good combustion can be performed from the initial combustion period to the later combustion period.
  • each dimension to be dz it is possible to appropriately adjust the flow of the fuel from the inside of the combustion chamber 100 to the squish area 95.
  • fuel 2 mixes well with air in the region of large swirl (the region occupied by the mixture 2c in Fig. 2 (c)) to produce an air-fuel mixture 2c.
  • the opening 3 is formed by an annular projection directed inward in the radial direction, and since the annular projection is chamfered, the air resistance is reduced, and the air flows into the combustion chamber 100 during the compression stroke. Can easily flow in, and fuel and air can be mixed well. Therefore, good combustion can be obtained.
  • a height h 3 of the central projection portion 7 as shown in Figure 1 is set higher than the height h 2 of the annular Kubo body section 6, the combustion chamber along the bottom 5 1 0 0
  • the direction of travel of the fuel traveling radially inward can be directed to the upper part of the combustion chamber, so that the combustion and the air can be easily mixed and good combustion can be performed.
  • the wall surface projection 21 on the wall surface 9 as shown in FIG. 11, good combustion can be obtained during the entire combustion period.
  • the kinetic energy of the injected fuel 2 itself causes the fuel 2 to be divided and spread into the bottom 5 side and the upper side (opening 3 side). Mixing can be promoted.
  • the central projection 7 By providing the central projection 7, the swirl can promote the mixing of fuel and air even in the later stage of combustion.
  • the angle ⁇ formed by the tangent of the annular recess 6 and the vertical line in the wall projection 21 shown in FIG. 11 is set in the range of 45 ° to 9 °.
  • the opening diameter of the opening 3 of the combustion chamber 300 is set to ( ⁇ , the maximum diameter of the annular recess 6 is d 2 ,
  • diameter (inner diameter of the wall 9) and d 3 since the set each size so as to satisfy dd 3 ⁇ d 2 the relationship can be fuel and air to perform good combustion are well mixed, the exhaust Color is good.
  • the bottom 5 and the central projection 7 are slid.
  • the connection by the kana curved surface 8 reduces the combustion area of the fuel in the center of the combustion chamber where the air flow due to swirl is relatively small, and the air flow due to the swirl mixes fuel and air in the periphery of the combustion chamber where the air flow is relatively large. The combustion is promoted, so that good combustion can be performed and the exhaust color is also improved.
  • the combustion chamber depth H is shallow, the air in the entire combustion chamber can be used for combustion.
  • the H / D is 0.2, the fuel and air are mixed well, the combustion is improved, and the exhaust color is also improved.
  • FIG. 1 is a schematic sectional view of a combustion chamber of a direct injection diesel engine according to the first, third and ninth aspects of the present invention.
  • Figure 2 relates to claims 1 to 9.
  • A is a schematic sectional view of the combustion chamber immediately before the fuel collides with the annular recess.
  • (B) is a schematic cross-sectional view showing a state in which the fuel colliding with the annular hollow part is spreading into the combustion chamber.
  • (C) is a schematic sectional view showing a state in which the finely divided fuel has spread into the fuel chamber.
  • FIG. 3 is a schematic cross-sectional view of the combustion chamber showing the total compression volume when the piston reaches the top dead center.
  • FIG. 4 is a schematic sectional view showing a region below the central axis of the fuel to be injected in FIG.
  • FIG. 5 is a schematic cross-sectional view comparing the shape of a conventional combustion chamber with the shape of the combustion chamber according to the first aspect of the present invention.
  • FIG. 6 shows the relationship between the ratio of the volume shown in FIG. 4 to the volume shown in FIG. 3 and the fuel injection angle in the conventional combustion chamber and the combustion chamber according to the first aspect of the present invention.
  • FIG. 7 is a graph showing the relationship between the depth of the combustion chamber, the distance from the bottom of the annular recess, and the exhaust smoke concentration.
  • FIG. 8 is a schematic sectional view of a combustion chamber of a direct injection diesel engine according to the second aspect of the present invention.
  • FIG. 9 relates to a combustion chamber according to the second aspect of the present invention.
  • A is a schematic sectional view of the combustion chamber immediately before the fuel collides with the annular recess.
  • B is a schematic cross-sectional view showing a state in which the fuel colliding with the annular hollow part is being spread into the combustion chamber.
  • C is a schematic sectional view showing a state in which the finely divided fuel has spread into the fuel chamber.
  • FIG. 10 is a schematic sectional view of a combustion chamber of another direct injection diesel engine according to the second aspect of the present invention.
  • FIG. 11 is a schematic sectional view showing a combustion chamber of a direct injection diesel engine to which the invention of claim 10 is applied.
  • FIG. 12 relates to a combustion chamber of a direct injection diesel engine according to the tenth aspect of the present invention.
  • A is a schematic sectional view showing a combustion chamber structure of a direct injection type diesel engine until fuel injected from a fuel injection nozzle collides with a wall surface.
  • B is a schematic cross-sectional view of the combustion chamber showing a state in which fuel is separated at the protrusion.
  • C is a schematic sectional view of the combustion chamber in which the paths of the separated fuels are indicated by arrows.
  • FIG. 13 is a schematic cross-sectional view of the combustion chamber of the direct injection diesel engine according to the tenth aspect of the present invention, showing another shape of the wall surface projection.
  • FIG. 1 is a schematic cross-sectional view of a combustion chamber 100 of a direct injection diesel engine in which the inventions of claims 1, 3 to 9 are implemented.
  • the combustion chamber 100 is formed on the top surface (upper end surface) 90 a of the piston 90.
  • the wall 9 of the combustion chamber 1 0 the maximum diameter is provided with a circular recess 6 of d 2.
  • Between the annular recess portion 6 and the wall 9 is provided with a flat portion 4 of a width d 4.
  • the opening 3 of the combustion chamber 100 is chamfered. This chamfer may be formed with a slope, but a rounded shape is more preferable than a slope.
  • Bottom 5 to a height h 3 Ru Oh provided with a central protrusion 7 of the diameter d 5.
  • the central projection 7 and the bottom 5 are connected by a smooth curved surface 8.
  • Fuel 2 is injected from the fuel injection nozzle 1, and the injection angle ⁇ is set so that the fuel 2 collides with the annular recess 6.
  • the diameter d 3 of the wall surface 9 and the maximum diameter d 2 of the annular recess 6 have a relationship d 3 ⁇ d ⁇ d 2 .
  • the fuel 2 is injected from the fuel injection nozzle 1 toward the annular recess 6.
  • the fuel 2 that has collided with the annular recess 6 is atomized into fuel 2b by the collision.
  • FIG. 2 (c) the finely divided fuel 2b spreads in the combustion chamber 100, and is confused with air by swirl (air flow) to generate a mixture 2c. .
  • the total volume formed by the piston 90 and the cylinder 91 when the piston 90 reaches the top dead center is defined as the total compression volume Vc , as shown in FIG.
  • Vc the total compression volume
  • the volume of the area below the center axis 2a of fuel 2 injected from the fuel injection nozzle 1 (bottom 5 side) is the volume and the injection angle of the fuel 2 is ⁇
  • the following equation (1) is obtained.
  • FIG. 5 is a schematic cross-sectional view comparing a cross section of a conventional combustion chamber indicated by a broken line with a cross section of a combustion chamber 100 of the present invention (invention of claim 1, claim 3 to claim 8) indicated by a solid line. It is. Combustion chamber 1 0 0, compared with the conventional combustion chamber widened openings 3 as indicated by an arrow A toward the outside radius direction, narrowing to the wall 9 radially inward as indicated by arrow A 2, and expanding the annular recessed portion 6 radially outward as further shown by the arrow a 3.
  • FIG. 6 is a graph showing the relationship between the fuel injection angle ⁇ ⁇ ⁇ ⁇ and the volume ratio VL / Vc in the conventional combustion chamber and the combustion chamber 100 of the present invention.
  • the graph of combustion chamber 100 is lower than that of the conventional combustion chamber. And the graph of the combustion chamber 100 is represented by equation (1). Therefore, the above equation (1) shows a hatched portion in FIG. 6, and good combustion can be performed by setting V c , VL and ⁇ within the range of the hatched portion.
  • the depth of the combustion chamber 100 is defined as H, and the annular recess is formed from the bottom 5.
  • FIG. 7 is a graph showing the relationship between h 2 ZH and the exhaust smoke density relative value (S d) (degree). As shown in FIG. 7, if the general value of h 2 ZH is 0.1 Power et 0.5 of within range (the range satisfying formula (2)), the relative value of the exhaust smoke density is zero. 8 or less.
  • Combustion chamber opening diameter d 25 to 77 [mm]
  • Diameter d 5 of central projection 7 9 to 27 [mm]
  • V L 2,200 ⁇ : 100,000 [mm 3 ]
  • FIG. 8 is a schematic sectional view of a combustion chamber 200 of a direct injection diesel engine according to the second aspect of the present invention.
  • the same components as those of the combustion chamber 100 of FIG. 1 are denoted by the same reference numerals.
  • An annular protrusion 12 is formed between the annular concave portion 6 and the concave portion 10.
  • a curved surface 11 is formed between the wall surface 9 and the concave portion 10.
  • Fuel 2 is injected from the fuel injection nozzle 1, and the injection angle ⁇ is set so that the fuel 2 collides with the annular recess 6.
  • d 3 ⁇ dd 2 between the opening diameter d of the opening 3 d the diameter d 3 of the wall surface 9 and the maximum diameter d 2 of the annular recess 6.
  • the fuel 2 is injected from the fuel injection nozzle 1 toward the annular recess 6.
  • the fuel 2 that has collided with the annular recess 6 is atomized into fuel 2b by the collision.
  • the finely divided fuel 2b spreads in the combustion chamber 100, and is mixed with air by swirl (air flow) to generate an air-fuel mixture 2c. .
  • FIG. 10 is a schematic sectional view of another combustion chamber 201 according to the second aspect of the present invention.
  • the configuration of the combustion chamber 201 in FIG. 10 is such that a second recess 15 is provided in place of the concave portion 10 and the curved surface 11 in the combustion chamber 200 shown in FIG. Only the point that an annular projection 20 is formed between the second concave portions 15 is different from the configuration of the combustion chamber 200 in FIG.
  • the fuel flowing downward from the annular recess 6 (bottom 5 side) changes its traveling direction from the bottom 5 direction to the central projection 7 at the second recess 15. Therefore, the fuel does not reach the bottom 5 where the swirl (air flow) is small, and mixes well with air in the region where the swirl is large (the region corresponding to the region occupied by the mixture 2c in FIG. 9 (c)). To form a mixture, and the mixture spreads over the entire compressed volume (the area corresponding to this in Fig. 3). Burn.
  • Fig. 8 shows a combustion chamber with two annular recesses 6 and a second recess 15 in Fig. 10
  • Fig. 10 shows a combustion chamber with two annular recesses and a second recess 15 respectively. Three or more recesses may be provided.
  • Combustion chamber opening diameter d 25 to 77 [mm]
  • Diameter d 5 of central projection 7 9 to 2 7 [mm]
  • FIG. 11 is a schematic cross-sectional view of a combustion chamber 300 of a direct injection diesel engine according to the invention of claims 10 to 18. In FIG. 11, only characteristic portions of the combustion chamber 300 according to the tenth to eighteenth aspects are shown.
  • the annular wall surface 9 of the combustion chamber 300 is provided with an annular wall surface projection 21.
  • An annular recess 6 is provided above the wall projection 21, and the wall projection 21 and the annular recess 6 are smoothly connected.
  • An opening 3 is provided at the upper end of the wall surface 9. The opening diameter of the opening 3 is set to be smaller than the diameter d 3 of the wall surface 9 (the inner diameter of the combustion chamber 300).
  • a central projection 7 is provided on the bottom 5 of the combustion chamber 300.
  • Central protrusion 7 is raised in the center of the combustion chamber 3 00, a height h 3, the height h 4 of the wall projections 2 1 And does not collide with the fuel 2 injected from the fuel injection nozzle 1.
  • the size of the diameter d 5 so that the fuel 2 which is the fuel injection nozzle 1 forces et injection does not collide with the central projection portion 7 is set. Further, the central projection 7 and the bottom 5 are connected by a smooth curved surface 8.
  • the fuel 2 injected from the fuel injection nozzle 1 collides with the wall 9 while spreading in the form of a mist, but as shown by a dashed line in FIG.
  • the injection direction of the fuel injection nozzle 1 is set so that the injection center axis 2 a of the fuel 2 is located above the wall projection 21.
  • the fuel 2 colliding with the wall 9 is separated into two paths by the wall projection 21 as shown in FIG. 12 (b), one of which is upward along the annular recess 6 (opening 3). Side), the other along the wall 9 and the bottom 5 towards the center of the combustion chamber 300.
  • wall projections 22 and 23 shown in FIG. 13 may be provided instead of the wall projection 21 in FIG. 11, wall projections 22 and 23 shown in FIG. 13 may be provided. At this time, by setting the angle theta 2 formed by the straight line and the vertical line connecting the wall surface protrusion 22 and 23 within the range of 45 to 90 degrees, the fuel and air are engaged satisfactorily mixed perform good combustion The exhaust color can be good.
  • the fuel and air are well mixed and good combustion can be performed, and the exhaust color is also good.
  • the height h 3 of the central projection portion 7 is greater than the height h 4 of the wall surface protrusion 21, the fuel proceeds toward the center along the bottom 5 may proceed to further center from the central protrusion 7 Therefore, the traveling direction can be changed upward, and the fuel can be prevented from traveling to the central region of the combustion chamber where the air flow is relatively small.
  • the diameter of the opening 3 is d 2
  • the maximum diameter of the annular recess 6 is d 2
  • the internal diameter of the combustion chamber 300 (the diameter of the wall 9) is d 3 .
  • the depth H of the combustion chamber 300 and the piston diameter D are set so as to satisfy the relationship of HZ D ⁇ 0.2.
  • the fuel and the air are mixed well, and good combustion can be performed, and the exhaust color also becomes good.
  • Combustion chamber opening diameter d 21 to 64 [mm]
  • Diameter of central projection 7 d ⁇ 8 to 24 [mm]
  • Combustion chamber depth H 7 to 24 [mm]
  • the height h of the central projection portion 7 3 3 ⁇ 1 0 [mm ]
  • the value of the angle ⁇ 2 can adopt a numerical value in the following range.
  • the present invention can be generally applied to a combustion chamber of a reentrant direct injection diesel engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

A combustion chamber (100) of a direct injection diesel engine capable of sufficiently mixing fuel (2) injected from a fuel injection nozzle (1) with air to produce approximately uniform mixture so that approximately a uniform combustion can be performed in the entire area of the combustion chamber, wherein an annular recessed part (6) having a combustion chamber wall surface (9) onto which the fuel (2) is injected from the fuel injection nozzle (1) is provided, an opening diameter (d1) of a combustion chamber opening part (3) is set smaller than the maximum diameter (d2) of the annular recessed part (6) and larger than a diameter (d3) of a combustion chamber wall surface nearer a combustion chamber bottom part (5) than the annular recessed part (6), a center projected part (7) with a height (h3) and a diameter (d5) that do not allow the fuel (2) injected from the fuel injection nozzle (1) to collide is provided at the combustion chamber bottom part (5), a flat part (4) is provided between the combustion chamber wall surface (9) lower than the annular recessed part (6) and the annular recessed part (6), and a chamfered annular projected part is provided on the combustion chamber opening part (3).

Description

明 細 書 直接噴射式ディーゼル機関の燃焼室 技術分野  Description Direct combustion diesel engine combustion chamber Technical field
本発明は、 直接噴射式ディーゼル機関の燃焼室の構造に関するものである。 背景技術  The present invention relates to a structure of a combustion chamber of a direct injection diesel engine. Background art
第 5図において破線で示す従来のリエントラント型の直接噴射式ディ一ゼル機 関の燃焼室では、 噴射された燃料と空気とが混合されにくく、 濃度の高い混合気 が燃焼室底部付近に停滞し、 燃焼室の全容積を十分に活用した偏りのない一様な 燃焼が行われにくレ、。 その結果、 黒煙や窒素酸化物等が生じ易くなる。 発明の開示  In the combustion chamber of the conventional reentrant direct injection diesel engine shown by the broken line in FIG. It is difficult to perform unbiased and uniform combustion by making full use of the entire volume of the combustion chamber. As a result, black smoke, nitrogen oxides, and the like are easily generated. Disclosure of the invention
(発明が解決しょうとする技術的課題)  (Technical problem to be solved by the invention)
本発明では、 燃料噴射ノズルから噴射された燃料を、 空気と十分に混合させて ほぼ均一な混合気を生成し、 かつ燃焼室全体でほぼ一様な燃焼を行うことができ る直接噴射式ディーゼル機関の燃焼室を提供することを課題としている。  According to the present invention, a direct injection diesel engine capable of sufficiently mixing fuel injected from a fuel injection nozzle with air to generate a substantially uniform air-fuel mixture and performing substantially uniform combustion in the entire combustion chamber. It is an object to provide a combustion chamber of an engine.
また、 燃料が燃焼室壁面に衝突した燃焼初期においては、 燃料がもつ運動エネ ルギにより燃焼室壁面での分裂, 蒸発を促進させて燃焼室壁面付近の空間部へ燃 料を拡散させ、 また、 燃焼後期においては、 燃料と空気との混合を燃焼室内のス ワール (空気流) で良好に行うことができる燃焼室構造を提供することを課題と している。 (その解決方法)  In the early stage of combustion, when the fuel collides with the combustion chamber wall, the kinetic energy of the fuel promotes splitting and evaporation on the combustion chamber wall to diffuse the fuel into the space near the combustion chamber wall. It is an object of the present invention to provide a combustion chamber structure that can mix fuel and air satisfactorily by swirling (air flow) in the combustion chamber in the latter stage of combustion. (How to solve it)
請求項 1の発明では、 燃焼室壁面に燃料噴射ノズルから燃料が噴射される環状 くぼみ部を設け、 燃焼室開口部の開口径を前記環状くぼみ部最大直径より小さく かつ環状くぼみ部よりも燃焼室底部側の燃焼室壁面直径より大きく設定し、 燃料 噴射ノズルから噴射される燃料が衝突しない高さ及び直径の中央突起部を燃焼室 底部に設けた。 According to the first aspect of the present invention, an annular recessed portion through which fuel is injected from a fuel injection nozzle is provided on a wall of the combustion chamber, and the opening diameter of the opening of the combustion chamber is smaller than the maximum diameter of the annular recessed portion and the combustion chamber is larger than the annular recessed portion. Set the diameter of the center of the combustion chamber wall larger than the bottom wall diameter so that the fuel injected from the fuel injection nozzle does not collide. Provided at the bottom.
請求項 2の発明では、 請求項 1の発明の直接噴射式ディーゼル機関の燃焼室に おいて環状くぼみ部を複数個設けた。  In the invention of claim 2, a plurality of annular recesses are provided in the combustion chamber of the direct injection diesel engine of the invention of claim 1.
請求項 3の発明では、 請求項 1又は請求項 2の発明の直接噴射式ディ一ゼル機 関の燃焼室において、 環状くぼみ部より下方の燃焼室壁面と環状くぼみ部との間 に平坦部を設けた。  According to the third aspect of the present invention, in the combustion chamber of the direct injection diesel engine according to the first or second aspect of the present invention, a flat portion is provided between the wall of the combustion chamber below the annular recess and the annular recess. Provided.
請求項 4の発明では、 請求項 1及至請求項 3のいずれかに記載の発明の直接噴 射式ディーゼル機関の燃焼室において、 燃料噴射ノズルから噴射される燃料の中 心軸よりも下の燃焼室容積を VI ^とし、 全圧縮容積を VCとすると、 VLZVC≤ 0. 0088 X噴射角度 (Θ ) — 0. 834 1 (Θ [d e g] ) とした。 請求項 5の発明では、 請求項 1及至請求項 3のいずれかに記載の発明の直接嘖 射式ディーゼル機関の燃焼室において、 燃焼室底部から燃焼室壁面に設けた環状 くぼみ部までの距離を h2、 燃焼室深さを Hとすると、 0. l <h2/Hく 0. 5とした。 According to the invention of claim 4, in the combustion chamber of the direct injection diesel engine according to any one of claims 1 to 3, combustion below the center axis of the fuel injected from the fuel injection nozzle is performed. Assuming that the chamber volume is V I ^ and the total compression volume is V C , VLZV C ≤ 0. 0088 X injection angle (Θ)-0.834 1 (Θ [deg]). According to the invention of claim 5, in the combustion chamber of the direct injection diesel engine according to any one of claims 1 to 3, the distance from the bottom of the combustion chamber to the annular recess provided on the wall of the combustion chamber is reduced. Assuming that h 2 and the depth of the combustion chamber are H, 0.1 <l 2 / H and 0.5.
請求項 6の発明では、 請求項 1及至請求項 3のいずれかに記載の発明の直接噴 射式ディーゼル機関の燃焼室において、 燃焼室開口径を d p 環状くぼみ部最大 直径を d 2、 燃焼室直径を d 3とすると、 (13く(11< 32とした。 In the invention of claim 6, claim 1及至claimed in the combustion chamber of a direct-injection Ishiki diesel engine of the invention according to any one of claims 3, a combustion chamber opening diameter dp annular recess portion maximum diameter d 2, the combustion chamber When the diameter as d 3, and a (1 district 3 (1 1 <3 2.
請求項 7の発明では、 請求項 1及至請求項 3のいずれかに記載の発明の直接噴 射式ディーゼル機関の燃焼室において、 燃焼室開口部に面取りを施した環状突起 部を備えた。  According to a seventh aspect of the present invention, in the combustion chamber of the direct injection diesel engine according to any one of the first to third aspects of the invention, an annular projection having a chamfered opening in the combustion chamber is provided.
請求項 8の発明では、 請求項 1及至請求項 3のいずれかに記載の発明の直接噴 射式ディーゼル機関の燃焼室において、 燃焼室底部と中央突起部とを滑らかな曲 面で連結した。  In the invention of claim 8, in the combustion chamber of the direct injection diesel engine according to any one of claims 1 to 3, the bottom of the combustion chamber and the central projection are connected by a smooth curved surface.
請求項 9の発明では、 請求項 1及至請求項 3のいずれかに記載の発明の直接噴 射式ディーゼル機関の燃焼室において、 中央突起部の高さを h3とすると、 h2 く h 3とした。 In the invention of claim 9, in a combustion chamber of a direct-injection Ishiki diesel engine of the invention according to any one of claims 1及至claim 3, when the height of the central projections and h 3, h 2 rather h 3 And
請求項 1 0の発明の直接噴射式ディーゼル機関の燃焼室では、 燃焼室開口径を 燃焼室内部径ょりも小さく設定し、 燃料噴射ノズルから燃料が噴射される範囲内 の燃焼室壁面に環状の壁面突起部を設け、 燃料噴射ノズルから噴射された燃料に 衝突しない高さでかつ燃焼室壁面に衝突して燃焼室壁面から燃焼室底部に沿って 燃焼室中央方向に進む燃料が上方に向かうように燃料の進行方向を変更可能な高 さの中央突起部を燃焼室底部に設けた。 In the combustion chamber of the direct injection diesel engine according to the tenth aspect of the present invention, the opening diameter of the combustion chamber is set to be smaller than that of the inside of the combustion chamber, and the annular shape is formed on the wall of the combustion chamber within a range where fuel is injected from the fuel injection nozzle. Of the fuel injected from the fuel injection nozzle A central projection that has a height that does not collide and that can change the direction of fuel flow so that the fuel that collides with the combustion chamber wall surface and proceeds from the combustion chamber wall surface to the center of the combustion chamber along the bottom of the combustion chamber is directed upward. Was provided at the bottom of the combustion chamber.
請求項 1 1の発明では、 請求項 1 0の発明の直接噴射式ディーゼル機関の燃焼 室において、 燃料噴射ノズルから噴射される燃料の噴射中心軸が壁面突起部の上 方にくるように設定した。  According to the invention of claim 11, in the combustion chamber of the direct injection diesel engine of the invention of claim 10, the injection axis of the fuel injected from the fuel injection nozzle is set to be above the wall projection. .
請求項 1 2の発明は、 請求項 1 0又は請求項 1 1の発明の直接噴射式ディーゼ ル機関の燃焼室において、 壁面突起部の上方に環状でかつ表面が滑らかな曲面の くぼみ部を設け、 壁面突起部と前記くぼみ部を滑らかに連結し、 燃焼室壁面に衝 突した前記燃料の進路がシリンダへッド側と燃焼室底部側の 2方向に分割される ようにした。  According to the invention of claim 12, in the combustion chamber of the direct injection type diesel engine of the invention of claim 10 or claim 11, a concave portion having an annular and smooth surface is provided above the wall projection. The wall projection and the depression are smoothly connected to each other, so that the path of the fuel that collides with the combustion chamber wall is divided into two directions: the cylinder head side and the combustion chamber bottom side.
請求項 1 3の発明では、 請求項 1 2の発明の直接噴射式ディーゼル機関の燃焼 室において、 壁面突起部におけるくぼみ部の接線と飴直線とで形成される角度を 4 5度から 9 0度の範囲内に設定した。  According to the invention of claim 13, in the combustion chamber of the direct injection type diesel engine of the invention of claim 12, the angle formed by the tangent to the depression in the wall projection and the candy line is 45 to 90 degrees. Was set within the range.
請求項 1 4の発明では、 請求項 1 0の発明の直接噴射式ディーゼル機関の燃焼 室において、 燃焼室底部から壁面突起部までの高さを、 燃焼室深さで除算した値 を 0 . 3から 0 . 5の範囲内に設定した。  According to the invention of claim 14, in the combustion chamber of the direct injection diesel engine of the invention of claim 10, a value obtained by dividing the height from the bottom of the combustion chamber to the wall projection by the depth of the combustion chamber is 0.3. It was set in the range from 0.5 to 0.5.
請求項 1 5の発明では、 請求項 1 3又は請求項 1 4の発明の直接噴射式ディ一 ゼル機関の燃焼室において、 燃焼室開口部の開口径, 燃焼室内部径, くぼみ部最 大直径の順で大きくなるようにした。  According to a fifteenth aspect of the present invention, in the combustion chamber of the direct injection type diesel engine according to the thirteenth aspect or the fifteenth aspect, the opening diameter of the opening of the combustion chamber, the inner diameter of the combustion chamber, and the maximum diameter of the hollow portion are provided. In order of increasing.
請求項 1 6の発明では、 請求項 1 0の発明の直接噴射式ディーゼル機関の燃焼 室において、 燃焼室内において、 燃焼室底部と中央突起部とを滑らかな曲面で連 結することにより、 燃焼室中央部における燃料の燃焼領域を減少させた。  According to the invention of claim 16, in the combustion chamber of the direct injection diesel engine of the invention of claim 10, in the combustion chamber, the bottom of the combustion chamber and the central projection are connected to each other with a smooth curved surface. The combustion area of fuel in the central part was reduced.
請求項 1 7の発明は、 請求項 1 0の発明の直接噴射式ディーゼル機関の燃焼室 において、 燃焼室底部からの中央突起部の高さを燃焼室底部からの壁面突起部の 高さより高くした。  According to a seventeenth aspect of the present invention, in the combustion chamber of the direct injection diesel engine according to the tenth aspect, the height of the central projection from the bottom of the combustion chamber is higher than the height of the wall projection from the bottom of the combustion chamber. .
請求項 1 8の発明は、 請求項 1 0の発明の直接噴射式ディーゼル機関の燃焼室 において、 燃焼室深さをビストン直径で除算した値が 0 . 2より小さくなるよう に燃焼室深さとビス トン直径の大きさを設定した。 (従来技術より有効な効果) The invention according to claim 18 is characterized in that, in the combustion chamber of the direct injection diesel engine according to the invention according to claim 10, the combustion chamber depth and the screw are set so that the value obtained by dividing the combustion chamber depth by the biston diameter is smaller than 0.2. The size of the ton diameter was set. (Effective effect than conventional technology)
シリンダ径 D (ピス トン直径) が小さいと、 噴射された燃料と空気とが混合さ れにくい。 しかし請求項 1の発明では、 第 5図に矢印 Aい A 2及び A 3で示すよ うに、 燃焼室 1 0 0の底部 5側を半径方向内方へ狭め、 かつ開口部 3及び環状く ぼみ部 6を半径方向外方へ広げたので、 シリンダ径が比較的小さい場合において も、 第 2図に示すように噴霧状の燃料 2が環状くぼみ部 6に衝突することにより 燃料 2の粒子の分裂, 蒸発を促進させることができる。 したがって燃焼室 1 0 0 内に生じるスワール (空気流) により燃料と空気とを良好に混合して一様な混合 気を生成することができる。 さらに第 2図 (c ) に示すように燃焼後期において は、 混合気が燃焼室 1 0 0内からスキッシュエリア 9 5へ流出し、 一様に混合さ れた燃料 2 cが燃焼し、 排気煙濃度を良好にすることができる。 燃料 2の衝突部 分の壁面に環状くぼみ部 6を設けることにより、 燃焼初期においては燃料の底部 5への流動を抑え、 空気との混合を抑えて燃料の燃焼を抑制することにより窒素 酸化物の生成を抑制することができる。 又、 燃焼後期にくぼみ部 6が混合気の底 部 5への拡散を抑えるので濃度の高い燃料が底部 5に滞留せず、 排気煙濃度が良 好になる。 以上により、 請求項 1の発明は、 特に比較的小さなシリンダ径 ( 5 0 〜1 5 0 mm) の機関の燃焼改善に著しい効果を奏することができる。 If the cylinder diameter D (piston diameter) is small, it is difficult for the injected fuel and air to mix. However, in the invention of claim 1, sea urchin I indicated by the arrow A have A 2 and A 3 in FIG. 5, narrowed bottom 5 side of the combustion chamber 1 0 0 radially inwardly, and the opening 3 and the annular rather pot As shown in Fig. 2, even when the cylinder diameter is relatively small, the atomized fuel 2 collides with the annular recess 6 so that the particles of the fuel 2 are dispersed even when the cylinder diameter is relatively small. Splitting and evaporation can be promoted. Therefore, the swirl (air flow) generated in the combustion chamber 100 can mix the fuel and air satisfactorily to generate a uniform mixture. Further, as shown in FIG. 2 (c), in the latter stage of the combustion, the air-fuel mixture flows out of the combustion chamber 100 to the squish area 95, and the uniformly mixed fuel 2c burns, and the exhaust smoke The density can be improved. By providing an annular depression 6 on the wall of the collision part of the fuel 2, the flow of fuel to the bottom 5 is suppressed in the initial stage of combustion, and the mixing with air is suppressed to suppress the combustion of fuel. Can be suppressed. In addition, since the depression 6 suppresses the diffusion of the air-fuel mixture to the bottom 5 in the latter stage of the combustion, the highly concentrated fuel does not stay in the bottom 5 and the exhaust smoke concentration is improved. As described above, the invention of claim 1 can exert a remarkable effect particularly on the improvement of combustion of an engine having a relatively small cylinder diameter (50 to 150 mm).
請求項 2の発明では、 複数の環状くぼみ部 (第 8図では環状くぼみ部 6と凹部 1 0及び曲面 1 1 , 第 1 0図では環状くぼみ部 6と第 2くぼみ部 1 5 ) を設ける ことにより、 壁面 (環状くぼみ部 6 ) に衝突し底部 5方向を向いて流動する燃料 の進行方向を燃焼室中央方向へ向けることができる。 したがってスワールの小さ な底部 5付近に燃料を滞留させずに済む。 また、 中央突起部 7を設けることによ り、 スワールが小さくなる燃焼室中央への燃料の流動を阻止することができ、 ス ワールの大きな領域で燃料を空気と良好に混合させて一様な混合気を生成するこ とができるので、 良好な燃焼を行うことができる。 したがって、 窒素酸化物や黒 煙の発生量を低減させることができる。 環状くぼみ部を複数設けることにより、 特に燃料噴射ノズル 1からの燃料 2の噴射圧力が高い場合や単位時間当たりの噴 射量が多い場合に、 著しい効果を奏することができる。 請求項 3の発明では、 環状くぼみ部 6と壁面 9との間に平坦部 4 (第 1図) を 設けたので、 底部 5への燃料の流動を抑制することができ、 排気煙濃度を良好に することができる。 According to the invention of claim 2, a plurality of annular concave portions (the annular concave portion 6 and the concave portion 10 and the curved surface 11 in FIG. 8, and the annular concave portion 6 and the second concave portion 15 in FIG. 10) are provided. Thereby, the traveling direction of the fuel that collides with the wall surface (annular concave portion 6) and flows toward the bottom portion 5 can be directed toward the center of the combustion chamber. Therefore, fuel does not need to stay near the small bottom 5 of the swirl. Also, by providing the central projection 7, the flow of fuel to the center of the combustion chamber where swirl is reduced can be prevented, and the fuel can be mixed well with air in a large swirl region to achieve uniformity. Since a mixture can be generated, good combustion can be performed. Therefore, the amount of generated nitrogen oxides and black smoke can be reduced. By providing a plurality of annular recesses, a remarkable effect can be obtained particularly when the injection pressure of the fuel 2 from the fuel injection nozzle 1 is high or when the amount of injection per unit time is large. In the invention of claim 3, since the flat portion 4 (FIG. 1) is provided between the annular recess 6 and the wall surface 9, the flow of fuel to the bottom 5 can be suppressed, and the exhaust smoke concentration is improved. Can be
請求項 4の発明では、 式 (1 ) を満足するように Vい V c及び Θを設定する ことにより燃焼初期に、 請求項 1及至請求項 3の発明の燃焼室よりも窒素酸化物 の生成を低減することができ、 また、 燃焼後期においては、 より排気煙濃度の低 減を図ることができる。 よって、 燃焼初期から燃焼後期に至るまで良好な燃焼を 行うことができる。 In the invention of claim 4, the generation of the initial combustion by setting the V have V c and Θ so as to satisfy the equation (1), according to claim 1及至nitrogen oxides than combustion chamber of the invention of claim 3 In the later stage of combustion, the exhaust smoke concentration can be further reduced. Therefore, good combustion can be performed from the initial combustion period to the later combustion period.
請求項 5の発明では、 底部 5から環状くぼみ部 6までの距離を式 (2 ) ( 0 . 1 < h 2/H < 0 . 5 ) となるように規定して混合が進まない底部 5への燃料の 拡散を抑えることにより、 第 7図に示すように排気煙濃度 (S d ) の低減を図る ことができる。 In the invention of claim 5, the distance from the bottom 5 to the annular recess 6 Equation (2) (0. 1 < h 2 / H <0. 5) and so as mixing was defined that the bottom 5 does not proceed By suppressing the fuel diffusion, the exhaust smoke concentration (S d) can be reduced as shown in FIG.
請求項 6の発明では、 第 1図に示すように
Figure imgf000007_0001
d zとなるように各寸法 を規定することにより、 燃焼室 1 0 0内からスキッシュエリア 9 5への燃料の流 出を適切に調整することができる。 つまり、 燃焼初期では燃料 2はスワールの大 きい領域 (図 2 ( c ) の混合気 2 cが占める領域) で空気と良好に混合して混合 気 2 cを生成し、 燃焼後期では燃料 2と空気とが混合した混合気 2 cが第 3図に 示すスキッシュエリア 9 5を含む容積 V。の全域に行き渡って燃焼するので、 容 積 V c全域で一様で良好な燃焼を行うことができる。
In the invention of claim 6, as shown in FIG.
Figure imgf000007_0001
By defining each dimension to be dz, it is possible to appropriately adjust the flow of the fuel from the inside of the combustion chamber 100 to the squish area 95. In other words, in the early stage of combustion, fuel 2 mixes well with air in the region of large swirl (the region occupied by the mixture 2c in Fig. 2 (c)) to produce an air-fuel mixture 2c. The volume V of the air-fuel mixture 2c including the squish area 95 shown in FIG. Since combustion prevails the entire, it is possible to perform uniform and good combustion in volume product V c whole.
請求項 7の発明では、 開口部 3を半径方向内方へ向かう環状突起で形成し、 こ の環状突起に面取りを施したので空気抵抗が小さくなり、 圧縮行程において燃焼 室 1 0 0内へ空気が流入し易くなり、 燃料と空気の混合を良好に行うことができ る。 従って、 良好な燃焼を得ることができる。  According to the invention of claim 7, the opening 3 is formed by an annular projection directed inward in the radial direction, and since the annular projection is chamfered, the air resistance is reduced, and the air flows into the combustion chamber 100 during the compression stroke. Can easily flow in, and fuel and air can be mixed well. Therefore, good combustion can be obtained.
請求項 8の発明では、 第 1図に示すように底部 5と中央突起部 7とを滑らかな 曲面 8で連結することにより、 スワール (空気流) が減衰することを防ぐことが できる。 従って、 燃料と空気とが混合し易い環境が保たれ、 混合気を良好に燃焼 させることができる。  In the invention of claim 8, by connecting the bottom portion 5 and the central projection portion 7 with a smooth curved surface 8 as shown in FIG. 1, it is possible to prevent the swirl (air flow) from attenuating. Therefore, an environment in which fuel and air are easily mixed is maintained, and the air-fuel mixture can be satisfactorily burned.
請求項 9の発明では、 第 1図に示すように中央突起部 7の高さ h 3を環状くぼ み部 6の高さ h 2よりも高く設定することにより、 底部 5に沿って燃焼室 1 0 0 の半径方向内方へ進行する燃料の進行方向を燃焼室上方へ向けることができ、 燃 焼と空気とを混合させやすく、 良好な燃焼を行うことができる。 In the invention of claim 9, by a height h 3 of the central projection portion 7 as shown in Figure 1 is set higher than the height h 2 of the annular Kubo body section 6, the combustion chamber along the bottom 5 1 0 0 The direction of travel of the fuel traveling radially inward can be directed to the upper part of the combustion chamber, so that the combustion and the air can be easily mixed and good combustion can be performed.
請求項 1 0の発明では、 第 1 1図に示すように壁面 9に壁面突起部 2 1を設け ることにより、 燃焼の全期間において良好な燃焼が得られる。 壁面突起部 2 1を 設けることにより、 噴射された燃料 2自身がもつ運動エネルギにより燃料 2が底 部 5側と上部側 (開口部 3側) に分かれて広がるので、 燃焼初期の燃料と空気と の混合を促進することができる。 中央突起部 7を設けることにより、 燃焼後期に おいても、 スワールにより燃料と空気との混合を促進することができる。  According to the tenth aspect of the present invention, by providing the wall surface projection 21 on the wall surface 9 as shown in FIG. 11, good combustion can be obtained during the entire combustion period. By providing the wall projection 21, the kinetic energy of the injected fuel 2 itself causes the fuel 2 to be divided and spread into the bottom 5 side and the upper side (opening 3 side). Mixing can be promoted. By providing the central projection 7, the swirl can promote the mixing of fuel and air even in the later stage of combustion.
請求項 1 1の発明では、 燃料 2の中心線 2 aが壁面突起部 2 1よりも上方にな るように設定して燃料 2を壁面 9に吹き付けることにより、 燃料の上下に分かれ る割合が良好になり、 燃焼室 1 0 0内における燃料と空気の混合をさらに良好に 行うことができる。  According to the invention of claim 11, by setting the center line 2a of the fuel 2 to be higher than the wall projection 21 and spraying the fuel 2 on the wall 9, the rate at which the fuel splits up and down is reduced. Thus, the fuel and air in the combustion chamber 100 can be mixed more favorably.
請求項 1 2の発明では、 第 1 1図に示すように環状くぼみ部 6を設けることに より、 壁面 9に衝突した燃料 2の一部を開口部 3側 (シリンダヘッド側) へ導く ことができ、 燃焼室 1 0 0内の中央突起 7の上方領域を除く周辺領域に満遍なく 燃料を拡散させることができる。  According to the invention of claim 12, by providing the annular concave portion 6 as shown in FIG. 11, a part of the fuel 2 colliding with the wall surface 9 can be guided to the opening 3 side (cylinder head side). Thus, the fuel can be diffused evenly in the peripheral region except the region above the central projection 7 in the combustion chamber 100.
請求項 1 3の発明では、 第 1 1図に示す壁面突起部 2 1における環状くぼみ部 6の接線と鉛直線とで形成される角度 Θ を 4 5度から 9◦度の範囲内に設定す ることにより、 燃料と空気が良好に混合されて良好な燃焼を行うことができ、 排 気色も良好にすることができる。  According to the invention of claim 13, the angle で formed by the tangent of the annular recess 6 and the vertical line in the wall projection 21 shown in FIG. 11 is set in the range of 45 ° to 9 °. As a result, the fuel and the air are satisfactorily mixed, and good combustion can be performed, and the exhaust color can also be improved.
請求項 1 4の発明では、 底部 5から壁面突起部 2 1までの高さを h 2とし、 燃 焼室深さを Hとして 0 . 3 < h 2/Hく 0 . 5なる関係を満たすことにより、 良 好な燃焼を行うことができ、 排気色も良好になる。 In the invention of claim 1 4, the height from the bottom 5 to the wall projections 2 1 and h 2, 0. 3 <h 2 / H rather 0. To meet the 5 the relationship of the fuel Yakishitsu depth as H As a result, good combustion can be performed, and the exhaust color also becomes good.
請求項 1 5の発明では、 第 1 1図に示すように燃焼室 3 0 0の開口部 3の開口 径を(^, 環状くぼみ部 6の最大直径を d 2, 燃焼室 3 0 0の内部径 (壁面 9の 内径) を d 3とすると、 d d 3 < d 2なる関係を満たすように各径を設定する ので、 燃料と空気が良好に混合されて良好な燃焼を行うことができ、 排気色が良 好になる。 In the invention of claim 15, as shown in FIG. 11, the opening diameter of the opening 3 of the combustion chamber 300 is set to (^, the maximum diameter of the annular recess 6 is d 2 , When diameter (inner diameter of the wall 9) and d 3, since the set each size so as to satisfy dd 3 <d 2 the relationship can be fuel and air to perform good combustion are well mixed, the exhaust Color is good.
請求項 1 6の発明では、 第 1 1図に示すように底部 5と中央突起部 7とを滑ら かな曲面 8で接続するので、 スワールによる空気流が比較的小さな燃焼室中央部 における燃料の燃焼領域を減少させることができ、 スワールによる空気流が比較 的大きな燃焼室周辺部において燃料と空気の混合を促進して燃焼させるので、 良 好な燃焼を行うことができ、 排気色も良好になる。 In the invention of claim 16, as shown in FIG. 11, the bottom 5 and the central projection 7 are slid. The connection by the kana curved surface 8 reduces the combustion area of the fuel in the center of the combustion chamber where the air flow due to swirl is relatively small, and the air flow due to the swirl mixes fuel and air in the periphery of the combustion chamber where the air flow is relatively large. The combustion is promoted, so that good combustion can be performed and the exhaust color is also improved.
中央突起部 7の高さ h 3が低いと燃料は中央突起部 7を越えて燃焼室中央部へ 進んでしまう力 請求項 1 7の発明では h 2 < h 3とすることにより、 中央突起 部 7の側壁に沿って進む燃料の進行方向を燃焼室上方へ向くようにすることがで き、 燃料と空気が混合し易い領域で燃焼させることができるので、 良好な燃焼が 得られる。 By a low height h 3 of the central projection portion 7 fuel in the invention of the force according to claim 1 7 will proceed to the center of the combustion chamber portion past the central projection portion 7, h 2 <h 3, the central projecting portion The fuel traveling along the side wall of 7 can be directed upward of the combustion chamber, and can be burned in a region where fuel and air are easily mixed, so that good combustion can be obtained.
請求項 1 8の発明では、 燃焼室深さ Hが浅い分、 燃焼室全体の空気を燃焼に使 用することができる。 H/Dく 0 . 2となるように設定することにより、 燃料と 空気が良好に混合されて燃焼が改善されて排気色も良好になる。 図面の簡単な説明  According to the invention of claim 18, since the combustion chamber depth H is shallow, the air in the entire combustion chamber can be used for combustion. By setting the H / D to 0.2, the fuel and air are mixed well, the combustion is improved, and the exhaust color is also improved. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 請求項 1, 請求項 3及至請求項 9の発明の直接噴射式ディーゼル機 関の燃焼室の断面略図である。  FIG. 1 is a schematic sectional view of a combustion chamber of a direct injection diesel engine according to the first, third and ninth aspects of the present invention.
第 2図は請求項 1及至請求項 9に関するものである。 (a ) は燃料が環状くぼ み部に衝突する直前の燃焼室の断面略図である。 (b ) は環状くぼみ部に衝突し た燃料が燃焼室内に広がる途中の状態を示す断面略図である。 (c ) は微細化さ れた燃料が燃料室内に広がった状態を示す断面略図である。  Figure 2 relates to claims 1 to 9. (A) is a schematic sectional view of the combustion chamber immediately before the fuel collides with the annular recess. (B) is a schematic cross-sectional view showing a state in which the fuel colliding with the annular hollow part is spreading into the combustion chamber. (C) is a schematic sectional view showing a state in which the finely divided fuel has spread into the fuel chamber.
第 3図は、 ビストンが上死点に到達した際の全圧縮容積を示す燃焼室の断面略 図である。  FIG. 3 is a schematic cross-sectional view of the combustion chamber showing the total compression volume when the piston reaches the top dead center.
第 4図は、 第 3図において噴射される燃料の中心軸より下方の領域を示す断面 略図である。  FIG. 4 is a schematic sectional view showing a region below the central axis of the fuel to be injected in FIG.
第 5図は、 従来の燃焼室と請求項 1の発明の燃焼室の形状を比較した断面略図 である。  FIG. 5 is a schematic cross-sectional view comparing the shape of a conventional combustion chamber with the shape of the combustion chamber according to the first aspect of the present invention.
第 6図は、 従来の燃焼室と請求項 1の発明の燃焼室において、 第 3図に示す容 積に対する第 4図に示す容積の割合と燃料の噴射角度との関係を示- る。 第 7図は、 燃焼室深さに対する環状くぼみ部の底部からの距離と排気煙濃度と の関係を示すグラフである。 FIG. 6 shows the relationship between the ratio of the volume shown in FIG. 4 to the volume shown in FIG. 3 and the fuel injection angle in the conventional combustion chamber and the combustion chamber according to the first aspect of the present invention. FIG. 7 is a graph showing the relationship between the depth of the combustion chamber, the distance from the bottom of the annular recess, and the exhaust smoke concentration.
第 8図は、 請求項 2の発明の直接噴射式ディーゼル機関の燃焼室の断面略図で ある。  FIG. 8 is a schematic sectional view of a combustion chamber of a direct injection diesel engine according to the second aspect of the present invention.
第 9図は、 請求項 2の発明の燃焼室に関するものである。 (a ) は燃料が環状 くぼみ部に衝突する直前の燃焼室の断面略図である。 (b ) は環状くぼみ部に衝 突した燃料が燃焼室内に広がる途中の状態を示す断面略図である。 (c ) は微細 化された燃料が燃料室内に広がつた状態を示す断面略図である。  FIG. 9 relates to a combustion chamber according to the second aspect of the present invention. (A) is a schematic sectional view of the combustion chamber immediately before the fuel collides with the annular recess. (B) is a schematic cross-sectional view showing a state in which the fuel colliding with the annular hollow part is being spread into the combustion chamber. (C) is a schematic sectional view showing a state in which the finely divided fuel has spread into the fuel chamber.
第 1 0図は、 請求項 2の発明の別の直接噴射式ディーゼル機関の燃焼室の断面 略図である。  FIG. 10 is a schematic sectional view of a combustion chamber of another direct injection diesel engine according to the second aspect of the present invention.
第 1 1図は、 請求項 1 0の発明を適用した直接噴射式ディーゼル機関の燃焼室 を示す断面略図である。  FIG. 11 is a schematic sectional view showing a combustion chamber of a direct injection diesel engine to which the invention of claim 10 is applied.
第 1 2図は、 請求項 1 0の発明の直接噴射式ディーゼル機関の燃焼室に関する ものである。 (a ) は燃料噴射ノズルから噴射された燃料が壁面に衝突するまで の直接噴射式ディーゼル機関の燃焼室構造を示す断面略図である。 (b ) は、 突 起部で燃料が分離した状態を示す燃焼室の断面略図である。 (c ) は、 分離した それぞれの燃料の進路を矢印で示す燃焼室の断面略図である。  FIG. 12 relates to a combustion chamber of a direct injection diesel engine according to the tenth aspect of the present invention. (A) is a schematic sectional view showing a combustion chamber structure of a direct injection type diesel engine until fuel injected from a fuel injection nozzle collides with a wall surface. (B) is a schematic cross-sectional view of the combustion chamber showing a state in which fuel is separated at the protrusion. (C) is a schematic sectional view of the combustion chamber in which the paths of the separated fuels are indicated by arrows.
第 1 3図は、 請求項 1 0の発明の直接噴射式ディーゼル機関の燃焼室において、 壁面突起部の別の形状を示す燃焼室の断面略図である。 発明を実施するための最良の形態  FIG. 13 is a schematic cross-sectional view of the combustion chamber of the direct injection diesel engine according to the tenth aspect of the present invention, showing another shape of the wall surface projection. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図は、 請求項 1, 請求項 3及至請求項 9の発明を実施した直接噴射式ディ ーゼル機関の燃焼室 1 0 0の断面略図である。 第 1図において燃焼室 1 0 0は、 ピストン 9 0の頂面 (上端面) 9 0 aに形成されている。 燃焼室 1 0 0の壁面 9 には、 最大直径が d 2の環状くぼみ部 6が設けてある。 環状くぼみ部 6と壁面 9 との間には幅 d 4の平坦部 4が設けてある。 燃焼室 1 0 0の開口部 3には面取り が施してある。 この面取りは斜面で形成してもよいが、 斜面よりは丸みを帯びた 形状の方が好ましい。 底部 5には高さ h 3, 直径 d 5の中央突起部 7が設けてあ る。 中央突起部 7と底部 5とは滑らかな曲面 8で連結されている。 燃料噴射ノズル 1からは燃料 2が噴射され、 燃料 2は環状くぼみ部 6に衝突す るように噴射角度 Θが設定されている。 開口部 3の開口径 壁面 9の直径 d 3及び環状くぼみ部 6の最大直径 d 2の間には d 3 < d < d 2という関係がある。 第 2図 (a ) に示すように、 燃料 2は、 燃料噴射ノズル 1から環状くぼみ部 6 に向けて噴射される。 第 2図 (b ) に示すように、 環状くぼみ部 6に衝突した燃 料 2は、 衝突により燃料 2 bに微細化される。 その後、 第 2図 (c ) に示すよう に、 微細化された燃料 2 bは燃焼室 1 0 0内に広がり、 スワール (空気流) によ り空気と混同して混合気 2 cを生成する。 FIG. 1 is a schematic cross-sectional view of a combustion chamber 100 of a direct injection diesel engine in which the inventions of claims 1, 3 to 9 are implemented. In FIG. 1, the combustion chamber 100 is formed on the top surface (upper end surface) 90 a of the piston 90. The wall 9 of the combustion chamber 1 0 0, the maximum diameter is provided with a circular recess 6 of d 2. Between the annular recess portion 6 and the wall 9 is provided with a flat portion 4 of a width d 4. The opening 3 of the combustion chamber 100 is chamfered. This chamfer may be formed with a slope, but a rounded shape is more preferable than a slope. Bottom 5 to a height h 3, Ru Oh provided with a central protrusion 7 of the diameter d 5. The central projection 7 and the bottom 5 are connected by a smooth curved surface 8. Fuel 2 is injected from the fuel injection nozzle 1, and the injection angle Θ is set so that the fuel 2 collides with the annular recess 6. The diameter d 3 of the wall surface 9 and the maximum diameter d 2 of the annular recess 6 have a relationship d 3 <d <d 2 . As shown in FIG. 2 (a), the fuel 2 is injected from the fuel injection nozzle 1 toward the annular recess 6. As shown in FIG. 2 (b), the fuel 2 that has collided with the annular recess 6 is atomized into fuel 2b by the collision. Thereafter, as shown in FIG. 2 (c), the finely divided fuel 2b spreads in the combustion chamber 100, and is confused with air by swirl (air flow) to generate a mixture 2c. .
その後、 図示していないが、 ピス トン 9 0が下降して混合気 2 cが燃焼室 1◦ 0内からスキッシュエリア 9 5へ流出し、 後述する全圧縮容積 V c (第 3図) に 行き渡って一様に燃焼する。 Thereafter, although not shown, the gas mixture 2 c and piston 9 0 descends flows out into the squish area 9 5 from the combustion chamber 1◦ within 0, prevailing on the total compression volume V c to be described later (FIG. 3) It burns uniformly.
第 3図に示すように、 ピス トン 9 0が上死点に到達した際のビストン 9 0とシ リンダ 9 1とで形成される全容積を全圧縮容積 Vcとし、 第 4図に示すように燃 料噴射ノズル 1から噴射された燃料 2の中心軸 2 aよりも下方 (底部 5側) の領 域の容積を容積 とし、 燃料 2の噴射角度を Θとすると、 次式 (1 ) を満足す るように Vc, ^及び 0を設定する。 As shown in FIG. 3, the total volume formed by the piston 90 and the cylinder 91 when the piston 90 reaches the top dead center is defined as the total compression volume Vc , as shown in FIG. Assuming that the volume of the area below the center axis 2a of fuel 2 injected from the fuel injection nozzle 1 (bottom 5 side) is the volume and the injection angle of the fuel 2 is Θ, the following equation (1) is obtained. Set V c , ^ and 0 to satisfy.
V L/V C≤ 0 . 0 0 8 8 X 0—0 . 8 3 4 1 ( 1 ) ( Θ [ d e g ] ) V L / V C ≤ 0.0 0.88 X 0-0.0.8 3 4 1 (1) (Θ [deg])
式 (1 ) を満足するように v c, V L及び Θを設定することにより、 燃焼初期 においては燃焼室 1 0 0内で燃料と空気とが良好に混合され、 また、 燃焼後期に おいては全圧縮容積 Vcにおいて一様な燃焼を行うことができる。 By setting the v c, V L and Θ so as to satisfy the equation (1), in the initial combustion and the fuel and air are well mixed in the combustion chamber 1 0 within 0, also Oite combustion late it can perform uniform combustion in all compression volume V c.
第 5図は、 破線で示す従来の燃焼室の断面と実線で示す本発明 (請求項 1, 請 求項 3及至請求項 8の発明) の燃焼室 1 0 0の断面とを比較した断面略図である。 燃焼室 1 0 0は、 従来の燃焼室と比較して矢印 A で示すように開口部 3を半 径方向外方へ広げ、 矢印 A 2で示すように壁面 9を半径方向内方へ狭め、 さらに 矢印 A 3で示すように環状くぼみ部 6を半径方向外方へ広げている。 FIG. 5 is a schematic cross-sectional view comparing a cross section of a conventional combustion chamber indicated by a broken line with a cross section of a combustion chamber 100 of the present invention (invention of claim 1, claim 3 to claim 8) indicated by a solid line. It is. Combustion chamber 1 0 0, compared with the conventional combustion chamber widened openings 3 as indicated by an arrow A toward the outside radius direction, narrowing to the wall 9 radially inward as indicated by arrow A 2, and expanding the annular recessed portion 6 radially outward as further shown by the arrow a 3.
第 6図は、 従来の燃焼室及び本発明の燃焼室 1 0 0における燃料の噴射角度 Θ と容積割合 V L/V cの関係を示すグラフである。 FIG. 6 is a graph showing the relationship between the fuel injection angle に お け る and the volume ratio VL / Vc in the conventional combustion chamber and the combustion chamber 100 of the present invention.
第 6図に示すように、 燃焼室 1 0 0のグラフは従来の燃焼室のグラフよりも下 方に位置しており、 また、 燃焼室 100のグラフは式 (1) で表される。 従って、 前述の式 (1) は、 第 6図におけるハッチング部分を示しており、 Vc, VL及 び Θをハツチング部分の範囲内に設定することにより良好な燃焼を行うことがで きる。 As shown in Fig. 6, the graph of combustion chamber 100 is lower than that of the conventional combustion chamber. And the graph of the combustion chamber 100 is represented by equation (1). Therefore, the above equation (1) shows a hatched portion in FIG. 6, and good combustion can be performed by setting V c , VL and Θ within the range of the hatched portion.
第 1図に示すように、 燃焼室 100の深さを Hとし、 底部 5から環状くぼみ部 As shown in FIG. 1, the depth of the combustion chamber 100 is defined as H, and the annular recess is formed from the bottom 5.
6までの距離 (環状くぼみ部 6の高さ) を h2とすると、 次式 (2) を満足する ように H及び h2を設定することにより、 燃焼室 100内において燃料と空気と が良好に混合し、 良好な燃焼を行うことができる。 When the distance to 6 (height of the annular recess portion 6) and h 2, by setting the H and h 2 so as to satisfy the following equation (2), good fuel and air in the combustion chamber 100 And good combustion can be performed.
0. 1く h 2/H< 0. 5 (2) 0.1 h h 2 / H <0.5 (2)
第 7図は、 h2ZHと排気煙濃度 (S d) の相対値 (度合) との関係を示すグ ラフである。 第 7図に示すように、 一般に h2ZHの値が 0. 1力 ら 0. 5の範 囲内 (式 (2) を満足する範囲内) であれば、 排気煙濃度の相対値は 0. 8以下 となる。 7 is a graph showing the relationship between h 2 ZH and the exhaust smoke density relative value (S d) (degree). As shown in FIG. 7, if the general value of h 2 ZH is 0.1 Power et 0.5 of within range (the range satisfying formula (2)), the relative value of the exhaust smoke density is zero. 8 or less.
以上、 説明した燃焼室 100では、 燃料噴射ノズル 1から噴射される燃料 2の 噴射圧力及び単位時間当たりの噴射量に関わらず、 良好な燃焼を得ることができ る。  In the combustion chamber 100 described above, good combustion can be obtained regardless of the injection pressure of the fuel 2 injected from the fuel injection nozzle 1 and the injection amount per unit time.
第 1図における上述の各寸法は、 例えば以下のような範囲の数値をそれぞれ採 用することができる。  For the respective dimensions in FIG. 1, for example, numerical values in the following ranges can be adopted.
シリンダ径 (ピス トン直径) D=50〜: 1 50 [mm]  Cylinder diameter (piston diameter) D = 50 ~: 1 50 [mm]
燃焼室開口径 d = 25〜77 [mm]  Combustion chamber opening diameter d = 25 to 77 [mm]
環状くぼみ部 6の最大直径 d 2= 28〜84 [mm] Maximum diameter d 2 of annular recess 6 = 28 to 84 [mm]
壁面 9の直径 (燃焼室内径) d3=24〜75 [mm] Diameter of wall 9 (combustion chamber diameter) d 3 = 24 to 75 [mm]
平坦部 4の幅 d4=0. 1〜2 [mm] Flat part 4 width d 4 = 0.1 to 2 [mm]
中央突起部 7の直径 d 5= 9〜27 [mm] Diameter d 5 of central projection 7 = 9 to 27 [mm]
燃焼室深さ H=8〜28 [mm]  Combustion chamber depth H = 8 ~ 28 [mm]
環状くぼみ部 6の高さ h2=3〜; 1 2 [mm] Height of annular recessed part 6 h 2 = 3 ~; 1 2 [mm]
中央突起部 7の高さ h3 = 4〜l 3 [mm] The height h 3 = 4~l 3 of the central protrusion 7 [mm]
全圧縮容積 Vc=5, 000〜 1 80, 000 [mm3] Total compression volume V c = 5,000 to 180,000 [mm 3 ]
中心軸 2 aより下方の領域の容積 VL= 2, 200〜: 100, 000 [mm 3] Volume of the area below the central axis 2a V L = 2,200 ~: 100,000 [mm 3 ]
噴射角度 θ = 1 4 5〜; 1 6 0 [ d e g ]  Injection angle θ = 1 4 5 ~; 16 0 [d eg]
第 8図は、 請求項 2の発明による直接噴射式ディーゼル機関の燃焼室 2 0 0の 断面略図である。 第 8図の燃焼室 2 0 0において、 第 1図の燃焼室 1 0 0と同じ 構成には同じ符号を付してある。  FIG. 8 is a schematic sectional view of a combustion chamber 200 of a direct injection diesel engine according to the second aspect of the present invention. In the combustion chamber 200 of FIG. 8, the same components as those of the combustion chamber 100 of FIG. 1 are denoted by the same reference numerals.
燃焼室 2 0 0の壁面 9には、 最大直径が d 2の環状くぼみ部 6, 直径が d 6の 凹部 1 0が設けてある。 環状くぼみ部 6と凹部 1 0の間には環状突起 1 2が形成 されている。 また、 壁面 9と凹部 1 0の間には曲面 1 1が形成されている。 燃料噴射ノズル 1からは燃料 2が噴射され、 燃料 2は環状くぼみ部 6に衝突す るように噴射角度 Θが設定されている。 開口部 3の開口径 d 壁面 9の直径 d 3及び環状くぼみ部 6の最大直径 d 2の間には d 3 < d d 2という関係がある。 第 9図 (a ) に示すように、 燃料 2は、 燃料噴射ノズル 1から環状くぼみ部 6 に向けて噴射される。 第 9図 (b ) に示すように、 環状くぼみ部 6に衝突した燃 料 2は、 衝突により燃料 2 bに微細化される。 その後、 第 9図 (c ) に示すよう に、 微細化された燃料 2 bは燃焼室 1 0 0内に広がり、 スワール (空気流) によ り空気と混合して混合気 2 cを生成する。 The wall 9 of the combustion chamber 2 0 0, annular recess 6 of the largest diameter d 2, is provided with a recess 1 0 diameter d 6. An annular protrusion 12 is formed between the annular concave portion 6 and the concave portion 10. A curved surface 11 is formed between the wall surface 9 and the concave portion 10. Fuel 2 is injected from the fuel injection nozzle 1, and the injection angle Θ is set so that the fuel 2 collides with the annular recess 6. There is a relationship d 3 <dd 2 between the opening diameter d of the opening 3 d the diameter d 3 of the wall surface 9 and the maximum diameter d 2 of the annular recess 6. As shown in FIG. 9 (a), the fuel 2 is injected from the fuel injection nozzle 1 toward the annular recess 6. As shown in FIG. 9 (b), the fuel 2 that has collided with the annular recess 6 is atomized into fuel 2b by the collision. Thereafter, as shown in FIG. 9 (c), the finely divided fuel 2b spreads in the combustion chamber 100, and is mixed with air by swirl (air flow) to generate an air-fuel mixture 2c. .
その後、 図示していないが、 ピストン 9 0が下降して混合気が燃焼室 1 0◦内 からスキッシュエリア 9 5へ流出し、 全圧縮容積 V c (第 3図の V cを参照) に 混合気 2 cが行き渡って燃焼する。 Thereafter, although not shown, mixing the mixture the piston 9 0 descends combustion chamber 1 in 0◦ flows into the squish area 9 5, the total compression volume V c (see V c of FIG. 3) Qi 2c is prevalent and burns.
第 1 0図は、 請求項 2の発明の別の燃焼室 2 0 1の断面略図である。 第 1 0図 の燃焼室 2 0 1の構成は、 第 8図に示す燃焼室 2 0 0における凹部 1 0及び曲面 1 1の代わりに第 2くぼみ部 1 5を設け、 かつ環状くぼみ部 6と第 2くぼみ部 1 5の間に環状突起 2 0が形成されている点のみが第 8図の燃焼室 2 0 0の構成と 異なる。  FIG. 10 is a schematic sectional view of another combustion chamber 201 according to the second aspect of the present invention. The configuration of the combustion chamber 201 in FIG. 10 is such that a second recess 15 is provided in place of the concave portion 10 and the curved surface 11 in the combustion chamber 200 shown in FIG. Only the point that an annular projection 20 is formed between the second concave portions 15 is different from the configuration of the combustion chamber 200 in FIG.
環状くぼみ部 6から下方 (底部 5側) へ流動した燃料は、 第 2くぼみ部 1 5で 進行方向を底部 5方向から中央突起部 7方向へと変更する。 したがって、 燃料は スワール (空気流) の小さい底部 5には到達せず、 スワールの大きい領域 (第 9 図 ( c ) の混合気 2 cが占める領域に相当する領域) で空気と良好に混合して混 合気を生成し、 混合気は全圧縮容積 (第 3図の こ相当する領域) に行き渡つ て燃焼する。 The fuel flowing downward from the annular recess 6 (bottom 5 side) changes its traveling direction from the bottom 5 direction to the central projection 7 at the second recess 15. Therefore, the fuel does not reach the bottom 5 where the swirl (air flow) is small, and mixes well with air in the region where the swirl is large (the region corresponding to the region occupied by the mixture 2c in FIG. 9 (c)). To form a mixture, and the mixture spreads over the entire compressed volume (the area corresponding to this in Fig. 3). Burn.
第 8図では環状くぼみ部 6と凹部 1 0, 第 1 0図では環状くぼみ部 6と第 2く ぼみ部 1 5のそれぞれ 2つの環状くぼみ部を備えた燃焼室を示したが、 環状くぼ み部は 3つ以上設けても差し支えない。  Fig. 8 shows a combustion chamber with two annular recesses 6 and a second recess 15 in Fig. 10, and Fig. 10 shows a combustion chamber with two annular recesses and a second recess 15 respectively. Three or more recesses may be provided.
第 8図において、 各寸法は例えば以下のような範囲の数値を採用することがで きる。  In FIG. 8, for each dimension, for example, numerical values in the following ranges can be adopted.
シリンダ径 (ピストン直径) D= 5 0〜1 50 [mm]  Cylinder diameter (piston diameter) D = 50 to 150 [mm]
燃焼室開口径 d = 2 5〜77 [mm]  Combustion chamber opening diameter d = 25 to 77 [mm]
環状くぼみ部 6の最大直径 d 2= 28〜84 [mm] Maximum diameter d 2 of annular recess 6 = 28 to 84 [mm]
壁面 9の直径 (燃焼室内径) d 3= 24〜75 [mm] Diameter of wall 9 (combustion chamber diameter) d 3 = 24 to 75 [mm]
中央突起部 7の直径 d 5= 9〜 2 7 [mm] Diameter d 5 of central projection 7 = 9 to 2 7 [mm]
凹部 1 0の直径 d6= 2 5〜76 [mm] ( d 3より 1 mm増) Concave 10 diameter d 6 = 25 to 76 [mm] (1 mm more than d 3 )
燃焼室深さ H=8〜28 [mm]  Combustion chamber depth H = 8 ~ 28 [mm]
環状くぼみ部 6の高さ h 2=2〜: 1 1 [mm] Height of annular recess 6: h 2 = 2 to: 1 1 [mm]
中央突起部 7の高さ h 3=4〜 1 3 [mm] The height of the central projection portion 7 h 3 = 4~ 1 3 [ mm]
全圧縮容積 Vc= 5, 000〜: 1 80, 000 [mm3] Total compression volume V c = 5,000 or more: 180,000 [mm 3 ]
中心軸 2 aより下方の領域の容積 VL= 2, 200〜: L 00, 000 [mmVolume of the area below the central axis 2a V L = 2,200 ~: L 00,000 [mm
3] 3 ]
噴射角度 θ = 145〜1 60 [d e g]  Injection angle θ = 145 to 160 [d e g]
第 1 1図は、 請求項 1 0及至請求項 1 8の発明による直接噴射式ディーゼル機 関の燃焼室 300の断面略図である。 第 1 1図では、 請求項 1 0及至請求項 1 8 の発明の燃焼室 300の特徴のある部分のみを図示した。  FIG. 11 is a schematic cross-sectional view of a combustion chamber 300 of a direct injection diesel engine according to the invention of claims 10 to 18. In FIG. 11, only characteristic portions of the combustion chamber 300 according to the tenth to eighteenth aspects are shown.
燃焼室 300の環状の壁面 9には環状の壁面突起部 2 1が設けてある。 また、 壁面突起部 2 1の上方には環状くぼみ部 6が設けてあり、 壁面突起部 2 1と環状 くぼみ部 6とは滑らかに連続している。 壁面 9の上端には開口部 3が設けてある。 開口部 3の開口径 は、 壁面 9の直径 d 3 (燃焼室 3 00の内部径) よりも小 さく設定されている。 The annular wall surface 9 of the combustion chamber 300 is provided with an annular wall surface projection 21. An annular recess 6 is provided above the wall projection 21, and the wall projection 21 and the annular recess 6 are smoothly connected. An opening 3 is provided at the upper end of the wall surface 9. The opening diameter of the opening 3 is set to be smaller than the diameter d 3 of the wall surface 9 (the inner diameter of the combustion chamber 300).
燃焼室 300の底部 5には中央突起部 7が設けてある。 中央突起部 7は、 燃焼 室 3 00の中央に隆起しており、 その高さ h3は、 壁面突起部 2 1の高さ h4よ りも高く、 かつ燃料噴射ノズル 1から噴射される燃料 2と衝突しない高さである。 また、 燃料噴射ノズル 1力 ら噴射される燃料 2が中央突起部 7に衝突しないよう に直径 d 5の大きさが設定されている。 さらに中央突起部 7と底部 5とは、 滑ら かな曲面 8で接続されている。 A central projection 7 is provided on the bottom 5 of the combustion chamber 300. Central protrusion 7 is raised in the center of the combustion chamber 3 00, a height h 3, the height h 4 of the wall projections 2 1 And does not collide with the fuel 2 injected from the fuel injection nozzle 1. The size of the diameter d 5 so that the fuel 2 which is the fuel injection nozzle 1 forces et injection does not collide with the central projection portion 7 is set. Further, the central projection 7 and the bottom 5 are connected by a smooth curved surface 8.
このように形成された燃焼室 3 0 0において、 燃料噴射ノズル 1から噴射され た燃料 2は、 霧状に広がりながら壁面 9に衝突するが、 第 1 1図に一点鎖線で示 すように、 その燃料 2の噴射中心軸 2 aが壁面突起部 2 1よりも上方にくるよう に燃料噴射ノズル 1の噴射方向を設定する。  In the combustion chamber 300 thus formed, the fuel 2 injected from the fuel injection nozzle 1 collides with the wall 9 while spreading in the form of a mist, but as shown by a dashed line in FIG. The injection direction of the fuel injection nozzle 1 is set so that the injection center axis 2 a of the fuel 2 is located above the wall projection 21.
燃料噴射ノズル 1から噴射された燃料 2 (第 1 2図 (a ) ) は、 壁面突起部 2 1及び環状くぼみ部 6を設けた壁面 9に衝突する。 壁面 9に衝突した燃料 2は、 第 1 2図 (b ) に示すように壁面突起部 2 1で進路が 2つに分離され、 一つは環 状くぼみ部 6に沿って上方 (開口部 3側) へ向かい、 もう一つは壁面 9及び底部 5に沿って燃焼室 3 0 0の中央方向に向かう。  The fuel 2 (FIG. 12 (a)) injected from the fuel injection nozzle 1 collides with the wall surface 9 provided with the wall surface projection 21 and the annular recess 6. The fuel 2 colliding with the wall 9 is separated into two paths by the wall projection 21 as shown in FIG. 12 (b), one of which is upward along the annular recess 6 (opening 3). Side), the other along the wall 9 and the bottom 5 towards the center of the combustion chamber 300.
上方へ向かった燃料のうちの一部は、 開口部 3を超えてスキッシュエリア 9 5 へ進出し、 残りは燃焼室 3 0 0内で拡散する。 また、 中央方向へ向かった燃料は、 第 1 2図 (c ) に示すように曲面 8で進路を円滑に上方へ変更し、 中央突起部 7 の壁面に沿って上昇する。  Some of the fuel going upward passes through the opening 3 to the squish area 95, and the rest diffuses in the combustion chamber 300. In addition, the fuel heading toward the center smoothly changes its course upward on the curved surface 8 as shown in FIG. 12 (c), and rises along the wall surface of the central projection 7.
燃焼室 3 0 0内にはスワール (空気流) があり、 このスワールは燃焼室 3 0 0 の中央部よりも周辺部 (壁面 9に近い側) の方が活発である。 したがって、 中央 部よりも周辺部の方が燃料と空気の混合が良好に行われる。 中央突起部 7を設け ることにより、 空気流の大きな領域で燃料を対流させることができるので空気と 燃料の混合が良好に行われ、 その結果、 燃焼が良好に行われる。 また、 曲面 8の 半径を大きく設定するほど燃焼室 1 0 0の中央部の領域が狭くなり、 空気流の大 きい周辺部領域に燃料を分布させるので、 空気と燃料との混合が良好に行われ易 くなる。  There is a swirl (air flow) in the combustion chamber 300, and the swirl is more active in the periphery (closer to the wall 9) than in the center of the combustion chamber 300. Therefore, mixing of fuel and air is performed better in the peripheral part than in the central part. By providing the central projection 7, the fuel can be convected in a region where the air flow is large, so that the air and the fuel are mixed well, and as a result, the combustion is performed well. In addition, the larger the radius of the curved surface 8 is, the narrower the central area of the combustion chamber 100 is, and the more the air is distributed in the peripheral area where the air flow is large, so that the air and the fuel are mixed well. It will be easier for you.
従来のリエントラント型の燃焼室では、 燃焼室底部付近に濃い燃料が溜まるが、 それに対して請求項 1 0の発明の燃焼室 3 0 0においては、 壁面突起部 2 1と環 状くぼみ部 6により燃料 2を上下に分散させ、 スワールによる空気流れの大きい 箇所に燃料を分布させるので、 燃料と空気の混合が良好に行われる。 第 1 1図に示す壁面突起部 21におけるくぼみ部 6の接線と鉛直線とで形成さ れる角度 Θ】を 45度から 90度の範囲内に設定すると、 燃料と空気が良好に混 合されて良好な燃焼を行うことができ、 排気色も良好になる。 In a conventional reentrant combustion chamber, rich fuel accumulates in the vicinity of the bottom of the combustion chamber, whereas in the combustion chamber 300 of the invention of claim 10, the wall projection 21 and the annular recess 6 provide the fuel. Since the fuel 2 is dispersed up and down and the fuel is distributed in the places where the air flow due to the swirl is large, the fuel and the air are mixed well. If the angle Θ] formed between the tangent of the recess 6 and the vertical line in the wall projection 21 shown in Fig. 11 is within the range of 45 to 90 degrees, the fuel and air are mixed well. Good combustion can be performed, and the exhaust color also becomes good.
第 1 1図の壁面突起部 2 1の代わりに、 第 1 3図に示す壁面突起部 22及び 2 3を設けてもよレ、。 このとき、 壁面突起部 22と 23とを結ぶ直線と鉛直線とが 成す角度 θ 2を 45度から 90度の範囲内に設定すると、 燃料と空気が良好に混 合されて良好な燃焼を行うことができ、 排気色も良好になる。 Instead of the wall projection 21 in FIG. 11, wall projections 22 and 23 shown in FIG. 13 may be provided. At this time, by setting the angle theta 2 formed by the straight line and the vertical line connecting the wall surface protrusion 22 and 23 within the range of 45 to 90 degrees, the fuel and air are engaged satisfactorily mixed perform good combustion The exhaust color can be good.
また、 第 1 1図に示すように底部 5から壁面突起部 2 1までの高さを h4とし、 燃焼室深さを Hとすると、 0. 3<h4ZHく 0. 5なる関係を満たすと、 燃料 と空気が良好に混合されて良好な燃焼を行うことができ、 排気色も良好になる。 また、 中央突起部 7の高さ h3を壁面突起部 21の高さ h4よりも高くすると、 底部 5に沿って中央方向に進む燃料は、 中央突起部 7よりさらに中央へ進むこと ができず、 進行方向を上方に変更することができ、 比較的空気流の小さい燃焼室 中央領域へ燃料が進むことを阻止することができる。 Also, the height from the bottom portion 5 as shown in the first 1 FIG from the wall projections 2 1 and h 4, the combustion chamber depth and H, a 0. 3 <h 4 ZH rather 0.5 the relationship When satisfied, the fuel and air are well mixed and good combustion can be performed, and the exhaust color is also good. Further, when the height h 3 of the central projection portion 7 is greater than the height h 4 of the wall surface protrusion 21, the fuel proceeds toward the center along the bottom 5 may proceed to further center from the central protrusion 7 Therefore, the traveling direction can be changed upward, and the fuel can be prevented from traveling to the central region of the combustion chamber where the air flow is relatively small.
開口部 3の開口径を 環状くぼみ部 6の最大直径を d 2, 燃焼室 300の 内部径 (壁面 9の直径) を d3とすると、
Figure imgf000016_0001
dsなる関係を満たすよう に各径を設定すると、 燃料と空気が良好に混合されて良好な燃焼を行うことがで き、 排気色も良好になる。
Assuming that the diameter of the opening 3 is d 2 , the maximum diameter of the annular recess 6 is d 2 , and the internal diameter of the combustion chamber 300 (the diameter of the wall 9) is d 3 .
Figure imgf000016_0001
When the diameters are set so as to satisfy the relationship of ds, the fuel and the air can be mixed well and good combustion can be performed, and the exhaust color can be improved.
また、 燃焼室 300の深さを Hとし、 ピス トン 90の直径を Dとすると、 HZ D< 0. 2なる関係を満たすように燃焼室 300の深さ Hとピス トン直径 Dを設 定すると、 燃料と空気が良好に混合されて良好な燃焼を行うことができ、 排気色 も良好になる。  Also, assuming that the depth of the combustion chamber 300 is H and the diameter of the piston 90 is D, the depth H of the combustion chamber 300 and the piston diameter D are set so as to satisfy the relationship of HZ D <0.2. However, the fuel and the air are mixed well, and good combustion can be performed, and the exhaust color also becomes good.
第 1 1図において、 各寸法は例えば以下のような範囲の数値を採用することが できる。  In FIG. 11, for each dimension, for example, numerical values in the following ranges can be adopted.
シリンダ径 (ピス トン直径) D=50〜150 [mm]  Cylinder diameter (piston diameter) D = 50 to 150 [mm]
燃焼室開口径 d = 21〜64 [mm]  Combustion chamber opening diameter d = 21 to 64 [mm]
環状くぼみ部 6の最大直径 d2= 25〜 75 [mm] Maximum diameter d 2 of the annular recess 6 = 25 to 75 [mm]
壁面 9の直径 (燃焼室内径) d3=24〜72 [mm] Diameter of wall 9 (combustion chamber diameter) d 3 = 24 to 72 [mm]
中央突起部 7の直径 d ε=8〜24 [mm] 燃焼室深さ H=7〜24 [mm] Diameter of central projection 7 d ε = 8 to 24 [mm] Combustion chamber depth H = 7 to 24 [mm]
中央突起部 7の高さ h 3 = 3〜 1 0 [mm] The height h of the central projection portion 7 3 = 3~ 1 0 [mm ]
壁面突起部 2 1の高さ h4= 2. 5〜9 [mm] Height of wall projection 2 1 h 4 = 2.5 to 9 [mm]
噴射角度 S i A S S O [d e g]  Injection angle S i A S S O [d e g]
第 1 3図において、 角度 θ 2の寸法は以下の範囲の数値を採用することができ る。 In FIG. 13, the value of the angle θ 2 can adopt a numerical value in the following range.
角度 Θ 2=45〜90 [d e g] 産業上の利用の可能性 Angle Θ 2 = 45 ~ 90 [deg] Possibility of industrial use
本発明は、 一般にリエントラント型の直接噴射式ディーゼル機関の燃焼室に適 用することができる。  INDUSTRIAL APPLICABILITY The present invention can be generally applied to a combustion chamber of a reentrant direct injection diesel engine.

Claims

請 求 の 範 囲 The scope of the claims
1. 燃焼室壁面 (9) に燃料噴射ノズノレ (1) 力 ら燃料 (2) が噴射される環 状くぼみ部 (6) を設け、 燃焼室開口部 (3) の開口径 (d3) を前記環状くぼ み部最大直径 (d2) より小さくかつ環状くぼみ部 (6) よりも燃焼室底部 1. Ring-shaped recesses in which the fuel injection Nozunore (1) Power et al fuel (2) is injected (6) provided in the combustion chamber wall surface (9), the opening diameter of the combustion chamber opening (3) to (d 3) The diameter of the annular recess is smaller than the maximum diameter (d 2 ) and the bottom of the combustion chamber is smaller than the annular recess (6).
(5) 側の燃焼室壁面直径 (d3) より大きく設定し、 燃料噴射ノズル (1) か ら噴射される燃料 (2) が衝突しない高さ (h3) 及び直径 (d5) の中央突起 部 (7) を燃焼室底部 (5) に設けたことを特徴とする直接噴射式ディーゼル機 関の燃焼室。 (5) Set to be larger than the combustion chamber wall diameter (d 3 ) on the side, and the height (h 3 ) and the center of the diameter (d 5 ) at which the fuel (2) injected from the fuel injection nozzle (1) does not collide A combustion chamber for a direct-injection diesel engine, characterized in that a projection (7) is provided at the bottom (5) of the combustion chamber.
2. 前記環状くぼみ部 (6) を複数個設けた請求項 1に記載の直接噴射式ディ ーゼル機関の燃焼室。  2. The combustion chamber of a direct-injection diesel engine according to claim 1, wherein a plurality of the annular recesses (6) are provided.
3. 環状くぼみ部 (6) より下方の燃焼室壁面 (9) と環状くぼみ部 (6) と の間に平坦部 (4) を設けた請求項 1又は請求項 2に記載の直接噴射式ディーゼ ノレ機関の燃焼室。  3. The direct injection diesel engine according to claim 1, wherein a flat portion (4) is provided between the combustion chamber wall (9) below the annular recess (6) and the annular recess (6). Combustion chamber of the ladle engine.
4. 燃料噴射ノス'ノレ (1) から噴射される燃料 (2) の中心軸 (2 a) よりも 下の燃焼室容積を VLとし、 全圧縮容積を Vcとすると、 VLZVc≤0. 008 8 噴射角度 (6) —0. 834 1 (Θ : [d e g] ) である請求項 1及至請 求項 3のいずれかに記載の直接噴射式ディーゼル機関の燃焼室。 4. If the volume of the combustion chamber below the center axis (2a) of the fuel (2) injected from the fuel injection nozzle (1) is V L and the total compression volume is V c , then V L ZV c The combustion chamber of a direct injection diesel engine according to any one of claims 1 to 3, wherein the injection angle is ≤0.008 8 injection angle (6)-0.834 1 (: [deg]).
5. 燃焼室底部 (5) から燃焼室壁面 (9) に設けた環状くぼみ部 (6) まで の距離を h2、 燃焼室深さを Hとすると、 0. 1く h2/H<0. 5である請求 項 1及至請求項 3のいずれかに記載の直接噴射式ディーゼル機関の燃焼室。5. combustion chamber bottom (5) h 2 a distance to the annular recess portion provided in the combustion chamber wall surface (9) (6) from the combustion chamber depth and H, 0. 1 rather h 2 / H <0 The combustion chamber of a direct injection diesel engine according to any one of claims 1 to 3, wherein the combustion chamber is:
6. 燃焼室開口径を (^、 環状くぼみ部最大直径を d2、 燃焼室直径を d3とす ると、 d 3 < d < d 2である請求項 1及至請求項 3のいずれかに記載の直接噴射 式ディーゼル機関の燃焼室。 6. combustion chamber opening diameter (^, the annular recess portion maximum diameter d 2, the combustion chamber diameter If you and d 3, to one of d 3 <d <claim 1及至claim 3 is d 2 The combustion chamber of the direct injection diesel engine described.
7. 燃焼室開口部 (3) に面取りを施した環状突起部を備えた請求項 1及至請 求項 3のいずれかに記載の直接噴射式ディーゼル機関の燃焼室。 7. The combustion chamber of a direct injection diesel engine according to any one of claims 1 to 3, wherein the combustion chamber opening (3) is provided with an annular protrusion chamfered.
8. 燃焼室底部 (5) と中央突起部 (7) とを滑らかな曲面 (8) で連結した 請求項 1及至請求項 3のいずれかに記載の直接噴射式ディーゼル機関の燃焼室。 8. The combustion chamber of a direct injection diesel engine according to any one of claims 1 to 3, wherein the bottom (5) of the combustion chamber and the central projection (7) are connected by a smooth curved surface (8).
9. 中央突起部の高さを h3とすると、 h2<h。である請求項 1及至請求項 3 のレ、ずれかに記載の直接噴射式ディーゼル機関の燃焼室。 9. The height of the central projections and h 3, h 2 <h. Claim 1 to Claim 3 The combustion chamber of a direct injection diesel engine described in any of the above.
10. 燃焼室開口径 (d j を燃焼室内部径 (d 3) よりも小さく設定し、 燃 料噴射ノズル (1) 力 ら燃料 (2) が噴射される範囲内の燃焼室壁面 (9) に環 状の壁面突起部 (2 1) を設け、 燃料噴射ノズル (1) から噴射された燃料 (2) に衝突しない高さ (h3) でかつ燃焼室壁面 (9) に衝突して燃焼室壁面10. is set to be smaller than the combustion chamber opening diameter (combustion chamber diameter dj (d 3), the combustion chamber wall surface in a range of fuel injection nozzle (1) Power et al fuel (2) is injected (9) An annular wall projection (2 1) is provided, which has a height (h 3 ) that does not collide with the fuel (2) injected from the fuel injection nozzle (1) and collides with the combustion chamber wall (9). Wall
(9) から燃焼室底部 (5) に沿って燃焼室中央方向に進む燃料が上方に向かう ように燃料の進行方向を変更可能な高さ (h3) の中央突起部 (7) を燃焼室底 部 (5) に設けたことを特徴とする直接噴射式ディーゼル機関の燃焼室。 From (9), a central projection (7) with a height (h 3 ) that can change the direction of the fuel so that the fuel that travels toward the center of the combustion chamber along the bottom of the combustion chamber (5) is directed upward is attached to the combustion chamber. The combustion chamber of a direct injection diesel engine, which is provided at the bottom (5).
1 1. 燃料噴射ノズル (1) から噴射される燃料 (2) の噴射中心軸 (2 a) が壁面突起部 (21) の上方にくるように設定した請求項 10に記載の直接噴射 式ディーゼ /レ機関の燃焼室。  11. The direct injection diesel engine according to claim 10, wherein the injection center axis (2a) of the fuel (2) injected from the fuel injection nozzle (1) is set above the wall projection (21). / Combustion chamber of the engine.
12. 前記壁面突起部 (21) の上方に環状でかつ表面が滑らかな曲面のくぼ み部 (6) を設け、 壁面突起部 (21) と前記環状くぼみ部 (6) とを滑らかに 連結し、 燃焼室壁面 (9) に衝突した前記燃料の進路が開口部 (3) 側と燃焼室 底部 (5) 側の 2方向に分割される請求項 10又は請求項 1 1に記載の直接噴射 式ディーゼル機関の燃焼室構造。  12. A curved concave portion (6) having an annular and smooth surface is provided above the wall projection (21), and the wall projection (21) is smoothly connected to the annular depression (6). The direct injection according to claim 10 or 11, wherein the path of the fuel that has collided with the combustion chamber wall surface (9) is divided into two directions, an opening (3) side and a combustion chamber bottom (5) side. -Type diesel engine combustion chamber structure.
13. 壁面突起部 (2 1) における環状くぼみ部 ( 6 ) の接線と鉛直線とで形 成される角度 を 45度から 90度の範囲内に設定した請求項 1 2に記載 の直接噴射式ディーゼル機関の燃焼室構造。  13. The direct injection method according to claim 12, wherein the angle formed by the tangent of the annular recess (6) and the vertical line in the wall projection (21) is set within a range of 45 degrees to 90 degrees. Diesel engine combustion chamber structure.
14. 燃焼室底部 (5) から壁面突起部 (21) までの高さ (h4) を、 燃焼 室深さ (H) で除算した値を 0. 3から 0. 5の範囲内に設定した請求項 10に 記載の直接噴射式ディーゼル機関の燃焼室構造。 14. The value obtained by dividing the height (h 4 ) from the bottom of the combustion chamber (5) to the wall projection (21) by the depth of the combustion chamber (H) was set in the range of 0.3 to 0.5. The combustion chamber structure of the direct injection diesel engine according to claim 10.
1 5. 燃焼室開口部 (3) の開口径 (d j , 燃焼室内部径 (d 3) , 環状く ぼみ部最大直径 ( d 2) の順で大きくなる請求項 1 3又は請求項 14に記載の直 接噴射式ディーゼル機関の燃焼室構造。 1 5. opening diameter (dj of the combustion chamber opening (3), combustion chamber diameter (d 3), in claim 1 3 or claim 14 which increases in the order of annular rather Bomi portion maximum diameter (d 2) The combustion chamber structure of the direct injection diesel engine described.
16. 燃焼室 (300) 内において、 燃焼室底部 (5) と中央突起部 (7) と を滑らかな曲面 (8) で連結することにより、 燃焼室中央部における燃料の燃焼 領域を減少させた請求項 1 0に記載の直接噴射式ディーゼル機関の燃焼室構造。 16. In the combustion chamber (300), the combustion area of fuel in the center of the combustion chamber was reduced by connecting the bottom (5) of the combustion chamber and the central projection (7) with a smooth curved surface (8). A combustion chamber structure for a direct injection diesel engine according to claim 10.
1 7. 燃焼室底部 (5) からの中央突起部 (2 1) の高さ (h3) を燃焼室底 部 (5) からの壁面突起部 (21) の高さ (h4) より高く した請求項 10に記 載の直接噴射式ディーゼル機関の燃焼室構造。 1 7. Adjust the height (h 3 ) of the central projection (2 1) from the bottom of the combustion chamber (5) to the bottom of the combustion chamber. A combustion chamber structure for a direct injection type Diesel engine mounting serial to claim 10 which is higher than the wall projections (21) of the height (h 4) from Part (5).
18. 燃焼室深さ (H) をピス トン直径 (D) で除算した値が 0. 2より小さ くなるように燃焼室深さ (H) とピス トン直径 (D) の大きさを設定した請求項 10に記載の直接噴射式ディーゼル機関の燃焼室構造。  18. The combustion chamber depth (H) and the piston diameter (D) were set so that the value obtained by dividing the combustion chamber depth (H) by the piston diameter (D) was less than 0.2. A combustion chamber structure for a direct injection diesel engine according to claim 10.
PCT/JP2000/005320 1999-08-13 2000-08-09 Combustion chamber of direct injection diesel engine WO2001012966A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP11/229202 1999-08-13
JP11229202A JP2001055923A (en) 1999-08-13 1999-08-13 Combustion chamber structure of direct injection type diesel engine
JP11/296592 1999-10-19
JP29659599A JP2001115844A (en) 1999-10-19 1999-10-19 Combustion chamber for direct injection diesel engine
JP29659299A JP2001115843A (en) 1999-10-19 1999-10-19 Combustion chamber for direct injection diesel engine
JP11/296595 1999-10-19

Publications (1)

Publication Number Publication Date
WO2001012966A1 true WO2001012966A1 (en) 2001-02-22

Family

ID=27331497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005320 WO2001012966A1 (en) 1999-08-13 2000-08-09 Combustion chamber of direct injection diesel engine

Country Status (2)

Country Link
TW (1) TW444099B (en)
WO (1) WO2001012966A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180100466A1 (en) * 2016-10-11 2018-04-12 Caterpillar Inc. Combustion bowl of a piston for an engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104632353B (en) * 2014-12-26 2018-06-05 江苏大学 A kind of diesel engine with direct injection collision atomization diffusion combustion system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106024A (en) * 1980-01-26 1981-08-24 Hino Motors Ltd Combustion chamber for direct-injection type diesel engine
JPS56106022A (en) * 1980-01-26 1981-08-24 Hino Motors Ltd Combustion chamber for direct-injection type diesel engine
JPS56106023A (en) * 1980-01-26 1981-08-24 Hino Motors Ltd Combustion chamber for direct-injection type diesel engine
JPS62291424A (en) * 1986-06-12 1987-12-18 Mitsubishi Motors Corp Laminar combustion engine
JPS62291425A (en) * 1986-06-12 1987-12-18 Mitsubishi Motors Corp Laminar combustion engine
JPH05106443A (en) * 1991-10-15 1993-04-27 Yanmar Diesel Engine Co Ltd Combustion chamber of internal combustion engine
JPH1136868A (en) * 1997-07-23 1999-02-09 Mazda Motor Corp Structure of combustion chamber of direct injection type diesel engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106024A (en) * 1980-01-26 1981-08-24 Hino Motors Ltd Combustion chamber for direct-injection type diesel engine
JPS56106022A (en) * 1980-01-26 1981-08-24 Hino Motors Ltd Combustion chamber for direct-injection type diesel engine
JPS56106023A (en) * 1980-01-26 1981-08-24 Hino Motors Ltd Combustion chamber for direct-injection type diesel engine
JPS62291424A (en) * 1986-06-12 1987-12-18 Mitsubishi Motors Corp Laminar combustion engine
JPS62291425A (en) * 1986-06-12 1987-12-18 Mitsubishi Motors Corp Laminar combustion engine
JPH05106443A (en) * 1991-10-15 1993-04-27 Yanmar Diesel Engine Co Ltd Combustion chamber of internal combustion engine
JPH1136868A (en) * 1997-07-23 1999-02-09 Mazda Motor Corp Structure of combustion chamber of direct injection type diesel engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180100466A1 (en) * 2016-10-11 2018-04-12 Caterpillar Inc. Combustion bowl of a piston for an engine
CN107917014A (en) * 2016-10-11 2018-04-17 卡特彼勒公司 Combustion bowl for a piston of an engine
US10113503B2 (en) * 2016-10-11 2018-10-30 Caterpillar Inc. Combustion bowl of a piston for an engine
CN107917014B (en) * 2016-10-11 2021-07-06 卡特彼勒公司 Combustion bowl for a piston of an engine

Also Published As

Publication number Publication date
TW444099B (en) 2001-07-01

Similar Documents

Publication Publication Date Title
KR940006054B1 (en) Combustion chamber for a diesel engine
JP2010101243A (en) Piston for diesel internal combustion engine
WO2006040936A1 (en) Shape of combustion chamber of direct injection diesel engine
US4281629A (en) Compression ignition direct injection internal combustion engine
JP2010101244A (en) Piston for diesel internal combustion engines
WO2001012966A1 (en) Combustion chamber of direct injection diesel engine
JP2002122024A (en) Combustion chamber or piston
JP2008151089A (en) Combustion chamber of diesel engine
JP3185234B2 (en) Direct injection internal combustion engine
JPS60187714A (en) Combustion chamber of diesel engine
EP0828066B1 (en) Combustion chamber of diesel engine
JPH11229881A (en) Combustion chamber of direct injection diesel engine
JPH11223127A (en) Spark ignition type internal combustion engine
JP2000130170A (en) Combustion chamber in direct injection diesel engine
JP2001115844A (en) Combustion chamber for direct injection diesel engine
JP2001055923A (en) Combustion chamber structure of direct injection type diesel engine
JP2001115843A (en) Combustion chamber for direct injection diesel engine
JP2532390Y2 (en) Combustion chamber of a direct injection diesel engine
JPS6329016A (en) Subchamber type diesel combustion chamber
JPH0893479A (en) Combustion chamber of direct injection diesel engine
JP2001082150A (en) Combusion camber of diesel engine
JPH03264725A (en) Subchamber type combustion chamber for internal combustion engine
JPH086589B2 (en) Direct injection internal combustion engine
JP2581866Y2 (en) Combustion chamber of direct injection diesel engine
JPS61182417A (en) Combustion chamber structure of diesel engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase