WO2001012849A1 - Method of distinguishing nucleic acids and kits for nucleic acid test - Google Patents

Method of distinguishing nucleic acids and kits for nucleic acid test Download PDF

Info

Publication number
WO2001012849A1
WO2001012849A1 PCT/JP2000/005286 JP0005286W WO0112849A1 WO 2001012849 A1 WO2001012849 A1 WO 2001012849A1 JP 0005286 W JP0005286 W JP 0005286W WO 0112849 A1 WO0112849 A1 WO 0112849A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
labeled
label
stranded
strand
Prior art date
Application number
PCT/JP2000/005286
Other languages
French (fr)
Japanese (ja)
Inventor
Akio Yamane
Original Assignee
Wakunaga Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakunaga Pharmaceutical Co., Ltd. filed Critical Wakunaga Pharmaceutical Co., Ltd.
Priority to AU63204/00A priority Critical patent/AU6320400A/en
Publication of WO2001012849A1 publication Critical patent/WO2001012849A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer

Definitions

  • the present invention relates to a method for identifying a nucleic acid and a test kit, and more particularly, to a simple method that does not require a solid-liquid separation operation from a sample by determining the presence and proportion of a nucleic acid having a gene mutation or polymorphism from a sample.
  • the present invention relates to a method for identifying a nucleic acid which can be directly detected and quantified in a short time by a simple operation, and a test kit for performing the identification method.
  • a detection method using an oligonucleotide probe Proc. Nat 1. Acad. Sci. 80, 278, ( 198 3)
  • a method using restriction enzyme fragment length polymorphism analysis RFLP method
  • RFLP method restriction enzyme fragment length polymorphism analysis
  • a method for cleaving a single base mismatch in a hybrid of RNA and DNA using ribonuclease Science 230, 1243 (19895)
  • Natl. Acad. Sci. 88, 189 (1991) Anal. Bioche m. 1886, 64-4-6 8 (1990)).
  • SSCP single-strand conformation ionpolymorphism
  • DGGE single-strand conformation ionpolymorphism
  • ddF ddF
  • any of the above methods has a problem that the reproducibility is low and the electrophoresis method is used for the detection, so that the method lacks quickness and is not practical.
  • a method of determining the base sequence of the target nucleic acid by using an automatic sequencer and detecting the mutation can be considered, but it is difficult to detect when the sample is a mixture or the ratio of the mutant nucleic acid is small. It was possible. In recent years, microchip-type measurement technology using a very small amount of pitting technology has been developed, and is expected to be applied to new drug research and gene polymorphism analysis.
  • This method detects mutated nucleic acids by immobilizing tens of thousands of DNA probes on a fine carrier surface and hybridizing with a labeled sample (Nucleic Acids Res. 2Q). 6, 4975-4982 (19998)), which can process a large number of specimens at once, which can save a great deal of labor, but has low reproducibility and special equipment There is a problem when the cost is high because of the use of
  • the applicant of the present invention has proposed a method of adding an excessive amount of unlabeled standard DNA to a labeled sample DNA and performing cooperative competitive hybridization.
  • a method that can detect the presence or absence of a gene mutation or polymorphism regardless of the type of nucleic acid and can easily calculate the abundance ratio hereinafter abbreviated as PCR-PHFA method.
  • PCR-PHFA PCR-PHFA method
  • it is possible to reliably detect or quantify a mutation or polymorphism gene that is present only in a small amount in a normal gene or even when the type of mutation or polymorphism is unspecified.
  • it is very effective in detecting nucleic acids having genetic mutations and polymorphisms such as genes related to genetic diseases or cancer-related genes (British J. Hemato 1 ogy 95, 198— 203).
  • the PCR-PHFA method requires complicated solid-liquid separation work after competitive hybridization, and gene mutation or multiplication by simple operations at the forefront medical site. It has not been able to adequately respond to the demand for rapid detection of nucleic acids having a form.
  • the relationship between genetic mutations and diseases is very complex and diverse, and the rare cases in which a single genetic mutation found at the outset causes disease are relatively rare and unexpectedly many. It is becoming clear that the gene mutations involved in the onset of the disease are evident.To investigate the gene mutations that cause a certain disease, it is necessary to check many mutations for multiple genes without fail. Therefore, development of a nucleic acid detection method that can automatically and easily process a large amount of a sample more easily and quickly is desired.
  • the present invention has been made in view of the above circumstances, and the presence and the ratio of nucleic acid having a gene mutation or polymorphism can be determined in a short time directly by a simple operation that does not require a solid-liquid separation operation from a sample.
  • An object of the present invention is to provide a nucleic acid identification method that can be accurately detected and quantified and that can be automated, and a test kit for performing the identification method.
  • a first nucleic acid and a second nucleic acid are mixed and subjected to competitive hybridization, and the degree of substitution of complementary strand between the two nucleic acids is measured.
  • At least one of two types of labels capable of energy transfer to each other is introduced into the 3 ′ end of one strand of the first nucleic acid, which is a double-stranded nucleic acid, and the other strand of the first nucleic acid is
  • the first nucleic acid is labeled by introducing the other label at the 5 'end of the nucleic acid, and the labeled first nucleic acid is mixed with the unlabeled second nucleic acid, which is a single-stranded or double-stranded nucleic acid, and mixed.
  • first nucleic acid prepared by introducing one of at least two kinds of labels capable of energy transfer to each other into the first nucleic acid, and label prepared by introducing the other label into the second nucleic acid
  • the second nucleic acid is mixed with the following combinations (a) to (c) to perform competitive hybridization, and the degree of energy change due to the energy transfer between the labels is measured. By doing so, the degree of replacement of the complementary strand generated between the first nucleic acid and the second nucleic acid can be measured.
  • Both the first nucleic acid and the second nucleic acid are double-stranded nucleic acids, and a labeled first nucleic acid having one label introduced at the 3 ′ end of one strand, and a label introduction of the labeled first nucleic acid A combination with a labeled second nucleic acid in which the other label is introduced at the 5 'end of the strand to be hybridized with the strand,
  • the PCR-PHFA method proposed by the present applicant can amplify a specific region of a target nucleic acid in a sample to prepare a double-stranded sample nucleic acid, and bind to one of the strands with a solid phase carrier.
  • Competitive hybridization is carried out by adding an excess amount of the sample nucleic acid to a labeled standard nucleic acid comprising a double-stranded nucleic acid having a unique site and a detectable label on the other strand, and as a result, By detecting the reconstituted labeled standard nucleic acid using the detectable label and the label having a site capable of binding to a solid support,
  • a nucleic acid having a gene mutation or polymorphism is detected.
  • this method uses a detectable label and a label having a site capable of binding to a solid phase carrier, a cumbersome solid-liquid separation operation is required, and the operation is simple. It has not been widely adopted in the medical field where quick and accurate detection is required.
  • the above-described identification method of the present invention at least two kinds of labels capable of energy transfer with each other are used, and the degree of energy change due to the energy transfer between the two labels is measured. Since the degree of displacement of the complementary strand due to the hybridization is measured, the first nucleic acid and the first nucleic acid can be quickly and easily collected without complicated work such as solid-liquid separation. (2) The identity with the nucleic acid can be identified, and both labels are introduced at the 3 'end and the 5' end which are close to each other, so that the degree of displacement of the complementary strand can be accurately and accurately determined.
  • the degree of substitution of the complementary strand can be accurately and accurately measured with good sensitivity at all times, and the identity of the nucleic acids can be determined. Accurate and Ru 3D in what can and this identifies the Joteki.
  • one of the first nucleic acid and the second nucleic acid is used as a sample nucleic acid containing a target nucleic acid, and the other is used as a standard nucleic acid for identifying the identity of the sample nucleic acid.
  • nucleic acid having a gene mutation or polymorphism in the sample is extremely small, or if the normal nucleic acid differs from the mutant nucleic acid (wild-type gene and mutant gene) by only one base, it is accurate. It can be detected and quantified by simple operations.
  • the 5 'end and the 3' end indicate a range within 30 bases from the 5 'end and the 3' end of the nucleic acid chain, respectively. .
  • energy transfer is more likely to occur closer to the 5 'end and the 3' end, so it is preferably within 10 bases from each end, and most preferably the 5 'end and the 3' end. The end.
  • the present invention provides a kit for performing the identification method of the present invention
  • a nucleic acid having a trace amount of a mutation or a polymorphic gene in a sample can be rapidly and reliably detected by a simple operation according to the identification method of the present invention, and automation can be achieved. , At the forefront of medical care
  • FIG. 1 is a schematic diagram showing a case where the method for identifying a nucleic acid according to the first invention is performed, wherein (A) shows a normal nucleic acid and (B) shows a nucleic acid having a mutation.
  • FIG. 2 is a schematic diagram showing a case where the method for identifying a nucleic acid according to the second invention is performed.
  • (A) shows a normal nucleic acid
  • (B) shows a nucleic acid having a mutation.
  • 2 is a fluorescence vector showing the state of energy transfer between the two types of labels shown in FIG.
  • FIG. 4 is an explanatory diagram showing the conventional method of Ge1fand. BEST MODE FOR CARRYING OUT THE INVENTION
  • the method for identifying a nucleic acid comprises the steps of: mixing a first nucleic acid and a second nucleic acid; performing implicit hybridization; and measuring the degree of occurrence of complementary strand displacement.
  • the method for identifying the identity between the first nucleic acid and the second nucleic acid at least two labels capable of energy transfer to each other are introduced into one or both of the first nucleic acid and the second nucleic acid.
  • Two types of labels for example, a donor label that generates fluorescence upon excitation and an receptor label that absorbs the fluorescence
  • a competitive hybridization is performed. (Complementary strand displacement reaction).
  • one of the two types of labels is introduced as a double-stranded nucleic acid at the 3 ′ end of one strand of the first nucleic acid, and the other strand of the first nucleic acid is The other label is introduced into the 5 ′ end of the nucleic acid to prepare a labeled first nucleic acid, and the labeled first nucleic acid is mixed with a double-stranded or single-stranded unlabeled second nucleic acid to form a compound.
  • the first nucleic acid can be obtained by performing pettive hybridization and measuring the degree of change in energy transfer between the labels.
  • the degree of substitution of the complementary strand generated between 20 and the second nucleic acid is measured to discriminate the identity between the first nucleic acid and the second nucleic acid.
  • Fig. 1 (A) two types of labels D and A capable of binary energy rearrangement (donor label D that generates energy and energy from the donor label are absorbed) Axceptor label A)
  • the unlabeled second nucleic acid 2 (which is a double-stranded nucleic acid in FIG. 1 but may be a single-stranded nucleic acid) which is homologous to the labeled first nucleic acid 1 is mixed and denatured, and then annealed.
  • FIG. 1 (B) a similar hybrid-stranded first nucleic acid 1 is mixed with an unlabeled second nucleic acid 2 ′ having a mutation X to perform a competitive hybridization. Since the complementary strand displacement reaction does not occur, the proportion of nucleic acids that cause energy translocation does not change (as is).
  • the degree of displacement of the complementary strand generated between the first nucleic acid 1 and the second nucleic acid 2 or 2 ′ is determined.
  • the identity between the first nucleic acid 1 and the second nucleic acid 2 or 2 ′ can be identified.
  • One of the first nucleic acid 1 and the second nucleic acid 2 or 2 ′ is used as a sample nucleic acid containing the target nucleic acid, and the other is used as a standard nucleic acid for identifying the identity of the sample nucleic acid.
  • the presence / absence of the gene mutation in the sample nucleic acid and the ratio thereof can be measured.
  • a nucleic acid having a known mutation as the first nucleic acid 1 was prepared, and the first nucleic acid 1 having this mutation and the second nucleic acid 2 or 2 ′ were mixed to form a competitive nucleic acid.
  • the presence or absence of the mutation in the gene in the second nucleic acid 2 or 2 ′ and the ratio thereof can be similarly detected.
  • the second method of the identification method of the present invention comprises the steps of: combining a label first nucleic acid prepared by introducing at least one of two kinds of labels capable of energy transfer with each other into the first nucleic acid;
  • the labeled nucleic acid prepared by introduction into the second nucleic acid The two nucleic acids are mixed with the following combinations (a) to (c) to perform a competitive hybridization, and the degree of energy change due to energy-translocation between the labels is measured.
  • the degree of substitution of the complementary strand generated between the first nucleic acid and the second nucleic acid is measured to discriminate the identity between the first nucleic acid and the second nucleic acid.
  • Both the first nucleic acid and the second nucleic acid are double-stranded nucleic acids, and a labeled first nucleic acid in which one label is introduced into the 3 ′ end of one strand, and a label of the labeled first nucleic acid A combination of the introduced strand and a labeled second nucleic acid in which the other label is introduced at the 5 'end of the strand to be hybridized.
  • the two types of energy transferable labels D and A are replaced with the 3 ′ end of one strand of the first nucleic acid 3 and the second nucleic acid 4 ′ having a mutation X.
  • Competitive hybridization is performed by mixing and denaturing the labeled first nucleic acid 3 and the labeled second nucleic acid 4 ', followed by annealing. In this case, since no complementary strand displacement reaction occurs, no nucleic acid in which the two types of labels D and A are close to each other is generated, and no energy transfer occurs.
  • the degree of substitution of the complementary strand generated between the first nucleic acid 3 and the second nucleic acid 4 or 4 ′ can be determined.
  • the identity between the first nucleic acid 3 and the second nucleic acid 4 or 4 ′ can be identified.
  • one of the first nucleic acid 3 and the second nucleic acid 4 or 4 ′ is used as a sample nucleic acid containing the target nucleic acid, and the other is used as a standard nucleic acid for identifying identity with the sample nucleic acid. It can measure the presence or absence of the gene mutation in the sample nucleic acid and its ratio.
  • a nucleic acid having a known mutation was prepared as the first nucleic acid 3, and the first nucleic acid 3 having the mutation was mixed with the second nucleic acid 4 or 4 ′, and The presence or absence of the mutation in the gene in the second nucleic acid 4 or 4 ′ and the ratio thereof can be similarly detected by performing the competitive hybridization.
  • one of the nucleic acids of the first nucleic acid 3 and the second nucleic acids 4 and 4 ′ in FIG. 2 is a single-stranded nucleic acid.
  • the principle is the same as that of the double-stranded nucleic acid shown in FIG.
  • the nucleic acid identification method of the present invention directly measures the degree of change in energy transfer between at least two kinds of labels capable of performing energy transfer. It is possible to detect the presence or absence of the nucleic acid having the gene mutation or polymorphism in the sample and the ratio thereof quickly and reliably by a simple operation without the necessity.
  • both labels are introduced at the 3 'end and the 5' end which are close to each other, even when the degree of substitution of the complementary strand is small, a sufficient energy change that can be easily detected is generated, and correct
  • the degree of substitution can be accurately and reliably measured with good sensitivity even if the first or second nucleic acid is a gene fragment having a long chain.
  • one of the first nucleic acid and the second nucleic acid is used as a sample nucleic acid containing a target nucleic acid, and the other is used as a standard nucleic acid for identifying identity with the sample nucleic acid. It is preferably used for detecting the presence or absence of a nucleic acid having a gene mutation or polymorphism and its ratio.
  • a specific region of the target nucleic acid in the sample is amplified to prepare a sample nucleic acid, and a standard nucleic acid having the same region as the specific region of the target nucleic acid is prepared.
  • the target nucleic acid to be detected includes cancer-related genes, genes related to genetic diseases, virus genes, bacterial genes, and polymorphisms called disease risk factors. And the like.
  • examples of the cancer-related gene include a k-ras gene, an N-ras gene, a p53 gene, a BRCA1 gene, a BRCA2 gene, and an APC gene.
  • Genes related to genetic diseases include various inborn errors of metabolism.
  • examples of viruses and bacterial genes include hepatitis C virus and hepatitis B virus.
  • Genes that show polymorphism are genes that have different nucleotide sequences depending on individuals that are not directly related to the cause of the disease, such as HLA (Human Leukocyte Antigen) and blood type genes.
  • HLA Human Leukocyte Antigen
  • blood type genes Alternatively, there are genes that are considered to be involved in the onset of hypertension, diabetes and the like. These genes are usually present on the chromosome of the host, but may be encoded by the mitochondrial gene.
  • specimens containing the target nucleic acid include pathogens such as bacteria and viruses, blood, saliva, tissue debris isolated from living bodies, and excrement such as manure.
  • pathogens such as bacteria and viruses
  • fetal cells present in amniotic fluid or a part of dividing egg cells in a test tube can be used as a sample.
  • these samples may be centrifuged directly or as necessary. After being concentrated as a sediment by a separation operation or the like, it is possible to use, for example, an enzyme treatment, a heat treatment, a surfactant treatment, an ultrasonic treatment, or a cell treatment that has been subjected to cell destruction treatment by a combination thereof in advance. it can.
  • the cell destruction treatment is performed for the purpose of revealing the DNA derived from the target tissue.
  • the specific method of the cell disruption treatment is as follows: PCR protocol / less Academic Press Ink pl 4, p 352 (1990) (PCRPROTOCOLSAcademic Press Inc., pl 4 , P 352 (1990)), etc., according to known methods described in literatures. It is preferable that the total amount of DNA in the sample is about 1 to 10 g, but amplification can be sufficiently performed with 1 ⁇ g or less. ⁇
  • the sample nucleic acid and the standard nucleic acid are obtained by a known PCR (Polymerase Chain Reaction) method, L-R (lgasechain Reaction) 3 ⁇ 4 3 SR (Self-sustained S) prepared by the equence Rep 1 ication) method, SDA (Strand D isp 1 acement Amp 1) method, etc. (Manak, DNA Probes 2nd Editionp 255 to 291, Stokton Press) (1993)), PCR is particularly preferred.
  • the primer for amplifying the sample nucleic acid and the standard nucleic acid is, as long as the sample nucleic acid and the standard nucleic acid are present, a primer extension.
  • a gene amplification reaction based on the reaction occurs.
  • the extension reaction of the primers was carried out with four or five nucleotide triphosphates (deoxyadenosine triphosphate, deoxyguanosine triphosphate, deoxycytidine triphosphate, and thymidine triphosphate).
  • the reaction is carried out by incorporating an acid or dextrinidine triphosphate (a mixture of these as dNTP, or a mixture thereof)) into the primer as a substrate.
  • an amplification reaction reagent containing the above-mentioned unit nucleic acid and nucleic acid elongation enzyme is usually used to amplify the nucleic acid chain.
  • the nucleic acid elongation enzyme is E. coli DNA polymerase. Any DNA polymerase, such as Klenow fragment of E. coli DNA polymerase I, or DNA polymerase 4 can be used.
  • thermostable DNA polymerase such as th DNA polymerase and Vent DNA polymerase, which eliminates the need to add a new enzyme for each cycle. This makes it possible to automatically repeat the cycle, and furthermore, it is possible to set the annealing temperature to 50 to 60 ° C, thereby improving the specificity of the target base sequence recognition by the primer. Rapid and specific gene amplification (For details, refer to JP-A-11-314965 and JP-A-252230).
  • oil can be added to prevent evaporation of water in the reaction solution.
  • the oil may be any oil that can be distributed with water and has a lower specific gravity than water, and specific examples include silicone oil and mineral oil.
  • some gene amplification devices do not require such a medium, and a primer extension reaction can be performed using such a gene amplification device.
  • the target nucleic acid in the sample can be efficiently amplified and the sample nucleic acid can be prepared in a large amount.
  • a large amount of a standard nucleic acid whose identity with the target nucleic acid is to be identified can be similarly prepared.
  • Specific methods such as conditions for carrying out the gene amplification reaction are described in Experimental Medicine, Yodosha, 8, No. 9 (1990), and PCR Technology Stockton. Pressing can be performed according to a known method described in a literature such as a press (PCR Technology Locktonpress (1989)).
  • nucleic acid may be directly cut out enzymatically, or the amplified normal nucleic acid may be added to a vector selected from a plasmid vector, a phage vector, or a plasmid and phage chimera vector. It can also be prepared in large quantities by integration into a host such as Escherichia coli, Bacillus subtilis, or any other proliferable host such as yeast (gene Cloung). Further, in some cases, it can be prepared by chemical synthesis. Examples of chemical synthesis include the ester method and the phosphite method. These methods are based on a liquid phase method or a solid phase synthesis method using an insoluble carrier. 392)), a large amount of single-stranded DNA can be prepared, and then annealing can be performed to prepare double-stranded DNA.
  • One of the sample nucleic acid and the standard nucleic acid thus prepared in a large amount as described above is used as the first nucleic acid, and the other is used as the second nucleic acid, and one or both of the first and second nucleic acids are used as energy. Introduce at least two transposable labels.
  • the energy transfer between the labels in the present invention means that at least two types of labels, a donor label for generating energy and an axebuta label for absorbing energy generated from the donor label, are mutually separated.
  • the transfer of energy from a donor label to an acceptor label when in close proximity when the two types of labels are fluorescent labels, the fluorescent label generated by exciting the donor label is absorbed by the receptor label, and the force for measuring the fluorescence emitted by the receptor label, or the fluorescence generated by exciting the donor label is generated.
  • the quenching of the donor label caused by the absorption of the fluorescence by the receptor label can be measured (PCRM ethodsandapp 1 ications 4, 35 7 — 3 62 (1995), Nature).
  • the at least two kinds of labels are not particularly limited as long as they are capable of energy transfer in a state close to each other. Among them, a fluorescent substance and a delayed fluorescent substance are preferable, and in some cases, a chemiluminescent substance, Bioluminescent materials can also be used.
  • Such label combinations include fluororesin and its derivatives (for example, fluorescein isothiosinate) and rhodamine and its derivatives (for example, tetramethyl rhodamin isothiosinate, tetramethyl rhodamine). 5 — (and — 6-) hexanoic acid acid, etc.), fluorescein and dabsir, and any combination can be selected from these (Nonisotopic DNAP robe ⁇ echniques. Academic Press 1992) No.
  • a general method of introducing a label into a nucleic acid may be employed. It can. For example, a method for directly introducing a labeled substance into a nucleic acid (Biotechniques 24, 484-489 (1998)), a DNA polymerase reaction or an RNA polymerase reaction. Method of introducing labeled mononucleotides (Science 238, 336-33341 (19897)), and performing a PCR reaction using a primer into which the labeled substance has been introduced. (PCRM ethodsand Applications 2, 34-40 (1992)).
  • the position where the label is introduced into the sample nucleic acid and the standard nucleic acid is the position where energy transfer occurs or disappears due to the complementary strand displacement reaction, that is, the 3 ′ of the nucleic acid strand.
  • each nucleic acid strand when a large number of labels are introduced into the base portion that hybridizes with the complementary strand, Since the substitution of about a group may become undetectable, it is preferable to introduce only into the end of each nucleic acid strand.
  • one of the two types of labels is introduced at the 5 'end (3' end) of one nucleic acid strand, and the 3 'end (5' end) of the other nucleic acid strand complementary thereto is introduced. If the other label is introduced into the second strand, both nucleic acid strands undergo energy transfer or disappear by the complementary strand displacement reaction without affecting the hybridization reaction.
  • a method in which a PCR reaction is performed using a primer having a label at the 5' end (PCRM ethodsand Applications 2, 34) -40 (1992)) or a method in which a linker having a label introduced at the 5 'end and an arbitrary nucleic acid strand are bound by ligase (Nuc 1 eic Acids Res. , 9 2 2 — 9 2 3 (1 9 9 7)).
  • a linker having a label introduced at the 3 ′ end and an arbitrary nucleic acid strand are prepared in the same manner as when the label is introduced at the 5 ′ end.
  • the nucleic acid chain is RNA instead of DNA, or when the 3 ′ end of DNA is RNA, it is generated by selectively opening the sugar (ribose) portion of the RNA at that end.
  • Labeling can also be carried out using an aldehyde group:
  • the labeled mononucleotide triphosphate can be used to terminate the nucleic acid strand by the action of terminal hydroxy nucleotidyl transferase. It is also possible to introduce a marker at the 3 'end (Biotechniques 15, 486-496 (1993)).
  • the labeled nucleic acid can be prepared by direct chemical synthesis. (Nucleic A cids Res. 16, 2659-2669 (1988), Bioconjug. Chem. 3, 85-87 (1992)) c Next, competitive hybridization is performed using the sample nucleic acid and the standard nucleic acid (the first nucleic acid and the second nucleic acid) into which the label has been introduced as described above.
  • the competitive hybridization in the present invention refers to between a double-stranded nucleic acid having a homologous base sequence and a single-stranded nucleic acid, or between a double-stranded nucleic acid having a homologous base sequence and a double-stranded nucleic acid.
  • a competitive nucleic acid strand displacement reaction that takes place between denaturing and annealing single- and double-stranded nucleic acids, or multiple double-stranded nucleic acids.
  • the sample nucleic acid and Z or the standard nucleic acid first nucleic acid and / or second nucleic acid
  • the time when the sample nucleic acid and the standard nucleic acid are mixed may be either immediately before the denaturation or after the denaturation.
  • the temperature conditions of the competitive hybridization are appropriately set according to the length and base sequence of the nucleic acid to be hybridized, but are usually in the range of 98 to 50 ° C for 3 to 10 minutes.
  • the temperature can be reduced at a rate of 1 ° C, more preferably in the range of 98-70 ° C, at a rate of 1 ° C in 10 minutes.
  • the method for identifying a nucleic acid according to the present invention comprises at least two kinds of targets as described above.
  • a competitive hybridization is performed to gradually lower the temperature from a high temperature.
  • a nucleic acid having a gene mutation or a polymorphism is detected by performing annealing and measuring the degree of change in energy transfer between the labels.
  • a nucleic acid having a completely complementary base sequence forms a double strand more preferentially than a nucleic acid having a gene mutation or a polymorphism, and accordingly, the energy change between the labels.
  • the degree of change in energy due to the displacement that is, the degree of change in energy transposition that occurs or disappears due to the complementary strand displacement reaction, is measured using an arbitrary detector, so that gene mutation can be detected.
  • the presence or absence of the nucleic acid having the polymorphism and the ratio thereof can be detected.
  • gene mutation or multiple mutations can be measured by measuring the fluorescence spectrum at a specific wavelength with a spectrofluorometer, fluorescence blade reader, or the like.
  • the presence or absence of a nucleic acid having a type can be easily detected.
  • At least two types of labels that can be energy-transferred in close proximity to each other are used.
  • One of the two labels is introduced into the 3 ′ end of one strand of the first nucleic acid, which is a double-stranded nucleic acid, and the other label is attached to the 5 ′ end of the other strand of the first nucleic acid.
  • a double-stranded or single-stranded unlabeled second nucleic acid is mixed with the labeled first nucleic acid to perform competitive hybridization, and the above-described labeling is performed.
  • the degree of substitution of the complementary strand generated between the first nucleic acid and the second nucleic acid is measured to determine the identity between the first nucleic acid and the second nucleic acid.
  • the identity of the standard nucleic acid and the sample nucleic acid, Presence and proportion thereof of nucleic acids having a mutation or polymorphism of the child can be a detection child a.
  • the labeled first nucleic acid prepared by introducing the one label into the first nucleic acid and the labeled second nucleic acid prepared by introducing the other label into the second nucleic acid are as follows.
  • the above-mentioned first nucleic acid is obtained by mixing in a combination of (a) to (c), performing a competitive hybridization, and measuring the degree of energy change due to energy-transposition between the labels.
  • the degree of displacement of the complementary strand generated between the first nucleic acid and the second nucleic acid is measured to identify the identity between the first nucleic acid and the second nucleic acid, that is, the identity between the standard nucleic acid and the sample nucleic acid, and It is possible to detect the presence or absence of a nucleic acid having a gene mutation or polymorphism and its ratio.
  • the first nucleic acid and the second nucleic acid are both double-stranded nucleic acids, and a labeled first nucleic acid having one label introduced at the 3 ′ end of one strand; and a label introduction of the labeled first nucleic acid. Combination with a labeled second nucleic acid having the other label introduced at the 5 'end of the strand to be hybridized with the strand.
  • the degree of energy transfer is significantly changed according to the ratio of the wild-type gene and the mutant gene in the sample. If a standard curve is prepared in advance and determined, the ratio of the wild-type gene to the mutant gene can be easily known.
  • the test kit for nucleic acid identification of the present invention is a test kit for detecting the presence and proportion of nucleic acid having a gene mutation or polymorphism according to the above-described identification method of the present invention.
  • a sample nucleic acid is prepared from a specific region of the target nucleic acid of the sample that has been subjected to pretreatment such as cell destruction treatment.
  • a standard nucleic acid having a base sequence complementary to the sample nucleic acid is prepared, and the sample nucleic acid and the standard nucleic acid are used as the first nucleic acid and the second nucleic acid, respectively, and at least one of which can be energy-transferred to one or both of them.
  • the complementation is achieved. It measures the extent to which strand displacement has occurred.
  • a sample nucleic acid amplification reagent for amplifying a specific region of the target nucleic acid in the sample to prepare a sample nucleic acid, and a standard for preparing a standard nucleic acid for identifying the identity of the sample nucleic acid and the target nucleic acid Identification of the nucleic acid of the present invention by combining a nucleic acid amplification reagent and a reagent for introducing at least two kinds of labels capable of energy transfer into one or both of a sample nucleic acid and a standard nucleic acid, And a quantitative inspection kit.
  • the cell disrupting reagent for sample pretreatment the washing solution for washing the amplification reaction product, the oil for preventing the evaporation of the water in the reaction solution, and two kinds of labels described in the above-described nucleic acid identification method of the present invention.
  • a reagent or the like for measuring the degree of change in energy transfer between the two can be used, and in combination therewith, the inspection kit of the present invention can be used.
  • CF i 'R cysticfibrosis transmembrane conductance regulator
  • cystic fibrosis cystic fibrosis
  • PCR A chain reaction
  • the PCR was performed according to a conventional method [denaturation: 30 sec at 94 ° C., annealing: 54. The cycle of 30 sec at C and extension: 6 sec at 72 ° C] was repeated 35 times. After the reaction, the PCR reaction solution was measured by 3% agarose gel electrophoresis. In the wild type PCR reaction solution, a band was detected at a length of 44 bases. In the PCR reaction solution of the ⁇ 508 mutant, a band was detected at a length of 41 bases.
  • TFA-amino link CE phosphoramidite manufactured by PerkinElmer Japan
  • TAMRA was added.
  • NHS Perkin-Elmer Japan
  • TAMRA group Tetramethyllodin-1-5— (and—6—) hexanoyctic acid
  • Oligonucleotides into which these fluorescent labels (FITC, TAMRA) were introduced were purified using high performance liquid chromatography (HPLC) and used as labeled oligonucleotides.
  • HPLC high performance liquid chromatography
  • oligonucleotides with amino groups introduced were purified using polyacrylamide gel electrophoresis. And used as unlabeled oligonucleotide. Labeled and unlabeled oligonucleotides are named as follows and are shown together with their nucleotide sequences.
  • a double-stranded DNA was prepared using the above-mentioned labeled and unlabeled oligonucleotide by the following method.
  • Wild-type labeled oligonucleotide CF 10 WSN 1 Dissolves TAMRA (30 nmol) and CF 10 WSN 2-FITC (30 nmo 1) (10 mM MTris-HC 1 p . H 8 0 5 0 m MN a C 1 1 m MEDTA l O ng / ⁇ ⁇ herring DNA) was dissolved in 1 0 0 mu 1, di - N'anpu PCR system 9 6 0 0 (Pas one rk (p e rkin The temperature was lowered continuously to 98 ° C and 60 ° C over 4 hours using a commercial product (Elmer), and the resulting mixture was subjected to arranging. The wild-type labeled double-stranded DNA (A) described below was used. Was prepared.
  • No. 1 has 10 equivalents of 10 (A) complementary to each strand of the wild-type labeled double-stranded DNA.
  • No. 2 is 10 equivalents of ⁇ 508 non-labeled DNA to the wild-type labeled double-stranded DNA of (A). Is added to perform a complementary strand displacement reaction.
  • No.1 the nucleotide sequences of labeled and unlabeled DNA are exactly the same.
  • wild-type unlabeled DNA and ⁇ 508 mutant can be obtained by adding wild-type and ⁇ 508 mutant unlabeled DNA to wild-type labeled double-stranded DNA and performing complementary strand displacement reaction. It was confirmed that it could be distinguished from unlabeled DNA. Also, when comparing No. 3 and No. 4, the labeled double-stranded DNA
  • Example 2 As shown in Table 2, an experiment similar to that in Example 1 was performed by reducing the amount of labeled double-stranded DNA and the amount of unlabeled DNA to 1 Z10 equivalent. Using a fluorescence plate reader (fluorester (BMG Labtechnologies GmbH), excitation filter: 485 nm, fluorescence filter: 538 nm) for microtiter array The fluorescence intensity was measured. In addition, it measured as a control without adding unlabeled DNA. Table 2 shows the results.
  • a plasmid containing the nucleotide sequence of wild-type exon 10 (pCF10-3) and a plasmid containing the nucleotide sequence of the ⁇ 508 mutant exon 10 (PCF508-1) ) was used as a template to perform a polymerase chain reaction (PCR) using the following pair of primers (CF10 ETP, CF10 ETM).
  • the PCR was performed according to a conventional method [denaturation: 30 sec at 94 C, annealing ring: 54]. A cycle of 30 sec at C and elongation: 60 sec at 72 ° C] was repeated 35 times. After the reaction, the PCR reaction solution was measured by 3% agarose gel electrophoresis. In the reaction solution from the plasmid containing the nucleotide sequence of wild-type exon 10, a band was detected at a length of 44 bases. In addition, in the reaction solution from the plasmid containing the base sequence of exon 10 of the ⁇ 508 mutant, a band was detected at a length of 41 bases.
  • a complementary strand displacement reaction was performed between the PCR reaction solution prepared above and the labeled double-stranded DNAs (A) and ( ⁇ ) prepared in Example 1, and a fluorescent plate reader was prepared in the same manner as in Example 3.
  • the fluorescence intensity was measured using [Bolenostar (BMGL abtechno 1 ogies GmbH), excitation filter: 485 nm, fluorescence filter: 538 nm]. Table of results Shown in 3
  • No. 6 using the ⁇ 508 mutant-labeled double-stranded DNA complementary to the ⁇ 508 mutant PCR reaction solution is a complementary strand displacement reaction.
  • the fluorescence intensity is higher than that of No. 5 using ⁇ 508 mutant double-stranded DNA that differs from the wild-type PCR reaction solution by 3 bases.
  • nucleic acids having a small amount of gene mutation or polymorphism in a sample can be easily and easily treated in a homogeneous system that does not require complicated solid-liquid separation. Has many mutations or polymorphisms in the sample It can simultaneously detect and quantify nucleic acids in a short time.
  • a nucleic acid having a mutation or a polymorphism of a trace gene in a sample can be rapidly and reliably detected by a simple operation according to the identification method of the present invention. Automation is also possible, which is extremely useful in medical settings.
  • a small amount of mutation or polymorphism of a gene contained in a specimen can be reliably detected, and a gene showing the mutation or polymorphism can be quantified. It is extremely useful for early detection, diagnosis and treatment of cancer and specific viruses and bacterial infections in the field, and determination of the success or failure of bone marrow transplantation and the presence / absence of rejection.

Abstract

A method of accurately and quickly detecting and quantitating a variation or polymorphism in a number of genes contained in a number of specimens by a convenient operation to thereby examine the presence/absence of a nucleic acid having a variation or polymorphism and the ratio thereof in the genes contained in a trace amount in these specimens, which method comprises, in a homogeneous system without a need for any troublesome solid/liquid separation procedures, mixing a first nucleic acid containing the target nucleic acid with a second nucleic acid having a base sequence complementary to a specific domain in the target nucleic acid to perform competitive hybridization, and measuring the extent of the occurrence of the complementary strand substitution between these nucleic acids, thereby distinguishing the identity of the first nucleic acid from the second nucleic acid. In this method, at least two labels capable of mutually transferring energy are introduced into one or both of the first and second nucleic acids and the extent of the energy change caused by the energy transfer between the above labels in association with the complementary strand substitution as described above is measured, thereby evaluating the extent of the complementary strand substitution.

Description

明 細 書  Specification
核酸の識別方法及び核酸の検查キッ ト 技術分野 Nucleic acid identification method and nucleic acid detection kit
本発明は、 核酸の識別方法、 及び検査キッ トに関し、 更に詳述する と、 遺伝子の変異又は多型を有する核酸の有無及びその割合を検体か ら、 固液の分離作業を必要と しない簡易な操作によ り 、 直接短時間で 検出、 定量するこ とができる核酸の識別方法及び該識別方法を実施す るための検査キッ トに関する。 背景技術  The present invention relates to a method for identifying a nucleic acid and a test kit, and more particularly, to a simple method that does not require a solid-liquid separation operation from a sample by determining the presence and proportion of a nucleic acid having a gene mutation or polymorphism from a sample. The present invention relates to a method for identifying a nucleic acid which can be directly detected and quantified in a short time by a simple operation, and a test kit for performing the identification method. Background art
最近の分子生物学の進歩は著しく 、 ヒ ト遺伝子の全塩基配列の解読 も現実のものとなってきている。 また、 遺伝子の多型と疾患との関係 に関するデータ も 日 々刻々 と蓄積されてきており 、 ヒ ト遺伝子全領域 の多型解析も進展しつつある。 このよ う な状況下、 数多く の遺伝子領 域での数多く の遺伝子変異又は多型を正確に (換言すれば一塩基の変 異も正確に) 、 かつ短時間で検出する こ とは、 今後の医療現場におけ る極めて重要な課題である。  Recent advances in molecular biology have been remarkable, and the decoding of the entire nucleotide sequence of a human gene has become a reality. In addition, data on the relationship between gene polymorphisms and diseases is being accumulated every day, and polymorphism analysis of the entire human gene region is also progressing. Under such circumstances, it will be necessary to accurately detect a large number of gene mutations or polymorphisms in a large number of gene regions (in other words, a single nucleotide mutation) in a short time. This is a very important issue in medical practice.
こ の よ う な遺伝子の変異を検出する方法と しては、 オリ ゴヌ ク レオ チ ドプローブを用いる検出方法 ( P r o c . N a t 1 . A c a d . S c i . 8 0 , 2 7 8 , ( 1 9 8 3 ) ) 、 制限酵素切断片長多型解析法 ( R F L P法) を利用する方法 (A m . J . H u m . G e n e t . , 6 9 , 2 0 1 ( 1 9 8 0 ) ) 、 リ ボヌ ク レアーゼを利用して R N Aと D N Aとのハイプリ ッ ド中の 1塩基のミ スマッチを切断する方法 ( S c i e n c e 2 3 0 , 1 2 4 3 ( 1 9 8 5 ) ) 、 或レ、は遺伝子増幅 法を利用する変異検出方法 ( P r o c . N a t l . A c a d . S c i . 8 8 , 1 8 9 ( 1 9 9 1 ) , A n a l . B i o c h e m. 1 8 6 , 6 4 - 6 8 ( 1 9 9 0 ) ) などが報告されている。  As a method for detecting such a mutation in a gene, a detection method using an oligonucleotide probe (Proc. Nat 1. Acad. Sci. 80, 278, ( 198 3)), a method using restriction enzyme fragment length polymorphism analysis (RFLP method) (Am. J. Hum. Genet., 69, 210 (1980)), A method for cleaving a single base mismatch in a hybrid of RNA and DNA using ribonuclease (Science 230, 1243 (19895)). Natl. Acad. Sci. 88, 189 (1991), Anal. Bioche m. 1886, 64-4-6 8 (1990)).
しかしながら、 いずれの方法も塩基配列が知られている特定変異の 検出に限られる と共に、 操作も煩雑であるため、 医療現場における遺 伝子変異の測定に適した方法とは言えないものである。 However, both methods use specific mutations whose base sequences are known. Since the method is limited to detection and the operation is complicated, it cannot be said that this method is suitable for measuring gene mutations in medical practice.
一方、 検体中の目的核酸のある領域の不特定変異 (位置、 塩基) を 検出する方法と しては S S C P ( s i n g l e s t r a n d c o n f o r m a t i o n p o l y m o r p h i s m、 早 貝コ ンフ オ メ ー シ ヨ ン多型性) 法 ( P r o c . N a t l . A c a d . S c i . 8 6 , 2 7 6 6 ( 1 9 8 9 ) ) 、 D G G E法 ( P r o c . N a t l . A c a d . S c i . 8 6 , 2 3 2 , ( 1 9 8 9 ) ) 、 d d F法 ( G e n o m i c s 1 3 , 4 4 1 ( 1 9 9 2 ) ) などが報告されている。  On the other hand, as a method for detecting unspecified mutations (positions, bases) in a certain region of a target nucleic acid in a specimen, SSCP (single-strand conformation ionpolymorphism) method (Procion conformation polymorphism) is used. Natl. Acad. Sci. 86, 2766 (1989)), DGGE method (Proc. Natl. Acad. Sci. 86, 2332, (19) 8 9)) and the ddF method (Genomics 13, 4 41 (1992)) have been reported.
しかしながら、 上記いずれの方法も再現性が低く 、 しかも検出に電 気泳動法を使用するため、 迅速性に欠け、 実用性が低いとい う問題が あった。 また、 自動シークェンサ一によ り 目的核酸の塩基配列を決定 し、 変異を検出する方法も考えられるが、 検体が混合物であった り 、 変異核酸の割合が少ない場合には検出するこ とが不可能であった。 近年、 極微量のピぺティ ング技術を利用 したマイ ク ロチップ型測定 技術が開発され、 新薬の研究や遺伝子の多型解析などへの応用が期待 されている。 こ の方法は微小な担体表面に数万種類の D N Aプローブ を固相化し、 標識した検体とハイプリ ダイゼーシ ョ ンする こ とによ り 変異核酸を検出する方法 (N u c l e i c A c i d s R e s . 2 Q 6 , 4 9 7 5 - 4 9 8 2 ( 1 9 9 8 ) ) であり 、 一度に大量の検体が 処理でき るため、 大幅な省力化が図れるが、 再現性が低く 、 しかも特 殊な装置を用いるためコ ス ト高となる とレ、う 問題がある。  However, any of the above methods has a problem that the reproducibility is low and the electrophoresis method is used for the detection, so that the method lacks quickness and is not practical. In addition, a method of determining the base sequence of the target nucleic acid by using an automatic sequencer and detecting the mutation can be considered, but it is difficult to detect when the sample is a mixture or the ratio of the mutant nucleic acid is small. It was possible. In recent years, microchip-type measurement technology using a very small amount of pitting technology has been developed, and is expected to be applied to new drug research and gene polymorphism analysis. This method detects mutated nucleic acids by immobilizing tens of thousands of DNA probes on a fine carrier surface and hybridizing with a labeled sample (Nucleic Acids Res. 2Q). 6, 4975-4982 (19998)), which can process a large number of specimens at once, which can save a great deal of labor, but has low reproducibility and special equipment There is a problem when the cost is high because of the use of
そこで、 本出願人は、 特定領域の不特定変異などの迅速な識別方法 と して、 標識した試料 D N Aに非標識の標準 D N Aを過剰量加え、 コ S ンペティティ ブハイプリ ダイゼーショ ンを行う こ とによ り 、 核酸の種 類に関係なく 遺伝子の変異又は多型の有無を検出でき、 その存在比も 容易に算出できる方法を開発し、 既に提案している (以下、 P C R — P H F A法と略記する。 国際公開 W0 9 5 / 0 2 0 6 8 、 N u c 1 . A c i d s . R e s . 2 2 , 1 5 4 1 ( 1 9 9 4 ) ) 。 この P C R— P H F A法によれば、 正常遺伝子中に微量にしか存在 しない変異又は多型遺伝子や変異又は多型の種類が不特定の場合であ つても確実に検出又は定量する こ とができ、 実際、 遺伝病に関連する 遺伝子又は癌関連遺伝子等の遺伝子変異や多型を有する核酸の検出に おいて大いに威力を発揮している ( B r i t i s h J . H e m a t o 1 o g y 9 5 , 1 9 8 — 2 0 3 ) 。 Therefore, as a rapid identification method for unspecified mutations in a specific region, the applicant of the present invention has proposed a method of adding an excessive amount of unlabeled standard DNA to a labeled sample DNA and performing cooperative competitive hybridization. In addition, we have developed a method that can detect the presence or absence of a gene mutation or polymorphism regardless of the type of nucleic acid and can easily calculate the abundance ratio, and have already proposed it (hereinafter abbreviated as PCR-PHFA method. International Publication W095 / 0208, Nuc1.Acids.Res.22, 154 (1994)). According to the PCR-PHFA method, it is possible to reliably detect or quantify a mutation or polymorphism gene that is present only in a small amount in a normal gene or even when the type of mutation or polymorphism is unspecified. In fact, it is very effective in detecting nucleic acids having genetic mutations and polymorphisms such as genes related to genetic diseases or cancer-related genes (British J. Hemato 1 ogy 95, 198— 203).
し力 しながら、 この P C R — P H F A法は、 コ ンペティティ ブハイ ブリ ダイゼーショ ン後の操作に、 煩雑な固液の分離作業を必要と し、 最前線の医療現場において簡易な操作で遺伝子の変異又は多型を有す る核酸を迅速に検出する という要望には十分に対応し得ていない。 更に、 遺伝子変異と疾患との関連は非常に複雑多岐にわたっており 、 当初発見された単一の遺伝子変異によ り病気を発症するよ う なケー スは比較的稀であ り 、 予想以上に数多く の遺伝子変異が病気の発症に 関わっているこ とが明ら力 こなってきており 、 ある病気の原因となる 遺伝子変異を調べるには複数遺伝子について多数の変異を漏れなく 調 ベる こ とが必要であり 、 このため、 更なる簡易かつ迅速に大量の検体 を自動的に処理するこ とができる核酸の検出方法の開発が望まれてい る。  However, the PCR-PHFA method requires complicated solid-liquid separation work after competitive hybridization, and gene mutation or multiplication by simple operations at the forefront medical site. It has not been able to adequately respond to the demand for rapid detection of nucleic acids having a form. In addition, the relationship between genetic mutations and diseases is very complex and diverse, and the rare cases in which a single genetic mutation found at the outset causes disease are relatively rare and unexpectedly many. It is becoming clear that the gene mutations involved in the onset of the disease are evident.To investigate the gene mutations that cause a certain disease, it is necessary to check many mutations for multiple genes without fail. Therefore, development of a nucleic acid detection method that can automatically and easily process a large amount of a sample more easily and quickly is desired.
最近、 G e 1 f a n d らは、 図 4 に示したよ う に、 一対の 1 3塩基 対のオリ ゴヌ ク レオチ ドのそれぞれの 5 ' 末端を蛍光物質 A, Dで標 識し、 2本鎖を形成した場合には蛍光エネルギー転位が起こるこ と、 一方、 競合するオリ ゴヌ ク レオチ ドを加えた場合、 元の 2本鎖との組 換えが起きれば蛍光エネルギー転位の程度が変化するこ とを報告して レ、る ( P r o c . N a t l . A c a d . S c i . U S A 9 6 , 6 1 1 3 - 6 1 1 8 ( 1 9 9 9 ) ) 。 即ち、 エネルギー転位を利用すれば元 の 2本鎖 D N Aと組換えが起きて形成された 2本鎖 D N Aの安定性の 違いを測定できる こ とを示している。  Recently, Ge1 fand et al., As shown in Fig. 4, labeled the 5'-ends of each of a pair of 13-base pair oligonucleotides with fluorescent substances A and D, and showed that the two strands were double-stranded. In the case where a complex is formed, fluorescence energy transfer occurs.On the other hand, when a competing oligonucleotide is added, the degree of the fluorescence energy transfer changes when recombination with the original duplex occurs. (Proc. Natl. Acad. Sci. USA 96, 61 13-61 18 (1999)). That is, it shows that the difference in stability between the original double-stranded DNA and the double-stranded DNA formed by recombination can be measured by using energy transfer.
しかしながら、 この方法では、 オリ ゴヌ ク レオチ ドのそれぞれの鎖 の 5 ' 末端に蛍光エネルギー転位可能な標識があるため、 オリ ゴヌ ク レオチ ド鎖が長く なれば、 両標識間の距離が長く なり 、 それに伴って D N A組換えによるエネルギー転位の変化の程度も小さ く な り 、 検出 が困難と なる場合がある。 特に、 遺伝子の変異や多型を確実に感度良 く 検出するには、 通常、 ある程度の鎖長が必要になるため、 十分な成 果を挙げられないとレ、う 問題がある。 発明の開示 However, in this method, there is a label at the 5 'end of each strand of the oligonucleotide that can transfer fluorescent energy, so that When the length of the leotide chain becomes longer, the distance between the two labels becomes longer, and accordingly, the degree of change in energy transfer due to DNA recombination also becomes smaller, which may make detection difficult. Particularly, in order to reliably detect gene mutations and polymorphisms with high sensitivity, it is usually necessary to have a certain chain length, so that sufficient results cannot be obtained. Disclosure of the invention
本発明は、 上記事情に鑑みなされたもので、 遺伝子の変異又は多型 を有する核酸の有無及びその割合を検体から固液の分離作業を必要と しない簡易な操作によ り 、 直接短時間で正確に検出、 定量する こ とが でき、 更には自動化も可能な核酸の識別方法及びこの識別方法を実施 するための検査キッ トを提供するこ とを目的とする。  The present invention has been made in view of the above circumstances, and the presence and the ratio of nucleic acid having a gene mutation or polymorphism can be determined in a short time directly by a simple operation that does not require a solid-liquid separation operation from a sample. An object of the present invention is to provide a nucleic acid identification method that can be accurately detected and quantified and that can be automated, and a test kit for performing the identification method.
本発明は、 上記目的を達成するため、 第 1 の核酸と第 2 の核酸と を 混合してコンペティティ ブハイプリ ダイゼーショ ンを行い、 両核酸間 で相補鎖の置換が生じた程度を測定する こ とによ り 、 上記第 1核酸と 第 2核酸との同一性を識別する方法において、  According to the present invention, in order to achieve the above object, a first nucleic acid and a second nucleic acid are mixed and subjected to competitive hybridization, and the degree of substitution of complementary strand between the two nucleic acids is measured. Thus, in the method for identifying the identity of the first nucleic acid and the second nucleic acid,
( 1 ) 2本鎖核酸である上記第 1核酸の一方の鎖の 3 ' 端部に互いに エネルギー転位可能な少なく と も 2種の標識の一方を導入する と共に 、 該第 1核酸の他方の鎖の 5 ' 端部に他方の標識を導入して第 1核酸 を標識し、 この標識第 1核酸と 1本鎖又は 2本鎖核酸である非標識の 上記第 2核酸とを混合してコ ンペティティブハイブリ ダイゼーシ ョ ン を行い、 上記標識間のェネルギー転位によるエネルギー変化の度合を 測定する こ とによ り 、 上記第 1核酸と第 2核酸との間に生じた相補鎖 の置換の程度を測定する こ と、 又は  (1) At least one of two types of labels capable of energy transfer to each other is introduced into the 3 ′ end of one strand of the first nucleic acid, which is a double-stranded nucleic acid, and the other strand of the first nucleic acid is The first nucleic acid is labeled by introducing the other label at the 5 'end of the nucleic acid, and the labeled first nucleic acid is mixed with the unlabeled second nucleic acid, which is a single-stranded or double-stranded nucleic acid, and mixed. By performing pettive hybridization and measuring the degree of energy change due to energy transfer between the labels, the degree of displacement of the complementary strand generated between the first nucleic acid and the second nucleic acid can be determined. Measuring, or
( 2 ) 互いにエネルギー転位可能な少なく と も 2種の標識の一方を上 記第 1 核酸に導入して調製した標識第 1核酸と、 他方の標識を上記第 2核酸に導入して調製した標識第 2核酸とを、 下記 (ィ) 〜 (ハ) の 組み合わせで混合してコンペティティ ブハイプリ ダイゼーショ ンを行 い、 上記標識間のエネルギー転位によ るエネルギー変化の度合を測定 する こ とによ り 、 上記第 1核酸と第 2核酸との間に生じた相補鎖の置 換の程度を測定するこ と (2) Labeled first nucleic acid prepared by introducing one of at least two kinds of labels capable of energy transfer to each other into the first nucleic acid, and label prepared by introducing the other label into the second nucleic acid The second nucleic acid is mixed with the following combinations (a) to (c) to perform competitive hybridization, and the degree of energy change due to the energy transfer between the labels is measured. By doing so, the degree of replacement of the complementary strand generated between the first nucleic acid and the second nucleic acid can be measured.
(ィ) 上記第 1核酸及び第 2核酸がいずれも 2本鎖核酸であり 、 一方 の鎖の 3 ' 端部に一方の標識を導入した標識第 1核酸と、 該標識第 1 核酸の標識導入鎖とハイブリ ダィズすべき側の鎖の 5 ' 端部に他方の 標識を導入した標識第 2核酸との組み合わせ、  (1) Both the first nucleic acid and the second nucleic acid are double-stranded nucleic acids, and a labeled first nucleic acid having one label introduced at the 3 ′ end of one strand, and a label introduction of the labeled first nucleic acid A combination with a labeled second nucleic acid in which the other label is introduced at the 5 'end of the strand to be hybridized with the strand,
(口) 2本鎖核酸である上記第 1核酸の一方の鎖の 3 ' 端部に一方の 標識を導入した標識第 1核酸と、 1 本鎖核酸である上記第 2核酸の 5 ' 端部に他方の標識を導入した標識第 2核酸との組み合わせ、  (Mouth) A labeled first nucleic acid in which one label is introduced into the 3 'end of one strand of the first nucleic acid, which is a double-stranded nucleic acid, and a 5' end of the second nucleic acid, which is a single-stranded nucleic acid A combination with a labeled second nucleic acid in which the other label is introduced,
(ハ) 2本鎖核酸である上記第 1核酸の一方の鎖の 5 ' 端部に一方の 標識を導入した標識第 1核酸と、 1 本鎖核酸である上記第 2核酸の 3 ' 端部に他方の標識を導入した標識第 2核酸との組み合わせ、 を提供する。  (C) a labeled first nucleic acid in which one label is introduced into the 5 'end of one strand of the first nucleic acid, which is a double-stranded nucleic acid, and a 3' end of the second nucleic acid, which is a single-stranded nucleic acid And a combination with a labeled second nucleic acid into which the other label has been introduced.
即ち、 本出願人が、 先に提案した P C R— P H F A法は、 検体中の 目的核酸の特定領域を増幅して、 2本鎖の試料核酸を調製し、 一方の 鎖に固相担体と結合可能な部位を有し、 かつ他方の鎖に検出可能な標 識を有する 2本鎖核酸からなる標識標準核酸に、 上記試料核酸を過剰 量加えてコンペティティ ブハイブリ ダイゼーショ ンを行レ、、 その結果 、 再構成された上記標識標準核酸を上記検出可能な標識物と固相担体 に結合可能な部位を有する標識物と を利用 して検出するこ とによって In other words, the PCR-PHFA method proposed by the present applicant can amplify a specific region of a target nucleic acid in a sample to prepare a double-stranded sample nucleic acid, and bind to one of the strands with a solid phase carrier. Competitive hybridization is carried out by adding an excess amount of the sample nucleic acid to a labeled standard nucleic acid comprising a double-stranded nucleic acid having a unique site and a detectable label on the other strand, and as a result, By detecting the reconstituted labeled standard nucleic acid using the detectable label and the label having a site capable of binding to a solid support,
、 上記試料核酸と上記標識標準核酸との間で相補鎖の置換が生じた程 度を測定する こ とによ り 、 遺伝子の変異又は多型を有する核酸を検出 する ものであるが、 上述のよ う に、 この方法では検出に検出可能な標 識物と固相担体に結合可能な部位を有する標識物と を用いているため 、 面倒な固液分離作業が必要となり 、 簡易な操作でしかも迅速かつ正 確な検出が要求される医療現場においては幅広く採用されるには至つ ていなかった。 By detecting the degree of substitution of the complementary strand between the sample nucleic acid and the labeled standard nucleic acid, a nucleic acid having a gene mutation or polymorphism is detected. As described above, since this method uses a detectable label and a label having a site capable of binding to a solid phase carrier, a cumbersome solid-liquid separation operation is required, and the operation is simple. It has not been widely adopted in the medical field where quick and accurate detection is required.
また、 上記 G e 1 f a n d らの方法では、 図 4 に示したよ う に、 一 対のオリ ゴヌク レオチ ドが 1 3塩基対程度の短いものあれば、 標識 D と標識 Aとが比較的近い状態にあるので標識間のェネルギ一転位が起 こ るが、 上述のよ う に塩基対の長さが長く なる と標識 Dと標識 Aとの 距離が長く な り 、 標識間のエネルギー転位が起こ らなく なり 、 又は非 常に少なく なって、 多種多様な長さの遺伝子断片を用い遺伝子の変異 又は多型を有する核酸の同一性を識別するのは困難である。 In the method of Ge1 fand et al., As shown in Fig. 4, if a pair of oligonucleotides is as short as about 13 base pairs, label D Since energy and label A are relatively close to each other, energy translocation between the labels occurs, but as described above, as the base pair length increases, the distance between label D and label A increases. Since energy transfer between the labels does not occur or is extremely reduced, it is difficult to identify the identity of nucleic acids having gene mutations or polymorphisms using gene fragments of various lengths.
それに対して、 上記本発明の識別方法では、 互いにエネルギー転位 可能な少なく と も 2種の標識を用い、 両標識間でのエネルギー転位に よるエネルギー変化の度合を測定する こ と によ り 、 コンペティ ティ ブ ハイブリ ダイゼーショ ンによる相補鎖の置換が生じた程度を測定する よ う になっているので、 固液分離作業等の煩雑な作業を要する こ とな く、 迅速かつ簡便に第 1核酸と第 2核酸との同一性を識別するこ とが でき、 しかも両標識が互いに近接する 3 ' 端部と 5 ' 端部とに導入さ れているので、 相補鎖の置換が生じた程度を正確かつ確実に捕えるこ とができる上、 第 1 核酸又は第 2核酸が鎖の長い遺伝子断片であって も常に良好な感度をもって正確かつ確実に相補鎖の置換の程度を測定 し得、 核酸の同一性を正確かつ安定的に識別するこ とができる もので 3Dる。  On the other hand, in the above-described identification method of the present invention, at least two kinds of labels capable of energy transfer with each other are used, and the degree of energy change due to the energy transfer between the two labels is measured. Since the degree of displacement of the complementary strand due to the hybridization is measured, the first nucleic acid and the first nucleic acid can be quickly and easily collected without complicated work such as solid-liquid separation. (2) The identity with the nucleic acid can be identified, and both labels are introduced at the 3 'end and the 5' end which are close to each other, so that the degree of displacement of the complementary strand can be accurately and accurately determined. In addition to being able to reliably capture, even if the first nucleic acid or the second nucleic acid is a gene fragment having a long chain, the degree of substitution of the complementary strand can be accurately and accurately measured with good sensitivity at all times, and the identity of the nucleic acids can be determined. Accurate and Ru 3D in what can and this identifies the Joteki.
従って、 本発明の識別方法によれば、 上記第 1 核酸及び第 2核酸の 一方を 目的核酸を含む試料核酸と し、 他方をこの試料核酸との同一性 を識別するための標準核酸とするこ とによ り 、 多数の検体の多数の遺 伝子の変異又は多型を有する核酸を迅速かつ正確に検出、 定量する こ と ができる と共に、 従来の煩雑な固液の分離作業を必要と しない簡易 な方法で、 自動化も可能となり 、 最前線の医療現場での要望に応える こ とができ る ものである。 またこの場合、 検体中に遺伝子の変異や多 型を有する核酸が極微量であったり 、 正常核酸と変異核酸 (野生型遺 伝子と変異遺伝子) とがわずか 1塩基異なる場合であっても正確に簡 易な操作で検出、 定量する こ とができ る ものである。  Therefore, according to the identification method of the present invention, one of the first nucleic acid and the second nucleic acid is used as a sample nucleic acid containing a target nucleic acid, and the other is used as a standard nucleic acid for identifying the identity of the sample nucleic acid. Thus, nucleic acids having mutations or polymorphisms of a large number of genes in a large number of samples can be quickly and accurately detected and quantified, and the conventional complicated solid-liquid separation work is not required. It can be automated with a simple method, and can respond to the demands of the forefront medical field. In this case, even if the amount of nucleic acid having a gene mutation or polymorphism in the sample is extremely small, or if the normal nucleic acid differs from the mutant nucleic acid (wild-type gene and mutant gene) by only one base, it is accurate. It can be detected and quantified by simple operations.
なお、 本発明において、 5 ' 端部及び 3 ' 端部とは、 核酸鎖の 5 ' 末端及び 3 ' 末端からそれぞれ 3 0塩基以内の範囲を示すものである 。 この場合、 5 ' 末端及び 3 ' 末端に近ければ近いほどエネルギー転 位を起こ し易いため、 好ま しく はそれぞれの末端から 1 0塩基以内で あ り 、 最も好ま し く は 5 ' 末端及び 3 ' 末端である。 In the present invention, the 5 'end and the 3' end indicate a range within 30 bases from the 5 'end and the 3' end of the nucleic acid chain, respectively. . In this case, energy transfer is more likely to occur closer to the 5 'end and the 3' end, so it is preferably within 10 bases from each end, and most preferably the 5 'end and the 3' end. The end.
また、 本発明は、 上記本発明の識別方法を実施するためのキッ ト と して、  Further, the present invention provides a kit for performing the identification method of the present invention,
検体中の 目的核酸の特定領域を増幅して試料核酸を調製するための試 料核酸増幅用試薬と、 目的核酸との同一性を識別する標準核酸を調製 するための標準核酸増幅用試薬と、 互いに近接した状態でエネルギー 転位可能な少なく と も' 2種の標識を試料核酸及び標準核酸のいずれか 一方又は双方に導入するための試薬と を具備したこ と を特徴とする核 酸の検査キッ トを提供する。  A sample nucleic acid amplification reagent for amplifying a specific region of a target nucleic acid in a sample to prepare a sample nucleic acid; a standard nucleic acid amplification reagent for preparing a standard nucleic acid for identifying the identity of the target nucleic acid; A reagent for introducing at least two kinds of labels capable of energy transfer in the vicinity of each other to one or both of a sample nucleic acid and a standard nucleic acid; and a nucleic acid inspection kit. To provide
この検査キッ 卜によれば、 本発明の識別方法に従って検体中の微量 の変異又は多型遺伝子を有する核酸を迅速に、 簡単な操作で確実に検 出する こ とができる と共に、 自動化も達成でき、 最前線の医療現場に According to this test kit, a nucleic acid having a trace amount of a mutation or a polymorphic gene in a sample can be rapidly and reliably detected by a simple operation according to the identification method of the present invention, and automation can be achieved. , At the forefront of medical care
I 5 おいて極めて有用なものである。 図面の簡単な説明 It is extremely useful in I 5. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 第 1 発明に係る核酸の識別方法を実施した場合を示した模 式図であ り 、 (A ) は正常な核酸、 ( B ) は変異を有する核酸を示す FIG. 1 is a schematic diagram showing a case where the method for identifying a nucleic acid according to the first invention is performed, wherein (A) shows a normal nucleic acid and (B) shows a nucleic acid having a mutation.
2 0 2 0
図 2 は、 第 2発明に係る核酸の識別方法を実施した場合を示した模 式図であり 、 (A ) は正常な核酸、 ( B ) は変異を有する核酸を示す 図 3 は、 実施例 1 の 2種の標識間におけるエネルギー転位の様子を z 5 示した蛍光スベタ トルである。  FIG. 2 is a schematic diagram showing a case where the method for identifying a nucleic acid according to the second invention is performed. (A) shows a normal nucleic acid, and (B) shows a nucleic acid having a mutation. 2 is a fluorescence vector showing the state of energy transfer between the two types of labels shown in FIG.
図 4 は、 従来の G e 1 f a n d らの方法を示した説明図である。 発明を実施するための最良の形態  FIG. 4 is an explanatory diagram showing the conventional method of Ge1fand. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明につき更に詳しく 説明する 本発明の核酸の識別方法は、 第 1 の核酸と、 第 2 の核酸と を混合し てニ ンペティティ ブハイブリ ダイゼーシ ョ ンを行い、 相補鎖の置換が 生じた程度を測定する こ と によ り 、 上記第 1核酸と、 第 2核酸との同 一性を識別する方法において、 上記第 1 核酸及び第 2核酸の一方又は 5 双方に互いにエネルギー転位可能な少なく と も 2種の標識を導入して 、 上記相補鎖の置換に伴う上記標識間でのエネルギー転位によるェネ ルギー変化の度合を測定する こ とによ り 、 相補鎖の置換が生じた程度 を測定する ものであ り 、 従来の P C R— P H F A法における 2つの標 識の代わ り に互いに近接した状態でエネルギー転位可能な少なく と もHereinafter, the present invention will be described in more detail. The method for identifying a nucleic acid according to the present invention comprises the steps of: mixing a first nucleic acid and a second nucleic acid; performing implicit hybridization; and measuring the degree of occurrence of complementary strand displacement. In the method for identifying the identity between the first nucleic acid and the second nucleic acid, at least two labels capable of energy transfer to each other are introduced into one or both of the first nucleic acid and the second nucleic acid. By measuring the degree of energy change due to the energy transfer between the labels accompanying the displacement of the complementary strand, the degree of the displacement of the complementary strand is measured. — At least energy transfer in close proximity to each other instead of the two labels in the PHFA method
1 0 2種の標識 (例えば、 励起によ り蛍光を発生する ドナー標識と、 その 蛍光を吸収するァクセプタ一標識) を第 1核酸及び Z又は第 2核酸に 導入して、 コンペティティ ブハイブリ ダィゼーシヨ ン (相補鎖置換反 応) を行う ものである。 10 Two types of labels (for example, a donor label that generates fluorescence upon excitation and an receptor label that absorbs the fluorescence) are introduced into the first nucleic acid and the Z or the second nucleic acid, and a competitive hybridization is performed. (Complementary strand displacement reaction).
本発明識別方法の第 1 の手法は、 2種の標識の一方を 2本鎖核酸で i s ある第 1核酸の一方の鎖の 3 ' 端部に導入する と共に、 該第 1核酸の 他方の鎖の 5 ' 端部に他方の標識を導入して、 標識第 1核酸を調製す る と共に、 該標識第 1核酸に 2本鎖又は 1 本鎖の非標識第 2核酸を混 合してコ ンペティティブハイブリ ダィゼーショ ンを行い、 上記標識間 のエネルギー転位の変化の度合を測定するこ とによ り 、 上記第 1核酸 In the first method of the identification method of the present invention, one of the two types of labels is introduced as a double-stranded nucleic acid at the 3 ′ end of one strand of the first nucleic acid, and the other strand of the first nucleic acid is The other label is introduced into the 5 ′ end of the nucleic acid to prepare a labeled first nucleic acid, and the labeled first nucleic acid is mixed with a double-stranded or single-stranded unlabeled second nucleic acid to form a compound. The first nucleic acid can be obtained by performing pettive hybridization and measuring the degree of change in energy transfer between the labels.
2 0 と第 2核酸との間に生じた相補鎖の置換の程度を測定して、 第 1 核酸 と第 2核酸との同一性を識別するものである。 The degree of substitution of the complementary strand generated between 20 and the second nucleic acid is measured to discriminate the identity between the first nucleic acid and the second nucleic acid.
その原理について説明する と、 図 1 ( A ) に示したよ う に、 二ネル ギー転位可能な 2種の標識 D, A (エネルギーを発生する ドナ一標識 D と該 ドナー標識からのエネルギーを吸収するァクセプタ一標識 A ) To explain the principle, as shown in Fig. 1 (A), two types of labels D and A capable of binary energy rearrangement (donor label D that generates energy and energy from the donor label are absorbed) Axceptor label A)
2 5 を 2本鎖核酸である第 1核酸の一方の鎖の 3 ' 端部と他方の鎖の 5 ' 端部にそれぞれ 1種類ずつ導入して 2本鎖の標識第 1核酸 1 を調製す る c この標識第 1核酸 1 は 2種の標識 D , Aが近接した状態にあるの でエネルギー転位が生じ、 ドナー標識 Dから発生したェネルギ一がァ クセプター標識 Aに吸収されて ドナー標識 Dのエネルギーは低下する が、 エネルギーを吸収した標識 Aはエネルギーを発生し、 エネルギー 転位が生じる。 2 5 is introduced into the 3 ′ end of one strand and the 5 ′ end of the other strand of the first nucleic acid, which is a double-stranded nucleic acid, to prepare a double-stranded labeled first nucleic acid 1. that c the labeled first nucleic acid 1 2 kind of labeled D, a energy transfer occurs in some of the state is close, Enerugi one generated from the donor label D is absorbed by the § acceptor labeled a in donor label D Energy drops However, label A, which has absorbed energy, generates energy and energy translocation occurs.
次に、 この標識第 1核酸 1 と相同な非標識の第 2核酸 2 (図 1 では 2本鎖核酸であるが 1 本鎖核酸でもよい。 ) と を混合変性し、 ァニー Next, the unlabeled second nucleic acid 2 (which is a double-stranded nucleic acid in FIG. 1 but may be a single-stranded nucleic acid) which is homologous to the labeled first nucleic acid 1 is mixed and denatured, and then annealed.
5 リ ン グする こ とによ り コ ンペティティ ブハイブリ ダィゼーシヨ ンを行 う : これによ り相補鎖置換反応が起こ り 、 図示したよ う に 2種の標識 D , Aが近接した状態の核酸が希釈され、 ドナー標識 Dのみ、 或いは ァクセプター標識 Aのみを有する合成核酸が生じ、 その結果、 ェネル ギ一転位を生じる核酸の割合が減少する。 Competitive hybridization is performed by 5 ringing: a complementary strand displacement reaction occurs, and as shown in the figure, a nucleic acid in which two types of labels D and A are in close proximity is obtained. Upon dilution, a synthetic nucleic acid having only the donor label D or only the acceptor label A results, resulting in a reduced proportion of nucleic acids that undergo energy translocation.
1 0 一方、 図 1 ( B ) に示したよ う に、 同様の 2本鎖標識第 1核酸 1 と 変異 Xを有する非標識第 2核酸 2 ' とを混合してコ ンペティティ ブハ イブリ ダィゼーシヨ ンを行う と、 相補鎖置換反応が生じないため、 ェ ネルギ一転位を生じる核酸の割合は変化しない (元のまま) 。  10 On the other hand, as shown in FIG. 1 (B), a similar hybrid-stranded first nucleic acid 1 is mixed with an unlabeled second nucleic acid 2 ′ having a mutation X to perform a competitive hybridization. Since the complementary strand displacement reaction does not occur, the proportion of nucleic acids that cause energy translocation does not change (as is).
従って、 図 1 ( A ) , ( B ) のエネルギー転位の程度を測定するこ i s とによ り 、 第 1核酸 1 と第 2核酸 2又は 2 ' との間に生じた相補鎖の 置換の程度を測定するこ とができ、 これによ り 第 1核酸 1 と第 2核酸 2 又は 2 ' との同一性を識別するこ とができる ものである。 そして第 1 核酸 1 及び第 2核酸 2 又は 2 ' の一方を目的核酸を含む試料核酸と し、 他方を該試料核酸との同一性を識別するための標準核酸とするこ Therefore, by measuring the degree of energy transfer shown in FIGS. 1 (A) and 1 (B), the degree of displacement of the complementary strand generated between the first nucleic acid 1 and the second nucleic acid 2 or 2 ′ is determined. Thus, the identity between the first nucleic acid 1 and the second nucleic acid 2 or 2 ′ can be identified. One of the first nucleic acid 1 and the second nucleic acid 2 or 2 ′ is used as a sample nucleic acid containing the target nucleic acid, and the other is used as a standard nucleic acid for identifying the identity of the sample nucleic acid.
2 0 とによ り 、 試料核酸中の遺伝子の変異の有無及びその割合を測定する こ とができる ものである。 According to the formula, the presence / absence of the gene mutation in the sample nucleic acid and the ratio thereof can be measured.
なお、 図 1 に示した例において、 第 1核酸 1 と して既知の変異を有 する ものを調製し、 この変異を有する第 1核酸 1 と第 2核酸 2又は 2 ' と を混合し、 コンペティティブハイブリ ダィゼ一シヨ ンを行う こ と In the example shown in FIG. 1, a nucleic acid having a known mutation as the first nucleic acid 1 was prepared, and the first nucleic acid 1 having this mutation and the second nucleic acid 2 or 2 ′ were mixed to form a competitive nucleic acid. Performing a hybrid session
2 5 によ って も同様に第 2核酸 2又は 2 ' 中の遺伝子の変異の有無及びそ の割合を検出する こ とができる。 According to 25, the presence or absence of the mutation in the gene in the second nucleic acid 2 or 2 ′ and the ratio thereof can be similarly detected.
また、 本発明識別方法の第 2の手法は、 互いにエネルギー転位可能 な少なく と も 2種の標識の一方を上記第 1核酸に導入して調製した標 識第 1核酸と、 他方の標識を上記第 2核酸に導入して調製した標識第 2核酸と を、 下記 (ィ) 〜 (ハ) の組み合わせで混合してコンペティ ティ ブハイブリ ダィゼ一シヨ ンを行い、 上記標識間のェネルギ一転位 によるエネルギー変化の度合を測定する こ と によ り 、 上記第 1 核酸と 第 2核酸との間に生じた相補鎖の置換の程度を測定して、 第 1 核酸と 第 2核酸との同一性を識別する ものである。 Further, the second method of the identification method of the present invention comprises the steps of: combining a label first nucleic acid prepared by introducing at least one of two kinds of labels capable of energy transfer with each other into the first nucleic acid; The labeled nucleic acid prepared by introduction into the second nucleic acid The two nucleic acids are mixed with the following combinations (a) to (c) to perform a competitive hybridization, and the degree of energy change due to energy-translocation between the labels is measured. The degree of substitution of the complementary strand generated between the first nucleic acid and the second nucleic acid is measured to discriminate the identity between the first nucleic acid and the second nucleic acid.
(ィ ) 上記第 1核酸及び第 2核酸がいずれも 2本鎖核酸であ り 、 一方 の鎖の 3 ' 端部に一方の標識を導入した標識第 1核酸と、 該標識第 1 核酸の標識導入鎖とハイプリ ダィズすべき側の鎖の 5 ' 端部に他方の 標識を導入した標識第 2核酸との組み合わせ。  (A) Both the first nucleic acid and the second nucleic acid are double-stranded nucleic acids, and a labeled first nucleic acid in which one label is introduced into the 3 ′ end of one strand, and a label of the labeled first nucleic acid A combination of the introduced strand and a labeled second nucleic acid in which the other label is introduced at the 5 'end of the strand to be hybridized.
(口 ) 2本鎖核酸である上記第 1 核酸の一方の鎖の 3 ' 端部に一方の 標識を導入した標識第 1核酸と、 1本鎖核酸である上記第 2核酸の 5 ' 端部に他方の標識を導入した標識第 2核酸との組み合わせ。  (Mouth) A labeled first nucleic acid in which one label is introduced into the 3 'end of one strand of the first nucleic acid which is a double-stranded nucleic acid, and a 5' end of the second nucleic acid which is a single-stranded nucleic acid In combination with a labeled second nucleic acid in which the other label is introduced.
(ハ) 2本鎖核酸である上記第 1核酸の一方の鎖の 5 ' 端部に一方の 標識を導入した標識第 1核酸と、 1 本鎖核酸である上記第 2核酸の 3 ' 端部に他方の標識を導入した標識第 2核酸との組み合わせ。  (C) a labeled first nucleic acid in which one label is introduced into the 5 'end of one strand of the first nucleic acid, which is a double-stranded nucleic acid, and a 3' end of the second nucleic acid, which is a single-stranded nucleic acid In combination with a labeled second nucleic acid in which the other label is introduced.
その原理について上記 (ィ) のケースをモデルと して説明する と、 図 2 ( A ) に示したよ う に、 エネルギー転位可能な 2種の標識 D, A を第 1 核酸 3 の一方の鎖の 3 ' 端部と第 2核酸 4の他方の鎖の 5 ' 端 部に 1 種類ずつ導入し、 標識第 1核酸 3 と標識第 2核酸 4 と を調製す る。 これら標識核酸 3, 4は 2本鎖の片方にしか標識を有しない、 即 ち、 いずれも 1種の標識しか有さないのでエネルギー転位は生じない 次に、 これら標識第 1核酸 3 と標識第 2核酸 4 と を混合変性し、 ァ ニー リ ングする こ と によ り コンペティティ ブハイブリ ダイゼ一ショ ン を行う。 これによ り相補鎖置換反応が起こ り 、 2種の標識 D, Aが近 接した状態の 2本鎖核酸が生成し、 エネルギー転位が生じる。  The principle is explained using the case (a) above as a model. As shown in Fig. 2 (A), two energy-transferable labels D and A are attached to one strand of the first nucleic acid 3 One type is introduced into each of the 3 ′ end and the 5 ′ end of the other strand of the second nucleic acid 4 to prepare a labeled first nucleic acid 3 and a labeled second nucleic acid 4. These labeled nucleic acids 3 and 4 have a label on only one of the two strands. That is, since both have only one type of label, energy transfer does not occur. 2 Competitive hybridization is performed by mixing and denaturing nucleic acid 4 and annealing. This causes a complementary strand displacement reaction to generate a double-stranded nucleic acid in a state where the two types of labels D and A are in close proximity, and energy transfer occurs.
一方、 図 2 ( B ) に示したよ う に、 エネルギー転位可能な 2種の標 識 D , Aを第 1 核酸 3 の一方の鎖の 3 ' 端部と変異 Xを有する第 2核 酸 4 ' の他方の鎖の 5 ' 端部に 1 種類ずつ導入し、 標識第 1 核酸 3 と 標識第 2核酸 4 ' と を調製する。 これら標識第 1 核酸 3 と標識第 2核 酸 4 ' と を混合変性し、 アニーリ ングする こ とによ り コンペティティ ブハイブリ ダィゼーシヨ ンを行う。 この場合は、 相補鎖置換反応が生 じないため、 2種の標識 D , Aが近接した状態の核酸は生成せず、 ェ ネルギー転位は生じない。 On the other hand, as shown in FIG. 2 (B), the two types of energy transferable labels D and A are replaced with the 3 ′ end of one strand of the first nucleic acid 3 and the second nucleic acid 4 ′ having a mutation X. One by one at the 5 'end of the other strand of Prepare labeled second nucleic acids 4 ′ and 4 ′. Competitive hybridization is performed by mixing and denaturing the labeled first nucleic acid 3 and the labeled second nucleic acid 4 ', followed by annealing. In this case, since no complementary strand displacement reaction occurs, no nucleic acid in which the two types of labels D and A are close to each other is generated, and no energy transfer occurs.
従って、 図 2 ( A ) , ( B ) のエネルギー転位の程度を測定する こ とによ り 、 第 1核酸 3 と第 2核酸 4又は 4 ' との間に生じた相補鎖の 置換の程度を測定するこ とができ、 これによ り第 1核酸 3 と第 2核酸 4 又は 4 ' との同一性を識別するこ とができる ものである。 そ して第 1 核酸 3及び第 2核酸 4又は 4 ' の一方を目的核酸を含む試料核酸と し、 他方を該試料核酸との同一性を識別するための標準核酸とするこ とによ り 、 試料核酸中の遺伝子の変異の有無及びその割合を測定する こ とができるものである。  Therefore, by measuring the degree of energy transfer shown in FIGS. 2 (A) and (B), the degree of substitution of the complementary strand generated between the first nucleic acid 3 and the second nucleic acid 4 or 4 ′ can be determined. As a result, the identity between the first nucleic acid 3 and the second nucleic acid 4 or 4 ′ can be identified. Then, one of the first nucleic acid 3 and the second nucleic acid 4 or 4 ′ is used as a sample nucleic acid containing the target nucleic acid, and the other is used as a standard nucleic acid for identifying identity with the sample nucleic acid. It can measure the presence or absence of the gene mutation in the sample nucleic acid and its ratio.
なお、 図 2 に示した例において、 第 1核酸 3 と して既知の変異を有 する ものを調製し、 この変異を有する第 1核酸 3 と第 2核酸 4又は 4 ' と を混合し、 コ ンペティティブハイブリ ダィゼーシヨ ンを行う こ と によっても同様に第 2核酸 4又は 4 ' 中の遺伝子の変異の有無及びそ の割合を検出する こ とができる。  In the example shown in FIG. 2, a nucleic acid having a known mutation was prepared as the first nucleic acid 3, and the first nucleic acid 3 having the mutation was mixed with the second nucleic acid 4 or 4 ′, and The presence or absence of the mutation in the gene in the second nucleic acid 4 or 4 ′ and the ratio thereof can be similarly detected by performing the competitive hybridization.
この第 2 の手法における上記 (口) , (ハ) の場合は、 図 2 におけ る第 1 核酸 3及び第 2核酸 4 , 4 ' のいずれか一方の核酸を 1 本鎖核 酸と したものであり 、 その原理は図 2 に示した 2本鎖核酸の場合と同 様である。  In the case of the above (Mouth) and (C) in the second method, one of the nucleic acids of the first nucleic acid 3 and the second nucleic acids 4 and 4 ′ in FIG. 2 is a single-stranded nucleic acid. The principle is the same as that of the double-stranded nucleic acid shown in FIG.
このよ う に本発明の核酸の識別方法は、 エネルギ一転位可能な少な く と も 2種の標識間のエネルギー転位の変化の度合を直接測定するた め、 従来の面倒な固液分離作業が必要なく 、 簡易な操作で、 迅速かつ 確実に検体中の遺伝子の変異又は多型を有する核酸の有無及びその割 合を検出するこ とができる。 また、 両標識が互いに近接する 3 ' 端部 と 5 ' 端部とに導入されているので、 相補鎖の置換の程度が少ない場 合でも容易に検出可能な十分なエネルギー変化を生じ、 確実かつ正確 に置換の程度を測定する こ とができ、 しかも第 1 又は第 2核酸が鎖の 長い遺伝子断片であっても常に良好な感度をもって正確かつ確実に置 換の程度を測定し得る ものである。 As described above, the nucleic acid identification method of the present invention directly measures the degree of change in energy transfer between at least two kinds of labels capable of performing energy transfer. It is possible to detect the presence or absence of the nucleic acid having the gene mutation or polymorphism in the sample and the ratio thereof quickly and reliably by a simple operation without the necessity. In addition, since both labels are introduced at the 3 'end and the 5' end which are close to each other, even when the degree of substitution of the complementary strand is small, a sufficient energy change that can be easily detected is generated, and correct In addition, the degree of substitution can be accurately and reliably measured with good sensitivity even if the first or second nucleic acid is a gene fragment having a long chain.
本発明の核酸の識別方法は、 上記第 1 核酸及び第 2核酸の一方を 目 的核酸を含む試料核酸と し、 他方をこの試料核酸との同一性を識別す るための標準核酸と し、 遺伝子の変異や多型を有する核酸の有無並び にその割合を検出する場合に好適に用いられる ものである。 この場合 、 まず検体中の目的核酸の特定領域を増幅して試料核酸を調製する と 共に、 この目的核酸の特定領域と同 じ領域の標準核酸を調製する。 こ の際、 検出対象である 目的核酸と しては、 癌関連遺伝子、 遺伝病に関 連する遺伝子、 ウ ィ ルス遺伝子、 細菌遺伝子及び病気の リ ス ク フ ァ ク ターと呼ばれる多型性を示す遺伝子等が挙げられる。  In the method for identifying a nucleic acid according to the present invention, one of the first nucleic acid and the second nucleic acid is used as a sample nucleic acid containing a target nucleic acid, and the other is used as a standard nucleic acid for identifying identity with the sample nucleic acid. It is preferably used for detecting the presence or absence of a nucleic acid having a gene mutation or polymorphism and its ratio. In this case, first, a specific region of the target nucleic acid in the sample is amplified to prepare a sample nucleic acid, and a standard nucleic acid having the same region as the specific region of the target nucleic acid is prepared. At this time, the target nucleic acid to be detected includes cancer-related genes, genes related to genetic diseases, virus genes, bacterial genes, and polymorphisms called disease risk factors. And the like.
こ こで、 目的核酸の う ち、 癌関連遺伝子と しては、 例えば k — r a s 遺伝子、 N— r a s遺伝子、 p 5 3遺伝子、 B R C A 1遺伝子、 B R C A 2遺伝子、 又は A P C遺伝子などが挙げられる。 遺伝病に関連 する遺伝子と しては各種先天性代謝異常症などが挙げられる。 ウィル ス 、 細菌遺伝子と しては、 例えば C型肝炎ウ ィ ルス、 B型肝炎ウ ィル スなどが挙げられる。 多型性を示す遺伝子とは、 病気等の原因とは必 ずし も直接は関係のない個体によって異なる塩基配列を持つ遺伝子、 例 は、 H L A (H u m a n L e u k o c y t e A n t i g e n ) や血液型に関する遺伝子、 或いは高血圧、 糖尿病等の発症に関係す る と されている遺伝子などがある。 これらの遺伝子は通常宿主の染色 体上に存在するが、 ミ ト コン ド リ ア遺伝子にコー ドされている場合も s る。  Here, among the target nucleic acids, examples of the cancer-related gene include a k-ras gene, an N-ras gene, a p53 gene, a BRCA1 gene, a BRCA2 gene, and an APC gene. Genes related to genetic diseases include various inborn errors of metabolism. Examples of viruses and bacterial genes include hepatitis C virus and hepatitis B virus. Genes that show polymorphism are genes that have different nucleotide sequences depending on individuals that are not directly related to the cause of the disease, such as HLA (Human Leukocyte Antigen) and blood type genes. Alternatively, there are genes that are considered to be involved in the onset of hypertension, diabetes and the like. These genes are usually present on the chromosome of the host, but may be encoded by the mitochondrial gene.
このよ う な目的核酸を含む検体と しては、 例えば、 細菌、 ウィルス 等の病原体、 生体から分離された血液、 唾液、 組織病片等、 或いは糞 尿等の排泄物が挙げられる。 更に、 出生前診断を行う場合は、 羊水中 に存在する胎児の細胞や、 試験管内での分裂卵細胞の一部を検体とす る こ と もできる。 また、 これらの検体は直接、 又は必要に応じて遠心 分離操作等によ り 沈渣と して濃縮した後、 例えば、 酵素処理、 熱処理 、 界面活性剤処理、 超音波処理、 或いはこれらの組み合わせ等による 細胞破壊処理を予め施したものを使用する こ とができる。 この場合、 上記細胞破壊処理は、 目的とする組織由来の D N Aを顕在化させる 目 的で行われるものである。 なお、 細胞破壊処理の具体的な方法は、 P C Rブロ ト コ /レス アカデミ ック プ レス イ ン ク p l 4 、 p 3 5 2 ( 1 9 9 0 ) ( P C R P R O T O C O L S A c a d e m i c P r e s s I n c . , p l 4 、 p 3 5 2 ( 1 9 9 0 ) ) 等の文献に記 载された公知の方法に従って行う こ とができ る。 また、 検体中の D N Aは トータル量で 1 〜 1 0 g程度である こ とが好ま しいが、 1 μ g以下でも充分増幅可能である。 · Examples of such specimens containing the target nucleic acid include pathogens such as bacteria and viruses, blood, saliva, tissue debris isolated from living bodies, and excrement such as manure. In addition, when performing prenatal diagnosis, fetal cells present in amniotic fluid or a part of dividing egg cells in a test tube can be used as a sample. In addition, these samples may be centrifuged directly or as necessary. After being concentrated as a sediment by a separation operation or the like, it is possible to use, for example, an enzyme treatment, a heat treatment, a surfactant treatment, an ultrasonic treatment, or a cell treatment that has been subjected to cell destruction treatment by a combination thereof in advance. it can. In this case, the cell destruction treatment is performed for the purpose of revealing the DNA derived from the target tissue. The specific method of the cell disruption treatment is as follows: PCR protocol / less Academic Press Ink pl 4, p 352 (1990) (PCRPROTOCOLSAcademic Press Inc., pl 4 , P 352 (1990)), etc., according to known methods described in literatures. It is preferable that the total amount of DNA in the sample is about 1 to 10 g, but amplification can be sufficiently performed with 1 μg or less. ·
この場合、 試料核酸及び標準核酸、 即ち上記第 1核酸及び第 2核酸 は、 公知の P C R ( P o l y m e r a s e C h a i n R e a c t i o n ) 法、 L し R ( l g a s e c h a i n R e a c t i o n ) ¾ 3 S R ( S e l f — s u s t a i n e d S e q u e n c e R e p 1 i c a t i o n ) 法、 S D A ( S t r a n d D i s p 1 a c e m e n t A m p 1 i f i c a t i o n ) 法等によ り調製され ( M a n a k , D N A P r o b e s 2 n d E d i t i o n p 2 5 5 〜 2 9 1 , S t o c k t o n P r e s s ( 1 9 9 3 ) ) 、 特に P C R法が好適である。  In this case, the sample nucleic acid and the standard nucleic acid, that is, the first nucleic acid and the second nucleic acid are obtained by a known PCR (Polymerase Chain Reaction) method, L-R (lgasechain Reaction) ¾ 3 SR (Self-sustained S) prepared by the equence Rep 1 ication) method, SDA (Strand D isp 1 acement Amp 1) method, etc. (Manak, DNA Probes 2nd Editionp 255 to 291, Stokton Press) (1993)), PCR is particularly preferred.
こ こ で、 P C R法につき更に詳しく説明する と、 上記試料核酸及び 標準核酸 (第 1核酸及び第 2核酸) を増幅するためのプライマ一は、 試料核酸及び標準核酸が存在すれば、 ブライマーの伸長反応に基づく 遺伝子増幅反応が起こる ものである。 この場合、 プライマーの伸長反 応は、 4種又は 5種のヌク レオチ ド三リ ン酸 (デォキシアデノ シン三 リ ン酸、 デォキシグアノ シン三リ ン酸、 デォキシシチジン三リ ン酸、 及びチミ ジン三リ ン酸或いはデォキシゥ リ ジン三リ ン酸 (これらの混 合物を d N T P とレ、 う こ と もある) ) を基質と して該プライマーに取 り込ませるこ とによ り行われる。 こ の伸長反応を行う場合、 通常核酸鎖を増幅するために上記単位核 酸及び核酸伸長酵素を含む増幅反応試薬が用いられ、 この場合、 核酸 伸長酵素と しては E . c o l i D N Aポリ メ ラ一ゼ I 、 E . c o l i D N Aポリ メ ラーゼ I のク レノ ウ断片、 丁 4 D N Aポリ メ ラーゼ等 の任意の D N Aポリ メ ラーゼを用いる こ とができるが、 特に T a q D N Aポ リ メ ラーゼ、 T t h D N Aポリ メ ラーゼ、 V e n t D N Aボ リ メ ラーゼ等の熱安定性 D N Aポリ メ ラーゼを用いるこ とが好ま しく 、 これによ り サイ クル毎に新たな酵素の添加の必要性がなく な り 、 自動的にサイ クルを繰り 返すこ とが可能になり 、 更にアニーリ ング 温度を 5 0〜 6 0 °Cに設定する こ とが可能なためプライマーによる標 的塩基配列認識の特異性を高めるこ とができ、 迅速かつ特異的に遺伝 子増幅反応を行う こ とができる (詳細については特開平 1 一 3 1 4 9 6 5号、 同 1 — 2 5 2 3 0 0号公報参照) 。 Here, the PCR method will be described in more detail. The primer for amplifying the sample nucleic acid and the standard nucleic acid (the first nucleic acid and the second nucleic acid) is, as long as the sample nucleic acid and the standard nucleic acid are present, a primer extension. A gene amplification reaction based on the reaction occurs. In this case, the extension reaction of the primers was carried out with four or five nucleotide triphosphates (deoxyadenosine triphosphate, deoxyguanosine triphosphate, deoxycytidine triphosphate, and thymidine triphosphate). The reaction is carried out by incorporating an acid or dextrinidine triphosphate (a mixture of these as dNTP, or a mixture thereof)) into the primer as a substrate. When performing this extension reaction, an amplification reaction reagent containing the above-mentioned unit nucleic acid and nucleic acid elongation enzyme is usually used to amplify the nucleic acid chain. In this case, the nucleic acid elongation enzyme is E. coli DNA polymerase. Any DNA polymerase, such as Klenow fragment of E. coli DNA polymerase I, or DNA polymerase 4 can be used. Particularly, Taq DNA polymerase, T It is preferable to use a thermostable DNA polymerase such as th DNA polymerase and Vent DNA polymerase, which eliminates the need to add a new enzyme for each cycle. This makes it possible to automatically repeat the cycle, and furthermore, it is possible to set the annealing temperature to 50 to 60 ° C, thereby improving the specificity of the target base sequence recognition by the primer. Rapid and specific gene amplification (For details, refer to JP-A-11-314965 and JP-A-252230).
また、 この反応を行う際、 反応溶液の水分の蒸発を防止するために オイ ルを添加する こ とができる。 この場合、 オイルは水と分配可能で 、 かつ水よ り比重の軽いものであればよ く 、 具体的にはシリ コーンォ ィル、 ミネラルオイル等が例示される。 また、 遺伝子増幅装置によつ てはこ のよ う な媒体を必要と しないものもあ り 、 このよ う な遺伝子増 幅装置を用いてプライマーの伸長反応を行う こ と もできる。  Further, when performing this reaction, oil can be added to prevent evaporation of water in the reaction solution. In this case, the oil may be any oil that can be distributed with water and has a lower specific gravity than water, and specific examples include silicone oil and mineral oil. In addition, some gene amplification devices do not require such a medium, and a primer extension reaction can be performed using such a gene amplification device.
このよ う に、 上記核酸増幅用プライマ ーを用いて伸長反応を繰り返 すこ と によ り 、 検体中の目的核酸を効率的に遺伝子増幅させる こ とが でき試料核酸を大量に調製するこ とができる と共に、 同様に目的核酸 と の同一性を識別したい標準核酸を大量に調製するこ とができる。 な お、 この遺伝子増幅反応を行う条件等の具体的な方法については、 実 験医学、 羊土社、 8 , N o . 9 ( 1 9 9 0 ) 、 P C R テク ノ ロジー ス ト ッ ク ト ン プレス ( P C R T e c h n o l o g y S o c k t o n p r e s s ( 1 9 8 9 ) ) 等の文献に記載された公知の方法 に従い行う こ とができる。  In this way, by repeating the extension reaction using the above-described nucleic acid amplification primer, the target nucleic acid in the sample can be efficiently amplified and the sample nucleic acid can be prepared in a large amount. In addition, a large amount of a standard nucleic acid whose identity with the target nucleic acid is to be identified can be similarly prepared. Specific methods such as conditions for carrying out the gene amplification reaction are described in Experimental Medicine, Yodosha, 8, No. 9 (1990), and PCR Technology Stockton. Pressing can be performed according to a known method described in a literature such as a press (PCR Technology Locktonpress (1989)).
また、 遺伝子増幅を利用 しないで天然の遺伝子から制限酵素によ り 酵素的に直接切り 出してもよ く 、 更には、 正常核酸を増幅したものを ブラ ス ミ ドベク タ一、 ファージベク ター、 又はプラス ミ ドと ファージ のキメ ラべク タ一から選ばれるベク ターに組み込み、 大腸菌、 枯草菌 等の細菌或いは酵母等の増殖可能な任意の宿主に導入して大量に調製 する こ と もできる (遺伝子ク ローユング) 。 更に、 場合によっては化 学合成によって調製する こ と も可能である。 化学合成と しては、 ト リ エステル法、 亜リ ン酸法等が挙げられ、 これらは液相法又は不溶性の 担体を使った固相合成法などによ り通常の自動合成機 ( A P P L I E D B I O S Y S T E M S社 3 9 2等) によ り 1本鎖の D N Aを大量 に調製し、 その後アニーリ ングを行う こ と によ り 2本鎖 D N Aを調製 する こ とができる。 In addition, without using gene amplification, natural enzymes can be The nucleic acid may be directly cut out enzymatically, or the amplified normal nucleic acid may be added to a vector selected from a plasmid vector, a phage vector, or a plasmid and phage chimera vector. It can also be prepared in large quantities by integration into a host such as Escherichia coli, Bacillus subtilis, or any other proliferable host such as yeast (gene Cloung). Further, in some cases, it can be prepared by chemical synthesis. Examples of chemical synthesis include the ester method and the phosphite method. These methods are based on a liquid phase method or a solid phase synthesis method using an insoluble carrier. 392)), a large amount of single-stranded DNA can be prepared, and then annealing can be performed to prepare double-stranded DNA.
こ のよ う にして大量に調製した試料核酸及び標準核酸の一方を上記 第 1 核酸とする と共に、 他方を第 2核酸と し、 これら第 1及び第 2核 酸のいずれか一方又は双方にエネルギー転位可能な少なく と も 2種の 標識を導入する。  One of the sample nucleic acid and the standard nucleic acid thus prepared in a large amount as described above is used as the first nucleic acid, and the other is used as the second nucleic acid, and one or both of the first and second nucleic acids are used as energy. Introduce at least two transposable labels.
こ こ で、 本発明における標識間のエネルギー転位とは、 ェネルギ一 を発生する ドナ一標識と この ドナー標識から発生したエネルギーを吸 収するァクセブタ一標識との少なく と も 2種の標識が、 互いに近接し た状態にある場合に、 ドナー標識からァクセプター標識へのェネルギ 一の移動をいう。 例えば、 2種の標識が蛍光標識である場合、 ドナ一 標識を励起して生じる蛍光をァクセプター標識が吸収し、 このァクセ プター標識が発する蛍光を測定する力 、 又は ドナ一標識を励起して生 じる蛍光をァクセプタ一標識が吸収する こ とによ り起こる ドナー標識 の消光を測定するこ とができる ( P C R M e t h o d s a n d a p p 1 i c a t i o n s 4 , 3 5 7 — 3 6 2 ( 1 9 9 5 ) 、 N a t u r e B i o t e c h n o l o g y 1 6 , 4 9 — 5 3 ( 1 9 9 8 ) ) 。 なお、 ドナー標識の蛍光波長とァクセプター標識の吸収波長 に重なり がなく てもエネルギー転位が起こる場合があるが、 このよ う なエネルギー転位も本発明に含まれる ものである。 上記少なく と も 2種の標識と しては、 互いに近接した状態でェネル ギー転位可能なものであれば特に制限されないが、 中でも蛍光物質、 遅延蛍光物質が好ま しく 、 場合によっては化学発光物質、 生物発光物 質などを用いる こ と もできる。 このよ う な標識の組み合せと しては、 フ ルォ レセイ ン及びその誘導体 (例えばフルォ レセイ ンイ ソチオシァ ネー ト等) と ローダミ ン及びその誘導体 (例えばテ トラメ チルローダ ミ ンイ ソチオシァネー ト、 テ ト ラ メ チルローダミ ン一 5 — ( a n d — 6 - ) へキサノ イ ツ ク アシ ッ ド等) 、 フルォ レセイ ンと ダブシルな ど が挙げられ、 これらの中から任意の組み合わせを選択するこ とができ る ( N o n i s o t o p i c D N A P r o b e Ί e c h n i q u e s . A c a d e m i c P r e s s 1 9 9 2 ) ノ 。 Here, the energy transfer between the labels in the present invention means that at least two types of labels, a donor label for generating energy and an axebuta label for absorbing energy generated from the donor label, are mutually separated. The transfer of energy from a donor label to an acceptor label when in close proximity. For example, when the two types of labels are fluorescent labels, the fluorescent label generated by exciting the donor label is absorbed by the receptor label, and the force for measuring the fluorescence emitted by the receptor label, or the fluorescence generated by exciting the donor label is generated. The quenching of the donor label caused by the absorption of the fluorescence by the receptor label can be measured (PCRM ethodsandapp 1 ications 4, 35 7 — 3 62 (1995), Nature). Biotechnology 16, 49-53 (1998). Energy transfer may occur even if the fluorescence wavelength of the donor label and the absorption wavelength of the acceptor label do not overlap, and such energy transfer is also included in the present invention. The at least two kinds of labels are not particularly limited as long as they are capable of energy transfer in a state close to each other. Among them, a fluorescent substance and a delayed fluorescent substance are preferable, and in some cases, a chemiluminescent substance, Bioluminescent materials can also be used. Such label combinations include fluororesin and its derivatives (for example, fluorescein isothiosinate) and rhodamine and its derivatives (for example, tetramethyl rhodamin isothiosinate, tetramethyl rhodamine). 5 — (and — 6-) hexanoic acid acid, etc.), fluorescein and dabsir, and any combination can be selected from these (Nonisotopic DNAP robe Ίechniques. Academic Press 1992) No.
上記 2種の標識を試料核酸及び標準核酸 (第 1核酸及び第 2核酸) のいずれか一方又は双方へ導入する方法と しては、 一般的な核酸への 標識導入方法を採用するこ とができる。 例えば、 標識物を核酸に直接 ィヒ学的に導入する方法 ( B i o t e c h n i q u e s 2 4 , 4 8 4 - 4 8 9 ( 1 9 9 8 ) ) 、 D N Aポリ メ ラーゼ反応或いは R N Aポリ メ ラーゼ反応によ り標識モノ ヌク レオチ ドを導入する方法 ( S c i e n c e 2 3 8 , 3 3 6 — 3 3 4 1 ( 1 9 8 7 ) ) 、 標識物を導入し たブライマ ーを用いて P C R反応を行う こ とによ り導入する方法 ( P C R M e t h o d s a n d A p p l i c a t i o n s 2 , 3 4 - 4 0 ( 1 9 9 2 ) ) などが挙げられる。  As a method for introducing the two kinds of labels into one or both of the sample nucleic acid and the standard nucleic acid (the first nucleic acid and the second nucleic acid), a general method of introducing a label into a nucleic acid may be employed. it can. For example, a method for directly introducing a labeled substance into a nucleic acid (Biotechniques 24, 484-489 (1998)), a DNA polymerase reaction or an RNA polymerase reaction. Method of introducing labeled mononucleotides (Science 238, 336-33341 (19897)), and performing a PCR reaction using a primer into which the labeled substance has been introduced. (PCRM ethodsand Applications 2, 34-40 (1992)).
こ の場合、 試料核酸及び標準核酸 (第 1核酸及び第 2核酸) へ標識 を導入する位置は、 相補鎖置換反応によ りエネルギー転位が生じたり 、 消失する位置、 即ち、 核酸鎖の 3 ' 端部及び/又は 5 ' 端部である 必要がある。 具体的には、 核酸鎖の 5 ' 末端及び 3 ' 末端からそれぞ れ 3 0塩基以内の範囲を示すが、 両方の標識が近ければ近いほどエネ ルギ一転位を起こ し易いため、 好ま しく はそれぞれの末端から 1 ◦塩 基以内であり 、 最も好ま しく は 5 ' 末端及び 3 ' 末端である。 こ こで 、 標識を相補鎖とハイブリ ダィズする塩基部分に多数導入する と 1塩 基程度の置換が検出できなく なる可能性があるため、 それぞれの核酸 鎖の端部分のみに導入する こ とが好ま しい。 例えば、 2種の標識の一 方を一方の核酸鎖の 5 ' 端部 ( 3 ' 端部) に導入する と共に、 これと 相補的な他方の核酸鎖の 3 ' 端部 ( 5 ' 端部) に他方の標識を導入す れば、 ハイブリ ダィゼ一シヨ ン反応に影響を与える こ となく 、 両核酸 鎖は相補鎖置換反応によ り 、 エネルギー転位を生じた り 、 消失したり する。 In this case, the position where the label is introduced into the sample nucleic acid and the standard nucleic acid (the first nucleic acid and the second nucleic acid) is the position where energy transfer occurs or disappears due to the complementary strand displacement reaction, that is, the 3 ′ of the nucleic acid strand. Must be end and / or 5 'end. Specifically, it shows a range within 30 bases from the 5 'end and the 3' end of the nucleic acid strand, respectively.The closer the labels are, the more likely it is for the energy to transpose. It is within 1 ° from each terminal, most preferably 5 ′ terminal and 3 ′ terminal. Here, when a large number of labels are introduced into the base portion that hybridizes with the complementary strand, Since the substitution of about a group may become undetectable, it is preferable to introduce only into the end of each nucleic acid strand. For example, one of the two types of labels is introduced at the 5 'end (3' end) of one nucleic acid strand, and the 3 'end (5' end) of the other nucleic acid strand complementary thereto is introduced. If the other label is introduced into the second strand, both nucleic acid strands undergo energy transfer or disappear by the complementary strand displacement reaction without affecting the hybridization reaction.
具体的には、 5 ' 端部に標識を有する核酸鎖を調製するには、 5 ' 端部に標識物が導入されたプライマーを用いて P C R反応を行う方法 ( P C R M e t h o d s a n d A p p l i c a t i o n s 2 , 3 4 - 4 0 ( 1 9 9 2 ) ) 或いは 5 ' 端部に標識が導入されたリ ン カーと任意の核酸鎖を リ ガーゼによ り結合させる方法 (N u c 1 e i c A c i d s R e s . 2 5 , 9 2 2 — 9 2 3 ( 1 9 9 7 ) ) など が挙げられる。  Specifically, in order to prepare a nucleic acid strand having a label at the 5 'end, a method in which a PCR reaction is performed using a primer having a label at the 5' end (PCRM ethodsand Applications 2, 34) -40 (1992)) or a method in which a linker having a label introduced at the 5 'end and an arbitrary nucleic acid strand are bound by ligase (Nuc 1 eic Acids Res. , 9 2 2 — 9 2 3 (1 9 9 7)).
一方、 3 ' 端部に標識を有する核酸鎖を調製するには、 上記 5 ' 端 部に標識を導入する場合と同様に 3 ' 端部に標識が導入された リ ンカ 一と任意の核酸鎖を リ ガーゼによ り結合させる方法がある。 なお、 核 酸鎖が D N Aではなく R N Aであったり 、 D N Aの 3 ' 端部が R N A である場合には、 その末端の R N Aの糖 ( リ ボース) 部を選択的に開 環させて、 生じたアルデヒ ド基を利用 して標識するこ と もできる: 更に、 標識を導入 したモ ノ ヌ ク レオチ ド三 リ ン酸をター ミ ナルデォ キシ ヌ ク レオチジル ト ラ ンスフェ ラーゼの働き によ り核酸鎖の 3 ' 端 部に標識を導入する こ と もできる ( B i o t e c h n i q u e s 1 5 , 4 8 6 — 4 9 6 ( 1 9 9 3 ) ) 。  On the other hand, in order to prepare a nucleic acid strand having a label at the 3 ′ end, a linker having a label introduced at the 3 ′ end and an arbitrary nucleic acid strand are prepared in the same manner as when the label is introduced at the 5 ′ end. There is a method of binding ligase. When the nucleic acid chain is RNA instead of DNA, or when the 3 ′ end of DNA is RNA, it is generated by selectively opening the sugar (ribose) portion of the RNA at that end. Labeling can also be carried out using an aldehyde group: In addition, the labeled mononucleotide triphosphate can be used to terminate the nucleic acid strand by the action of terminal hydroxy nucleotidyl transferase. It is also possible to introduce a marker at the 3 'end (Biotechniques 15, 486-496 (1993)).
なお、 試料核酸及び標準核酸 (第 1核酸及び第 2核酸) が 1 0 0塩 基以下の比較的短い核酸鎖である場合には、 直接化学合成によ り標識 核酸を調製する こ と もできる (N u c l e i c A c i d s R e s . 1 6 , 2 6 5 9 — 2 6 6 9 ( 1 9 8 8 ) 、 B i o c o n j u g . C h e m. 3 , 8 5 — 8 7 ( 1 9 9 2 ) ) c 次に、 上記のよ う に標識を導入した試料核酸及び標準核酸 (第 1 核 酸及び第 2核酸) を用いてコンペティティ ブハイブリ ダイゼーショ ン を行う。 When the sample nucleic acid and the standard nucleic acid (the first nucleic acid and the second nucleic acid) are relatively short nucleic acid chains of 100 bases or less, the labeled nucleic acid can be prepared by direct chemical synthesis. (Nucleic A cids Res. 16, 2659-2669 (1988), Bioconjug. Chem. 3, 85-87 (1992)) c Next, competitive hybridization is performed using the sample nucleic acid and the standard nucleic acid (the first nucleic acid and the second nucleic acid) into which the label has been introduced as described above.
この場合、 本発明におけるコンペティティブハイブリ ダイゼーショ ン と は、 相同な塩基配列を持つ 2本鎖核酸と 1 本鎖核酸との間、 或い は相同な塩基配列を持つ 2本鎖核酸と 2本鎖核酸との間で起こる競合 的な核酸鎖の置換反応であ り 、 1 本鎖核酸と 2本鎖核酸、 又は複数の 2本鎖核酸を変性し、 ァニ ーリ ングする こ とによ り行う こ とができる まず、 試料核酸及び Z又は標準核酸 (第 1核酸及び/又は第 2核酸 ) が 2本鎖である場合にはこれらを変性する必要があるが、 変性方法 は熱による方法或いはアル力 リ による方法が好ま しい。 また試料核酸 と標準核酸と を混合する時期は変性直前であってもよいし、 変性後で あっても構わなレ、。  In this case, the competitive hybridization in the present invention refers to between a double-stranded nucleic acid having a homologous base sequence and a single-stranded nucleic acid, or between a double-stranded nucleic acid having a homologous base sequence and a double-stranded nucleic acid. Is a competitive nucleic acid strand displacement reaction that takes place between denaturing and annealing single- and double-stranded nucleic acids, or multiple double-stranded nucleic acids. First, if the sample nucleic acid and Z or the standard nucleic acid (first nucleic acid and / or second nucleic acid) are double-stranded, they need to be denatured. A force-based method is preferred. The time when the sample nucleic acid and the standard nucleic acid are mixed may be either immediately before the denaturation or after the denaturation.
更に、 反応溶液中の塩濃度が最適になるよ う に調製する必要があ り 、 それは鎖長による と ころが大きい。 一般に、 ハイブリ ダィゼーショ ンにおいては、 S S C ( 2 0 X S S C : 3 M塩化ナ ト リ ウム、 0. 3 Mク ェン酸ナ ト リ ウム) や S S P E ( 2 0 X S S P E : 3 . 6 M塩化 ナ ト リ ウム、 0. 2 Mリ ン酸ナ ト リ ウム、 2 mM E D T A) が使わ れており 、 本発明の識別方法においても これらの溶液を好適な濃度に 希釈して使用する こ とができる。 また、 必要に応じてジメチルス ル フ ォキシ ド ( D M S O ) 、 ジメ チルフ オルムア ミ ド ( D M F ) な どの有 機溶媒を添加するこ と もできる。  Furthermore, it is necessary to adjust the salt concentration in the reaction solution to be optimum, which largely depends on the chain length. In general, in hybridization, SSC (20 XSSC: 3 M sodium chloride, 0.3 M sodium citrate) and SSPE (20 XSSPE: 3.6 M sodium chloride) are used. , 0.2 M sodium phosphate, 2 mM EDTA), and these solutions can be used after being diluted to a suitable concentration in the identification method of the present invention. If necessary, an organic solvent such as dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) can be added.
コ ンペティティ ブハイブリ ダイゼ一シ ョ ンの温度条件は、 ハイブリ ダイゼーショ ンを行う核酸の鎖長や塩基配列に応じて適宜設定される が、 通常 9 8〜 5 0 °Cの範囲で 3〜 1 0分間に 1 °Cの速度、 よ り 好ま し く は 9 8〜 7 0 Cの範囲で 1 0分間に 1 °Cの速度で温度を下げ、 行 う こ とができ る。  The temperature conditions of the competitive hybridization are appropriately set according to the length and base sequence of the nucleic acid to be hybridized, but are usually in the range of 98 to 50 ° C for 3 to 10 minutes. The temperature can be reduced at a rate of 1 ° C, more preferably in the range of 98-70 ° C, at a rate of 1 ° C in 10 minutes.
本発明の核酸の識別方法は、 上記のよ う にして少なく と も 2種の標 識を導入した試料核酸及び標準核酸 (第 1核酸及び第 2核酸) を熱変 性又はアルカ リ 変性した後、 コンペティ ティ ブハィブリ ダィゼーショ ン を行い、 温度を高温から徐々に下げる こ とによ り 、 アニーリ ングを 行い、 上記標識間のエネルギー転位の変化の度合を測定するこ と によ り遺伝子の変異又は多型を有する核酸を検出する ものである。 The method for identifying a nucleic acid according to the present invention comprises at least two kinds of targets as described above. By subjecting the sample nucleic acid and the standard nucleic acid (the first nucleic acid and the second nucleic acid) into which the knowledge has been introduced to thermal denaturation or alkaline denaturation, a competitive hybridization is performed to gradually lower the temperature from a high temperature. A nucleic acid having a gene mutation or a polymorphism is detected by performing annealing and measuring the degree of change in energy transfer between the labels.
この場合、 遺伝子の変異又は多型を有する核酸に比べて完全に相補 な塩基配列を持つもの同士の方がよ り優先的に 2本鎖を形成し、 これ に伴って標識間でのエネルギ一転位によるエネルギー変化の度合、 即 ち、 相補鎖置換反応によ り 生じた り 、 消失した りするエネルギー転位 の変化の度合を任意の検出器を用いて測定するこ とによ り 、 遺伝子の 変異又は多型を有する核酸の有無及びその割合を検出するこ とができ る。 例えば、 検出に蛍光ェネルギ一転位を利用する場合には、 分光蛍 光光度計、 蛍光ブレー ト リ ーダーなどで特定波長の蛍光スぺク トルを 測定するこ とによ り 、 遺伝子の変異又は多型を有する核酸の有無を容 易に検出するこ とができる。  In this case, a nucleic acid having a completely complementary base sequence forms a double strand more preferentially than a nucleic acid having a gene mutation or a polymorphism, and accordingly, the energy change between the labels. The degree of change in energy due to the displacement, that is, the degree of change in energy transposition that occurs or disappears due to the complementary strand displacement reaction, is measured using an arbitrary detector, so that gene mutation can be detected. Alternatively, the presence or absence of the nucleic acid having the polymorphism and the ratio thereof can be detected. For example, when fluorescence energy translocation is used for detection, gene mutation or multiple mutations can be measured by measuring the fluorescence spectrum at a specific wavelength with a spectrofluorometer, fluorescence blade reader, or the like. The presence or absence of a nucleic acid having a type can be easily detected.
具体的には、 互いに近接した状態でエネルギー転位可能な少なく と も 2種の標識 (例えば、 励起によ り蛍光を発生する ドナー標識と、 そ の蛍光を吸収するァクセプター標識) を使用 して、 上記 2種の標識の 一方を 2本鎖核酸である第 1 核酸の一方の鎖の 3 ' 端部に導入する と 共に、 該第 1 核酸の他方の鎖の 5 ' 端部に他方の標識を導入して、 標 識第 1核酸を調製する と共に、 該標識第 1核酸に 2本鎖又は 1 本鎖の 非標識第 2核酸を混合してコンペティティ ブハイプリ ダイゼーシ ョ ン を行い、 上記標識間のエネルギー転位の変化の度合を測定するこ とに よ り 、 上記第 1 核酸と第 2核酸との間に生じた相補鎖の置換の程度を 測定して、 第 1 核酸と第 2核酸との同一性、 即ち標準核酸と試料核酸 との同一性を識別し、 検体中の遺伝子の変異又は多型を有する核酸の 有無並びにその割合を検出するこ とができる。  Specifically, at least two types of labels that can be energy-transferred in close proximity to each other (for example, a donor label that emits fluorescence by excitation and an acceptor label that absorbs the fluorescence) are used. One of the two labels is introduced into the 3 ′ end of one strand of the first nucleic acid, which is a double-stranded nucleic acid, and the other label is attached to the 5 ′ end of the other strand of the first nucleic acid. In addition to preparing the labeled first nucleic acid, a double-stranded or single-stranded unlabeled second nucleic acid is mixed with the labeled first nucleic acid to perform competitive hybridization, and the above-described labeling is performed. By measuring the degree of change in the energy transfer, the degree of substitution of the complementary strand generated between the first nucleic acid and the second nucleic acid is measured to determine the identity between the first nucleic acid and the second nucleic acid. The identity of the standard nucleic acid and the sample nucleic acid, Presence and proportion thereof of nucleic acids having a mutation or polymorphism of the child can be a detection child a.
また、 上記一方の標識を第 1核酸に導入して調製した標識第 1 核酸 と上記他方の標識を第 2核酸に導入して調製した標識第 2核酸と を下 記 (ィ) 〜 (ハ) の組み合わせで混合して、 コ ンペティティ ブハイブ リ ダィゼーシヨ ンを行い、 上記標識間のェネルギ一転位によるェネル ギー変化の度合を測定する こ とによ り 、 上記第 1 核酸と第 2核酸との 間に生じた相補鎖の置換の程度を測定 して、 第 1 核酸と第 2核酸との 同一性、 即ち標準核酸と試料核酸との同一性を識別し、 検体中の遺伝 子の変異又は多型を有する核酸の有無並びにその割合を検出するこ と ができ る。 Also, the labeled first nucleic acid prepared by introducing the one label into the first nucleic acid and the labeled second nucleic acid prepared by introducing the other label into the second nucleic acid are as follows. The above-mentioned first nucleic acid is obtained by mixing in a combination of (a) to (c), performing a competitive hybridization, and measuring the degree of energy change due to energy-transposition between the labels. The degree of displacement of the complementary strand generated between the first nucleic acid and the second nucleic acid is measured to identify the identity between the first nucleic acid and the second nucleic acid, that is, the identity between the standard nucleic acid and the sample nucleic acid, and It is possible to detect the presence or absence of a nucleic acid having a gene mutation or polymorphism and its ratio.
(ィ) 上記第 1核酸及び第 2核酸がいずれも 2本鎖核酸であり 、 一方 の鎖の 3 ' 端部に一方の標識を導入した標識第 1 核酸と、 該標識第 1 核酸の標識導入鎖とハイブリ ダィズすべき側の鎖の 5 ' 端部に他方の 標識を導入した標識第 2核酸との組み合わせ。  (A) the first nucleic acid and the second nucleic acid are both double-stranded nucleic acids, and a labeled first nucleic acid having one label introduced at the 3 ′ end of one strand; and a label introduction of the labeled first nucleic acid. Combination with a labeled second nucleic acid having the other label introduced at the 5 'end of the strand to be hybridized with the strand.
(口) 2本鎖核酸である上記第 1核酸の一方の鎖の 3 ' 端部に一方の 標識を導入した標識第 1核酸と、 1本鎖核酸である上記第 2核酸の 5 ' 端部に他方の標識を導入した標識第 2核酸との組み合わせ。  (Mouth) a labeled first nucleic acid in which one label is introduced into the 3 'end of one strand of the first nucleic acid, which is a double-stranded nucleic acid, and a 5' end of the second nucleic acid, which is a single-stranded nucleic acid In combination with a labeled second nucleic acid in which the other label is introduced.
(ハ) 2本鎖核酸である上記第 1核酸の一方の鎖の 5 ' 端部に一方の 標識を導入した標識第 1核酸と、 1 本鎖核酸である上記第 2核酸の 3 ' 端部に他方の標識を導入した標識第 2核酸との組み合わせ。  (C) a labeled first nucleic acid in which one label is introduced into the 5 'end of one strand of the first nucleic acid, which is a double-stranded nucleic acid, and a 3' end of the second nucleic acid, which is a single-stranded nucleic acid In combination with a labeled second nucleic acid in which the other label is introduced.
なお、 エネルギー転位可能な標識を 2種以上の複数種組み合せて使 用する こ と によ り 、 一つの反応容器内で複数の遺伝子の変異又は多型 を有する核酸を同時に検出するこ と も可能である。  By using a combination of two or more kinds of energy transferable labels, it is possible to simultaneously detect nucleic acids having mutations or polymorphisms of a plurality of genes in one reaction vessel. It is.
更に、 本発明の核酸の識別方法では、 検体中の野生型遺伝子と変異 遺伝子の割合に応じてエネルギー転位の程度が有意に変化するため、 野生型遺伝子と変異遺伝子とのエネルギー転位の程度の関係を予め検 量線などを作成しておき確定しておけば、 容易に野生型遺伝子と変異 遺伝子の割合を知るこ と もできる。  Furthermore, in the method for identifying a nucleic acid of the present invention, the degree of energy transfer is significantly changed according to the ratio of the wild-type gene and the mutant gene in the sample. If a standard curve is prepared in advance and determined, the ratio of the wild-type gene to the mutant gene can be easily known.
次に、 本発明の核酸の識別用検査キッ トは、 上記本発明の識別方法 に従って遺伝子の変異又は多型を有する核酸の有無及びその割合を検 出するための検査キッ 卜であって、 必要によ り細胞破壊処理等の前処 理を施した検体の目的核酸の特定領域から試料核酸を調製する と共に 、 この試料核酸と相補な塩基配列を有する標準核酸を調製し、 これら 試料核酸及び標準核酸をそれぞれ上記第 1核酸又は第 2核酸と し、 そ のいずれか一方又は双方にエネルギー転位可能な少なく と も 2種の標 識を導入し、 該試料核酸と標準核酸と を混合してコ ンペティティ ブハ イブリ ダィゼーシヨ ンを行い、 上記標識間のエネルギー転位の変化の 度合を測定する こ と によ り 、 相補鎖の置換が生じた程度を測定するも のである。 Next, the test kit for nucleic acid identification of the present invention is a test kit for detecting the presence and proportion of nucleic acid having a gene mutation or polymorphism according to the above-described identification method of the present invention. As a result, a sample nucleic acid is prepared from a specific region of the target nucleic acid of the sample that has been subjected to pretreatment such as cell destruction treatment. A standard nucleic acid having a base sequence complementary to the sample nucleic acid is prepared, and the sample nucleic acid and the standard nucleic acid are used as the first nucleic acid and the second nucleic acid, respectively, and at least one of which can be energy-transferred to one or both of them. By introducing two types of labels, mixing the sample nucleic acid and the standard nucleic acid, performing a competitive hybridization, and measuring the degree of change in energy transfer between the labels, the complementation is achieved. It measures the extent to which strand displacement has occurred.
この場合、 検体中の目的核酸の特定領域を増幅して試料核酸を調製 するための試料核酸増幅用試薬と、 該試料核酸と 目的核酸との同一性 を識別する標準核酸を調製するための標準核酸増幅用試薬と、 ェネル ギー転位可能な少なく と も 2種の標識を試料核酸及び標準核酸のいず れか一方又は双方に導入するための試薬と を組合わせて本発明の核酸 の識別、 及び定量用検査キッ ト とするこ とができる。  In this case, a sample nucleic acid amplification reagent for amplifying a specific region of the target nucleic acid in the sample to prepare a sample nucleic acid, and a standard for preparing a standard nucleic acid for identifying the identity of the sample nucleic acid and the target nucleic acid Identification of the nucleic acid of the present invention by combining a nucleic acid amplification reagent and a reagent for introducing at least two kinds of labels capable of energy transfer into one or both of a sample nucleic acid and a standard nucleic acid, And a quantitative inspection kit.
更に、 上記本発明の核酸の識別方法で説明 した検体前処理用の細胞 破壊試薬、 増幅反応生成物を洗浄するための洗浄液、 反応溶液の水分 の蒸発を防止するためのオイル及び 2種の標識間のエネルギー転位の 変化の度合を測定するための試薬などを用いる こ とができ、 これら と 組み合わせて本発明の検査キッ ト とする こ と もできる。  Further, the cell disrupting reagent for sample pretreatment, the washing solution for washing the amplification reaction product, the oil for preventing the evaporation of the water in the reaction solution, and two kinds of labels described in the above-described nucleic acid identification method of the present invention. A reagent or the like for measuring the degree of change in energy transfer between the two can be used, and in combination therewith, the inspection kit of the present invention can be used.
以下、 実施例を示し、 本発明を更に具体的に説明するが、 本発明は 下記実施例に限定される ものではない。  Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to the following Examples.
嚢胞性線維症 ( c y s t i c f i b r o s i s ) の原因遺伝子で ある C F i' R ( c y s t i c f i b r o s i s t r a n s m e m b r a n e c o n d u c t a n c e r e g u l a t o r ) 退伝ナ の変異のなかで最も多く 見られる 5 0 8番目のフエ二ルァラニンの欠 損 ( 3塩基欠損 ; 以下、 Δ 5 0 8変異型とレ、う) を検出するため、 下 記方法によ り 、 標識、 非標識オリ ゴヌク レオチ ドを合成した。  CF i 'R (cysticfibrosis transmembrane conductance regulator), the causative gene of cystic fibrosis (cysticfibrosis). In order to detect the Δ508 and the Δ508 mutants, labeled and unlabeled oligonucleotides were synthesized by the following method.
まず、 野生型及び Δ 5 0 8変異型のオリ ゴヌ ク レオチ ドをテンプレ 一 卜 と して、 下記一対のプライマ一 ( C F 1 0 E T P 、 C F 1 0 E T M ; アマシャムフアルマシアバイオテク社製) を用いてポリ メ ラーゼ チヱーン反応 ( P C R ) を^った。 First, the wild-type and Δ508 mutant oligonucleotides were used as templates, and the following pair of primers (CF10 ETP, CF10 ETM; Amersham Pharmacia Biotech) Polymerase using A chain reaction (PCR) was performed.
ブライマ一 Brima I
C F 1 0 E T P :  C F 10 E T P:
配列表の配列番号 1 SEQ ID NO: 1 in Sequence Listing
0 — ccattaaaga aaatatcatc—  0 — ccattaaaga aaatatcatc—
C F 1 0 Ε Τ Μ : C F 1 0 Ε Τ Μ :
配列表の配列番号 2 SEQ ID NO: 2 in Sequence Listing
5 — atattcatca taggaaacac— ό  5 — atattcatca taggaaacac— ό
P C Rは常法に従って、 〔変性 : 9 4 °Cで 3 0 s e c 、 ァニーリ ン グ : 5 4。Cで 3 0 s e c 、 伸長 : 7 2 °Cで 6 ◦ s e c 〕 のサイ クルを 3 5 回繰り返した。 反応後、 P C R反応液を 3 %ァガロースゲル電気 泳動で測定した。 野生型の P C R反応液は 4 4塩基長のと ころにバン ドが検出された。 また、 Δ 5 0 8変異型の P C R反応液は 4 1塩基長 のと ころにバン ドが検出された。  The PCR was performed according to a conventional method [denaturation: 30 sec at 94 ° C., annealing: 54. The cycle of 30 sec at C and extension: 6 sec at 72 ° C] was repeated 35 times. After the reaction, the PCR reaction solution was measured by 3% agarose gel electrophoresis. In the wild type PCR reaction solution, a band was detected at a length of 44 bases. In the PCR reaction solution of the Δ508 mutant, a band was detected at a length of 41 bases.
標識、 非標識オリ ゴヌ ク レオチ ドの調製 Preparation of labeled and unlabeled oligonucleotides
標識オ リ ゴヌ ク レオチ ドの 5 ' 末端については T F A—ァ ミ ノ リ ン ク C E フォス フォア ミ ダイ ト (パーキンエルマ一ジャパン社製) を用いてア ミ ノ 基を導入し、 T AMR A— N H S (パーキンエルマ一 ジャ パン社製) を用いて 5 ' 末端に T AMR A基 (テ トラメ チルロー ダミ ン一 5 — ( a n d — 6 — ) へキサノイ ツクアシ ッ ド) を蛍光標識 した。  At the 5 'end of the labeled oligonucleotide, an amino group was introduced using TFA-amino link CE phosphoramidite (manufactured by PerkinElmer Japan), and TAMRA was added. — Using a NHS (Perkin-Elmer Japan), a TAMRA group (Tetramethyllodin-1-5— (and—6—) hexanoyctic acid) was fluorescently labeled at the 5 ′ end.
一方、 野生型及び Δ 5 0 8変異型のオリ ゴヌ ク レオチ ドの 3 ' 末端 に 3 ' —ァ ミ ノ修飾 C 7 C P G 5 0 0 (グレンリ サーチ社製) を用 いてア ミ ノ基を導入し、 次いで、 フルォレセイ ンイ ソチオシァネー ト ( F I T C ; 同仁化学研究所製) を 3 ' 末端に蛍光標識した。  On the other hand, an amino group was added to the 3 ′ end of the wild-type and Δ508 mutant oligonucleotide using a 3′-amino-modified C7CPG500 (Glen Research). Then, fluorescein isothiocyanate (FITC; Dojindo Laboratories) was fluorescently labeled at the 3 'end.
これら蛍光標識 ( F I T C、 T AMR A) を導入したオリ ゴヌ ク レ ォチ ドは高速液体ク ロマ ト グラフィー ( H P L C ) を用いて精製し、 標識オリ ゴヌ ク レオチ ドと して使用 した。 一方、 ア ミ ノ基を導入した オリ ゴヌ ク レオチ ドはポリ アク リルア ミ ドゲル電気泳動を用いて精製 し、 非標識オリ ゴヌク レオチ ドと して使用 した。 標識、 非標識オリ ゴ ヌ ク レオチ ドを下記の通り命名 し、 その塩基配列と と もに示す。 Oligonucleotides into which these fluorescent labels (FITC, TAMRA) were introduced were purified using high performance liquid chromatography (HPLC) and used as labeled oligonucleotides. On the other hand, oligonucleotides with amino groups introduced were purified using polyacrylamide gel electrophoresis. And used as unlabeled oligonucleotide. Labeled and unlabeled oligonucleotides are named as follows and are shown together with their nucleotide sequences.
C F 1 O W S N 1 - N H, (野生型の非標識コーディ ング鎖) : 配列表の配列番号 3  C F 1 O W S N 1 -N H, (wild-type unlabeled coding strand): SEQ ID NO: 3 in Sequence Listing
5 o ― H ,, N ― ccattaaaga aaatatcatc tttggtgttt cctatgatga a t a t— ό  5 o ― H ,, N ― ccattaaaga aaatatcatc tttggtgttt cctatgatga a t at— ό
C F 1 0 W S N 1 — T AM R A (野生型の標識コーディ ング鎖) : 酉己列表の配列番号 3  C F 10 WSN 1 — TAMRA (wild-type labeled coding strand): SEQ ID NO: 3
o ― Γ A ivl R A ― ccattaaaga aaatatcatc tttggtgttt it) cctatgatga a t a t— 3  o ― Γ A ivl R A ― ccattaaaga aaatatcatc tttggtgttt it) cctatgatga a t at— 3
C F 1 O W S N 2 - N H2 (野生型の非標識コーディ ング鎖の相補鎖 ) : CF 1 OWSN 2 - NH 2 (complementary strand of unlabeled Cody ring chain wild-type):
配列表の配列番号 5  SEQ ID NO: 5 in Sequence Listing
ΰ 一 atattcatca taggaaacac caaagatgat attttcttta l 5 atgg— N H2 ― 3 ' ΰ ichi atattcatca taggaaacac caaagatgat attttcttta l 5 atgg— NH 2 ― 3 '
C F 1 0 W S N 2 - F I T C (野生型の標識コーディ ング鎖の相補鎖 ) :  CF10WSN2-FITC (complement of wild-type labeled coding strand):
配列表の配列番号 5  SEQ ID NO: 5 in Sequence Listing
5 ― atattcatca taggaaacac caaagatgat attttcttta 5-atattcatca taggaaacac caaagatgat attttcttta
20 atgg - F I T C - 3 ' 20 atgg-F I T C-3 '
C F 1 O M S N 1 — N H2 ( Δ 5 0 8変異型の非標識コーディ ング鎖 ) : CF 1 OMSN 1 — NH 2 (unlabeled coding strand of Δ508 mutant):
酉己列表の配列番号 4  SEQ ID No. 4
ΰ — H . — ccattaaaga aaatatcatc ggtgtttcct ΰ — H. — ccattaaaga aaatatcatc ggtgtttcct
25 atgatgaata t— 3 ' 25 atgatgaata t— 3 '
C F 1 O M S N 1 - T AM R A ( Δ 5 0 8変異型の標識コーディ ング 鎖) :  C F 1 O M S N 1 -T AM RA (labeled coding strand of Δ508 mutant):
配列表の配列番号 4  SEQ ID NO: 4 in Sequence Listing
b — 1 A M R A — ccattaaaga aaatatcatc ggtgtttcct a t ga t gaata t— 3 ' b — 1 AMRA — ccattaaaga aaatatcatc ggtgtttcct at ga t gaata t— 3 '
C F 1 0 M S N 2 - N H , ( Δ 5 0 8変異型の非標識コーディ ング鎖 の相補鎖) :  CF10MSN2-NH, (complement of unlabeled coding strand of Δ508 mutant):
配列表の配列番号 6 SEQ ID NO: 6 in Sequence Listing
o ― atattcat ca t aggaaacac c ga t gatat t tt c t ttaat g g― N H 3 , o ― atattcat ca t aggaaacac c ga t gatat t tt c t ttaat g g ― N H 3,
C F 1 0 M S N 2 — F I T C ( Δ 5 0 8変異型の標識コーディ ング鎖 の相補鎖) :  CF10MSN2—FITC (complement of labeled coding strand of Δ508 mutant):
配列表の配列番号 6 SEQ ID NO: 6 in Sequence Listing
o ― atat tcat ca t aggaaacac c ga t gatat t t a a t g g F I T C - 3 ' o ― atat tcat ca t aggaaacac c ga t gatat t t a a t g g F I T C-3 '
〔実施例 1 〕  (Example 1)
二標識間におけるェネルギ一転位の様子を蛍光スぺク トルを測定す るこ とによ り調べた。 まず、 下記方法によ り 、 上記標識、 非標識オリ ゴヌ ク レオチ ドを用いて 2本鎖 D N Aを調製した。  The state of the energy translocation between the two labels was examined by measuring the fluorescence spectrum. First, a double-stranded DNA was prepared using the above-mentioned labeled and unlabeled oligonucleotide by the following method.
2本鎖 D N Aの調製 Preparation of double-stranded DNA
野生型標識オリ ゴヌ ク レオチ ド C F 1 0 W S N 1 — T A M R A ( 3 O n m o l ) と C F 1 0 W S N 2 - F I T C ( 3 0 n m o 1 ) とを溶 解液 ( 1 0 m M T r i s - H C 1 p H 8 . 0 5 0 m M N a C 1 1 m M E D T A l O n g / μ Ι h e r r i n g D N A ) 1 0 0 μ 1 に溶解し、 ジ—ンアンプ P C R システム 9 6 0 0 (パ一キ ン ( p e r k i n E l m e r ) 社製) を用いて 9 8 °C 6 0 °Cまで連続的に 4時間かけて温度を下げ、 ァ リ ーリ ングを行い、 下 記 ( A ) の野生型標識 2本鎖 D N Aを調製した。 Wild-type labeled oligonucleotide CF 10 WSN 1 — Dissolves TAMRA (30 nmol) and CF 10 WSN 2-FITC (30 nmo 1) (10 mM MTris-HC 1 p . H 8 0 5 0 m MN a C 1 1 m MEDTA l O ng / μ Ι herring DNA) was dissolved in 1 0 0 mu 1, di - N'anpu PCR system 9 6 0 0 (Pas one rk (p e rkin The temperature was lowered continuously to 98 ° C and 60 ° C over 4 hours using a commercial product (Elmer), and the resulting mixture was subjected to arranging. The wild-type labeled double-stranded DNA (A) described below was used. Was prepared.
野生型標識 2本鎖 D N A Wild-type labeled double-stranded DNA
( A ) C F I O W S N 1 - T A M R A = C F 1 0 W S N 2 - F I T C  (A) C F I O W S N 1-T A M R A = C F 1 0 W S N 2-F I T C
5 ' — T A M R A - c cattaaaga aaatatcatc tt t ggtgt t t c c t atgat ga a t a t— 3 3 — F I T C 一 ggtaat t t c t tttatagtag aaac cacaaa gga t ac tact t a t a— 5 5 '— TAMRA-c cattaaaga aaatatcatc tt t ggtgt ttcct atgat ga atat— 3 3 — FITC one ggtaat ttct tttatagtag aaac cacaaa gga t ac tact tata— 5
た、 同様に上記標識オ リ ゴヌ ク レオチ ド、 非標識オリ ゴヌ ク レオ チ "を組み合わせて下記 ( B ) 〜 ( D ) の 2本鎖 D N Aを調製した。  Similarly, the above-mentioned labeled oligonucleotides and unlabeled oligonucleotides were combined to prepare the following double-stranded DNAs (B) to (D).
5 これら ( B ) 〜 ( D ) の 2本鎖 D N Aの塩基配列を下記に示す。  5 The base sequences of these double-stranded DNAs (B) to (D) are shown below.
A 5 0 8変異型標識 2本鎖 D N A  A508 Mutant label Double-stranded DNA
( B ) : C F 1 0 M S N 1 - T A M R A = C F 1 0 M S N 2 - F I T C  (B): C F 10 M S N 1-T A M R A = C F 10 M S N 2-F I T C
o — T A M R A — c cat taaaga aaatat cat c ggt gtt t cc t i o a t gat gaata t— ύ  o — T A M R A — c cat taaaga aaatat cat c ggt gtt t cc t i o a t gat gaata t— ύ
3 ' — F I T C ― ggtaat t t ct tttatagtag ccacaaagga tac tact tat a— 5 '  3 '— FITC-ggtaat t t ct tttatagtag ccacaaagga tac tact tat a— 5'
野生型標識非標識 2本鎖 D N A  Wild-type unlabeled double-stranded DNA
( C ) : C F 1 0 W S N 1 - N H 2 = C F 1 0 W S N 2 - F I T C l 5 5 — N H 2 ― c cattaaaga aaatat cat c tt tggt gt t t c c t at gat ga a t a t— 3 (C): CF 10 0 WSN 1-NH 2 = CF 10 0 WSN 2-FITC l 5 5 — NH 2 ― c cattaaaga aaatat cat c tt tggt gt ttcct at gat ga atat— 3
3 — F I T C 一 ggtaattt c t t t t atagtag aaaccacaaa gga t actac t t a t a— 5  3 — F I T C i ggtaattt c t t t t atagtag aaaccacaaa gga t actac t t a t a— 5
Δ 5 0 8変異型標識非標識 2本鎖 D N A  Δ508 Mutation-labeled unlabeled double-stranded DNA
20 ( D ) : C F 1 0 M S N 1 - N H2 = C F 1 0 M S N 2 - F I T C20 (D): CF 10 MSN 1-NH 2 = CF 10 MSN 2-FITC
5 — N H 2 ― ccat taaaga aaatatcatc ggt gt t t c c t a tga t gaata t— 3 ' 5 — NH 2 ― ccat taaaga aaatatcatc ggt gt ttccta tga t gaata t— 3 '
3 一 F I T し 一 ggtaattt c t t t tatagtag ccacaaagga t ac t ac t tat a— 5 '  3 one F I T shi one ggtaattt c t t t tatagtag ccacaaagga t ac t ac t tat a— 5 '
25 蛍光スぺク ト ル測定  25 Fluorescence spectrum measurement
上記 ( A ) 〜 ( D ) の各 2本鎖 D N A溶液 7 1 に溶解液 ( 1 0 m Dissolve the solution (10 m) in the double-stranded DNA solution 71 of each of (A) to (D) above.
M T r i s — H C 1 H 8 . 0 、 5 0 m M N a C l 、 I mMM Tris — H C 1 H 8.0, 50 mM M Na Cl, ImM
E D T A、 l O n gダ I h e r r i n g D N A ) 4 1 3 /i l を 加え、 分光蛍光光度計 (島津製作所 R F — 5 0 0 0 ) を用いて励起 波長 4 9 4 n mでの蛍光スぺク トルを測定した。 結果を図 3 に示す。 図 3 の結果から、 ( A ) 及び ( B ) はエネルギー転位可能な二種の 蛍光標識 F I T C と T A M R Aとが近接した状態にあるのでエネルギ —耘位が生じ、 蛍光標識が F I T C—種である ( C ) 及び ( D ) に比 ベて F I T Cによる蛍光強度が明らかに低下している こ とが認められ た。 この場合、 ( A ) 及び ( B ) のエネルギー転位による T A M R A の蛍光は僅かに認められただけであった。 Add EDTA, l Onng (I herring DNA) 4 13 / il and excite using a spectrofluorometer (Shimadzu RF-500) The fluorescence spectrum at a wavelength of 494 nm was measured. The results are shown in Figure 3. From the results in Fig. 3, (A) and (B) show that energy-translocation occurs because the two types of energy transferable fluorescent labels FITC and TAMRA are in close proximity, and the fluorescent label is FITC-type ( Compared to (C) and (D), it was recognized that the fluorescence intensity by FITC was clearly reduced. In this case, only slight fluorescence of TAMRA due to the energy transfer of (A) and (B) was observed.
〔実施例 2〕  (Example 2)
次に、 非標識オリ ゴヌ ク レオチ ドを用いて Δ 5 0 8変異型の検出を 行った。 まず、 N o . 1 と して、 実施例 1 で調製した ( A ) 野生型標 識 2本鎖 D N A ( C F 1 0 W S N 1 — T AMR A = C F 1 0 W S N 2 一 F I T C ) 3 n m o l に野生型非標識 D N A [ C F 1 0 W S N 1 - N H , ( 3 0 n m o 1 ) と C F 1 0 W S N 2 — N H2 ( 3 0 n m o 1 ) 〕 と 2 X P H F A溶液 ( 6 X S S C、 2 0 m M T r i s — H C 1 p H 8 . 0 、 2 mM E D T A、 2 0 n g / μ 1 h e r r i n g D N A) 5 0 1 を加え、 最後に、 滅菌水を加えて全体を 1 0 0 1 と した。 この溶液をジーンアンプ P C Rシステム 9 6 0 0 (パーキ ン エルマ一 ( p e r k i n E l m e r ) 社製) を用いて、 9 8。Cで 1 0分間加熱し、 D N Aを熱変性した後、 9 8 °C〜 6 8 °Cまでを 1 °Cノ m i nの速度で温度を低下させて相補鎖置換反応 (コ ンペティティ ブ ハイブリ ダィゼ一シ ヨ ン) を行った。 Next, the Δ508 mutant was detected using an unlabeled oligonucleotide. First, as No. 1, (A) wild-type labeled double-stranded DNA (CF 10 WSN 1-T AMR A = CF 10 WSN 2-FITC) prepared in Example 1 Type-unlabeled DNA [CF 10 WSN 1-NH, (30 nmo 1) and CF 10 WSN 2 — NH 2 (30 nmo 1)] and 2 XPHFA solution (6 XSSC, 20 mM Rris — HC 1 pH 8.0, 2 mM EDTA, 20 ng / μ1 herring DNA) 501 was added, and finally, sterile water was added to make the whole 1001. The solution using a GeneAmp PCR system 9 6 0 0 (Parkinson emissions Elmer one (p e rkin E lmer) Co.), 9 8. C for 10 minutes, heat denature the DNA, and then reduce the temperature from 98 ° C to 68 ° C at a rate of 1 ° C to reduce the complementary strand displacement reaction (competitive hybridization). ).
得られた反応溶液 7 0 / 1 に溶解液 ( 1 0 m M T r i s - H C 1 p H 8 . 0 、 5 0 m M N a C l 、 1 mM E D T A、 1 0 n g / μ 1 h e r r i n g D N A) 3 5 0 x l をカ卩え、 励起波長 4 9 4 n mでの蛍光スべク トルを測定した。 5 1 7 n mでの蛍光強度を表 1 に 示す。  Solution obtained in 70/1 solution (10 mM MTris-HC 1 pH 8.0, 50 mM NaCl, 1 mM EDTA, 10 ng / μ1 herring DNA) 3 5 0 xl was prepared and the fluorescence spectrum at an excitation wavelength of 494 nm was measured. Table 1 shows the fluorescence intensity at 517 nm.
また、 N o . 2 と して、 実施例 1 で調製した (A) 野生型標識 2本 鎖 D N A ( C F 1 0 W S N 1 — T AMR A = C F 1 0 W S N 2 — F I T C ) 3 n m o l と Δ 5 0 8変異型非標識 D N A [ C F 1 0 M S N 1 — N Hつ- ( 3 0 n m o 1 ) と C F 1 0 M S N 2 — N H2 ( 3 0 n m o 1 ) 〕 と を用いた以外は N o . 1 と 同様に して相補鎖置換反応 (コ ン ペテ ィ ティ ブ イブリ ダイゼ一シ ョ ン) を fi つた。 In addition, (A) 3 nmol of wild-type labeled double-stranded DNA (CF 10 WSN 1 — T AMR A = CF 10 WSN 2 — FITC) prepared in Example 1 as No. 2 0 8 Mutant unlabeled DNA [CF 10 0 MSN 1 — NH- (30 nmo 1) and CF 10 MSN 2 —NH 2 (30 nmo 1)] were used in the same manner as in No. 1 except that I did a fib.
得られた反応溶液 7 0 1 に溶解液 ( 1 0 m M T r i s — H C 1 p H 8 . 0、 5 0 m M N a C l 、 1 mM E D T A、 l O n g 1 h e r r i n g D N A ) 3 5 0 1 をカ卩え、 励起波長 4 9 4 n mでの蛍光スぺク トルを測定した。 5 1 7 n mでの蛍光強度を表 1 に 示す。  A solution (10 mM MTris—HC 1 pH 8.0, 50 mM NaCl, 1 mM EDTA, lOng 1 herring DNA) 3.501 was added to the obtained reaction solution (701). The fluorescence spectrum at an excitation wavelength of 494 nm was measured. Table 1 shows the fluorescence intensity at 517 nm.
N o . 3 と して、 実施例 1 で調製した ( B ) Δ 5 0 8変異型標識 2 本鎖 D N A ( C F 1 0 M S N 1 - T AMR A = C F 1 0 M S N 2 - F 3 (B) Δ508 mutant-type labeled double-stranded DNA prepared in Example 1 as No. 3 (CF10MSN1-TAMRA = CF10MSN2-F
1 T C ) 3 n m o l に野生型非標識 D N A [ C F 1 0 W S N 1 - N H , ( 3 0 n m o 1 ) と C F 1 0 W S N 2 — N H2 ( 3 0 n m o 1 ) ] を加えた以外は N o . 1 と同様にして、 相補鎖置換反応 (コ ンペティ ティ ブノヽイブリ ダィゼ一ショ ) を行った。 1 TC) 3 nmol plus wild type unlabeled DNA [CF 10 WSN 1-NH, (30 nmo 1) and CF 10 WSN 2-NH 2 (30 nmo 1)]. In the same manner as in 1, a complementary strand displacement reaction (competition) was performed.
得られた反応溶液 7 0 μ 1 に溶解液 ( 1 ◦ m M T r i s — H C 1 p H 8 . 0、 5 0 mM N a C l 、 1 m M E D T A、 1 0 n g / ^ 1 h e r r i n g D N A) 3 5 0 x l を力□え、 励起波長 4 9 4 n mでの蛍光スぺク トルを測定した。 5 1 7 n mでの蛍光強度を表 1 に 併記する。  Solution obtained in 70 μl of the obtained reaction solution (1 ° m MT ris — HC 1 pH 8.0, 50 mM NaCl, 1 mMEDTA, 10 ng / ^ 1 herring DNA) 3 5 0 xl was measured and the fluorescence spectrum at an excitation wavelength of 494 nm was measured. Table 1 also shows the fluorescence intensity at 517 nm.
また、 N o . 4 と して、 実施例 1 で調製した ( B ) Δ 5 0 8変異型 標識 2本鎖 D N A ( C F 1 0 M S N 1 — T AMR A = C F 1 0 M S N In addition, as the No. 4, (B) Δ508 mutant-labeled double-stranded DNA prepared in Example 1 was used as No. 4 (CF10MSN1—TAMRA = CF10MSN
2 — F I T C ) 3 n m o l に Δ 5 0 8 変異型非標識 D N A [ C F 1 0 M S N 1 - N H , ( 3 0 n m o 1 ) と C F 1 0 M S N 2 — N H2 ( 3 0 n m o 1 ) ] を加えた以外は N o . 1 と同様にして、 相補鎖置換反 応 (コ ンペティティブハイブリ ダィゼーシ ヨ ン) を行った。 2 - FITC) to 3 nmol Δ 5 0 8 mutant unlabelled DNA [CF 1 0 MSN 1 - NH, (3 0 nmo 1) and CF 1 0 MSN 2 - NH 2 (3 0 nmo 1)] was added A complementary strand displacement reaction (competitive hybridization) was carried out in the same manner as in No. 1 except for the above.
得られた反応溶液 7 0 μ 1 に溶解液 ( 1 0 m M T r i s — H C 1 P H 8 . 0 、 5 0 m M N a C l 、 1 mM E D T A、 l O n g / μ 1 h e r r i n g D N A) 3 5 0 1 を力□え、 励起波長 4 9 4 n mでの蛍光スぺク トルを測定した。 5 1 7 n mでの蛍光強度を表 1 に 併記する。 Solution obtained in 70 μl of the obtained reaction solution (10 mM MTris — HC 1 PH 8.0, 50 mM NaCl, 1 mM EDTA, lOng / μ1 herring DNA) 350 1 and the fluorescence spectrum at an excitation wavelength of 494 nm was measured. Table 1 shows the fluorescence intensity at 517 nm. I will write it together.
表 1  table 1
Figure imgf000030_0001
Figure imgf000030_0001
表 1 の結果から、 N o . 1 と N o . 2 と を対比する と、 N o . 1 は 5 ( A ) の野生型標識 2本鎖 D N Aのそれぞれの鎖と相補的な 1 0 当量 の野生型非標識 D N Aを加えて相補鎖置換反応を行った場合であ り 、 N o . 2 は (A) の野生型標識 2本鎖 D N Aに 1 0 当量の Δ 5 0 8変 異型非標識 D N Aを加えて相補鎖置換反応を行った場合である。 N o . 1 では標識 D N Aと非標識 D N Aの塩基配列がまったく 同じであ り From the results in Table 1, when No. 1 and No. 2 are compared, No. 1 has 10 equivalents of 10 (A) complementary to each strand of the wild-type labeled double-stranded DNA. In the case of performing a complementary strand displacement reaction with the addition of wild-type unlabeled DNA, No. 2 is 10 equivalents of Δ508 non-labeled DNA to the wild-type labeled double-stranded DNA of (A). Is added to perform a complementary strand displacement reaction. In No.1, the nucleotide sequences of labeled and unlabeled DNA are exactly the same.
1 0 、 標識 D N Aと非標識 D N Aの鎖同士の区別がつかないので、 相補鎖 置換反応が起きる。 一方、 N o . 2 では野生型と Δ 5 0 8変異型は 3 塩基の違いがあり 、 相補鎖置換反応がおきにく い。 このため、 非標識 D N Aに変異を有する N o . 2の方が変異を有しない N o . 1 に比べ て蛍光強度が低く なるこ とが認められた。 10. Since the strands of labeled DNA and unlabeled DNA cannot be distinguished from each other, a complementary strand displacement reaction occurs. On the other hand, in No. 2, the wild type and the Δ508 mutant have a difference of 3 bases, and the complementary strand displacement reaction is difficult. For this reason, it was recognized that the fluorescence intensity of No. 2 having a mutation in the unlabeled DNA was lower than that of No. 1 having no mutation.
i s 従って、 野生型標識 2本鎖 D N Aに野生型及び Δ 5 0 8変異型非標 識 D N Aを加えて相補鎖置換反応を行う こ と によ り 野生型非標識 D N Aと Δ 5 0 8変異型非標識 D N Aと を区別できるこ とが確認できた また、 N o . 3 と N o . 4 とを対比する と、 標識 2本鎖 D NA、 非is Therefore, wild-type unlabeled DNA and Δ508 mutant can be obtained by adding wild-type and Δ508 mutant unlabeled DNA to wild-type labeled double-stranded DNA and performing complementary strand displacement reaction. It was confirmed that it could be distinguished from unlabeled DNA. Also, when comparing No. 3 and No. 4, the labeled double-stranded DNA
20 標識 D N Aのいずれもが Δ 5 0 8変異型である N o . 4 は相補鎖置換 反応が生じ、 標識 2本鎖 D N Aが Δ 5 0 8変異型で、 非標識 D N Aが 野生型である N o . 3 に比べて蛍光強度が大きいこ とが認められる。 従って、 Δ 5 0 8変異型標識 2本鎖 D N Aに野生型及び Δ 5 0 8変 異型非標識 D N Aを加えて相補鎖置換反応を行う こ とによ り 、 野生型 非標識 D Ν Αと Δ 5 0 8変異型非標識 D N Aと を区別できる こ とが確 認できた。 20 No. 4 in which all of the labeled DNAs are Δ508 mutant forms a complementary strand displacement reaction, and the labeled double-stranded DNA is Δ508 mutant and unlabeled DNA is wild type N It is recognized that the fluorescence intensity is higher than o.3. Therefore, by adding the wild-type and Δ508-mutated unlabeled DNA to the Δ508 mutant-labeled double-stranded DNA and performing the complementary strand displacement reaction, the wild-type unlabeled DΝ It was confirmed that 508 could be distinguished from mutant unlabeled DNA.
〔実施例 3〕  (Example 3)
実施例 1 と同様の実験を表 2 に示したよ う に標識 2本鎖 D N A量及 び非標識 D N A量を 1 Z 1 0等量に減ら して行った。 マイ ク ロタイ タ 一アレー ト用の蛍光プレー ト リ ーダー 〔フルォス ター ( B MG L a b t e c h n o l o g i e s Gm b H) , 励起フ ィ ノレター : 4 8 5 n m、 蛍光フ イ ノレター : 5 3 8 n m〕 を用いて蛍光強度の測定を行つ た。 なお、 非標識 D N Aを加えなかったものをコ ン ト ロールと して測 定した。 結果を表 2 に示す。  As shown in Table 2, an experiment similar to that in Example 1 was performed by reducing the amount of labeled double-stranded DNA and the amount of unlabeled DNA to 1 Z10 equivalent. Using a fluorescence plate reader (fluorester (BMG Labtechnologies GmbH), excitation filter: 485 nm, fluorescence filter: 538 nm) for microtiter array The fluorescence intensity was measured. In addition, it measured as a control without adding unlabeled DNA. Table 2 shows the results.
表 2  Table 2
Figure imgf000031_0001
Figure imgf000031_0001
表 2 の結果から、 標識 2本鎖 D Ν Αと非標識 D Ν Αとが相補な Ν ο . 2及び Ν ο . 6の蛍光強度は他の場合に比べて高く 、 これらは相補 鎖置換反応が顕著に生じているこ とが認められた。  From the results in Table 2, it can be seen that the fluorescent intensities of Νο.2 and な ο.6, in which the labeled double-stranded DΝ and the unlabeled D 相 補 are complementary, are higher than in the other cases. It was recognized that remarkable occurrence occurred.
これに対して標識 2本鎖 D Ν Αと非標識 D Ν Αとが 3塩基相違する N o . 3及び N ◦ . 5 は相補鎖置換反応が起こ らず、 蛍光強度が小さ いこ とが認められる。 In contrast, No. 3 and N◦.5, in which the labeled double-stranded D D and the unlabeled D D are different by 3 bases, have no complementary strand displacement reaction and low fluorescence intensity. It is admitted.
従って、 相補鎖置換反応における標識 2本鎖 D N A量及び非標識 D N A量を減ら しても野生型と Δ 5 0 8変異型を区別するこ とが可能で ある こ とが確認できた。  Therefore, it was confirmed that even if the amount of labeled double-stranded DNA and the amount of unlabeled DNA in the complementary strand displacement reaction were reduced, it was possible to distinguish between the wild type and the Δ508 mutant.
〔実施例 4〕  (Example 4)
野生型のェキソ ン 1 0 の塩基配列を含むプラス ミ ド ( p C F l O — 3 ) 及び Δ 5 0 8変異型のェキソ ン 1 0の塩基配列を含むプラス ミ ド ( P C F 5 0 8 - 1 ) をテ ンプ レー ト と して下記一対のプライマ一 ( C F 1 0 E T P 、 C F 1 0 E T M) を用いてポリ メ ラーゼチェーン反 応 ( P C R ) を行った。  A plasmid containing the nucleotide sequence of wild-type exon 10 (pCF10-3) and a plasmid containing the nucleotide sequence of the Δ508 mutant exon 10 (PCF508-1) ) Was used as a template to perform a polymerase chain reaction (PCR) using the following pair of primers (CF10 ETP, CF10 ETM).
ブラ イ マー Braima
C F 1 0 E T P : C F 10 E T P:
配列表の配列番号 1 SEQ ID NO: 1 in Sequence Listing
5 ― ccattaaaga aaatatcatc— ύ  5 ― ccattaaaga aaatatcatc— ύ
C F 1 0 Ε Τ Μ : C F 1 0 Ε Τ Μ :
配列表の配列番号 2 SEQ ID NO: 2 in Sequence Listing
o — atattcat ca taggaaacac— ύ o — atattcat ca taggaaacac— ύ
P C Rは常法に従って、 [変性 : 9 4 Cで 3 0 s e c 、 ァニー リ ン グ : 5 4。Cで 3 0 s e c 、 伸長 : 7 2 °Cで 6 0 s e c 〕 のサイ クノレを 3 5 回繰り返した。 反応後、 P C R反応液を 3 %ァガロ ース ゲル電気 泳動で測定した。 野生型のェキソ ン 1 0の塩基配列を含むプラス ミ ド からの反応液は 4 4塩基長のと ころにバン ドが検出された。 また、 Δ 5 0 8変異型のェキソン 1 0の塩基配列を含むプラス ミ ドからの反応 液は 4 1塩基長のと ころにバン ドが検出された。  The PCR was performed according to a conventional method [denaturation: 30 sec at 94 C, annealing ring: 54]. A cycle of 30 sec at C and elongation: 60 sec at 72 ° C] was repeated 35 times. After the reaction, the PCR reaction solution was measured by 3% agarose gel electrophoresis. In the reaction solution from the plasmid containing the nucleotide sequence of wild-type exon 10, a band was detected at a length of 44 bases. In addition, in the reaction solution from the plasmid containing the base sequence of exon 10 of the Δ508 mutant, a band was detected at a length of 41 bases.
上記調製した P C R反応液と実施例 1 で調製した標識 2本鎖 D N A ( A ) , ( Β ) との間で相補鎖置換反応を行い、 実施例 3 と同様に し て蛍光プ レー ト リ ーダー 〔 フ ノレオス タ一 ( B M G L a b t e c h n o 1 o g i e s G m b H ) , 励起フ ィ ルタ ー : 4 8 5 n m、 蛍光フ ィ ル タ ー : 5 3 8 n m〕 を用いて蛍光強度の測定を行った。 結果を表 3 に示す A complementary strand displacement reaction was performed between the PCR reaction solution prepared above and the labeled double-stranded DNAs (A) and (Β) prepared in Example 1, and a fluorescent plate reader was prepared in the same manner as in Example 3. The fluorescence intensity was measured using [Bolenostar (BMGL abtechno 1 ogies GmbH), excitation filter: 485 nm, fluorescence filter: 538 nm]. Table of results Shown in 3
表 3  Table 3
Figure imgf000033_0001
Figure imgf000033_0001
表 3 の結果から、 N o . 2 と N o . 3 と を対比する と、 野生型 P C R反応液と相補な野生型標識 2本鎖 D N Aを用いた N o . 2 は相補鎖 置換反応が生じ、 Δ 5 0 8変異型 P C R反応液と 3塩基相違する野生 型標識 2本鎖 D N Aと を用いた N o . 3 に比べて蛍光強度が高く なつ ている こ とが認められる。  From the results in Table 3, when No. 2 and No. 3 are compared, No. 2 using wild-type labeled double-stranded DNA complementary to the wild-type PCR reaction solution causes a complementary strand displacement reaction. It can be seen that the fluorescence intensity is higher than that of No. 3 using the Δ508 mutant PCR reaction solution and wild-type labeled double-stranded DNA having three base differences.
また、 N o . 5 と N o . 6 と る と、 Δ 5 0 8変異型 P C R 反応液と相補な Δ 5 0 8変異型標識 2本鎖 D N Aを用いた N o . 6 は 相補鎖置換反応が生じ、 野生型 P C R反応液と 3塩基相違する Δ 5 0 8 変異型 2本鎖 D N Aを用いた N o . 5 に比べて蛍光強度が高く なつ て レ、る こ とが認められる。  When No. 5 and No. 6 are obtained, No. 6 using the Δ508 mutant-labeled double-stranded DNA complementary to the Δ508 mutant PCR reaction solution is a complementary strand displacement reaction. And the fluorescence intensity is higher than that of No. 5 using Δ508 mutant double-stranded DNA that differs from the wild-type PCR reaction solution by 3 bases.
従って、 P C R反応液中に含まれる D N Aが野生型である力、、 Δ 5 0 8変異型であるかを判定でき る こ とが確認できた。  Therefore, it was confirmed that it was possible to determine whether the DNA contained in the PCR reaction solution was a wild type or a Δ508 mutant type.
本発明の核酸の識別方法によれば 、 検体中の微量な遺伝子の変異又 は多型を有する核酸を煩雑な固液の分離作業を必要と しない均一系に おいて、 簡易な操作で多数の検体につ いて の多数の変異又は多型を有 する核酸を同時に直接短時間で検出、 定量し得る ものである。 According to the nucleic acid identification method of the present invention, nucleic acids having a small amount of gene mutation or polymorphism in a sample can be easily and easily treated in a homogeneous system that does not require complicated solid-liquid separation. Has many mutations or polymorphisms in the sample It can simultaneously detect and quantify nucleic acids in a short time.
また、 本発明の検査キッ 卜によれば、 本発明の識別方法に従って検 体中の微量遺伝子の変異又は多型を有する核酸を迅速に、 簡単な操作 で確実に検出するこ とができる と共に、 自動化も可能とな り 、 医療現 場において極めて有用なものである。  Further, according to the test kit of the present invention, a nucleic acid having a mutation or a polymorphism of a trace gene in a sample can be rapidly and reliably detected by a simple operation according to the identification method of the present invention. Automation is also possible, which is extremely useful in medical settings.
従って、 本発明によれば、 検体中に含まれる微量な遺伝子の変異又 は多型を確実に検出するこ とができ る上、 変異又は多型を示す遺伝子 の定量も可能となるため、 医療現場における癌や特定のウィルス · 細 菌感染症の早期発見、 診断 , 治療、 及び骨髄移植の成否、 拒絶反応の 有無 · 程度等の判定などに極めて有用なものである。  Therefore, according to the present invention, a small amount of mutation or polymorphism of a gene contained in a specimen can be reliably detected, and a gene showing the mutation or polymorphism can be quantified. It is extremely useful for early detection, diagnosis and treatment of cancer and specific viruses and bacterial infections in the field, and determination of the success or failure of bone marrow transplantation and the presence / absence of rejection.

Claims

請求の範囲 The scope of the claims
1 . 第 1 の核酸と第 2 の核酸と を混合してコ ンペティティ ブハイブリ ダイゼーショ ンを行い、 両核酸間で相補鎖の置換が生じた程度を測定 する こ と によ り 、 上記第 1 核酸と第 2核酸との同一性を識別する方法 におレヽて、  1. Competitive hybridization is performed by mixing the first nucleic acid and the second nucleic acid, and the degree of substitution of the complementary strand between the two nucleic acids is measured, whereby the first nucleic acid and the second nucleic acid are mixed. In the method of identifying identity with the second nucleic acid,
2本鎖核酸である上記第 1核酸の一方の鎖の 3 ' 端部に互いにエネル ギー転位可能な少なく と も 2種の標識の一方を導入する と共に、 該第 1 核酸の他方の鎖の 5 ' 端部に他方の標識を導入して第 1 核酸を標識 し、 この標識第 1核酸と 1本鎖又は 2本鎖核酸である非標識の上記第 2核酸と を混合してコンペティティ ブハイブリ ダイゼ一ショ ンを行い 、 上記標識間のエネルギー転位によるエネルギー変化の度合を測定す るこ とによ り 、 上記第 1核酸と第 2核酸との間に生じた相補鎖の置換 の程度を測定する こ と を特徴とする核酸の識別方法。  At least one of two types of labels capable of energy transfer to each other is introduced into the 3 ′ end of one strand of the first nucleic acid, which is a double-stranded nucleic acid, and 5 '' The other nucleic acid is introduced into the end to label the first nucleic acid, and the labeled first nucleic acid is mixed with the unlabeled second nucleic acid, which is a single-stranded or double-stranded nucleic acid, to perform a competitive hybridization. Measuring the degree of energy change due to the energy transfer between the labels, thereby measuring the degree of displacement of the complementary strand generated between the first nucleic acid and the second nucleic acid. A method for identifying a nucleic acid, characterized by this.
2 . 第 1 の核酸と第 2 の核酸とを混合してコ ンペティティ ブハイブリ ダイゼーシヨ ンを行い、 両核酸間で相補鎖の置換が生じた程度を測定 する こ とによ り 、 上記第 1核酸と第 2核酸との同一性を識別する方法 において、  2. Competitive hybridization is performed by mixing the first nucleic acid and the second nucleic acid, and the degree of substitution of the complementary strand between the two nucleic acids is measured. A method for identifying identity with a second nucleic acid, comprising:
互いにエネルギー転位可能な少なく と も 2種の標識の一方を上記第 1 核酸に導入して調製した標識第 1核酸と、 他方の標識を上記第 2核酸 に導入して調製した標識第 2核酸と を、 下記 (ィ) 〜 (ハ) の組み合 わせで混合してコンペティティブハイブリ ダイゼーショ ンを行い、 上 記標識間のエネルギー転位によるエネルギー変化の度合を測定するこ とによ り 、 上記第 1核酸と第 2核酸との間に生じた相補鎖の置換の程 度を測定する こ と を特徴とする核酸の識別方法。 A labeled first nucleic acid prepared by introducing at least one of two kinds of labels capable of energy transfer to each other into the first nucleic acid, and a labeled second nucleic acid prepared by introducing the other label into the second nucleic acid Are mixed in a combination of the following (a) to (c) to perform competitive hybridization, and the degree of energy change due to the energy transfer between the above-mentioned labels is measured. A method for identifying a nucleic acid, comprising measuring a degree of displacement of a complementary strand generated between a nucleic acid and a second nucleic acid.
(ィ) 上記第 1核酸及び第 2核酸がいずれも 2本鎖核酸であり 、 一方 の鎖の 3 ' 端部に一方の標識を導入した標識第 1核酸と、 該標識第 1 核酸の標識導入鎖とハイブリ ダィズすべき側の鎖の 5 ' 端部に他方の 標識を導入した標識第 2核酸との組み合わせ。  (1) Both the first nucleic acid and the second nucleic acid are double-stranded nucleic acids, and a labeled first nucleic acid having one label introduced at the 3 ′ end of one strand, and a label introduction of the labeled first nucleic acid Combination with a labeled second nucleic acid having the other label introduced at the 5 'end of the strand to be hybridized with the strand.
(口) 2本鎖核酸である上記第 1核酸の一方の鎖の 3 ' 端部に一方の 標識を導入した標識第 1核酸と、 1 本鎖核酸である上記第 2核酸の 5 ' 端部に他方の標識を導入した標識第 2核酸との組み合わせ。 (Mouth) One end of the first nucleic acid, which is a double-stranded nucleic acid, A combination of a labeled first nucleic acid into which a label has been introduced and a labeled second nucleic acid in which the other label has been introduced into the 5 ′ end of the second nucleic acid, which is a single-stranded nucleic acid.
(ハ) 2本鎖核酸である上記第 1核酸の一方の鎖の 5 ' 端部に一方の 標識を導入した標識第 1核酸と、 1 本鎖核酸である上記第 2核酸の 3 ' 端部に他方の標識を導入した標識第 2核酸との組み合わせ。  (C) a labeled first nucleic acid in which one label is introduced into the 5 'end of one strand of the first nucleic acid, which is a double-stranded nucleic acid, and a 3' end of the second nucleic acid, which is a single-stranded nucleic acid In combination with a labeled second nucleic acid in which the other label is introduced.
3 . 上記少なく と も 2種の標識が、 互いに近接した状態でエネルギー 転位可能な蛍光物質である請求の範囲第 1 項又は第 2項記載の核酸の 識別方法。 3. The method for identifying a nucleic acid according to claim 1 or 2, wherein the at least two kinds of labels are fluorescent substances capable of energy transfer in a state of being close to each other.
4 . 第 1核酸及び第 2核酸がポリ メ ラーゼチヱーン反応 ( P C R ) に よ り調製されたものである請求の範囲第 1 項乃至第 3項のいずれか 1 項記載の核酸の識別方法。  4. The method for identifying a nucleic acid according to any one of claims 1 to 3, wherein the first nucleic acid and the second nucleic acid are prepared by a polymerase chain reaction (PCR).
5 . 上記第 1核酸及び第 2核酸のいずれか一方が目的核酸を含む試料 核酸であ り 、 他方がこの試料核酸との同一性を識別するための標準核 酸である請求の範囲第 1項乃至第 4項のいずれか 1 項記載の核酸の識 別方法。  5. The method according to claim 1, wherein one of the first nucleic acid and the second nucleic acid is a sample nucleic acid containing the target nucleic acid, and the other is a standard nucleic acid for identifying identity with the sample nucleic acid. 5. The method for identifying a nucleic acid according to any one of items 4 to 4.
6 . 請求の範囲第 5項記載の方法によ り核酸を識別するための検查キ ッ トであって、  6. A test kit for identifying a nucleic acid by the method according to claim 5, wherein
検体中の目的核酸の特定領域を増幅して試料核酸を調製するための試 料核酸増幅用試薬と、 A sample nucleic acid amplification reagent for amplifying a specific region of the target nucleic acid in the sample to prepare a sample nucleic acid;
目的核酸との同一性を識別する標準核酸を調製するための標準核酸増 幅用試薬と、 A standard nucleic acid amplification reagent for preparing a standard nucleic acid that identifies the identity of the target nucleic acid;
互いに近接した状態でエネルギー転位可能な少なく と も 2種の標識を 試料核酸及び標準核酸のいずれか一方又は双方に導入するための試薬 と を具備したこ と を特徴とする核酸の検査キッ ト。 A nucleic acid inspection kit, comprising: a reagent for introducing at least two kinds of labels capable of energy transfer in a state close to each other to one or both of a sample nucleic acid and a standard nucleic acid.
PCT/JP2000/005286 1999-08-12 2000-08-07 Method of distinguishing nucleic acids and kits for nucleic acid test WO2001012849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU63204/00A AU6320400A (en) 1999-08-12 2000-08-07 Method of distinguishing nucleic acids and kits for nucleic acid test

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22816399A JP2003174882A (en) 1999-08-12 1999-08-12 Discrimination method for nucleic acid and inspection kit for nucleic acid
JP11/228163 1999-08-12

Publications (1)

Publication Number Publication Date
WO2001012849A1 true WO2001012849A1 (en) 2001-02-22

Family

ID=16872228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005286 WO2001012849A1 (en) 1999-08-12 2000-08-07 Method of distinguishing nucleic acids and kits for nucleic acid test

Country Status (3)

Country Link
JP (1) JP2003174882A (en)
AU (1) AU6320400A (en)
WO (1) WO2001012849A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113452A1 (en) * 2009-03-31 2010-10-07 凸版印刷株式会社 Method of distinguishing genotypes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504676B2 (en) * 2009-03-31 2014-05-28 凸版印刷株式会社 Genotype identification method
JP5568935B2 (en) * 2009-09-30 2014-08-13 凸版印刷株式会社 Target base sequence identification method
JP5843112B2 (en) 2010-03-29 2016-01-13 凸版印刷株式会社 Target base sequence identification method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002068A1 (en) * 1993-07-09 1995-01-19 Wakunaga Seiyaku Kabushiki Kaisha Method of discriminating nucleic acid and testing set for discriminating nucleic acid
WO1996023077A1 (en) * 1995-01-27 1996-08-01 Wakunaga Seiyaku Kabushiki Kaisha Primer for gene amplification, method for nucleic acid discrimination with the use of the same, and nucleic acid discrimination kit
WO1997010359A1 (en) * 1995-09-13 1997-03-20 Wakunaga Seiyaku Kabushiki Kaisha Method for concentrating variant nucleic acid and nucleic acid concentration test kit for effecting the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002068A1 (en) * 1993-07-09 1995-01-19 Wakunaga Seiyaku Kabushiki Kaisha Method of discriminating nucleic acid and testing set for discriminating nucleic acid
WO1996023077A1 (en) * 1995-01-27 1996-08-01 Wakunaga Seiyaku Kabushiki Kaisha Primer for gene amplification, method for nucleic acid discrimination with the use of the same, and nucleic acid discrimination kit
WO1997010359A1 (en) * 1995-09-13 1997-03-20 Wakunaga Seiyaku Kabushiki Kaisha Method for concentrating variant nucleic acid and nucleic acid concentration test kit for effecting the method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. YAMANE ET AL.: "Keikou hyoushiki oligonucleotides no DNA kenshutsuhou eno ouyou", BIOSCIENCE TO INDUSTRY, vol. 47, no. 10, 1989, pages 1063 - 1067, XP002933345 *
J.G. HACIA ET AL.: "Two color hybridization analysis using high density oligonucleotide arrays and energy transfer dyes", NUCLEIC ACIDS RESEARCH, vol. 26, no. 16, 1998, pages 3865 - 3866, XP002933348 *
P.F. BERNARD ET AL.: "Homogeneous multiplex genotyping of hemochromatosis mutations with fluorescent hybridization probes", AMERICAN JOURNAL OF PATHOLOGY, vol. 153, no. 4, 1998, pages 1055 - 1061, XP002933346 *
P.F. BERNARD ET AL.: "Integrated amplification and detection of the C677T point mutation in the methylenetetrahydrofolate reductase gene by fluorescence resonance energy transfer and probe melting curves", ANALYTICAL BIOCHEMISTRY, vol. 255, 1998, pages 101 - 107, XP002933347 *
T. OKA ET AL.: "Heni idenshi no atarashii kenshutsuhou; PCR-PHFA ni yoru cystic fibrosis no idenshi shindan", NIHON RINSHOU, vol. 54, no. 2, 1996, pages 518 - 524, XP002933349 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113452A1 (en) * 2009-03-31 2010-10-07 凸版印刷株式会社 Method of distinguishing genotypes
CN102369297A (en) * 2009-03-31 2012-03-07 凸版印刷株式会社 Method of distinguishing genotypes
JP5720564B2 (en) * 2009-03-31 2015-05-20 凸版印刷株式会社 Genotype identification method
CN102369297B (en) * 2009-03-31 2016-07-06 凸版印刷株式会社 Identify genotypic method
US9523119B2 (en) 2009-03-31 2016-12-20 Toppan Printing Co., Ltd. Method of distinguishing genotypes

Also Published As

Publication number Publication date
JP2003174882A (en) 2003-06-24
AU6320400A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
AU2017203349B2 (en) Compositions of toehold primer duplexes and methods of use
EA020593B1 (en) Single-cell nucleic acid analysis
WO1995002068A1 (en) Method of discriminating nucleic acid and testing set for discriminating nucleic acid
AU2003272438A1 (en) Helicase dependent amplification of nucleic acids
CN106574304B (en) DNA amplification method based on strand invasion
US20170253921A1 (en) Methods, kits & compositions for determining gene copy numbers
WO2000047766A1 (en) Method for detecting variant nucleotides using arms multiplex amplification
JP2008161165A (en) Method for detecting gene using competing oligonucleotide
WO2001012849A1 (en) Method of distinguishing nucleic acids and kits for nucleic acid test
WO1996023077A1 (en) Primer for gene amplification, method for nucleic acid discrimination with the use of the same, and nucleic acid discrimination kit
JP6986015B2 (en) Methods and kits for ligating fragmented nucleic acids
JP2982304B2 (en) Method for identifying nucleic acid and test set for identifying nucleic acid
US9074248B1 (en) Primers for helicase dependent amplification and their methods of use
WO2003102179A1 (en) Novel method of assyaing nucleic acid using labeled nucleotide
WO2022202728A1 (en) Primer pair, method for determining base sequence variation, and kit for determining variation in base sequence
EP4253564A1 (en) Target nucleic acid amplification method with high specificity and target nucleic acid amplifying composition using same
JP2008161164A (en) Method for detecting gene with primer containing artificial mismatched nucleic acid
JP5568935B2 (en) Target base sequence identification method
WO1998002574A1 (en) Method for examining nucleic acids and examination kits
JP5504676B2 (en) Genotype identification method
JP2019524123A (en) Helper oligonucleotides for improving the efficiency of nucleic acid amplification and detection / quantification
JP2006238782A (en) METHOD FOR DETECTING MUTATION OR GENETIC POLYMORPHISM USING Mu PHAGE TRANSPOSASE

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP