WO2001010447A1 - Use of rhamnolipids in wound healing, treatment and prevention of gum disease and periodontal regeneration - Google Patents

Use of rhamnolipids in wound healing, treatment and prevention of gum disease and periodontal regeneration Download PDF

Info

Publication number
WO2001010447A1
WO2001010447A1 PCT/US2000/017875 US0017875W WO0110447A1 WO 2001010447 A1 WO2001010447 A1 WO 2001010447A1 US 0017875 W US0017875 W US 0017875W WO 0110447 A1 WO0110447 A1 WO 0110447A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
bac
rhamnolipids
formula
chr
Prior art date
Application number
PCT/US2000/017875
Other languages
French (fr)
Inventor
Tamara Stipcevic
Tihana Piljac
Jasenka Piljac
Tatjana Dujmic
Goran Piljac
Original Assignee
Tamara Stipcevic
Tihana Piljac
Jasenka Piljac
Tatjana Dujmic
Goran Piljac
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamara Stipcevic, Tihana Piljac, Jasenka Piljac, Tatjana Dujmic, Goran Piljac filed Critical Tamara Stipcevic
Priority to EP00952141A priority Critical patent/EP1200100B1/en
Priority to US10/048,923 priority patent/US7129218B2/en
Priority to DE60044674T priority patent/DE60044674D1/en
Priority to AT00952141T priority patent/ATE473749T1/en
Priority to CA002378557A priority patent/CA2378557C/en
Priority to AU64893/00A priority patent/AU6489300A/en
Publication of WO2001010447A1 publication Critical patent/WO2001010447A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/602Glycosides, e.g. rutin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7012Compounds having a free or esterified carboxyl group attached, directly or through a carbon chain, to a carbon atom of the saccharide radical, e.g. glucuronic acid, neuraminic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7024Esters of saccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0063Periodont

Definitions

  • the present invention relates to the use of rhamnolipids in re-epithelization of mucosa, particularly in wound healing with the diminution of fibrosis, most particularly in the wound healing of mucous membranes, the treatment and prevention of gum disease such as gingivitis and for periodontal regeneration.
  • Dermis is the location of the scar in adult wounds. As healing progresses, dermal collagen is deposited and sulfated glycosaminoglycans (GAG) replace non-sulfated GAG in which hyaluronic acid (HA) is predominant.
  • GAG glycosaminoglycans
  • Fetal tissue appears to be intrinsic in repair, with reduction of fibrosis, and the major fetal cell type responsible for such repair may be the fetal fibroblast.
  • the fetal immune system is functionally immature relative to the adult immune system and plays a much less prominent role in fetal wound healing.
  • the fetal extracellular matrix differs from that in adults in having HA, collagen, elastin, and adhesion glycoproteins as the major components. It has been shown that hyaluronic acid levels in both fetal and adult sheep wounds rapidly increase until three days after wounding. This elevated level persists at least 21 days after wounding in the fetus, whereas it rapidly returns to baseline in the adult. In adult wounds, HA is deposited briefly within a fibrin and platelet plug. The HA is removed by hyaluronidase, and this provisional matrix is replaced by collagen and sulfated glycosaminoglycans.
  • the deposition of collagen in fetal wounds is in a highly organized pattern that is indistinguishable from unwounded fetal dermis.
  • Some of the major differences between fetal and adult repair are the temporal patterns of adhesion glycoproteins present in the wound, which are seen at the earliest stage of repair. Those differences may lead to differences in cell mobility, migration, adhesion and proliferation.
  • TGF-beta Transforming growth factor-beta
  • TGF-beta Transforming growth factor-beta
  • DTH chronic delayed type hypersensitivity
  • cytokines are augmented by the actions of macrophage-derived polypeptide growth factors.
  • Platelet-derived growth factor produced by activated macrophages, is a potent stimulator of fibroblast proliferation, whereas macrophage-derived growth factor (TGF- beta) augments collagen synthesis.
  • TGF- beta macrophage-derived growth factor
  • Macrophage secretion of fibroblast growth factor causes endothelial cell migration and proliferation, leading to new blood vessel formation.
  • the consequence of these slow actions of cytokines and growth factors is that prolonged activation of macrophages in a tissue, e. g., in the setting of chronic antigenic stimulation, leads to the replacement of differentiated tissues by fibrous tissue. Fibrosis is the outcome of chronic DTH, when elimination of antigen and rapid resolution are unsuccessful.
  • one object of the present invention is to provide a method for re- epithelization of skin for providing wound healing with reduced fibrosis using rhamnolipids as the active agent.
  • a further object of the present invention is to provide a method for the treatment of gum disease using the rhamnolipids as the active agent.
  • a further object of the present invention is to provide a method for providing periodontal regeneration.
  • rhamnolipids can provide the above noted treatments, particularly wound healing with reduced fibrosis, treatment of gum disease, particularly gingivitis and periodontal regeneration.
  • Fig. 1 provides a graphical representation of the effects of topical BAC-3 on the rate of burn wound closure.
  • Fig. 2 provides a graphical representation of the effects of topical BAC-3 on the extent of burn wound closure.
  • Fig. 3 provides a graphical representation of the effect of BAC-3 on the tensile strength of incision wounds.
  • Fig. 4 provides a graphical representation of the effect of BAC-3 on caspase activity in neonatal human fibroblast cells grown in FM.
  • Fig. 5 provides a graphical representation of the effect of BAC-3 on caspase activity in neonatal keratinocyte cells grown in KGM.
  • Fig. 6 provides a graphical representation of the effect of BAC-3 on caspase activity in neonatal keratinocyte cells grown in GM.
  • the present invention relates to pharmaceutical and/or cosmetic preparations and compositions comprising as the active ingredient, one or more rhamnolipids of Formula 1 :
  • R 2 H, lower alkyl (i.e. C1-C6 linear or branched alkyl, preferably -CH 3 ), -CHR 4 - CH 2 -COOH or -CHR 4 -CH 2 -COOR 6 ;
  • R 6 lower alkyl, preferably -CH 3 .
  • the rhamnolipids of the present invention can be prepared by conventional methods, preferably by fermentation, isolation and purification as described in U.S. Patent 5,455,232; 5,466,675 and 5,514,661, as well as BE 1005704A4, CA 2,129,542, JP 5-512946 and EP 93914523.1, each of which is hereby incorporated by reference.
  • Various uses of rhamnolipids are also provided in these patents and PCT application PCT US/03714, also hereby incorporated by reference.
  • the rhamnolipid that is preferred has the structure of formula:
  • BAC-3 ( ⁇ -L-rhamnopyranosyl-(l,2)- ⁇ -L-rhamnopyranosyl)-3-hyroxydecanoyl-3-hydroxydecanoic acid; hereafter referred to as "BAC-3")
  • R 2 -CHR 4 -CH 2 -COOH;
  • R 3 -(CH 2 ) 6 -CH 3 ;
  • R 4 -(CH 2 ) 2 -CH 3 ;
  • R 5 -(CH 2 ) 6 -CH 3 ;
  • R 2 -CHR 4 -CH 2 -COOH;
  • R 3 -(CH 2 ) 6 -CH 3 ;
  • R 4 -(CH 2 ) 6 -CH 3 ; and
  • R 5 -(CH 2 ) 6 -CH 3 ;
  • R 2 -CHR 4 -CH 2 -COOH;
  • R 3 -(CH
  • the toxicity and the efficacy of these compounds can be further modified by varying the R groups as needed.
  • rhamnolipids are effective in re-epithelization of the skin. This is important as it provides a method for wound healing with reduced fibrosis in non-fetal tissue.
  • the re-epithelization can be induced in various tissues, particularly mucous membranes. This is especially important in the treatment of gum disease, such as gingivitis. It is also important in periodontal regeneration.
  • Wound healing with diminished fibrosis is the main characteristic of fetuses.
  • responsible factors in fetuses are: 1. Fetal dermis; 2. Fetal tissue; 3. The fetal immune system; and 4. The fetal extracellular matrix (ECM).
  • ECM fetal extracellular matrix
  • the method for wound healing with reduced fibrosis comprises administering to the wound, and optionally the surrounding area, an effective amount of a composition comprising one or more rhamnolipids of the present invention.
  • the rhamnolipid used in the method is the BAC-3 rhamnolipid described above.
  • the composition comprising the rhamnolipid can be in the form of neat liquid, solution, suspension, dispersion, emulsion, cream, tincture, powder, ointment, gel, paste or lotion.
  • the solvent is preferably a polar organic solvent such as ethanol, DMSO or any polar organic solvent that is physiologically compatible.
  • the composition is in an ointment, gel, paste or liquid.
  • the amount of rhamnolipid used in the treatment is 0.001% in the ointment up to 5% in the ointment, preferably from 0.01 to 1% in ointment, more preferably from 0.05 to 0.5% in ointment. (Unless otherwise indicated, all percentages are % by weight, based on total weight of the composition.)
  • the ointment is applied directly to the subject area 1-5 times daily, preferably 2-3 times daily for a period of 1 day to 6 weeks, or until healing is complete.
  • the present rhamnolipids can be used to treat burn shock.
  • the same rhamnolipids useful for wound healing also appear to have an effect on cytokine production. It is believed that the main responsibility for wound healing lies in production of cytokines which are also responsible for shock, following large burns. These rhamnolipids are believed to prevent or reduce cytokine production. This reduction or prevention of cytokine production would have a beneficial impact in burn shock prevention.
  • the treatment method can be either I.V./I.P. or orally.
  • the amount to be administered is from 1 ⁇ g/kg body weight of the patient to 50 ⁇ g/kg of body weight, preferably from 10 ⁇ g/kg to 30 ⁇ g/kg, from 1 to 4 times daily, preferably from 2 to 3 times daily, and for a period of from 1 day to 6 weeks.
  • the composition comprising the rhamnolipid(s) can be in any conventional orally administrable form, including but not limited to, solutions, tablets, capsules, emulsions, dispersions, and troches.
  • the composition comprising the rhamnolipid(s) can be in any conventional I.V. or I. P. administrable form, including, but not limited to, solution, neat liquid, dispersion, etc.
  • the same methods of administration used for burn shock can also be used in the treatment and/or prevention of organ rejection, depression, schizophrenia and atherosclerosis, using similar effective dosages.
  • a further use for the rhamnolipid containing composition of the present invention is in the preparation of a cosmetic composition comprising one or more of the rhamnolipids in an amount effective to treat signs of aging, such as wrinkles.
  • a cosmetic composition would be applied from 1 to 3 times per day to the affected area.
  • the cosmetic composition could be in any of the topical forms noted above and contain similar amounts of rhamnolipid(s).
  • composition comprising the one or more rhamnolipids can further include, if desired, one or more carriers and/or diluents conventionally used in the pharmaceutical and/or cosmetic industries.
  • the BAC-3 rhamnolipid was tested in the case of open wound healing, in a patient suffering around ten years from incurable venous ulcer. On the left leg, the patient had very thick layers of collagen with fibrotic lesions. After administration of 1% BAC-3 in the form of an ointment, twice daily during 41 days, the patient's condition was significantly improved. Moreover, after treatment was finished, not only the collagen, but also the fibrotic lesions had disappeared as well. One year after the treatment, the treated skin lesions on the left leg appear normal, and all skin collagen and fibrotic layers had disappeared.
  • the wounding of animals was performed according to the Protocol for Animal Use and Care at the University of California-Davis (hereafter UC-Davis).
  • the entire animal protocol required 70 Sprague-Dawley rats: 30 rats for incision wounds and 40 rats for burn wounds. Among them 36 rats were burned over 7% of their skin and 4 rats were burned over 15% of their skin.
  • Burn wounds The consecutive burn wounds should ideally be identical in depth and extent.
  • the standard method defines the size and location of the burn wound, the temperature gradient, duration of exposure and method of applying the burn.
  • the wound surface areas tested were of two different sizes. One size to 7% of the body surface, which enables one to compare the rate of wound healing with different percentage of BAC-3 and the other size to 15% of the body surface, which is a sufficient size so that healing could not occur by contraction alone. On the other hand, the total wound surface area should not cause major systematic problems. The latter can be concluded from undisturbed weight gain of the animals.
  • the standard animal burn was performed by techniques and device described by Walker.
  • the burning devices were prepared using a model device ordered from U.S. Army Surgical Research Unit, Experimental Surgery, Army Medical Center, Fort Sam Houston, Texas 78234. The devices had apertures which enabled exposure of 7% and 15% of the total rat skin surface.
  • H&E Hematoxylin-Eosin
  • the wounds were immediately closed with skin sutures spaced at a distance of 0.5 cm. Seven days later, all sutures were removed. On days 14 and 21 after incision, three animals from each group were sacrificed using an overdose of sodium pentobarbital. Using a plexiglass template, a minimum of two samples of full-thickness skin were harvested perpendicular to the long axis of the wound for tensile strength determination. The skin samples were 9.0 mm wide at the wound by 2.0 cm long.
  • Tensile Strength Determination The standard wound samples for each treatment cohort were examined for tensile strength by pulling the individual wounds apart in an Instron 4201 (Universal Testing instruments, Instron Engineering Co., Canton, MA) material tester. Special clamps were used to securely grip the tissue to avoid slippage as the wounds were pulled at a standard cross speed of 25 mm/min. The tensile strength of healthy skin was measured in killed animals from each group. Vertebrate animals
  • Subjects used in this experiment were male Sprague - Dawley rats 5 to 6 weeks old. Rats were housed in polypropylene cages with mere mesh lids and solid floors containing 1 cm depth of wood shavings . Animals were housed and placed in an air conditioned room at 21 C° (+/- 2)C°, 52- 73% relative humidity, 15 fresh air changes per hr and 12 fir light/dark cycle. Animals were fed with a synthetic pellet diet, freshly obtained and not preserved with pesticides, containing all essential nutrients and stored under standard conditions and water ad libitum.
  • Animals were acclimatized for at least one week before the start of the study and were 7 weeks old at the time of treatment. They were allocated to the various experimental groups using a system of random numbers, and group body weights were checked on the day of treatment to ensure they did not differ from the overall mean by more than 5%.
  • group 1 D placebo
  • group 1 B (0.1% of BAC-3) had a mean value of collagen concentration of 79.72
  • group 1 A 1% of BAC-3) had a mean value of collagen concentration of 131.26.
  • Rate of burn wound closure with BAC-3 without chlorhexidine hydrochloride (Fig. I). Burns were induced on the dorsal surface of rats using standardized methods as described previously. The total burn area was equivalent to 7 % of the surface area. Topical BAC-3 was applied twice daily starting on the first day until the animals were sacrificed at day 45. Treatment groups included BAC-3 in a eucerin vehicle. Two concentrations of BAC-3 were used, 1% and 0.1 %. Control treatments consisted of vehicle alone. There were no significant differences in body weights among the treatment groups during the 45 days of the study. Wound healing was assessed in vivo by measuring the distance across wound edges at days 14, 21, 28, 35 and 45. There were 6 rats per group. As shown in the figure, burn wounds decreased in size significantly faster in rats administered the 0.1 % BAC-3 as compared with burn wounds on rats receiving vehicle alone. The rate of wound closures as assessed by calculating the linear regression coefficient.
  • the most likely mechanism for the alteration in material properties of the granulation tissue is a decrease in production of the trifunctional collagen crosslink hydroxypyridinium and/or its dihydroxylated precursors. Increased levels of hydroxypyridinium are associated with increased tensile strength, increased stiffness, decreased solubility, and increased resistance to enzymatic digestion of the matrix. Abnormal production of hydroxypyridinium is specifically associated with hypertrophic scarring and keloid formation. It is likely that BAC-3 exerts its modulating effect on hydroxypyridinium formation by down regulating lysine hydroxylation, which in turn could be modulated either directly by the drug, or indirectly through known effects of BAC-3 on specific cytokines.
  • the quality of a model for infliction of standard burns depends on its reproducibility.
  • the consecutive burn wounds should ideally be identical in depth and extent.
  • the standard animal burn is performed by techniques and device described by Walker.
  • the device has an aperture that enables exposure of between 35-50 % of the total rat skin surface.
  • the upper bracket surface is determined in which all burned animals die within 24 hours. This upper bracket surface is used as the surface needed for testing BAC-3 in prevention of burn shock.
  • WKY rats Wistar Kyoto rats manifest several behaviors that are suggestive of depression. WKY rats demonstrate immobility in the forced swim test. The fact that WKY rats are susceptible to restraint- induced stress ulcer and also reveal significantly higher levels of adrenocorticotropin hormone in response to restraint stress suggests that WKY rats are hyper-responsive to stress stimulation.
  • the antidepressant desipramine reduces immobility in the forced swim test and also reduces the incidence of stress ulcer in WKY rats.
  • the study uses 24 Wistar rats (WKY male rats).
  • the WKY rats are provided by Taconic Farms (Germantown, NY) from their line of WKY rats. Rats are housed with ad lib food and water and daylight conditions maintained between 0600 and 1800 h. Rats are 85-95 days old at the beginning of the study.
  • the forced swim apparatus is a simple glass water tank which is 30 cm in diameter and 45 cm tall. The water level is 15 cm from the top. Water temperature is maintained at 25 °C. Animals remain in the water for 15 min, during which time their behaviors are recorded. The rats are subsequently removed and allowed to dry for 15 min in a heated enclosure (32°C), then returned to their home cages.
  • This treatment produces long periods of immobility in the water (10-12 min total duration) and the rats on removal are mildly hypothermic (-3°C) and are hypoactive for periods up to 30 min.
  • the 24 rats are divided in 4 groups each of 6 rats. The first group receives an l.P. injection of BAC-3 lOmg/kg 24 hours and 1 hour before testing. The second group receives BAC-3 orally (10 mg/kg) 24 hours and 1 hour before testing. The third group receives only 0.9 % NaCl l.P. The fourth group receives 0.9 % NaCl orally. BAC-3 is dissolved in 0.9 % NaCl and injected in a constant volume of 5 ml/kg .
  • Rats are individually placed in the water tank and their behavior is recorded. This includes the amount of time spent floating, the number of headshakes, and the number of bobbings. These behaviors are defined as follows: headshakes- shaking head and breaking water surface; bobbing- paddling with forepaws, and/or rear paws with head moving above and below water surface; floating -motionless without moving front or rear paws.
  • mice When mice are subjected to a weak stress, forced swimming for 3 min, and then treated repeatedly with phencyclidine (PCP) and subjected to the same stress again, the forced swimming-induced immobility was enhanced.
  • PCP phencyclidine
  • PCP treatment could be consistent with the phenomena observed in schizophrenia and with the previous experimental reports, suggesting that the treatment could serve as an animal model for the negative symptoms of PCP psychosis.
  • classical antipsychotics improve the positive symptoms of schizophrenia, they do not improve the negative symptoms.
  • a recent advance in this field is the clinical introduction of compounds that have both dopamine-D 2 and 5-HT 2A receptor antagonist properties, such as clozapine.
  • mice of the C 57/black strain weighing 25-27 g at the beginning of the experiments are used.
  • the animals are housed in plastic cages and are kept in a regulated environment (23
  • each mouse On the 1 st day, each mouse is individually placed in a transparent glass cylinder (20 cm high, 8 cm in diameter), which contains water to a depth of 8 cm, and is forced to swim for 3 min.
  • the duration of immobility is measured (first measurement of immobility) with a digital counter.
  • the mice are matched according to the results of immobility time in the first measurement of immobility, and are divided into various treatment groups.
  • mice On the 16th day, each mouse is placed in water again for 3 min, and the immobility time is recorded. BAC-3 is administered l.P. 1 h before the second measurement of immobility. Control mice receive vehicle only and the same procedure is performed.
  • Chylomicron remnants and intermediate density lipoprotein particles are highly atherogenic particles that are typically cleared rapidly from the blood by the interaction of apoE and either the LDL receptor of the LDL receptor-like protein primarily by the liver. In humans with genetic variation in the apoE gene or apoE deficiency this process is impaired and these particles accumulate in the plasma leading to premature atherosclerosis. In apoE- deficient mice a simian phenomenon is observed. ApoE-deficient mice have high plasma levels of these lipoprotein remnants. On a low-fat, low cholesterol diet levels of VLDL exceed 500 mg/DL. These mice develop widespread atherosclerosis. Extensive pathological studies have demonstrated that the quality of these lesions is similar to that of humans. They start as early subintimal foam cell deposits and progress to advanced fibroproliferative atherosclerotic lesions that contain substantial myointimal hyperplasia and extracellular matrix, hallmarks of human atherosclerosis.
  • rhamnolipid(s) in the prevention of organ transplant rejection is performed either in the model of murine pancreatic islets; or allogeneic bone marrow in graft- versus post-reactive and graft-versus-host-nonreactive situations in rat and/or a mouse model; or in a rat mo'del of hind limb allotransplantation.
  • three groups are studied: unheated graft; grafts receiving 10-30 mg/kg/day of rhamnolipid started on post operative day 7 and rhamnolipid started on day 9 (lOmg/kg/day). At least one of the above mentioned conditions is used as a model in the prevention of transplant organ rejection.
  • di-rhamnolipid BAC-3 The effect of di-rhamnolipid BAC-3 on the mechanisms of apoptosis in neonatal human fibroblast and keratinocyte cell culture.
  • CaspaTag Fluorescein Caspase Activity Kit (Intergen Company) was used to detect active caspase enzymes with fluorescent spectroscopy. All solutions, except cell medium and PBS, were included with the kit.
  • Di-rhamnolipid BAC-3 was weighed on the precision balance (Mettler AC 100) and dissolved in FM medium to make an aqueous lmg/ml di-rhamnolipid BAC-3 stock solution.
  • Di-rhamnolipid BAC-3 stock solution was filtered through a 0.2 ⁇ m filter (Corning) and diluted to 4 different concentrations (100 ⁇ g/ml, 50 ⁇ g/ml, 10 ⁇ g/ml and 1 ⁇ g/ml) in FM.
  • the medium was aspirated from 12 100mm NHF97-001 passage #4 plates and cells were administered 12ml of prepared BAC-3 concentrations. The concentrations were tested in triplicate.
  • the remaining 9 plates were used as controls: 3 plates for positive apoptosis control (apoptosis induction by UVB+antibody), 3 plates for BAC-3 untreated control and 3 plates for fluorescence control (FAM-VAD-FMK unlabelled cells).
  • 3 plates for positive apoptosis control apoptosis induction by UVB+antibody
  • 3 plates for BAC-3 untreated control 3 plates for fluorescence control (FAM-VAD-FMK unlabelled cells).
  • FAM-VAD-FMK unlabelled cells 3 plates for fluorescence control
  • UVB irradiation + apoptosis inducing antibody 2 On day 3, a custom made UVB lamp, capable of radiating exactly 12 J/m of UVB per second, was placed in the biological hood cabinet where it was disassembled into parts and exposed for 15 minutes to germicidal UV light. Medium was aspirated from 3 control plates and cells were washed once with 5 ml of sterile PBS. Lids were removed from the dishes and 500ul of PBS was placed on each of the 3 plates. Plates were then placed under the UV lamp and cells covered with a thin layer of PBS were i ⁇ adiated with UVB light for 33
  • microcentrifuge tubes 10 ⁇ l of 30x FAM-VAD-FMK solution was added to each 300 ⁇ l cell aliquots. A rack with microcentrifuge tubes (caps should be left opened) was wrapped in aluminum foil (to protect from light) and cells were then incubated for 1 hr in 37°C, 5% C0 2 incubator.
  • BAC-3 concentrations were selected for testing the effect of BAC-3 on caspase enzyme activity (marker of cell apoptosis): 100 ⁇ g/ml, 50 ⁇ g/ml, 10 ⁇ g/ml and 1 ⁇ g/ml. According to obtained values, BAC-3 concentrations of 50 ⁇ g/ml seems to be the optimal concentrations for inducing apoptosis in neonatal human fibroblast cells. In other words, at 50 ⁇ g/ml BAC-3 induction of apoptosis reached its peak and administering higher or lower BAC-3 concentrations weakened the effects. With higher concentrations of BAC-3 it was shown that cell death occurred by mechanism of cell necrosis (detergent effect) rather than by programmed cell death (apoptosis).
  • FM medium High calcium (200 mg/L), high glucose (4500 mg/L), Dulbecco's modified Eagle's medium (DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS; Gemini Bio-products), lxL-glutamine (0.292 mg/ml) and lxABAM (100 units of penicillin, 100 ⁇ g of streptomycin and 0.25 ⁇ g of amphotericin). Good for one month if refrigerated at 2-8°C.
  • DMEM Dulbecco's modified Eagle's medium
  • FBS fetal bovine serum
  • lxL-glutamine 0.292 mg/ml
  • lxABAM 100 units of penicillin, 100 ⁇ g of streptomycin and 0.25 ⁇ g of amphotericin
  • Fig. 4 shows the effect of BAC-3 on caspase activity in neonatal human fibroblast cells grown in FM (cell line NHF97-001, passage #3).
  • Cells at 80% confluence, were administered BAC-3 in FM at lOO ⁇ g/ml. 50 ⁇ g/ml, lO ⁇ g/ml and 1 ⁇ g/ml concentrations. Medium was replaced every two days over the period of 6 days.
  • positive apoptosis control was established by irradiating fibroblasts with 396 J/m UVB light and incubating them with 1 ⁇ g/ml FAS antibody.
  • BAC-3 treated and control cells were harvested and cell densities were adjusted to 1x10 cells per ml with FM.
  • Neonatal human keratinocytes were without the presence of serum (KGM medium).
  • passage #3 cells Prior to treatment with BAC-3, passage #3 cells were grown in KGM medium for 7 days with one medium change (until 80% confluent).
  • plates were i ⁇ adiated with UVB light for 66 seconds (792 J/m2).
  • BAC-3 concentrations were chosen for testing the effect of BAC-3 on mechanism of apoptosis in neonatal human keratinocytes cells: 50 ⁇ g/ml, 10 ⁇ g/ml, 1 ⁇ g/ml and 0.5 ⁇ g/ml. According to results. BAC-3 concentrations of 1 ⁇ g/ml seems to be the optimal concentration for inducing apoptosis in neonatal human keratinocyte cells grown in KGM (serum free medium). In other words, at 1 ⁇ g/ml BAC-3 induction of apoptosis reached its peak and administering higher or lower BAC-3 concentrations weakened the effects. With higher concentrations of BAC-3 it was shown that cell death occu ⁇ ed by mechanism of cell necrosis ("detergent effect”) rather than by programmed cell death (apoptosis).
  • Fig. 5 shows the effect of BAC-3 on caspase activity in neonatal keratinocyte cells grown in KGM (cell line NHK97-045, passage #3).
  • Cells at 80% confluence, were administered BAC-3 in KGM at 50 ⁇ g/ml, lO ⁇ g/ml, 1 ⁇ g/ml and 0.5 ⁇ g/ml concentrations. Medium was replaced every two days over the period of 6 days.
  • positive apoptosis control was established by i ⁇ adiating cells with 792 J/m 2 UVB light and incubating them with 1 ⁇ g/ml FAS antibody.
  • BAC-3 treated and control cells were harvested and cell densities were adjusted to lxlO 6 cells per ml with FM.
  • GM Growth medium; medium used to initiate keratinocyte differentiation with serum: High calcium (200 mg/L), high glucose (4500 mg/L) Dulbecco's modified Eagle's medium (DMEM; Gibco), supplemented with 10% FBS (Gemini Bio-products), IxL-glutamine (0.292 mg/ml; Gibco), lxABAM (100 units of penicillin, 100 ⁇ g of streptomycin and 0.25 ⁇ g of amphotericin; Gibco), hydrocortisone (400 ng/ml; Sigma), epidermal growth factor (10 ng/ml; Upstate Biotechnology, Inc.) and cholera toxin (83 ng/ml; Calbiochem). Good for one month if refrigerated at 2-8 °C.
  • Fig. 6 shows the effect of BAC-3 on caspase activity in neonatal keratinocyte cells grown in GM (cell line NHK2000-02, passage #3).
  • GM cell line NHK2000-02, passage #3.
  • positive apoptosis control was established by irradiating cells with 792 J/m 2 UVB light and incubating them with 1 ⁇ g/ml FAS antibody.
  • BAC-3 treated and control cells were harvested and cell densities were adjusted to lxlO 6 cells per ml with FM.
  • Neonatal human fibroblast or keratinocyte cells were plated on 100 mm plates. When cultures were 80% confluent they were treated with different concentrations of BAC-3. After 6 days, cells were collected and cell densities were adjusted to 1x10 cells/ml. 300 ⁇ l aliquots were transfe ⁇ ed into microcentrifuge tubes. Protected from light, 10 ⁇ l of 30x was added to each aliquot. Cells were incubated for 1 hr in 37 °C, 5% CO2 incubator.
  • BAC-3 acts to inhibit the process of apoptosis which is indicated as decrease in the level of active caspases and reflected as increased cell growth and viability and is reflective of the ability to re-epithelize skin, particularly for treatment of wound healing, gum disease and for periodontal regeneration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Various methods are provided, including re-epithelization and wound healing with reduced fibrosis, particularly for the re-epithelization of mucous membrane tissues, most particularly for the treatment and prevention of gum disease and for periodontal regeneration, each of which uses administration of a composition containing one or more rhamnolipids as an active ingredient. The figure provides a graphical representation of the effects of topical BAC-3 on the rate of burn wound closure.

Description

TITLE OF THE INVENTION
USE OF RHAMNOLIPIDS IN WOUND HEALING, TREATMENT AND PREVENTION OF GUM DISEASE AND PERIODONTAL
REGENERATION
BACKGROUND OF THE INVENTION Field of the Invention:
The present invention relates to the use of rhamnolipids in re-epithelization of mucosa, particularly in wound healing with the diminution of fibrosis, most particularly in the wound healing of mucous membranes, the treatment and prevention of gum disease such as gingivitis and for periodontal regeneration.
Discussion of the Background
Typically, when an adult human receives an injury, either through burning of tissue or an incision in the skin tissue, the wound heals to leave a scar. This is even true in the case of post-surgical recovery where the wound has been closed with sutures (although scarring is generally less in such cases). This is not the case, however for wounds to fetuses. It is known that wounds in fetuses heal rapidly and generally without scar formation until late in the gestation cycle. Reasons for that include:
1. Dermis is the location of the scar in adult wounds. As healing progresses, dermal collagen is deposited and sulfated glycosaminoglycans (GAG) replace non-sulfated GAG in which hyaluronic acid (HA) is predominant.
2. Fetal tissue appears to be intrinsic in repair, with reduction of fibrosis, and the major fetal cell type responsible for such repair may be the fetal fibroblast.
3. The fetal immune system is functionally immature relative to the adult immune system and plays a much less prominent role in fetal wound healing.
4. The fetal extracellular matrix (ECM) differs from that in adults in having HA, collagen, elastin, and adhesion glycoproteins as the major components. It has been shown that hyaluronic acid levels in both fetal and adult sheep wounds rapidly increase until three days after wounding. This elevated level persists at least 21 days after wounding in the fetus, whereas it rapidly returns to baseline in the adult. In adult wounds, HA is deposited briefly within a fibrin and platelet plug. The HA is removed by hyaluronidase, and this provisional matrix is replaced by collagen and sulfated glycosaminoglycans. The deposition of collagen in fetal wounds is in a highly organized pattern that is indistinguishable from unwounded fetal dermis. Some of the major differences between fetal and adult repair are the temporal patterns of adhesion glycoproteins present in the wound, which are seen at the earliest stage of repair. Those differences may lead to differences in cell mobility, migration, adhesion and proliferation.
Cytokines. Transforming growth factor-beta (TGF-beta) induces fϊbroplasia and increases wound tensile strength in adult wounds, and similar effects have been recorded in fetal wounds. In adults, activated macrophage products, such as cytokines and growth factors, progressively modify the local tissue environment, initially leading to destruction of tissue and later, i.e., in chronic delayed type hypersensitivity (DTH) reactions, causing replacement by connective tissue. The effects of macrophage-derived cytokines and growth factors occur in two phases. TNF, IL-1, and macrophage-derived chemokines acutely augment inflammatory reactions initiated by T-cells. These same cytokines also chronically stimulate fibroblast proliferation and collagen production. These slow actions of cytokines are augmented by the actions of macrophage-derived polypeptide growth factors. Platelet-derived growth factor, produced by activated macrophages, is a potent stimulator of fibroblast proliferation, whereas macrophage-derived growth factor (TGF- beta) augments collagen synthesis. Macrophage secretion of fibroblast growth factor causes endothelial cell migration and proliferation, leading to new blood vessel formation. The consequence of these slow actions of cytokines and growth factors is that prolonged activation of macrophages in a tissue, e. g., in the setting of chronic antigenic stimulation, leads to the replacement of differentiated tissues by fibrous tissue. Fibrosis is the outcome of chronic DTH, when elimination of antigen and rapid resolution are unsuccessful.
There is thus a need to develop methods for inducing re-epithelization in adult skin tissue, to provide wound healing with reduction of fibrosis in adults, thereby reducing one of the detrimental effects of surgery and wound healing in general, and the treatment of gum disease by the induction of re-epithelization in the mucous membranes.
SUMMARY OF THE INVENTION
Accordingly, one object of the present invention is to provide a method for re- epithelization of skin for providing wound healing with reduced fibrosis using rhamnolipids as the active agent.
A further object of the present invention is to provide a method for the treatment of gum disease using the rhamnolipids as the active agent.
A further object of the present invention is to provide a method for providing periodontal regeneration.
These and other objects of the present invention have been satisfied by the discovery that rhamnolipids can provide the above noted treatments, particularly wound healing with reduced fibrosis, treatment of gum disease, particularly gingivitis and periodontal regeneration.
BRIEF DESCRIPTION OF THE FIGURES A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Fig. 1 provides a graphical representation of the effects of topical BAC-3 on the rate of burn wound closure.
Fig. 2 provides a graphical representation of the effects of topical BAC-3 on the extent of burn wound closure.
Fig. 3 provides a graphical representation of the effect of BAC-3 on the tensile strength of incision wounds.
Fig. 4 provides a graphical representation of the effect of BAC-3 on caspase activity in neonatal human fibroblast cells grown in FM.
Fig. 5 provides a graphical representation of the effect of BAC-3 on caspase activity in neonatal keratinocyte cells grown in KGM.
Fig. 6 provides a graphical representation of the effect of BAC-3 on caspase activity in neonatal keratinocyte cells grown in GM.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to pharmaceutical and/or cosmetic preparations and compositions comprising as the active ingredient, one or more rhamnolipids of Formula 1 :
R
Figure imgf000005_0001
wherein R1 = H, α-L-rhamnopyranosyl (either unsubstituted or substituted at the 2 position with a group of formula -0-C(=0)-CH=CH-R5), or -0-C(=0)-CH=CH-R5;
R2 = H, lower alkyl (i.e. C1-C6 linear or branched alkyl, preferably -CH3), -CHR4- CH2-COOH or -CHR4-CH2-COOR6;
R3 = -(CH2)X-CH3, wherein x = 4-19;
R4 = -(CH2)y-CH3, wherein y = 1-19;
R5 = -(CH2)Z-CH3, wherein z = 1-12; and
R6 = lower alkyl, preferably -CH3.
The rhamnolipids of the present invention can be prepared by conventional methods, preferably by fermentation, isolation and purification as described in U.S. Patent 5,455,232; 5,466,675 and 5,514,661, as well as BE 1005704A4, CA 2,129,542, JP 5-512946 and EP 93914523.1, each of which is hereby incorporated by reference. Various uses of rhamnolipids are also provided in these patents and PCT application PCT US/03714, also hereby incorporated by reference. In the methods of the present invention, the rhamnolipid that is preferred has the structure of formula:
Figure imgf000006_0001
(α-L-rhamnopyranosyl-(l,2)-α-L-rhamnopyranosyl)-3-hyroxydecanoyl-3-hydroxydecanoic acid; hereafter referred to as "BAC-3")
Other preferred rhamnolipids include those wherein: a) R1 = -0-C(=0)-CH=CH-R5; R2 = -CHR4-CH2-COOH; R3 = -(CH2)6-CH3; R4 = -(CH2)2-CH3; and R5 = -(CH2)6-CH3; or b) R1 = α-L-rhamnopyranosyl substituted at the 2-position by -0-C(-=O)-CH=CH-R5; R2 = -CHR4-CH2-COOH; R3 = -(CH2)6-CH3; R4 = -(CH2)6-CH3; and R5 = -(CH2)6-CH3; or c) R1 = -0-C(=0)-CH=CH-R5; R2 = -CHR4-CH2-COOCH3; R3 = -(CH2)6-CH3; R4 = -(CH2)2-CH3; and R5 = -(CH2)6-CH3; or d) R1 = α-L-rhamnopyranosyl substituted at the 2-position by -0-C(=O)-CH=CH-R5; R2 = -CHR4-CH2-COOCH3; R3 = -(CH2)6-CH3; R4 = -(CH2)6-CH3; and R5 = -(CH2)6-CH3. The structures of a)-d) are shown below:
Figure imgf000007_0001
H2— COOCH3
Figure imgf000007_0002
Figure imgf000007_0003
The toxicity and the efficacy of these compounds can be further modified by varying the R groups as needed.
It has now been found that these rhamnolipids are effective in re-epithelization of the skin. This is important as it provides a method for wound healing with reduced fibrosis in non-fetal tissue. The re-epithelization can be induced in various tissues, particularly mucous membranes. This is especially important in the treatment of gum disease, such as gingivitis. It is also important in periodontal regeneration.
Wound healing with diminished fibrosis is the main characteristic of fetuses. As noted above, responsible factors in fetuses are: 1. Fetal dermis; 2. Fetal tissue; 3. The fetal immune system; and 4. The fetal extracellular matrix (ECM). Accordingly, one method to achieve wound healing with reduced fibrosis in adults would be to change adult dermis, adult tissue, and adult ECM into fetal dermis, fetal tissue and fetal ECM. Unfortunately, this is not possible at this time. The present inventors reasoned that adult tissue could be enabled with the ability to heal without scars by blocking the factors responsible for scar healing without affecting the repair of wounds.
The method for wound healing with reduced fibrosis according to the present invention comprises administering to the wound, and optionally the surrounding area, an effective amount of a composition comprising one or more rhamnolipids of the present invention. Preferably, the rhamnolipid used in the method is the BAC-3 rhamnolipid described above. The composition comprising the rhamnolipid can be in the form of neat liquid, solution, suspension, dispersion, emulsion, cream, tincture, powder, ointment, gel, paste or lotion. When prepared in any form requiring a solvent, the solvent is preferably a polar organic solvent such as ethanol, DMSO or any polar organic solvent that is physiologically compatible. Preferably, the composition is in an ointment, gel, paste or liquid. The amount of rhamnolipid used in the treatment is 0.001% in the ointment up to 5% in the ointment, preferably from 0.01 to 1% in ointment, more preferably from 0.05 to 0.5% in ointment. (Unless otherwise indicated, all percentages are % by weight, based on total weight of the composition.) The ointment is applied directly to the subject area 1-5 times daily, preferably 2-3 times daily for a period of 1 day to 6 weeks, or until healing is complete.
The use of organic solvents in those preparations requiring solvent is important because it has been found that rhamnolipids create pellets at the critical mycelium concentrations in water at about 10 mg/ml.
Similarly, the present rhamnolipids can be used to treat burn shock. The same rhamnolipids useful for wound healing also appear to have an effect on cytokine production. It is believed that the main responsibility for wound healing lies in production of cytokines which are also responsible for shock, following large burns. These rhamnolipids are believed to prevent or reduce cytokine production. This reduction or prevention of cytokine production would have a beneficial impact in burn shock prevention. The treatment method can be either I.V./I.P. or orally. In such treatments the amount to be administered is from 1 μg/kg body weight of the patient to 50 μg/kg of body weight, preferably from 10 μg/kg to 30 μg/kg, from 1 to 4 times daily, preferably from 2 to 3 times daily, and for a period of from 1 day to 6 weeks. When used orally, the composition comprising the rhamnolipid(s) can be in any conventional orally administrable form, including but not limited to, solutions, tablets, capsules, emulsions, dispersions, and troches. When I.V. or I. P. administration is used, the composition comprising the rhamnolipid(s) can be in any conventional I.V. or I. P. administrable form, including, but not limited to, solution, neat liquid, dispersion, etc.
The same methods of administration used for burn shock can also be used in the treatment and/or prevention of organ rejection, depression, schizophrenia and atherosclerosis, using similar effective dosages.
A further use for the rhamnolipid containing composition of the present invention is in the preparation of a cosmetic composition comprising one or more of the rhamnolipids in an amount effective to treat signs of aging, such as wrinkles. Such a cosmetic composition would be applied from 1 to 3 times per day to the affected area. The cosmetic composition could be in any of the topical forms noted above and contain similar amounts of rhamnolipid(s).
The composition comprising the one or more rhamnolipids can further include, if desired, one or more carriers and/or diluents conventionally used in the pharmaceutical and/or cosmetic industries.
EXAMPEES
Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only, and are not intended to be limiting unless otherwise specified.
Open Wound Healing
The BAC-3 rhamnolipid was tested in the case of open wound healing, in a patient suffering around ten years from incurable venous ulcer. On the left leg, the patient had very thick layers of collagen with fibrotic lesions. After administration of 1% BAC-3 in the form of an ointment, twice daily during 41 days, the patient's condition was significantly improved. Moreover, after treatment was finished, not only the collagen, but also the fibrotic lesions had disappeared as well. One year after the treatment, the treated skin lesions on the left leg appear normal, and all skin collagen and fibrotic layers had disappeared.
Topical administration of rhamnolipids in incision and burn wounds (ratsi
The wounding of animals was performed according to the Protocol for Animal Use and Care at the University of California-Davis (hereafter UC-Davis). The entire animal protocol required 70 Sprague-Dawley rats: 30 rats for incision wounds and 40 rats for burn wounds. Among them 36 rats were burned over 7% of their skin and 4 rats were burned over 15% of their skin. Incision wounds of whole skin and burn wounds were treated topically with 2 test doses of the pharmaceutical preparation of di-rhamnolipid BAC-3. Each dose contained a). 1%, and 0.1% of active di -rhamnolipid (BAC-3) in eucerin (eucerin = 71.5g Vaselinum album (Producer: D.E.A. Hamburg); 23.8g Lanolinum (Producer f. O.I. Hamburg); 4.7g Cholesterin (Producer: Solvay, Wiena, Austria); Water Number: 320); or b). 1%; 0.1% active rhamnolipid (BAC-3) with antiseptic (chlorhexidine hydrochloride-PLIVA- Zagreb). Eucerin with BAC-3 was administrated twice daily during healing. The same experiment had one control group without the treatment, and one control group which was treated with ointment + 1% chlorhexidine hydrochloride. During the experiment, animal body weight and behavior was checked every third day, and photographs were taken periodically.
Burn wounds. The consecutive burn wounds should ideally be identical in depth and extent. The standard method defines the size and location of the burn wound, the temperature gradient, duration of exposure and method of applying the burn.
The wound surface areas tested were of two different sizes. One size to 7% of the body surface, which enables one to compare the rate of wound healing with different percentage of BAC-3 and the other size to 15% of the body surface, which is a sufficient size so that healing could not occur by contraction alone. On the other hand, the total wound surface area should not cause major systematic problems. The latter can be concluded from undisturbed weight gain of the animals. The standard animal burn was performed by techniques and device described by Walker. The burning devices were prepared using a model device ordered from U.S. Army Surgical Research Unit, Experimental Surgery, Army Medical Center, Fort Sam Houston, Texas 78234. The devices had apertures which enabled exposure of 7% and 15% of the total rat skin surface. The surface of the skin was measured for every animal using Mech's formula: A=kW2/3; A = surface area in cm2; W = body weight in grams; k=10.
Method of burning. Each animal was anesthetized with sodium pentobarbital administered i/p (5 mg/ 25g). (Producer: Veterinary Laboratory Inc. Lenexa, Kansas). The hair over the dorsum was clipped with animal clippers. The animal was placed supine in the burning device and the extremities were tied; the malleable retractor was placed over the animal and secured snugly with plastic straps. The entire device was then picked up by the retractor ends with forceps and the exposed area was immersed in boiling water. Ten seconds of exposure was sufficient to produce a full-thickness burn. On removal from the water, the dorsum was quickly dried by rolling on a towel and the animal was released and individually caged. This procedure produced a uniform burn with sharp margins.
In this way the severity of the burn was such, that sufficient observation time was achieved, while total healing occurred and classification of wound healing characteristics with respect to different topical agents were feasible.
On post burn days 7, 14 and 45, animals were sacrificed by overdose of sodium pentobarbital and skin specimens were taken for histopathology. Specimens included the wound bed as well as the healthy skin of the wound margins.
The specimens were fixed, and two stainings were routinely performed: Hematoxylin-Eosin (H&E) for microscopic evaluation, Verhoeff s staining for a better visualization of the crust and the regenerating dermis, and the alpha smooth muscle acting to identify the myofibroblasts. Microscopic findings were interpreted by a veterinarian pathologist.
During the microscopic and macroscopic observations, four wound healing parameters were evaluated: crust formation, re-epithelialization, formation of granulation tissue and inflammation.
Incision wounds. Dorsal midline incisions were made in anesthetized rats. The animals were clipped free of their fur and prepared with alcohol. A 5.0 cm, midline, full- thickness incision was made with a scalpel through the panniclus carnosus.
The wounds were immediately closed with skin sutures spaced at a distance of 0.5 cm. Seven days later, all sutures were removed. On days 14 and 21 after incision, three animals from each group were sacrificed using an overdose of sodium pentobarbital. Using a plexiglass template, a minimum of two samples of full-thickness skin were harvested perpendicular to the long axis of the wound for tensile strength determination. The skin samples were 9.0 mm wide at the wound by 2.0 cm long.
Tensile Strength Determination. The standard wound samples for each treatment cohort were examined for tensile strength by pulling the individual wounds apart in an Instron 4201 (Universal Testing instruments, Instron Engineering Co., Canton, MA) material tester. Special clamps were used to securely grip the tissue to avoid slippage as the wounds were pulled at a standard cross speed of 25 mm/min. The tensile strength of healthy skin was measured in killed animals from each group. Vertebrate animals
Subjects used in this experiment were male Sprague - Dawley rats 5 to 6 weeks old. Rats were housed in polypropylene cages with mere mesh lids and solid floors containing 1 cm depth of wood shavings . Animals were housed and placed in an air conditioned room at 21 C° (+/- 2)C°, 52- 73% relative humidity, 15 fresh air changes per hr and 12 fir light/dark cycle. Animals were fed with a synthetic pellet diet, freshly obtained and not preserved with pesticides, containing all essential nutrients and stored under standard conditions and water ad libitum.
Animals were acclimatized for at least one week before the start of the study and were 7 weeks old at the time of treatment. They were allocated to the various experimental groups using a system of random numbers, and group body weights were checked on the day of treatment to ensure they did not differ from the overall mean by more than 5%.
Animals were caged individually.
Veterinary care of animals
All work (animal housing, experimentation, euthanasia, disposal) was performed substantially in accordance with the International Guiding Principles for Biochemical Research Involving Animals as stipulated by the Council for International Organizations of Medical Science using the Protocol of UC-Davis, Version of 1119/95.
Results
Bum Wounds.
A). Burning 7% body surface. (7 x 3 cm)
36 rats were divided into 6 groups. Each group had six animals. After burning rats according to the above-described procedure, each rat was caged individually. Before caging, the burned skin was smeared with the following different kinds of ointment:
1. 1 A-Six rats were smeared twice daily with 1% of BAC-3 in ointment.
2. 1 B-Six rats were smeared twice daily tenth 0.1 % of BAC-3 in ointment
3. I D- Six rats were smeared twice daily with ointment only 4. 2 A-Six rats were smeared twice daily with 1% of BAC-3 in ointment plus 1% chlorhexidine hydrochloride
5. 2 B-Six rats were smeared twice daily with 0.1% BAC-3 in ointment plus 1% chlorhexidine hydrochloride
6. 2 D-Six rats were smeared twice daily with ointment only plus chlorhexidine hydrochloride.
From each group on days 7, 14 and 21 one rat was sacrificed for histopathological examination.
On day 45 the rest of three rats from each group were sacrificed. Rats were sacrificed according to the described procedure using an overdose of sodium pentobarbital.
During 45 days all animals were evaluated for the following healing parameters: crust formation, inflammation, formation of granulation tissue and re-epithelization.
There were no significant differences in crust formation between groups. But inflammation during wound healing was mostly pronounced in the group 1-D and 2-D. (Placebo groups with or without chlorhexidine hydrochloride).
Granulation tissue was prominently developed in the groups 1-A and 2-A.
Re-epithelization in the middle part of the burn wounds was faster on all rats of the groups 1-B and 2-B. Unfortunately chlorhexidine hydrochloride in combination with BAC-3 irritated wounds and rats treated by 1 % chlorhexidine always scratched the lower part and upper part of the burn wounds. Therefore, only the collagen area of all rats treated without 1% chlorhexidine was calculated.
Histopathologic data on rats sacrificed on 45"' day without chlorhexidine hydrochloride using NIH protocol.
Mean value of collagen tissue expressed in mm2.
Group 1 A = 8.48 mm2
Group 1 B = 5.15 mm2
Group 1 D = 6.46 mm2
If we take the mean value of collagen concentration in the group 1 D (placebo) as a 100%, then group 1 B (0.1% of BAC-3) had a mean value of collagen concentration of 79.72 and the group 1 A (1% of BAC-3) had a mean value of collagen concentration of 131.26.
The effects of topical BAC-3 on the rate of burn wound closure without chlorhexidine is shown on Figure 1 and on the extent of burn wound closure is shown on Figure 2.
Rate of burn wound closure with BAC-3 without chlorhexidine hydrochloride (Fig. I). Burns were induced on the dorsal surface of rats using standardized methods as described previously. The total burn area was equivalent to 7 % of the surface area. Topical BAC-3 was applied twice daily starting on the first day until the animals were sacrificed at day 45. Treatment groups included BAC-3 in a eucerin vehicle. Two concentrations of BAC-3 were used, 1% and 0.1 %. Control treatments consisted of vehicle alone. There were no significant differences in body weights among the treatment groups during the 45 days of the study. Wound healing was assessed in vivo by measuring the distance across wound edges at days 14, 21, 28, 35 and 45. There were 6 rats per group. As shown in the figure, burn wounds decreased in size significantly faster in rats administered the 0.1 % BAC-3 as compared with burn wounds on rats receiving vehicle alone. The rate of wound closures as assessed by calculating the linear regression coefficient.
Extent of burn wound closure with BAC-3 without chlorhexide (Fig. 2). Burns were induced on the dorsal surface of rats using standardized methods as described previously. The total burn area was equivalent to 7% of the surface area. Topical BAC-3 was applied twice daily starting on the first day until the animals were sacrificed on day 45. Treatment groups included BAC-3 in a eucerin vehicle. Two concentrations of BAC-3 were used; 1% and 0.1%. Control treatments consisted of vehicle alone. There were no significant differences in body weights among the treatment groups during the 45 days of the study. Wound healing was assessed in vivo by measuring the distance across wound edges at days 14, 21, 28, 35 and 45. There were 6 rats per group. As shown in the figure, burn wounds were significantly smaller in rats administered the 0.1% BAC-3 at days 14, 21 and 28 as compared with burn wounds in rats receiving the vehicle alone (p<0.05 by ANOVA). Mean values for each time point are shown as indicated by designated symbols; T-bars=2 SD. Significant differences (p<0.05 by ANOVA, with post hoc analysis using Fisher's PSLD) are indicated by an asterisk.
During the healing period, the hair growth of dead skin was very prominent in all rats of group 1-A. (1 % BAC-3 in ointment), compared to the other groups where growth hair was just noticed.
B. Burning 15 % of the body surface (10 x 5 cm)
Four rats were burned according to the described procedure using the wider opening in the Walker device (10 x 5 cm). All rats were treated from the beginning by placebo. After 50 days all burned rats had open wounds in average 2.3 cm at the neck, 1.3 cm in the middle and 1.8 cm at the tail.
50 days after burning, animals were treated with 1% BAC-3 in ointment without chlorhexidine hydrochloride using the following procedure:
For the first 3 days, burn wounds were treated twice daily. After development of granulation tissue and the first sign of epithelization, animals were treated 3 days with 1% BAC-3 in ointment once daily. For the next four days, animals were treated every second day. After that wounds were treated every third day with 1% BAC-3 in ointment until the entire wound was re-epithelized. Re-epithelization was first completed at the middle of the wounds, then at the tails and finally at the necks. Whole epithelization in all animals was finished in 30 days.
Incision wounds
Effect of BAC-3 on Tensile Strength of Incision Wounds (Fig.3) with and without chlorhexidine hydrochloride. The tensile strength of incision wounds was measured 21 days after wounding. Rats were treated with preparations of BAC-3 as described above. Controls consisted of vehicle alone. As shown in Fig. 3, the tensile strength was significantly lower in wounds treated with 0.1 % BAC-3 as compared with wounds treated with the corresponding vehicle (p<0.05 by ANOVA). This observed decrease in tensile strength is consistent with other known properties of BAC-3, particularly its ability to decrease the fibrotic response in wound healing. The most likely mechanism for the alteration in material properties of the granulation tissue is a decrease in production of the trifunctional collagen crosslink hydroxypyridinium and/or its dihydroxylated precursors. Increased levels of hydroxypyridinium are associated with increased tensile strength, increased stiffness, decreased solubility, and increased resistance to enzymatic digestion of the matrix. Abnormal production of hydroxypyridinium is specifically associated with hypertrophic scarring and keloid formation. It is likely that BAC-3 exerts its modulating effect on hydroxypyridinium formation by down regulating lysine hydroxylation, which in turn could be modulated either directly by the drug, or indirectly through known effects of BAC-3 on specific cytokines.
The prevention and treatment of burn shock, atherosclerosis and transplanted organ rejection and the treatment of depression or schizophrenia can be tested using the following procedures: Provocation and treatment of burn shock
The quality of a model for infliction of standard burns depends on its reproducibility. The consecutive burn wounds should ideally be identical in depth and extent.
For this purpose a standardization of the method practiced is imperative. This can be achieved by exactly defining the size and location of the burn wound, the temperature gradient, duration of exposure and method of applying the burn.
The standard animal burn is performed by techniques and device described by Walker. The device has an aperture that enables exposure of between 35-50 % of the total rat skin surface. The surface of the skin is measured for every animal using Mech's formula: A = kW2/3; A = surface area in cm2; W = body weight in gm, k = 10.
Method of burning. Each animal is anesthetized with pentobarbital administered i/p (5 mg/25 g). The hair over the dorsum is clipped with an Oster animal clipper, using a No.40 blade. The animal is then placed supine in the burning device and the extremities tied. The malleable retractor is placed over the animal and secured snugly with plastic straps. The ensure device is then picked up by the retractor ends with forceps and the exposed area immersed in boiling water. Ten seconds of exposure is sufficient to produce a full-thickness burn. On removal from the water, the dorsum and flanks are gently dried by rolling on a towel and the animal released is individually caged. This procedure produces a uniform burn with sharp margins. Procedure:
In a different animal group of 6 Sprague-Dawley rats, the upper bracket surface is determined in which all burned animals die within 24 hours. This upper bracket surface is used as the surface needed for testing BAC-3 in prevention of burn shock.
Animal model for depression
It has been recently reported that Wistar Kyoto (WKY) rats manifest several behaviors that are suggestive of depression. WKY rats demonstrate immobility in the forced swim test. The fact that WKY rats are susceptible to restraint- induced stress ulcer and also reveal significantly higher levels of adrenocorticotropin hormone in response to restraint stress suggests that WKY rats are hyper-responsive to stress stimulation. The antidepressant desipramine, reduces immobility in the forced swim test and also reduces the incidence of stress ulcer in WKY rats.
Method and Procedure
The study uses 24 Wistar rats (WKY male rats). The WKY rats are provided by Taconic Farms (Germantown, NY) from their line of WKY rats. Rats are housed with ad lib food and water and daylight conditions maintained between 0600 and 1800 h. Rats are 85-95 days old at the beginning of the study. The forced swim apparatus is a simple glass water tank which is 30 cm in diameter and 45 cm tall. The water level is 15 cm from the top. Water temperature is maintained at 25 °C. Animals remain in the water for 15 min, during which time their behaviors are recorded. The rats are subsequently removed and allowed to dry for 15 min in a heated enclosure (32°C), then returned to their home cages. This treatment produces long periods of immobility in the water (10-12 min total duration) and the rats on removal are mildly hypothermic (-3°C) and are hypoactive for periods up to 30 min. The 24 rats are divided in 4 groups each of 6 rats. The first group receives an l.P. injection of BAC-3 lOmg/kg 24 hours and 1 hour before testing. The second group receives BAC-3 orally (10 mg/kg) 24 hours and 1 hour before testing. The third group receives only 0.9 % NaCl l.P. The fourth group receives 0.9 % NaCl orally. BAC-3 is dissolved in 0.9 % NaCl and injected in a constant volume of 5 ml/kg .
Rats are individually placed in the water tank and their behavior is recorded. This includes the amount of time spent floating, the number of headshakes, and the number of bobbings. These behaviors are defined as follows: headshakes- shaking head and breaking water surface; bobbing- paddling with forepaws, and/or rear paws with head moving above and below water surface; floating -motionless without moving front or rear paws.
Differences from control values are assessed for statistical significance using Dunnett's test and Student's t test.
Animal model for schizophrenia
When mice are subjected to a weak stress, forced swimming for 3 min, and then treated repeatedly with phencyclidine (PCP) and subjected to the same stress again, the forced swimming-induced immobility was enhanced. The enhancing effect of PCP (10 mg/kg per day S.C.) on the immobility persisted for at least 21 days after withdrawal of the drug. PCP treatment could be consistent with the phenomena observed in schizophrenia and with the previous experimental reports, suggesting that the treatment could serve as an animal model for the negative symptoms of PCP psychosis. Although classical antipsychotics improve the positive symptoms of schizophrenia, they do not improve the negative symptoms. A recent advance in this field is the clinical introduction of compounds that have both dopamine-D2 and 5-HT2A receptor antagonist properties, such as clozapine. Such compounds are thought to be efficacious in treating the negative symptoms of chronic schizophrenia. In the study, ritanserin, risperidone, and clozapine, at doses that failed to produce antidepressant effects in the control animals, attenuated the PCP-induced enhancement of immobility in the forced swimming test in mice. Thus it would appear that the behavioral change induced by repeated PCP treatment is a useful model for the negative symptoms of schizophrenia, since the ameliorating effects of these antipsychotics in this model would reflect their clinical effectiveness.
Mice of the C 57/black strain weighing 25-27 g at the beginning of the experiments are used. The animals are housed in plastic cages and are kept in a regulated environment (23
-li +/- 1 of, 50 +/- 5 % humidity), with a 12h/12h light dark cycle. Food and tap water are provided ad libitum. Mice are tested in the forced swimming test.
First measurement of immobility.
On the 1 st day, each mouse is individually placed in a transparent glass cylinder (20 cm high, 8 cm in diameter), which contains water to a depth of 8 cm, and is forced to swim for 3 min. The duration of immobility (immobility time) is measured (first measurement of immobility) with a digital counter. The mice are matched according to the results of immobility time in the first measurement of immobility, and are divided into various treatment groups.
Drug treatment. On the 2nd day, drug treatment is started. Saline, PCP which produces negative symptom in humans, and BAC-3 (10 mg/kg l.P.) are administered once a day for 13 days. On the 15th day, saline treated animals are challenged with saline (control group), with PCP (10 mg/kg S.C. single PCP- treated group) and with BAC-3 (10 mg/kg l.P. repeated BAC-3 group) respectively. Other animals receive saline for 9 days, and are then treated with PCP (10 mg/kg S.C.) for 4 days. On the 15th day, such mice are challenged with PCP (10 mg/kg S.C.) and with BAC-3 (10 mg/kg I.P.).
Second measurement of immobility.
On the 16th day, each mouse is placed in water again for 3 min, and the immobility time is recorded. BAC-3 is administered l.P. 1 h before the second measurement of immobility. Control mice receive vehicle only and the same procedure is performed.
Statistical analysis
Statistical differences among values for individual groups is determined with Dunnett's multiple comparison test and Students t test.
Animal model for atherosclerosis (cardio-vascular diseases)
Chylomicron remnants and intermediate density lipoprotein particles are highly atherogenic particles that are typically cleared rapidly from the blood by the interaction of apoE and either the LDL receptor of the LDL receptor-like protein primarily by the liver. In humans with genetic variation in the apoE gene or apoE deficiency this process is impaired and these particles accumulate in the plasma leading to premature atherosclerosis. In apoE- deficient mice a simian phenomenon is observed. ApoE-deficient mice have high plasma levels of these lipoprotein remnants. On a low-fat, low cholesterol diet levels of VLDL exceed 500 mg/DL. These mice develop widespread atherosclerosis. Extensive pathological studies have demonstrated that the quality of these lesions is similar to that of humans. They start as early subintimal foam cell deposits and progress to advanced fibroproliferative atherosclerotic lesions that contain substantial myointimal hyperplasia and extracellular matrix, hallmarks of human atherosclerosis.
Prevention of organ transplant rejections
The use of rhamnolipid(s) in the prevention of organ transplant rejection is performed either in the model of murine pancreatic islets; or allogeneic bone marrow in graft- versus post-reactive and graft-versus-host-nonreactive situations in rat and/or a mouse model; or in a rat mo'del of hind limb allotransplantation. In all models three groups are studied: unheated graft; grafts receiving 10-30 mg/kg/day of rhamnolipid started on post operative day 7 and rhamnolipid started on day 9 (lOmg/kg/day). At least one of the above mentioned conditions is used as a model in the prevention of transplant organ rejection.
The effect of di-rhamnolipid BAC-3 on the mechanisms of apoptosis in neonatal human fibroblast and keratinocyte cell culture.
The procedure for caspase detection in neonatal human fibroblast cells in fibroblast growth medium FM* treated with BAC-3 using fluorescence spectroscopy.
Note: CaspaTag Fluorescein Caspase Activity Kit (Intergen Company) was used to detect active caspase enzymes with fluorescent spectroscopy. All solutions, except cell medium and PBS, were included with the kit.
1.1 Plating cells
12 vials of neonatal human fibroblasts, NHF97-001 passage #3 (prepared as described in section 2.1.a), were retrieved from a liquid N2 chamber. Closed vials were quickly defrosted in a small amount of 37°C, 75% ethanol. In order to get rid of traces of DMSO from the cryopreservation medium, the contents were transferred to a 50 ml centrifuge, mixed up and down with 9 ml of FM (fibroblast medium)* and centrifuged for 4 min at 3000 rpm. The obtained pellet was resuspended in FM and plated on 14 100mm Petri plates. Passage #3 cells were grown in FM medium for 4 days with one medium change. When cells reached 80% confluence they were trypsinized and re-plated on 21 100mm plates. Passage #4 cells were grown for 4 days (until 80% confluence), before treatment with BAC-3.
Treatment with di- rhamnolipid BAC-3
Di-rhamnolipid BAC-3 was weighed on the precision balance (Mettler AC 100) and dissolved in FM medium to make an aqueous lmg/ml di-rhamnolipid BAC-3 stock solution. Di-rhamnolipid BAC-3 stock solution was filtered through a 0.2 μm filter (Corning) and diluted to 4 different concentrations (100 μg/ml, 50 μg/ml, 10 μg/ml and 1 μg/ml) in FM. The medium was aspirated from 12 100mm NHF97-001 passage #4 plates and cells were administered 12ml of prepared BAC-3 concentrations. The concentrations were tested in triplicate. The remaining 9 plates were used as controls: 3 plates for positive apoptosis control (apoptosis induction by UVB+antibody), 3 plates for BAC-3 untreated control and 3 plates for fluorescence control (FAM-VAD-FMK unlabelled cells). Medium +/- BAC was changed every two days.
Preparing control samples (UVB irradiation + apoptosis inducing antibody) 2 On day 3, a custom made UVB lamp, capable of radiating exactly 12 J/m of UVB per second, was placed in the biological hood cabinet where it was disassembled into parts and exposed for 15 minutes to germicidal UV light. Medium was aspirated from 3 control plates and cells were washed once with 5 ml of sterile PBS. Lids were removed from the dishes and 500ul of PBS was placed on each of the 3 plates. Plates were then placed under the UV lamp and cells covered with a thin layer of PBS were iπadiated with UVB light for 33
2 seconds (396 J/ m ). 1 μg/ml FAS antibody /FM solutions were added to plates and they were placed back into 37 °C, 5 % CO2 incubator. Medium with FAS-antibody was replaced one more time (on day 5) before the end of treatment.
Cell labeling
On day 6, treatment with BAC-3 was completed and cells were trypsinized and collected into 50ml centrifuge tubes. Cells were counted using a hemacytometer and a trypan blue exclusion test and densities were adjusted to 1.0 x 10 cells per ml of FM medium. 300μl aliquots of BAC-3 treated and control NHF97-001 passage #4 cells were transferred into 2ml microcentrifuge tubes.
Note: The following steps were performed in dark.
In microcentrifuge tubes, 10 μl of 30x FAM-VAD-FMK solution was added to each 300μl cell aliquots. A rack with microcentrifuge tubes (caps should be left opened) was wrapped in aluminum foil (to protect from light) and cells were then incubated for 1 hr in 37°C, 5% C02 incubator.
Washings
800μl of lx Wash buffer was then added to each labeling cell mix. Tubes were very gently mixed (low speed vortex) and centrifuged in microcentrifuge at 7000 rpm for 5 minutes at room temperature. Supernatant was aspirated and pellet was gently vortexed to disrupt cells to cell clumping. Washes of cell pellets were repeated two more times with lx Wash buffer. Finally, pellet was resuspended in 320 μl PBS and tubes were placed on ice. Carefully (avoiding formation of air bubbles), 3 x 100 μl of cell suspension was placed into 3 wells of a microtiter plate (96-well black, transparent bottom; Packard). lOOμl of PBS was placed into 9 additional wells to serve as minimal RFU wells for a fluorescence plate reader. Fluorescence was measured at 485nm excitation and 535nm emission using a Packard FluoroCount Microplate Fluorometer (Model AF 10000; Packard).
Results and discussions
Different BAC-3 concentrations were selected for testing the effect of BAC-3 on caspase enzyme activity (marker of cell apoptosis): 100 μg/ml, 50 μg/ml, 10 μg/ml and 1 μg/ml.. According to obtained values, BAC-3 concentrations of 50 μg/ml seems to be the optimal concentrations for inducing apoptosis in neonatal human fibroblast cells. In other words, at 50μg/ml BAC-3 induction of apoptosis reached its peak and administering higher or lower BAC-3 concentrations weakened the effects. With higher concentrations of BAC-3 it was shown that cell death occurred by mechanism of cell necrosis (detergent effect) rather than by programmed cell death (apoptosis).
* FM medium = High calcium (200 mg/L), high glucose (4500 mg/L), Dulbecco's modified Eagle's medium (DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS; Gemini Bio-products), lxL-glutamine (0.292 mg/ml) and lxABAM (100 units of penicillin, 100 μg of streptomycin and 0.25μg of amphotericin). Good for one month if refrigerated at 2-8°C.
Fig. 4 shows the effect of BAC-3 on caspase activity in neonatal human fibroblast cells grown in FM (cell line NHF97-001, passage #3). Cells, at 80% confluence, were administered BAC-3 in FM at lOOμg/ml. 50μg/ml, lOμg/ml and 1 μg/ml concentrations. Medium was replaced every two days over the period of 6 days. On day 3, positive apoptosis control was established by irradiating fibroblasts with 396 J/m UVB light and incubating them with 1 μg/ml FAS antibody. BAC-3 treated and control cells were harvested and cell densities were adjusted to 1x10 cells per ml with FM. 300μl cell aliquots were labeled with FAM-VAD-FMK, fluorescent-tagged, iπeversible caspase inhibitor. Unlabelled inhibitor was washed away with buffer and lOOμl aliquots were read at 485nm excitation and 535nm emission with fluorescence detector. Eπor bars indicate standard deviations.
The procedure for caspase detection in neonatal human keratinocyte cells in
KGM* (serum free) medium treated with BAC-3 using fluorescence spectroscopy
Procedure
The same procedure as described for fibroblasts except different growth conditions were used (NHK97-45 passage #3 cell line was used). Neonatal human keratinocytes were without the presence of serum (KGM medium). Prior to treatment with BAC-3, passage #3 cells were grown in KGM medium for 7 days with one medium change (until 80% confluent). For preparing positive apoptosis control, plates were iπadiated with UVB light for 66 seconds (792 J/m2).
Results and discussions
Four different BAC-3 concentrations were chosen for testing the effect of BAC-3 on mechanism of apoptosis in neonatal human keratinocytes cells: 50 μg/ml, 10 μg/ml, 1 μg/ml and 0.5 μg/ml. According to results. BAC-3 concentrations of 1 μg/ml seems to be the optimal concentration for inducing apoptosis in neonatal human keratinocyte cells grown in KGM (serum free medium). In other words, at 1 μg/ml BAC-3 induction of apoptosis reached its peak and administering higher or lower BAC-3 concentrations weakened the effects. With higher concentrations of BAC-3 it was shown that cell death occuπed by mechanism of cell necrosis ("detergent effect") rather than by programmed cell death (apoptosis).
* KGM medium = Keratinocyte growth medium = medium used for keratinocyte proliferation is serum free medium: Low calcium (14.7mg/L; CaCl2 H20; MW147.0) Medium 154 (M154; Cascade Biologies Inc.) supplemented with lxABAM (100 units of penicillin, 100 μg of streptomycin and 0.25 ig of amphotericin; Gibco) and human keratinocyte growth supplement lxHKGS (0.2% Bovine pituitary extract, 0.2ng/ml epidermal growth factor, 0.18μg/ml hydrocortisone, insulin 5 g/ml and transferin 5ug/ml; Cascade Biologies). Good for month if refrigerated at 2-8 °C.
Fig. 5 shows the effect of BAC-3 on caspase activity in neonatal keratinocyte cells grown in KGM (cell line NHK97-045, passage #3). Cells, at 80% confluence, were administered BAC-3 in KGM at 50μg/ml, lOμg/ml, 1 μg/ml and 0.5μg/ml concentrations. Medium was replaced every two days over the period of 6 days. On day 3, positive apoptosis control was established by iπadiating cells with 792 J/m2 UVB light and incubating them with 1 μg/ml FAS antibody. BAC-3 treated and control cells were harvested and cell densities were adjusted to lxlO6 cells per ml with FM. 300μl cell aliquots were labeled with FAM- VAD-FMK, fluorescent-tagged, iπeversible caspase inhibitor. Unlabelled inhibitor was washed away with buffer and lOOμl aliquots were read at 485nm excitation and 535nm emission with fluorescence detector. Error bars indicate standard deviations.
The procedure for caspase detection in neonatal human keratinocyte cells in
GM* medium (with serum) treated with BAC-3 using fluorescence spectroscopy
Procedure The same procedure as described for keratinocyte cells in KGM, but with presence of serum (GM). Passage #3 cells were grown in KGM medium for 7 days with one medium change. Plates were iπadiated with UVB light for 66 seconds (792 J/m2 )
Results and discussions
lOOμg/ml, 50μg/ml, lOμg/ml, 1 μg/ml and 0.5 μg/ml BAC-3 concentrations were tested on mechanism of apoptosis in neonatal human keratinocyte cells grown in GM (serum). Contrary to the effect of BAC-3 on caspase enzyme activity in serum free medium, apoptosis was inhibited in the presence of serum. According to obtained results, in GM, tested BAC-3 concentrations inhibited process of apoptosis. With presence of serum, BAC- 3 concentration of 50 μg/ml seems to be the optimal concentration for inhibiting apoptosis. Administering higher or lower concentrations of BAC-3 had the tendency to level the effect with control.
GM= Growth medium; medium used to initiate keratinocyte differentiation with serum: High calcium (200 mg/L), high glucose (4500 mg/L) Dulbecco's modified Eagle's medium (DMEM; Gibco), supplemented with 10% FBS (Gemini Bio-products), IxL-glutamine (0.292 mg/ml; Gibco), lxABAM (100 units of penicillin, 100 μg of streptomycin and 0.25μg of amphotericin; Gibco), hydrocortisone (400 ng/ml; Sigma), epidermal growth factor (10 ng/ml; Upstate Biotechnology, Inc.) and cholera toxin (83 ng/ml; Calbiochem). Good for one month if refrigerated at 2-8 °C.
Fig. 6 shows the effect of BAC-3 on caspase activity in neonatal keratinocyte cells grown in GM (cell line NHK2000-02, passage #3). Cells, at 80% confluence, were administered BAC-3 in GM at lOOμg/ml, 50μg/ml, lOμg/ml and 1 μg/ml concentrations. Medium was replaced every two days over the period of 6 days. On day 3, positive apoptosis control was established by irradiating cells with 792 J/m2 UVB light and incubating them with 1 μg/ml FAS antibody. BAC-3 treated and control cells were harvested and cell densities were adjusted to lxlO6 cells per ml with FM. 300μl cell aliquots were labeled with FAM- VAD-FMK, fluorescent-tagged, irreversible caspase inhibitor. Unlabelled inhibitor was washed away with buffer and lOOμl aliquots were read at 485nm excitation and 535nm emission with fluorescence detector. Eπor bars indicate standard deviations.
The procedure for visualizing apoptotic fibroblast or keratinocyte cells treated with BAC-3 using fluorescence spectroscopy.
Neonatal human fibroblast or keratinocyte cells were plated on 100 mm plates. When cultures were 80% confluent they were treated with different concentrations of BAC-3. After 6 days, cells were collected and cell densities were adjusted to 1x10 cells/ml. 300 μl aliquots were transfeπed into microcentrifuge tubes. Protected from light, 10 μl of 30x was added to each aliquot. Cells were incubated for 1 hr in 37 °C, 5% CO2 incubator.
Note: The following steps were continued in dark.
After 1 hr incubation with FAM-VAD-FMK. cells were incubated 5 more minutes with 1.5 μl of Hoechst stain in 37 °C, 5% C02 incubator. 800 μl of lx Wash buffer was added to each aliquot, gently vortexed and centrifuged at 7000 rpm for 5 minutes at room temperature. Supernatant was removed and pellet was washed one more time with lx Wash buffer. Finally, pellet was re-suspended in 200 μl lx Wash buffer and cells in microcentrifuge tubes were placed on ice. In order to exclude dead cells from analysis, 1 μl of Propidium Iodide was added to each cell suspension. One drop (15 μl) was placed on microscope slide and covered with coverslip . Caspase positive cells appeared light green on microscope (Nikon Eclipse E-600 ) under FITC filter (480 exciter, 535 emitter; Chroma standard filter sets) and dead cells (PI stained) appeared red. Cells with apoptotic morphology appeared blue on Nikon Eclipse E-600 microscope under DAPI filter (360 exciter, 460 emitter; Chroma standard filter sets) with visible condensation and fragmentation of nuclear chromatin (Hoechst stain). The same apoptotic cells stained positive for caspase under FITC filter. Photos of cells were taken under 60X oil immersion objective with camera (Nikon FDX-35 camera).
These results show that in the presence of serum, in neonatal human keratinocytes, BAC-3 acts to inhibit the process of apoptosis which is indicated as decrease in the level of active caspases and reflected as increased cell growth and viability and is reflective of the ability to re-epithelize skin, particularly for treatment of wound healing, gum disease and for periodontal regeneration.
Obviously, additional modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

Claims

CLAIMS:
1. A method for periodontal regeneration, comprising: applying to an area in need thereof, an effective amount of a composition comprising one or more rhamnolipids of Formula 1 :
Figure imgf000030_0001
wherein R1 = H, unsubstituted α-L-rhamnopyranosyl, α-L-rhamnopyranosyl substituted at the 2 position with a group of formula -0-C(=O)-CH=CH-R5, or -O-C(=O)-CH=CH-R5;
R2 = H, lower alkyl, -CHR4-CH2-COOH or -CHR4-CH2-COOR6;
R3 = -(CH2)X-CH3, wherein x = 4-19;
R4 = -(CH2)y-CH3, wherein y = 1-19;
R5 = -(CH2)Z-CH3, wherein z = 1-12; and
R6 = lower alkyl.
2. The method as claimed in claim 1, where said rhamnolipid of Formula 1 is α-L- rhamnopyranosyl-(l,2)-α-L-rhamnopyranosyl)-3-hyroxydecanoyl-3-hydroxydecanoic acid having the following formula:
Figure imgf000031_0001
3. The method as claimed in claim 1, wherein said one or more rhamnolipids of Formula 1 are selected from the group consisting of compounds of Formula 1 wherein:
Ri = -0-C(=0)-CH=CH-R5, R2 = -CHR4-CH2-COOH, R3 = -(CH2)6-CH3, R4 = -(CH2)2-CH3, and R5 = -(CH2)6-CH3;
R1 = α-L-rhamnopyranosyl substituted at the 2-position by -O-C(=0)-CH=CH-R5, R2 = -CHR4-CH2-COOH, R3 = -(CH2)6-CH3, R4 = -(CH2)6-CH3, and R5 = -(CH2)6-CH3;
RI = -0-C(=0)-CH=CH-R5, R2 = -CHR4-CH2-COOCH3, R3 = -(CH2)6-CH3, R4 = -(CH2)2-CH3, and R5 = -(CH2)6-CH3; and
R1 = α-L-rhamnopyranosyl substituted at the 2-position by -0-C(=O)-CH=CH-R5, R2 = -CHR4-CH2-COOCH3, R3 = -(CH2)6-CH3, R4 = -(CH2)6-CH3, and R5 = -(CH2)6-CH3.
4. The method as claimed in claim 1, wherein said composition is in a form selected from the group consisting of neat liquid, solutions, suspensions, dispersions, emulsions, creams, tinctures, powders, ointments, gels, pastes and lotions.
5. The method as claimed in claim 4, wherein said composition is an ointment, gel, paste or liquid.
6. The method as claimed in claim 5, wherein said composition is a gel, paste or liquid.
7. The method as claimed in claim 1, wherein said composition comprises from 0.001 to 5.0%) by weight of said one or more rhamnolipids of Formula 1, based on total weight of the composition.
8. The method as claimed in claim 7, wherein said one or more rhamnolipids are present in said composition in an amount of from 0.01 to 1% by weight, based on total weight of the composition.
9. The method as claimed in claim 4, wherein said composition further comprises a earner selected from physiologically acceptable organic solvents.
10. The method as claimed in claim 9, wherein said physiologically acceptable organic solvent is ethanol or DMSO.
11. A method for treatment of gum disease, comprising: applying to an area in need thereof, an effective amount of a composition comprising one or more rhamnolipids of Formula 1 :
Figure imgf000033_0001
wherein R = H, unsubstituted α-L-rhamnopyranosyl, α-L-rhamnopyranosyl substituted at the 2 position with a group of formula -0-C(=O)-CH=CH-R5, or -O-C(=0)-CH=CH-R5;
R2 = H, lower alkyl, -CHR4-CH2-COOH or -CHR4-CH2-COOR6;
R3 = -(CH2)X-CH3, wherein x = 4-19;
R4 = -(CH2)y-CH3, wherein y = 1-19;
R5 = -(CH2)Z-CH3, wherein z = 1-12; and
R6 = lower alkyl.
12. The method as claimed in claim 11, where said rhamnolipid of Formula 1 is α-L- rhamnopyranosyl-(l,2)-α-L-rhamnopyranosyl)-3-hyroxydecanoyl-3-hydroxydecanoic acid having the following formula:
Figure imgf000034_0001
13. The method as claimed in claim 11, wherein said one or more rhamnolipids of Formula 1 are selected from the group consisting of compounds of Formula 1 wherein:
R = -0-C(=0)-CH=CH-R5, R2 = -CHR4-CH2-COOH, R3 = -(CH2)6-CH3, R4 = -(CH2)2-CH3, and R5 = -(CH2)6-CH3;
R1 = α-L-rhamnopyranosyl substituted at the 2-position by -O-C(=0)-CH=CH-R5, R2 = -CHR4-CH2-COOH, R3 = -(CH2)6-CH3, R4 = -(CH2)6-CH3, and R5 = -(CH2)6-CH3;
R1 = -0-C(=0)-CH=CH-R5, R2 = -CHR4-CH2-COOCH3, R3 = -(CH2)6-CH3, R4 = -(CH2)2-CH3, and R5 = -(CH2)6-CH3; and
R1 = α-L-rhamnopyranosyl substituted at the 2-position by -O-C(=O)-CH=CH-R5, R2 = -CHR4-CH2-COOCH3, R3 = -(CH2)6-CH3, R4 = -(CH2)6-CH3, and R5 = -(CH2)6-CH3.
14. The method as claimed in claim 11, wherein said composition is in a form selected from the group consisting of neat liquid, solutions, suspensions, dispersions, emulsions, creams, tinctures, powders, ointments, gels, pastes and lotions.
15. The method as claimed in claim 14, wherein said composition is an ointment, gel, paste or liquid.
16. The method as claimed in claim 15, wherein said composition is a gel, paste or liquid.
17. The method as claimed in claim 11, wherein said composition comprises from 0.001 to 5.0% by weight of said one or more rhamnolipids of Formula 1, based on total weight of the composition.
18. The method as claimed in claim 17, wherein said one or more rhamnolipids are present in said composition in an amount of from 0.01 to 1% by weight, based on total weight of the composition.
19. The method as claimed in claim 11, wherein said composition further comprises a caπier selected from physiologically acceptable organic solvents.
20. The method as claimed in claim 19, wherein said physiologically acceptable organic solvent is ethanol or DMSO.
21. The method as claimed in claim 11, wherein said gum disease is gingivitis.
PCT/US2000/017875 1999-08-05 2000-08-07 Use of rhamnolipids in wound healing, treatment and prevention of gum disease and periodontal regeneration WO2001010447A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP00952141A EP1200100B1 (en) 1999-08-05 2000-08-07 Use of rhamnolipids in wound healing, treatment and prevention of gum disease and periodontal regeneration
US10/048,923 US7129218B2 (en) 1999-08-05 2000-08-07 Use of rhamnolipids in wound healing, treatment and prevention of gum disease and periodontal regeneration
DE60044674T DE60044674D1 (en) 1999-08-05 2000-08-07 USE OF RHAMNOLIPIDES FOR WOUND HEALING, INCLUDING PERIODONTAL REGENERATION
AT00952141T ATE473749T1 (en) 1999-08-05 2000-08-07 USE OF RHAMNOLIPIDS FOR WOUND HEALING, TREATMENT AND PREVENTION OF GUM DISEASE AND PERIODONTAL REGENERATION
CA002378557A CA2378557C (en) 1999-08-05 2000-08-07 Use of rhamnolipids in wound healing, treatment and prevention of gum disease and periodontal regeneration
AU64893/00A AU6489300A (en) 1999-08-05 2000-08-07 Use of rhamnolipids in wound healing, treatment and prevention of gum disease and periodontal regeneration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14726599P 1999-08-05 1999-08-05
US60/147,265 1999-08-05

Publications (1)

Publication Number Publication Date
WO2001010447A1 true WO2001010447A1 (en) 2001-02-15

Family

ID=22520899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/017875 WO2001010447A1 (en) 1999-08-05 2000-08-07 Use of rhamnolipids in wound healing, treatment and prevention of gum disease and periodontal regeneration

Country Status (7)

Country Link
US (1) US7129218B2 (en)
EP (1) EP1200100B1 (en)
AT (1) ATE473749T1 (en)
AU (1) AU6489300A (en)
CA (1) CA2378557C (en)
DE (1) DE60044674D1 (en)
WO (1) WO2001010447A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2074889A1 (en) * 2006-10-17 2009-07-01 Idemitsu Kosan Co., Ltd. Animal feed additive and animal feed
US8557864B2 (en) 2007-09-19 2013-10-15 Nagoya Industrial Science Research Institute Agent having neurotrophic factor-like activity
EP2786743A1 (en) * 2013-04-02 2014-10-08 Evonik Industries AG Mixture composition containing rhamnolipids
EP2786742A1 (en) * 2013-04-02 2014-10-08 Evonik Industries AG Cosmetics containing rhamnolipids
WO2015030702A3 (en) * 2013-08-26 2015-07-09 Keith Desanto High purity rhamnolipid cosmetic application
US9474283B2 (en) 2010-12-09 2016-10-25 Y&B Mother's Choice Ltd. Formulations comprising saponins and uses thereof
WO2017144317A1 (en) 2016-02-22 2017-08-31 Evonik Degussa Gmbh Rhamnolipid esters as nonionic surfactants for cosmetic use
US10064881B2 (en) 2010-12-09 2018-09-04 Y&B Mother's Choice Ltd. Natural formulations
US10117827B2 (en) 2013-12-08 2018-11-06 Y&B Mother's Choice Ltd. Preparations for suppressing or attenuating ocular irritancy
WO2019038125A1 (en) 2017-08-24 2019-02-28 Evonik Degussa Gmbh Rhamnolipid derivatives as emulsifiers and dispersing aids
US10434058B2 (en) 2010-12-09 2019-10-08 Y&B Mother's Choice Ltd. Natural formulations
WO2022017844A1 (en) 2020-07-22 2022-01-27 Evonik Operations Gmbh New rhamnolipid oligo-esters
EP4015588A1 (en) 2020-12-15 2022-06-22 Evonik Operations GmbH Use of rhamnolipids and / or sophorolipids in coating compositions for maintaining a homogeneous colour image of the dry coating film and / or for increasing work safety in the production of coating compositions
EP4015583A1 (en) 2020-12-15 2022-06-22 Evonik Operations GmbH Use of rhamnolipids and / or sophorolipids for increasing the yield and / or for maintaining the application properties upon storage of coating compositions

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2660055A1 (en) * 1990-03-26 1991-09-27 Serva Soc PRESSURE FILTRATION AND STABILIZATION DEVICE FOR VARIABLE FLOW VENTILATION INSTALLATION.
US20090186761A1 (en) * 2008-01-18 2009-07-23 Cleareso, Llc Use of bio-derived surfactants for mitigating damage to plants from pests
US20090186767A1 (en) * 2008-01-18 2009-07-23 Cleareso, Llc Use of surfactants for mitigating damage to plants from pests
US20090187484A1 (en) * 2008-01-18 2009-07-23 Cleareso, Llc Soil treatments with carbon dioxide
US20100115833A1 (en) * 2008-11-10 2010-05-13 Green Knight Technologies, Llc Soil treatments with greenhouse gas
US8592381B2 (en) * 2008-12-18 2013-11-26 Rhamnopharma Inc. Method for treating rhinitis and sinusitis by rhamnolipids
CN105326848A (en) * 2015-11-26 2016-02-17 浙江大学 Application of rhamnolipid in preparation of anti-fibrosis medicinal preparation
CN110267641A (en) * 2017-02-10 2019-09-20 赢创德固赛有限公司 Oral care composition containing at least one biosurfactant and fluoride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409703A (en) * 1993-06-24 1995-04-25 Carrington Laboratories, Inc. Dried hydrogel from hydrophilic-hygroscopic polymer
US5514661A (en) * 1992-04-10 1996-05-07 Piljac; Goran Immunological activity of rhamnolipids
WO1999043334A1 (en) * 1998-02-24 1999-09-02 Tatjana Piljac Use of rhamnolipids in wound healing, treating burn shock, atherosclerosis, organ transplants, depression, schizophrenia and cosmetics

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254538A (en) * 1989-10-04 1993-10-19 Trustees Of Boston University Method of treating periodontal disease
US5652274A (en) * 1991-03-01 1997-07-29 Martin; Alain Therapeutic-wound healing compositions and methods for preparing and using same
BE1005704A4 (en) * 1992-02-04 1993-12-21 Piljac Goran & Piljac Visnja Rhamnolipid based pharmaceutical preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514661A (en) * 1992-04-10 1996-05-07 Piljac; Goran Immunological activity of rhamnolipids
US5409703A (en) * 1993-06-24 1995-04-25 Carrington Laboratories, Inc. Dried hydrogel from hydrophilic-hygroscopic polymer
WO1999043334A1 (en) * 1998-02-24 1999-09-02 Tatjana Piljac Use of rhamnolipids in wound healing, treating burn shock, atherosclerosis, organ transplants, depression, schizophrenia and cosmetics

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2074889A4 (en) * 2006-10-17 2013-10-30 Idemitsu Kosan Co Animal feed additive and animal feed
EP2074889A1 (en) * 2006-10-17 2009-07-01 Idemitsu Kosan Co., Ltd. Animal feed additive and animal feed
US8557864B2 (en) 2007-09-19 2013-10-15 Nagoya Industrial Science Research Institute Agent having neurotrophic factor-like activity
JP5447954B2 (en) * 2007-09-19 2014-03-19 公益財団法人名古屋産業科学研究所 Neurotrophic factor-like agent
US9474283B2 (en) 2010-12-09 2016-10-25 Y&B Mother's Choice Ltd. Formulations comprising saponins and uses thereof
US10434058B2 (en) 2010-12-09 2019-10-08 Y&B Mother's Choice Ltd. Natural formulations
US10064881B2 (en) 2010-12-09 2018-09-04 Y&B Mother's Choice Ltd. Natural formulations
US10292924B2 (en) 2013-04-02 2019-05-21 Evonik Industries Ag Mixture composition comprising rhamnolipids
EP2786743A1 (en) * 2013-04-02 2014-10-08 Evonik Industries AG Mixture composition containing rhamnolipids
EP2786742A1 (en) * 2013-04-02 2014-10-08 Evonik Industries AG Cosmetics containing rhamnolipids
WO2015030702A3 (en) * 2013-08-26 2015-07-09 Keith Desanto High purity rhamnolipid cosmetic application
US10117827B2 (en) 2013-12-08 2018-11-06 Y&B Mother's Choice Ltd. Preparations for suppressing or attenuating ocular irritancy
WO2017144317A1 (en) 2016-02-22 2017-08-31 Evonik Degussa Gmbh Rhamnolipid esters as nonionic surfactants for cosmetic use
WO2019038125A1 (en) 2017-08-24 2019-02-28 Evonik Degussa Gmbh Rhamnolipid derivatives as emulsifiers and dispersing aids
CN110997069A (en) * 2017-08-24 2020-04-10 赢创运营有限公司 Rhamnolipid derivatives as emulsifiers and dispersing aids
US11696885B2 (en) 2017-08-24 2023-07-11 Evonik Operations Gmbh Rhamnolipid derivatives as emulsifiers and dispersing aids
WO2022017844A1 (en) 2020-07-22 2022-01-27 Evonik Operations Gmbh New rhamnolipid oligo-esters
EP4015588A1 (en) 2020-12-15 2022-06-22 Evonik Operations GmbH Use of rhamnolipids and / or sophorolipids in coating compositions for maintaining a homogeneous colour image of the dry coating film and / or for increasing work safety in the production of coating compositions
EP4015583A1 (en) 2020-12-15 2022-06-22 Evonik Operations GmbH Use of rhamnolipids and / or sophorolipids for increasing the yield and / or for maintaining the application properties upon storage of coating compositions
EP4015584A1 (en) 2020-12-15 2022-06-22 Evonik Operations GmbH Use of rhamnolipids and / or sophorolipids for increasing the yield and / or for maintaining the application properties of coating compositions
EP4015589A1 (en) 2020-12-15 2022-06-22 Evonik Operations GmbH Use of rhamnolipids and / or sophorolipids in coating compositions for maintaining a homogeneous colour image of the dry coating film and / or for increasing work safety in the production of coating compositions
US11820913B2 (en) 2020-12-15 2023-11-21 Evonik Operations Gmbh Use of rhamnolipids and/or sophorolipids for increasing coverage and/or for maintaining application properties in the course of storage of coating compositions

Also Published As

Publication number Publication date
CA2378557C (en) 2009-12-08
CA2378557A1 (en) 2001-02-15
EP1200100B1 (en) 2010-07-14
AU6489300A (en) 2001-03-05
EP1200100A4 (en) 2004-05-19
US7129218B2 (en) 2006-10-31
US20040224905A1 (en) 2004-11-11
DE60044674D1 (en) 2010-08-26
ATE473749T1 (en) 2010-07-15
EP1200100A1 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
US7129218B2 (en) Use of rhamnolipids in wound healing, treatment and prevention of gum disease and periodontal regeneration
US20090220603A1 (en) Use of rhamnolipids in wound healing, treating burn shock, atherosclerosis, organ transplants, depression, schizophrenia and cosmetics
KR100822352B1 (en) Method for preparing a composition by mother-of-pearl extraction, comprising integrally mother-of-pearl components, composition obtained by said method and use thereof in cosmetics and dermatology
EP0668072B1 (en) Cosmetic composition containing a plant extracellular matrix extract
EP1579221A2 (en) Uses of hmgb, hmgn, hmga proteins
JP2012502020A (en) Cosmetic composition comprising polyhydroxylate (POLYHYDROXYLTATE) fatty alcohol and derivatives and uses thereof
EP1889623A2 (en) Use of rhamnolipids in wound healing, treating burn shock, atherosclerosis, organ transplants, depression, schizophrenia and cosmetics
US7262171B1 (en) Use of rhamnolipids in wound healing, treating burn shock, atherosclerosis, organ transplants, depression, schizophrenia and cosmetics
KR20140079571A (en) Composition for External Application to the Skin Using an Extract of Pachyrhizus erosus
JP2002526395A (en) Use of Bold extract in cosmetic or dermatological products
WO1999009945A1 (en) Use of the rhoeo discolor plant extracts in cosmetics and pharmaceutics, in particular in dermatology
US5994399A (en) Method of regenerating collagen-containing tissues with misoprostol
KR20210133391A (en) Method for preparing a composition by mother-of-pearlextraction, comprising integrally mother-of-pearlcomponents, composition obtained by said method anduse thereof in cosmetics and dermatology
JPH06128141A (en) External agent for skin
JP2001253817A (en) Collagen synthesis promoter and method for producing the same and skin care preparation containing the same
KR20240068867A (en) Use of porphyra334-encapsulated extracellular vesicles
JP2007508369A (en) Collagen synthesis promoter and skin external preparation composition containing the same
KR20160112546A (en) Composition for improving skin conditions comprising syringic acid
KR20230154764A (en) Composition for preventing or treating hair loss or stimulating hair sprouting or hair growth comprising decellularized extracellular matrix derived from keratinocytes
CN115400129A (en) Composition for changing cell aging phenotype or preventing skin aging
RU2221545C1 (en) Cosmetic product improving physiological state of skin
CN113876611A (en) Application of sialic acid in preparation of preparation for promoting collagen production
JP2004137191A (en) External preparation for skin
JP2003277249A (en) Skin care preparation, epidermal cell activator, dermal fibroblast activator and collagen production promotor
KR20150118394A (en) Composition for improving skin conditions containing a combination of cytokines

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 64893/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2378557

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2000952141

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000952141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10048923

Country of ref document: US

ENP Entry into the national phase

Ref country code: US

Ref document number: 2002 48923

Date of ref document: 20020523

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP