WO2001007826A1 - Diver tank and method for the production thereof - Google Patents

Diver tank and method for the production thereof Download PDF

Info

Publication number
WO2001007826A1
WO2001007826A1 PCT/EP2000/006383 EP0006383W WO0107826A1 WO 2001007826 A1 WO2001007826 A1 WO 2001007826A1 EP 0006383 W EP0006383 W EP 0006383W WO 0107826 A1 WO0107826 A1 WO 0107826A1
Authority
WO
WIPO (PCT)
Prior art keywords
diving
container
gas
stainless steel
compressed gas
Prior art date
Application number
PCT/EP2000/006383
Other languages
German (de)
French (fr)
Inventor
Klaus Markhoff
Gesa Bayer
Martin Kesten
Original Assignee
Messer Griesheim Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim Gmbh filed Critical Messer Griesheim Gmbh
Priority to DE50011581T priority Critical patent/DE50011581D1/en
Priority to EP00954437A priority patent/EP1206662B1/en
Priority to AT00954437T priority patent/ATE309505T1/en
Publication of WO2001007826A1 publication Critical patent/WO2001007826A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/14Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of aluminium; constructed of non-magnetic steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/24Making hollow objects characterised by the use of the objects high-pressure containers, e.g. boilers, bottles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/10Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for protection against corrosion, e.g. due to gaseous acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2231/00Material used for some parts or elements, or for particular purposes
    • B63B2231/02Metallic materials
    • B63B2231/04Irons, steels or ferrous alloys
    • B63B2231/06Stainless steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/18Air supply
    • B63C11/22Air supply carried by diver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0617Single wall with one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/0157Details of mounting arrangements for transport
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0329Valves manually actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2172Polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/018Adapting dimensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/053Reducing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0781Diving equipments

Definitions

  • the invention relates to a diving bottle with a compressed gas container for receiving an oxygen-containing immersion gas and with a withdrawal valve.
  • the invention relates to a method for producing a diving bottle in that a tubular compressed gas container is closed at both ends and is provided with a withdrawal valve for a diving gas.
  • the compressed gas container usually consists of ferritic steel or aluminum.
  • Compressed gas containers made of steel are characterized by high mechanical strength, but are at risk of corrosion if they come into contact with water. This is particularly evident when diving bottles are used in brackish and sea water. There is not only the risk of corrosion of the outer surface, but also the possibility of internal corrosion if water is carried in improperly.
  • New submersible gases which are characterized by a high proportion of oxygen, further increase the risk of internal corrosion of the pressure gas container, since with conventional ferritic pressure container steels the rate of corrosion increases with increasing oxygen partial pressure of the submersible gas.
  • pressurized gas containers for the known diving bottles takes place, for example, by means of the known hot or deep drawing processes from tubes or sheets made of ferritic pressure container steel.
  • the pressure vessel thus produced is then closed with a withdrawal valve for the immersion gas, such as a valve.
  • the invention has for its object to provide a diving bottle, which is characterized by high mechanical strength, corrosion resistance and operational safety, and a
  • the compressed gas container is made of stainless steel.
  • stainless steel is understood to mean a rustproof chromium-nickel-stainless steel alloy. Suitable stainless steel alloys form self-healing, dense passive layers on their surface in contact with oxygen, which permanently prevent electrolytic corrosion. The passivation of the surface is intensified at high oxygen concentrations in the filling gas, so that the diving bottle according to the invention is particularly suitable for use with diving gases with a high oxygen content.
  • the pressurized gas container consists of a stainless steel, which is a metastable austenitic CrNi steel alloy with a titanium and niobium content of max. 0.02 wt .-%, a nickel content between 9 and 1 1 wt .-% and a carbon content between 0.03 and 0.045 wt .-%. Except for minor modifications, the austenitic stainless steels known under the material numbers 1.4301, 1.4306 and 1.4404 (DIN 17440) are suitable for this.
  • the wall thickness of the pressurized gas container is preferably in the range between 2 mm and 5 mm.
  • the mechanical strength and the weight-related storage capacity of such stainless steel containers correspond approximately to that of pressure containers made from conventional ferritic pressure container steels.
  • a further improvement results from an electrolytic polishing of the inner wall of the container.
  • the polish will release
  • the diving bottle according to the invention is particularly suitable for use with a diving gas which has an oxygen content of at least 32% by volume. Due to the high oxygen content, the formation of a dense passivation layer preventing further corrosion on the inner wall of the compressed gas container is facilitated.
  • the alloys corresponding to material numbers 1. 4301, 1.4451 or 1. 4306 according to DIN 17440 may again be mentioned as an example of such steel alloys forming passivation layers.
  • the above-mentioned object is achieved according to the invention, starting from the process described at the outset, in that the compressed gas container is formed from stainless steel by plastic cryoforming of a hollow cylindrical raw form.
  • the cryogenic deformation gives the compressed gas container the desired high strength.
  • the hollow cylindrical raw form is plastically deformed by a certain amount at low temperatures, such as the temperature of the liquid nitrogen. The degree of
  • Solidification goes hand in hand with the proportion of the structure that is transformed into martensite during the deformation. Since the structural fraction converted into martensite increases with a falling deformation temperature and an increasing degree of deformation, the deformation temperature must be below the so-called martensite temperature above which no more martensitic transformation takes place. The best results are obtained if the deformation takes place below the so-called "Ms temperature”. This is the temperature at which the martensite transformation of the structure begins even without simultaneous deformation. It is then only a relative one Low deformation, for example a degree of deformation below 12% is required in order to convert a sufficiently large proportion of the structure into martensite and thus achieve the desired increase in strength.
  • the "Ms temperatures” of conventional stainless steel are in the range of the temperature of the liquid nitrogen.
  • a procedure has proven to be particularly favorable in which the hollow cylindrical raw shape is deformed by applying an internal pressure.
  • Either liquid nitrogen itself or one of these can be used as the medium for generating the internal pressure in the raw form
  • Temperature non-condensing gas e.g. Helium can be used.
  • the internal pressure causes stretching while reducing the raw wall thickness. It has proven to be advantageous to reduce the wall thickness of the raw form by at least 8% of the initial value. The amount of pressure to be used for this depends on the raw shape geometry and the desired material strength.
  • the method for solidifying stainless steel containers by cryoforming is described in the above-mentioned DE-A 36 14 290.
  • FIG. 1 shows a diving bottle according to the invention with a pressurized gas
  • Container and removal equipment based on a longitudinal section.
  • the reference number 1 is assigned to the diving bottle according to the invention as a whole.
  • the diving bottle 1 exists from a compressed gas container 2 for receiving an immersion gas 3 with an opening 4 into which a valve 5 for filling and for removing the immersion gas 3 is inserted in a pressure-tight manner.
  • the compressed gas container 2 consists of an austenitic CrNi
  • Stainless steel alloy which is commercially available under material number 1.4301 (according to DIN 17440), and which is slightly modified in such a way that the titanium and niobium content at approx. 0.02% by weight deviates from the composition according to the DIN regulation. %, the nickel content is 10% by weight and the carbon content is 0.04% by weight.
  • the inner wall 6 of the compressed gas container 2 is polished electrolytically. Its filling volume is 10 1, its wall thickness 3.5 mm and its weight about 12 kg.
  • the compressed gas container 2 is characterized by a high burst pressure of approx. 650 bar, which results in a permissible operating pressure of 200 bar.
  • the immersion gas 3 is an oxygen-rich gas mixture with an oxygen content between 32 and 60 vol.%, which is commercially available under the name "Nitrox”.
  • CrNi stainless steel alloy is made into a raw bottle shape using a conventional process. This is then deformed into the compressed gas container 2 according to FIG. 1 by means of the known “cryoforming technique”.
  • the tube shape with an initial wall thickness of 4 mm is immersed in a container with liquid nitrogen.
  • liquid nitrogen is introduced into the raw form and an internal pressure of approx. 700 bar is generated, which expands the raw form to the final geometry of the pressure gas container 2.
  • the austenitic stainless steel structure solidifies through the formation of martensite.
  • the deformation process is ended. In the exemplary embodiment, the wall thickness of the tube was reduced by a little more than 10% during cryogenic deformation.
  • the pressurized gas container is polished electrolytically.
  • the pressurized gas container 2 thus produced is characterized by low weight, high mechanical strength and corrosion resistance, so that it is particularly well suited for use as a diving bottle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention aims at improving a conventional diver tank (1) comprising a compressed gas tank (2) for receiving an oxygen-containing diving gas (3) and an armature (5) for the removal of the diving gas (3) by providing high mechanical resistance, corrosion resistance and operational safety. According to the invention, this is achieved in that the compressed gas tank (2) is made of special steel. In order to produce said diving tank (1), a tubular compressed gas container(2) is sealed on both ends and equipped with a discharge armature (5) for a diving gas (3). According to the invention, the compressed gas container (2) is formed by plastic cryoforming a hollow cylindrical blank made of special steel.

Description

Taucherflasche und Verfahren für deren HerstellungDiving bottle and process for making it
Die Erfindung betrifft eine Taucherflasche mit einem Druckgas-Behälter für die Aufnahme eines sauerstoffhaltigen Tauchgases und mit einer Entnahmearmatur.The invention relates to a diving bottle with a compressed gas container for receiving an oxygen-containing immersion gas and with a withdrawal valve.
Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung einer Taucherflasche, indem ein rohrförmiger Druckgas-Behälter an seinen beiden Enden verschlossen und mit einer Entnahmearmatur für ein Tauchgas versehen wird.Furthermore, the invention relates to a method for producing a diving bottle in that a tubular compressed gas container is closed at both ends and is provided with a withdrawal valve for a diving gas.
Bei den bekannten Taucherflaschen besteht der Druckgas-Behälter üblicherweise aus ferritischem Stahl oder aus Aluminium. Druckgas- Behälter aus Stahl zeichnen sich durch hohe mechanische Festigkeit aus, sind jedoch bei Kontakt mit Wasser korrosionsgefährdet. Dies zeigt sich insbesondere bei Einsatz der Taucherflaschen in Brack- und Seewasser. Dabei besteht nicht nur die Gefahr der Korrosion der Außenoberfläche, sondern durch eingeschlepptes Wasser bei unsachgemäßer Behandlung auch die Möglichkeit von Innenkorrosion. Neue Tauchgase, die sich durch einen hohen Anteil an Sauerstoff auszeichnen, erhöhen die Gefahr der Innenkorrosion des Druckgas- Behälters noch, da bei den üblichen ferritischen Druckbehälterstählen die Korrosionsgeschwindigkeit mit steigendem Sauerstoff-Partialdruck des Tauchgases zunimmt.In the known diving bottles, the compressed gas container usually consists of ferritic steel or aluminum. Compressed gas containers made of steel are characterized by high mechanical strength, but are at risk of corrosion if they come into contact with water. This is particularly evident when diving bottles are used in brackish and sea water. There is not only the risk of corrosion of the outer surface, but also the possibility of internal corrosion if water is carried in improperly. New submersible gases, which are characterized by a high proportion of oxygen, further increase the risk of internal corrosion of the pressure gas container, since with conventional ferritic pressure container steels the rate of corrosion increases with increasing oxygen partial pressure of the submersible gas.
Neben den Auswirkungen auf die Sicherheit der Flasche können die durch Innenkorrosion entstehenden Korrosionsprodukte auch das Tauchgas verunreinigen und die Funktion der nachgeschalteten Entnahmearmaturen beeinträchtigen. Die Fertigung von Druckgas-Behältern für die bekannten Taucherflaschen erfolgt beispielsweise mittels der bekannten Warmoder Tiefziehverfahren aus Rohren oder Blechen aus ferritischem Druckbehälterstahl. Der so hergestellte Druckbehälter wird anschließend mit einer Entnahmearmatur für das Tauchgas, wie etwa einem Ventil, verschlossen.In addition to the effects on the safety of the bottle, the corrosion products caused by internal corrosion can also contaminate the immersion gas and impair the function of the downstream taps. The production of pressurized gas containers for the known diving bottles takes place, for example, by means of the known hot or deep drawing processes from tubes or sheets made of ferritic pressure container steel. The pressure vessel thus produced is then closed with a withdrawal valve for the immersion gas, such as a valve.
Der Erfindung liegt die Aufgabe zugrunde, eine Taucherflasche bereitzustellen, die sich durch hohe mechanische Festigkeit, Korrosionsbeständigkeit und Betriebssicherheit auszeichnet, und einThe invention has for its object to provide a diving bottle, which is characterized by high mechanical strength, corrosion resistance and operational safety, and a
Herstellungsverfahren dafür anzugeben.Specify manufacturing process for it.
Hinsichtlich der Taucherflasche wird diese Aufgabe ausgehend von der eingangs erwähnten Taucherflasche erfindungsgemäß dadurch gelöst, daß der Druckgas-Behälter aus Edelstahl besteht.With regard to the diving bottle, this object is achieved according to the invention starting from the diving bottle mentioned at the outset in that the compressed gas container is made of stainless steel.
Unter Edelstahl wird hierbei eine nichtrostende Crom-Nickel- Edelstahllegierung verstanden. Geeignete Edelstahllegierungen bilden im Kontakt mit Sauerstoff selbstheilende, dichte Passivschichten an ihrer Oberfläche aus, die eine elektrolytische Korrosion nachhaltig verhindern. Die Passivierung der Oberfläche wird bei hohen Sauerstoffkonzentrationen im Füllgas noch verstärkt, so daß die erfindungsgemäße Taucherflasche für eine Verwendung mit Tauchgasen mit hohem Sauerstoffgehalt besonders geeignet ist.In this context, stainless steel is understood to mean a rustproof chromium-nickel-stainless steel alloy. Suitable stainless steel alloys form self-healing, dense passive layers on their surface in contact with oxygen, which permanently prevent electrolytic corrosion. The passivation of the surface is intensified at high oxygen concentrations in the filling gas, so that the diving bottle according to the invention is particularly suitable for use with diving gases with a high oxygen content.
Bisher stand einer Verwendung von Edelstahl für korrosionsbeständige Druckgas-Behälter die geringe mechanische Festigkeit dieses Werkstoffes im Wege. Durch die an sich bekannte Technik der sogenannten „Kryoverformung" können jedoch auch aus austenitischen Edelstahlen Druckgas-Behälter mit hoher Festigkeit erhalten werden. Dieses Verfahren erlaubt daher die Herstellung einer Taucherflasche mit einem Druckgas-Behälter aus Edelstahl, der sich durch hohe mechanische Festigkeit bei gleichzeitig geringer Wandstärke und einem entsprechend geringem Gewicht auszeichnet. Ein Verfahren zur Herstellung von Druckgas-Behältern aus Edelstahlen durchUntil now, the low mechanical strength of this material has stood in the way of using stainless steel for corrosion-resistant compressed gas containers. The known technique of so-called "cryogenic deformation" can, however, also be used to obtain compressed gas containers with high strength from austenitic stainless steels. This method therefore allows the production of a diving bottle with a pressure gas container made of stainless steel, which is characterized by high mechanical strength with a low wall thickness and a correspondingly low weight. A process for the production of pressurized gas containers from stainless steel
„Kryoverformung" ist in der DE-A 36 14 290 beschrieben."Cryogenic deformation" is described in DE-A 36 14 290.
Druckgas-Behälter mit besonders hoher mechanischer Festigkeit werden erhalten, wenn der Druckgas-Behälter aus einem Edelstahl besteht, der eine metastabile austenitische CrNi-Stahllegierung mit einem Titan- und Niobgehalt von max. 0,02 Gew.-%, einem Nickelgehalt zwischen 9 und 1 1 Gew.-% und einem Kohlenstoffgehalt zwischen 0,03 und 0,045 Gew.-% aufweist. Bis auf geringfügige Modifizierungen sind hierfür beispielsweise die unter den Werkstoffnummern 1.4301 , 1.4306 und 1.4404 (DIN 17440) bekannten, austenitischen Edelstahle geeignet.Pressurized gas containers with particularly high mechanical strength are obtained if the pressurized gas container consists of a stainless steel, which is a metastable austenitic CrNi steel alloy with a titanium and niobium content of max. 0.02 wt .-%, a nickel content between 9 and 1 1 wt .-% and a carbon content between 0.03 and 0.045 wt .-%. Except for minor modifications, the austenitic stainless steels known under the material numbers 1.4301, 1.4306 and 1.4404 (DIN 17440) are suitable for this.
Vorzugsweise liegt die Wandstärke des Druckgas-Behälters im Bereich zwischen 2 mm und 5 mm. Die mechanische Festigkeit und die gewichtsbezogene Speicherkapazität derartiger Edelstahl-Behälter entspricht etwa der von Druckbehältern aus üblichen ferritischen Druckbehälterstählen.The wall thickness of the pressurized gas container is preferably in the range between 2 mm and 5 mm. The mechanical strength and the weight-related storage capacity of such stainless steel containers correspond approximately to that of pressure containers made from conventional ferritic pressure container steels.
Eine weitere Verbesserung ergibt sich durch eine elektrolytische Politur der Behälter-Innenwandung. Durch die Politur wird die Abgabe vonA further improvement results from an electrolytic polishing of the inner wall of the container. The polish will release
Verunreinigungen an das Tauchgas verringert, die Korrosionsanfälligkeit der Innwandung noch weiter vermindert und die Ausbildung einer dichten Passivierungsschicht erleichtert. Die erfindungsgemäße Taucherflasche ist besonders geeignet für die Verwendung mit einem Tauchgas, das einen Sauerstoffgehalt von mindestens 32 Vol-% aufweist. Aufgrund des hohen Sauerstoffgehaltes wird die Bildung einer die weitere Korrosion verhindernden, dichten Passivierungsschicht auf der Innenwandung des Druckgas-Behälters erleichtert. Als Beispiel für derartige Passivierungsschichten bildende Stahllegierungen seien wiederum die Legierungen entsprechend den Werkstoffnummer 1. 4301 , 1.4451 oder 1. 4306 nach DIN 17440 genannt.Contamination of the immersion gas is reduced, the susceptibility to corrosion of the inner wall is further reduced and the formation of a dense passivation layer is facilitated. The diving bottle according to the invention is particularly suitable for use with a diving gas which has an oxygen content of at least 32% by volume. Due to the high oxygen content, the formation of a dense passivation layer preventing further corrosion on the inner wall of the compressed gas container is facilitated. The alloys corresponding to material numbers 1. 4301, 1.4451 or 1. 4306 according to DIN 17440 may again be mentioned as an example of such steel alloys forming passivation layers.
Hinsichtlich des Herstellungsverfahrens wird die oben angegebene Aufgabe ausgehend vom eingangs beschriebenen Verfahren erfindungsgemäß dadurch gelöst, daß der Druckgas-Behälter durch plastische Kryoverformung einer hohlzylindrischen Rohform aus Edelstahl geformt wird.With regard to the production process, the above-mentioned object is achieved according to the invention, starting from the process described at the outset, in that the compressed gas container is formed from stainless steel by plastic cryoforming of a hollow cylindrical raw form.
Durch die Kryoverformung erhält der Druckgas-Behälter die gewünschte hohe Festigkeit. Hierzu wird die hohlzylindrische Rohform um einen bestimmten Betrag bei tiefen Temperaturen, etwa der Temperatur des flüssigen Stickstoffes, plastisch verformt. Der Grad derThe cryogenic deformation gives the compressed gas container the desired high strength. For this purpose, the hollow cylindrical raw form is plastically deformed by a certain amount at low temperatures, such as the temperature of the liquid nitrogen. The degree of
Verfestigung geht dabei mit dem Anteil des Gefüges einher, das bei der Verformung in Martensit umgewandelt wird. Da der in Martensit umgewandelte Gefügeanteil mit sinkender Verformungs-Temperatur und steigendem Verformungsgrad zunimmt, muß die Verformungs- Temperatur unter der sogenannten Martensit-Temperatur liegen, oberhalb von der keine martensitische Umwandlung mehr stattfindet. Die besten Ergebnisse werden erhalten, wenn die Verformung unterhalb der sogenannten „Ms-Temperatur" stattfindet. Dies ist die Temperatur, bei der die Martensit-Umwandlung des Gefüges auch ohne gleichzeitige Verformung einsetzt. Es ist dann nur eine relativ geringe Verformung, beispielsweise ein Verformungsgrad unter 12% erforderlich, um einen ausreichend großen Anteil des Gefüges in Martensit umzuwandeln und so die gewünschte Festigkeitssteigerung zu erreichen. Die „Ms-Temperaturen" üblicher Edelstahle liegen im Bereich der Temperatur des flüssigen Stickstoffs .Solidification goes hand in hand with the proportion of the structure that is transformed into martensite during the deformation. Since the structural fraction converted into martensite increases with a falling deformation temperature and an increasing degree of deformation, the deformation temperature must be below the so-called martensite temperature above which no more martensitic transformation takes place. The best results are obtained if the deformation takes place below the so-called "Ms temperature". This is the temperature at which the martensite transformation of the structure begins even without simultaneous deformation. It is then only a relative one Low deformation, for example a degree of deformation below 12% is required in order to convert a sufficiently large proportion of the structure into martensite and thus achieve the desired increase in strength. The "Ms temperatures" of conventional stainless steel are in the range of the temperature of the liquid nitrogen.
Als besonders günstig hat sich eine Verfahrensweise erwiesen, bei der die hohlzylindrische Rohform durch Anlegen eines Innendrucks verformt wird. Als Medium zur Erzeugung des Innendrucks in der Rohform kann entweder flüssiger Stickstoff selbst oder ein bei dieserA procedure has proven to be particularly favorable in which the hollow cylindrical raw shape is deformed by applying an internal pressure. Either liquid nitrogen itself or one of these can be used as the medium for generating the internal pressure in the raw form
Temperatur nicht kondensierendes Gas z.B. Helium verwendet werden. Durch den Innendruck wird eine Streckung unter Verringerung der Rohform-Wandstärke bewirkt. Als günstig hat es sich erwiesen, die Wandstärke der Rohform um mindestens 8 % vom Anfangswert zu reduzieren. Die Höhe des dafür anzuwendenden Druckes richtet sich nach der Rohform-Geometrie und der angestrebten Materialfestigkeit. Das Verfahren zur Verfestigung von Edelstahl-Behältern durch Kryoverformung ist in der oben erwähnten DE-A 36 14 290 beschrieben.Temperature non-condensing gas e.g. Helium can be used. The internal pressure causes stretching while reducing the raw wall thickness. It has proven to be advantageous to reduce the wall thickness of the raw form by at least 8% of the initial value. The amount of pressure to be used for this depends on the raw shape geometry and the desired material strength. The method for solidifying stainless steel containers by cryoforming is described in the above-mentioned DE-A 36 14 290.
Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels und einer Zeichnung näher erläutert. Als einzige Figur zeigt schematischThe invention is explained in more detail below using an exemplary embodiment and a drawing. The only figure shows schematically
Figur 1 eine erfindungsgemäßeTaucherflasche mit einem Druckgas-1 shows a diving bottle according to the invention with a pressurized gas
Behälter und Entnahmeapparatur anhand eines Längsschnittes.Container and removal equipment based on a longitudinal section.
In Figur 1 ist die Bezugsziffer 1 der erfindungsgemäßen Taucherflasche insgesamt zugeordnet. Die Taucherflasche 1 besteht aus einem Druckgas-Behälter 2 zur Aufnahme eines Tauchgases 3 mit einer Öffnung 4, in die ein Ventil 5 zum Befüllen und zur Entnahme des Tauchgases 3 druckdicht eingesetzt ist.In Figure 1, the reference number 1 is assigned to the diving bottle according to the invention as a whole. The diving bottle 1 exists from a compressed gas container 2 for receiving an immersion gas 3 with an opening 4 into which a valve 5 for filling and for removing the immersion gas 3 is inserted in a pressure-tight manner.
Der Druckgas-Behälter 2 besteht aus einer austenitischen CrNi-The compressed gas container 2 consists of an austenitic CrNi
Edelstahllegierung, die unter der Werkstoffnummer 1.4301 (nach DIN 17440) im Handel erhältlich ist, und die geringfügig in der Art modifiziert ist, daß abweichend von der Zusammensetzung gemäß der DIN-Vorschrift der Titan- und Niobgehalt bei ca. 0,02 Gew.-%, der Nickelgehalt bei 10 Gew.-% und der Kohlenstoffgehalt bei 0,04 Gew.-% liegen. Die Innenwandung 6 des Druckgas-Behälters 2 ist elektrolytisch poliert. Sein Füllvolumen beträgt 10 1, seine Wandstärke 3,5 mm und sein Gewicht etwa 12 kg. Der Druckgas-Behälter 2 zeichnet sich durch einen hohen Berstdruck von ca. 650 bar aus, woraus sich ein zulässiger Betriebsdruck von 200 bar ergibt.Stainless steel alloy, which is commercially available under material number 1.4301 (according to DIN 17440), and which is slightly modified in such a way that the titanium and niobium content at approx. 0.02% by weight deviates from the composition according to the DIN regulation. %, the nickel content is 10% by weight and the carbon content is 0.04% by weight. The inner wall 6 of the compressed gas container 2 is polished electrolytically. Its filling volume is 10 1, its wall thickness 3.5 mm and its weight about 12 kg. The compressed gas container 2 is characterized by a high burst pressure of approx. 650 bar, which results in a permissible operating pressure of 200 bar.
Bei dem Tauchgas 3 handelt es sich um ein sauerstoffreiches Gasgemisch mit einem Sauerstoffgehalt zwischen 32 und 60 Vol.-%, das unter der Bezeichnung „Nitrox" im Handel erhältlich ist.The immersion gas 3 is an oxygen-rich gas mixture with an oxygen content between 32 and 60 vol.%, Which is commercially available under the name "Nitrox".
Nachfolgend wird ein Ausführungsbeispieles für das Verfahren zur Herstellung der erfindungsgemäßen Taucherflasche anhand Figur 1 näher erläutert.An exemplary embodiment of the method for producing the diving bottle according to the invention is explained in more detail below with reference to FIG. 1.
Aus einem Rohr aus der oben genannten modifizierten austenitischenFrom a tube made from the above modified austenitic
CrNi-Edelstahllegierung wird mit einem herkömmlichen Verfahren eine Flaschen-Rohform hergestellt. Diese wird anschließend mittels der bekannten „Kryoverformungs-Technik" zu dem Druckgas-Behälter 2 gemäß Figur 1 verformt. Hierzu wird die Rohrform mit einer anfänglichen Wandstärke von 4 mm in einen Behälter mit flüssigem Stickstoff eingetaucht. Mittels einer Kryo-Hochdruckpumpe wird flüssiger Stickstoff in die Rohform eingeleitet und so ein Innendruck von ca. 700 bar erzeugt, der die Rohform auf die Endgeometrie des Drcukgas-Behälters 2 dehnt. Dabei verfestigt sich das austenitische Edelstahl-Gefüge durch Martensit- Bildung. Nach Erreichen der Soll-Wandstärke des Druckgas-Behälters 2 von 3,5 mm wird der Verformungsprozess beendet. Im Ausführungsbeispiel wurde bei der Kryoverformung die Wandstärke des Rohres um etwas mehr als 10 % reduziert. Im Anschluß an denCrNi stainless steel alloy is made into a raw bottle shape using a conventional process. This is then deformed into the compressed gas container 2 according to FIG. 1 by means of the known “cryoforming technique”. For this purpose, the tube shape with an initial wall thickness of 4 mm is immersed in a container with liquid nitrogen. Using a cryogenic high-pressure pump, liquid nitrogen is introduced into the raw form and an internal pressure of approx. 700 bar is generated, which expands the raw form to the final geometry of the pressure gas container 2. The austenitic stainless steel structure solidifies through the formation of martensite. After the target wall thickness of the compressed gas container 2 of 3.5 mm has been reached, the deformation process is ended. In the exemplary embodiment, the wall thickness of the tube was reduced by a little more than 10% during cryogenic deformation. Following the
Kryo-Verformungsprozess wird der Druckgasbehälter elektrolytisch poliert.Cryogenic deformation process, the pressurized gas container is polished electrolytically.
Auf den freien Oberflächen der für die Hersteilung des Behälters eingesetzten Edelstahliegierung bilden sich in Kontakt mit Sauerstoff dichte Passivierungsschichten aus, die einen weiteren oxidativen Angriff weitgehend verhindern. Der so hergestellte Druckgas-Behälter 2 zeichnet sich durch geringes Gewicht, hohe mechanische Festigkeit und Korrosionsbeständigkeit aus, so daß er sich für einen Einsatz als Tauchflasche besonders gut eignet. On contact with oxygen, dense passivation layers form on the free surfaces of the stainless steel alloy used to manufacture the container, which largely prevent further oxidative attack. The pressurized gas container 2 thus produced is characterized by low weight, high mechanical strength and corrosion resistance, so that it is particularly well suited for use as a diving bottle.

Claims

Patentansprüche claims
1. Taucherflasche, mit einem Druckgas-Behälter für die Aufnahme eines sauerstoffhaltigen Tauchgases und mit einer Armatur zur Entnahme des Tauchgases, dadurch gekennzeichnet, daß der1. diving bottle, with a pressurized gas container for receiving an oxygen-containing diving gas and with a fitting for removing the diving gas, characterized in that the
Behälter aus Edelstahl besteht.Container made of stainless steel.
2. Taucherflasche nach Anspruch 1 , dadurch gekennzeichnet, daß der Edelstahl eine metastabile austenitische CrNi-Stahllegierung mit einem Titan- und Niobgehalt von maximal 0,02 Gew.-%, einem2. diving bottle according to claim 1, characterized in that the stainless steel is a metastable austenitic CrNi steel alloy with a titanium and niobium content of at most 0.02 wt .-%, one
Nickelgehalt zwischen 9 und 11 Gew.-% und einem Kohlenstoffgehalt zwischen 0,03 und 0,045 Gew.-% ist.Nickel content between 9 and 11 wt .-% and a carbon content between 0.03 and 0.045 wt .-%.
3. Taucherflasche nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Behälter eine Wandstärke im Bereich von 2 mm bis 5 mm hat.3. diving bottle according to claim 1 or 2, characterized in that the container has a wall thickness in the range of 2 mm to 5 mm.
4. Taucherflasche nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Behälter eine Innenwandung aufweist, die elektrolytisch poliert ist.4. diving bottle according to one of claims 1 to 3, characterized in that the container has an inner wall which is electrolytically polished.
5. Taucherflasche nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Behälter zur Aufnahme eines Tauchgases mit einem Sauerstoffgehalt von mindestens 32 Vol-% vorgesehen ist.5. Diving bottle according to one of claims 1 to 4, characterized in that the container is provided for receiving an immersion gas with an oxygen content of at least 32% by volume.
6. Verfahren zur Herstellung einer Taucherflasche nach einem der Ansprüche 1 bis 5, indem ein rohrförmiger Druckgas-Behälter an seinen beiden Enden verschlossen und mit einer Entnahmearmatur für ein Tauchgas versehen wird, dadurch gekennzeichnet, daß der Druckgas-Behälter durch plastische Kryoverformung einer hohlzylindrischen Rohform aus einem Edelstahl geformt wird. 6. A method for producing a diving bottle according to one of claims 1 to 5, by a tubular pressure gas container is closed at both ends and provided with a removal valve for a diving gas, characterized in that the pressure gas container by plastic cryogenic deformation of a hollow cylindrical raw form is formed from a stainless steel.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die hohlzylindrischen Rohform durch Anlegen eines Innendrucks verformt wird.7. The method according to claim 6, characterized in that the hollow cylindrical raw shape is deformed by applying an internal pressure.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Wandstärke der Rohform bei der Kryoverformung um mindestens 8 % reduziert wird. 8. The method according to claim 6 or 7, characterized in that the wall thickness of the raw form is reduced by at least 8% during cryogenic deformation.
PCT/EP2000/006383 1999-07-24 2000-07-06 Diver tank and method for the production thereof WO2001007826A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE50011581T DE50011581D1 (en) 1999-07-24 2000-07-06 DIVING BOTTLE AND METHOD FOR THE PRODUCTION THEREOF
EP00954437A EP1206662B1 (en) 1999-07-24 2000-07-06 Diver tank and method for the production thereof
AT00954437T ATE309505T1 (en) 1999-07-24 2000-07-06 DIVING BOTTLE AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19934851.0 1999-07-24
DE19934851A DE19934851A1 (en) 1999-07-24 1999-07-24 Diving bottle and process for making it

Publications (1)

Publication Number Publication Date
WO2001007826A1 true WO2001007826A1 (en) 2001-02-01

Family

ID=7915976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/006383 WO2001007826A1 (en) 1999-07-24 2000-07-06 Diver tank and method for the production thereof

Country Status (4)

Country Link
EP (1) EP1206662B1 (en)
AT (1) ATE309505T1 (en)
DE (2) DE19934851A1 (en)
WO (1) WO2001007826A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011105426B4 (en) * 2011-06-22 2013-03-28 Mt Aerospace Ag Pressure vessel for receiving and storing cryogenic fluids, in particular cryogenic fluids, and method for its production and its use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1093394B (en) * 1956-08-16 1960-11-24 Mannesmann Ag Process for the manufacture of rolled products from stable austenitic chromium-nickel steels
US3917115A (en) * 1974-03-15 1975-11-04 Amf Inc Diving cylinder with liner
DE3614290A1 (en) 1986-04-26 1987-10-29 Messer Griesheim Gmbh COMPRESSED GAS TANKS FROM AN AUSTENITIC STEEL ALLOY
EP0303840A2 (en) * 1987-08-17 1989-02-22 Messer Griesheim Gmbh Valve bushing for the receipt of the gas bottle valve of a pressurised-gas container made from highly alloyed chromium-nickel steels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1093394B (en) * 1956-08-16 1960-11-24 Mannesmann Ag Process for the manufacture of rolled products from stable austenitic chromium-nickel steels
US3917115A (en) * 1974-03-15 1975-11-04 Amf Inc Diving cylinder with liner
DE3614290A1 (en) 1986-04-26 1987-10-29 Messer Griesheim Gmbh COMPRESSED GAS TANKS FROM AN AUSTENITIC STEEL ALLOY
EP0303840A2 (en) * 1987-08-17 1989-02-22 Messer Griesheim Gmbh Valve bushing for the receipt of the gas bottle valve of a pressurised-gas container made from highly alloyed chromium-nickel steels
US4895345A (en) * 1987-08-17 1990-01-23 Messer Griesheim Gmbh Valve socket for the accommodation of the gas bottle valve of compressed gas container made of high-alloy chrome-nickel steels

Also Published As

Publication number Publication date
DE50011581D1 (en) 2005-12-15
EP1206662B1 (en) 2005-11-09
DE19934851A1 (en) 2001-02-01
EP1206662A1 (en) 2002-05-22
ATE309505T1 (en) 2005-11-15

Similar Documents

Publication Publication Date Title
DE60306226T2 (en) Austenitic stainless steel tube and method of making this tube
DE2815772A1 (en) LIGHTWEIGHT CONTAINER FOR THE STORAGE OF FLUIDS UNDER PRESSURE AND THE PROCESS FOR THEIR PRODUCTION
EP1985919B1 (en) Surface-blasted steam generator parts or power plant components
DE2150731A1 (en) Corrosion-resistant, especially stainless steel
DE3614290C2 (en)
DE1608157B1 (en) Corrosion-resistant composite material for structural parts and fuel element casings in nuclear reactors
WO2001007826A1 (en) Diver tank and method for the production thereof
DE3528537C2 (en)
DE2435463A1 (en) HIGH PRESSURE VESSEL AND METHOD FOR ITS MANUFACTURING
DE3609074A1 (en) METHOD FOR PRODUCING COMPOSITE COVER TUBES FOR NUCLEAR FUELS AND PRODUCTS OBTAINED THEREFORE
DE10012619A1 (en) Steel piston ring alloy containing manganese, chromium, iron and other specified elements, is annealed and rapidly nitrided on mandrel before finishing
DE2828196A1 (en) STEEL WITH HIGH TENSION STRENGTH AND LOW CRACKING AND METHOD FOR PRODUCING IT
EP0171675B1 (en) Zirconium alloy cladding tube, particularly for a nuclear-fuel rod, and process for the manufacture of this cladding tube
DE19652335C1 (en) Seamless corrosion resistant steel bottle production used for storing high purity or corrosive gas or liquid
EP0366646B1 (en) Process for producing a clad moulded body
EP1630243B1 (en) Method for manufacturing a workpiece
DE69016741T2 (en) Steel composition.
DE2219287A1 (en) Iron-chromium-molybdenum-nickel-cobalt alloy
WO1993011270A1 (en) Weldable high-strength structural steel with 13 % chromium
DE3507124A1 (en) Oil-drilling pipe welded by electric resistance welding, and method for the manufacture thereof
DE3145236C2 (en) Process for the production of deformation-resistant oxidic protective layers
DE3844164C2 (en)
DE2706514A1 (en) IRON-NICKEL-CHROME-STEEL ALLOY
EP0566950B1 (en) Use of wrought and cast alloys and welding additives for parts contacted by oleum or concentrated hot sulphuric acid and process for the preparation of sulphuric acid
EP3928016B1 (en) Pipe structure and method for producing a pipe structure of this type

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): MX

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000954437

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000954437

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000954437

Country of ref document: EP