WO2001004917A1 - Ferrite magnet and method for preparation thereof - Google Patents

Ferrite magnet and method for preparation thereof Download PDF

Info

Publication number
WO2001004917A1
WO2001004917A1 PCT/JP2000/004553 JP0004553W WO0104917A1 WO 2001004917 A1 WO2001004917 A1 WO 2001004917A1 JP 0004553 W JP0004553 W JP 0004553W WO 0104917 A1 WO0104917 A1 WO 0104917A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
ferrite
firing
temperature
ferrite magnet
Prior art date
Application number
PCT/JP2000/004553
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Taguchi
Yoshiaki Nakagawa
Kiyoyuki Masuzawa
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to KR1020017002911A priority Critical patent/KR20010085763A/en
Priority to MXPA01002383A priority patent/MXPA01002383A/en
Publication of WO2001004917A1 publication Critical patent/WO2001004917A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead

Definitions

  • the present invention relates to a magnetoplumbite type hexagonal ferrite magnet and a method for manufacturing the same.
  • magnetoplumbite (M-type) hexagonal Sr ferrite or Ba ferrite is mainly used, and these are used as sintered magnets or bonded magnets. ing.
  • B r residual magnetic flux density
  • HcJ intrinsic coercivity
  • the type I S ferrite and the Ba ferrite have 4IS of about 4.65 kG.
  • the limits of density and degree of orientation are about 98%, respectively, even for the sintered magnets with the highest values. Therefore, the Br of these magnets is limited to about 4.46 kG, and it has been practically impossible to obtain a high Br of 4.5 kG or more.
  • a ferrite magnet having a high residual magnetic flux density and a high coercive force which cannot be achieved with a conventional M-type magnet.
  • This ferrite magnet is at least one element selected from Sr, Ba, Ca and Pb, and Sr must be used.
  • A as a rare earth element (including Y) and B i force Measure at least one element selected and always including L a, and whether it is C o or C o and Z n Is the element M, the composition ratio of the total of the metal elements of A, R, Fe and M is
  • the invention described in the publication discloses that the Fe ion corresponding to the magnetic moment oriented in the antiparallel direction has a smaller magnetic moment than the Fe ion or has a non-magnetic property.
  • charge compensation is performed in order to suppress the generation of a different phase. Disclosure of the invention
  • the firing process involves the absorption and release of oxygen due to the decomposition and combustion of the binder and dispersant, and the absorption and release of oxygen due to changes in the valences of the constituent elements and structural changes.
  • the oxygen partial pressure in the firing atmosphere is constantly fluctuating. Since the range of the variation greatly varies depending on various conditions such as the composition of the object to be fired, the amount to be charged into the firing furnace, the type of additive, and the amount of added calorie, the oxygen partial pressure is controlled to be always constant. It is difficult.
  • the firing temperature also varies depending on various factors, such as the distance of the object to be fired from the heat source, the height of the object to be fired from the hearth, and the air flow in the furnace that varies depending on the loading condition of the object to be fired. Therefore, it is difficult to control so that the temperature transition pattern is always constant. Therefore, it is difficult to stably realize the original high coercive force with a ferrite magnet whose composition is easily affected by the oxygen partial pressure fluctuation and the temperature fluctuation during firing.
  • continuous furnaces which are effective in improving productivity during mass production, have larger fluctuations in oxygen partial pressure and temperature transition patterns than batch furnaces.
  • a temperature transition pattern in a batch furnace the heating, stabilization, and cooling processes are clear, but in a continuous furnace, there is virtually no stable part, and there is a case where the process directly transitions from heating to cooling.
  • furnaces that require low costs for firing such as gas combustion furnaces that heat by utilizing the combustion of fuel, consume oxygen when burning the fuel, so the oxygen partial pressure in the furnace is extremely high. Fluctuate. Therefore, when using a continuous furnace, a combustion furnace, and a combustion furnace type continuous furnace, a ferrite magnet that is not particularly affected by fluctuations in oxygen partial pressure and temperature during firing is required.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to suppress fluctuations in magnetic properties due to fluctuations in firing conditions when manufacturing a fluorite magnet having a high residual magnetic flux density and a high coercive force.
  • a that contains at least one element selected from Sr, Ba, Ca and Pb is A, and at least one element selected from rare earth elements (including Y) and Bi
  • the element is R and at least one element selected from Co, Mn, Al, Cr, Ni and Zn is M
  • the metal elements are A, R, Fe, M and S containing i, determined Metatoki the content of these metal elements each metal oxide in terms of oxides, 3 content 1_Rei 2 is 1.3 to 2.0 mole 0/0, And,
  • a ferrite magnet containing hexagonal ferrite as the main phase A ferrite magnet containing hexagonal ferrite as the main phase.
  • a method for producing a fusible magnet which includes a firing step of firing a compact of a raw material powder to obtain a sintered magnet, and in this firing step, the oxygen partial pressure in the atmosphere fluctuates.
  • a method for producing a ferrite magnet comprising a firing step of firing a molded body of a raw material powder to obtain a sintered magnet, wherein the firing temperature varies in the firing step.
  • At least one compound containing at least one of the magnet constituent elements is added to the calcined material or particles each having a hexagonal frit as a main phase, and then molded and sintered. 4) A method for manufacturing a flat magnet according to any one of (6) to (6).
  • the element R and the element M are added to a magnet in order to obtain a high residual magnetic flux density and a high coercive force.
  • the firing conditions oxygen partial pressure in the atmosphere
  • the calcination temperature the fluctuation of the magnetic properties was significantly increased. It has been found that optimizing the Si amount and the atomic ratio ⁇ A + R— (F e + M) / 12 ⁇ / S i is extremely effective in suppressing this fluctuation in magnetic properties. .
  • ferrite magnets containing element R and element M are not known. Have been. However, it is not known that when the elements R and M are added, the fluctuations in the magnetic properties due to the fluctuations in the firing conditions are significantly increased. Then, in order to suppress the fluctuation of the magnetic properties, the amount of Si and the atomic ratio ⁇ A + R— (Fe + M) / ⁇ 2 ⁇ / Si are controlled so as to be within the range limited by the present invention. Not even known.
  • the present inventors first produced a calcined material having a hexagonal ferrite containing at least an element A as a main phase, and provided the calcined material with at least one kind of magnet constituent elements, in particular, an element R And the method of adding at least one element selected from element M and then sintering to obtain a magnet (referred to as post-addition method in this specification), the effect of fluctuations in firing conditions during sintering Is especially large. Then, it has been found that the control of the Si amount and the atomic ratio ⁇ A + R— (Fe + M) / 12 ⁇ ZSi in the present invention is particularly effective in this case. Ferrite magnets manufactured by the post-addition method as described above usually have a Curie temperature of 2 or more. A magnet containing Co as the element M and having a Curie temperature of 2 or more has improved magnetic properties as compared to a magnet having the same composition and only one Curie temperature.
  • FIG. 1 is a graph showing the relationship between the oxygen partial pressure in the firing atmosphere and the magnetic properties of the sintered magnet.
  • FIG. 2 is a graph showing the relationship between the firing temperature and the magnetic properties of the sintered magnet.
  • FIG. 3 is a graph showing the relationship between the atomic ratio ⁇ A + R— (F e + M) / 12 ⁇ / S i and the magnetic properties of the sintered magnet.
  • FIG. 4 is a graph showing the relationship between the CaO content and the magnetic properties of the sintered magnet.
  • Figure 5 is a graph showing the relationship between the oxygen concentration in the firing atmosphere and the coercive force HcJ of the sintered magnet.
  • FIG. 6 is a reference graph for explaining how to determine two Curie temperatures. BEST MODE FOR CARRYING OUT THE INVENTION
  • the ferrite magnet of the present invention has a hexagonal magnetoplumbite-type (M-type) ferrite as a main phase, and contains A, R, Fe, M, and Si as metal elements.
  • Element A is at least one element selected from Sr, Ba, Ca and Pb.
  • Element R is at least one element selected from rare earth elements (including Y) and Bi.
  • the element M is at least one element selected from Co, Mn, Al, Cr, 1 ⁇ 1 and 211.
  • the magnet of the present invention when the determined content of in terms the metal oxide of the metal element contained in each general oxides, the content of S i 0 2 1. 3 ⁇ 2. 0 mol 0/0, preferably from 1.4 to 1.9 mol 0/0, and,
  • the iron oxide, strontium oxide, barium oxide, calcium oxide, rare earth element (RE) oxide, bismuth oxide, cobalt oxide, manganese oxide, aluminum, chromium oxide and oxides Kei arsenide respectively F e 2 ⁇ 3, S r O, B a O, C a O, RE 2 ⁇ 3 (however, P reOu C e is C e 0 2, Ding Ding 4 0 7), B i 2 0 3, C o O, converted MnO, the A 1 2 ⁇ 3, C r 2 0 3 and S i 0 2.
  • the atomic ratio RZM in the magnet of the present invention is preferably 0.7 to 1.5.
  • M R in terms of valence balance, as described later.
  • the effect of the present invention is that the magnet of the present invention has at least two different Curie temperatures, these Curie temperatures are in the range of 400 ° C to 480 ° C, and the absolute value of these differences is It is particularly effective when the temperature is 5 ° C or higher.
  • the squareness HkZHcJ can be remarkably improved, and the content of expensive Co and R can be reduced.
  • the Curie temperature (T c) is the temperature at which a magnetic material changes from ferromagnetic to paramagnetic.
  • Tc The Curie temperature
  • a vibrating magnetometer (VSM) is often used to measure magnetization. This is because it is easy to secure a space for installing a heater etc. around the measurement sample.
  • the measurement sample may be a powder or a sintered body, but in the case of a powder, it must be fixed with a heat-resistant adhesive or the like. It is preferable to make the sample as small as possible within a range where the measurement accuracy of the magnetization can be ensured so that the entire sample can be heated uniformly at the time of measurement, and it is preferable to make the heating rate relatively slow.
  • the sample may be anisotropic or isotropic, but in the case of an anisotropic sample, it is preferable to measure in the c-axis direction after magnetization in the c-axis direction, which is the direction of easy magnetization.
  • isotropic samples measure magnetization in the same direction as the magnetization direction.
  • the sample is magnetized by applying a sufficiently large magnetic field of 1 T or more. Normally, after magnetizing at room temperature, the magnetization of the sample is measured while increasing the temperature.At this time, no magnetic field is applied, or the measurement is performed under a weak magnetic field of 0.1 T or less even if applied. Is preferred. This is because if a large magnetic field is applied, paramagnetic components are detected at temperatures above the temperature of the lily, and the Curie temperature tends to be unclear.
  • FIG. 6 shows an example where two Curie temperatures appear.
  • FIG. 6 is a graph showing the vicinity of the Curie temperature of the ⁇ -T curve with the temperature T as the horizontal axis and the magnetization as the vertical axis.
  • the ⁇ - ⁇ curve is convex around the temperature where the magnetization starts to decrease sharply.
  • the magnetization ⁇ changes as follows. First, the magnetization decreases sharply as the temperature rises. Next, the ⁇ - ⁇ curve changes to a downward convex, and the magnetization decreases gradually. Next, the ⁇ - ⁇ curve changes to a convex shape again, and the magnetic ⁇ is sharply reduced.
  • the ⁇ - ⁇ curve changes to a convex downward again, and the magnetization decreases gradually, but finally the magnetization becomes zero.
  • the three intangents at the inflection point that is, the point that changes from upwardly convex to downwardly convex or the point that changes from downwardly convex to upwardly convex, are represented by I, II, ⁇ .
  • the intersection of the tangents I and II is the Curie temperature Tc1 on the low temperature side
  • the intersection of the tangent III and the horizontal axis is the Curie temperature Tc2 on the high temperature side. Even when there are three or more Curie temperatures, each Curie temperature can be obtained from the ⁇ - ⁇ curve according to this method. 553
  • the absolute value of the difference between them is 5 ° C or more, preferably 10 ° C or more.
  • These Curie temperatures are in the range of 400 to 480 ° C, preferably in the range of 400 to 470 ° C, and more preferably in the range of 430 to 460 ° C.
  • the Curie temperature of pure M-type Sr ferrite is about 465 ° C.
  • the ratio ( ⁇ ) of the magnetization ( ⁇ ) at the lowest Curie temperature to the magnetization (aRT) at 25 ° C is preferably 0.5% to 30%, more preferably 1% to 20%. And more preferably 2% to: 10%.
  • ⁇ 1 ⁇ RT is less than 0.5%, it is difficult to detect the Curie temperature on the higher temperature side. It is thought that the multiple Curie temperatures appear because the ferrite crystal has a multiphase structure of magnetically different ⁇ ⁇ -type ferrite. However, even when there are multiple Curie temperatures, single-phase structure consisting of ⁇ ⁇ phase is detected by ordinary X-ray diffraction.
  • the post-addition method described above usually, a plurality of Curie temperatures are present. In this case, the number of Curie temperatures is almost two in most cases.
  • the ratio of the total of A, R, Fe and ⁇ ⁇ ⁇ ⁇ to the total amount of metal elements is preferably
  • R 0.05-10 atoms 0 /. ,
  • the ratio of Sr in A is preferably at least 51 at%, more preferably at least 70 at%, and even more preferably at least 100 at%. If the ratio of Sr in the element A is too low, it is impossible to obtain both the enhancement of the saturation magnetization and the remarkable improvement of the coercive force.
  • the content of the element R is too small, the amount of the solid solution of the element M becomes small, so that the effect of improving the magnetic properties becomes insufficient. If the content of the element R is too large, the amount of non-magnetic hetero phase such as orthofluorite increases. If the content of the element M is too small or too large, the effect of improving the magnetic properties becomes insufficient.
  • the atomic ratio of A, R, Fe and M is
  • x, y, and z are such that the above ⁇ A + R— (F e + M) / 12 ⁇ / S i is within the above-mentioned limited range, and the above-mentioned RZM is within the above-mentioned preferable range. Should be determined, but
  • x is too small, that is, if the amount of the element R is too small, the solid solution amount of the element M in the hexagonal ferrite cannot be increased, so that the effect of improving the saturation magnetic field and the effect of improving the saturation magnetization can be reduced.
  • the effect of improving the isotropic magnetic field becomes insufficient.
  • X is too large, the element R cannot be substituted in the hexagonal ferrite to form a solid solution. For example, orthoferrite containing the element R is generated and the saturation magnetization decreases.
  • y is too small, the effect of improving the saturation magnetization and the effect of improving Z or the anisotropic magnetic field become insufficient.
  • the magnet composition can be measured by fluorescent X-ray quantitative analysis or the like.
  • the presence of the main phase can be confirmed by X-ray diffraction, electron beam diffraction, or the like.
  • Sr and Ca are used as the element A, and it is particularly preferable to use Sr.
  • the proportion of Sr + Ca in A is preferably at least 51 at%, more preferably at least 70 at%, and even more preferably at least 100 at%.
  • the element R preferably at least one kind of lanthanide, more preferably at least one kind of light rare earth, and still more preferably at least one kind of La, Nd and Pr are used, and especially La is always used. Is preferred.
  • the proportion occupied by La in R is preferably at least 40 at%, more preferably at least 70 at%.
  • La is the largest. Therefore, if the ratio of La in R is too low, the amount of solid solution of R cannot be increased, and as a result, the amount of solid solution of element M cannot be increased, and the effect of improving magnetic properties is small. It will be connected.
  • Bi is used in combination, the calcining temperature and the sintering temperature can be lowered, which is advantageous in production.
  • the element M it is preferable to use at least one of Co and Zn, particularly Co.
  • the proportion of Co in M is preferably at least 10 atomic%, more preferably at least 20 atomic%. If the proportion of Co in M is too low, the coercive force is insufficiently improved.
  • the magnet may contain B 2 0 3. It is possible to lower the calcining temperature Contact and sintering temperature by containing B 2 0 3, which is advantageous on production.
  • the content of B 2 0 3 Is preferably 0.5% by weight or less of the whole magnet powder. When B 2 0 3 content is too large, the saturation magnetization will be summer low.
  • the magnet powder may contain at least one of Na, K and Rb. When these are converted into Na 2 ⁇ , K 2 O and Rb 2 ⁇ ⁇ ⁇ ⁇ , respectively, the total of these contents is preferably not more than 3% by weight of the whole magnet powder. If these contents are too high, the saturation magnetization will be low. Can and these elements expressed in M 1, M 1 during ferrite, for example
  • these forces such as Ga, In, Li, Mg, Cu, Ti, Zr, Ge, Sn, V, Nb, Ta, Sb, As, W, Mo, etc. It may be contained as an oxide. These contents are 5% by weight of gallium oxide in terms of oxides of stoichiometric composition. /.
  • the production method of the present invention includes a firing step of firing a compact of the raw material powder to obtain a sintered magnet.
  • the method for producing the raw material powder is not particularly limited.
  • the raw material powder may be produced by a so-called calcination by a solid phase reaction, or may be produced by a coprecipitation method or a hydrothermal synthesis method.
  • the case where the calcining step is provided will be mainly described.
  • the starting materials are mixed, they are calcined to obtain a calcined body.
  • This calcined body is not disintegrated or pulverized to powder to obtain the raw material powder. After the raw material powder is formed, it is fired.
  • the magnet of the present invention having the above-described composition can be used for the above-mentioned firing process even if the oxygen partial pressure in the atmosphere fluctuates and / or the firing temperature (stable temperature) fluctuates. Small fluctuations in magnetic force.
  • the present invention exhibits a remarkably high effect when the oxygen partial pressure in the firing atmosphere is 0.15 atm or less, particularly when it is 0.10 atm or less. Therefore, the present invention is suitable for using a gas continuous furnace in which the oxygen partial pressure in the furnace is low. Further, in the present invention, even if the stable temperature fluctuates within a range of, for example, 60 ° C., fluctuations in magnetic characteristics, particularly fluctuations in coercive force, can be suppressed to a small level.
  • an oxide powder or a compound which becomes an oxide by firing such as a carbonate, a hydroxide, or a nitrate
  • the average particle size of the starting material is not particularly limited, but is usually preferably about 0.1 to 2 / im.
  • iron oxyferrite is preferably used in the form of fine powder.
  • the primary particles having an average particle diameter of preferably 1 ⁇ or less, more preferably 0.5 ⁇ or less are used.
  • the starting material containing the element ⁇ it is preferable to use a hydroxide or a carbonate because of good stability during stocking.
  • the calcination may be usually performed in an oxidizing atmosphere such as air.
  • the calcination conditions are not particularly limited, but usually, the stabilization temperature is 100 to 135 ° C., and the stabilization time is 1 second to 10 hours, more preferably 1 second to 3 hours.
  • the calcined body is substantially magne It has a topranite-type ferrite structure, and the average particle size of the primary particles is preferably 2 / xm or less, more preferably 1 ⁇ or less, further preferably 0.1 to 1 ⁇ , and most preferably 0.1 to 0.5 / m.
  • the average particle size can be measured with a scanning electron microscope.
  • S i 0 2 it is favorable preferable to use S i 0 2 as the starting material for supplying the S i.
  • S i 0 2 may be mixed with other starting material before calcination, may be mixed after calcination, may be distributed to the addition of S i 0 2 in the front and calcination after calcination . If both are added S i 0 2 is before firing small, the effect of the present invention is realized. However, in order to further improve this onset bright effects, some also less of S i 0 2, preferably it is preferred to add all the parts, after calcination.
  • Method of adding S io 2 except the starting material compound after calcination i.e. in the post-addition method, first, to produce a calcined material for the main phase a hexagonal ferrite containing at least the element A.
  • a compound to be added later is added to the calcined material, and then molded and sintered.
  • one or two or more elements selected from the above-mentioned element R and the above-mentioned element M preferably the element R and the element M are added to the post-additive.
  • the compound to be added later is selected so that at least both are contained.
  • the amount of the post-additive is preferably 1 to 100 volumes of the calcined material. / 0 , more preferably 5 to 70% by volume, still more preferably 10 to 50% by volume.
  • the compound containing the element R an R oxide can be used, but since the R oxide has a relatively high solubility in water, there is a problem that it flows out during wet molding. In addition, since it is hygroscopic, it can easily cause weighing errors. Therefore, the R compound is preferably a carbonate or a hydroxide.
  • the post-additives of the other elements are oxides or calcined A compound that becomes an oxide upon formation, for example, a carbonate or a hydroxide may be added.
  • the post-additive may be added after calcining and before sintering, but is preferably added at the time of pulverization described below.
  • a post-additive may be added to particles that are produced by a coprecipitation method, a hydrothermal synthesis method, or the like instead of a calcined material, and that include at least the hexagonal ferrite containing the element A as a main phase. Good.
  • the element R or the element M it is desirable that at least 30%, more preferably at least 50%, of the total amount contained in the magnet is added as a post-additive.
  • the amount added as a post-additive is not particularly limited.
  • the average particle size of the post-additive is preferably about 0.1 to 2 ⁇ m.
  • the sintered magnet having the above-described target composition By adding the post-additive and firing, the sintered magnet having the above-described target composition can be obtained. Also, for example,
  • the calcined material is in the two-phase state of M-type Sr ferrite and a — Fe 2 ⁇ 3 ).
  • the sintered magnet having the above-mentioned target composition can be obtained also by adding the post-additive and firing.
  • the Curie temperature depends on the substitution amount of La and Co, especially the substitution amount of La, the presence of multiple Curie temperatures reflects the existence of La and Co concentration distribution in the crystal grains. it is conceivable that.
  • molding and pulverization which is a preceding step will be described.
  • a wet molding method for molding the raw material powder.
  • wet molding it is preferable to use a molding slurry containing a raw material powder, water as a dispersion medium, and a dispersant.
  • a wet pulverization step it is preferable to provide a wet pulverization step before the wet molding step.
  • the calcined body powder is used as the raw material powder, the calcined body powder is generally composed of granules. It is preferable to provide a pulverizing step.
  • a dry coarse pulverization step is not usually provided, and a wet pulverization step is not necessarily required.
  • a wet grinding step is provided.
  • pulverization is usually performed until the BET specific surface area becomes about 2 to 10 times.
  • the average particle size is preferably about 0.1 to 1 ⁇ , and the BET specific surface area is preferably about 4 to 1 O m 2 / g.
  • the pulverizing means is not particularly limited, and for example, a dry vibration mill, a dry attritor (medium stirring type mill), a dry ball mill, or the like can be used, but a dry vibration mill is particularly preferable.
  • the pulverization time may be appropriately determined according to the pulverization means. When some starting materials are added after calcination, it is preferable to add them in this dry coarse pulverization step. For example, S i ⁇ 2 The C a C 0 3 as a C a O by forming, it is preferable to add each of the at least in part in the dry coarse Kona ⁇ process.
  • Dry coarse pulverization also has the effect of reducing the coercive force HcB by introducing crystal strain into the calcined particles. Decrease in coercive force suppresses agglomeration of particles and improves dispersibility. In addition, the degree of orientation is improved by making the layer soft magnetic. The softened particles return to their original hard magnetism in the subsequent sintering process.
  • a pulverization slurry containing the pulverized particles and water is prepared, and wet pulverization is performed using the slurry.
  • the content of the raw material powder in the pulverizing slurry is preferably about 10 to 70% by weight.
  • the pulverizing means used for the wet pulverization is not particularly limited, but usually, a ball mill, an attritor, a vibration mill or the like is preferably used.
  • the pulverization time may be appropriately determined according to the pulverization means.
  • the slurry for grinding is concentrated to prepare a slurry for molding. Concentration may be performed by centrifugation or the like.
  • the content of the raw material powder in the molding slurry is preferably about 60 to 90% by weight.
  • a non-aqueous dispersion medium When a non-aqueous dispersion medium is used for the molding slurry, a high degree of orientation can be obtained. However, in order to reduce the load on the environment, it is preferable to use an aqueous dispersion medium. In order to compensate for the decrease in the degree of orientation due to the use of the aqueous dispersion medium, it is preferable that a dispersant is present in the molding slurry.
  • the dispersant used in this case is an organic compound having a hydroxyl group and a carboxyl group, a neutral salt thereof, or a lactone, an organic compound having a hydroxymethylcarboxyl group. It is preferably an organic compound having an enol-type hydroxyl group which can be dissociated as a force or an acid, or a neutralized salt thereof.
  • a dispersion medium is prepared by adding a surfactant such as oleic acid to an organic solvent such as toluene-xylene.
  • Each of the above organic compounds has 3 to 20 carbon atoms, preferably 4 to 12 carbon atoms, and has a hydroxyl group bonded to 50% or more of the carbon atoms other than the carbon atom double-bonded to the oxygen atom. .
  • the number of carbon atoms is 2 or less, the effect of improving the degree of orientation becomes insufficient. Even if the number of carbon atoms is 3 or more, the effect is still insufficient if the bonding ratio of the hydroxyl group to a carbon atom other than the carbon atom double-bonded to the oxygen atom is less than 50%.
  • the bonding ratio of the hydroxyl group is limited for the above organic compound, and is not limited for the dispersant itself.
  • the basic skeleton of the organic compound may be linear or cyclic, and may be saturated or contain an unsaturated bond.
  • hydroxycarboxylic acid or a neutralized salt thereof or a lactone thereof is preferable.
  • organic compound having a hydroxymethylcarbonyl group sorbose is preferred.
  • organic compound having an enol-type hydroxyl group that can be dissociated as an acid asconolevic acid is preferable.
  • cunic acid or a neutralized salt thereof can also be used as a dispersant.
  • Cuenoic acid has a hydroxyl group and a carboxyl group, but does not satisfy the condition that 50% or more of the carbon atoms other than the carbon atom double-bonded to the oxygen atom are bonded to the hydroxyl group. However, the effect of improving the degree of orientation is recognized.
  • the degree of orientation by the magnetic field orientation is affected by the pH of the slurry. Specifically, the degree of orientation p H is too low is reduced, a compound that indicates the nature of the acid in aqueous solution thereby as c dispersant remanence after sintering is affected, for example arsenate Dorokishikarubo phosphate When such a method is used, the pH of the slurry is lowered. Therefore, it is preferable to adjust the pH of the slurry, for example, by adding a basic compound together with the dispersant. As the above basic compound, ammonia and sodium hydroxide are preferable. Ammonia may be added as aqueous ammonia. It is to be noted that the use of sodium salt of hydroxycarboxylic acid can prevent a decrease in pH.
  • the pH of the slurry is preferably 7 or more, more preferably 8-11.
  • the kind of the neutralizing salt used as the dispersant is not particularly limited, and may be any of a calcium salt and a sodium salt.
  • the calcium salt is preferably used. If sodium salt is used as the dispersant or aqueous ammonia is added, In addition to the outflow of components, there is a problem that cracks are generated in the formed body and the sintered body, and the formed body becomes sintered.
  • two or more dispersants may be used in combination.
  • the amount of the dispersant added is preferably 0.05 to 3.0% by weight, more preferably 0.10 to 2.0% by weight, based on the raw material powder. If the amount of the dispersant is too small, the improvement of the degree of orientation becomes insufficient. On the other hand, if the amount of the dispersing agent is too large, cracks occur in the formed body and the sintered body, and the formed body and the sintered body tend to crack.
  • the amount of the dispersant to be added is an ion equivalent. That is, the amount to be added is determined by converting to organic components excluding hydrogen ions and metal ions.
  • the amount added is determined excluding water of crystallization.
  • the amount to be added is calculated in terms of dalconate ion.
  • the amount of addition is calculated in terms of hydroxycarboxylate ions, assuming that all the lactone is opened to form hydroxycarboxylic acid.
  • the timing of adding the dispersant is not particularly limited, and may be added at the time of dry coarse pulverization, may be added at the time of preparing a slurry for wet pulverization, and may be partially added at the time of dry coarse pulverization. Calories and the remainder may be added during wet grinding. Alternatively, it may be added by stirring after wet milling. In any case, since the dispersant is present in the slurry for molding, the effect of the addition of the dispersant is realized. However, the effect of improving the degree of orientation is higher when it is added during pulverization, especially during dry coarse pulverization.
  • Vibration mills and the like used for dry coarse grinding give larger energy to particles than ball mills and the like used for wet grinding, and the temperature of the particles increases, so that the chemical reaction is likely to proceed. Conceivable. Therefore, if a dispersant is added during dry coarse pulverization, the amount of the dispersant adsorbed on the particle surface increases, and as a result, a higher degree of orientation is obtained. It is considered something. Actually, when the amount of the dispersant remaining in the molding slurry (which is considered to be almost equal to the adsorption amount) was measured, it was found that the dispersant added at the time of dry coarse pulverization was added more than at the time of wet pulverization. The ratio of the residual amount to the amount increases. In the case where the dispersant is added in a plurality of times, the amount of each addition may be set so that the total amount is within the above-mentioned preferable range.
  • the molded body is dried, and then the added dispersant is sufficiently decomposed and removed by heat treatment in air or nitrogen, preferably at a temperature of 100 to 500 ° C. I do. Drying and the above heat treatment may be performed continuously.However, if the molded body is rapidly heated without being sufficiently dried, cracks will be generated in the molded body, and it will be loose from room temperature to about 10 oC. It is preferable that the temperature be raised and dried sufficiently in this temperature range. After the heat treatment, firing is performed to obtain a ferrite sintered magnet.
  • the stable temperature at the time of calcination is preferably 1150 to 1250 ° C, more preferably 1160 to 1250 ° C, and the time for maintaining the stable temperature is preferably 0. 5 to 3 hours. Note that, as described above, for example, a stabilization process may not be provided in a continuous furnace or the like, but even in such a case, sufficient performance is obtained with the ferrite magnet of the present invention.
  • the average crystal grain size of the magnet of the present invention is preferably 2 ⁇ m or less, more preferably 1 ⁇ ra or less, and further preferably 0.5 to 1.0 ⁇ . Even if it exceeds 1 m, a sufficiently high coercive force can be obtained.
  • the crystal grain size can be measured by a scanning electron microscope.
  • the specific resistance is usually 10 ° ⁇ or more.
  • the compact was crushed using a crusher or the like, and classified by sieving or the like so as to have an average particle size of about 100 to 700 / im to obtain magnetically oriented granules. After sintering, a magnet can be obtained by sintering.
  • the ferrite magnet of the present invention by containing the element R and the element M, A coercive force and high saturation magnetization are realized. Therefore, if the shape is the same as that of a conventional ferrite magnet that does not contain these elements, the generated magnetic flux density can be reduced, and when applied to a motor, a high torque can be realized. When applied to headphones, enhanced magnetic circuits can provide sound quality with good linearity, contributing to higher performance of applied products. If the same function as a conventional ferrite magnet is sufficient, the size (thickness) of the magnet can be reduced (thinned), which contributes to reduction in size and weight (thinness).
  • the magnet of the present invention is processed into a predetermined shape, and is used for a wide range of applications as described below.
  • the granules were calcined in air at 1250 ° C for 3 hours to obtain a calcined material.
  • the composition of this calcined material (analytical value by fluorescent X-ray analysis) is shown in Table 1-1.
  • the molding slurry was subjected to compression molding while dewatering, to obtain a molded body having a diameter of 30 mm and a height of 18 mm.
  • a magnetic field of about 13 kOe was applied in the compression direction.
  • the molding pressure was 0.4 t / cm 2 .
  • the compact is fired to form a sintered magnet, and the upper and lower surfaces are processed.
  • the relationship between the air characteristics and the characteristics of the sintered body and the oxygen partial pressure in the firing atmosphere was examined.
  • the firing was performed in a mixed gas atmosphere (1 atm) of oxygen gas and nitrogen gas, and the oxygen partial pressure in the firing atmosphere was controlled by controlling the flow rate of both gases.
  • the heating rate and the cooling rate during firing were 5 ° CZ minutes, the firing temperature was 122 ° C, and the time (stable time) for maintaining the firing temperature was 1 hour.
  • Table 1-2 shows the compositions (analytical values by fluorescent X-ray) of the sintered magnets whose magnetic properties were evaluated.
  • the composition shown in Table 1-2 is a value for a measurement sample obtained by firing the molding slurry in air at 100 ° C. for 1 hour.
  • Example 1-2 10.51 0.12 2.53 1.33 80.24 2.69 0.61 0.09 0.10 1.78 1.20
  • Comparative Example 1-1 10.64 0.12 2.30 1.35 81.06 2.72 0.62 0.08 0.09 1.91 Comparative Example 1-2 11.21 0.11 1.47 1.42 81.05 2.88 0.60 0.09 0.10 1.07 * 1.68
  • Comparative Example 1-3 11.78 0.12 0.49 1.49 80.37 3.05 0.59 0.09 0.10 1.92 0.85 * Comparative Example 1-4 10.52 0.12 3.02 1.33 80.12 2.72 0.61 0.09 0.09 1.38 1.93 *
  • the magnet having the composition shown in Table 1 one 2, in FIG. 1, the firing time of the oxygen partial pressure p 0 2 and magnetic properties ⁇ coercive force (HcJ), residual magnetic flux density (B r) and squareness (Hk / HcJ) ⁇ The relationship between and is shown.
  • the composition of the example of the present invention that is, the composition whose atomic ratio ⁇ A + R_ (F e + M) / ⁇ 2 ⁇ / S i and S i O 2 content are within the above-mentioned limited range ⁇ In this case, even when firing in an atmosphere with an oxygen partial pressure of 0.05 atm, magnetic properties equivalent to or better than those when firing in air were obtained, and firing was performed in an atmosphere with an oxygen partial pressure of 0.01 atm. In this case, almost no decrease in magnetic properties is observed. Specifically, when the oxygen partial pressure is reduced from 0.20 atm to 0.01 atm, the composition of the comparative example, that is, (A + R—
  • a sintered magnet having the composition shown in Table 2-2 (analytical value by fluorescent X-ray analysis) was produced in the same manner as in Example 1 except that the calcined material having the composition shown in Table 2-1 was used. However, during firing, the oxygen partial pressure in the atmosphere was fixed at 0.05 atm and the firing temperature was varied. Table 2-
  • Fig. 2 shows the relationship between firing temperature and magnetic properties for magnets with the compositions shown in Table 2-2.
  • the coercive force varied greatly when the firing temperature was changed, whereas the composition of the example, that is, the atomic ratio ⁇ A + R— (F e + M) ⁇
  • the composition of the comparative example that is, ⁇ A + R— (F e + M) / 1 2 ⁇ / S i and S i O 2 Coercive force fluctuation is smaller than a composition in which one of the amounts is out of the above-mentioned limited range.
  • a sintered magnet having the composition shown in Table 3-2 (analytical value by fluorescent X-ray analysis) was produced in the same manner as in Example 1 except that the calcined material having the composition shown in Table 3-1 was used. However, at the time of firing, the oxygen partial pressure in the atmosphere was fixed at 0.05 atm, and the firing temperature was fixed at 122 ° C. In addition,
  • group A (hereinafter referred to as group A),
  • Group B (Hereinafter referred to as Group B), and
  • each of the groups consisting of (hereinafter group C) the elements other than Ca are almost equal, and by changing the amount of Ca, the amount of A and (A + R— (F e + M) / 12 ⁇ changed / S i (
  • Fig. 3 shows the relationship between the atomic ratio ⁇ A + R— (Fe + M) / 12 ⁇ / Si and the magnetic properties of the magnets with the composition shown in Table 3-2.
  • Figure 4 shows the relationship.
  • FIG. 3 a comparison of the magnetic properties in each of the groups A, B, and C shows that the coercive force is significantly increased when the atomic ratio is within the range limited by the present invention. That is, it can be seen that the present invention provides a high coercive force under a low oxygen partial pressure.
  • the coercive force graph of FIG. 4 it can be seen that the amount of CaO in Comparative Example 3C is smaller than the composition of the Example in Group A and larger than that in Group B. That is, it can be seen that the CaO amount of Comparative Example 3C was neither excessive nor excessive as compared with the compositions of the other Examples.
  • the Curie temperature of the sintered magnet produced in each of the above examples was measured according to the following procedure. First, a sintered magnet with a diameter of 5 mm and a height of 6. The sample was processed into a 5 mra column and used as a measurement sample. Next, the sample was magnetized at 25 ° C by applying a magnetic field of about 2 O kOe in the c-axis direction of the sample using a VSM. Next, with the VSM magnetic field generation current set to zero (however, a magnetic field of about 500e is generated due to the residual magnetization of the magnetic pole), the remanent magnetization in the c-axis direction of the sample and the sample temperature are measured simultaneously, The ⁇ -T curve as shown in Fig. 6 was obtained.
  • the temperature of the sample was raised by a heater arranged around the sample.
  • the heating rate was about 10 ° CZ minutes.
  • the Curie temperature was determined by the method described above.
  • the magnets manufactured in each of the above examples have two Curie temperatures, the curie temperature on the low temperature side is between 430 ° C and 450 ° C, and the Curie temperature on the high temperature side is 450 ° C. It was found to be between ⁇ 460 ° C.
  • the ratio ( ⁇ 1 ⁇ RT) of the magnetization ( ⁇ ⁇ ) at the Curie temperature on the low temperature side to the magnetization RT at 25 ° C was 2 to 10%.
  • Ferrite sintered magnets having the compositions shown in Table 4 below were produced.
  • the Sr fluorite magnet containing La and Co was produced by the above-described addition method.
  • the firing was performed in a mixed gas atmosphere of oxygen gas and nitrogen gas (1 atm), and the oxygen concentration in the firing atmosphere was controlled by controlling the flow rates of both gases.
  • Figure 5 shows the oxygen concentration in the firing atmosphere.
  • the coercive force (HcJ) was measured for these sintered magnets.
  • Fig. 5 shows the results. Table 4
  • the Sr ferrite magnet containing La and Co significantly changes the coercive force depending on the oxygen concentration in the firing atmosphere, but contains both La and Co. It can be seen that the dependence of the coercive force on the oxygen concentration in the firing atmosphere is low in the conventional Sr ferrite magnet that does not.
  • the LaCo-containing magnet shown in FIG. 5 has an atomic ratio of ⁇ A + R— (Fe + M) NO12 ⁇ / Si force S, which is outside the range limited by the present invention.

Abstract

A ferrite magnet which contains A, R, Fe, M and Si as metal elements and has hexagonal ferrite as the main phase thereof; wherein A represents at least one element selected from among Sr, Ba, Ca and Pb, R represents at least one element selected from among rare earth elements (containing Y) and Bi, and M represents at least one element selected from among Co, Mn, Al, Cr, Ni and Zn; wherein when the metal elements are converted to metal oxides having stoichiometric compositions and contents of respective oxides are calculated, the magnet has a SiO2 content of 1.3 to 2.0 mole %; and wherein the magnet has an atomic ratio of {A + R (Fe + M)/12}/Si of 1.1 to 1.9. The ferrite magnet can be used for suppressing the fluctuation of magnetic properties cased by the fluctuation of firing conditions in the preparation of a ferrite magnet having high residual magnetic flux density and high coercive force.

Description

CT/JP00/04553  CT / JP00 / 04553
明細書 フェライ ト磁石およびその製造方法 技術分野 Description Ferrite magnet and method for manufacturing the same
本発明は、 マグネトプランバイ ト型六方晶フェライ ト磁石と、 その製造方法と に関する。 背景技術  The present invention relates to a magnetoplumbite type hexagonal ferrite magnet and a method for manufacturing the same. Background art
酸化物永久磁石材料としては、 マグネトプランバイ ト型 (M型) の六方晶系の S rフェライ トまたは B aフェライ トが主に用いられており、 これらは焼結磁石 やボンディッド磁石として利用されている。  As the oxide permanent magnet material, magnetoplumbite (M-type) hexagonal Sr ferrite or Ba ferrite is mainly used, and these are used as sintered magnets or bonded magnets. ing.
磁石特性のうち特に重要なものは、 残留磁束密度 (B r) および固有保磁力 (HcJ) である。 B rは、 磁石の密度およびその配向度と、 その結晶構造で決ま る飽和磁化 (4 π I s) とで決定され、  Of particular importance for the magnet properties are the residual magnetic flux density (Br) and the intrinsic coercivity (HcJ). B r is determined by the density and orientation of the magnet and the saturation magnetization (4πI s) determined by its crystal structure.
B r = 4 π I s X配向度 X密度  B r = 4 π I s X degree of orientation X density
で表わされる。 Μ型の S rフェライ トゃ B aフェライ トの 4 I I Sは約 4. 65 kGである。 密度と配向度とは、 最も高い値が得られる焼結磁石の場合でもそれぞ れ 98%程度が限界である。 したがって、 これらの磁石の B rは 4. 46kG程度 が限界であり、 4. 5kG以上の高い B rを得ることは、 従来、 実質的に不可能で あった。 Is represented by The type I S ferrite and the Ba ferrite have 4IS of about 4.65 kG. The limits of density and degree of orientation are about 98%, respectively, even for the sintered magnets with the highest values. Therefore, the Br of these magnets is limited to about 4.46 kG, and it has been practically impossible to obtain a high Br of 4.5 kG or more.
これに対し本発明者らは、 例えば特開平 1 1—1 54604号公報において、 従来の M型フユライ ト磁石では達成不可能であった高い残留磁束密度と高い保磁 力とを有するフェライ ト磁石を提案している。 このフェライ ト磁石は、 S r、 B a、 C aおよび P bから選択される少なくとも 1種の元素であって、 S rを必ず 含むものを Aとし、 希土類元素 (Yを含む) および B i力 選択される少なくと も 1種の元素であって L aを必ず含むものを尺とし、 C oであるか C oおよび Z nを元素 Mとしたとき、 A、 R、 F eおよび Mそれぞれの金属元素の総計の構成 比率が、 全金属元素量に対し、 On the other hand, the present inventors have disclosed in Japanese Patent Application Laid-Open No. 11-154604, for example, a ferrite magnet having a high residual magnetic flux density and a high coercive force, which cannot be achieved with a conventional M-type magnet. Has been proposed. This ferrite magnet is at least one element selected from Sr, Ba, Ca and Pb, and Sr must be used. Include A as a rare earth element (including Y) and B i force Measure at least one element selected and always including L a, and whether it is C o or C o and Z n Is the element M, the composition ratio of the total of the metal elements of A, R, Fe and M is
A : 1〜 1 3原子%、  A: 1 to 13 atomic%,
R : 0. 0 5〜1 0原子0 /0R: 0. 0 5~1 0 atom 0/0,
F e : 8 0〜9 5原子0 /0F e: 8 0~9 5 atom 0/0,
M: 0. :!〜 5原子%  M: 0:! ~ 5 atomic%
である六方晶マグネトプランバイト型フヱライトの主相を有するものである。 また、 特開平 1 0— 1 4 9 9 1 0号公報には、 Which has a main phase of hexagonal magnetoplumbite type filler. Also, Japanese Patent Application Laid-Open No. H10-149910 discloses that
(S r】— XRX) O · n [ (F e !— yMy) 203] (ここで Rは L a、 N dおよび P rの少なくとも 1種、 Mは Mn、 C o、 N iおよび Z nの少なくとも 1種) から なる基本組成を有するフェライト磁石において、 (S r] - X R X) O · n [(F e -! Y M y) 2 0 3] ( where R is at least one L a, N d and P r, M is Mn, C o , Ni and Zn) at least one of the following basic compositions:
0. 0 5≤ X≤ 0. 5、  0.0 5 ≤ X ≤ 0.5,
{χΖ (2. 2 n) } ≤ y≤ { x/ ( 1. 8 n) } 、  {χΖ (2. 2 n)} ≤ y≤ {x / (1.8 n)},
5. 7 0≤ n < 6. 0 0  5.70 ≤ n <6.00
とする提案がなされている。 同公報に記載された発明は、 飽和磁化を向上させる ために、 反平行方向に向いた磁気モーメントに対応する F eイオンを、 F eィォ ンよりも小さな磁気モ一メントを有するか非磁性である別種の元素 (上記 M) で 置換すると共に、 異相の発生を抑えるために、 S rサイ トを別種の元素 (上記 R) で置換して電荷補償を行うものである。 発明の開示 It has been proposed. In order to improve the saturation magnetization, the invention described in the publication discloses that the Fe ion corresponding to the magnetic moment oriented in the antiparallel direction has a smaller magnetic moment than the Fe ion or has a non-magnetic property. In addition to replacing the Sr site with another element (R above), charge compensation is performed in order to suppress the generation of a different phase. Disclosure of the invention
本発明者らは、 上記各公報に示されるフェライト磁石を製造する際の最適条件 を検討する過程において、 ? 6サィトを〇0、 Ζ η等により置換し、 S rサイト を希土類元素により置換した場合に、 磁気特性が焼成条件により大きく影響を受 けることを見いだした。 すなわち、 C o、 Z n等および希土類元素を含有しない フェライト磁石では、 問題となるほど磁気特性が変動しない程度の焼成条件変動 であっても、 C o、 Z n等および希土類元素を含有するフェライト磁石では、 磁 気特性が著しく変動してしまうことがわかった。 具体的には、 図 5に示すように、 焼成雰囲気中の酸素分圧が変動すると、 特に空気中よりも酸素分圧が低くなると、 保磁力が著しく低下することがわかった。 また、 焼成温度が変動しても、 保磁力 が大きく変動してしまうことがわかった。 In the process of examining the optimum conditions for manufacturing the ferrite magnets shown in the above publications, Replace 6 sites with 〇0, Ζη, etc. It has been found that the magnetic properties are greatly affected by the sintering conditions when R is replaced by a rare earth element. In other words, with ferrite magnets that do not contain Co, Zn, etc. and rare earth elements, ferrite magnets that contain Co, Zn, etc. and rare earth elements even if the firing conditions fluctuate to such an extent that the magnetic properties do not fluctuate to a problem. Then, it was found that the magnetic characteristics fluctuated remarkably. Specifically, as shown in FIG. 5, it was found that when the oxygen partial pressure in the firing atmosphere fluctuated, especially when the oxygen partial pressure was lower than in air, the coercive force was significantly reduced. It was also found that the coercive force fluctuated greatly even when the firing temperature fluctuated.
フェライト磁石を製造する際には、 その焼成工程において、 バインダゃ分散剤 等の分解 ·燃焼に伴う酸素の吸収、 構成元素の価数の変化や構造の変化に伴う酸 素の吸収 ·放出等により、 焼成雰囲気中の酸素分圧が絶えず変動している。 その 変動の幅は、 被焼成体の組成および焼成炉への投入量、 添加物の種類および添カロ 量など、 各種条件に応じて大きく異なるため、 酸素分圧が常に一定となるように 制御することは難しい。 焼成温度についても、 被焼成体の熱源からの距離、 被焼 成体の炉床からの高さ、 また、 被焼成体の積載状況によって変化する炉内の気流 など、 種々の要因によって変動する。 そのため、 温度遷移パターンが常に一定と なるように制御することは困難である。 したがって、 焼成時の酸素分圧変動およ び温度変動により特性が影響されやすい組成のフェライト磁石では、 本来の高保 磁力を安定して実現することが難しい。  When manufacturing ferrite magnets, the firing process involves the absorption and release of oxygen due to the decomposition and combustion of the binder and dispersant, and the absorption and release of oxygen due to changes in the valences of the constituent elements and structural changes. However, the oxygen partial pressure in the firing atmosphere is constantly fluctuating. Since the range of the variation greatly varies depending on various conditions such as the composition of the object to be fired, the amount to be charged into the firing furnace, the type of additive, and the amount of added calorie, the oxygen partial pressure is controlled to be always constant. It is difficult. The firing temperature also varies depending on various factors, such as the distance of the object to be fired from the heat source, the height of the object to be fired from the hearth, and the air flow in the furnace that varies depending on the loading condition of the object to be fired. Therefore, it is difficult to control so that the temperature transition pattern is always constant. Therefore, it is difficult to stably realize the original high coercive force with a ferrite magnet whose composition is easily affected by the oxygen partial pressure fluctuation and the temperature fluctuation during firing.
特に、 量産時の生産性向上に有効である連続炉では、 バッチ炉に比べ酸素分圧 および温度遷移パターンの変動がより大きくなる。 例えば、 バッチ炉における温 度遷移パターンは昇温、 安定および降温の各過程が明瞭であるが、 連続炉では安 定部分が実質的になく、 昇温過程から降温過程へ直接移行する場合もある。 また、 焼成に要するコストが低い炉、 例えばガス燃焼炉など燃料の燃焼を利用して加熱 する方式の炉では、 燃料の燃焼の際に酸素を消費するため、 炉中の酸素分圧が激 しく変動する。 したがって、 連続炉および燃焼炉ならびに燃焼炉タイプの連続炉 を利用する場合には、 特に、 焼成時の酸素分圧変動および温度変動に影響されに くいフェライ ト磁石が求められる。 In particular, continuous furnaces, which are effective in improving productivity during mass production, have larger fluctuations in oxygen partial pressure and temperature transition patterns than batch furnaces. For example, in a temperature transition pattern in a batch furnace, the heating, stabilization, and cooling processes are clear, but in a continuous furnace, there is virtually no stable part, and there is a case where the process directly transitions from heating to cooling. . In addition, furnaces that require low costs for firing, such as gas combustion furnaces that heat by utilizing the combustion of fuel, consume oxygen when burning the fuel, so the oxygen partial pressure in the furnace is extremely high. Fluctuate. Therefore, when using a continuous furnace, a combustion furnace, and a combustion furnace type continuous furnace, a ferrite magnet that is not particularly affected by fluctuations in oxygen partial pressure and temperature during firing is required.
本発明は、 このような事情からなされたものであり、 高い残留磁束密度と高い 保磁力とを有するフユライト磁石を製造する際に、 焼成条件の変動による磁気特 性の変動を抑制することを目的とする。  The present invention has been made in view of such circumstances, and it is an object of the present invention to suppress fluctuations in magnetic properties due to fluctuations in firing conditions when manufacturing a fluorite magnet having a high residual magnetic flux density and a high coercive force. And
このような目的は、 下記 (1) ~ (8) の本発明により達成される。  Such an object is achieved by the present invention of the following (1) to (8).
(1) S r、 B a、 C aおよび P bから選択される少なくとも 1種の元素を 含むものを Aとし、 希土類元素 (Yを含む) および B iから選択される少なくと も 1種の元素を Rとし、 Co、 Mn、 A l、 C r、 N iおよび Z nから選択され る少なくとも 1種の元素を Mとしたとき、 金属元素として A、 R、 F e、 Mおよ び S iを含有し、 これら金属元素を酸化物に換算して各金属酸化物の含有量を求 めたとき、 3 1〇2の含有量が1. 3〜2. 0モル0 /0であり、 かつ、 (1) A that contains at least one element selected from Sr, Ba, Ca and Pb is A, and at least one element selected from rare earth elements (including Y) and Bi When the element is R and at least one element selected from Co, Mn, Al, Cr, Ni and Zn is M, the metal elements are A, R, Fe, M and S containing i, determined Metatoki the content of these metal elements each metal oxide in terms of oxides, 3 content 1_Rei 2 is 1.3 to 2.0 mole 0/0, And,
原子比 {A + R— (F e +M) /12} /S i  Atomic ratio {A + R— (F e + M) / 12} / S i
が 1. 1〜: 1. 9であり、 Is 1.1 to: 1.9,
六方晶フェライトを主相として有するフェライト磁石。  A ferrite magnet containing hexagonal ferrite as the main phase.
(2) 全金属元素量に対し、 A, R, F eおよび Mそれぞれの総計の比率が、 A: 1〜 13原子%、  (2) The ratio of the total of each of A, R, Fe and M to the total amount of metallic elements is A: 1 to 13 atomic%,
R: 0. 05〜 10原子0R: 0.05 to 10 atoms 0
F e : 80〜95原子0F e: 80 to 95 atoms 0
M: 0. 1〜 5原子%  M: 0.1 to 5 atomic%
である上記 (1) のフェライト磁石。 The ferrite magnet of (1) above.
(3) 少なくとも 2つの異なるキュリー温度を有し、 これらのキュリー温度 が 400°C〜480。Cの範囲に存在し、 かつこれらのキュリー温度が互いに 5°C 以上離れている上記 (1) または (2) のフェライト磁石。 (4) 上記 (1) 〜 (3) のいずれかのフェライ ト磁石を製造する方法であ つて、 (3) It has at least two different Curie temperatures, and these Curie temperatures are between 400 ° C and 480. The ferrite magnet according to (1) or (2) above, which exists in the range of C and whose Curie temperatures are separated by 5 ° C or more from each other. (4) The method for producing a ferrite magnet according to any of (1) to (3) above,
原料粉末の成形体を焼成して焼結磁石を得る焼成工程を有し、 この焼成工程に おいて、 雰囲気中の酸素分圧が変動するフユライ ト磁石の製造方法。  A method for producing a fusible magnet, which includes a firing step of firing a compact of a raw material powder to obtain a sintered magnet, and in this firing step, the oxygen partial pressure in the atmosphere fluctuates.
(5) 焼成工程の少なくとも一部において、 雰囲気中の酸素分圧が 0. 15 気圧以下となる上記 (4) のフェライ ト磁石の製造方法。  (5) The method for producing a ferrite magnet according to (4), wherein the oxygen partial pressure in the atmosphere is 0.15 atm or less in at least a part of the firing step.
(6) 上記 (1) 〜 (3) のいずれかのフェライ ト磁石を製造する方法であ つて、  (6) The method for producing a ferrite magnet according to any of (1) to (3) above,
原料粉末の成形体を焼成して焼結磁石を得る焼成工程を有し、 この焼成工程に おいて、 焼成温度が変動するフェライ ト磁石の製造方法。  A method for producing a ferrite magnet, comprising a firing step of firing a molded body of a raw material powder to obtain a sintered magnet, wherein the firing temperature varies in the firing step.
(7) それぞれ六方晶フ ライ トを主相とする仮焼材または粒子に、 磁石構 成元素の少なくとも 1種を含む化合物の少なくとも 1種を添加し、 その後、 成形 し、 焼結する上記 (4) 〜 (6) のいずれかのフヱライ ト磁石の製造方法。  (7) At least one compound containing at least one of the magnet constituent elements is added to the calcined material or particles each having a hexagonal frit as a main phase, and then molded and sintered. 4) A method for manufacturing a flat magnet according to any one of (6) to (6).
(8) 前記磁石構成元素の一部は、 前記元素 Rおよび前記元素 Mから選択さ れる 1種または 2種以上の元素である上記 (7) のフェライ ト磁石の製造方法。 作用および効果  (8) The method for producing a ferrite magnet according to (7), wherein a part of the magnet constituent elements is one or more elements selected from the element R and the element M. Action and effect
本発明では、 高い残留磁束密度と高い保磁力とを得るために、 磁石に前記元素 Rおよび前記元素 Mを添加する。 本発明者らは、 図 5に実験結果を示すように、 元素 Rおよび元素 Mを添加したフユライ ト磁石では、 これらを含有しない従来の フユライ ト磁石に比べ、 焼成条件 (雰囲気中の酸素分圧および焼成温度) の変動 による磁気特性変動が著しく大きくなることを発見した。 そして、 この磁気特性 変動を抑制するためには、 S i量および原子比 {A + R— (F e+M) /12} /S iを最適化することが極めて有効であることを見いだした。  In the present invention, the element R and the element M are added to a magnet in order to obtain a high residual magnetic flux density and a high coercive force. As shown in the experimental results in FIG. 5, the inventors of the present invention have found that the firing conditions (oxygen partial pressure in the atmosphere) are higher in the case of the fusible magnet to which the elements R and M are added than in the case of the conventional fusible magnet which does not contain these elements. And the calcination temperature), the fluctuation of the magnetic properties was significantly increased. It has been found that optimizing the Si amount and the atomic ratio {A + R— (F e + M) / 12} / S i is extremely effective in suppressing this fluctuation in magnetic properties. .
なお、 前述したように、 元素 Rおよび元素 Mを含有するフェライ ト磁石は知ら れている。 し力 し、 元素 Rおよび元素 Mを添加した場合に、 焼成条件変動による 磁気特性変動が著しく大きくなることは知られていない。 そして、 この磁気特性 変動を抑制するために、 S i量および原子比 { A + R— ( F e +M) / \ 2 } / S iを本発明で限定する範囲内となるように制御することも知られていない。 また、 本発明者らは、 まず、 少なくとも元素 Aを含有する六方晶フェライ トを 主相とする仮焼材を製造し、 この仮焼材に、 磁石構成元素の少なくとも 1種、 特 に元素 Rおよび元素 Mから選択される元素の少なくとも 1種を添加し、 次いで、 焼結して磁石を得る方法 (本明細書では後添加法という) を用いる場合に、 焼結 時の焼成条件変動の影響が特に大きくなることを見いだした。 そして、 本発明に おける S i量および原子比 { A + R— ( F e +M) / 1 2 } Z S iの制御が、 こ の場合に特に有効であることを見いだした。 このように後添加法により製造され たフェライ ト磁石は、 通常、 2以上のキュリー温度をもつものとなる。 元素 Mと して C oを含有し、 かつ、 2以上のキュリー温度を有する磁石は、 同組成でキュ リ一温度が 1つだけの場合に比べ、 磁気特性が向上する。 As described above, ferrite magnets containing element R and element M are not known. Have been. However, it is not known that when the elements R and M are added, the fluctuations in the magnetic properties due to the fluctuations in the firing conditions are significantly increased. Then, in order to suppress the fluctuation of the magnetic properties, the amount of Si and the atomic ratio {A + R— (Fe + M) / \ 2} / Si are controlled so as to be within the range limited by the present invention. Not even known. Further, the present inventors first produced a calcined material having a hexagonal ferrite containing at least an element A as a main phase, and provided the calcined material with at least one kind of magnet constituent elements, in particular, an element R And the method of adding at least one element selected from element M and then sintering to obtain a magnet (referred to as post-addition method in this specification), the effect of fluctuations in firing conditions during sintering Is especially large. Then, it has been found that the control of the Si amount and the atomic ratio {A + R— (Fe + M) / 12} ZSi in the present invention is particularly effective in this case. Ferrite magnets manufactured by the post-addition method as described above usually have a Curie temperature of 2 or more. A magnet containing Co as the element M and having a Curie temperature of 2 or more has improved magnetic properties as compared to a magnet having the same composition and only one Curie temperature.
なお、 後添加法については、 本出願の基礎出願 (特願平 1 1— 1 9 3 3 4 8 号) の出願後に公開された特開平 1 1一 1 9 5 5 1 6号公報 (平成 1 1年 7月 2 1 日公開) に記載されている。 ただし同公報には、 後添加法を用いた場合に、 焼 成条件変動による磁気特性変動がさらに大きくなることは記載されておらず、 S i量および原子比 { A + R— ( F e +M) / 1 2 } / S iを本発明で限定する範 囲内となるように制御することも記載されていない。 図面の簡単な説明  Regarding the post-addition method, see Japanese Patent Application Laid-Open No. Hei 11-19555 / 16 published after the filing of the basic application of the present application (Japanese Patent Application No. 11-193338). Published on July 21, 2001). However, the publication does not disclose that when the post-addition method is used, the fluctuations in the magnetic properties due to the fluctuations in the firing conditions are further increased, and the Si content and the atomic ratio {A + R— (Fe + M) / 1 2} / Si is not described to be controlled so as to fall within the range limited by the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 焼成雰囲気中の酸素分圧と焼結磁石の磁気特性との関係を示すグラフ である。  FIG. 1 is a graph showing the relationship between the oxygen partial pressure in the firing atmosphere and the magnetic properties of the sintered magnet.
図 2は、 焼成温度と焼結磁石の磁気特性との関係を示すグラフである。 図 3は、 原子比 {A + R— (F e +M) / 1 2 } /S i と焼結磁石の磁気特性 との関係を示すグラフである。 FIG. 2 is a graph showing the relationship between the firing temperature and the magnetic properties of the sintered magnet. FIG. 3 is a graph showing the relationship between the atomic ratio {A + R— (F e + M) / 12} / S i and the magnetic properties of the sintered magnet.
図 4は、 C a O含有量と焼結磁石の磁気特性との関係を示すグラフである。 図 5は、 焼成雰囲気中の酸素濃度と焼結磁石の保磁力 HcJとの関係を示すダラ フである。  FIG. 4 is a graph showing the relationship between the CaO content and the magnetic properties of the sintered magnet. Figure 5 is a graph showing the relationship between the oxygen concentration in the firing atmosphere and the coercive force HcJ of the sintered magnet.
図 6は、 2つのキュリー温度の求め方を説明するための参考グラフである。 発明を実施するための最良の形態  FIG. 6 is a reference graph for explaining how to determine two Curie temperatures. BEST MODE FOR CARRYING OUT THE INVENTION
焼結磁石 Sintered magnet
本発明のフェライ ト磁石は、 六方晶マグネトプランバイ ト型 (M型) フェライ トを主相として有し、 金属元素として A、 R、 F e、 Mおよび S iを含有する。 元素 Aは、 S r、 B a、 C aおよび P bから選択される少なくとも 1種の元素で ある。 元素 Rは、 希土類元素 (Yを含む) および B iから選択される少なくとも 1種の元素である。 元素 Mは、 C o、 Mn、 A l、 C r、 1^ 1ぉょび211から選 択される少なくとも 1種の元素である。 本発明の磁石において、 含有される金属 元素をそれぞれ一般的な酸化物に換算して各金属酸化物の含有量を求めたとき、 S i 02の含有量が 1. 3〜2. 0モル0 /0、 好ましくは 1. 4〜1. 9モル0 /0で あり、 かつ、 The ferrite magnet of the present invention has a hexagonal magnetoplumbite-type (M-type) ferrite as a main phase, and contains A, R, Fe, M, and Si as metal elements. Element A is at least one element selected from Sr, Ba, Ca and Pb. Element R is at least one element selected from rare earth elements (including Y) and Bi. The element M is at least one element selected from Co, Mn, Al, Cr, 1 ^ 1 and 211. In the magnet of the present invention, when the determined content of in terms the metal oxide of the metal element contained in each general oxides, the content of S i 0 2 1. 3~2. 0 mol 0/0, preferably from 1.4 to 1.9 mol 0/0, and,
原子比 {A + R— (F e +M) /1 2 } /S i  Atomic ratio {A + R— (F e + M) / 1 2} / S i
が 1. :!〜 1. 9、 好ましくは 1. 2〜1. 7である。 Is 1.:! To 1.9, preferably 1.2 to 1.7.
本発明ではこのように、 一定以上の S iを含有させると共に、 A + Rを (F e + M) 1 2に対し過剰とし、 かつ、 この過剰の度合いを S i量に対応させる。 これにより、 酸素分圧や温度の変動が生じた場合の磁気特性の変動率が小さくな り、 特に、 低酸素分圧下での保磁力減少を著しく抑制することができる。 これに 対し、 S i 02の含有量が少なすぎると、 焼成時に酸素分圧の変動および また PC画嶋 53 As described above, in the present invention, a certain amount or more of Si is contained, A + R is made excessive with respect to (Fe + M) 12, and the degree of this excess is made to correspond to the Si amount. As a result, the rate of change of the magnetic properties when the oxygen partial pressure or the temperature fluctuates becomes small, and in particular, a decrease in the coercive force under a low oxygen partial pressure can be significantly suppressed. This contrast, when the content of S i 0 2 is too small, fluctuation and also the oxygen partial pressure during firing PC Picture Island 53
は焼成温度の変動が生じたときに磁気特性が大きく変動してしまう。 一方、 S i o2の含有量が多すぎると、 磁石中に占めるガラス質等の非磁性成分の比率が高 くなり、 磁気特性、 特に残留磁束密度が低くなつてしまう。 {A + R— (F e + M) /1 2} /S iが小さすぎても大きすぎても、 焼成時に酸素分圧の変動およ び または焼成温度の変動が生じたときに磁気特性が大きく変動してしまう。 なお、 磁石中に含有される金属元素をその一般的な酸化物に換算して含有量を 求める際には、 酸化鉄、 酸化ス トロンチウム、 酸化バリウム、 酸化カルシウム、 希土類元素 (RE) 酸化物、 酸化ビスマス、 酸化コバルト、 酸化マンガン、 酸化 アルミニウム、 酸化クロムおよび酸化ケィ素を、 それぞれ F e23、 S r O、 B a O、 C a O、 RE23 (ただし、 P
Figure imgf000010_0001
reOu C eは C e 02、 丁 は丁 407) 、 B i 203、 C o O、 MnO、 A 123、 C r 203および S i 02に換算する。 本発明の磁石中において原子比 RZMは、 好ましくは 0. 7〜1. 5である。
However, when the firing temperature fluctuates, the magnetic characteristics greatly fluctuate. On the other hand, if the content of Sio 2 is too large, the ratio of non-magnetic components such as vitreous material occupying the magnet becomes high, and the magnetic properties, particularly the residual magnetic flux density, become low. Even if {A + R— (F e + M) / 12} / S i is too small or too large, the magnetic properties will change when the oxygen partial pressure and / or the firing temperature fluctuate during firing. Greatly fluctuates. When calculating the content by converting the metal element contained in the magnet to its general oxide, the iron oxide, strontium oxide, barium oxide, calcium oxide, rare earth element (RE) oxide, bismuth oxide, cobalt oxide, manganese oxide, aluminum, chromium oxide and oxides Kei arsenide, respectively F e 23, S r O, B a O, C a O, RE 2 〇 3 (however, P
Figure imgf000010_0001
reOu C e is C e 0 2, Ding Ding 4 0 7), B i 2 0 3, C o O, converted MnO, the A 1 2 3, C r 2 0 3 and S i 0 2. The atomic ratio RZM in the magnet of the present invention is preferably 0.7 to 1.5.
Mが 2価の場合、 後述するように価数平衡の点では M=Rとすることが好ましい 1S Mに対して Rを過剰とすることにより、 本発明の効果が増強される。 When M is divalent, it is preferable that M = R in terms of valence balance, as described later. By making R excessive relative to 1SM, the effect of the present invention is enhanced.
本発明の効果は、 本発明の磁石が少なくとも 2つの異なるキュリー温度を有し、 これらのキュリ一温度が 4 00°C〜48 0°Cの範囲に存在し、 かつこれらの差の 絶対値が 5 °C以上である場合に、 特に有効である。 このように複数のキュリ一温 度をもつ構造とすることで、 角形性 HkZHcJが著しく改善されると共に、 高価 な C oや Rの含有量を少なくすることが可能になる。  The effect of the present invention is that the magnet of the present invention has at least two different Curie temperatures, these Curie temperatures are in the range of 400 ° C to 480 ° C, and the absolute value of these differences is It is particularly effective when the temperature is 5 ° C or higher. By adopting a structure having a plurality of Curie temperatures as described above, the squareness HkZHcJ can be remarkably improved, and the content of expensive Co and R can be reduced.
キュリー温度 (T c) は、 磁性材料が強磁性から常磁性に変化するときの温度 である。 T cを測定するにはいくつかの方法があるが、 特に複数の T cをもつ磁 性材料の場合は、 ヒータなどで測定サンプルの温度を変化させながら、 磁化一温 度曲線を描くことにより T cを求める。 ここで、 磁化の測定には、 振動式磁力計 (VSM) が多く用いられる。 これは、 測定サンプルの周囲にヒータ等を設置す る空間を確保しやすいためである。 測定サンプルは粉末でも焼結体でもよいが、 粉末の場合は耐熱性の接着剤のよ うなもので固定する必要がある。 測定の際にサンプル全体を均一に昇温できるよ うに、 磁化の測定精度が確保できる範囲でサンプルをなるベく小さくすることが 好ましく、 また、 昇温速度を比較的遅くすることが好ましい。 The Curie temperature (T c) is the temperature at which a magnetic material changes from ferromagnetic to paramagnetic. There are several methods for measuring Tc, especially for magnetic materials with multiple Tc, by drawing the magnetization-temperature curve while changing the temperature of the measurement sample with a heater or the like. Find Tc. Here, a vibrating magnetometer (VSM) is often used to measure magnetization. This is because it is easy to secure a space for installing a heater etc. around the measurement sample. The measurement sample may be a powder or a sintered body, but in the case of a powder, it must be fixed with a heat-resistant adhesive or the like. It is preferable to make the sample as small as possible within a range where the measurement accuracy of the magnetization can be ensured so that the entire sample can be heated uniformly at the time of measurement, and it is preferable to make the heating rate relatively slow.
サンプルは異方性でも等方性でもよいが、 異方性サンプルの場合は磁化容易軸 方向である c軸方向に着磁後、 c軸方向に測定することが好ましい。 等方性サン プルの場合は、 着磁方向と同一方向の磁化を測定する。 サンプルの着磁は、 1 T 以上の十分に大きな磁場を印加して行う。 通常は常温で着磁した後、 温度を上げ ながらサンプルの磁化を測定していくが、 このとき磁場は全く印加しないか、 印 加しても 0 . 1 T以下の弱い磁場下で測定することが好ましい。 これは、 大きな 磁場を印加しながら測定すると、 キユリ一温度以上で常磁性成分も検出してしま レ、、 キュリー温度が不明確になりやすいためである。  The sample may be anisotropic or isotropic, but in the case of an anisotropic sample, it is preferable to measure in the c-axis direction after magnetization in the c-axis direction, which is the direction of easy magnetization. For isotropic samples, measure magnetization in the same direction as the magnetization direction. The sample is magnetized by applying a sufficiently large magnetic field of 1 T or more. Normally, after magnetizing at room temperature, the magnetization of the sample is measured while increasing the temperature.At this time, no magnetic field is applied, or the measurement is performed under a weak magnetic field of 0.1 T or less even if applied. Is preferred. This is because if a large magnetic field is applied, paramagnetic components are detected at temperatures above the temperature of the lily, and the Curie temperature tends to be unclear.
2つのキュリー温度が現れる例を、 図 6に示す。 図 6は、 温度 Tを横軸とし、 磁化ひを縦軸とする σ—T曲線のキュリー温度近傍を示したグラフである。 磁化 の急激な減少が始まる温度付近において、 σ—Τ曲線は上に凸である。 ここから 温度を上昇させていくと、 磁化 σは以下のように変化する。 まず、 温度上昇に伴 つて、 急激に磁化が減少する。 次いで、 σ— Τ曲線は下に凸へと変わり、 磁化の 減少が緩やかとなる。 次いで、 σ—Τ曲線は再び上に凸へと変わり、 急激に磁ィ匕 が減少する。 次いで、 σ— Τ曲線は再び下に凸へと変わって磁化の減少が緩やか になりながら、 最終的に磁化がゼロとなる。 この σ— Τ曲線において、 変曲点、 すなわち上に凸から下に凸へと変化する点または下に凸から上に凸へと変化する 点、 における 3本の接線を、 低温側から I、 II、 ΠΙとする。 接線 I と接線 IIと の交点が低温側のキュリ一温度 T c 1であり、 接線 IIIと横軸との交点が高温側 のキュリー温度 T c 2である。 キュリー温度が 3以上存在する場合も、 この方法 に準じて、 σ— Τ曲線から各キュリー温度を求めることができる。 553 Figure 6 shows an example where two Curie temperatures appear. FIG. 6 is a graph showing the vicinity of the Curie temperature of the σ-T curve with the temperature T as the horizontal axis and the magnetization as the vertical axis. The σ-Τ curve is convex around the temperature where the magnetization starts to decrease sharply. When the temperature is increased from here, the magnetization σ changes as follows. First, the magnetization decreases sharply as the temperature rises. Next, the σ-Τ curve changes to a downward convex, and the magnetization decreases gradually. Next, the σ-Τ curve changes to a convex shape again, and the magnetic 匕 is sharply reduced. Next, the σ-Τ curve changes to a convex downward again, and the magnetization decreases gradually, but finally the magnetization becomes zero. In the σ-Τ curve, the three intangents at the inflection point, that is, the point that changes from upwardly convex to downwardly convex or the point that changes from downwardly convex to upwardly convex, are represented by I, II, ΠΙ. The intersection of the tangents I and II is the Curie temperature Tc1 on the low temperature side, and the intersection of the tangent III and the horizontal axis is the Curie temperature Tc2 on the high temperature side. Even when there are three or more Curie temperatures, each Curie temperature can be obtained from the σ-Τ curve according to this method. 553
10  Ten
複数のキュリー温度が存在する場合、 互いの差の絶対値は 5 °C以上、 好ましく は 10°C以上である。 これらのキュリー温度は 400〜480°Cの範囲に存在し、 好ましくは 400〜470°C、 より好ましくは 430〜460°Cの範囲に存在す ることが望ましい。 なお、 純粋な M型 S rフェライ トのキュリー温度は 465°C 程度である。 When a plurality of Curie temperatures are present, the absolute value of the difference between them is 5 ° C or more, preferably 10 ° C or more. These Curie temperatures are in the range of 400 to 480 ° C, preferably in the range of 400 to 470 ° C, and more preferably in the range of 430 to 460 ° C. The Curie temperature of pure M-type Sr ferrite is about 465 ° C.
ここで、 最も低温側のキュリー温度における磁化 (σΐ) の、 25°Cにおける 磁化 (aRT) に対する比率 (σΐΖσΚΤ) は、 好ましくは 0. 5%〜30%、 よ り好ましくは 1 %〜 20%、 さらに好ましくは 2 %〜: 10 %である。 σ 1 σ RT が 0. 5%未満の場合、 より高温側のキュリー温度を検出することが困難となる。 複数のキュリー温度は、 フェライ ト結晶の組織構造が、 磁気的に異なる Μ型フ エライ トの多相構造となるために発現すると考えられる。 ただし、 キュリー温度 が複数存在する場合でも、 通常の X線回折法では Μ相からなる単相構造が検出さ れる。 前記した後添加法を用いた場合、 通常、 複数のキュリー温度が存在するが、 この場合、 キュリー温度の数は 2となることがほとんどである。  Here, the ratio (σΐΖσΚΤ) of the magnetization (σΐ) at the lowest Curie temperature to the magnetization (aRT) at 25 ° C is preferably 0.5% to 30%, more preferably 1% to 20%. And more preferably 2% to: 10%. When σ 1 σ RT is less than 0.5%, it is difficult to detect the Curie temperature on the higher temperature side. It is thought that the multiple Curie temperatures appear because the ferrite crystal has a multiphase structure of magnetically different 磁 気 -type ferrite. However, even when there are multiple Curie temperatures, single-phase structure consisting of な る phase is detected by ordinary X-ray diffraction. When the post-addition method described above is used, usually, a plurality of Curie temperatures are present. In this case, the number of Curie temperatures is almost two in most cases.
本発明の磁石中において、 全金属元素量に対する A, R, F eおよび Μそれぞ れの総計の比率は、 好ましくは  In the magnet of the present invention, the ratio of the total of A, R, Fe and に 対 す る to the total amount of metal elements is preferably
A: 1〜 13原子%、  A: 1 to 13 atomic%,
R: 0. 05〜 10原子0 /。、 R: 0.05-10 atoms 0 /. ,
F e : 80〜 95原子0 /。、 F e: 80-95 atoms 0 /. ,
M: 0. :!〜 5原子%  M: 0.:! ~ 5 atom%
であり、 より好ましくは And more preferably
A: 3〜1 1原子0 /0A: 3~1 1 atom 0/0,
R: 0. 2〜6原子%、  R: 0.2 to 6 atomic%,
F e : 83〜94原子0 /0F e: 83~94 atom 0/0,
M: 0. 3〜4原子% であり、 さらに好ましくは M: 0.3 to 4 atomic% And more preferably
A: 3〜9原子%、  A: 3-9 atom%,
R : 0. 5〜4原子%、  R: 0.5 to 4 atomic%,
F e : 86〜93原子%、  F e: 86 to 93 atomic%,
M: 0. 5〜 3原子%  M: 0.5 to 3 atomic%
である。 元素 Aの含有量が少なすぎると、 M型フェライ トが生成しないか、 α— F e 203 等の非磁性相が多くなる。 元素 Αの含有量が多すぎると、 M型フェラ イ トが生成しないか、 S r F e〇3_x 等の非磁性相が多くなる。 A中の S rの 比率は、 好ましくは 5 1原子%以上、 より好ましくは 70原子%以上、 さらに好 ましくは 1 00原子%である。 元素 A中の S rの比率が低すぎると、 飽和磁化向 上と保磁力の著しい向上とを共に得ることができなくなる。 元素 Rの含有量が少 なすぎると、 元素 Mの固溶量が少なくなつてしまうので、 磁気特性向上効果が不 +分となる。 元素 Rの含有量が多すぎると、 オルソフ-ライ ト等の非磁性の異相 が多くなる。 元素 Mの含有量が少なすぎても多すぎても、 磁気特性向上効果が不 十分となる。 It is. When the content of the element A is too small, not be generated or M-type ferrite, the greater the alpha-F e 2 0 nonmagnetic phase such as 3. When the content of the element Α is too large, it will not be generated or M type Blow wells, it is often non-magnetic phase such as S r F E_〇 3 _ x. The ratio of Sr in A is preferably at least 51 at%, more preferably at least 70 at%, and even more preferably at least 100 at%. If the ratio of Sr in the element A is too low, it is impossible to obtain both the enhancement of the saturation magnetization and the remarkable improvement of the coercive force. If the content of the element R is too small, the amount of the solid solution of the element M becomes small, so that the effect of improving the magnetic properties becomes insufficient. If the content of the element R is too large, the amount of non-magnetic hetero phase such as orthofluorite increases. If the content of the element M is too small or too large, the effect of improving the magnetic properties becomes insufficient.
本発明の磁石中において、 A、 R、 F eおよび Mの原子比は、  In the magnet of the present invention, the atomic ratio of A, R, Fe and M is
式 I (F e 12.yMy) 2019 Formula I (F e 12 .y M y ) 2 0 19
で表すことができる。 上記式 Iにおいて、 x、 yおよび zは、 前記 {A + R— (F e +M) /1 2} /S iが前記限定範囲内となり、 また、 前記 RZMが前記 好ましい範囲内となるように決定すればよいが、 Can be represented by In the above formula I, x, y, and z are such that the above {A + R— (F e + M) / 12} / S i is within the above-mentioned limited range, and the above-mentioned RZM is within the above-mentioned preferable range. Should be determined, but
0. 04≤ X≤ 0. 9、  0.04 ≤ X ≤ 0.9,
0. 04≤ y≤ 1. 0、 特に 0. 04≤y≤0. 5、  0.04≤y≤1.0, especially 0.04≤y≤0.5,
0. 8≤ x/y≤ 5 ,  0.8 ≤ x / y≤ 5,
0. 7≤ z < 1  0.7 ≤ z <1
を外れないことが好ましい。 上記式 Iにおいて、 xが小さすぎると、 すなわち元素 Rの量が少なすぎると、 六方晶フェライ トに対する元素 Mの固溶量を多くできなくなつてきて、 飽和磁ィ匕 向上効果およびノまたは異方性磁場向上効果が不十分となってくる。 Xが大きす ぎると六方晶フェライ ト中に元素 Rが置換固溶できなくなつてきて、 例えば元素 Rを含むオルソフェライ トが生成して飽和磁化が低くなつてくる。 yが小さすぎ ると飽和磁化向上効果および Zまたは異方性磁場向上効果が不十分となってくる。 yが大きすぎると六方晶フェライ ト中に元素 Mが置換固溶できなくなつてくる。 また、 元素 Mが置換固溶できる範囲であっても、 異方性定数 (K や異方性磁 場 (ΗΑ) の劣化が大きくなつてくる。 ζが小さすぎると S rおよび元素 Rを含 む非磁性相が増えるため、 飽和磁ィヒが低くなつてくる。 zが大きすぎると a _ F e 203相または元素 Mを含む非磁性スピネルフェライ ト相が増えるため、 飽和磁 化が低くなつてくる。 Is preferably not deviated. In the above formula I, if x is too small, that is, if the amount of the element R is too small, the solid solution amount of the element M in the hexagonal ferrite cannot be increased, so that the effect of improving the saturation magnetic field and the effect of improving the saturation magnetization can be reduced. The effect of improving the isotropic magnetic field becomes insufficient. If X is too large, the element R cannot be substituted in the hexagonal ferrite to form a solid solution. For example, orthoferrite containing the element R is generated and the saturation magnetization decreases. If y is too small, the effect of improving the saturation magnetization and the effect of improving Z or the anisotropic magnetic field become insufficient. If y is too large, the element M cannot be substituted into the hexagonal ferrite to form a solid solution. In addition, even if the element M can be substituted and dissolved, the anisotropy constant (K and the anisotropic magnetic field (Η Α ) deteriorate significantly. If ζ is too small, S r and element R are reduced. for including non-magnetic phase is increased, the saturation magnetization i inhibit come summer low. z is too large a _ F e 2 0 3 phase or element comprising M non-magnetic spinel Blow wells phase increases, saturation magnetization Is getting lower.
上記式 Iにおいて、 x Z yが小さすぎても大きすぎても元素 Rと元素 Mとの価 数の平衡がとれなくなり、 W型フェライ ト等の異相が生成しやすくなる。 元素 M が 2価イオンであって、 かつ元素 Rが 3価イオンである場合、 価数平衡の点で X / y = 1とすることが一般的であるが、 前述したように Rを過剰にすることが好 ましい。 なお、 x / yが 1超の領域で許容範囲が大きい理由は、 yが小さくても F e 3+→F e 2+の還元によって価数の平衡がとれるためである。 In the above formula I, if xZy is too small or too large, the valences of the element R and the element M cannot be balanced, and a heterogeneous phase such as a W-type ferrite is easily generated. When the element M is a divalent ion and the element R is a trivalent ion, it is general that X / y = 1 in terms of valence equilibrium. It is preferable to do it. The reason why the allowable range is large in the region where x / y is greater than 1 is that even when y is small, the valence can be balanced by the reduction of F e 3+ → F e 2+ .
組成を表わす上記式 Iにおいて、 酸素 (O ) の原子数は 1 9となっている力 これは、 Mがすべて 2価、 Rがすべて 3価であって、 かつ x = y、 z = lのとき の酸素の化学量論組成比を示したものである。 Mおよび Rの種類や x、 y、 の 値によって、 酸素の原子数は異なってくる。 また、 例えば焼成雰囲気が還元性雰 囲気の場合は、 酸素の欠損 (べィカンシー) ができる可能性がある。 さらに、 F eは M型フェライ ト中においては通常 3価で存在するが、 これが 2価などに変化 する可能性もある。 また、 C o等の元素 Mも価数が変化する可能性があり、 これ らにより金属元素に対する酸素の比率は変化する。 本明細書では、 Rの種類や x、 y、 zの値によらず酸素の原子数を 1 9と表示してあるが、 実際の酸素の原子数 は、 これから多少偏倚した値であってよい。 In the above formula I representing the composition, the number of atoms of oxygen (O) is 19. This is because M is all divalent, R is all trivalent, and x = y, z = l It shows the stoichiometric composition ratio of oxygen at that time. Depending on the types of M and R, and the values of x, y, the number of oxygen atoms differs. Also, for example, when the firing atmosphere is a reducing atmosphere, oxygen vacancies (vacancies) may occur. In addition, Fe usually exists in trivalent form in M-type ferrite, but this may change to divalent state. Also, the valence of the element M such as Co may change. The ratio of oxygen to the metal element changes depending on these factors. In this specification, the number of oxygen atoms is indicated as 19 regardless of the type of R and the values of x, y, and z, but the actual number of oxygen atoms may be a value slightly deviated from this. .
磁石組成は、 蛍光 X線定量分析などにより測定することができる。 また、 上記 主相の存在は、 X線回折や電子線回折などにより確認できる。  The magnet composition can be measured by fluorescent X-ray quantitative analysis or the like. The presence of the main phase can be confirmed by X-ray diffraction, electron beam diffraction, or the like.
磁石の飽和磁化および保磁力を高くするためには、 元素 Aとして S rおよび C aの少なくとも 1種を用いることが好ましく、 特に S rを用いることが好ましレ、。 A中において S r + C aの占める割合は、 好ましくは 5 1原子%以上、 より好ま しくは 7 0原子%以上、 さらに好ましくは 1 0 0原子%である。  In order to increase the saturation magnetization and coercive force of the magnet, it is preferable to use at least one of Sr and Ca as the element A, and it is particularly preferable to use Sr. The proportion of Sr + Ca in A is preferably at least 51 at%, more preferably at least 70 at%, and even more preferably at least 100 at%.
元素 Rとしては、 好ましくはランタノイ ドの少なくとも 1種、 より好ましくは 軽希土類の少なくとも 1種、 さらに好ましくは L a、 N dおよび P rの少なくと も 1種を用い、 特に L aを必ず用いることが好ましい。 R中において L aの占め る割合は、 好ましくは 4 0原子%以上、 より好ましくは 7 0原子%以上であり、 飽和磁化向上のためには Rとして L aだけを用いることが最も好ましい。 これは、 六方晶 M型フェライ トに対する固溶限界量を比較すると、 L aが最も多いためで ある。 したがって、 R中の L aの割合が低すぎると Rの固溶量を多くすることが できず、 その結果、 元素 Mの固溶量も多くすることができなくなり、 磁気特性向 上効果が小さくなつてしまう。 なお、 B iを併用すれば、 仮焼温度および焼結温 度を低くすることができるので、 生産上有利である。  As the element R, preferably at least one kind of lanthanide, more preferably at least one kind of light rare earth, and still more preferably at least one kind of La, Nd and Pr are used, and especially La is always used. Is preferred. The proportion occupied by La in R is preferably at least 40 at%, more preferably at least 70 at%. In order to improve the saturation magnetization, it is most preferable to use only La as R. This is because, when comparing the solubility limit of hexagonal M-type ferrite, La is the largest. Therefore, if the ratio of La in R is too low, the amount of solid solution of R cannot be increased, and as a result, the amount of solid solution of element M cannot be increased, and the effect of improving magnetic properties is small. It will be connected. When Bi is used in combination, the calcining temperature and the sintering temperature can be lowered, which is advantageous in production.
元素 Mとしては、 少なくとも C oおよび Z nの 1種以上、 特に C oを必ず用い ることが好ましい。 M中において C oの占める割合は、 好ましくは 1 0原子%以 上、 より好ましくは 2 0原子%以上である。 M中における C oの割合が低すぎる と、 保磁力向上が不十分となる。  As the element M, it is preferable to use at least one of Co and Zn, particularly Co. The proportion of Co in M is preferably at least 10 atomic%, more preferably at least 20 atomic%. If the proportion of Co in M is too low, the coercive force is insufficiently improved.
磁石には、 B 203が含まれていてもよい。 B 203を含むことにより仮焼温度お よび焼結温度を低くすることができるので、 生産上有利である。 B 203の含有量 は、 磁石粉末全体の 0. 5重量%以下であることが好ましい。 B203含有量が多 すぎると、 飽和磁化が低くなつてしまう。 The magnet may contain B 2 0 3. It is possible to lower the calcining temperature Contact and sintering temperature by containing B 2 0 3, which is advantageous on production. The content of B 2 0 3 Is preferably 0.5% by weight or less of the whole magnet powder. When B 2 0 3 content is too large, the saturation magnetization will be summer low.
磁石粉末中には、 Na、 Kおよび Rbの少なくとも 1種が含まれていてもよい。 これらをそれぞれ N a2〇、 K2Oおよび Rb2〇に換算したとき、 これらの含有量 の合計は、 磁石粉末全体の 3重量%以下であることが好ましい。 これらの含有量 が多すぎると、 飽和磁化が低くなつてしまう。 これらの元素を M1で表わしたと き、 フェライ ト中において M1は例えばThe magnet powder may contain at least one of Na, K and Rb. When these are converted into Na 2 〇, K 2 O and Rb 2そ れ ぞ れ, respectively, the total of these contents is preferably not more than 3% by weight of the whole magnet powder. If these contents are too high, the saturation magnetization will be low. Can and these elements expressed in M 1, M 1 during ferrite, for example
Figure imgf000016_0001
Figure imgf000016_0001
の形で含有される。 なお、 この場合、 0. 3< a≤0. 5であることが好ましレ、。 aが大きすぎると、 飽和磁化が低くなつてしまう他、 焼成時に元素 M1が多量に 蒸発してしまうという間題が生じる。 It is contained in the form of In this case, it is preferable that 0.3 <a≤0.5. If a is too large, the saturation magnetization will be low, and the element M 1 will evaporate in large quantities during firing.
また、 これらのほ力、、 例えば G a、 I n、 L i、 Mg、 Cu、 T i、 Z r、 G e、 Sn、 V、 Nb、 Ta、 S b、 As、 W、 M o等が酸化物として含有されて いてもよレ、。 これらの含有量は、 化学量論組成の酸化物に換算して、 それぞれ酸 化ガリウム 5重量。/。以下、 酸化インジウム 3重量%以下、 酸化リチウム 1重量% 以下、 酸化マグネシウム 3重量%以下、 酸化銅 3重量%以下、 酸化チタン 3重 量%以下、 酸化ジルコニウム 3重量%以下、 酸化ゲルマニウム 3重量%以下、 酸 化スズ 3重量%以下、 酸化バナジウム 3重量%以下、 酸化ニオブ 3重量%以下、 酸化タンタル 3重量%以下、 酸化アンチモン 3重量%以下、 酸化砒素 3重量%以 下、 酸化タングステン 3重量%以下、 酸化モリブデン 3重量%以下であることが 好ましい。  Also, these forces, such as Ga, In, Li, Mg, Cu, Ti, Zr, Ge, Sn, V, Nb, Ta, Sb, As, W, Mo, etc. It may be contained as an oxide. These contents are 5% by weight of gallium oxide in terms of oxides of stoichiometric composition. /. Below, indium oxide 3% by weight, lithium oxide 1% by weight, magnesium oxide 3% by weight, copper oxide 3% by weight, titanium oxide 3% by weight, zirconium oxide 3% by weight, germanium oxide 3% by weight Below, 3% by weight of tin oxide, 3% by weight or less of vanadium oxide, 3% by weight or less of niobium oxide, 3% by weight or less of tantalum oxide, 3% by weight or less of antimony oxide, 3% by weight or less of arsenic oxide, 3% by weight of tungsten oxide % Or less, and preferably 3% by weight or less of molybdenum oxide.
製造方法 Production method
次に、 磁石の製造方法を説明する。  Next, a method for manufacturing a magnet will be described.
本発明の製造方法は、 原料粉末の成形体を焼成して焼結磁石を得る焼成工程を 有する。 原料粉末の製造方法は特に限定されず、 例えば、 いわゆる仮焼によって固相反 応により製造してもよく、 共沈法や水熱合成法などにより製造してもよい。 以降 では、 主として仮焼工程を設ける場合について説明する。 The production method of the present invention includes a firing step of firing a compact of the raw material powder to obtain a sintered magnet. The method for producing the raw material powder is not particularly limited. For example, the raw material powder may be produced by a so-called calcination by a solid phase reaction, or may be produced by a coprecipitation method or a hydrothermal synthesis method. Hereinafter, the case where the calcining step is provided will be mainly described.
まず、 出発原料を混合した後、 仮焼し、 仮焼体を得る。 この仮焼体を解砕ない し粉砕して粉末化し、 上記原料粉末を得る。 そして、 この原料粉末を成形した後、 焼成する。  First, after the starting materials are mixed, they are calcined to obtain a calcined body. This calcined body is not disintegrated or pulverized to powder to obtain the raw material powder. After the raw material powder is formed, it is fired.
上記組成をもつ本発明の磁石は、 上記焼成工程において、 雰囲気中の酸素分圧 が変動した場合および/または焼成温度 (安定温度) が変動した場合でも、 それ に伴う磁気特性の変動、 特に保磁力の変動が小さい。 焼成雰囲気中の酸素分圧が 0 . 1 5気圧以下である場合、 特に 0 . 1 0気圧以下である場合に、 本発明は著 しく高い効果を発揮する。 したがって、 本発明は、 炉中の酸素分圧が低くなるガ ス連続炉を用いる場合に好適である。 また、 本発明では、 安定温度が例えば 6 0 °C以内の範囲で変動したとしても、 磁気特性の変動、 特に保磁力の変動を小さ く抑えることができる。  The magnet of the present invention having the above-described composition can be used for the above-mentioned firing process even if the oxygen partial pressure in the atmosphere fluctuates and / or the firing temperature (stable temperature) fluctuates. Small fluctuations in magnetic force. The present invention exhibits a remarkably high effect when the oxygen partial pressure in the firing atmosphere is 0.15 atm or less, particularly when it is 0.10 atm or less. Therefore, the present invention is suitable for using a gas continuous furnace in which the oxygen partial pressure in the furnace is low. Further, in the present invention, even if the stable temperature fluctuates within a range of, for example, 60 ° C., fluctuations in magnetic characteristics, particularly fluctuations in coercive force, can be suppressed to a small level.
次に、 本発明の磁石を製造する際の好ましい条件等について説明する。  Next, preferable conditions for manufacturing the magnet of the present invention will be described.
出発原料には、 酸化物粉末、 または焼成により酸化物となる化合物、 例えば炭 酸塩、 水酸化物、 硝酸塩等の粉末を用いる。 出発原料の平均粒径は特に限定され ないが、 通常、 0 . 1〜2 /i m程度とすることが好ましい。 特に酸ィヒ鉄は微細粉 末を用いることが好ましく、 具体的には一次粒子の平均粒径が好ましくは 1 μ πι 以下、 より好ましくは 0 . 5 μ πι以下のものを用いる。 また、 元素 Αを含む出発 原料には、 ス トック時の安定性が良好であることから、 水酸化物または炭酸塩を 用いることが好ましい。  As a starting material, an oxide powder or a compound which becomes an oxide by firing, such as a carbonate, a hydroxide, or a nitrate, is used. The average particle size of the starting material is not particularly limited, but is usually preferably about 0.1 to 2 / im. In particular, iron oxyferrite is preferably used in the form of fine powder. Specifically, the primary particles having an average particle diameter of preferably 1 μπι or less, more preferably 0.5 μπι or less are used. Further, as the starting material containing the element Α, it is preferable to use a hydroxide or a carbonate because of good stability during stocking.
仮焼は、 通常、 空気中等の酸化性雰囲気中で行えばよい。 仮焼条件は特に限定 されないが、 通常、 安定温度は 1 0 0 0 ~ 1 3 5 0 °C、 安定時間は 1秒間〜 1 0 時間、 より好ましくは 1秒間〜 3時間とすればよい。 仮焼体は、 実質的にマグネ トプランバイ ト型のフェライ ト構造をもち、 その一次粒子の平均粒径は、 好まし くは 2 /x m以下、 より好ましくは 1 μ πι以下、 さらに好ましくは 0 . 1〜1 μ ιη、 最も好ましくは 0 . 1〜0 . 5 / mである。 平均粒径は走査型電子顕微鏡により 測定することができる。 The calcination may be usually performed in an oxidizing atmosphere such as air. The calcination conditions are not particularly limited, but usually, the stabilization temperature is 100 to 135 ° C., and the stabilization time is 1 second to 10 hours, more preferably 1 second to 3 hours. The calcined body is substantially magne It has a topranite-type ferrite structure, and the average particle size of the primary particles is preferably 2 / xm or less, more preferably 1 μπι or less, further preferably 0.1 to 1 μιη, and most preferably 0.1 to 0.5 / m. The average particle size can be measured with a scanning electron microscope.
本発明では、 S iを供給するための出発原料として S i 02を用いることが好 ましい。 S i 02は、 仮焼前に他の出発原料と混合してもよく、 仮焼後に混合し てもよく、 S i 02の添加を仮焼前と仮焼後とに振り分けてもよい。 少なく とも 焼成前に S i 02が添加されていれば、 本発明の効果は実現する。 ただし、 本発 明の効果をより向上させるためには、 S i 02の少なく とも一部、 好ましくは全 部を、 仮焼後に添加することが好ましい。 In the present invention, it is favorable preferable to use S i 0 2 as the starting material for supplying the S i. S i 0 2 may be mixed with other starting material before calcination, may be mixed after calcination, may be distributed to the addition of S i 0 2 in the front and calcination after calcination . If both are added S i 0 2 is before firing small, the effect of the present invention is realized. However, in order to further improve this onset bright effects, some also less of S i 0 2, preferably it is preferred to add all the parts, after calcination.
また、 S i o2以外の出発原料化合物も、 仮焼前にすベてを混合する必要はな く、 各化合物の一部または全部を仮焼後に添加する構成としてよい。 Also, it is not necessary to mix all of the starting material compounds other than Sio 2 before calcination, and a part or all of each compound may be added after calcination.
S i o 2以外の出発原料化合物を仮焼後に添加する方法、 すなわち後添加法で は、 まず、 少なくとも前記元素 Aを含有する六方晶フェライ トを主相とする仮焼 材を製造する。 次いで、 この仮焼材を粉砕した後、 または粉砕時に、 後添加する 化合物 (後添加物) を仮焼材に添加し、 その後、 成形し、 焼結する。 前記した複 数のキュリー温度をもつ磁石を得るためには、 後添加物に、 前記元素 Rおよび前 記元素 Mから選択される 1種または 2種以上の元素、 好ましくは元素 Rおよび元 素 Mの両方が少なくとも含有されるように、 後添加する化合物を選択する。 Method of adding S io 2 except the starting material compound after calcination, i.e. in the post-addition method, first, to produce a calcined material for the main phase a hexagonal ferrite containing at least the element A. Next, after pulverizing the calcined material or at the time of pulverizing, a compound to be added later (post-additive) is added to the calcined material, and then molded and sintered. In order to obtain a magnet having a plurality of Curie temperatures as described above, one or two or more elements selected from the above-mentioned element R and the above-mentioned element M, preferably the element R and the element M are added to the post-additive. The compound to be added later is selected so that at least both are contained.
後添加物の量は、 仮焼材の好ましくは 1〜 1 0 0体積。 /0、 より好ましくは 5〜 7 0体積%、 さらに好ましくは 1 0〜5 0体積%である。 元素 Rを含有する化合 物としては R酸化物を用いることができるが、 R酸化物は水に対する溶解度が比 較的大きいため、 湿式成形の際に流出してしまうなどの問題がある。 また、 吸湿 性もあるため、 秤量誤差の原因になりやすい。 そのため、 R化合物としては炭酸 塩または水酸化物が好ましい。 そのほかの元素の後添加物は、 酸化物、 または焼 成により酸化物となる化合物、 例えば炭酸塩や水酸化物として添加すればよい。 後添加物の添加時期は、 仮焼後かつ焼結前であればよいが、 好ましくは、 次に 説明する粉砕時に添加する。 ただし本発明では、 仮焼材ではなく、 共沈法や水熱 合成法などにより製造され、 少なくとも前記元素 Aを含有する六方晶フェライ ト を主相とする粒子に後添加物を添加してもよい。 The amount of the post-additive is preferably 1 to 100 volumes of the calcined material. / 0 , more preferably 5 to 70% by volume, still more preferably 10 to 50% by volume. As the compound containing the element R, an R oxide can be used, but since the R oxide has a relatively high solubility in water, there is a problem that it flows out during wet molding. In addition, since it is hygroscopic, it can easily cause weighing errors. Therefore, the R compound is preferably a carbonate or a hydroxide. The post-additives of the other elements are oxides or calcined A compound that becomes an oxide upon formation, for example, a carbonate or a hydroxide may be added. The post-additive may be added after calcining and before sintering, but is preferably added at the time of pulverization described below. However, in the present invention, a post-additive may be added to particles that are produced by a coprecipitation method, a hydrothermal synthesis method, or the like instead of a calcined material, and that include at least the hexagonal ferrite containing the element A as a main phase. Good.
元素 Rまたは元素 Mについては、 磁石中に含まれる全量の好ましくは 30%以 上、 より好ましくは 50%以上が、 後添加物として添加されることが望ましい。 そのほかの元素については、 後添加物として添加される量は特に限定されない。 なお、 後添加物の平均粒径は、 0. 1〜 2 μ m程度であることが好ましい。  As for the element R or the element M, it is desirable that at least 30%, more preferably at least 50%, of the total amount contained in the magnet is added as a post-additive. For other elements, the amount added as a post-additive is not particularly limited. The average particle size of the post-additive is preferably about 0.1 to 2 μm.
ここで、 後添加物の添加量について、 具体的に説明する。 例えば、  Here, the addition amount of the post-additive will be specifically described. For example,
S r : L a : F e : Co = 0. 8 : 0. 2 : 1 1. 8 : 0. 2  S r: L a: F e: Co = 0.8: 0.2: 1 1.8: 0.2
である焼結磁石の製造を目的とする場合、 原料配合時には If the purpose is to manufacture a sintered magnet that is
S r : F e = 0. 8 : 9. 6 (=1 : 12)  Sr: Fe = 0.8: 9.6 (= 1: 12)
の割合で混合して仮焼し、 得られた仮焼材に、 And calcined at the ratio of
L a : F e : C o = 0. 2 : 2. 2 : 0. 2  L a: F e: C o = 0.2: 2.2: 0.2
である後添加物を添加して焼成することにより、 上記した目的組成の焼結磁石が 得られる。 また、 例えば、 By adding the post-additive and firing, the sintered magnet having the above-described target composition can be obtained. Also, for example,
S r : F e = 0. 8 : 1 1. 8 (= 1 : 14. 75)  Sr: F e = 0.8: 1 1.8 (= 1: 14.75)
の割合で混合して仮焼し (このとき仮焼材は M型 S rフェライ トと a— F e 23との 2相状態となる) 、 得られた仮焼材に And then calcined (at this time, the calcined material is in the two-phase state of M-type Sr ferrite and a — Fe 23 ).
L a : C o = 0. 2 : 0. 2  L a: C o = 0.2: 0.2
である後添加物を添加して焼成することによつても、 上記した目的組成の焼結磁 石が得られる。 The sintered magnet having the above-mentioned target composition can be obtained also by adding the post-additive and firing.
後添加法により製造された焼結磁石が複数のキュリー温度をもつ理由は明確で はないが、 次のように考えられる。 焼結時には、 M型フェライ ト相を有する仮焼 材粒子と後添加物との反応が生じるが、 その過程で L a濃度および C o濃度が高 い M型フェライ ト部分と、 これらの濃度が低い M型フェライ ト部分とが生じると 考えられる。 すなわち、 後添加物中の L aや C oが、 焼結時に仮焼材粒子の中心 に向かって拡散していくとすると、 焼結後の結晶粒中における L aや C oの濃度 は、 中心部よりも表層部で高くなりやすいと考えられる。 キュリー温度は L aや C oの置換量、 特に L aの置換量に依存するため、 複数のキュリー温度の存在は、 結晶粒中における L aや C oの濃度分布の存在を反映していると考えられる。 次に、 成形およびその前工程である粉砕について説明する。 The reason why sintered magnets manufactured by the post-addition method have multiple Curie temperatures is not clear, but is considered as follows. At the time of sintering, calcining with M-type ferrite phase The reaction between the material particles and the post-additive occurs, and in the process, it is considered that an M-type ferrite portion having a high La concentration and a Co concentration and an M-type ferrite portion having these low concentrations are generated. In other words, assuming that La and Co in the post-additive diffuse toward the center of the calcined material particles during sintering, the concentration of La and Co in the crystal grains after sintering is as follows: It is considered that the surface layer tends to be higher than the central part. Since the Curie temperature depends on the substitution amount of La and Co, especially the substitution amount of La, the presence of multiple Curie temperatures reflects the existence of La and Co concentration distribution in the crystal grains. it is conceivable that. Next, molding and pulverization which is a preceding step will be described.
原料粉末の成形には、 湿式成形法を利用することが好ましい。 湿式成形では、 原料粉末と、 分散媒としての水と、 分散剤とを含む成形用スラリーを用いること が好ましい。 なお、 分散剤の効果をより高くするためには、 湿式成形工程の前に 湿式粉砕工程を設けることが好ましい。 また、 原料粉末として仮焼体粉末を用い る場合、 仮焼体粉末は一般に顆粒から構成されるので、 仮焼体粉末の粗粉碎ない し解砕のために、 湿式粉砕工程の前に乾式粗粉砕工程を設けることが好ましい。 なお、 共沈法や水熱合成法などにより原料粉末を製造した場合には、 通常、 乾式 粗粉砕工程は設けず、 湿式粉砕工程も必須ではないが、 配向度をより高くするた めには湿式粉砕工程を設けることが好ましレ、。 以下では、 仮焼体粒子を原料粉末 として用い、 乾式粗粉砕工程および湿式粉砕工程を設ける場合について説明する。 乾式粗粉砕工程では、 通常、 B E T比表面積が 2〜 1 0倍程度となるまで粉砕 する。 粉砕後において、 平均粒径は好ましくは 0 . 1〜1 μ πι程度、 B E T比表 面積は好ましくは 4〜1 O m2/g程度である。 粉砕手段は特に限定されず、 例えば 乾式振動ミル、 乾式アトライタ一 (媒体攪拌型ミル) 、 乾式ボールミル等が使用 できるが、 特に乾式振動ミルを用いることが好ましい。 粉砕時間は、 粉砕手段に 応じて適宜決定すればよい。 なお、 仮焼後に一部の出発原料を添加する場合には、 この乾式粗粉砕工程において添加することが好ましい。 例えば、 S i〇2と、 焼 成により C a Oとなる C a C 03とは、 それぞれの少なくとも一部をこの乾式粗 粉碎工程において添加することが好ましい。 It is preferable to use a wet molding method for molding the raw material powder. In wet molding, it is preferable to use a molding slurry containing a raw material powder, water as a dispersion medium, and a dispersant. In order to further enhance the effect of the dispersant, it is preferable to provide a wet pulverization step before the wet molding step. When the calcined body powder is used as the raw material powder, the calcined body powder is generally composed of granules. It is preferable to provide a pulverizing step. When the raw material powder is manufactured by a coprecipitation method or a hydrothermal synthesis method, a dry coarse pulverization step is not usually provided, and a wet pulverization step is not necessarily required. Preferably, a wet grinding step is provided. Hereinafter, a case where the calcined body particles are used as a raw material powder and a dry coarse grinding step and a wet grinding step are provided will be described. In the dry coarse pulverization step, pulverization is usually performed until the BET specific surface area becomes about 2 to 10 times. After pulverization, the average particle size is preferably about 0.1 to 1 μπι, and the BET specific surface area is preferably about 4 to 1 O m 2 / g. The pulverizing means is not particularly limited, and for example, a dry vibration mill, a dry attritor (medium stirring type mill), a dry ball mill, or the like can be used, but a dry vibration mill is particularly preferable. The pulverization time may be appropriately determined according to the pulverization means. When some starting materials are added after calcination, it is preferable to add them in this dry coarse pulverization step. For example, S i〇 2 The C a C 0 3 as a C a O by forming, it is preferable to add each of the at least in part in the dry coarse Kona碎process.
乾式粗粉砕には、 仮焼体粒子に結晶歪を導入して保磁力 HcBを小さくする効果 もある。 保磁力の低下により粒子の凝集が抑制され、 分散性が向上する。 また、 軟磁性化することにより、 配向度も向上する。 軟磁性化された粒子は、 後の焼結 工程において本来の硬磁性に戻る。  Dry coarse pulverization also has the effect of reducing the coercive force HcB by introducing crystal strain into the calcined particles. Decrease in coercive force suppresses agglomeration of particles and improves dispersibility. In addition, the degree of orientation is improved by making the layer soft magnetic. The softened particles return to their original hard magnetism in the subsequent sintering process.
乾式粗粉砕の後、 粉砕された粒子と水とを含む粉砕用スラリーを調製し、 これ を用いて湿式粉砕を行う。 粉砕用スラリー中の原料粉末の含有量は、 1 0〜7 0 重量%程度であることが好ましい。 湿式粉砕に用いる粉砕手段は特に限定されな いが、 通常、 ボールミル、 アトライター、 振動ミル等を用いることが好ましい。 粉砕時間は、 粉砕手段に応じて適宜決定すればよい。  After the dry coarse pulverization, a pulverization slurry containing the pulverized particles and water is prepared, and wet pulverization is performed using the slurry. The content of the raw material powder in the pulverizing slurry is preferably about 10 to 70% by weight. The pulverizing means used for the wet pulverization is not particularly limited, but usually, a ball mill, an attritor, a vibration mill or the like is preferably used. The pulverization time may be appropriately determined according to the pulverization means.
湿式粉砕後、 粉砕用スラリーを濃縮して成形用スラリーを調製する。 濃縮は、 遠心分離などによって行えばよい。 成形用スラリー中の原料粉末の含有量は、 6 0〜9 0重量%程度であることが好ましい。  After wet grinding, the slurry for grinding is concentrated to prepare a slurry for molding. Concentration may be performed by centrifugation or the like. The content of the raw material powder in the molding slurry is preferably about 60 to 90% by weight.
湿式成形工程では、 成形用スラリーを用いて磁場中成形を行う。 成形圧力は 0 . 1〜 0 . 5 t/cm2程度、 印加磁場は 5〜 1 5 kOe程度とすればょレ、。 In the wet molding process, molding in a magnetic field is performed using a molding slurry. Compacting pressure 0. 1~ 0. 5 t / cm 2 or so, the applied magnetic field. 5 to 1 5 kOe about and Surebayore.
成形用のスラリーに非水系の分散媒を用いると高配向度が得られるが、 環境へ の負荷を軽減するためには水系分散媒を用いることが好ましい。 そして、 水系分 散媒を用いることによる配向度の低下を補うために、 成形用スラリ一中に分散剤 を存在させることが好ましい。 この場合に用いる分散剤は、 水酸基およびカルボ キシル基を有する有機化合物である力 その中和塩であるか、 そのラク トンであ る力 \ ヒロドキシメチルカルボ二ル基を有する有機化合物である力、 酸として解 離し得るェノール型水酸基を有する有機化合物であるか、 その中和塩であること が好ましい。  When a non-aqueous dispersion medium is used for the molding slurry, a high degree of orientation can be obtained. However, in order to reduce the load on the environment, it is preferable to use an aqueous dispersion medium. In order to compensate for the decrease in the degree of orientation due to the use of the aqueous dispersion medium, it is preferable that a dispersant is present in the molding slurry. The dispersant used in this case is an organic compound having a hydroxyl group and a carboxyl group, a neutral salt thereof, or a lactone, an organic compound having a hydroxymethylcarboxyl group. It is preferably an organic compound having an enol-type hydroxyl group which can be dissociated as a force or an acid, or a neutralized salt thereof.
なお、 非水系の分散媒を用いる場合には、 例えば特開平 6— 5 3 0 6 4号公報 に記載されているように、 トルエンゃキシレンのような有機溶媒に、 例えばォレ イン酸のような界面活性剤を添加して、 分散媒とする。 このような分散媒を用い ることにより、 分散しにくいサブミクロンサイズのフェライ ト粒子を用いた場合 でも最高で 98 %程度の高い磁気的配向度を得ることが可能である。 When a non-aqueous dispersion medium is used, for example, JP-A-6-53064 As described in above, a dispersion medium is prepared by adding a surfactant such as oleic acid to an organic solvent such as toluene-xylene. By using such a dispersion medium, it is possible to obtain a high degree of magnetic orientation of up to about 98% even when ferrite particles of submicron size that are difficult to disperse are used.
上記各有機化合物は、 炭素数が 3〜 20、 好ましくは 4〜 12であり、 かつ、 酸素原子と二重結合した炭素原子以外の炭素原子の 50 %以上に水酸基が結合し ているものである。 炭素数が 2以下であると、 配向度向上効果が不十分となる。 また、 炭素数が 3以上であっても、 酸素原子と二重結合した炭素原子以外の炭素 原子への水酸基の結合比率が 50%未満であれば、 やはり効果が不十分となる。 なお、 水酸基の結合比率は、 上記有機化合物について限定されるものであり、 分 散剤そのものについて限定されるものではない。 例えば、 分散剤として、 水酸基 およびカルボキシル基を有する有機化合物 (ヒ ドロキシカルボン酸) のラク トン を用いるとき、 水酸基の結合比率の限定は、 ラクトンではなくヒ ドロキシカルボ ン酸自体に適用される。  Each of the above organic compounds has 3 to 20 carbon atoms, preferably 4 to 12 carbon atoms, and has a hydroxyl group bonded to 50% or more of the carbon atoms other than the carbon atom double-bonded to the oxygen atom. . When the number of carbon atoms is 2 or less, the effect of improving the degree of orientation becomes insufficient. Even if the number of carbon atoms is 3 or more, the effect is still insufficient if the bonding ratio of the hydroxyl group to a carbon atom other than the carbon atom double-bonded to the oxygen atom is less than 50%. The bonding ratio of the hydroxyl group is limited for the above organic compound, and is not limited for the dispersant itself. For example, when a lactone of an organic compound (hydroxycarboxylic acid) having a hydroxyl group and a carboxyl group is used as the dispersant, the limitation of the bonding ratio of the hydroxyl group is applied to hydroxycarbonic acid itself instead of lactone.
上記有機化合物の基本骨格は、 鎖式であっても環式であってもよく、 また、 飽 和であっても不飽和結合を含んでいてもよい。  The basic skeleton of the organic compound may be linear or cyclic, and may be saturated or contain an unsaturated bond.
分散剤としては、 具体的にはヒ ドロキシカルボン酸またはその中和塩もしくは そのラク トンが好ましく、 特に、 ダルコン酸 (C=6 ; OH= 5 ; COOH = 1) またはその中和塩もしくはそのラク トン、 ラタ トビオン酸 (C= 1 2 ; OH =8 ; COOH= 1) 、 酒石酸 (C = 4 ; OH=2 ; C〇〇H=2) またはこれ らの中和塩、 ダルコヘプトン酸 "V—ラク トン (C=7 ; OH= 5) が好ましい。 そして、 これらのうちでは、 配向度向上効果が高く、 しかも安価であることから、 ダルコン酸またはその中和塩もしくはそのラク トンが好ましい。  As the dispersant, specifically, hydroxycarboxylic acid or a neutralized salt thereof or a lactone thereof is preferable. In particular, dalconic acid (C = 6; OH = 5; COOH = 1) or a neutralized salt thereof or Lactone, ratatobionic acid (C = 12; OH = 8; COOH = 1), tartaric acid (C = 4; OH = 2; C〇〇H = 2) or a neutralized salt thereof, darcoheptonic acid "V —Lactone (C = 7; OH = 5), and among these, dalconic acid or its neutralized salt or its lactone is preferable because of its high effect of improving the degree of orientation and low cost.
ヒ ドロキシメチルカルボ二ル基を有する有機化合物としては、 ソルボースが好 ましい。 酸として解離し得るエノール型水酸基を有する有機化合物としては、 ァスコノレ ビン酸が好ましい。 As an organic compound having a hydroxymethylcarbonyl group, sorbose is preferred. As the organic compound having an enol-type hydroxyl group that can be dissociated as an acid, asconolevic acid is preferable.
なお、 本発明では、 クェン酸またはその中和塩も分散剤として使用可能である。 クェン酸は水酸基おょぴカルボキシル基を有するが、 酸素原子と二重結合した炭 素原子以外の炭素原子の 5 0 %以上に水酸基が結合しているという条件は満足し ない。 しかし、 配向度向上効果は認められる。  In the present invention, cunic acid or a neutralized salt thereof can also be used as a dispersant. Cuenoic acid has a hydroxyl group and a carboxyl group, but does not satisfy the condition that 50% or more of the carbon atoms other than the carbon atom double-bonded to the oxygen atom are bonded to the hydroxyl group. However, the effect of improving the degree of orientation is recognized.
上記した好ましい分散剤の一部について、 構造を以下に示す。 The structures of some of the above preferred dispersants are shown below.
D-ダルコン酸 - D -ダルコヘプトン酸 D-Dalconic acid-D-Dalcoheptonic acid
T-ラク卜ン  T-Lacton
Figure imgf000024_0001
Figure imgf000024_0001
ラク卜ビ才ン酸 Lactic acid
石酸  Lithic acid
Figure imgf000024_0002
ァスコルビン酸 L- (-) -ソルボース
Figure imgf000024_0002
Ascorbic acid L- (-) -Sorbose
Figure imgf000024_0003
磁場配向による配向度は、 スラリーの p Hの影響を受ける。 具体的には、 p H が低すぎると配向度は低下し、 これにより焼結後の残留磁束密度が影響を受ける c 分散剤として水溶液中で酸としての性質を示す化合物、 例えばヒ ドロキシカルボ ン酸などを用いた場合には、 スラリーの p Hが低くなつてしまう。 したがって、 例えば、 分散剤と共に塩基性化合物を添加するなどして、 スラリーの p Hを調整 することが好ましい。 上記塩基性化合物としては、 アンモニアや水酸化ナトリゥ ムが好ましい。 アンモニアは、 アンモニア水として添加すればよい。 なお、 ヒ ド ロキシカルボン酸のナトリゥム塩を用いることにより、 p H低下を防ぐこともで さる。
Figure imgf000024_0003
The degree of orientation by the magnetic field orientation is affected by the pH of the slurry. Specifically, the degree of orientation p H is too low is reduced, a compound that indicates the nature of the acid in aqueous solution thereby as c dispersant remanence after sintering is affected, for example arsenate Dorokishikarubo phosphate When such a method is used, the pH of the slurry is lowered. Therefore, it is preferable to adjust the pH of the slurry, for example, by adding a basic compound together with the dispersant. As the above basic compound, ammonia and sodium hydroxide are preferable. Ammonia may be added as aqueous ammonia. It is to be noted that the use of sodium salt of hydroxycarboxylic acid can prevent a decrease in pH.
原料として S i〇2および C a C O3を用いる場合、 分散剤としてヒ ドロキシカ ルボン酸やそのラク トンを用いると、 主として成形用スラリー調製の際にスラリ 一の上澄みと共に S i 02および C a C〇3が流出してしまい、 HcJが低下するな ど所望の性能が得られなくなる。 また、 上記塩基性化合物を添加するなどして p Hを高く したときには、 S i 02および C a C 03の流出量がより多くなる。 これ に対し、 ヒ ドロキシカルボン酸のカルシウム塩を分散剤として用いれば、 S i O 2および C a C〇3の流出が抑えられる。 ただし、 上記塩基性化合物を添加したり、 分散剤としてナトリゥム塩を用いたりした場合には、 S i 02および C a C 03を 目標組成に対し過剰に添加すれば、 磁石中の S i〇2量および C a O量の不足を 防ぐことができる。 なお、 ァスコルビン酸を用いた場合には、 S i o2および C a C 03の流出はほとんど認められない。 When using the S I_〇 2 and C a CO 3 as a raw material, arsenate Dorokishika carboxylic acid and the use of its lactone, S i 0 2 and C a with a slurry one supernatant upon primarily molding slurry prepared as a dispersant C_〇 would 3 flows out, HcJ can not be obtained Do throat desired performance decreases. Further, when the high p H, such as by adding the basic compound, outflow of S i 0 2 and C a C 0 3 is more. In contrast, the use of the calcium salt of hydroxycarboxylic acid as a dispersing agent, the outflow of S i O 2 and C a C_〇 3 is suppressed. However, may be added to the basic compound, when or with Natoriumu salt as a dispersing agent, if excessively added with respect to the target composition of S i 0 2 and C a C 0 3, S i in the magnet 〇 The shortage of 2 and C a O can be prevented. In the case of using the Asukorubin acid, outflow of S io 2 and C a C 0 3 is not substantially observed.
上記理由により、 スラリーの pHは、 好ましくは 7以上、 より好ましくは 8〜1 1である。  For the above reasons, the pH of the slurry is preferably 7 or more, more preferably 8-11.
分散剤として用いる中和塩の種類は特に限定されず、 カルシウム塩ゃナトリウ ム塩等のいずれであってもよいが、 上記理由から、 好ましくはカルシウム塩を用 いる。 分散剤にナトリウム塩を用いたり、 アンモニア水を添加した場合には、 副 成分の流出のほか、 成形体や焼結体にクラックが発生しゃすくなるという問題が 生じる。 The kind of the neutralizing salt used as the dispersant is not particularly limited, and may be any of a calcium salt and a sodium salt. For the above-mentioned reason, the calcium salt is preferably used. If sodium salt is used as the dispersant or aqueous ammonia is added, In addition to the outflow of components, there is a problem that cracks are generated in the formed body and the sintered body, and the formed body becomes sintered.
なお、 分散剤は 2種以上を併用してもよい。  Incidentally, two or more dispersants may be used in combination.
分散剤の添加量は、 原料粉末に対し好ましくは 0 . 0 5〜 3 . 0重量%、 より 好ましくは 0 . 1 0〜2 . 0重量%である。 分散剤が少なすぎると配向度の向上 が不十分となる。 一方、 分散剤が多すぎると、 成形体や焼結体にクラックが発生 しゃすくなる。  The amount of the dispersant added is preferably 0.05 to 3.0% by weight, more preferably 0.10 to 2.0% by weight, based on the raw material powder. If the amount of the dispersant is too small, the improvement of the degree of orientation becomes insufficient. On the other hand, if the amount of the dispersing agent is too large, cracks occur in the formed body and the sintered body, and the formed body and the sintered body tend to crack.
なお、 分散剤が水溶液中でイオン化し得るもの、 例えば酸や金属塩などである ときには、 分散剤の添加量はイオン換算値とする。 すなわち、 水素イオンや金属 イオンを除く有機成分に換算して添加量を求める。 また、 分散剤が水和物である 場合には、 結晶水を除外して添加量を求める。 例えば、 分散剤がダルコン酸カル シゥム一水和物である場合の添加量は、 ダルコン酸イオンに換算して求める。 また、 分散剤がラク トンからなるとき、 あるいはラクトンを含むときには、 ラ ク トンがすべて開環してヒ ドロキシカルボン酸になるものとして、 ヒ ドロキシカ ルボン酸イオン換算で添加量を求める。  When the dispersant is ionizable in an aqueous solution, for example, an acid or a metal salt, the amount of the dispersant to be added is an ion equivalent. That is, the amount to be added is determined by converting to organic components excluding hydrogen ions and metal ions. When the dispersant is a hydrate, the amount added is determined excluding water of crystallization. For example, when the dispersant is calcium dalconate monohydrate, the amount to be added is calculated in terms of dalconate ion. Also, when the dispersant is made of lactone or contains lactone, the amount of addition is calculated in terms of hydroxycarboxylate ions, assuming that all the lactone is opened to form hydroxycarboxylic acid.
分散剤の添加時期は特に限定されず、 乾式粗粉砕時に添加してもよく、 湿式粉 碎時の粉砕用スラリ一調製の際に添加してもよく、 一部を乾式粗粉砕の際に添カロ し、 残部を湿式粉砕の際に添加してもよい。 あるいは、 湿式粉碎後に攪拌などに よって添加してもよい。 いずれの場合でも、 成形用スラリー中に分散剤が存在す ることになるので、 分散剤添加による効果は実現する。 ただし、 粉砕時に、 特に 乾式粗粉砕時に添加するほうが、 配向度向上効果は高くなる。 乾式粗粉碎に用い る振動ミル等では、 湿式粉砕に用いるボールミル等に比べて粒子に大きなェネル ギ一が与えられ、 また、 粒子の温度が上昇するため、 化学反応が進行しやすい状 態になると考えられる。 したがって、 乾式粗粉砕時に分散剤を添加すれば、 粒子 表面への分散剤の吸着量がより多くなり、 この結果、 より高い配向度が得られる ものと考えられる。 実際に、 成形用スラリー中における分散剤の残留量 (吸着量 にほぼ等しいと考えられる) を測定すると、 分散剤を乾式粗粉砕時に添加した場 合のほうが、 湿式粉砕時に添加した場合よりも添加量に対する残留量の比率が高 くなる。 なお、 分散剤を複数回に分けて添加する場合には、 合計添加量が前記し た好ましい範囲となるように各回の添加量を設定すればよい。 The timing of adding the dispersant is not particularly limited, and may be added at the time of dry coarse pulverization, may be added at the time of preparing a slurry for wet pulverization, and may be partially added at the time of dry coarse pulverization. Calories and the remainder may be added during wet grinding. Alternatively, it may be added by stirring after wet milling. In any case, since the dispersant is present in the slurry for molding, the effect of the addition of the dispersant is realized. However, the effect of improving the degree of orientation is higher when it is added during pulverization, especially during dry coarse pulverization. Vibration mills and the like used for dry coarse grinding give larger energy to particles than ball mills and the like used for wet grinding, and the temperature of the particles increases, so that the chemical reaction is likely to proceed. Conceivable. Therefore, if a dispersant is added during dry coarse pulverization, the amount of the dispersant adsorbed on the particle surface increases, and as a result, a higher degree of orientation is obtained. It is considered something. Actually, when the amount of the dispersant remaining in the molding slurry (which is considered to be almost equal to the adsorption amount) was measured, it was found that the dispersant added at the time of dry coarse pulverization was added more than at the time of wet pulverization. The ratio of the residual amount to the amount increases. In the case where the dispersant is added in a plurality of times, the amount of each addition may be set so that the total amount is within the above-mentioned preferable range.
湿式成形後、 成形体を乾燥させ、 次いで、 大気中または窒素中において好まし くは 1 0 0〜 5 0 0 °Cの温度で熱処理を加えることにより、 添加した分散剤を十 分に分解除去する。 乾燥と上記熱処理とは連続して行えばよいが、 成形体を十分 に乾燥させないまま急激に加熱すると、 成形体にクラックが発生してしまうので、 室温から 1 0 o °c程度まではゆつく りと昇温し、 この温度範囲において十分に乾 燥させることが好ましレ、。 熱処理後、 焼成することによりフェライ ト焼結磁石を 得る。 焼成時の安定温度は、 好ましくは 1 1 5 0〜 1 2 5 0 °C、 より好ましくは 1 1 6 0〜 1 2 2 0 °Cであり、 安定温度に保持する時間は、 好ましくは 0 . 5〜 3時間である。 なお、 前述したように、 例えば連続炉などでは安定過程を設けな いこともあるが、 その場合でも本発明のフェライ ト磁石では十分な性能が得られ る。  After the wet molding, the molded body is dried, and then the added dispersant is sufficiently decomposed and removed by heat treatment in air or nitrogen, preferably at a temperature of 100 to 500 ° C. I do. Drying and the above heat treatment may be performed continuously.However, if the molded body is rapidly heated without being sufficiently dried, cracks will be generated in the molded body, and it will be loose from room temperature to about 10 oC. It is preferable that the temperature be raised and dried sufficiently in this temperature range. After the heat treatment, firing is performed to obtain a ferrite sintered magnet. The stable temperature at the time of calcination is preferably 1150 to 1250 ° C, more preferably 1160 to 1250 ° C, and the time for maintaining the stable temperature is preferably 0. 5 to 3 hours. Note that, as described above, for example, a stabilization process may not be provided in a continuous furnace or the like, but even in such a case, sufficient performance is obtained with the ferrite magnet of the present invention.
本発明の磁石の平均結晶粒径は、 好ましくは 2 μ m以下、 より好ましくは 1 μ ra 以下、 さらに好ましくは 0 . 5〜 1 . 0 μ πιであるが、 本発明では平均結晶粒径 が 1 mを超えていても、 十分に高い保磁力が得られる。 結晶粒径は走査型電子 顕微鏡によって測定することができる。 なお、 比抵抗は、 通常、 1 0 °Ωηι以上と なる。 The average crystal grain size of the magnet of the present invention is preferably 2 μm or less, more preferably 1 μra or less, and further preferably 0.5 to 1.0 μππι. Even if it exceeds 1 m, a sufficiently high coercive force can be obtained. The crystal grain size can be measured by a scanning electron microscope. The specific resistance is usually 10 ° Ωηι or more.
なお、 前記成形体をクラッシャー等を用いて解砕し、 ふるい等により平均粒径 が 1 0 0〜 7 0 0 /i m程度となるように分級して磁場配向顆粒を得、 これを乾式 磁場成形した後、 焼結することにより磁石を得てもよレ、。  The compact was crushed using a crusher or the like, and classified by sieving or the like so as to have an average particle size of about 100 to 700 / im to obtain magnetically oriented granules. After sintering, a magnet can be obtained by sintering.
本発明のフェライ ト磁石では、 元素 Rおよび元素 Mを含有することにより、 高 保磁力かつ高飽和磁化が実現する。 そのため、 これらの元素を含有しない従来の フェライ ト磁石と同一形状であれば、 発生する磁束密度を增やすことができるた め、 モータに適用した場合には高トルク化等を実現でき、 スピーカーやヘッドホ ンに適用した場合には磁気回路の強化によりリニアリティーのよい音質が得られ るなど、 応用製品の高性能化に寄与できる。 また、 従来のフェライ ト磁石と同じ 機能でよいとすれば、 磁石の大きさ (厚さ) を小さく (薄く) できるので、 小型 軽量化 (薄型化) に寄与できる。 また、 従来は界磁用の磁石を卷線式の電磁石と していたようなモータにおいても、 これをフェライ ト磁石で置き換えることが可 能となり、 軽量化、 生産工程の短縮、 低価格化に寄与できる。 さらに、 保磁力 (HcJ) の温度特性に優れているため、 従来はフェライ ト磁石の低温減磁 (永久 減磁) の危険のあった低温環境でも使用可能となり、 特に寒冷地、 上空域などで 使用される製品の信頼性を著しく高めることができる。 そして、 本発明では、 焼 成条件が不安定であっても、 上述したような優れた特性をもつフェライ ト磁石を 安定して量産できるので、 例えばガス連続炉の使用が可能となるなど、 低コスト 化に対する寄与が大きい。 In the ferrite magnet of the present invention, by containing the element R and the element M, A coercive force and high saturation magnetization are realized. Therefore, if the shape is the same as that of a conventional ferrite magnet that does not contain these elements, the generated magnetic flux density can be reduced, and when applied to a motor, a high torque can be realized. When applied to headphones, enhanced magnetic circuits can provide sound quality with good linearity, contributing to higher performance of applied products. If the same function as a conventional ferrite magnet is sufficient, the size (thickness) of the magnet can be reduced (thinned), which contributes to reduction in size and weight (thinness). Also, in motors where the field magnets used to be wound-type electromagnets, it is possible to replace them with ferrite magnets, reducing weight, shortening the production process, and reducing costs. Can contribute. Furthermore, because of its excellent coercive force (HcJ) temperature characteristics, it can be used in low-temperature environments where there was a danger of low-temperature demagnetization (permanent demagnetization) of ferrite magnets in the past. The reliability of the products used can be significantly increased. Further, according to the present invention, even if the sintering conditions are unstable, the ferrite magnet having the above-described excellent characteristics can be stably mass-produced. Large contribution to cost reduction.
本発明の磁石は所定の形状に加工され、 下記に示すような幅広い用途に使用さ れる。  The magnet of the present invention is processed into a predetermined shape, and is used for a wide range of applications as described below.
例えば、 フユエルポンプ用、 パワーウィンド用、 AB S用、 ファン用、 ヮイノ、。 用、 パワーステアリング用、 アクティブサスペンション用、 スタータ用、 ドア口 ック用、 電動ミラー用等の自動車用モータ ; FDDスピンドル用、 VTRキヤプ スタン用、 VTR回転ヘッド用、 VTRリール用、 VTRローデイング用、 VT Rカメラキヤプスタン用、 VTRカメラ回転ヘッド用、 VTRカメラズーム用、 VTRカメラフォーカス用、 ラジカセ等キヤプスタン用、 CD、 LD、 MDスピ ンドル用、 CD、 LD、 MDローデイング用、 CD、 LD光ピックアップ用等の OA、 AV機器用モータ ;エアコンコンプレッサー用、 冷蔵庫コンプレッサー用、 電動工具駆動用、 扇風機用、 電子レンジファン用、 電子レンジプレート回転用、 ミキサ駆動用、 ドライヤーファン用、 シェーバー駆動用、 電動歯ブラシ用等の家 電機器用モータ ; ロボット軸、 関節駆動用、 ロボット主駆動用、 工作機器テープ ル駆動用、 工作機器ベルト駆動用等の F A機器用モータ ;その他、 オートバイ用 発電器、 スピーカ ·へッドホン用マグネット、 マグネトロン管、 MR I用磁場発 生装置、 CD— ROM用クランパ、 ディストリビュータ用センサ、 AB S用セン サ、 燃料 ·オイルレベルセンサ、 マグネットラツチ等に使用できる。 実施例 For example, for fuel pumps, for power windows, for ABS, for fans, Pino, etc. , Power steering, active suspension, starter, door lock, electric mirror, etc. automotive motors; FDD spindles, VTR capstans, VTR rotary heads, VTR reels, VTR loading, For VTR camera capstan, VTR camera rotary head, VTR camera zoom, VTR camera focus, boombox etc.capstan, CD, LD, MD spindle, CD, LD, MD loading, CD, LD light OA and AV equipment motors for pickups; air conditioner compressors, refrigerator compressors, Motors for home appliances such as electric tool drive, electric fan, microwave fan, microwave plate rotation, mixer drive, dryer fan, shaver drive, electric toothbrush, etc .; robot shaft, joint drive, robot main Motors for FA equipment such as drive, machine tool tape drive, machine tool belt drive, etc .; motor generators, magnets for speakers and headphone, magnetron tubes, MRI magnetic field generators, CD-ROM It can be used for clampers, distributor sensors, ABS sensors, fuel and oil level sensors, magnet latches, etc. Example
実施例 Example
原料として S r C〇3、 F e203、 S i 02および C a C 03の各粉末を配合し、 湿式アトライターによる混合および粉砕を 2時間行った後、 乾燥して整粒し、 顆 粒とした。 S r C_〇 3 as a raw material, F e 2 0 3, S i 0 blended 2 and C a the powder of C 0 3, after 2 hours mixing and pulverization by a wet attritor, dried sized And made into condyles.
この顆粒を、 空気中において 1 250°Cで 3時間仮焼して、 仮焼材を得た。 こ の仮焼材の組成 (蛍光 X線分析による分析値) を表 1—1に示す。  The granules were calcined in air at 1250 ° C for 3 hours to obtain a calcined material. The composition of this calcined material (analytical value by fluorescent X-ray analysis) is shown in Table 1-1.
次いで、 後添加物として、 S i〇2、 C a C03、 炭酸ランタン 〔L a2 (CO 3) 3 - 8H2〇〕 、 酸化コバルト (C o304と C oOとの混合物) を仮焼材に添加 し、 さらにダルコン酸カルシウムを 0. 6重量%添加し、 バッチの振動ロッ ドミ ルにより 20分間乾式粉砕して、 粗粉砕粉を得た。 次いで、 粗粉砕粉に F e203 を加え、 ボールミルにより 40時間湿式粉砕を行った後、 約 78%の濃度となる まで脱水濃縮して成形用スラリーを得た。 Then, as a post-additive, S I_〇 2, C a C0 3, lanthanum carbonate [L a 2 (CO 3) 3 - 8H 2 〇] a, (mixture of C o 3 0 4 and C oO) cobalt oxide It was added to the calcined material, and 0.6% by weight of calcium dalconate was further added. The mixture was dry-pulverized for 20 minutes using a batch vibrating rod mill to obtain a coarsely pulverized powder. Then, the F e 2 0 3 was added to the coarsely pulverized powder, after 40 hours wet grinding by a ball mill to obtain a molding slurry was dehydrated concentrated to a concentration of about 78%.
次いで、 成形用スラリーを脱水しながら圧縮成形し、 直径 30醒、 高さ 1 8mm の成形体を得た。 なお、 圧縮成形の際には、 圧縮方向に約 1 3 kOeの磁場を印加 した。 また、 成形圧力は 0. 4t/cm2とした。 Next, the molding slurry was subjected to compression molding while dewatering, to obtain a molded body having a diameter of 30 mm and a height of 18 mm. At the time of compression molding, a magnetic field of about 13 kOe was applied in the compression direction. The molding pressure was 0.4 t / cm 2 .
次いで、 成形体を焼成して焼結磁石とし、 上下面を加工した後、 焼結磁石の磁 気特性および焼結体特性と、 焼成雰囲気中の酸素分圧との関係を調べた。 焼成は、 酸素ガスと窒素ガスとの混合ガス雰囲気 (1気圧) 中で行い、 両ガスの流量を制 御することにより、 焼成雰囲気中の酸素分圧を制御した。 なお、 焼成時の昇温速 度および降温速度は 5 °CZ分とし、 焼成温度は 1 2 2 0 °Cとし、 焼成温度に保持 する時間 (安定時間) は 1時間とした。 Next, the compact is fired to form a sintered magnet, and the upper and lower surfaces are processed. The relationship between the air characteristics and the characteristics of the sintered body and the oxygen partial pressure in the firing atmosphere was examined. The firing was performed in a mixed gas atmosphere (1 atm) of oxygen gas and nitrogen gas, and the oxygen partial pressure in the firing atmosphere was controlled by controlling the flow rate of both gases. The heating rate and the cooling rate during firing were 5 ° CZ minutes, the firing temperature was 122 ° C, and the time (stable time) for maintaining the firing temperature was 1 hour.
磁気特性を評価した焼結磁石の組成 (蛍光 X線による分析値) を、 表 1—2に 示す。 なお、 表 1—2に示す組成は、 成形用スラリーを空気中において 1 0 0 0 °Cで 1時間焼成して得た測定用サンプルでの値である。 Table 1-2 shows the compositions (analytical values by fluorescent X-ray) of the sintered magnets whose magnetic properties were evaluated. The composition shown in Table 1-2 is a value for a measurement sample obtained by firing the molding slurry in air at 100 ° C. for 1 hour.
表 1-1 Table 1-1
含有量(モル。 /  Content (mol./
SrO BaO CaO La203 Fe203 CoO MnO A1203 Cr203 Si02 SrO BaO CaO La 2 0 3 Fe 2 0 3 CoO MnO A1 2 0 3 Cr 2 0 3 Si0 2
仮焼材 12.69 0.06 0.17 85.89 0.63 0.13 0.03 0.40 Calcined material 12.69 0.06 0.17 85.89 0.63 0.13 0.03 0.40
表 1-2  Table 1-2
含有量 (モル0 /。) {A+R-(Fe+M) /12} 組成 SrO BaO CaO La203 Fe203 CoO MnO A1203 Cr203 Si02 /Si 実施例 1-1 10.11 0.12 2.66 1.28 81.09 2.61 0.62 0.08 0.10 1.33 1.23 Content (mol 0 /.) {A + R- (Fe + M) / 12} Composition SrO BaO CaO La 2 0 3 Fe 2 0 3 CoO MnO A1 2 0 3 Cr 2 0 3 Si0 2 / Si Example 1 -1 10.11 0.12 2.66 1.28 81.09 2.61 0.62 0.08 0.10 1.33 1.23
実施例 1-2 10.51 0.12 2.53 1.33 80.24 2.69 0.61 0.09 0.10 1.78 1.20 Example 1-2 10.51 0.12 2.53 1.33 80.24 2.69 0.61 0.09 0.10 1.78 1.20
比較例 1-1 10.64 0.12 2.30 1.35 81.06 2.72 0.62 0.08 0.09 1.91 比較例 1-2 11.21 0.11 1.47 1.42 81.05 2.88 0.60 0.09 0.10 1.07* 1.68 Comparative Example 1-1 10.64 0.12 2.30 1.35 81.06 2.72 0.62 0.08 0.09 1.91 Comparative Example 1-2 11.21 0.11 1.47 1.42 81.05 2.88 0.60 0.09 0.10 1.07 * 1.68
比較例 1-3 11.78 0.12 0.49 1.49 80.37 3.05 0.59 0.09 0.10 1.92 0.85* 比較例 1-4 10.52 0.12 3.02 1.33 80.12 2.72 0.61 0.09 0.09 1.38 1.93* Comparative Example 1-3 11.78 0.12 0.49 1.49 80.37 3.05 0.59 0.09 0.10 1.92 0.85 * Comparative Example 1-4 10.52 0.12 3.02 1.33 80.12 2.72 0.61 0.09 0.09 1.38 1.93 *
:限定範囲外  : Out of limited range
J J
* *
表 1一 2に示す組成の磁石について、 図 1に、 焼成時の酸素分圧 p 02と磁気 特性 {保磁力 (HcJ) 、 残留磁束密度 (B r) および角形比 (Hk/HcJ) } と の関係を示す。 The magnet having the composition shown in Table 1 one 2, in FIG. 1, the firing time of the oxygen partial pressure p 0 2 and magnetic properties {coercive force (HcJ), residual magnetic flux density (B r) and squareness (Hk / HcJ)} The relationship between and is shown.
図 1に示されるように、 本発明の実施例組成、 すなわち原子比 {A + R_ (F e+M) /\ 2} /S iおよび S i 02含有量が前記限定範囲內にある組成では、 酸素分圧 0. 05気圧の雰囲気中で焼成した場合でも、 空気中で焼成した場合と 同等以上の磁気特性が得られており、 酸素分圧 0. 0 1気圧の雰囲気下で焼成し た場合でも磁気特性の低下はほとんど認められない。 具体的には、 酸素分圧が 0. 20気圧から 0. 0 1気圧に減少したとき、 比較例組成、 すなわち {A + R—As shown in FIG. 1, the composition of the example of the present invention, that is, the composition whose atomic ratio {A + R_ (F e + M) / \ 2} / S i and S i O 2 content are within the above-mentioned limited range 內In this case, even when firing in an atmosphere with an oxygen partial pressure of 0.05 atm, magnetic properties equivalent to or better than those when firing in air were obtained, and firing was performed in an atmosphere with an oxygen partial pressure of 0.01 atm. In this case, almost no decrease in magnetic properties is observed. Specifically, when the oxygen partial pressure is reduced from 0.20 atm to 0.01 atm, the composition of the comparative example, that is, (A + R—
(F e +M) /1 2} //S iおよび S i 02含有量のいずれか一方が前記限定範 囲から外れる組成では、 約 4000e以上の低下が認められ、 特に、 酸素分圧 0. 20気圧のときに実施例組成を凌ぐ保磁力が得られている比較例組成では、 酸素 分圧の低下により約 15000eもの保磁力減少が認められる。 これに対し実施例 組成では、 保磁力減少が約 1 500e以下に収まっており、 しかも、 このとき残留 磁束密度の低下も認められない。 この結果から、 本発明の効果が明らかである。 実施例 2 (F e + M) / 1 2} // S in one of i and S i 0 2 content deviates from the limited range composition observed decrease above about 4000e, in particular, the oxygen partial pressure 0 In the composition of the comparative example in which the coercive force exceeding the composition of the example was obtained at 20 atm, the coercive force was reduced by as much as about 15,000 e due to the decrease in the oxygen partial pressure. On the other hand, in the composition of the example, the decrease in coercive force was within about 1500 e or less, and no decrease in the residual magnetic flux density was observed at this time. From these results, the effect of the present invention is clear. Example 2
表 2— 1に示す組成の仮焼材を用いたほかは実施例 1と同様にして、 表 2— 2 に示す組成 (蛍光 X線分析による分析値) をもつ焼結磁石を作製した。 ただし、 焼成に際しては、 雰囲気中の酸素分圧を 0. 05気圧に固定し、 焼成温度を様々 なものとした。 表 2- A sintered magnet having the composition shown in Table 2-2 (analytical value by fluorescent X-ray analysis) was produced in the same manner as in Example 1 except that the calcined material having the composition shown in Table 2-1 was used. However, during firing, the oxygen partial pressure in the atmosphere was fixed at 0.05 atm and the firing temperature was varied. Table 2-
Figure imgf000033_0001
Figure imgf000033_0001
:限定範囲外 : Out of limited range
表 2— 2に示す組成の磁石について、 焼成温度と磁気特性との関係を図 2に示 す。 Fig. 2 shows the relationship between firing temperature and magnetic properties for magnets with the compositions shown in Table 2-2.
図 2に示されるように、 比較例組成では、 焼成温度を変えたときの保磁力変動 が大きいのに対し、 実施例組成、 すなわち原子比 {A + R— (F e +M) ノ1 2 } /S iおよび S i〇2含有量が前記限定範囲内にある組成では、 比較例組成、 すなわち {A + R— (F e +M) / 1 2 } /S iおよび S i O2含有量のいずれ か一方が前記限定範囲から外れる組成に比べ、 保磁力変動が小さレ、。 As shown in FIG. 2, in the composition of the comparative example, the coercive force varied greatly when the firing temperature was changed, whereas the composition of the example, that is, the atomic ratio {A + R— (F e + M) } In the composition in which the content of / S i and S i〇 2 is within the above-mentioned limited range, the composition of the comparative example, that is, {A + R— (F e + M) / 1 2} / S i and S i O 2 Coercive force fluctuation is smaller than a composition in which one of the amounts is out of the above-mentioned limited range.
実施例 3 Example 3
表 3— 1に示す組成の仮焼材を用いたほかは実施例 1と同様にして、 表 3— 2 に示す組成 (蛍光 X線分析による分析値) をもつ焼結磁石を作製した。 ただし、 焼成に際しては、 雰囲気中の酸素分圧を 0. 0 5気圧に固定し、 また、 焼成温度 を 1 2 2 0°Cに固定した。 なお、  A sintered magnet having the composition shown in Table 3-2 (analytical value by fluorescent X-ray analysis) was produced in the same manner as in Example 1 except that the calcined material having the composition shown in Table 3-1 was used. However, at the time of firing, the oxygen partial pressure in the atmosphere was fixed at 0.05 atm, and the firing temperature was fixed at 122 ° C. In addition,
実施例 3 A— 1、  Example 3 A—1,
実施例 3 A— 2、  Example 3 A—2,
比較例 3 A  Comparative Example 3 A
からなるグループ (以下、 グループ A) 、 Group (hereinafter referred to as group A),
実施例 3 B— 1、  Example 3 B—1,
実施例 3 B— 2、  Example 3 B-2,
比較例 3 B  Comparative Example 3 B
からなるグループ (以下、 グループ B) 、 および (Hereinafter referred to as Group B), and
実施例 3 C— 1、  Example 3 C-1,
実施例 3 C— 2、  Example 3 C-2,
比較例 3 C  Comparative Example 3 C
からなるグループ (以下、 グループ C) のそれぞれにおいて、 C a以外の元素は ほぼ同量とし、 C a量を変更することにより A量および {A + R— (F e +M) /12} /S iを変更した ( In each of the groups consisting of (hereinafter group C), the elements other than Ca are almost equal, and by changing the amount of Ca, the amount of A and (A + R— (F e + M) / 12} changed / S i (
表 3-〗
Figure imgf000036_0001
Table 3-〗
Figure imgf000036_0001
表 3-2  Table 3-2
含有量(モル%) {A+R-(Fe+M) /12} 組成 SrO BaO CaO La203 Fe203 CoO MnO A1203 Cr203 Si02 /Si 実施例 3A-1 9.99 0.12 3.25 1.26 80.35 2.56 0.61 0.08 0.12 1.66 1.32 実施例 3A-2 9.94 0.12 3.83 1.26 79.83 2.56 0.61 0.08 0.11 1.66 1.69 比較例 3A 9.89 0.11 4.40 1.26 79.36 2.56 0.60 0.08 0.10 1.64 2.07* 実施例 3B-1 11.10 0.11 1.71 1.40 80.17 2.87 0.59 0.09 0.10 1.86 1.10 実施例 3B-2 11.04 0.11 2.33 1.39 79.66 2.87 0.59 0.08 0.09 1.84 1.45 比較例 3B 11.16 0.11 1.06 1.41 80.73 2.88 0.60 0.09 0.11 1.85 0.74* 実施例 3C-1 10.58 0.12 2.07 1.35 80.94 2.73 0.62 0.09 0.10 1.40 1.19 実施例 3C-2 10.56 0.12 2.55 1.34 80.55 2.72 0.61 0.08 0.09 1.38 1.58 比較例 3C 10.52 0.12 3.02 1.33 80.12 2.72 0.61 0.09 0.09 1.38 1.93* The content (mol%) {A + R- (Fe + M) / 12} composition SrO BaO CaO La 2 0 3 Fe 2 0 3 CoO MnO A1 2 0 3 Cr 2 0 3 Si0 2 / Si Example 3A-1 9.99 0.12 3.25 1.26 80.35 2.56 0.61 0.08 0.12 1.66 1.32 Example 3A-2 9.94 0.12 3.83 1.26 79.83 2.56 0.61 0.08 0.11 1.66 1.69 Comparative example 3A 9.89 0.11 4.40 1.26 79.36 2.56 0.60 0.08 0.10 1.64 2.07 * Example 3B-1 11.10 0.11 1.71 1.40 80.17 2.87 0.59 0.09 0.10 1.86 1.10 Example 3B-2 11.04 0.11 2.33 1.39 79.66 2.87 0.59 0.08 0.09 1.84 1.45 Comparative example 3B 11.16 0.11 1.06 1.41 80.73 2.88 0.60 0.09 0.11 1.85 0.74 * Example 3C-1 10.58 0.12 2.07 1.35 80.94 2.73 0.62 0.09 0.10 1.40 1.19 Example 3C-2 10.56 0.12 2.55 1.34 80.55 2.72 0.61 0.08 0.09 1.38 1.58 Comparative example 3C 10.52 0.12 3.02 1.33 80.12 2.72 0.61 0.09 0.09 1.38 1.93 *
:限定範囲外 : Out of limited range
表 3— 2に示す組成の磁石について、 原子比 { A + R— ( F e + M) / 1 2 } / S i と磁気特性との関係を図 3に、 C a〇含有量と磁気特性との関係を図 4に それぞれ示す。 Fig. 3 shows the relationship between the atomic ratio {A + R— (Fe + M) / 12} / Si and the magnetic properties of the magnets with the composition shown in Table 3-2. Figure 4 shows the relationship.
図 3において、 上記 A、 Bおよび Cの各グループ内で磁気特性を比較すると、 上記原子比が本発明で限定する範囲内である場合に保磁力が著しく高くなること がわかる。 すなわち、 本発明により、 低酸素分圧下において高保磁力が得られる ことがわかる。 一方、 図 4の保磁力グラフに着目すると、 比較例 3 Cの C a O量 が、 グループ Aの実施例組成よりも少なく、 グループ B、 じの実施例組成よりも 多いことがわかる。 すなわち、 比較例 3 Cの C a O量は、 他の実施例組成に比べ て過多でもなく過少でもないことがわかる。  In FIG. 3, a comparison of the magnetic properties in each of the groups A, B, and C shows that the coercive force is significantly increased when the atomic ratio is within the range limited by the present invention. That is, it can be seen that the present invention provides a high coercive force under a low oxygen partial pressure. On the other hand, paying attention to the coercive force graph of FIG. 4, it can be seen that the amount of CaO in Comparative Example 3C is smaller than the composition of the Example in Group A and larger than that in Group B. That is, it can be seen that the CaO amount of Comparative Example 3C was neither excessive nor excessive as compared with the compositions of the other Examples.
従来、 S rフェライ ト磁石では、 添加物である C a O含有量が保磁力に大きな 影響を与えると考えられてきたが、 図 3および図 4から、 低酸素分圧下において は、 C a O含有量ではなく { A + R— (F e + M) 1 2 } Z S iに依存して保 磁力が大きく変わることが明らかである。  Conventionally, in the Sr ferrite magnet, it was thought that the content of CaO as an additive had a large effect on the coercive force. It is clear that the coercive force changes significantly depending on {A + R— (Fe + M) 12} ZSi, not on the content.
なお、 上記各実施例で作製した S rフェライ トにおいて L aの一部を B iで置 換したところ、 B i添加により仮焼温度を低くできることがわかった。 すなわち、 最良の特性が得られる仮焼温度が低温側に移動し、 しかも、 保磁力はほとんど劣 ィ匕しなかった。 また、 L aの一部を他の希土類元素で置換した組成について焼結 磁石を作製したところ、 上記各実施例と同様な効果が認められた。  When a part of La was replaced with Bi in the Sr ferrite produced in each of the above examples, it was found that the calcination temperature could be lowered by adding Bi. That is, the calcination temperature at which the best properties were obtained was shifted to the lower temperature side, and the coercive force was hardly degraded. Further, when a sintered magnet was manufactured with a composition in which part of La was replaced with another rare earth element, the same effect as in each of the above examples was observed.
上記各実施例では、 炭酸ランタンおよび酸化コバルトを後添加物として仮焼材 に添加したが、 これらを後添加せずに同量を出発原料に追加した場合でも、 上記 各実施例と同様な効果が認められた。 ただし、 後添加した場合に比べ、 効果はや や低くなった。  In each of the above embodiments, lanthanum carbonate and cobalt oxide were added to the calcined material as post-additives. However, even when the same amount was added to the starting material without post-addition, the same effect as in each of the above-mentioned embodiments was obtained. Was observed. However, the effect was slightly lower than in the case of later addition.
上記各実施例で作製した焼結磁石について、 以下の手順でキュリー温度を測定 した。 まず、 焼結磁石を、 高さ方向が c軸方向となるように直径 5 mm、 高さ 6 . 5 mraの円柱状に加工し、 測定サンプルとした。 次いで、 2 5 °Cにおいて、 V S M によりサンプルの c軸方向に約 2 O kOeの磁場を印加することにより着磁した。 次いで、 V S Mの磁場発生電流をゼロ (ただし、 磁極の残留磁化により約 5 00e の磁場が発生) とした状態で、 サンプルの c軸方向における残留磁化とサンプル 温度とを同時に測定することにより、 図 6に示すような σ— T曲線を得た。 サン プノレの昇温は、 サンプル周囲に配置したヒーターにより行った。 昇温速度は約 1 0 °CZ分とした。 得られた σ—Τ曲線から、 前述した方法によりキュリー温度を 求めた。 その結果、 上記各実施例で作製した磁石は 2つのキュリー温度をもち、 低温側のキュリ一温度は 4 3 0〜 4 4 5 °Cの間にあり、 高温側のキュリ一温度は 4 5 0〜4 6 0 °Cの間にあることがわかった。 また、 低温側のキュリー温度にお ける磁化 (σ ΐ) の、 2 5 °Cにおける磁化 RT) に対する比率 ( σ 1ノ σ RT) は、 2〜1 0 %であった。 なお、 各サンプルを X線回折により解析したところ、 いず れも Μ型フェライ ト単相であった。 The Curie temperature of the sintered magnet produced in each of the above examples was measured according to the following procedure. First, a sintered magnet with a diameter of 5 mm and a height of 6. The sample was processed into a 5 mra column and used as a measurement sample. Next, the sample was magnetized at 25 ° C by applying a magnetic field of about 2 O kOe in the c-axis direction of the sample using a VSM. Next, with the VSM magnetic field generation current set to zero (however, a magnetic field of about 500e is generated due to the residual magnetization of the magnetic pole), the remanent magnetization in the c-axis direction of the sample and the sample temperature are measured simultaneously, The σ-T curve as shown in Fig. 6 was obtained. The temperature of the sample was raised by a heater arranged around the sample. The heating rate was about 10 ° CZ minutes. From the obtained σ-Τ curve, the Curie temperature was determined by the method described above. As a result, the magnets manufactured in each of the above examples have two Curie temperatures, the curie temperature on the low temperature side is between 430 ° C and 450 ° C, and the Curie temperature on the high temperature side is 450 ° C. It was found to be between ~ 460 ° C. The ratio (σ 1 σ RT) of the magnetization (σ ΐ) at the Curie temperature on the low temperature side to the magnetization RT at 25 ° C was 2 to 10%. When each sample was analyzed by X-ray diffraction, it was found that each sample was a Μ type ferrite single phase.
参考例 Reference example
下記表 4に示す組成を有するフェライ ト焼結磁石を作製した。 なお、 L aおよ び C oを含有する S rフヱライ ト磁石は、 前記した後添加法により作製した。 焼 成は、 酸素ガスと窒素ガスとの混合ガス雰囲気 (1気圧) 中で行い、 両ガスの流 量を制御することにより、 焼成雰囲気中の酸素濃度を制御した。 焼成雰囲気中の 酸素濃度を図 5に示す。 これらの焼結磁石について、 保磁力 (HcJ) を測定した。 結果を図 5に示す。 表 4 Ferrite sintered magnets having the compositions shown in Table 4 below were produced. The Sr fluorite magnet containing La and Co was produced by the above-described addition method. The firing was performed in a mixed gas atmosphere of oxygen gas and nitrogen gas (1 atm), and the oxygen concentration in the firing atmosphere was controlled by controlling the flow rates of both gases. Figure 5 shows the oxygen concentration in the firing atmosphere. The coercive force (HcJ) was measured for these sintered magnets. Fig. 5 shows the results. Table 4
含有量(モル%)  Content (mol%)
SrO BaO CaO La203 CoO MnO Α120Λ Cr20, Si02 SrO BaO CaO La 2 0 3 CoO MnO Α1 2 0 Λ Cr 2 0, Si0 2
LaCo含有 Srフェライト 11.0 0.1 1.5 1.2 81.7 2.3 0.6 一 - 1.6LaCo-containing Sr ferrite 11.0 0.1 1.5 1.2 81.7 2.3 0.6 One-1.6
Srフェライト 13.7 0.1 1.6 82.5 0.6 一 1.5 Sr ferrite 13.7 0.1 1.6 82.5 0.6 one 1.5
図 5から、 L aおよび C oを含有する S rフェライ ト磁石では、 焼成雰囲気中 の酸素濃度に依存して保磁力が著しく変化するのに対し、 L aおよび C oのいず れも含有しない従来の S rフェライ ト磁石では、 焼成雰囲気中の酸素濃度に対す る保磁力の依存性が低いことがわかる。 なお、 図 5に示す L a C o含有磁石は、 原子比 {A + R— (F e +M) ノ 1 2} /S i力 S、 本発明で限定する範囲を外れ るものである。 From Fig. 5, it can be seen that the Sr ferrite magnet containing La and Co significantly changes the coercive force depending on the oxygen concentration in the firing atmosphere, but contains both La and Co. It can be seen that the dependence of the coercive force on the oxygen concentration in the firing atmosphere is low in the conventional Sr ferrite magnet that does not. The LaCo-containing magnet shown in FIG. 5 has an atomic ratio of {A + R— (Fe + M) NO12} / Si force S, which is outside the range limited by the present invention.
図 5に示される結果おょぴ上記各実施例の結果の両者から、 S i量および原子 比 {A + R— (F e +M) /1 2} /S iを制御すること力 元素 Rおよび元素 Mを含有するフェライ ト磁石においてのみ特異的な効果を発揮することが明らか である。  From the results shown in FIG. 5, it can be seen from both the results of the above examples that the amount of Si and the atomic ratio {A + R— (F e + M) / 12} / Si are controlled by the element R It is evident that the specific effect is exhibited only in the ferrite magnet containing the element M.

Claims

請求の範囲 The scope of the claims
1. S r、 B a、 C aおよび P bから選択される少なくとも 1種の元素を含 むものを Aとし、 希土類元素 (Yを含む) および B iから選択される少なくとも 1種の元素を Rとし、 C o、 Mn、 A l、 C r、 N iおよび Z nから選択される 少なくとも 1種の元素を Mとしたとき、 金属元素として A、 R、 F e、 Mおよび S iを含有し、 これら金属元素を酸化物に換算して各金属酸化物の含有量を求め たとき、 5 1〇2の含有量が1. 3〜2. 0モル%であり、 かつ、 1. Let A contain at least one element selected from Sr, Ba, Ca and Pb, and R be at least one element selected from rare earth elements (including Y) and Bi. When at least one element selected from Co, Mn, Al, Cr, Ni, and Zn is M, the metal element contains A, R, Fe, M, and Si. when these metal elements was determined the content of each metal oxide in terms of oxides, the content of 5 1_Rei 2 is 1.3 to 2.0 mol%, and,
原子比 {A + R— (F e +M) /1 2} /S i  Atomic ratio {A + R— (F e + M) / 1 2} / S i
が 1. :!〜 1. 9であり、 Is 1.:!~1.9
六方晶フェライ トを主相として有するフェライ ト磁石。  Ferrite magnet with hexagonal ferrite as the main phase.
2. 全金属元素量に対し、 A, , F eおよび Mそれぞれの総計の比率が、 A: :!〜 1 3原子0 /02. The ratio of the total of each of A,, Fe and M to the total amount of metal elements is A ::! To 1 3 atom 0/0,
R : 0. 0 5〜 1 0原子0/ o、 R: 0.05 to 10 atoms 0 / o,
F e : 80〜9 5原子0 /。、 F e: 80-95 atoms 0 /. ,
M: 0. :!〜 5原子0 /。 M: 0 .:! ~ 5 atoms 0 /.
である請求の範囲第 1項のフェライ ト磁石。 The ferrite magnet according to claim 1, wherein the ferrite magnet is:
3. 少なく とも 2つの異なるキュリー温度を有し、 これらのキュリー温度が 400°C〜4 80°Cの範囲に存在し、 かつこれらのキュリー温度が互いに 5°C以 上離れている請求の範囲第 1項または第 2項のフェライ ト磁石。  3. Claims having at least two different Curie temperatures, wherein these Curie temperatures are in the range of 400 ° C to 480 ° C and whose Curie temperatures are more than 5 ° C from each other The ferrite magnet of paragraph 1 or 2.
4. 請求の範囲第 1項〜第 3項のいずれかのフェライ ト磁石を製造する方法 であって、  4. A method for producing a ferrite magnet according to any one of claims 1 to 3, wherein
原料粉末の成形体を焼成して焼結磁石を得る焼成工程を有し、 この焼成工程に おいて、 雰囲気中の酸素分圧が変動するフユライ ト磁石の製造方法。  A method for producing a fusible magnet, which includes a firing step of firing a compact of a raw material powder to obtain a sintered magnet, and in this firing step, the oxygen partial pressure in the atmosphere fluctuates.
5. 焼成工程の少なくとも一部において、 雰囲気中の酸素分圧が 0. 1 5気 圧以下となる請求の範囲第 4項のフユライ ト磁石の製造方法。 5. In at least a part of the firing process, the oxygen partial pressure in the atmosphere is 0.15 5. The method of claim 4, wherein the pressure is not more than the pressure.
6 . 請求の範囲第 1項〜第 3項のいずれかのフェライ ト磁石を製造する方法 であって、  6. A method for producing a ferrite magnet according to any one of claims 1 to 3, wherein
原料粉末の成形体を焼成して焼結磁石を得る焼成工程を有し、 この焼成工程に おいて、 焼成温度が変動するフェライ ト磁石の製造方法。  A method for producing a ferrite magnet, comprising a firing step of firing a molded body of a raw material powder to obtain a sintered magnet, wherein the firing temperature varies in the firing step.
7 . それぞれ六方晶フェライ トを主相とする仮焼材または粒子に、 磁石構成 元素の少なくとも 1種を含む化合物の少なくとも 1種を添加し、 その後、 成形し、 焼結する請求の範囲第 4項〜第 6項のいずれかのフユライ ト磁石の製造方法。  7. At least one compound containing at least one of the magnet constituent elements is added to the calcined material or particles each having a hexagonal ferrite as a main phase, and then molded and sintered. Item 7. The method for producing a fusible magnet according to any one of Items 6 to 6.
8 . 前記磁石構成元素の一部は、 前記元素 Rおよび前記元素 Mから選択され る 1種または 2種以上の元素である請求の範囲第 7項のフェライ ト磁石の製造方 法。  8. The method for manufacturing a ferrite magnet according to claim 7, wherein a part of the magnet constituent elements is one or more elements selected from the element R and the element M.
PCT/JP2000/004553 1999-07-07 2000-07-07 Ferrite magnet and method for preparation thereof WO2001004917A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020017002911A KR20010085763A (en) 1999-07-07 2000-07-07 Ferrite Magnet and Making Method
MXPA01002383A MXPA01002383A (en) 1999-07-07 2000-07-07 Ferrite magnet and method for preparation thereof.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19334899 1999-07-07
JP11/193348 1999-07-07

Publications (1)

Publication Number Publication Date
WO2001004917A1 true WO2001004917A1 (en) 2001-01-18

Family

ID=16306415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004553 WO2001004917A1 (en) 1999-07-07 2000-07-07 Ferrite magnet and method for preparation thereof

Country Status (3)

Country Link
KR (1) KR20010085763A (en)
MX (1) MXPA01002383A (en)
WO (1) WO2001004917A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209920B (en) * 2007-08-21 2011-01-12 横店集团东磁股份有限公司 Economic sintering permanent-magnet ferrite and preparing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115715A (en) * 1995-08-11 1997-05-02 Tdk Corp Magnet powder, sintered magnet, bonded magnet and magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115715A (en) * 1995-08-11 1997-05-02 Tdk Corp Magnet powder, sintered magnet, bonded magnet and magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209920B (en) * 2007-08-21 2011-01-12 横店集团东磁股份有限公司 Economic sintering permanent-magnet ferrite and preparing method thereof

Also Published As

Publication number Publication date
MXPA01002383A (en) 2003-03-10
KR20010085763A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
JP5245249B2 (en) Ferrite magnetic material and sintered ferrite magnet
US6258290B1 (en) Magnet powder, sintered magnet, process for producing them, bonded magnet, motor and magnetic recording medium
JP4367649B2 (en) Ferrite sintered magnet
JP4215261B2 (en) Ferrite magnetic material and manufacturing method thereof
US6248253B1 (en) Hexagonal ferrite magnets
WO1999016086A1 (en) Oxide magnetic material, ferrite particles, bonded magnet, sintered magnet, method of manufacturing the same, and magnetic recording medium
JP3488416B2 (en) Manufacturing method of ferrite magnet
JP4194013B2 (en) Ferrite magnet manufacturing method
JP4100665B2 (en) Method for producing hexagonal ferrite sintered body
JP3262321B2 (en) Manufacturing method of hexagonal ferrite sintered magnet
JP2006351560A (en) Manufacturing method of ferrite sintered magnet
JP3935325B2 (en) Ferrite magnet manufacturing method
JP3657549B2 (en) Ferrite sintered magnet and manufacturing method thereof
JP4720994B2 (en) Ferrite magnetic material manufacturing method
JP4709338B2 (en) Method for producing hexagonal ferrite magnet powder and hexagonal ferrite sintered magnet
JP3927401B2 (en) Manufacturing method of sintered ferrite magnet
JP2008187184A (en) Production process of ferrite magnet
JP4591684B2 (en) Ferrite magnetic material and manufacturing method thereof
JP4301539B2 (en) Manufacturing method of dry-formed sintered magnet
JP2001052912A (en) Ferrite magnet material, sintered magnet and bonded magnet
JP3960730B2 (en) Manufacturing method of sintered magnet
JP2003297623A (en) Method of manufacturing hexagonal sintered ferrite compact
JP4285797B2 (en) Magnet powder, sintered magnet, bonded magnet and motor
WO2001004917A1 (en) Ferrite magnet and method for preparation thereof
JP2002141212A (en) Rotating machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR MX SG

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/002383

Country of ref document: MX

Ref document number: 1020017002911

Country of ref document: KR