WO2001003978A1 - Crew detection device and method - Google Patents

Crew detection device and method Download PDF

Info

Publication number
WO2001003978A1
WO2001003978A1 PCT/JP1999/003741 JP9903741W WO0103978A1 WO 2001003978 A1 WO2001003978 A1 WO 2001003978A1 JP 9903741 W JP9903741 W JP 9903741W WO 0103978 A1 WO0103978 A1 WO 0103978A1
Authority
WO
WIPO (PCT)
Prior art keywords
passenger seat
occupant
reflected signal
comparison
occupant detection
Prior art date
Application number
PCT/JP1999/003741
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Nakamoto
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP1999/003741 priority Critical patent/WO2001003978A1/en
Publication of WO2001003978A1 publication Critical patent/WO2001003978A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/04Systems determining presence of a target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/002Seats provided with an occupancy detection means mounted therein or thereon
    • B60N2/0021Seats provided with an occupancy detection means mounted therein or thereon characterised by the type of sensor or measurement
    • B60N2/0024Seats provided with an occupancy detection means mounted therein or thereon characterised by the type of sensor or measurement for identifying, categorising or investigation of the occupant or object on the seat
    • B60N2/0026Seats provided with an occupancy detection means mounted therein or thereon characterised by the type of sensor or measurement for identifying, categorising or investigation of the occupant or object on the seat for distinguishing between humans, animals or objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/002Seats provided with an occupancy detection means mounted therein or thereon
    • B60N2/0021Seats provided with an occupancy detection means mounted therein or thereon characterised by the type of sensor or measurement
    • B60N2/0024Seats provided with an occupancy detection means mounted therein or thereon characterised by the type of sensor or measurement for identifying, categorising or investigation of the occupant or object on the seat
    • B60N2/0027Seats provided with an occupancy detection means mounted therein or thereon characterised by the type of sensor or measurement for identifying, categorising or investigation of the occupant or object on the seat for detecting the position of the occupant or of occupant's body part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/0153Passenger detection systems using field detection presence sensors
    • B60R21/01536Passenger detection systems using field detection presence sensors using ultrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/002Seats provided with an occupancy detection means mounted therein or thereon
    • B60N2/0021Seats provided with an occupancy detection means mounted therein or thereon characterised by the type of sensor or measurement
    • B60N2/0035Seats provided with an occupancy detection means mounted therein or thereon characterised by the type of sensor or measurement characterised by the sensor data transmission, e.g. wired connections or wireless transmitters therefor; characterised by the sensor data processing, e.g. seat sensor signal amplification or electric circuits for providing seat sensor information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2210/00Sensor types, e.g. for passenger detection systems or for controlling seats
    • B60N2210/10Field detection presence sensors
    • B60N2210/26Ultrasonic, e.g. sonar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2230/00Communication or electronic aspects
    • B60N2230/30Signal processing of sensor data

Definitions

  • the present invention relates to an occupant detection device and an occupant detection method for detecting the position of an occupant in a passenger seat and the like.
  • FIG. 1 is a configuration diagram showing a conventional occupant detection device disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 9-201293.
  • reference numeral 1 denotes a side surface of a dashboard 3 facing a passenger seat.
  • An ultrasonic sensor that radiates the ultrasonic signal toward the passenger seat and receives the ultrasonic signal reflected to the occupant, 2 controls the transmission and reception of the ultrasonic signal by the ultrasonic sensor 1,
  • the controller 3 detects the position of the occupant from the result of the transmission and reception of the ultrasonic signal, and 3 is the dashboard of the moving object.
  • the ultrasonic sensor 1 emits an ultrasonic signal from the dashboard 3 toward the passenger seat under the instruction of the controller 2, and receives the ultrasonic signal reflected by the occupant.
  • the controller 2 measures the propagation time until the ultrasonic signal radiated from the ultrasonic sensor 1 is reflected by the occupant and returns to the ultrasonic sensor 1 a plurality of times.
  • the controller 2 prevents the occupant from erroneously detecting the occupant's position due to the occupant temporarily taking a special posture (for example, when the occupant temporarily takes a special posture, an ultrasonic signal is generated). Without returning directly to the ultrasonic sensor 1, If it returns to the ultrasonic sensor 1 after being reflected by the interior of the vehicle, the position of the occupant is erroneously detected.) If the propagation time measured a plurality of times is the shortest, the propagation time is selected. The propagation time of is converted to the position of the occupant, and the position of the occupant is detected.
  • the conventional occupant detection device is configured as described above, erroneous detection of the occupant position can be prevented to some extent.For example, an occupant who is normally seated in the front passenger seat is temporarily There was a problem that if the vehicle was close to 3, there was a possibility that the position of the occupant would be erroneously detected (it could cause erroneous detection such as the occupant sitting near dashboard 3).
  • the present invention has been made to solve the above problems, and an occupant detection device and an occupant capable of accurately detecting the position of an occupant without being affected by a special posture taken by the occupant temporarily
  • the purpose is to obtain a detection method. Disclosure of the invention
  • An occupant detection device includes a selection unit that executes a majority decision process on a plurality of comparison results obtained by a comparison unit and selects one of the comparison results.
  • the occupant detection device is configured to compare the amplitude measured by the measurement means with a plurality of threshold levels.
  • the occupant detection device includes a reflection signal measured by the measurement unit.
  • a determination means is provided for monitoring a change in the maximum amplitude of the vehicle and determining whether the object present in the passenger seat is a human or an object.
  • the occupant detection device when determining that an object present in the passenger seat is an object, determines whether the object present in the passenger seat is a rearward facing child seat based on the propagation time of the maximum amplitude of the reflected signal. It is designed to classify whether there is no target in the system.
  • the occupant detection device when determining that the object existing in the passenger seat is a human, determines whether the object existing in the passenger seat is a standing child based on the propagation time of the maximum amplitude of the reflected signal. This classifies whether the person is seated normally.
  • a majority decision process is executed on a plurality of comparison results, and any one of the comparison results is selected.
  • the occupant detection method according to the present invention compares the amplitude of the reflected signal with a plurality of threshold levels.
  • the position of the occupant can be accurately determined not only when the occupant is seated normally but also when the occupant is seated on the rearward facing seat. There is an effect that can be detected.
  • An occupant detection method monitors a change in the maximum amplitude of a reflected signal to determine whether an object present in a passenger seat is a person or an object.
  • the occupant detection method when it is determined that the object existing in the passenger seat is an object, whether the object existing in the passenger seat is a rearward shielded seat based on the propagation time of the maximum amplitude of the reflected signal, It is designed to classify whether there is no target in the system.
  • the occupant detection method of the present invention when it is determined that the object existing in the passenger seat is a human, whether the object existing in the passenger seat is a standing child is determined based on the propagation time of the maximum amplitude of the reflected signal. This classifies whether the person is seated normally.
  • FIG. 1 is a configuration diagram showing a conventional occupant detection device.
  • FIG. 2 is a configuration diagram showing an occupant detection device according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart showing an occupant detection method according to Embodiment 1 of the present invention. It is a jar.
  • FIG. 4 is an explanatory diagram for explaining the processing of the signal processing section 15 (when the occupant is normally seated).
  • FIG. 5 is an explanatory diagram for explaining the processing of the signal processing unit 15 (when an occupant is present near the ultrasonic sensor 13).
  • FIG. 6 is an explanatory diagram showing a comparison result of the signal processing unit 15 (when the occupant is normally seated).
  • FIG. 7 is an explanatory diagram showing a comparison result of the signal processing unit 15 (when an occupant is present near the ultrasonic sensor 13).
  • FIG. 8 is a flowchart for explaining the operation of the signal processing unit 15.
  • FIG. 9 is an explanatory diagram for explaining the majority decision processing.
  • FIG. 10 is a flowchart showing a method of calculating the distance data in the calculation unit 17.
  • FIG. 11 is a flowchart showing a method of detecting the position of the occupant in the arithmetic section 17.
  • FIG. 12 is a flowchart showing an occupant detection method according to Embodiment 2 of the present invention.
  • FIG. 13 is a flowchart showing a method of specifying the maximum amplitude in the arithmetic unit 17.
  • FIG. 14 is a flowchart showing a method of determining a person or an object in the arithmetic unit 17.
  • FIG. 15 is a flowchart showing the processing contents when it is determined that the object existing in the passenger seat is an object.
  • FIG. 16 is a flowchart showing the processing performed when it is determined that the object existing in the passenger seat is a human.
  • FIG. 2 is a configuration diagram showing an occupant detection device according to Embodiment 1 of the present invention, in which 11 is a dashboard of a moving object, 12 is a passenger seat of the moving object, and 13 is a passenger seat of the moving object.
  • Reference numeral 14 denotes an occupant detection circuit including a signal processing unit 15, a memory 16, and a calculation unit 17.
  • Reference numeral 15 denotes a signal processing unit (measuring means, comparing means) which measures the amplitude of the reflected signal received by the ultrasonic sensor 13 and compares the amplitude of the reflected signal with a plurality of threshold levels.
  • a memory for recording the comparison results of the signal processing unit 15, and 17 is a majority processing for multiple comparison results when the signal processing unit 15 performs the measurement processing multiple times and performs the comparison processing multiple times.
  • a calculation unit selecting means, position specifying means for selecting one of the comparison results and specifying the position of the occupant in the passenger seat based on the selected comparison result.
  • FIG. 3 is a flowchart showing an occupant detection method according to Embodiment 1 of the present invention.
  • the ultrasonic sensor 13 radiates an ultrasonic signal toward the passenger seat 12 (step ST 1), and receives a reflected signal of the ultrasonic signal. Then, the signal processing unit 15 The amplitude of the reflected signal received by the sensor 13 is measured, signal processing described later is performed (step ST 2), and the comparison result, which is the processing result, is recorded in the memory 16 (step ST 3).
  • step ST6 When the processing in steps ST1 to ST3 is performed k times (steps ST4 and ST5), the arithmetic unit 17 executes majority processing on the k comparison results and executes any of the majority processing. The comparison result is selected (step ST6).
  • arithmetic unit 17 performs an arithmetic process described later (step ST7), and specifies the position of the occupant in the front passenger seat.
  • FIGS. 4 and 5 are explanatory diagrams for explaining the processing of the signal processing section 15.Particularly, FIG. 4 shows a case where the occupant is properly seated and FIG. 5 shows a standing child or a rearward child seat. As shown in the figure, the case where an occupant is present near the ultrasonic sensor 13 is shown, the horizontal axis represents the propagation time T, and the vertical axis represents the amplitude V of the reflected signal.
  • a plurality of threshold levels V th (from V1: 11111 1 11 to 11111 &) for comparing the reflected signal levels are provided.
  • V1: 11111 1 11 to 11111 & threshold levels for comparing the reflected signal levels.
  • the initial value T 0 of the propagation time T is the transmission start time of the ultrasonic signal, and the propagation time T end, which is the comparison end time of the reflected signal, is a preset value, and depends on the required maximum measurement distance. Set as appropriate.
  • the required number of threshold levels Vth is set appropriately, with one level as the minimum number.
  • FIG. 8 is a flowchart for explaining the operation of the signal processing unit 15.
  • the signal processing unit 15 sets an initial value TO of the propagation time T (step ST11), and returns the ultrasonic signal.
  • the initial value V thmin is substituted for the threshold level V th (step ST 12).
  • the signal processing unit 15 compares the amplitude V of the reflected signal with the threshold level Vth to determine whether the amplitude V of the reflected signal exceeds the threshold level Vth (step ST 13). ), If V ⁇ Vth, "1" is recorded in the memory 16 (step ST14).
  • step ST15 if V ⁇ Vth, "0" is recorded in the memory 16 (step ST15).
  • the signal processing unit 15 raises the threshold level V th (step ST 16), and determines whether or not the comparison processing has been completed for all the threshold levels V th (step ST 16). ST 17).
  • step ST 13 If the comparison processing has not been completed for all the threshold levels V th, the process returns to step ST 13 to continue the comparison processing, and if the comparison processing has been completed, the propagation time T is counted up. Then, it is determined whether the propagation time T has reached the comparison end time T end (step ST 18) (step ST 19).
  • step ST 12 If the propagation time T has not reached the comparison end time T end, the process returns to step ST 12. If the propagation time T has reached the comparison end time T end, it is assumed that the signal processing has been terminated and Wait for the sound wave signal to be radiated, and perform the processing from step ST11.
  • the arithmetic unit 17 performs a majority decision process as shown in FIG.
  • the night is canceled and the original position of the occupant can be detected.
  • FIG. 10 is a flowchart showing a method of calculating the distance data in the arithmetic unit 17.
  • the distance from the ultrasonic sensor 13 to the occupant is extremely large. Measure the propagation time Td from when the sound wave signal is emitted until the reflected signal reflected by the occupant is received (hereinafter referred to as distance conversion time Td), and convert the distance conversion time Td to distance You can ask for it.
  • the aftershock time Tr is calculated to detect the occupant using the aftershock time Tr without using the distance conversion time Td.
  • the arithmetic unit 17 determines which threshold level V th of the processing data of the comparison result of the signal processing unit 15 stored in the memory 16 (hereinafter referred to as processing data). Is selected, and the propagation time T is set to the initial value T 0 (step ST 21).
  • the arithmetic unit 17 determines whether the processing data is “1” or “0”, and thereby determines the threshold level V th. It is determined whether or not a reflected signal having an amplitude larger than the above is received (step ST22).
  • step ST2 the value obtained by subtracting 1 from the propagation time T is recorded in the aftershock time Tr (step ST2). Five ) .
  • Step ST23 If the processed data is "1", it is assumed that the aftershock of the ultrasonic sensor 13 is still continuing, and the propagation time T is compared with the end time T end to determine whether the processed data has ended. (Step ST23).
  • the propagation time T is counted up (step ST24), and the process returns to step ST22 to return to the processing data. If the evening has ended, the end time T end is recorded as the aftershock time Tr (step ST25).
  • the arithmetic unit 17 determines whether or not the processing data has been completed (step ST26), and if completed, there is no reflected signal or the aftershock waveform continues.
  • the end time T end is recorded in the distance conversion time T d (step ST 29).
  • step ST27 the propagation time T is increased (step ST27), and it is determined whether or not the processing data is "1" (step ST27). 2 8).
  • processing time is "1"
  • the propagation time T is recorded in the distance conversion time Td (step ST29).
  • step ST26 If the process is "0", it is assumed that there is no reflected signal, and the process returns to step ST26 to execute the same process.
  • the calculation unit 17 detects the position of the occupant based on the aftershock time Tr and the distance conversion time Td.
  • FIG. 11 is a flowchart showing a method of detecting the position of the occupant in the arithmetic unit 17.
  • the arithmetic unit 17 calculates the aftershock time T r and the aftershock time T based on the normal sitting time. Compare rc (step ST31).
  • T r> T rc it is determined that the occupant is located extremely close to the ultrasonic sensor 13 or that the occupant is sitting on the rearward facing seat (step ST 3 Four ) .
  • Tr ⁇ Trc it is determined that there is no occupant near the ultrasonic sensor 13 and the distance conversion time Td is compared with the comparison value Tdc (step ST32). If T d ⁇ T dc, it is determined that the occupant is seated in a standing child or a rearward facing child seat within a certain distance (step ST34), and T d> T dc In the case of, it is determined that the occupant is properly seated (step ST33).
  • the majority processing is performed on a plurality of comparison results in the signal processing unit 15 to select one of the comparison results. Even if the occupant takes a temporary special posture, the occupant position can be accurately detected.
  • FIG. 12 is a flowchart showing an occupant detection method according to Embodiment 2 of the present invention.
  • the same reference numerals as in FIG. 3 denote the same or corresponding parts, and a description thereof will be omitted.
  • the ST 41 determines a person or an object existing in the passenger seat by capturing a change in the maximum amplitude of the reflection signal. Is a calculation step for executing the calculation processing to specify the position of the occupant.
  • the calculation unit 17 determines whether the object existing in the passenger seat is a human or an object. In order to determine the maximum amplitude, a process for obtaining the maximum amplitude of the reflected signal is executed.
  • FIG. 13 is a flow chart showing a method of specifying the maximum amplitude in the arithmetic unit 17.
  • the arithmetic unit 17 sets the maximum threshold level V thma X to the threshold level V th. (Step ST51), and transmit the aftershock time T rc determined based on normal seating.
  • the seeding time T is set (step S S52), and the propagation time ⁇ is counted up (step S ⁇ 53).
  • the operation unit 17 determines whether or not the processing time at the threshold level Vth is "1" (step ST54).
  • the threshold level Vth is recorded as the maximum amplitude Vmax, and the propagation time T is recorded as the propagation time Tmax of the maximum amplitude Vmax (step ST 5 8).
  • processing time is "0" If the processing time is "0", it is determined whether or not the propagation time T has reached the comparison end time T End (step ST55).
  • step ST53 If the propagation time T has not reached the comparison end time T en cU, the process returns to step ST53, and the steps following step ST53 are continued.
  • step ST 56 If the propagation time T has reached the comparison end time T End, it is determined whether or not the threshold level V th is equal to the minimum threshold level V th min (step ST 56).
  • step ST57 If the threshold level Vth is not equal to the minimum threshold level Vthmin, the threshold level Vth is lowered (step ST57), and the process returns to step ST52.
  • the minimum threshold level Vthmin is recorded as the maximum amplitude Vmax, and the comparison end time T The end is recorded as the propagation time Tmax of the maximum amplitude Vmax (step ST58).
  • the calculation unit 17 determines that the object existing in the passenger seat is a human based on the maximum amplitude Vmax and the propagation time Tmax. Or object I do.
  • FIG. 14 is a flowchart showing a method of determining a person or an object in the calculation unit 17.
  • the calculation unit 17 determines that the maximum amplitude Vmax is equal to the previous maximum amplitude Vmax. It is determined whether or not they match (step ST61), and it is also determined whether or not the propagation time Tmax matches the previous propagation time Tmax (step ST62).
  • step ST63 If both the maximum amplitude Vmax and the propagation time Tmax match the previous time, the timer Tt for determining that the object existing in the passenger seat is an object is counted up (step ST63). Evening time Tt is compared with threshold Ttc for determination (step ST64).
  • step S T 67 If T t ⁇ T t c, the object in the passenger seat is moving, so it is determined that the object in the passenger seat is a human (step S T 67
  • Step ST 6 If it is determined in any of steps ST61 and ST62 that they do not match the previous time, the maximum amplitude Vmax or the propagation time Tmax is assumed to have changed, and the final setting time Tt is initialized. Return to value 0 (Step ST 6
  • steps ST 4 to ST 6 in FIG. 12 is not performed because there is no need to execute the majority decision processing in the evening. .
  • FIG. 15 is a flowchart showing the processing performed when it is determined that the object existing in the passenger seat is an object. If it is determined that the elephant is an object, the propagation time T max is compared with the comparison value Tmax X c 1 (step ST71).
  • Tmax ⁇ Tmaxc1 it is determined that the occupant is seated on the rearward facing child seat where an object exists near the ultrasonic sensor 13 (step ST72).
  • Fig. 16 is a flowchart showing the processing performed when it is determined that the object present in the passenger seat is a human.
  • the arithmetic unit 17 has determined that the object present in the passenger seat is a human.
  • the propagation time Tmax is compared with the comparison value Tmaxx2 (step ST81).
  • Tmax ⁇ Tmaxx2 it is determined that a standing child exists near the ultrasonic sensor 13 (step ST82).
  • TmaX> TmaXc2 it is determined that the occupant is normally seated on the passenger seat (step ST83).
  • a change in the maximum amplitude of the reflected signal is monitored to determine whether the object existing in the passenger seat is a human or an object. Therefore, it is possible to recognize whether the object existing in the passenger seat is a person or an object.
  • the occupant detection device and the occupant detection method according to the present invention are suitable, for example, to be mounted on an airbag control device that controls a deployment range of an airbag in a passenger seat according to a position of an occupant. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

An ultrasonic signal is radiated, a reflection signal of the ultrasonic signal is received, an amplitude of the reflection signal is measured for comparison with a threshold level, a majority processing is performed on a plurality of comparison results obtained at a signal processing unit (15) and any one of the comparison results is selected, thereby specifying the position of a crew member in the passenger seat next to the driver based on the selected comparison result. A change in an amplitude of a reflection signal is monitored to judge as to whether a human being or an object is present in the passenger seat.

Description

明 細 書  Specification
乗員検知装置及び乗員検知方法 Occupant detection device and occupant detection method
技術分野 Technical field
この発明は、 助手席の乗員の位置等を検出する乗員検知装置及び乗員 検知方法に関するものである。  The present invention relates to an occupant detection device and an occupant detection method for detecting the position of an occupant in a passenger seat and the like.
背景技術 Background art
第 1 図は例えば特開平 9 一 2 0 1 9 3号公報に示された従来の乗員検 知装置を示す構成図であり、 図において、 1 は助手席に対向するダッシ ユボー ド 3の側面に取り付けられ、 助手席に向けて超音波信号を輻射す るとともに、 乗員に反射された超音波信号を受信する超音波センサ、 2 は超音波センサ 1 による超音波信号の送受信を制御するとともに、 その 超音波信号の送受信結果から乗員の位置を検出するコン トローラ、 3 は 移動体のダッシュボ一ドである。  FIG. 1 is a configuration diagram showing a conventional occupant detection device disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 9-201293. In the figure, reference numeral 1 denotes a side surface of a dashboard 3 facing a passenger seat. An ultrasonic sensor that radiates the ultrasonic signal toward the passenger seat and receives the ultrasonic signal reflected to the occupant, 2 controls the transmission and reception of the ultrasonic signal by the ultrasonic sensor 1, The controller 3 detects the position of the occupant from the result of the transmission and reception of the ultrasonic signal, and 3 is the dashboard of the moving object.
次に動作について説明する。  Next, the operation will be described.
超音波センサ 1 は、 コン トローラ 2の指示の下、 ダッシュボー ド 3側 から助手席に向けて超音波信号を輻射し、 乗員に反射された超音波信号 を受信する。  The ultrasonic sensor 1 emits an ultrasonic signal from the dashboard 3 toward the passenger seat under the instruction of the controller 2, and receives the ultrasonic signal reflected by the occupant.
コン トローラ 2は、 超音波センサ 1から輻射された超音波信号が乗員 に反射されて、 超音波センサ 1 に戻ってく るまでの伝播時間を複数回測 定する。  The controller 2 measures the propagation time until the ultrasonic signal radiated from the ultrasonic sensor 1 is reflected by the occupant and returns to the ultrasonic sensor 1 a plurality of times.
そして、 コン トローラ 2 は、 乗員が一時的に特殊な姿勢をとることに よる乗員の位置の誤検出を防止するため (例えば、 乗員が一時的に特殊 な姿勢をとることにより、 超音波信号が直接超音波センサ 1 に戻らず、 車内のイ ンテリ ア等に反射して、 超音波センサ 1 に戻るような場合には 、 乗員の位置を誤検出する) 、 複数回測定した伝播時間のうち最短の伝 播時間を選択し、 最短の伝播時間を乗員の位置に換算して、 乗員の位置 を検出する。 Then, the controller 2 prevents the occupant from erroneously detecting the occupant's position due to the occupant temporarily taking a special posture (for example, when the occupant temporarily takes a special posture, an ultrasonic signal is generated). Without returning directly to the ultrasonic sensor 1, If it returns to the ultrasonic sensor 1 after being reflected by the interior of the vehicle, the position of the occupant is erroneously detected.) If the propagation time measured a plurality of times is the shortest, the propagation time is selected. The propagation time of is converted to the position of the occupant, and the position of the occupant is detected.
従来の乗員検知装置は以上のように構成されているので、 乗員の位置 の誤検出をある程度は防止することができるが、 例えば、 助手席に正常 着座している乗員が一時的にダッシュボー ド 3 に近接すると、 乗員の位 置を誤検出する可能性 (乗員がダッシュボード 3 の近く に着座している 等の誤検出を招く可能性がある) があるという課題があった。  Since the conventional occupant detection device is configured as described above, erroneous detection of the occupant position can be prevented to some extent.For example, an occupant who is normally seated in the front passenger seat is temporarily There was a problem that if the vehicle was close to 3, there was a possibility that the position of the occupant would be erroneously detected (it could cause erroneous detection such as the occupant sitting near dashboard 3).
この発明は上記のような課題を解決するためになされたもので、 乗員 が一時的にとる特殊な姿勢に影響されることなく 、 乗員の位置を正確に 検出することができる乗員検知装置及び乗員検知方法を得ることを目的 とする。 発明の開示  The present invention has been made to solve the above problems, and an occupant detection device and an occupant capable of accurately detecting the position of an occupant without being affected by a special posture taken by the occupant temporarily The purpose is to obtain a detection method. Disclosure of the invention
この発明に係る乗員検知装置は、 比較手段における複数の比較結果に 対して多数決処理を実行し、 何れかの比較結果を選択する選択手段を設 けたものである。  An occupant detection device according to the present invention includes a selection unit that executes a majority decision process on a plurality of comparison results obtained by a comparison unit and selects one of the comparison results.
このことによって、 乗員が一時的に特殊な姿勢をとつても、 乗員の位 置を正確に検出することができる効果がある。  This has the effect that the position of the occupant can be accurately detected even if the occupant temporarily takes a special posture.
この発明に係る乗員検知装置は、 計測手段により計測された振幅を複 数段のスレツショルドレベルと比較するようにしたものである。  The occupant detection device according to the present invention is configured to compare the amplitude measured by the measurement means with a plurality of threshold levels.
このことによって、 乗員が正常着座している場合に限らず、 後向きチ ャィルドシー トに着座しているような場合等でも、 乗員の位置を正確に 検出することができる効果がある。  This has the effect that the position of the occupant can be accurately detected not only when the occupant is seated normally but also when the occupant is sitting on a rearward-facing child seat.
この発明に係る乗員検知装置は、 計測手段により計測された反射信号 の最大振幅の変化を監視して、 助手席に存在する対象が人間又は物体の 何れであるのかを判定する判定手段を設けたものである。 The occupant detection device according to the present invention includes a reflection signal measured by the measurement unit. A determination means is provided for monitoring a change in the maximum amplitude of the vehicle and determining whether the object present in the passenger seat is a human or an object.
このことによって、 助手席に存在する対象が人間又は物体の何れであ るのかを認識することができる効果がある。  As a result, there is an effect that it is possible to recognize whether the object existing in the passenger seat is a person or an object.
この発明に係る乗員検知装置は、 助手席に存在する対象が物体である と判定する場合、 反射信号の最大振幅の伝播時間から助手席に存在する 対象が後向きチャイルドシー トであるのか、 助手席に対象が存在しない のかを分類するようにしたものである。  The occupant detection device according to the present invention, when determining that an object present in the passenger seat is an object, determines whether the object present in the passenger seat is a rearward facing child seat based on the propagation time of the maximum amplitude of the reflected signal. It is designed to classify whether there is no target in the system.
このことによって、 助手席に存在する対象が後向きチヤィルドシー ト であるのか、 助手席に対象が存在しないのかを認識することができる効 果がある。  This has the effect of being able to recognize whether the object in the passenger seat is a backward-facing child seat or whether there is no object in the passenger seat.
この発明に係る乗員検知装置は、 助手席に存在する対象が人間である と判定する場合、 反射信号の最大振幅の伝播時間から助手席に存在する 対象がスタンディ ングチャイルドであるのか、 助手席に正常着座してい るのかを分類するようにしたものである。  The occupant detection device according to the present invention, when determining that the object existing in the passenger seat is a human, determines whether the object existing in the passenger seat is a standing child based on the propagation time of the maximum amplitude of the reflected signal. This classifies whether the person is seated normally.
このことによって、 助手席に存在する対象がスタンディ ングチヤィル ドであるのか、 助手席に正常着座しているのかを認識することができる 効果がある。  This has the effect that it is possible to recognize whether the object existing in the front passenger seat is a standing child or whether the passenger is seated normally in the front passenger seat.
この発明に係る乗員検知方法は、 複数の比較結果に対して多数決処理 を実行して、 何れかの比較結果を選択するようにしたものである。  In the occupant detection method according to the present invention, a majority decision process is executed on a plurality of comparison results, and any one of the comparison results is selected.
このことによって、 乗員が一時的に特殊な姿勢をとつても、 乗員の位 置を正確に検出することができる効果がある。  This has the effect that the position of the occupant can be accurately detected even if the occupant temporarily takes a special posture.
この発明に係る乗員検知方法は、 反射信号の振幅を複数段のスレツシ ョルドレベルと比較するようにしたものである。  The occupant detection method according to the present invention compares the amplitude of the reflected signal with a plurality of threshold levels.
このことによって、 乗員が正常着座している場合に限らず、 後向きチ ャィルドシートに着座しているような場合等でも、 乗員の位置を正確に 検出することができる効果がある。 As a result, the position of the occupant can be accurately determined not only when the occupant is seated normally but also when the occupant is seated on the rearward facing seat. There is an effect that can be detected.
この発明に係る乗員検知方法は、 反射信号の最大振幅の変化を監視し て、 助手席に存在する対象が人間又は物体の何れであるのかを判定する ようにしたものである。  An occupant detection method according to the present invention monitors a change in the maximum amplitude of a reflected signal to determine whether an object present in a passenger seat is a person or an object.
このことによって、 助手席に存在する対象が人間又は物体の何れであ るのかを認識することができる効果がある。  As a result, there is an effect that it is possible to recognize whether the object existing in the passenger seat is a person or an object.
この発明に係る乗員検知方法は、 助手席に存在する対象が物体である と判定する場合、 反射信号の最大振幅の伝播時間から助手席に存在する 対象が後向きチヤィルドシ一 卜であるのか、 助手席に対象が存在しない のかを分類するようにしたものである。  In the occupant detection method according to the present invention, when it is determined that the object existing in the passenger seat is an object, whether the object existing in the passenger seat is a rearward shielded seat based on the propagation time of the maximum amplitude of the reflected signal, It is designed to classify whether there is no target in the system.
このことによって、 助手席に存在する対象が後向きチャイルドシー ト であるのか、 助手席に対象が存在しないのかを認識することができる効 果がある。  As a result, it is possible to recognize whether the object existing in the passenger seat is a rearward facing child seat or whether there is no object existing in the passenger seat.
この発明に係る乗員検知方法は、 助手席に存在する対象が人間である と判定する場合、 反射信号の最大振幅の伝播時間から助手席に存在する 対象がスタンディ ングチャイル ドであるのか、 助手席に正常着座してい るのかを分類するようにしたものである。  According to the occupant detection method of the present invention, when it is determined that the object existing in the passenger seat is a human, whether the object existing in the passenger seat is a standing child is determined based on the propagation time of the maximum amplitude of the reflected signal. This classifies whether the person is seated normally.
このことによって、 助手席に存在する対象がスタンディ ングチヤィル ドであるのか、 助手席に正常着座しているのかを認識することができる 効果がある。 図面の簡単な説明  This has the effect that it is possible to recognize whether the object existing in the front passenger seat is a standing child or whether the passenger is seated normally in the front passenger seat. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は従来の乗員検知装置を示す構成図である。  FIG. 1 is a configuration diagram showing a conventional occupant detection device.
第 2図はこの発明の実施の形態 1 による乗員検知装置を示す構成図で ある。  FIG. 2 is a configuration diagram showing an occupant detection device according to Embodiment 1 of the present invention.
第 3図はこの発明の実施の形態 1 による乗員検知方法を示すフローチ ヤー 卜である。 FIG. 3 is a flowchart showing an occupant detection method according to Embodiment 1 of the present invention. It is a jar.
第 4図は信号処理部 1 5の処理を説明する説明図である (乗員が正常 に着座している場合) 。  FIG. 4 is an explanatory diagram for explaining the processing of the signal processing section 15 (when the occupant is normally seated).
第 5図は信号処理部 1 5の処理を説明する説明図である (乗員が超音 波センサ 1 3の近傍に存在する場合) 。  FIG. 5 is an explanatory diagram for explaining the processing of the signal processing unit 15 (when an occupant is present near the ultrasonic sensor 13).
第 6図は信号処理部 1 5の比較結果を示す説明図である (乗員が正常 に着座している場合) 。  FIG. 6 is an explanatory diagram showing a comparison result of the signal processing unit 15 (when the occupant is normally seated).
第 7図は信号処理部 1 5の比較結果を示す説明図である (乗員が超音 波センサ 1 3の近傍に存在する場合) 。  FIG. 7 is an explanatory diagram showing a comparison result of the signal processing unit 15 (when an occupant is present near the ultrasonic sensor 13).
第 8図は信号処理部 1 5 の動作を説明するフローチヤ一 卜である。 第 9図は多数決処理を説明する説明図である。  FIG. 8 is a flowchart for explaining the operation of the signal processing unit 15. FIG. 9 is an explanatory diagram for explaining the majority decision processing.
第 1 0図は演算部 1 7 における距離データの算出方法を示すフローチ ヤー 卜である。  FIG. 10 is a flowchart showing a method of calculating the distance data in the calculation unit 17.
第 1 1 図は演算部 1 7 における乗員の位置検出方法を示すフローチヤ 一卜である。  FIG. 11 is a flowchart showing a method of detecting the position of the occupant in the arithmetic section 17.
第 1 2図はこの発明の実施の形態 2 による乗員検知方法を示すフロー チヤ一卜である。  FIG. 12 is a flowchart showing an occupant detection method according to Embodiment 2 of the present invention.
第 1 3図は演算部 1 7 における最大振幅の特定方法を示すフローチヤ ― 卜である。  FIG. 13 is a flowchart showing a method of specifying the maximum amplitude in the arithmetic unit 17.
第 1 4図は演算部 1 7 における人間又は物体の判定方法を示すフロー チヤ一トである。  FIG. 14 is a flowchart showing a method of determining a person or an object in the arithmetic unit 17.
第 1 5図は助手席に存在する対象が物体であると判定した場合の処理 内容を示すフロ一チヤ一 トである。  FIG. 15 is a flowchart showing the processing contents when it is determined that the object existing in the passenger seat is an object.
第 1 6図は助手席に存在する対象が人間であると判定した場合の処理 内容を示すフローチヤ一トである。 発明を実施するための最良の形態 FIG. 16 is a flowchart showing the processing performed when it is determined that the object existing in the passenger seat is a human. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明をより詳細に説明するために、 この発明を実施するた めの最良の形態について、 添付の図面に従って説明する。 実施の形態 1 .  Hereinafter, in order to explain this invention in greater detail, the preferred embodiments of the present invention will be described with reference to the accompanying drawings. Embodiment 1
第 2図はこの発明の実施の形態 1 による乗員検知装置を示す構成図で あり、 図において、 1 1 は移動体のダッシュボー ド、 1 2は移動体の助 手席、 1 3は助手席 1 2 に対向するダッシュボー ド 1 1 の側面に取り付 けられ、 助手席 1 2 に向けて超音波信号を輻射して、 乗員に反射された 超音波信号の反射信号を受信する超音波センサ (受信手段) 、 1 4は信 号処理部 1 5 , メモリ 1 6及び演算部 1 7から構成された乗員検知回路 である。  FIG. 2 is a configuration diagram showing an occupant detection device according to Embodiment 1 of the present invention, in which 11 is a dashboard of a moving object, 12 is a passenger seat of the moving object, and 13 is a passenger seat of the moving object. An ultrasonic sensor attached to the side of the dashboard 11 facing 1 2, radiating an ultrasonic signal toward the passenger seat 1 2, and receiving a reflected signal of the ultrasonic signal reflected to the occupant (Reception means) Reference numeral 14 denotes an occupant detection circuit including a signal processing unit 15, a memory 16, and a calculation unit 17.
1 5は超音波センサ 1 3 により受信された反射信号の振幅を計測する とともに、 その反射信号の振幅を複数段のスレツショルドレベルと比較 する信号処理部 (計測手段、 比較手段) 、 1 6 は信号処理部 1 5の比較 結果を記録するメモリ、 1 7 は信号処理部 1 5が計測処理を複数回実行 して比較処理を複数回実行すると、 複数の比較結果に対して多数決処理 を実行して何れかの比較結果を選択し、 その選択した比較結果に基づい て助手席の乗員の位置を特定する演算部 (選択手段、 位置特定手段) で ある。  Reference numeral 15 denotes a signal processing unit (measuring means, comparing means) which measures the amplitude of the reflected signal received by the ultrasonic sensor 13 and compares the amplitude of the reflected signal with a plurality of threshold levels. Is a memory for recording the comparison results of the signal processing unit 15, and 17 is a majority processing for multiple comparison results when the signal processing unit 15 performs the measurement processing multiple times and performs the comparison processing multiple times. A calculation unit (selecting means, position specifying means) for selecting one of the comparison results and specifying the position of the occupant in the passenger seat based on the selected comparison result.
なお、 第 3図はこの発明の実施の形態 1 による乗員検知方法を示すフ ローチヤ一 トである。  FIG. 3 is a flowchart showing an occupant detection method according to Embodiment 1 of the present invention.
次に動作について説明する。  Next, the operation will be described.
最初に、 乗員検知装置の概略動作を説明すると、 まず、 超音波センサ 1 3が超音波信号を助手席 1 2 に向けて輻射して (ステップ S T 1 ) 、 その超音波信号の反射信号を受信すると、 信号処理部 1 5は、 超音波セ ンサ 1 3により受信された反射信号の振幅を計測して、 後述する信号処 理を実施し (ステップ S T 2 ) 、 その処理結果である比較結果をメモリ 1 6に記録する (ステップ S T 3 ) 。 First, the general operation of the occupant detection device will be described. First, the ultrasonic sensor 13 radiates an ultrasonic signal toward the passenger seat 12 (step ST 1), and receives a reflected signal of the ultrasonic signal. Then, the signal processing unit 15 The amplitude of the reflected signal received by the sensor 13 is measured, signal processing described later is performed (step ST 2), and the comparison result, which is the processing result, is recorded in the memory 16 (step ST 3).
そして、 演算部 1 7は、 ステップ S T 1 〜 S T 3の処理が k回実施さ れると (ステップ S T 4, S T 5 ) 、 k個の比較結果に対して多数決処 理を実行して何れかの比較結果を選択する (ステップ S T 6 ) 。  When the processing in steps ST1 to ST3 is performed k times (steps ST4 and ST5), the arithmetic unit 17 executes majority processing on the k comparison results and executes any of the majority processing. The comparison result is selected (step ST6).
そして、 演算部 1 7は、 その選択した比較結果を用いて、 後述する演 算処理を実施し (ステップ S T 7 ) 、 助手席の乗員の位置を特定する。  Then, using the selected comparison result, arithmetic unit 17 performs an arithmetic process described later (step ST7), and specifies the position of the occupant in the front passenger seat.
次に、 乗員検知回路 1 4の具体的動作を説明する。  Next, a specific operation of the occupant detection circuit 14 will be described.
第 4図及び第 5図は信号処理部 1 5の処理を説明する説明図であり、 特に第 4図は乗員が正常に着座している場合、 第 5図はスタンディ ング チャイルド又は後向きチャイルドシー トのように超音波センサ 1 3の近 傍に乗員が存在する場合を示しており、 横軸は伝播時間 T、 縦軸は反射 信号の振幅 Vを表している。  FIGS. 4 and 5 are explanatory diagrams for explaining the processing of the signal processing section 15.Particularly, FIG. 4 shows a case where the occupant is properly seated and FIG. 5 shows a standing child or a rearward child seat. As shown in the figure, the case where an occupant is present near the ultrasonic sensor 13 is shown, the horizontal axis represents the propagation time T, and the vertical axis represents the amplitude V of the reflected signal.
ここで、 任意の伝播時間 Τにおける一定レベル以上の反射信号を検出 するために、 反射信号レベル比較用のスレツショルドレベル V t h ( V 1: 11111 1 11から 11111 & まで) を複数段設け、 その比較結果を第 6 図及び第 7図に示すように、 ≥ 1 1 の場合は " 1 " 、 V<V t hの 場合は " 0 " をメモリ 1 6に記録する。  Here, in order to detect a reflected signal of a certain level or more at an arbitrary propagation time Τ, a plurality of threshold levels V th (from V1: 11111 1 11 to 11111 &) for comparing the reflected signal levels are provided. As shown in FIGS. 6 and 7, "1" is recorded in the memory 16 when ≥11 and "0" when V <Vth, as shown in FIGS.
伝播時間 Tの初期値 T 0は、 超音波信号の送信開始時間で、 反射信号 の比較終了時間となる伝播時間 T e n dは予め設定された値であり、 必 要とする最大測定距離に応じて適宜設定する。 スレツショルドレベル V t hの設定数は 1 レベルを最低数として、 必要数を適宜設ける。  The initial value T 0 of the propagation time T is the transmission start time of the ultrasonic signal, and the propagation time T end, which is the comparison end time of the reflected signal, is a preset value, and depends on the required maximum measurement distance. Set as appropriate. The required number of threshold levels Vth is set appropriately, with one level as the minimum number.
第 8図は信号処理部 1 5の動作を説明するフローチャー トである。 信号処理部 1 5は、 超音波信号が輻射されると、 その直後に伝播時間 Tの初期値 T Oを設定して (ステップ S T 1 1 ) 、 その超音波信号の反 射信号の振幅を計測するとともに、 スレツショル ドレベル V t hに初期 値 V t h m i nを代入する (ステップ S T 1 2 ) 。 FIG. 8 is a flowchart for explaining the operation of the signal processing unit 15. Immediately after the ultrasonic signal is radiated, the signal processing unit 15 sets an initial value TO of the propagation time T (step ST11), and returns the ultrasonic signal. In addition to measuring the amplitude of the emission signal, the initial value V thmin is substituted for the threshold level V th (step ST 12).
そして、 信号処理部 1 5 は、 反射信号の振幅 Vとスレツショルドレべ ル V t hを比較して、 反射信号の振幅 Vがスレツショルドレベル V t h を上回るか否かを判定し (ステップ S T 1 3 ) 、 V≥ V t hの場合は、 メモリ 1 6 に " 1 " を記録する (ステップ S T 1 4 ) 。  Then, the signal processing unit 15 compares the amplitude V of the reflected signal with the threshold level Vth to determine whether the amplitude V of the reflected signal exceeds the threshold level Vth (step ST 13). ), If V≥Vth, "1" is recorded in the memory 16 (step ST14).
一方、 V < V t hの場合は、 メモリ 1 6 に " 0 " を記録する (ステツ プ S T 1 5 ) 。  On the other hand, if V <Vth, "0" is recorded in the memory 16 (step ST15).
次に、 信号処理部 1 5は、 スレツショルドレベル V t hをレベルアツ プし (ステップ S T 1 6 ) 、 全てのスレツショルドレベル V t hについ て比較処理が終了したか否かを判定する (ステップ S T 1 7 ) 。  Next, the signal processing unit 15 raises the threshold level V th (step ST 16), and determines whether or not the comparison processing has been completed for all the threshold levels V th (step ST 16). ST 17).
全てのスレツショルドレベル V t hについて比較処理が終了していな い場合は、 ステップ S T 1 3 に戻って比較処理を継続し、 比較処理が終 了している場合は、 伝播時間 Tをカウン トアップし (ステップ S T 1 8 ) 、 伝播時間 Tが比較終了時間 T e n dに達しているか否かを判定する (ステップ S T 1 9 ) 。  If the comparison processing has not been completed for all the threshold levels V th, the process returns to step ST 13 to continue the comparison processing, and if the comparison processing has been completed, the propagation time T is counted up. Then, it is determined whether the propagation time T has reached the comparison end time T end (step ST 18) (step ST 19).
伝播時間 Tが比較終了時間 T e n dに達していない場合は、 ステップ S T 1 2 に戻り、 伝播時間 Tが比較終了時間 T e n dに達している場合 は、 信号処理が終了したものとし、 再度、 超音波信号が輻射されるのを 待ち、 ステップ S T 1 1以降の処理を実施する。  If the propagation time T has not reached the comparison end time T end, the process returns to step ST 12. If the propagation time T has reached the comparison end time T end, it is assumed that the signal processing has been terminated and Wait for the sound wave signal to be radiated, and perform the processing from step ST11.
このようにして、 信号処理部 1 5が第 8図の信号処理を複数回実施す ると、 演算部 1 7は、 第 9図に示すような多数決処理を実施することに より、 乗員が一時的に特殊な姿勢をとつた場合のデ一夕をキャンセルし 、 本来の乗員の位置を検出することを可能にする。  In this way, when the signal processing unit 15 performs the signal processing of FIG. 8 a plurality of times, the arithmetic unit 17 performs a majority decision process as shown in FIG. When a special posture is taken, the night is canceled and the original position of the occupant can be detected.
ここで、 第 1 0図は演算部 1 7 における距離デ一夕の算出方法を示す フローチャー トであるが、 超音波センサ 1 3から乗員までの距離は、 超 音波信号が輻射されてから、 乗員により反射された反射信号が受信され るまでの伝播時間 T d (以下、 距離換算時間 T d という) を測定して、 その距離換算時間 T dを距離に換算することで求めることができる。 Here, FIG. 10 is a flowchart showing a method of calculating the distance data in the arithmetic unit 17. The distance from the ultrasonic sensor 13 to the occupant is extremely large. Measure the propagation time Td from when the sound wave signal is emitted until the reflected signal reflected by the occupant is received (hereinafter referred to as distance conversion time Td), and convert the distance conversion time Td to distance You can ask for it.
また、 乗員がスタンディ ングチャイル ドの場合や後向きチャイルドシ ー トに着座しているなどの場合は、 乗員が極端に超音波センサ 1 3 に接 近している関係上、 超音波センサ 1 3 自体の余震波形と反射信号が重な り、 見かけ上、 余震時間 T rが長くなる可能性がある。 この様な場合は 、 距離換算時間 T dを用いず、 余震時間 T r を利用して乗員の検知を行 うため余震時間 T r を算出する。  Also, when the occupant is in a standing child or sitting on a rearward facing child seat, the occupant is extremely close to the ultrasonic sensor 13 and the ultrasonic sensor 13 itself is The aftershock waveform and the reflected signal overlap, and the aftershock time Tr may seem to be longer. In such a case, the aftershock time Tr is calculated to detect the occupant using the aftershock time Tr without using the distance conversion time Td.
具体的には、 まず、 演算部 1 7 は、 メモリ 1 6 に記憶されている信号 処理部 1 5の比較結果 (以下、 処理デ一夕という) のうち、 どのスレツ ショルドレベル V t hの処理データを利用するかを選択するとともに、 伝播時間 Tを初期値 T 0 に設定する (ステップ S T 2 1 ) 。  More specifically, first, the arithmetic unit 17 determines which threshold level V th of the processing data of the comparison result of the signal processing unit 15 stored in the memory 16 (hereinafter referred to as processing data). Is selected, and the propagation time T is set to the initial value T 0 (step ST 21).
そして、 演算部 1 7は、 利用する処理デ一夕を選択すると、 その処理 デ一夕が " 1 " または " 0 " の何れであるかを判定することにより、 当 該スレツショルドレベル V t hを上回る振幅の反射信号を受信している か否かを判定する (ステップ S T 2 2 ) 。  Then, when selecting the processing data to be used, the arithmetic unit 17 determines whether the processing data is “1” or “0”, and thereby determines the threshold level V th. It is determined whether or not a reflected signal having an amplitude larger than the above is received (step ST22).
その処理データが " 0 " の場合は、 超音波センサ 1 3 の余震が終了し たものと想定して、 伝播時間 Tから 1 を減算した値を余震時間 T r に記 録する (ステップ S T 2 5 ) 。  If the processed data is "0", it is assumed that the aftershock of the ultrasonic sensor 13 has ended, and the value obtained by subtracting 1 from the propagation time T is recorded in the aftershock time Tr (step ST2). Five ) .
その処理データが " 1 " の場合は、 超音波センサ 1 3 の余震が未だ継 続しているものと想定し、 その処理データが終了したか否かを伝播時間 Tと終了時間 T e n dを比較することにより判定する (ステップ S T 2 3 ) 。  If the processed data is "1", it is assumed that the aftershock of the ultrasonic sensor 13 is still continuing, and the propagation time T is compared with the end time T end to determine whether the processed data has ended. (Step ST23).
その処理データが終了していない場合は、 伝播時間 Tをカウン トアツ プした後 (ステップ S T 2 4 ) 、 ステップ S T 2 2 に戻り、 その処理デ 一夕が終了している場合は、 終了時間 T e n dを余震時間 T rに記録す る (ステップ S T 2 5 ) 。 If the processing data has not been completed, the propagation time T is counted up (step ST24), and the process returns to step ST22 to return to the processing data. If the evening has ended, the end time T end is recorded as the aftershock time Tr (step ST25).
次に、 演算部 1 7は、 その処理データが終了したか否かを判定し (ス テツプ S T 2 6 ) 、 終了している場合は、 反射信号がないか、 または、 余震波形が継続しているかのどちらかであると想定し、 距離換算時間 T dに終了時間 T e n dを記録する (ステップ S T 2 9 ) 。  Next, the arithmetic unit 17 determines whether or not the processing data has been completed (step ST26), and if completed, there is no reflected signal or the aftershock waveform continues. The end time T end is recorded in the distance conversion time T d (step ST 29).
その処理データが終了していないと判定した場合は、 伝播時間 Tを力 ゥン トアップし (ステップ S T 2 7 ) 、 その処理デ一夕力 " 1 " である か否かを判定する (ステップ S T 2 8 ) 。  If it is determined that the processing data has not been completed, the propagation time T is increased (step ST27), and it is determined whether or not the processing data is "1" (step ST27). 2 8).
その処理デ一夕が " 1 " である場合は、 乗員からの反射信号を検出し たものと想定して、 伝播時間 Tを距離換算時間 T dに記録する (ステツ プ S T 2 9 ) 。  If the processing time is "1", it is assumed that the reflected signal from the occupant has been detected, and the propagation time T is recorded in the distance conversion time Td (step ST29).
その処理デ一夕が " 0 " である場合は、 反射信号がないものと想定し て、 ステップ S T 2 6に戻り同様の処理を実行する。  If the process is "0", it is assumed that there is no reflected signal, and the process returns to step ST26 to execute the same process.
このようにして、 余震時間 T r及び距離換算時間 T dを求めると、 演 算部 1 7は、 余震時間 T r及び距離換算時間 T dに基づいて乗員の位置 を検出する。  When the aftershock time Tr and the distance conversion time Td are obtained in this way, the calculation unit 17 detects the position of the occupant based on the aftershock time Tr and the distance conversion time Td.
ここで、 第 1 1図は演算部 1 7における乗員の位置検出方法を示すフ ローチャー トであり、 まず、 演算部 1 7は、 余震時間 T r と正常着座時 を基準に定めた余震時間 T r c を比較する (ステップ S T 3 1 ) 。  Here, FIG. 11 is a flowchart showing a method of detecting the position of the occupant in the arithmetic unit 17. First, the arithmetic unit 17 calculates the aftershock time T r and the aftershock time T based on the normal sitting time. Compare rc (step ST31).
T r >T r cの場合は、 極端に超音波センサ 1 3 に接近している位置 に乗員が存在するスタンディ ングチャイル ド、 または、 乗員が後向きチ ャィルドシートに着座していると判定する (ステップ S T 3 4 ) 。  If T r> T rc, it is determined that the occupant is located extremely close to the ultrasonic sensor 13 or that the occupant is sitting on the rearward facing seat (step ST 3 Four ) .
一方、 T r≤T r cの場合は、 超音波センサ 1 3の近傍に乗員なしと 判定し、 距離換算時間 T dと比較値 T d c を比較する (ステップ S T 3 2 ) 。 T d≤ T d c の場合は、 一定距離以内に乗員が存在するスタンディ ン グチャイルド、 または、 乗員が後向きチャイル ドシー トに着座している と判定し (ステップ S T 3 4 ) 、 T d >T d cの場合は、 乗員が正常に 着座しているものと判定する (ステップ S T 3 3 ) 。 On the other hand, if Tr ≦ Trc, it is determined that there is no occupant near the ultrasonic sensor 13 and the distance conversion time Td is compared with the comparison value Tdc (step ST32). If T d ≤ T dc, it is determined that the occupant is seated in a standing child or a rearward facing child seat within a certain distance (step ST34), and T d> T dc In the case of, it is determined that the occupant is properly seated (step ST33).
以上で明らかなように、 この実施の形態 1 によれば、 信号処理部 1 5 における複数の比較結果に対して多数決処理を実行して、 何れかの比較 結果を選択するように構成したので、 乗員が一時的に特殊な姿勢をとつ ても、 乗員の位置を正確に検出することができる効果を奏する。 実施の形態 2.  As is clear from the above, according to the first embodiment, the majority processing is performed on a plurality of comparison results in the signal processing unit 15 to select one of the comparison results. Even if the occupant takes a temporary special posture, the occupant position can be accurately detected. Embodiment 2.
第 1 2図はこの発明の実施の形態 2による乗員検知方法を示すフロー チャー トであり、 図において、 第 3図と同一符号は同一または相当部分 を示すので説明を省略する。  FIG. 12 is a flowchart showing an occupant detection method according to Embodiment 2 of the present invention. In the figure, the same reference numerals as in FIG. 3 denote the same or corresponding parts, and a description thereof will be omitted.
S T 4 1は反射信号を処理する毎に、 反射信号の最大振幅の変化を捉 えることにより、 助手席に存在する対象が人間又は物体の何れであるの かを判定する判定ステップ、 S T 4 2は演算処理を実施して乗員の位置 を特定する演算ステップである。  Each time the ST 41 processes the reflection signal, the ST 41 determines a person or an object existing in the passenger seat by capturing a change in the maximum amplitude of the reflection signal. Is a calculation step for executing the calculation processing to specify the position of the occupant.
次に動作について説明する。  Next, the operation will be described.
演算部 1 7は、 上記実施の形態 1 と同様にして、 信号処理部 1 5が処 理デ一夕をメモリ 1 6に記録すると、 助手席に存在する対象が人間又は 物体の何れであるのかを判定するため、 反射信号の最大振幅を求める処 理を実行する。  When the signal processing unit 15 records the processing data in the memory 16 in the same manner as in the first embodiment, the calculation unit 17 determines whether the object existing in the passenger seat is a human or an object. In order to determine the maximum amplitude, a process for obtaining the maximum amplitude of the reflected signal is executed.
ここで、 第 1 3図は演算部 1 7における最大振幅の特定方法を示すフ ローチャートであり、 まず、 演算部 1 7は、 最大のスレツショルドレべ ル V t h m a Xをスレツショルドレベル V t hに設定するとともに (ス テツプ S T 5 1 ) 、 正常着座時を基準にして定めた余震時間 T r c を伝 播時間 Tに設定し (ステップ S Τ 5 2 ) 、 その伝播時間 Τをカウン トァ ップする (ステップ S Τ 5 3 ) 。 Here, FIG. 13 is a flow chart showing a method of specifying the maximum amplitude in the arithmetic unit 17. First, the arithmetic unit 17 sets the maximum threshold level V thma X to the threshold level V th. (Step ST51), and transmit the aftershock time T rc determined based on normal seating. The seeding time T is set (step S S52), and the propagation time Τ is counted up (step SΤ53).
次に、 演算部 1 7は、 スレツショルド レベル V t hにおける処理デ一 夕が " 1 " であるか否かを判定する (ステップ S T 5 4 ) 。  Next, the operation unit 17 determines whether or not the processing time at the threshold level Vth is "1" (step ST54).
その処理データが " 1 " である場合は、 そのスレツショルドレベル V t hを最大振幅 Vm a xとして記録するとともに、 その伝播時間 Tを最 大振幅 Vm a xの伝播時間 Tm a xとして記録する (ステップ S T 5 8 ) 。  If the processed data is "1", the threshold level Vth is recorded as the maximum amplitude Vmax, and the propagation time T is recorded as the propagation time Tmax of the maximum amplitude Vmax (step ST 5 8).
その処理デ一夕が " 0 " である場合は、 伝播時間 Tが比較終了時間 T e n dに達しているか否かを判定する (ステップ S T 5 5 ) 。  If the processing time is "0", it is determined whether or not the propagation time T has reached the comparison end time T End (step ST55).
伝播時間 Tが比較終了時間 T e n cUこ達していない場合は、 ステップ S T 5 3に戻り、 ステップ S T 5 3以下のステップを続行する。  If the propagation time T has not reached the comparison end time T en cU, the process returns to step ST53, and the steps following step ST53 are continued.
伝播時間 Tが比較終了時間 T e n dに達している場合は、 スレツショ ルドレベル V t hが最小スレツショルド レベル V t h m i nと等しいか 否かを判定する (ステップ S T 5 6 ) 。  If the propagation time T has reached the comparison end time T End, it is determined whether or not the threshold level V th is equal to the minimum threshold level V th min (step ST 56).
スレツショルドレベル V t hが最小スレツ ショルドレベル V t h m i nと等しくない場合は、 スレツショルド レベル V t hをレベルダウンし て (ステップ S T 5 7 ) 、 ステップ S T 5 2 に戻る。  If the threshold level Vth is not equal to the minimum threshold level Vthmin, the threshold level Vth is lowered (step ST57), and the process returns to step ST52.
スレツショルドレベル V t hが最小スレツ ショルドレベル V t h m i nと等しい場合は、 反射信号がないものと想定して、 最小スレツショル ドレベル V t h m i nを最大振幅 Vm a xと して記録するとともに、 比 較終了時間 T e n dを最大振幅 Vm a Xの伝播時間 Tm a X として記録 する (ステップ S T 5 8 ) 。  When the threshold level Vth is equal to the minimum threshold level Vthmin, assuming that there is no reflected signal, the minimum threshold level Vthmin is recorded as the maximum amplitude Vmax, and the comparison end time T The end is recorded as the propagation time Tmax of the maximum amplitude Vmax (step ST58).
このようにして、 最大振幅 Vm a xと、 最大振幅 Vm a xの伝播時間 T m a Xを記録すると、 演算部 1 7は最大振幅 V m a Xと伝播時間 T m a Xから助手席に存在する対象が人間又は物体の何れであるのかを判定 する。 In this way, when the maximum amplitude Vmax and the propagation time Tmax of the maximum amplitude Vmax are recorded, the calculation unit 17 determines that the object existing in the passenger seat is a human based on the maximum amplitude Vmax and the propagation time Tmax. Or object I do.
ここで、 第 1 4図は演算部 1 7 における人間又は物体の判定方法を示 すフローチャー トであり、. まず、 演算部 1 7は、 最大振幅 Vm a xが前 回の最大振幅 Vm a xと一致するか否かを判定するとともに (ステップ S T 6 1 ) 、 伝播時間 T m a Xが前回の伝播時間 T m a X と一致するか 否かを判定する (ステップ S T 6 2 ) 。  Here, FIG. 14 is a flowchart showing a method of determining a person or an object in the calculation unit 17. First, the calculation unit 17 determines that the maximum amplitude Vmax is equal to the previous maximum amplitude Vmax. It is determined whether or not they match (step ST61), and it is also determined whether or not the propagation time Tmax matches the previous propagation time Tmax (step ST62).
最大振幅 Vm a xと伝播時間 Tm a xの双方が前回と一致する場合は 、 助手席に存在する対象が物体であることを確定するための夕イマ T t をカウン トアップし (ステップ S T 6 3 ) 、 夕イマ T t と確定用の閾値 T t c を比較する (ステップ S T 6 4 ) 。  If both the maximum amplitude Vmax and the propagation time Tmax match the previous time, the timer Tt for determining that the object existing in the passenger seat is an object is counted up (step ST63). Evening time Tt is compared with threshold Ttc for determination (step ST64).
T t ≥T t cの場合は、 一定時間以上、 最大振幅 Vm a xと伝播時間 Tm a xが変化していないので、 助手席に存在する対象は物体であると 判定する (ステップ S T 6 5 ) 。  In the case of T t ≥T t c, since the maximum amplitude Vmax and the propagation time Tmax have not changed for a certain period of time or more, it is determined that the target existing in the passenger seat is an object (step ST65).
一方、 T t <T t cの場合は、 助手席に存在する対象が動いているの で、 助手席に存在する対象は人間であると判定する (ステップ S T 6 7 On the other hand, if T t <T t c, the object in the passenger seat is moving, so it is determined that the object in the passenger seat is a human (step S T 67
) o ) o
ステップ S T 6 1 , S T 6 2の何れかにおいて、 前回と一致しないと 判定された場合には、 最大振幅 Vm a x又は伝播時間 Tm a xが変化し たものとして、 確定用の夕イマ T t を初期値 0に戻し (ステップ S T 6 If it is determined in any of steps ST61 and ST62 that they do not match the previous time, the maximum amplitude Vmax or the propagation time Tmax is assumed to have changed, and the final setting time Tt is initialized. Return to value 0 (Step ST 6
6 ) 、 助手席に存在する対象は人間であると判定する (ステップ S T 66) The object existing in the passenger seat is determined to be a human (step S T 6
7 ) 。 7).
なお、 助手席に存在する対象が物体であると判定した場合は、 処理デ —夕の多数決処理を実施する必要がないので、 第 1 2図におけるステツ プ S T 4〜 S T 6の処理は実行しない。  If it is determined that the object present in the passenger seat is an object, the processing of steps ST 4 to ST 6 in FIG. 12 is not performed because there is no need to execute the majority decision processing in the evening. .
第 1 5図は助手席に存在する対象が物体であると判定した場合の処理 内容を示すフローチャー トであり、 演算部 1 7は、 助手席に存在する対 象が物体であると判定した場合は、 伝播時間 T m a X を比較値 Tm a X c 1 と比較する (ステップ S T 7 1 ) 。 FIG. 15 is a flowchart showing the processing performed when it is determined that the object existing in the passenger seat is an object. If it is determined that the elephant is an object, the propagation time T max is compared with the comparison value Tmax X c 1 (step ST71).
Tm a x≤ T m a x c 1 の場合は、 超音波センサ 1 3 の近傍に物体が 存在する後向きチャイル ドシー トに乗員が着座していると判定する (ス テツプ S T 7 2 ) 。  If Tmax≤Tmaxc1, it is determined that the occupant is seated on the rearward facing child seat where an object exists near the ultrasonic sensor 13 (step ST72).
一方、 Tm a x〉T m a x c 1 の場合は、 助手席は無人状態であると 判定する (ステップ S T 7 3 ) 。  On the other hand, if Tmax> Tmaxc1, it is determined that the passenger seat is unmanned (step ST73).
第 1 6図は助手席に存在する対象が人間であると判定した場合の処理 内容を示すフローチャー トであり、 演算部 1 7 は、 助手席に存在する対 象が人間であると判定した場合.は、 伝播時間 T m a xを比較値 Tm a x c 2 と比較する (ステップ S T 8 1 ) 。  Fig. 16 is a flowchart showing the processing performed when it is determined that the object present in the passenger seat is a human.The arithmetic unit 17 has determined that the object present in the passenger seat is a human. In the case, the propagation time Tmax is compared with the comparison value Tmaxx2 (step ST81).
Tm a x≤ Tm a x c 2 の場合は、 超音波センサ 1 3の近傍に人間が 存在するスタンディ ングチャイルドと判定する (ステップ S T 8 2 ) 。 一方、 Tm a X > T m a X c 2の場合は、 乗員が助手席に正常着座し ていると判定する (ステップ S T 8 3 ) 。  If Tmax≤Tmaxx2, it is determined that a standing child exists near the ultrasonic sensor 13 (step ST82). On the other hand, if TmaX> TmaXc2, it is determined that the occupant is normally seated on the passenger seat (step ST83).
以上で明らかなように、 この実施の形態 2 によれば、 反射信号の最大 振幅の変化を監視して、 助手席に存在する対象が人間又は物体の何れで あるのかを判定するように構成したので、 助手席に存在する対象が人間 又は物体の何れであるのかを認識することができる効果を奏する。 産業上の利用可能性  As is clear from the above, according to the second embodiment, a change in the maximum amplitude of the reflected signal is monitored to determine whether the object existing in the passenger seat is a human or an object. Therefore, it is possible to recognize whether the object existing in the passenger seat is a person or an object. Industrial applicability
以上のように、 この発明に係る乗員検知装置及び乗員検知方法は、 例 えば、 乗員の位置に応じて助手席のエアバッグの展開範囲を制御するェ アバッグ制御装置に搭載するのに適している。  As described above, the occupant detection device and the occupant detection method according to the present invention are suitable, for example, to be mounted on an airbag control device that controls a deployment range of an airbag in a passenger seat according to a position of an occupant. .

Claims

求 の 範 囲 Range of request
1 . 超音波信号を輻射して、 その超音波信号の反射信号を受信する受信 手段と、 上記受信手段により受信された反射信号の振幅を計測する計測 手段と、 上記計測手段により計測された振幅をスレツショルド レベルと 1. Receiving means for radiating an ultrasonic signal and receiving a reflected signal of the ultrasonic signal, measuring means for measuring the amplitude of the reflected signal received by the receiving means, and amplitude measured by the measuring means The threshold level and
p青  p blue
比較する比較手段と、 上記計測手段が計測処理を複数回実行して、 上記 比較手段が比較処理を複数回実行すると、 上記比較手段における複数の 比較結果に対して多数決処理を実行し、 何れかの比較結果を選択する選 択手段と、 上記選択手段により選択された比較結果に基づいて助手席の 乗員の位置を特定する位置特定手段とを備えた乗員検知装置。 When the comparing means performs the measurement processing a plurality of times, and the comparing means performs the comparison processing a plurality of times, a majority decision processing is performed on the plurality of comparison results obtained by the comparing means. An occupant detection device comprising: selecting means for selecting the result of the comparison; and position specifying means for specifying the position of the occupant in the passenger seat based on the result of the comparison selected by the selecting means.
2 . 比較手段は、 計測手段により計測された振幅を複数段のスレツショ ルドレベルと比較することを特徴とする請求の範囲第 1項記載の乗員検 知装置。 2. The occupant detection device according to claim 1, wherein the comparing means compares the amplitude measured by the measuring means with a plurality of threshold levels.
3 . 計測手段により計測された反射信号の最大振幅の変化を監視して、 助手席に存在する対象が人間又は物体の何れであるのかを判定する判定 手段を設けたことを特徴とする請求の範囲第 1項記載の乗員検知装置。 3. A determination means for monitoring a change in the maximum amplitude of the reflected signal measured by the measurement means and determining whether the object existing in the passenger seat is a human or an object is provided. The occupant detection device according to claim 1, wherein:
4 . 判定手段は、 助手席に存在する対象が物体であると判定する場合、 反射信号の最大振幅の伝播時間から助手席に存在する対象が後向きチヤ ィルドシー トであるのか、 助手席に対象が存在しないのかを分類するこ とを特徴とする請求の範囲第 3項記載の乗員検知装置。 4. When the determination means determines that the object existing in the passenger seat is an object, it determines whether the object existing in the front passenger seat is a rearward seated sheet based on the propagation time of the maximum amplitude of the reflected signal. 4. The occupant detection device according to claim 3, wherein the presence or absence of the occupant is classified.
5 . 判定手段は、 助手席に存在する対象が人間であると判定する場合、 反射信号の最大振幅の伝播時間から助手席に存在する対象がスタンディ ングチャイ ルドであるの力、、 助手席に正常着座しているのかを分類する ことを特徴とする請求の範囲第 3項記載の乗員検知装置。 5. When the determination means determines that the object existing in the passenger seat is a human, the object existing in the passenger seat is determined based on the propagation time of the maximum amplitude of the reflected signal. 4. The occupant detection device according to claim 3, wherein the occupant detection device is configured to classify whether the vehicle is a swing child and whether the passenger is seated normally on the passenger seat.
6 . 超音波信号を輻射して、 その超音波信号の反射信号を受信すると、 その反射信号の振幅を計測してスレツショルドレベルと比較する一方、 その反射信号の計測処理を複数回実行して、 その比較処理を複数回実行 すると、 複数の比較結果に対して多数決処理を実行して、 何れかの比較 結果を選択し、 その選択した比較結果に基づいて助手席の乗員の位置を 特定する乗員検知方法。 6. When the ultrasonic signal is radiated and the reflected signal of the ultrasonic signal is received, the amplitude of the reflected signal is measured and compared with the threshold level, and the measuring process of the reflected signal is executed plural times. When the comparison process is executed a plurality of times, the majority process is performed on the plurality of comparison results, one of the comparison results is selected, and the position of the occupant in the passenger seat is specified based on the selected comparison result. Crew detection method.
7 . 反射信号の振幅を複数段のスレツショルドレベルと比較することを 特徴とする請求の範囲第 6項記載の乗員検知方法。 7. The occupant detection method according to claim 6, wherein the amplitude of the reflected signal is compared with a plurality of threshold levels.
8 . 反射信号の最大振幅の変化を監視して、 助手席に存在する対象が人 間又は物体の何れであるのかを判定することを特徴とする請求の範囲第 6項記載の乗員検知方法。 8. The occupant detection method according to claim 6, wherein a change in the maximum amplitude of the reflected signal is monitored to determine whether the object existing in the passenger seat is a human or an object.
9 . 助手席に存在する対象が物体であると判定する場合、 反射信号の最 大振幅の伝播時間から助手席に存在する対象が後向きチヤィル ドシー ト であるのか、 助手席に対象が存在しないのかを分類することを特徴とす る請求の範囲第 8項記載の乗員検知方法。 9. When determining that the object in the passenger seat is an object, based on the propagation time of the maximum amplitude of the reflected signal, whether the object in the passenger seat is a backward facing seat sheet or whether there is no object in the passenger seat 9. The occupant detection method according to claim 8, wherein the occupant is classified.
1 0 . 助手席に存在する対象が人間であると判定する場合、 反射信号の 最大振幅の伝播時間から助手席に存在する対象がス夕ンディ ングチヤィ ルドであるのか、 助手席に正常着座しているのかを分類することを特徴 とする請求の範囲第 8項記載の乗員検知方法。 10. When it is determined that the object in the front passenger seat is a human, whether the object in the front passenger seat is a snowfield or a normal seat in the front passenger seat is determined based on the propagation time of the maximum amplitude of the reflected signal. 9. The occupant detection method according to claim 8, wherein the occupant is classified.
PCT/JP1999/003741 1999-07-09 1999-07-09 Crew detection device and method WO2001003978A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/003741 WO2001003978A1 (en) 1999-07-09 1999-07-09 Crew detection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/003741 WO2001003978A1 (en) 1999-07-09 1999-07-09 Crew detection device and method

Publications (1)

Publication Number Publication Date
WO2001003978A1 true WO2001003978A1 (en) 2001-01-18

Family

ID=14236207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003741 WO2001003978A1 (en) 1999-07-09 1999-07-09 Crew detection device and method

Country Status (1)

Country Link
WO (1) WO2001003978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017129533A1 (en) * 2016-01-26 2017-08-03 Iee International Electronics & Engineering S.A. Capacitive seat occupancy detection and classification system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260834A (en) * 1991-02-14 1992-09-16 Nissan Motor Co Ltd Failure judging device for vehicle system
JPH06206514A (en) * 1992-12-04 1994-07-26 Trw Vehicle Safety Syst Inc Device and method for detecting passenger position and system and method for passenger restraint
JPH07186879A (en) * 1993-12-02 1995-07-25 Trw Vehicle Safety Syst Inc Device and method for controlling occupant restraint system
JPH0930362A (en) * 1995-07-17 1997-02-04 Toyota Motor Corp Occupant detection device
JPH09145838A (en) * 1995-11-21 1997-06-06 Toyota Motor Corp Detecting device using ultrasonic sensor
JPH09145836A (en) * 1995-11-21 1997-06-06 Toyota Motor Corp Detecting device using ultrasonic sensor
JPH1044923A (en) * 1996-08-06 1998-02-17 Kansei Corp Occupant protective device for front passenger seat

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260834A (en) * 1991-02-14 1992-09-16 Nissan Motor Co Ltd Failure judging device for vehicle system
JPH06206514A (en) * 1992-12-04 1994-07-26 Trw Vehicle Safety Syst Inc Device and method for detecting passenger position and system and method for passenger restraint
JPH07186879A (en) * 1993-12-02 1995-07-25 Trw Vehicle Safety Syst Inc Device and method for controlling occupant restraint system
JPH0930362A (en) * 1995-07-17 1997-02-04 Toyota Motor Corp Occupant detection device
JPH09145838A (en) * 1995-11-21 1997-06-06 Toyota Motor Corp Detecting device using ultrasonic sensor
JPH09145836A (en) * 1995-11-21 1997-06-06 Toyota Motor Corp Detecting device using ultrasonic sensor
JPH1044923A (en) * 1996-08-06 1998-02-17 Kansei Corp Occupant protective device for front passenger seat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017129533A1 (en) * 2016-01-26 2017-08-03 Iee International Electronics & Engineering S.A. Capacitive seat occupancy detection and classification system
LU92962B1 (en) * 2016-01-26 2017-08-07 Iee Sa Capacitive seat occupancy detection and classification system
US10457236B2 (en) 2016-01-26 2019-10-29 Iee International Electronics & Engineering S.A. Capacitive seat occupancy detection and classification system

Similar Documents

Publication Publication Date Title
US8502653B2 (en) Vehicle-use object detection apparatus
US20120032791A1 (en) Vehicle-use obstacle detection apparatus
US7408448B2 (en) Parking sensor apparatus and method to keep air brakes from interfering with the parking sensor apparatus
US20060271296A1 (en) Obstacle detection device
EP1210254B1 (en) Intrusion detector with power consumption control and method for intrusion detection
CN114312662B (en) Control system and vehicle
CN113985418A (en) Same-frequency interference signal detection method and device based on ultrasonic radar and vehicle
US20220146658A1 (en) Biological detection device
JP4020084B2 (en) Collision prediction device
WO2001003978A1 (en) Crew detection device and method
JP3221821B2 (en) Obstacle monitoring device for vehicles
CN108099906A (en) Collision warning systems and automobile on automobile
JPH11321497A (en) Safety operation support device
JP3232163B2 (en) In-vehicle ultrasonic sensor device
KR101699307B1 (en) Self identification ultrasonic sensor system and self signal detecting method using the same
JPH0652449A (en) Intruding body detecting device
US7499375B2 (en) Method for detecting an obstacle in the detection area of a detection device
JPH08278368A (en) Obstacle detection device
JP3521892B2 (en) Obstacle detection device
JP2001253319A (en) Vehicle security sensor, drive method for security sensor, and security system
US20030011471A1 (en) Motion sensing apparatus having a control module and a slave module
JPH09145836A (en) Detecting device using ultrasonic sensor
KR20210012790A (en) Method and apparatus for radar-based human body detection in vehicles
JPH08329358A (en) Trespasser detecting device
JP2972630B2 (en) Wake detector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP KR US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642