WO2001002858A1 - Immuno-diagnostic test method for veterinary disease - Google Patents
Immuno-diagnostic test method for veterinary disease Download PDFInfo
- Publication number
- WO2001002858A1 WO2001002858A1 PCT/SG1999/000098 SG9900098W WO0102858A1 WO 2001002858 A1 WO2001002858 A1 WO 2001002858A1 SG 9900098 W SG9900098 W SG 9900098W WO 0102858 A1 WO0102858 A1 WO 0102858A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crystal
- antigen
- protein
- antibody
- sensor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 141
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title description 13
- 201000010099 disease Diseases 0.000 title description 12
- 238000002405 diagnostic procedure Methods 0.000 title description 5
- 239000013078 crystal Substances 0.000 claims abstract description 178
- 239000000427 antigen Substances 0.000 claims abstract description 71
- 108091007433 antigens Proteins 0.000 claims abstract description 71
- 102000036639 antigens Human genes 0.000 claims abstract description 71
- 108090000623 proteins and genes Proteins 0.000 claims description 94
- 102000004169 proteins and genes Human genes 0.000 claims description 90
- 235000018102 proteins Nutrition 0.000 claims description 88
- 241001135989 Porcine reproductive and respiratory syndrome virus Species 0.000 claims description 44
- 230000027455 binding Effects 0.000 claims description 41
- 239000000243 solution Substances 0.000 claims description 41
- 238000000576 coating method Methods 0.000 claims description 39
- 239000011248 coating agent Substances 0.000 claims description 33
- 238000005406 washing Methods 0.000 claims description 32
- 238000012360 testing method Methods 0.000 claims description 26
- 229910052737 gold Inorganic materials 0.000 claims description 22
- 239000010931 gold Substances 0.000 claims description 22
- 239000003153 chemical reaction reagent Substances 0.000 claims description 21
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 20
- 229920000642 polymer Polymers 0.000 claims description 18
- 238000007598 dipping method Methods 0.000 claims description 17
- 230000000903 blocking effect Effects 0.000 claims description 15
- 239000000872 buffer Substances 0.000 claims description 15
- 239000004793 Polystyrene Substances 0.000 claims description 11
- 229920002223 polystyrene Polymers 0.000 claims description 11
- 239000010453 quartz Substances 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 239000013642 negative control Substances 0.000 claims description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 10
- 101710126256 Hydrolase in agr operon Proteins 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 9
- -1 thiol compound Chemical class 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 102000005720 Glutathione transferase Human genes 0.000 claims description 5
- 108010070675 Glutathione transferase Proteins 0.000 claims description 5
- 241000700605 Viruses Species 0.000 claims description 5
- 239000005018 casein Substances 0.000 claims description 5
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 claims description 5
- 235000021240 caseins Nutrition 0.000 claims description 5
- 230000003100 immobilizing effect Effects 0.000 claims description 5
- 239000003599 detergent Substances 0.000 claims description 4
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 4
- 241000894006 Bacteria Species 0.000 claims description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 claims description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 2
- 239000004327 boric acid Substances 0.000 claims description 2
- 229940098773 bovine serum albumin Drugs 0.000 claims description 2
- 102000037865 fusion proteins Human genes 0.000 claims description 2
- 108020001507 fusion proteins Proteins 0.000 claims description 2
- 229910000077 silane Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 239000012678 infectious agent Substances 0.000 claims 6
- 238000009007 Diagnostic Kit Methods 0.000 claims 3
- 102100027723 Endogenous retrovirus group K member 6 Rec protein Human genes 0.000 claims 2
- 101710091045 Envelope protein Proteins 0.000 claims 2
- 101710188315 Protein X Proteins 0.000 claims 2
- 230000001172 regenerating effect Effects 0.000 claims 2
- 239000002981 blocking agent Substances 0.000 claims 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical group P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 claims 1
- 239000007791 liquid phase Substances 0.000 claims 1
- 239000002953 phosphate buffered saline Substances 0.000 claims 1
- 230000004936 stimulating effect Effects 0.000 claims 1
- 239000012808 vapor phase Substances 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 36
- 238000001514 detection method Methods 0.000 abstract description 33
- 230000001580 bacterial effect Effects 0.000 abstract description 17
- 230000003612 virological effect Effects 0.000 abstract description 16
- 241001465754 Metazoa Species 0.000 abstract description 5
- 230000010355 oscillation Effects 0.000 abstract description 5
- 108010067390 Viral Proteins Proteins 0.000 abstract description 3
- 210000001124 body fluid Anatomy 0.000 abstract description 3
- 239000010839 body fluid Substances 0.000 abstract description 3
- 108010077805 Bacterial Proteins Proteins 0.000 abstract description 2
- 238000012544 monitoring process Methods 0.000 abstract 1
- 241001354013 Salmonella enterica subsp. enterica serovar Enteritidis Species 0.000 description 47
- 239000000523 sample Substances 0.000 description 39
- 210000002966 serum Anatomy 0.000 description 36
- 238000003018 immunoassay Methods 0.000 description 29
- 238000011534 incubation Methods 0.000 description 26
- 238000001179 sorption measurement Methods 0.000 description 22
- 238000003556 assay Methods 0.000 description 21
- 230000035945 sensitivity Effects 0.000 description 20
- 239000000126 substance Substances 0.000 description 19
- 238000002965 ELISA Methods 0.000 description 18
- 239000013641 positive control Substances 0.000 description 15
- 241000287828 Gallus gallus Species 0.000 description 14
- 235000013330 chicken meat Nutrition 0.000 description 14
- 239000012153 distilled water Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 208000005342 Porcine Reproductive and Respiratory Syndrome Diseases 0.000 description 12
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 12
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 12
- 239000010410 layer Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 210000004027 cell Anatomy 0.000 description 10
- 210000002969 egg yolk Anatomy 0.000 description 10
- 230000003993 interaction Effects 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 241000607142 Salmonella Species 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010790 dilution Methods 0.000 description 8
- 239000012895 dilution Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 235000013345 egg yolk Nutrition 0.000 description 8
- 230000002452 interceptive effect Effects 0.000 description 8
- 230000008929 regeneration Effects 0.000 description 8
- 238000011069 regeneration method Methods 0.000 description 8
- 241000252506 Characiformes Species 0.000 description 7
- 239000011324 bead Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000012491 analyte Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000003752 polymerase chain reaction Methods 0.000 description 6
- 239000007790 solid phase Substances 0.000 description 6
- 238000001262 western blot Methods 0.000 description 6
- 102000002322 Egg Proteins Human genes 0.000 description 5
- 108010000912 Egg Proteins Proteins 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 230000009830 antibody antigen interaction Effects 0.000 description 5
- 238000003618 dip coating Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 230000005291 magnetic effect Effects 0.000 description 5
- WCDSVWRUXWCYFN-UHFFFAOYSA-N 4-aminobenzenethiol Chemical compound NC1=CC=C(S)C=C1 WCDSVWRUXWCYFN-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 4
- 241000282887 Suidae Species 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 230000036046 immunoreaction Effects 0.000 description 4
- 230000002427 irreversible effect Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000012460 protein solution Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000003149 assay kit Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- CMMUKUYEPRGBFB-UHFFFAOYSA-L dichromic acid Chemical compound O[Cr](=O)(=O)O[Cr](O)(=O)=O CMMUKUYEPRGBFB-UHFFFAOYSA-L 0.000 description 3
- 238000001548 drop coating Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229920001600 hydrophobic polymer Polymers 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 102000029751 selenium binding Human genes 0.000 description 3
- 108091022876 selenium binding Proteins 0.000 description 3
- 238000009589 serological test Methods 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 2
- 239000003298 DNA probe Substances 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 108010058683 Immobilized Proteins Proteins 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 101900328733 Porcine reproductive and respiratory syndrome virus Glycoprotein 5 Proteins 0.000 description 2
- 101001022461 Salmonella enteritidis Fimbrial protein Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000004520 agglutination Effects 0.000 description 2
- 208000022362 bacterial infectious disease Diseases 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000006880 cross-coupling reaction Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000003110 dot immunobinding assay Methods 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 244000144992 flock Species 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 238000010166 immunofluorescence Methods 0.000 description 2
- 238000011999 immunoperoxidase monolayer assay Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 230000010358 mechanical oscillation Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 244000144977 poultry Species 0.000 description 2
- 235000013594 poultry meat Nutrition 0.000 description 2
- 235000008476 powdered milk Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000003380 quartz crystal microbalance Methods 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 238000002444 silanisation Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 2
- 239000011534 wash buffer Substances 0.000 description 2
- 229920003319 Araldite® Polymers 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 240000008886 Ceratonia siliqua Species 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108010040721 Flagellin Proteins 0.000 description 1
- 206010016952 Food poisoning Diseases 0.000 description 1
- 208000019331 Foodborne disease Diseases 0.000 description 1
- 241000447437 Gerreidae Species 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 239000006391 Luria-Bertani Medium Substances 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 230000010530 Virus Neutralization Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000721 bacterilogical effect Effects 0.000 description 1
- 102000023732 binding proteins Human genes 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000000105 evaporative light scattering detection Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000035931 haemagglutination Effects 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 239000013056 hazardous product Substances 0.000 description 1
- 244000144980 herd Species 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000000951 immunodiffusion Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940027941 immunoglobulin g Drugs 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000003771 laboratory diagnosis Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000006223 plastic coating Substances 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000006916 protein interaction Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002094 self assembled monolayer Substances 0.000 description 1
- 239000013545 self-assembled monolayer Substances 0.000 description 1
- 239000011540 sensing material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54373—Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
Definitions
- the present invention is related to an apparatus and method for performing immunodiagnostic testing for veterinary disease.
- it is related to the detection of the presence of viral or bacterial antigens by measuring specific antibodies in animal body fluid in which viral or bacterial proteins serve as the antigens.
- Highly specific antigen-antibody interactions are utilized to bind antibodies onto a piezoelectric crystal transducer for detection.
- RIA radioimmunoassay
- IF A immunofluorescence assay
- ELISA enzyme-linked immunosorbent assay
- WB Western immunoblot
- a traditional solid phase sandwich immunoassay for viral or bacterial antigen/antibody detection comprises the following procedures: (a) Immobilizing antibody/antigen peptide to a solid support, (b) Reacting immobilized antibody/antigen from step (a) with samples suspected of containing antigen/antibody against coated antibody/antigen to form an immunocompiex, (c) Washing the immunocompiex of step (b) with washing solution comprising detergents to remove unbound antigen/antibody, (d) Reacting the immunocompiex with an enzyme or radiolabeled second antibodies to form a sandwich complex, (e) Separating the sandwich complex from unbound labeled second antibodies by washing, (f) Reacting the sandwich complex with a compound able to act as a substrate for the enzyme or radiolabel so that the catalytic reaction can be colorimetrically monitored.
- radioisotope- or enzyme-labeled second antibody presents problems of waste handling and increases the cost of the assay.
- the multiple reaction processes and long incubation time require 8-10 hours from initial sample processing to delivery of final results.
- the requirements for refrigerated storage of reagents, expensive equipment, and reliable power supply make the assay techniques difficult to perform outside a well-equipped laboratory or under field conditions.
- U.S. Patent No. 5,695,928 disclosed an immunoassay capable of the rapid detection of a variety of test substances in a test sample.
- the feature of the invention is that extraction and isolation of the test substance occur simultaneously with the formation of the primary antigen-test substance complex.
- the primary antigen-test substance complex is then captured in a solid phase format having a plurality of interstitial spaces which facilitate rapid and efficient detection.
- U.S. Patent No. 5,630,924 disclosed compositions, methods, and apparatus for performing ultrafast binding assays by capillary electrophoresis or other electroseparation techniques.
- U.S. Patent No. 5,565,365 disclosed a system for assaying a fluid sample by detection of radiation emitted from a ligand/conjugate complex formed on a plurality of beads dimensioned within a specified range of diameters. The beads are disposed as a porous mass in conduit adjacent to a fluid-porous screen having pores of lesser diameter than the range of diameters of the beads. A plurality of paramagnetic particles is suspended across the conduit by a magnetic field of sufficient intensity to array the paramagnetic particles as the fluid-porous screen.
- U.S. Patent No. 5,554,340 disclosed an assay system for a fluid sample, typically employing a fluorescent tag.
- the system comprises a lens capable of focussing both excitation and fluorescent radiation, a fluid-flow conducting conduit being provided in the lens extending transversely of the optical axis of and through the focal region of the latter.
- One or more mechanical screens are disposed adjacent to the focal region in the conduit to arrest passage of beads as a function of bead diameter.
- the beads, precoated with at least a moiety of a ligand/conjugate complex, e.g. a specific-binding ligand, are preferably substantially transparent to both the excitation and fluorescent radiation.
- 5,212,065 disclosed a rapid immunoassay device comprising a single porous membrane that serves as both a reagent support and a spent reagent reservoir.
- the immunoassay device directs the flow of sample and reagents within the device in a manner that eliminates both lateral diffusion and backflow of reagents without the necessity of additional external means.
- U.S. Patent No. 5,236,824 disclosed an in-situ laser magnetic immunoassay (LMIA) method which eliminated the step of B/F separation generally required in the labeling method of immunoassays.
- LMIA in-situ laser magnetic immunoassay
- the laser magnetic immunoassay permits a quantitative determination of a target immunological substance, for example, antigens, antibodies, lymphocytes, viruses, tumor cells and infected cells, in an analyte solution containing both bound and free species.
- a target immunological substance for example, antigens, antibodies, lymphocytes, viruses, tumor cells and infected cells
- a transitory increase in the magnetophoretic scattering of a laser beam is observed when the analyte solution contains magnetic-labeled, bound target analyte, while no such increase is observed in a control test solution containing only the relevant reagents.
- a magnetophoretic LMIA apparatus is provided which includes a magnetic gradient-generating device, which forms an integral part of the in-situ LMIA.
- An alternative method to perform the assay of antigen or antibody is the use of an antigen/antibody-based biosensor.
- Biosensors offer the advantages of inexpensive equipment that can be taken out of the laboratory to where the sample may be added by unskilled personnel; the result would ideally be available rapidly.
- Immunosensors can detect the antigen/antibody concentration either by direct competitive and displacement reactions similar to the immunoassays or by direct changes in transducer output (Karube and Suzuki, 1986).
- the range of sensor transduction includes optical, amperometric, and radiochemical mechanisms. Similar to the traditional immunoassay, these detection methods generally require the use of labeled receptors and several preparative steps to the overall assay.
- An alternative sensor system which can monitor the antigen-antibody interaction by direct changes in transducer output, is a mass-detection sensor.
- This sensor system can monitor an antigen/antibody reaction directly by the detection of mass change.
- the assay concept and procedure are simple and any use of potentially hazardous materials is eliminated.
- An example for this type of system is the piezoelectric (Pz) crystal device. With this system, assays both in gas phase and in solution are possible.
- a Pz crystal device consists of a quartz crystal wafer sandwiched between two metal electrodes.
- the electrodes provide means of connecting the device to an external oscillator circuit that drives the quartz crystal at its resonant frequency. This frequency is dependent on the mass of the crystal, as well as the mass of any layers confined to the electrode areas of the crystal. Changes in mass on the surface of the electrode thus change the frequency of the Quartz Crystal Microbalance (QCM) device.
- QCM Quartz Crystal Microbalance
- the use of a piezoelectric (Pz) oscillator as a potential biomedical sensor is based on the relationship of the frequency change and the mass loading on the surface of the crystal described by the following equation:
- ⁇ F - 2 F 0 2 ⁇ m / A (p (1 ⁇ q ) 1 2
- F 0 the fundamental frequency of the Pz crystal
- A the area coated
- ⁇ m the mass change due to surface deposition
- p q the density of the quartz crystal (2.648 g cm" 3 )
- ⁇ q the shear modulus (2.947x10" g cm s "1 s "2 for AT-cut quartz crystals).
- Pz crystal based immunosensor technology is the combination of the use of a Pz device, protein immobilization, and antigen-antibody interaction.
- the key to constructing a Pz immunosensor is the surface modification by which a sensitive antigen or antibody receptor layer is created so that the target analyte from the sample can be adsorbed selectively.
- Methods of protein immobilization used in the fabrication of a biosensor include physical adsorption onto a support (metal or polymer), entrapment within a membrane, and covalent binding to the support (Williams and Blanch, 1994). All methods have distinct advantages, for example, a physical method is experimentally simple and regarded as a mild coupling method that preserves protein activity. However, in certain situations, it can be somewhat reversible and does not provide as high a surface loading of protein as covalent coupling. In covalent immobilization methods, chemical bonds are made between the surface and the attached species. Although generally harsher than other immobilization schemes, covalent binding provides the highest irreversible surface loading which is beneficial for the sensitivities of the sensor.
- covalently bound proteins are relatively resistant to the operational conditions.
- the preliminary requirements for the protein immobilization are the maintenance of activity, a sufficient amount of binding, and strong adhesion of the coated protein on the coated support.
- Different immobilization methods provide different sensor performance and are suitable for different types of proteins to be immobilized.
- U.S. Patent No. 4,242,096 disclosed an indirect immunoassay for detecting an antigen in a liquid sample, in which an antigen was covalently coated onto a crystal having a polymer monolayer such as poly(2-hydroxy-3-dimethylamino-l,4-butane). The using of a polymer priming surface followed by adsorption of the antigen was also disclosed in U.S. Patent Nos. 4,236,893 and 4,314,821, among others.
- U.S. Patent No. 4,735,906 disclosed a method for protein immobilization using a crystal with a surface modified to form a layer of siloxane polymer, which in turn immobilizes protein through amide linkages. Bastiaans (U.S. Patent No.
- 4,735,906 disclosed a method for an immunoassay using ST-cut piezoelectric SAW devices in a solution phase.
- the surface of the crystal is modified by silane derivative, glycidoxypropyltrimethoxysilane (GOPS).
- GOPS glycidoxypropyltrimethoxysilane
- Singapore Patent Application No. 9801211-5 disclosed the self-assembly immobilization technique by which the performance of a sensor system was greatly improved compared with other immobilization methods.
- Recombinant technology plays an important role in protein biotechnology, by which large quantities of recombinant proteins can be generated as the products of genetic engineering.
- the aim of producing recombinant proteins can be grouped into four broad categories (Franks, 1993): 1) To obtain large quantities of a protein; 2) To study site-directed mutant proteins; 3) To produce proteins for biotechnology; 4) To manipulate metabolism in vivo.
- the development of an enzyme immunoassay requires large quantities of structurally well-defined proteins as immunogen and enzymatic tracer.
- a recombinant protein or recombinant antigen is a protein or antigen prepared from an organism or cell or from a descendant of an organism or cell into which a gene for the protein or antigen has been cloned and wherein the recombinant protein can be a fusion protein.
- the present invention combines the Pz transducer together with the recombinant protein based immunoassay to perform diagnoses for viral or bacterial disease in animals.
- the fabricated Pz crystal sensor can thus monitor antigen-antibody interaction directly by sensing the mass change of the crystal. It has been proved to be helpful in overcoming the limitations of traditional immunoassay methods.
- the obvious advantages provided by the novel technology are the following: 1) The system has a fundamental low cost and can be performed in a non-equipped lab; 2) The fundamental design and performance are relatively simple; 3) The ease to realize realtime display of the results and rapid on-site testing; and 4) Minimal usage of hazardous material and use of unlabeled reagents which, unlike a conventional labeled immunoassay, is less temperature sensitive and allows for stable storage and shipment at 20-25 °C.
- SE Salmonella enteritidis
- SE Salmonella enteritidis
- Bacteriological techniques for the isolation of Salmonella from clinical and environmental samples are laborious, lengthy, and expensive. They may not identify all S. enteritidis-m ' tected flocks because of the intermittent nature of Salmonella extraction and the number of samples that can be processed.
- chickens infected with invasive serotypes like S. enteritidis develop a persistent immunoglobulin G response to the infecting organism.
- 4,689,295 disclosed a method of detecting the presence of Salmonella in food samples. It includes providing at least one DNA probe which is capable of selectively hybridizing to Salmonella DNA to form detectable complexes, contacting the DNA probes with the bacteria in the food sample under conditions which allow the probe to hybridize to Salmonella DNA present in the food sample to form hybrid DNA complexes, and detecting the hybrid DNA complexes as an indication of the presence of Salmonella in the food sample.
- PRRS Porcine reproductive and respiratory syndrome
- PRRSV The PRRS virus
- RNA virus belonging to the genus Arterivirus
- Current diagnosis for the disease is based on: 1) clinical signs, which are used as characteristic in acute outbreaks, but are not as effective in diagnosing low-grade disease; 2) virus isolation, which is little used as it is time consuming and less reliable; 3) polymerase chain reaction (PCR) testing for PRRS antigen; and 4) serological tests used for herd profiling, which include immunoperoxidase monolayer assay (IPMA), indirect enzyme-linked immunosorbent assay (ELISA), and indirect immunofluorescence assay (UFA).
- IPMA immunoperoxidase monolayer assay
- ELISA indirect enzyme-linked immunosorbent assay
- UFA indirect immunofluorescence assay
- Salmonella enteritidis antibody test kits and PRRS antibody test kits from IDEXX rely on competitive and sandwich enzyme linked immunoassay (ELISA) techniques, respectively.
- ELISA sandwich enzyme linked immunoassay
- antigen-coated plates and all reagents including enzyme-conjugated antibody, substrate, sample diluent, washing buffer, positive/negative control, etc.
- the test protocol comprises procedures of sample incubation, enzyme conjugated antibody incubation, substrate incubation, and multi-washing steps. The final signals are measured by spectrophotometer.
- the present invention provides a method for an immunodiagnostic test for veterinary diseases, which involves the detection of the presence of viral or bacterial antigens or antibodies to them.
- the apparatus includes an immunosensor which uses a Pz crystal as reaction carrier.
- the recombinant viral or bacterial antigen is immobilized on the surface of the crystal to work as a sensing receptor.
- a Pz crystal device can sense a mass change caused by the antigen-antibody interaction on the surface of the crystal.
- the Salmonella enteritidis (SE) or PRRSV detection method includes fabricating a Pz sensor by covalently or physically immobilizing a recombinant SE or PRRSV protein on the surface of the crystal.
- the teclinique adopted is either dip- or drop-coating by which the use of minimal amount of the protein is taken into consideration.
- the coated interface is exposed to the specimens to be detected (e.g., chicken serum, egg yolk, pig serum), which are suspected to contain SE or PRRSV antibodies for an appropriate period of time (from several seconds to several hours).
- the frequencies of the fabricated crystal before and after incubation with a specimen are measured.
- the frequency change or absence of a frequency change indicates the presence or absence of the target antibodies.
- other technique details including washing buffer, blocking reagent, and the dilution ratio of the detected specimen are disclosed.
- Figure 1 is a schematic of the Pz crystal sensor system
- Figure 2 is a flow diagram showing the procedures for constructing a Pz sensor with a specific sensing material layer on it and procedures for running the samples.
- Figure 3 is a diagram of a microcontainer used in the dip coating process.
- Figure 4 shows the principle of a Pz sensor for the detection of a target antibody.
- Figure 5 shows the frequency change caused by positive and negative controls for detecting Salmonella enteritidis antibodies.
- Figure 6 shows the frequency change for 35 unknown chicken sera samples tested for
- Salmonella enteritidis antibodies Salmonella enteritidis antibodies.
- Figure 7 shows SE-Pz sensor detection results for 7 previously characterized negative egg_ yolks and 12 previously characterized positive egg yolks.
- Figure 8 shows the relationship between protein binding amount and sensitivity of the fabricated Pz sensor.
- Figure 9 is a summary of measurement results for 41 pig sera.
- Group A is real negative samples
- group B is positive controls
- group C is unknown samples.
- Figure 10 shows the reusability of fabricated PRRSV Pz sensors.
- Figure 11A shows the sensitivity of a regenerated PRRSV Pz sensor.
- Figure 1 IB shows the sensitivity of a regenerated SE Pz sensor.
- O is positive control 1 and • is positive control 2.
- Figure 12 shows the regeneration ability of dichromic acid solution (•) and hot Piranha (O) with a used SE Pz sensor with a thiol compound treated surface.
- Figure 13 shows the regeneration ability of dichromic acid solution to thiol compound (•) and ⁇ -APTES (O) treated crystals.
- the conventional Pz crystal device design (see Figure 1) has a metal electrode 20 deposited on each of the two sides of the wafer 22. These two electrodes are connected to an oscillation circuit 24 and a frequency counter 26 for generating and detecting resonant frequencies, respectively.
- Standard methods such as that described by Shons et al. (1972), use a thin disk of AT-cut quartz crystal containing two electrodes on the double sides. Due to the piezoelectric properties and crystalline orientation of the quartz, the application of a voltage between these electrodes results in a shear deformation of the crystal. These electrodes are used to induce an oscillating electric field perpendicular to the surface of the quartz wafer.
- the oscillating field produces a mechanical oscillation, a standing wave, in the bulk of a quartz wafer.
- a resonance oscillation is achieved by including the crystal in an oscillation circuit, where the electric and mechanical oscillations are closed to the fundamental frequency of the crystal.
- the oscillation circuit and the frequency counter (such as HP 5213 A from Hewlett Packard, USA) are well known in the art, and are described in detailed by Breckenstein and Shay (1985).
- the fundamental frequency depends on the thickness of the wafer, its chemical structure, its shape, and its mass, and can be determined by using a universal counter.
- the most commonly used crystals are 5, 9, or 10 MHz quartz in the form of 10-16 mm disks that are approximately 0.15 mm thick. Metals are often gold, silver, aluminum, or nickel.
- the crystal is an AT-cut 10 MHz quartz wafer of 14 mm diameter and 0.2 mm thickness.
- the gold electrode is 5.1 mm diameter and 100 nm thickness. This crystal offers a mass sensitivity of about 0.902 ng/Hz.
- the procedures include fabrication of the sensor and the detection of the samples.
- the fabrication of a Pz crystal as a sensor usually involves surface modification by which a specific bioreceptor interface is created.
- the assay is based on the transformation of a specific interaction into a frequency signal.
- Figure 2 shows the detailed procedures for both constructing a Pz crystal based biosensor and the testing of sample.
- the crystal more particularly the surface of the metal electrode, must be cleaned by washing with an appropriate acid, base, and organic solution.
- the appropriate washing methods are adopted.
- hot Piranha solution is usually the first method to be considered.
- Hot Piranha solution can get rid of any oxidizing agent, and as a result a hydrophilic gold surface can be obtained.
- An alternate washing procedure which comprises soaking the surface of the crystal in base and acid alternately, can be used for polymer modification. After soaking in base and acid, rinsing steps with distilled water and organic chemicals are performed.
- the fundamental frequency of the cleaned crystal can be measured as F 0 under dry condition and atmospheric pressure.
- the physical adsorption of protein on the bare gold surface is based on the strong and irreversible hydrophobic and thiol-gold interaction (Horisberger and Vauthey, 1984). This method is experimentally simple and it does not require any chemical step to modify the gold surface.
- the adsorption is achieved by incubation of a hot Piranha solution treated crystal (F 0 ) directly with the solution containing biomolecules and allows the molecules to be adsorbed to the surface of the crystal over an appropriate period of time.
- the resonant frequency after incubation with the biomolecule is determined as F B .
- F 0 -F B is related to the amount of biomolecule binding. Covalent immobilization is also commonly employed.
- the procedures of covalent binding normally include modification of the crystal by an appropriate first chemical by which a desired functional group can be introduced onto the surface of the crystal, and covalent bonds can be made between the surface and the attached species.
- the most commonly used activating functional groups include primary amines, thiols, hydroxyls, and carboxylic acids.
- PKI polyethylenimine
- ⁇ -APTES ⁇ -aminopropyltriethoxysilane
- a second chemical is sometimes employed as a cross-linking or coupling reagent. Normally the cross-linking or coupling reagents are used to provide additional chemical linkages between the active biomaterial with the modified surface or to activate the modified surface further.
- the most widely used solid phase is the 96-welI microtiter plate manufactured from a hydrophobic polymer such as polystyrene (inflexible "rigid” plates) or polyvinyl chloride (PVC, flexible plates).
- the antigens or antibodies can be attached to the plastic surfaces easily by the hydrophobic interaction between nonpolar protein substructures and the polymer (Crowther, 1995).
- Pz sensor fabrication the binding of protein onto a hydrophobic polymer modified crystal is based on the use of the idea in this reference.
- This immobilization concept is quite similar with the traditional immunoassay and is easily accepted and understood by those who have a background in immunology. Compared with covalent immobilization, this method is relatively simple since only one polymer modification procedure, use of the first chemical, is needed before the crystal is exposed to the protein to be immobilized.
- biomolecule immobilization Although there are a number of methods for biomolecule immobilization, many are deficient for one or more reasons. In general, the method of choice depends on the properties of the biomolecule to be immobilized and the desired performance of the sensor. To achieve either the chemical modification or the protein immobilization, several coating techniques can be adopted which include dipping, dropping, and spinning.
- the dip- coating method relies on physical or chemical adsorption of materials to be coated onto the crystal from solution in a suitable solvent of suitable concentration. This procedure is easy to perform just by dipping the crystal into the solution of the chemical/biochemical to be coated for an indicated time.
- One problem encountered with this technique is the requirement for relatively large quantities of the solution, so that the whole crystal can be immersed into it.
- the drop- coating method is based on the application of coating material onto the surface of the crystal as a droplet of a volume of several microliters.
- the former technique can ensure a desired long period of interaction between the crystal surface and the solution and provide a sufficient contact between the surface and the solution.
- the latter one has a limitation of interaction time because of the spreading and evaporation of solvent and there can be a problem of non- uniformity of contact between the crystal surface and the solution drop.
- the latter method is suitable for polymer coating since the loading of the polymer can be readily calculated from the solution concentration and droplet volume.
- An alternative method quite suitable for polymer coating is referred to as spin coating. In this method the polymer, dissolved in a suitable solvent, is dropped onto the crystal while it is being spun at high speed. As a result the solution spreads out to form a thin, uniform film across the surface of the crystal which, on evaporation of the solvent, leaves a polymer film over the surface of the crystal.
- Figure 3 is a diagram of a container which is suitable for dip-coating the crystal with a minimal amount of precious protein. It is made of microscope slides adhered by Araldite with specially designed dimensions 54 mm* 12 mm* 1 mm, which is suitable for dipping three crystals at the same time. By using this special container, 200 ⁇ L of the coated protein is enough for each crystal. Under optimal protein concentration, micrograms of extracted protein is enough for coating each crystal.
- blocking reagents are adopted to meet with requirements for different situations.
- the blocking is achieved either by dipping the coated crystal in a blocking reagent or dropping a droplet of the said blocking solution onto the coated surface. This procedure is performed after the sensing protein immobilization, so that when incubated with the detected samples any mass attachment not caused by specific immunoreaction can be prevented.
- the purpose of washing is to separate bound and unbound (free) reagents. During the sensor fabrication stage, washing steps are achieved with the solvent used in the relevant coating procedure and followed by distilled water. To monitor the whole coating process, F 0 , F, and F 2 are measured in a dry state.
- the ⁇ F between two successive procedures corresponds to the absolute amount of the material attached, which can be calculated on the basis of the Saraubery equation.
- the uniform frequency change of each immobilization procedure between individual crystals will lead to a uniform amount of protein binding between individual crystals, and furthermore, the ability to reproduce the sample detection can be ensured.
- the washing solution used following the biomolecule immobilization and the blocking procedure is usually buffered, typically PBS (0.01-0.1 M, pH 7.4), in order to maintain isotonicity, since most antigen-antibody reactions are optimal under such conditions.
- PBS 0.01-0.1 M, pH 7.4
- the other critical requirement is the stability of the protein on the sensor transducer, which affects the long term stability and sensitivity of the sensor.
- the multi-washing is needed to ensure the stability of the immobilized protein (F B ' , F B " .).
- the frequency change or lack of frequency change between the multiple washing steps indicates whether the desorption occurred or not.
- FIG. 4 is a diagram describing the principle of the fabricated Pz sensor with an immobilized sensing protein layer for performing the detection of specific antibodies from animal body fluids.
- 28 refers to a Pz crystal;
- 30 is the coated sensing protein (antigen);
- 32 is the target antibody which is specific to the coated antigen;
- 34 is the blocking non-active protein;
- 36 represents other antibodies; and 38 represents other serum components.
- This detection procedure according to the present invention includes the following steps: 1) obtaining the resonant frequency of the coated and blocked crystal at dried state F R ; 2) incubating the test sample solution with the reactive surface of the crystal; 3) washing away unbound material and drying the crystal; and 4) measuring the resonant frequency of the crystal F s .
- the frequency change or lack thereof indicates the presence or absence of the antibodies to antigens, and provides a positive/negative or YES/NO answer for the diagnostic test.
- the reaction between antibodies and coated antigens depends on the distribution, time, temperature, and pH at which the incubation step takes place.
- the temperature for incubation is most commonly 37°C or room temperature.
- the time of incubation is several minutes to 1 hour.
- Incubation steps in the present invention involve either dipping the coated crystal into a specimen or dropping the specimen onto the surface of the crystal and allowing the solvent to evaporate.
- the time and temperature required depend on the titer of each different immunoreaction system.
- the buffering condition, in the present invention is controlled by PBS buffer, which maintains a pH 7.2.
- the used crystal can be regenerated and reused several times in either of two ways. If a fabricated crystal is incubated with a negative sample, producing only a small signal change, it can be reused to perform another detection. On the other hand, the used crystals can be regenerated by using certain solutions to strip the coating completely and rebuilding a fresh gold surface. The regenerated crystal can be used to construct any other coating by means of new surface modification. In this sense, the crystals have no limited life.
- a Pz crystal based immunosensor has been proved to be inexpensive, simple, and can perform a detection rapidly. Once a sensing layer has been immobilized on the surface of the Pz crystal, the assay time required is several minutes to I hour. Furthermore, this assay requires minimal technical skill, simpie procedures, and no sophisticated laboratory equipment.
- the amplified PCR product was inserted into a bacterial expression vector next to a gene for glutathione S-transferase (GST) such that a recombinant fusion protein (GST joined to the 90 aa peptide) was produced when the gene was expressed.
- GST glutathione S-transferase
- This vector was cloned into bacterial host Escherichia coli JM 105 competent cells.
- a single colony of E. coli cells containing the appropriate recombinant plasmid was used to inoculate 1 mL of Luria-Bertani medium with 70 ⁇ g/mL of ampicillin (included for the selection of the transformed cells).
- the purified and recombinantly expressed protein was characterized by Western blot with the use of yolk (extracted from chicken eggs) and negative and positive sera from naturally and experimentally infected chickens.
- the surface of a gold electrode was first modified by 4-aminothiophenol (ATPh) which provides a thiol group on one side and an amino group on the other side of the molecule.
- ATPh 4-aminothiophenol
- the spontaneous adsorption of thiol group to the gold surface ensures that the amino group faces towards the interface and works as a functional residue to which another amino group from a protein can be immobilized by means of a cross-linking reagent.
- This said immobilization was achieved by dipping the freshly cleaned crystal immediately into 20 mM of ATPh (the first chemical) in dimethylsulfoxide (DMSO) overnight at room temperature.
- DMSO dimethylsulfoxide
- the obtained amino groups were further activated by dipping the modified crystal in 2.5% glutaraldehyde (GA) in PBS (the second chemical) for 1 hour. After washing with PBS buffer and rinsing with distilled water, incubation with protein was performed.
- G glutaraldehyde
- an alternative dipping coating technique was developed by which the modified crystals were dipped into a diluted SE PBS solution (25 ⁇ g/mL) and incubated for a desired period of time (1-2 hours) at 37°C.
- This technique is based on the design and use of a homemade microcontainer, which is of the size of 54 mm x 12 mm x 1 mm, capacity of 648 microliters.
- This special design allows three pieces of crystal to be dipped simultaneously, and typically, 5 ⁇ g of recombinant protein is enough for each crystal.
- This method is found to be more suitable for recombinant protein coating, for it not only ensures a sufficiently long period of incubation time but also reduces the amount of protein needed. Moreover a longer incubation time allows the use of lower concentrations of coated protein.
- the binding amounts correspond to saturation of the surface, i.e., the frequency stops changing.
- diluted protein results in a minimal amount of the anionic detergent SDS and prevention of the protein immobilization is reduced.
- this dipping method is beneficial in reducing the variation of the amount of protein binding to individually coated crystals since it ensures a sufficient and uniform contact between crystal and the protein solution.
- the binding amount of SE protein by drop- and dip-coating technique are compared in Table 1.1.
- Another type of coating procedure is based on the silanization method.
- the crystals were cleaned in 1.2 N NaOH for 20 minutes followed by 5 minutes in 1.2 N HCl.
- the crystals were then rinsed with distilled water and air-dried. Subsequently several microliters of concentrated HCl were applied on the surface for 1-2 minutes. Finally, the crystals were rinsed with distilled water and ethanol.
- the clean crystals were first modified by dipping in 5% ⁇ -aminopropyltriethoxysilane
- the crystals were cleaned by the alternating base and acid method, as described previously. Polystyrene beads were dissolved in toluene into which cleaned crystals were dipped for 30 minutes at room temperature to form a polymer film by physical adsorption. After rinsing with ethanol and distilled water (F,) the crystals with polymer film were dipped into recombinant
- the thickness of polystyrene film depends on the concentration of the polymer solution. In this case 3 mg/mL was adopted, and the amount of polymer coating corresponding to the frequency change was 1196 ⁇ 125 Hz. Although 9 mg/mL of polymer provided a thicker polymer coating corresponding to a frequency change of 4919 ⁇ 325 Hz, the amount of protein coating no longer increased. This indicated that 3 mg/mL of polymer provided a saturated polymer coating and the coating covered the whole area of the crystal.
- the adsorption of protein onto plastic is based on hydrophobic interactions.
- the rate of the interaction depends on the concentration of the protein, coating pH, temperature, and time of incubation. In this case the optimal coating procedure was dipping the crystal in SE solution
- a polystyrene-coating method was first recommended as it offers a relatively simple concept and reduction of immobilization time.
- a large quantity of Pz crystals with SE protein coating layer were fabricated to conduct the test for SE specific antibody from chicken serum samples or egg yolk.
- the SE protein coated crystals were incubated with BSA by dropping 5 ⁇ L of 5% BSA on each side of the crystal or dipping the crystals in 1% BSA solution at 37°C for half an hour. After washing and drying the said crystals were kept at 4°C or refrigerated.
- the polystyrene method was selected as the best method and in the following sections (F) and (G) of this Example the Pz crystals used were prepared with the polystyrene coating method.
- SE protein fixing on a polystyrene modified surface is based on a physical adsorption. It was found that a polystyrene modified electrode surface results in a low activity for binding interfering proteins and consequently nonspecific binding is greatly reduced.
- the binding of SE to the polystyrene film is due to electostatic interaction which is achieved by a long (overnight) incubation. A short incubation (5-10 minutes) with the serum sample allows only specific antibody binding to the coated antigen.
- the fabricated crystals were taken from the freezer and allowed to equilibrate to room temperature.
- the resonant frequency was measured as F R .
- Sample used in this detection was chicken sera. Diluted serum samples reduced the background caused by interfering protein, but also caused a loss of sensitivity due to the lower antibody concentration. In this example, dilution of serum samples fifty-fold (1 :50) with PBS buffer was found to be the best compromise between the requirements of sensitivity on the one hand and handling of interfering binding on the other hand. Under the optimal dilution, 10 ⁇ L of diluted serum sample was placed onto each of the two sides of the crystal and covered the whole area of the electrode at room temperature for about 20 minutes. After washing and drying of the said crystal, resonant frequency values were determined as F s .
- F R -F S corresponds to the mass adsorption caused by detected serum sample.
- the Pz sensor and traditional immunoassay result concordance was 96%, and the relative sensitivity and specificity were 100% and 95%, respectively.
- the detected sample type is egg yolk. Dilutions from 1: 1 to 1 :10 were tested. It was found that a 1 :5 dilution with PBS buffer was optimal for the requirements of sensitivity and handling of the interfering binding. Under the optimal dilution, 10 ⁇ L of diluted egg yolk sample were added onto both sides of the crystal and covered the whole area of the electrode in a 37°C incubator for about 30 minutes. After washing and drying the said crystal, a resonant frequency value was determined as F s . F R -F S corresponds to the mass adsorption caused by detected samples. A total of 19 known egg yolks from experimentally infected or uninfected chickens were detected by an SE-Pz sensor. The results are shown in Figure 7. The cut-off value was defined as the average of the negative samples plus three times the standard deviation.
- PRRSV Porcine Reproductive and Respiratory Syndrome Virus
- PRRSV has eight Open Reading Frames (ORFs) in its genome: la, lb, 2, 3, 4, 5, 6, and 7.
- ORFs Open Reading Frames
- a PRRSV strain was used for amplification of viral ORFs 5 and 7 by PCR and cloned into bacterial host Escherichia coli JM 105 competent cells.
- the ORF 5 DNA sequence is shown as SEQ ID NO:3 and the ORF 5 protein sequence is given as SEQ ID NO:4.
- the subsequent recombinant expression process and purification procedure were nearly identical to that for the SE antigen described in Example 1.
- Viral protein products from ORFs 5 and 7 were recovered in the 8 M urea extraction step.
- the 8 M urea fraction was purified by excision of the band from a preparative SDS-PAGE.
- the purified and recombinantly expressed protein were 98-99% pure and were characterized by a Western blot with the use of positive and negative sera from naturally and experimentally infected pigs.
- the molecular weight calculated from sequence is 9,000, and 41,000 kD determined by SDS gel electrophoresis.
- the former problem may indicate that the nonspecific adsorption residue of the coated surface still exists as the result of the interfering proteins, the serum component, adsorbed on it.
- the latter problem may result from loss of activity of the coated PRRSV protein and as a result the immuno-reactions between detected antibody and the coated PRRSV protein were prevented.
- appropriate blocking reagents such as PBS, dried milk, gelatin and casein buffer, were used to incubate with PRRSV coated crystal before contacting the coated crystal with serum samples.
- the serum incubation conditions were modified including the time, temperature, and serum dilution. All these efforts were ineffective in improving the performance of the sensor.
- Casein buffer which contains 0.5% casein, 0.2% Tween 20 in PBS buffer, was incubated with the crystal at room temperature for 1 hour. This was followed by washing and drying (F R ).
- F 0 -F B corresponds to the amount of protein binding
- F B -F R relates to the adso ⁇ tion of the block protein.
- the rate and extent of protein coating on a gold surface depend on: 1) the diffusion coefficient of the coated molecule; 2) the ratio of the surface area being coated to the volume of coating solution; 3) the concentration of the substance being adsorbed; 4) the temperature; and 5) the length of time of adso ⁇ tion. All these factors are linked and the most important is to determine the optimal antigen concentration for coating in each system.
- the coating protein needs to saturate available sites on the surface of the crystal on the one hand. On the other hand care must be taken to assess effects of binding proteins at different concentration, since the actual density of binding may affect results. High-density binding of antigen may not allow antibody to bind because of steric inhibition (the antigen molecules being too closely packed).
- the concentration range of PRRSV protein used in this Example was 5-50 ⁇ g/mL. In this range the protein binding amount corresponded to a frequency change of 140-800 Hz.
- F R coated crystals
- F s real PRRSV-positive pig serum was incubated with them
- Figure 8 the sensitivity of the sensors with iifferent PRRSV protein binding capacities was monitored. It was observed that PRRSV binding amount at the range of 196.4-312.5 ng/double side, corresponding to a frequency change of 220-350 Hz, was the most sensitive, with the ⁇ F (F R -F S ) caused by the positive control being 260-320 Hz.
- the coated and blocked crystals were kept at 4°C.
- the coated and blocked crystals were removed from the refrigerator and allowed to reach room temperature.
- the resonant frequency was measured as F R .
- the samples used in this detection were pig serum samples. In this Example, diluting serum samples five-fold (1:5) with PBS buffer was found to be the best compromise between the requirements of sensitivity and handling of interfering binding. Under the optimal dilution, 10 ⁇ L of diluted serum sample were added on each side of the crystal and the whole area of the electrode was covered at room temperature for 10 minutes (it was found that a 10 minute sample incubation is optimal). After washing and drying the said crystal, resonant frequency values were determined as F s .
- F R -F S corresponds to the mass adso ⁇ tion caused by the detected serum samples.
- FIG. 9 shows the summarized measurement results in a column graph.
- 12 sera (group A) and 14 pig sera (group B) are negative controls and positive controls, respectively, which were employed to determine the performance of the sensors.
- 12 true PRRSV-negative reference sera (group A) had normally distributed F R -F S values ranging from 0 to 60, with a mean value of 30.0 ⁇ 20.9 Hz (Table 2.2).
- the cutoff threshold was set as the average frequency shift of 12 negative controls plus three times the standard deviation.
- Another 15 pig sera (group C) were unknown sera and were used to compare the sensitivity and specificity of the sensor with traditional Western blot and commercially provided ELISA results.
- the presence or absence of antibody to PRRSV is determined by a frequency change of the crystal before and after incubation with the serum specimen (F R -F S ). If the ⁇ F is less than cutoff threshold, the sample is classified as negative for PRRSV antibodies, and if the ⁇ F is greater than or equal to cutoff threshold, the sample is classified as positive for PRRSV antibodies. 8 samples out of the 15 in group C were positive and the rest were negative. These results all agreed well with the IDEXX PRRS Antibody Test Kit or Western blot assay.
- the normalized signal of each sample is defined as the ratio of the frequency change of the sample, ⁇ F smple or (S/P) samp
- Each serum in Table 2.3 with a measurement normalized value larger than 1 can be classified as a positive specimen.
- Serum samples 1-3 were identified by a Pz sensor as negative with a normalized signal range from 0- 0.39, whereas the normalized signal from the IDEXX ELISA was in the range of 0.25-0.60.
- Serum samples 6 and 7 were strong positives with a normalized signal from the Pz sensor of 2.8- 3.4, and the IDEXX ELISA gave a normalized signal of 5.00-5.25.
- the reusability here refers to the case in which a fabricated crystal was used to detect a negative serum first, and it could be reused to perform another assay.
- Crystal 1 was incubated with negative control 1 first, with the resulting signal, ⁇ F, being 36 Hz. Crystal 1 was then incubated with negative control 2 and produced a 50 Hz frequency change. Furthermore, this twice-used crystal was then incubated with a positive control and the produced signal was 225 Hz. Crystal 2 was used as a reference, by which the same positive control was detected directly, and produced a 250 Hz signal. Another two crystals were used to perform a similar experiment. Positive control 2 was detected by a once-used crystal and directly by a new crystal. The produced frequency signals from the two tests were very close to each other, and the SD was within the proposed SD, 15%. This indicated that fabricated crystals can be reused at least 3 times without obvious loss of sensitivity.
- the regeneration of fabricated crystals can be performed by a pH-shift. Soaking the used crystal for 30 minutes in buffered boric acid/KCl-NaOH, pH
- FIG. 1 1.0 (50 mL of 0.025 M borax + 22.7 mL O.l M NaOH) can remove the antibody from the immunocompiex. After washing with distilled water and PBS buffer the crystal can be used for another assay.
- Figures 1 1A-B show the sensitivity of a regenerated PRRSV-Pz sensor ( Figure 11 A) and a regenerated SE-Pz sensor ( Figure 1 IB). About 3-4 assays can be performed before irreversible loss of activity occurred.
- Dichromate acid (10 g potassium dichromate dissolved in 30 mL hot H 2 0, let cool, add 70 mL concentrated H 2 S0 4 ) washing solution was found to be the best way to strip the whole coating from a fabricated sensor surface. It is suitable for almost all surface conditions. For example, a thiol compound modified surface has a strong linkage between gold and a sulfur atom. Treating the said surface by dropping 10 ⁇ L of dichromate acid solution for more than 15 minutes, followed by rinsing with distilled water can make the frequency return to the original base line F 0 , and any new surface modification is permissible on the newly built gold surface.
- Figure 12 shows the comparison of regeneration ability of dichromate acid solution and hot Piranha for the thiol compound treated surface.
- Recombinant PRRSV protein immobilization directly on gold is proved to be rather stable.
- the regeneration for a PRRSV adsorbed gold surface involves incubation of the surface with dichromic acid for 15 minutes.
- the interaction of ⁇ -APTES on gold is based on three gold and oxygen linkages.
- Regeneration of a ⁇ -APTES treated crystal can be achieved by washing for a long length of time.
- Figure 13 shows the regeneration ability of dichromate acid washing solution for APTh and ⁇ - APTES treated crystals.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Microbiology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU61278/99A AU780113B2 (en) | 1999-07-05 | 1999-10-04 | Immuno-diagnostic test method for veterinary disease |
JP2001508054A JP2003503736A (en) | 1999-07-05 | 1999-10-04 | Immunodiagnostic test methods for animal diseases |
DE19983966T DE19983966T1 (en) | 1999-07-05 | 1999-10-04 | Immunodiagnostic test procedure for an animal disease |
GB0201481A GB2369678B (en) | 1999-07-05 | 1999-10-04 | Immuno-diagnostic test method for veterinary disease |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG9903147-8 | 1999-07-05 | ||
SG9903147A SG93209A1 (en) | 1999-07-05 | 1999-07-05 | A novel immuno-diagnostic test method for veterinary disease |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001002858A1 true WO2001002858A1 (en) | 2001-01-11 |
Family
ID=20430386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SG1999/000098 WO2001002858A1 (en) | 1999-07-05 | 1999-10-04 | Immuno-diagnostic test method for veterinary disease |
Country Status (7)
Country | Link |
---|---|
JP (1) | JP2003503736A (en) |
CN (1) | CN1371477A (en) |
AU (1) | AU780113B2 (en) |
DE (1) | DE19983966T1 (en) |
GB (1) | GB2369678B (en) |
SG (1) | SG93209A1 (en) |
WO (1) | WO2001002858A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005090981A3 (en) * | 2004-03-24 | 2005-10-27 | Technion Res & Dev Foundation | Electrode |
EP1852443A1 (en) * | 2006-05-05 | 2007-11-07 | Leukocare AG | Biocompatible three dimensional matrix for the immobilization of biological substances |
EP2058335A1 (en) * | 2007-11-07 | 2009-05-13 | Leukocare AG | Biocompatible three dimensional matrix for the immobilization of biological substances |
CN101403724B (en) * | 2008-10-08 | 2011-12-21 | 湖南大学 | Instrument and reagent for fast detection of microbe in blood specimen, and preparation method thereof |
US8354066B2 (en) | 2004-03-24 | 2013-01-15 | Technion Research & Development Foundation Ltd. | Artificial receptors |
CN103940857A (en) * | 2014-05-05 | 2014-07-23 | 江南大学 | Device and detection method for rapidly detecting oil yield of salted egg in nondestructive manner |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4367787B2 (en) * | 2004-02-26 | 2009-11-18 | 株式会社シームス | Bra with diagnostic sensor |
CN100344972C (en) * | 2004-04-16 | 2007-10-24 | 中国人民解放军防化指挥工程学院 | Virus detection system and method thereof |
TWI331216B (en) * | 2006-06-15 | 2010-10-01 | Murata Manufacturing Co | Sensor for detecting substance in liquid |
CN1924578B (en) * | 2006-08-14 | 2010-12-29 | 佛山分析仪有限公司 | Piezo-electric protein chip analyzer |
JP5712564B2 (en) * | 2010-10-29 | 2015-05-07 | 東京エレクトロン株式会社 | Virus detection apparatus and virus detection method |
JP5995239B2 (en) * | 2013-03-26 | 2016-09-21 | 国立研究開発法人産業技術総合研究所 | Biosensor for quartz crystal microbalance and manufacturing method thereof |
DE102015225470A1 (en) * | 2015-12-16 | 2017-06-22 | Siemens Aktiengesellschaft | Method for detection and substance detector |
CN116790451B (en) * | 2023-08-23 | 2023-11-24 | 云南省畜牧兽医科学院 | Antigen, kit and preparation method for detecting antibodies to Salmonella enteritidis derived from ducks |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4735906A (en) * | 1984-11-28 | 1988-04-05 | Texas A&M University | Sensor having piezoelectric crystal for microgravimetric immunoassays |
WO1997004314A2 (en) * | 1995-07-21 | 1997-02-06 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Determination of an analyte in a liquid medium |
EP0781999A1 (en) * | 1995-12-27 | 1997-07-02 | Behringwerke Ag | Mass-sensitive biosensors |
WO1998040739A1 (en) * | 1997-03-13 | 1998-09-17 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Biosensor for cells |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4314821A (en) * | 1979-04-09 | 1982-02-09 | Minnesota Mining And Manufacturing Company | Sandwich immunoassay using piezoelectric oscillator |
-
1999
- 1999-07-05 SG SG9903147A patent/SG93209A1/en unknown
- 1999-10-04 CN CN99816793A patent/CN1371477A/en active Pending
- 1999-10-04 WO PCT/SG1999/000098 patent/WO2001002858A1/en active IP Right Grant
- 1999-10-04 AU AU61278/99A patent/AU780113B2/en not_active Ceased
- 1999-10-04 JP JP2001508054A patent/JP2003503736A/en active Pending
- 1999-10-04 DE DE19983966T patent/DE19983966T1/en not_active Withdrawn
- 1999-10-04 GB GB0201481A patent/GB2369678B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4735906A (en) * | 1984-11-28 | 1988-04-05 | Texas A&M University | Sensor having piezoelectric crystal for microgravimetric immunoassays |
WO1997004314A2 (en) * | 1995-07-21 | 1997-02-06 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Determination of an analyte in a liquid medium |
EP0781999A1 (en) * | 1995-12-27 | 1997-07-02 | Behringwerke Ag | Mass-sensitive biosensors |
WO1998040739A1 (en) * | 1997-03-13 | 1998-09-17 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Biosensor for cells |
Non-Patent Citations (1)
Title |
---|
YE J ET AL: "PIEZOELECTRIC BIOSENSOR FOR DETECTION OF SALMONELLA TYPHIMURIUM", JOURNAL OF FOOD SCIENCE,US,INSTITUTE OF FOOD TECHNOLOGISTS. CHICAGO, vol. 62, no. 5, 1 January 1997 (1997-01-01), pages 1067 - 1071, XP002072264, ISSN: 0022-1147 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005090981A3 (en) * | 2004-03-24 | 2005-10-27 | Technion Res & Dev Foundation | Electrode |
US8354066B2 (en) | 2004-03-24 | 2013-01-15 | Technion Research & Development Foundation Ltd. | Artificial receptors |
EP1852443A1 (en) * | 2006-05-05 | 2007-11-07 | Leukocare AG | Biocompatible three dimensional matrix for the immobilization of biological substances |
WO2007128550A1 (en) * | 2006-05-05 | 2007-11-15 | Leukocare Ag | Biocompatible three dimensional matrix for the immobilization of biological substances |
US9926383B2 (en) | 2006-05-05 | 2018-03-27 | Leukocare Ag | Biocompatible three dimensional matrix for the immobilization of biological substances |
EP2058335A1 (en) * | 2007-11-07 | 2009-05-13 | Leukocare AG | Biocompatible three dimensional matrix for the immobilization of biological substances |
WO2009059784A1 (en) * | 2007-11-07 | 2009-05-14 | Leukocare Ag | Biocompatible three dimensional matrix for the immobilization of biological substances |
CN101403724B (en) * | 2008-10-08 | 2011-12-21 | 湖南大学 | Instrument and reagent for fast detection of microbe in blood specimen, and preparation method thereof |
CN103940857A (en) * | 2014-05-05 | 2014-07-23 | 江南大学 | Device and detection method for rapidly detecting oil yield of salted egg in nondestructive manner |
Also Published As
Publication number | Publication date |
---|---|
JP2003503736A (en) | 2003-01-28 |
AU780113B2 (en) | 2005-03-03 |
AU6127899A (en) | 2001-01-22 |
SG93209A1 (en) | 2002-12-17 |
GB2369678A (en) | 2002-06-05 |
GB0201481D0 (en) | 2002-03-13 |
CN1371477A (en) | 2002-09-25 |
GB2369678B (en) | 2003-12-03 |
DE19983966T1 (en) | 2003-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bunde et al. | Piezoelectric quartz crystal biosensors | |
Minunni et al. | The quartz crystal microbalance as biosensor. A status report on its future | |
Su et al. | Design and application of piezoelectric quartz crystal-based immunoassay | |
Ben-Dov et al. | Piezoelectric immunosensors for urine specimens of Chlamydia trachomatis employing quartz crystal microbalance microgravimetric analyses | |
Suleiman et al. | Recent developments in piezoelectric immunosensors. A review | |
US7348183B2 (en) | Self-contained microelectrochemical bioassay platforms and methods | |
Zhang et al. | A novel piezoelectric quartz micro-array immunosensor based on self-assembled monolayer for determination of human chorionic gonadotropin | |
CN102112877B (en) | Sensor | |
US20040005540A1 (en) | Phage ligand sensor devices and uses thereof | |
AU780113B2 (en) | Immuno-diagnostic test method for veterinary disease | |
CA2227281C (en) | Determination of an analyte in a liquid medium | |
Spangler et al. | Capture agents for a quartz crystal microbalance-continuous flow biosensor: functionalized self-assembled monolayers on gold | |
Lee et al. | Application of a flow type quartz crystal microbalance immunosensor for real time determination of cattle bovine ephemeral fever virus in liquid | |
Suleiman et al. | Piezoelectric (Pz) immunosensors and their applications | |
Su et al. | Piezoelectric quartz crystal based veterinary diagnosis for Salmonella enteritidis infection in chicken and egg | |
Su et al. | Piezoelectric quartz crystal based screening test for porcine reproductive and respiratory syndrome virus infection in pigs | |
WO2000060354A1 (en) | Lipopolysaccharide immunoassay and test device | |
JPH10282039A (en) | Measuring chip for surface plasmon resonance biosensor and method for producing the same | |
EP0241140B1 (en) | Assay method with a multivalently labelled reagent, and means therefor | |
JPH03503681A (en) | Piezoelectric specific binding assay using mass-amplified factors | |
US8158343B2 (en) | Method to detect virus related immunological markers for the diagnosis of respiratory tract infections | |
Vaughan et al. | Piezoelectric immunosensors | |
JPS62188971A (en) | Immunity testing kit | |
STARODUB et al. | Origin of Development, Achievements and Perspectives of Practical Application | |
Yao et al. | A novel piezoelectric quartz micro-array immunosensor for detection of immunoglobulinE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 998167932 Country of ref document: CN Ref document number: 61278/99 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 200201481 Country of ref document: GB Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 0201481.9 Country of ref document: GB |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10019676 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase | ||
RET | De translation (de og part 6b) |
Ref document number: 19983966 Country of ref document: DE Date of ref document: 20030116 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 19983966 Country of ref document: DE |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8607 |
|
WWG | Wipo information: grant in national office |
Ref document number: 61278/99 Country of ref document: AU |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8607 |