WO2001001174A1 - Method for making fiber grating, component for optical communication, and temperature sensor - Google Patents

Method for making fiber grating, component for optical communication, and temperature sensor Download PDF

Info

Publication number
WO2001001174A1
WO2001001174A1 PCT/JP2000/004219 JP0004219W WO0101174A1 WO 2001001174 A1 WO2001001174 A1 WO 2001001174A1 JP 0004219 W JP0004219 W JP 0004219W WO 0101174 A1 WO0101174 A1 WO 0101174A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
fiber
core
coating layer
temperature
Prior art date
Application number
PCT/JP2000/004219
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Imamura
Takeshi Genji
Norio Naka
Satoshi Uramatsu
Katsuaki Kondo
Original Assignee
Mitsubishi Cable Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11183612A external-priority patent/JP2001013333A/en
Priority claimed from JP11220826A external-priority patent/JP2001042142A/en
Application filed by Mitsubishi Cable Industries, Ltd. filed Critical Mitsubishi Cable Industries, Ltd.
Publication of WO2001001174A1 publication Critical patent/WO2001001174A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02195Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating
    • G02B6/02204Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating using thermal effects, e.g. heating or cooling of a temperature sensitive mounting body
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02123Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
    • G02B2006/02161Grating written by radiation passing through the protective fibre coating

Definitions

  • the present invention relates to a method for manufacturing a fiber grating in which the core of an optical fiber has a striped refractive index distribution, an optical communication component having a fiber grating, and a temperature sensor.
  • a fiber grating is manufactured by forming a periodic refractive index modulation structure on the core of an optical fiber by a two-beam interference method or a phase mask method (Japanese Patent Application Laid-Open No. Hei 6-235808, Japanese Patent Application Laid-Open No. — Refer to Japanese Patent Application Laid-Open No. 140301 / Patent No. 2521078).
  • a coherent ultraviolet laser beam is applied to silica glass (core) doped with germanium (Ge) to cause a photo-induced refractive index change in a corresponding portion, thereby causing a change in the refractive index.
  • Fiber gratings used for these various applications are required to have predetermined transmission characteristics as a required function, and naturally have predetermined mechanical strength characteristics regardless of the application. Is important for practical use.
  • the optical fiber on which the grating is written is typically a core and a cladding.
  • the outer peripheral surface of the optical fiber consisting of the following is coated with a coating layer of an ultraviolet curable resin that absorbs ultraviolet rays and causes a curing reaction.
  • an interferometry or a phase mask method is used, the mechanical strength characteristic tends to decrease because the coating is usually performed in a state where the coating layer of the portion to be written is removed. For this reason, after the writing of the grating is completed, the portion where the coating layer is removed is re-coated.
  • a processing technique for re-coating such as re-coating or packaging is required.
  • the outer surface of the optical fiber comes into contact with the outside air, and the optical fiber is deteriorated due to contact with air during the writing operation. Transmission characteristics may be degraded.
  • the removal of the coating layer at the portion to be written is performed not by mechanical means but by a chemical treatment of dissolving with a chemical, for example, to prevent damage to the optical fiber. Therefore, it is a factor that hinders the efficiency of mass processing of grating writing.
  • the effective writing of the grating by irradiating ultraviolet rays from outside the coating layer without removing the coating layer requires the core of the optical fiber to be written. It is conceivable to increase the sensitivity (photosensitivity) to the light-induced refractive index change of the part.
  • photosensitivity photosensitivity
  • a normal density a relative refractive index difference between the core and the clad is, for example, 0.9%).
  • short-period gratings with a grating pitch of about 1 m or less reflect light of a specific wavelength (peak wavelength) corresponding to the grating pitch.
  • peak wavelength B of the reflected light from the grating is expressed by the following equation (1).
  • the peak wavelength of the reflected light from the fiber grating is, for example, a water wave, 0 plus E, No. 2 0 5, 8 1-84 (1996) and Gupta et al., Applied 0 ptics, 35 (2 5), 52 0 2-52 0 5 (1996) ing.
  • IB the reflection peak wavelength
  • the conventional temperature sensor for use near room temperature or for cryogenic temperature
  • a substrate with a large coefficient of thermal expansion for example, aluminum substrate or acrylic substrate
  • the quartz fiber was fixed.
  • a temperature sensor for high temperature (0 ° C to 800 ° C)
  • a temperature sensor having a structure in which a fiber is not fixed to a substrate is also known.
  • the sensor becomes relatively large and it becomes difficult to deform (for example, bend) the external shape of the sensor. There is a problem that the place to install is limited.
  • the conventional temperature sensors for low temperature and normal temperature described above use uncoated fibers, the mechanical strength at cryogenic temperatures is weak, handling is difficult, and it is difficult to use for a long period of time. there were.
  • the fiber has a large difference in thermal expansion coefficient between the substrate and the fiber.
  • the rate of change of the reflection peak wavelength of the sensor with respect to temperature changes greatly depending on the temperature, there is a problem that the measurable temperature range is narrow.
  • the present invention has been made in view of the circumstances described above, and one of the main objects of the present invention is to provide a method of manufacturing a fiber grating in which a grating is written in a state where the photosensitivity of glass is increased. To provide.
  • Another main object of the present invention is to provide a component for optical communication that can more effectively utilize the performance of the fiber grating manufactured as described above.
  • another main object of the present invention is to provide a fiber grating which can be suitably used for a temperature sensor capable of measuring a temperature up to a very low temperature with a simple structure without requiring a package structure. —To provide a manufacturing method of a laser and a temperature sensor using such a fiber grating. Disclosure of the invention
  • a method of manufacturing a fiber grating according to the present invention includes a step of covering an outer peripheral surface of a fiber including a core on which a grating is to be written and a cladding surrounding the core with a coating layer formed of an ultraviolet-transmissive resin; Writing a grating in the core by irradiating the core from outside of the coating layer, wherein the grating is written in the core.
  • the core is irradiated with the ultraviolet ray in a state where a strain of + 0.8% or more and + 6% or less is generated in the direction.
  • the step of writing the grating on the core it is preferable to execute the writing of the grating while applying an axial tension to the core. After executing the writing of the grating, it is preferable to release the axial tension. .
  • An optical communication component is characterized by comprising: a fiber grating manufactured by any one of the fiber grating manufacturing methods described above; and means for supporting the fiber grating.
  • the means for supporting the fiber grating supports the fiber grating so that a strain smaller than an axial strain applied to the core is generated in a step of writing the grating on the core.
  • the method for manufacturing a fiber grating according to the present invention is a method for manufacturing a fiber grating, comprising: a fiber strand having a core and a cladding; and a coating layer covering a surface of the fiber strand.
  • the selection of the resin material and the setting of the thickness of the coating layer are performed based on the elastic modulus and the thermal expansion coefficient of the fiber and the elastic modulus and the thermal expansion coefficient of the resin material. The process may be performed.
  • the rate of change of the reflection peak wavelength with respect to temperature change may be constant in the range of 196 ° C. to + 170 ° C.
  • the rate of change of the reflection peak wavelength with respect to temperature change is the change of the reflection peak wavelength of the grating formed on the uncoated fiber strand with respect to the temperature change at ⁇ 20 ° (: to + 60 ° C.). It may be the same as the rate.
  • the temperature sensor according to the present invention includes: a fiber element having a core and a clad; a fiber grating having a coating layer covering a surface of the fiber element; a light source that emits light to the fiber element; A temperature sensor that receives the reflected light from the fiber grating and detects a wavelength of the reflected light, wherein a rate of change of the wavelength of the reflected light with respect to a temperature change is from ⁇ 196 ° C. It is constant within the range of 170 ° C.
  • FIG. 1 is a diagram illustrating a principle of manufacturing a fiber grating according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the optical fiber.
  • FIG. 3 is a schematic diagram showing a manufacturing apparatus.
  • FIG. 4 is a graph showing the relationship between the applied tension at the time of writing the grating and the grating fabrication time.
  • FIG. 5 is a graph showing the relationship between the applied tension at the time of writing the grating and the grating formation speed.
  • FIG. 6 is a graph showing the relationship between the tension applied to the fiber to be irradiated, the final arrival reflectance during fabrication, and the reflectance when the tension of the fiber is released after fabrication.
  • Figure 7 is a graph showing the relationship between the applied tension and the increase (%) in reflectance due to release of the tension.
  • FIG. 8 is an enlarged explanatory view of the tension applying mechanism of FIG.
  • FIG. 9 is an enlarged sectional view taken along line AA of FIG.
  • FIG. 10 is a diagram showing a positional relationship between an optical fiber core and a cylindrical lens system.
  • FIG. 11 is a graph showing the temperature dependence of the reflection peak wavelength of the fiber grating according to the embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing a temperature sensor using the fiber grating according to the embodiment of the present invention.
  • FIG. 1 shows an optical fiber core 1 of a predetermined length to be subjected to the grating writing.
  • the optical fiber core 1 is composed of a core 2 on which a grating 21 is written, a cladding 3 formed around the core 2, and a coating layer 4 covering the outer surface of the cladding 3.
  • the coating layer 4 was coated on the optical fiber 1 ′ composed of the core 2 and the clad 3 made by drawing from the optical fiber preform. Things.
  • Ultraviolet laser light as ultraviolet rays is irradiated from outside the coating layer 4 through the phase mask 5, so that the core 2 of the optical fiber core 1 has a periodic refractive index modulation in the fiber axis direction.
  • the stripes (gratings) are written to create a fire bug rating.
  • the interval between these many refractive index modulation fringes is the grating pitch.
  • the core 2 is doped with Ge having a concentration similar to that of the Ge contained in the core of the normal specification optical fiber.
  • the normal specification optical fiber is an optical fiber core connected to the optical fiber core 1.
  • Such an optical fire The core of the core wire is usually doped with Ge so that the relative refractive index difference is about 0.9%.
  • the core 2 of the optical fiber core 1 shown in the figure in addition to Ge, Sn,! !
  • the core 2 is doped with dopants of Sn, Al, and B.
  • a concentration of 1000 O ppm or more, preferably 10,000 to 15000 ppm Sn or Sn at such a concentration and A 1 at a concentration of 1000 ppm or less may be co-doped.
  • Such de one-flop may be performed by various known methods, for example, when carried out by immersion, the compound of the Sn (For Sn, for example, S n C 1 2 ⁇ 2 H 2 0) of methyl alcohol And dipped in the solution.
  • the coating layer 4 is formed so as to have a thickness of at least about 30 ⁇ m by a single coating method following the step of drawing the optical fiber 1 ′ including the core 2 and the clad 3.
  • the material of the coating layer 4 has both a property of curing with ultraviolet light of a certain wavelength band (first ultraviolet light) and a property of transmitting ultraviolet light of another wavelength band (second ultraviolet light).
  • first ultraviolet light a certain wavelength band
  • second ultraviolet light another wavelength band
  • Such a resin may be referred to as “ultraviolet-transmissive ultraviolet-curable resin” in the present specification.
  • the ultraviolet-transmissive ultraviolet-curing resin transmits at least ultraviolet rays of a specific wavelength band (for example, a wavelength band of 240 nm to 270 nm) to be irradiated to the core for writing the grating 21 (preferably, almost all of the ultraviolet rays are absorbed) On the other hand, it absorbs ultraviolet light having a wavelength shorter or longer than the specific wavelength band to cause a curing reaction.
  • a specific wavelength band for example, a wavelength band of 240 nm to 270 nm
  • it absorbs ultraviolet light having a wavelength shorter or longer than the specific wavelength band to cause a curing reaction.
  • the same resin has different UV absorption characteristics depending on the wavelength, it is a UV-transmitting type resin in a specific wavelength band, and a UV-curable resin in a shorter or longer wavelength range than the above specific wavelength band.
  • the coating layer 4 is formed.
  • a photoinitiator (a photo-initiator (a photo-initiator) that initiates and promotes a curing reaction by receiving ultraviolet rays in a wavelength range shorter than 240 nm or a wavelength range longer than 270 nm is applied to urethane acrylate or epoxy acrylate. Initiator Evening)
  • the resin containing is used as “ultraviolet transparent ultraviolet curing resin”.
  • the coating layer is irradiated with first ultraviolet rays to cure the coating layer 4.
  • an ultraviolet curing resin is used.
  • the first ultraviolet irradiation step is omitted, and another resin curing step (for example, a curing step using heat) is performed. Will be executed.
  • the optical fiber core 1 is placed in a sealed container filled with hydrogen and left at room temperature under a pressure of about 2 OMPa for about 2 weeks.
  • the core 2 is written with the grating 21 by irradiating the second ultraviolet ray from outside the optical fiber core wire 1, that is, outside the coating layer 4. .
  • the writing of the grating 21 may be performed by using various known methods.
  • a lattice-shaped phase mask 5 is disposed immediately before the optical fiber core 1 as shown in FIG.
  • the Nd-YAG laser source 6 may irradiate, for example, a coherent ultraviolet laser beam having a fourth harmonic (4 ⁇ ) of 2666 nm, which is condensed by the cylindrical lens system 7.
  • the ultraviolet laser light passes through the phase mask 5 and the coating layer 4, the refractive index of the portion of the grating pitch corresponding to the grating pitch of the phase mask 5 with respect to the core 2 is increased, and the Bragg grating 21 is written. Will be.
  • reference numeral “8” is a beam expander that expands the ultraviolet laser beam into a parallel beam
  • reference numeral “9” is a portion where the power of the above-mentioned parallel laser beam is uniform.
  • the slit “10” is a movable reflecting mirror that can be moved in the longitudinal direction of the optical fiber core wire 1 (see the dashed line arrow), and the symbol “1 1” is light.
  • Spectrum analyzer, reference number “1 2” is optical isolator, reference number “1 3” is optical power blur.
  • the tension applying mechanism 30 shown in FIG. Is used to apply tension in the long axis direction to the optical fiber 1 to be written.
  • the specific method and effect of such tension application will be described later in detail with reference to the drawings.
  • an Nd—YAG laser source 6 (see Fig. 3) with a maximum average power of 100 mW, a pulse width of 50 ns, and a pulse frequency of 10 Hz can be used as an ultraviolet light source that can be used for grating writing.
  • Ultraviolet laser light of 266 nm, which is the fourth harmonic of this Nd-YAG laser, is irradiated onto the optical fiber core 1 on the coating layer 4 so that the irradiation energy density becomes, for example, 1.5 kJ / cm 2 .
  • the average power incident on the phase mask 5 is, for example, 10 mW
  • the dimension of the ultraviolet light applied to the optical fiber core 1 having an outer diameter of 200 m is about 2 mm (in the direction of the fiber axis). It is 2 mm (in the direction of the fiber).
  • phase mask 5 a mask having a grating pitch of, for example, 1065 nm and a length of 25 mm can be used. Then, by moving the movable mirror 10 smoothly and continuously in the fiber axial direction (longitudinal direction), a 24 mm long grating 25 can be written in the axial direction.
  • FIG. 4 shows the relationship between the applied tension at the time of writing the grating and the grating fabrication time.
  • FIG. 5 shows the relationship between the applied tension at the time of writing the grating and the grating forming speed.
  • the applied tension is represented by axial strain (%).
  • the fiber grating formation speed increases more rapidly when the tension is 0.8% or more than when no tension is applied, and the grating formation time is shortened.
  • the tension is 1.0% or more
  • the fiber grating forming speed increases 2 to 6 times compared to the case where the tension is 0.2% or less.
  • the tension exceeds 1.0%, the fiber grating formation speed is almost saturated.
  • the applied tension is preferably 0.8% or more, and more preferably 1.0% or more.
  • a preferable upper limit of the applied tension is 6%. If the tension exceeds 6%, the fiber may break mechanically.
  • the horizontal axis shows the tension applied to the fiber to be irradiated
  • the horizontal axis shows the final arrival reflectance during fabrication
  • the applied tension was set in four steps within an elongation ratio of about 1% to 3%. For all tensions, the reflectance after releasing the tension exceeds the ultimate reflectance at the time of fabrication.
  • the horizontal axis shows the applied tension
  • the vertical axis shows the increase (%) in reflectance due to release of the tension. It can be seen that the greater the applied tension during fabrication, the greater the increase in reflectance after releasing the tension. Irradiation on the coating using UV-transmitting resin can apply a maximum of about 6% tension to the fiber during fiber grating production, making it possible to significantly increase the reflectance after releasing the tension. . This, in combination with the above-mentioned sensitivity enhancement, makes it possible to efficiently produce a high-performance grating in a shorter time.
  • the tension applying mechanism 30 for applying a tension in the fiber axis direction to the optical fiber core 1 will be described below.
  • the tension applying mechanism 30 includes a frame 31 disposed so as to surround the ultraviolet irradiation region of the optical fiber core 1, and A pair of arm members 32, 33 protruding from the frame 31 on both sides of the optical fiber core 1 in the fiber axial direction, and a pair of arm members 32, 33 supported at the distal ends of the arm members 32, 33, respectively. It is provided with winding cylinders 34 and 35 as fixing means, and a motor 36 (see FIG. 9) for rotating and driving the winding cylinder 35 on one side in the axial direction of the fiber (the right side in FIG. 8).
  • the frame 31 has an opening 311 through which the ultraviolet laser light can pass at least at a side portion (upper portion in FIG. 8) of the optical fiber core 1, and the pair of arm members 32, 3 There is no restriction on the shape and the like as long as 3 can be maintained.
  • Each of the arm members 32 and 33 is formed in an L shape, and one end is fixed to the frame 31 and the other end is connected to the winding drums 34 and 35.
  • Each of the above winding cylinders 34, 35 is composed of a mandrel 341, 351, which constitutes a winding drum main body, and a pair of flanges 34, 32, 35 2 disposed on both sides thereof. ing.
  • the winding cylinder 35 on one side in the fiber axis direction (the right side in FIG.
  • the motor 36 is constituted by a pulse motor, and its output shaft is directly connected to the mandrel 351 or connected via a connecting member.
  • the motor 36 receives a control signal from a controller (not shown) and forcibly rotates the mandrel 351 by a set rotation amount.
  • a tension applying step In order to fabricate a fiber grating, a tension applying step, an irradiation step, a tension releasing step, and a screening step are sequentially performed. That is, in the tension applying step, first, the optical fiber core wires 1 on both sides of the writing area of the grating 21 are attached to the outer peripheral surfaces of the mandrels 341, 351 of the winding drums 34, 35 with respect to each other. Wrap it twice or three times (see Fig. 9) so that it does not overlap, and set the optical fiber core wire 1 in a state where it extends in a straight line.
  • the optical fiber core 1 is moved by the frictional resistance between the outer peripheral surface of the mandrel 341, 351 of each of the winding drums 34, 35 and the outer surface of the optical fiber core 1.
  • the mandrel is fixed so that it does not move relative to the outer peripheral surface of the mandrel 3 4 1, 3 5 1 in the fiber axis direction.
  • activate the mode 3 6 Forcibly rotate the drain 3 5 1 by the set amount of rotation to maintain this state.
  • the optical fiber core wire 1 between the pair of mandrels 341, 351 is forcibly extended in the fiber axial direction by a circumferential length corresponding to the forcible rotation amount of the mandrel 351.
  • the tension is applied, and the core 2 is in a state in which elastic strain (elongation strain) on the tensile side is generated. In this state, the next irradiation step is performed.
  • the phase mask 5 is set with respect to the writing area of the grating 21 of the optical fiber core 1, and one end to the other end of the phase mask 5 in the fiber axis direction.
  • Ultraviolet laser light from an ultraviolet irradiation system is applied to the optical fiber core 1 through the phase mask 5 over a range up to.
  • the change of the irradiation position of the ultraviolet laser light in the above-mentioned fiber axis direction range is performed by moving the reflection mirror 10 in the fiber axis direction.
  • the grating 21 having a grating pitch corresponding to the grating pitch of the phase grating 5 is written into the core 2 in a state where the above-described elongation distortion occurs due to the irradiation of the ultraviolet laser light.
  • a tension release step is performed. In this tension release step, the motor 36 is rotated in the reverse direction by the above-mentioned set rotation amount, and the optical fiber core is rotated. Line 1 is restored to its original state before the tension was applied, and there is no load.
  • the elongation strain generated in the core 2 is restored to its original state, that is, contracted, and the grating pitch of the written grating 21 is reduced in accordance with the contraction. Therefore, the wavelength characteristic of the grating 21 is shifted to the shorter wavelength side by the narrower grating pitch.
  • the reflectance of the grating is improved as compared to before the release of the tension.
  • the fabrication of the fiber grating is completed, but in the present embodiment, the screening step is performed subsequently.
  • this screening step a constant elongation strain is given to the fiber grating in the fiber axis direction for a predetermined time by operating the motor 36 of the tension applying mechanism 30 to screen for mechanical strength characteristics. Perform the test. Then, defective fiber gratings are eliminated from the product, and fiber gratings without defects are used as products. Fiber gratings that have passed the screening test will be combined with members supporting fiber gratings and other components to form optical communication components.
  • the relationship between the applied tension and the shift amount of the wavelength characteristic to the shorter wavelength side is determined in advance by a test, and based on this relationship, the relationship between the shift amount of the wavelength to be shifted and the wavelength is controlled.
  • the applied tension is set, and the set rotational speed of the motor 36 is determined so that the applied tension is generated in the optical fiber core 1.
  • irradiation of the ultraviolet laser light is performed as follows. You may do so.
  • the irradiation with the ultraviolet laser light is performed so that the irradiation energy density becomes about 1.5 kJ / cm 2 .
  • the ultraviolet laser light is irradiated from the outside of the coating layer 4, even if the coating layer 4 has a considerably thick film thickness of about 30 / m or more, the ultraviolet light is transmitted through the coating layer 4.
  • high-refractive-index modulation is generated on the core 2 to enable writing of the high-reflection Bragg grating 21.
  • the optical fiber to be written ⁇ the core 1 is positioned at a specific position with respect to the beam pattern BP of the ultraviolet laser light focused by the cylindrical lens system 7, and in this state, the ultraviolet laser Irradiation of light is performed.
  • the beam pattern BP is obtained by converging the parallel beam incident on the cylindrical lens system 7 so as to be directed to the focal point F.
  • the entirety of the optical fiber core 1 is the beam pattern BP.
  • the optical fiber 1 is positioned so that the outer peripheral surface of the coating layer 4 of the optical fiber 1 is inscribed in the outer edge of the beam pattern BP.
  • the optical fiber core 1 is located in front of the focal point F as shown by a solid line in FIG. 10 as indicated by a dashed line in FIG. It does not matter if it is behind the focus F.
  • the focal length L1 is 100 mm
  • the optical fiber core wire 1 with an outer diameter of 200 m is placed on the optical axis at a distance L2 of approximately 2 mm from the focal point F. Just set it.
  • the entire coating layer 4 can be irradiated with ultraviolet laser light at a uniform irradiation energy density. And be able to.
  • the application of the tension by the tension applying mechanism is performed by rotatably supporting one of the winding drums 35 with respect to the arm member 33 and forcibly rotating the winding drum 35 with the motor 36.
  • the present invention is not limited to this, and both winding cylinders 34 and 35 are fixed to the arm members 32 and 33 so as not to rotate together, and one end 33 of one arm member 33 is fixed. 8 is guided and supported movably in the fiber axis direction with respect to the frame 31 as shown by a dashed line in FIG.
  • this arm member 33 is combined with a transmission mechanism such as a rack and a binion and a motor, or
  • the tension may be applied to the optical fiber core 1 by configuring the apparatus such that the hydraulic cylinder or the like is forcibly moved to the right in FIG.
  • the method for manufacturing a fiber grating of the present embodiment is suitably applied to the manufacture of both a short-period grating and a long-period grating.
  • the short-period grating has a pitch of about 1 m or less
  • the long-period grating is a grating having a pitch of about several hundred m.
  • a method of manufacturing a fiber grating that can be suitably used for a temperature sensor and an embodiment of a temperature sensor using such a fiber grating will be described.
  • a coating layer hereinafter referred to as a “coated fiber grating”.
  • the coating layer of the coated fiber grating uniformly compresses the fiber at low temperatures.
  • the reflection peak wavelength of the grating formed on the fiber strand is Shifts under the influence of compression force.
  • the compressive force of the coating layer is mainly determined by the coefficient of thermal expansion and elastic modulus of the fiber strand, and the elastic modulus, coefficient of thermal expansion and thickness of the coating layer. Therefore, by appropriately selecting the material of the coating layer and forming the coating layer of an appropriate thickness, the rate of change of the reflection peak wavelength of the fiber grating with respect to temperature change (hereinafter simply referred to as the “temperature coefficient of the reflection peak wavelength”) ) May be set to a predetermined value.
  • the coating layer uniformly compresses the fiber in the low temperature region, non-uniform stress is not applied to the fiber unlike the package structure, so that the coating has stable mechanical strength even at a low temperature. Also, unlike a packaged sensor, it is small and can be bent, so it can be placed in various locations.
  • the temperature coefficient of the reflection peak wavelength of the grating is kept constant over a wide temperature range (particularly from a temperature above room temperature to a very low temperature). be able to.
  • a wide temperature range can be easily measured.
  • the change in the temperature coefficient of the reflection peak wavelength of the grating caused by the stress caused by the coating layer offsets the change caused by other factors such as external distortion of the temperature coefficient of the reflection beak wavelength of the fiber grating.
  • a layer can be formed, and a temperature sensor that can easily measure the temperature can be obtained.
  • a constant temperature coefficient is shown in each of a plurality of temperature ranges.
  • the respective temperature coefficients may be different. That is, if the temperature dependence of the reflection peak wavelength can be approximated by a plurality of continuous straight lines, a temperature sensor that can easily measure the temperature in each temperature range that can be approximated by a straight line can be obtained. It is preferable that the temperature range of each is wide, but it may be set appropriately in consideration of the temperature range of the object to be measured and the required measurement accuracy.
  • the fiber grating of the present embodiment is formed by using the optical fiber 1 in which the surface of the optical fiber 1 ′ having the core 2 and the clad 3 is covered with the coating layer 4.
  • the dope of Sn, or 3] 1 and 81, or Sn, A 1 and B is used. It is preferable to use a material to which the light is added in order to constantly increase the photoinduced refractive index change.
  • the coating layer 4 is formed by a single coating following the step of drawing the optical fiber 1 '.
  • the material for forming the coating layer 4 and the thickness of the coating layer 4 are selected and the thickness is determined so that the temperature coefficient of the reflection peak wavelength of the grating becomes a predetermined value.
  • the coating layer 4 having a large coefficient of thermal expansion the temperature coefficient of the reflection peak wavelength of the grating can be increased, and conversely, by using the coating layer 4 having a small coefficient of thermal expansion, the reflection peak of the grating can be increased.
  • the temperature coefficient of the wavelength can be reduced.
  • the degree of contribution of the reflection peak wavelength by the coating layer 4 to the temperature coefficient can be changed.
  • This coating layer design process includes the elastic modulus (Young's modulus E), thermal expansion coefficient (linear thermal expansion coefficient), temperature coefficient of refractive index (thermo-optic coefficient), and material of the coating layer of the optical fiber 1 '.
  • the thickness of the coating layer is determined.
  • the fiber grating is designed so that the temperature coefficient of the reflection peak wavelength is constant from a temperature above room temperature (for example, 1 10 ° C) to a very low temperature (for example, -196 ° C).
  • As a material for forming the coating layer 4 it is preferable to use an ultraviolet ray transmitting type ultraviolet curable resin as in the first embodiment.
  • the writing process of the grating is performed while applying tension (or strain) to the fiber core 1 using the fiber grating manufacturing apparatus shown in FIG. 3 to reduce the shift amount of the reflection peak wavelength of the grating. Can be controlled. It should be noted that the writing itself of the grating 21 by ultraviolet irradiation may be performed by using various well-known methods, and FIG. 3 shows an example in which the writing is performed by, for example, a phase mask method.
  • Fiber 1 as,, and G e and S n using a co-doped quartz glass-based fiber (diameter: 1 2 5 zm, thermal expansion coefficient:. 0 5 5 X 1 0- 6 ( room temperature) Zd eg , Modulus: 73 GPa (room temperature)).
  • the relative refractive index difference ( ⁇ ) of this fiber was 0.97%, the cut-off wavelength (person c) was 1.27 ⁇ m, and the Sn concentration was 15,000 ppm.
  • the surface of the fiber strand 1 ′ was coated with a UV-transmissive UV-curable resin having a high transmittance to ultraviolet rays for the writing of a grating to form a coating layer 4.
  • an aliphatic urethane acrylate having a transmittance of about 10% or more for ultraviolet rays having a wavelength of about 240 nm to about 270 nm (photopolymerization initiator: 2,4,6,1-trimethylbenzoyldiphne)
  • a coating layer 4 single layer: thickness of about 75 ⁇ m on both sides
  • a thickness of about 37.5 ⁇ m using enylphosphine oxide 200 m.
  • the thermal expansion coefficient of the coating layer 4 is 1 ⁇ 10 " 4 / deg, and the elastic modulus is 54 OMPa (normal temperature).
  • the coated fiber core 1 was left in a high-pressure hydrogen gas of about 2 OMPa for about 2 weeks, and was filled with hydrogen.Grating was written on the coated fiber core using the phase mask method. The writing of the grating was performed using the fiber grating manufacturing apparatus shown in Fig. 3. No tension was applied to the fiber core 1 (concrete example 1), and the tension was applied in the axial direction of the fiber core 1 ( While applying 3.9 N) (Specific Example 2), a fourth harmonic (266 nm, intensity 10 mW) of the Nd-YAG laser was swept and irradiated (about 22 mm). The laser irradiation time was adjusted so that the levels were the same.
  • Example 1 and Example 2 produced by the above method
  • the fiber gratings from which the coating layer was removed were referred to as Comparative Examples 1 and 2, respectively.
  • FIG. 11 shows the results of measuring the temperature dependence of the reflection peak wavelengths of the fiber gratings of Examples 1 and 2 and Comparative Examples 1 and 2.
  • the reflection peak wavelength of the fiber grating of Example 1 changes almost linearly from about -70 ° C to about 170 ° C, and its slope (temperature coefficient: ⁇ / ⁇ ) Was 0.012 nm / ° C. Further, this temperature coefficient was the same as the temperature coefficient of the reflection beak wavelength of Comparative Example 1 at ⁇ 20 ° C. to + 60 ° C. Furthermore, the temperature dependence from the room temperature of Example 1 (here, 20 ° C) to -196 ° C The property was well approximated by a straight line, and the temperature coefficient was 0.013 nm / ° C. Note that here, the force at room temperature of 20 ° C is not limited to this, but “room temperature” refers to the ambient temperature of the fiber (the temperature of the area other than the temperature measurement target, the temperature of the working environment).
  • the temperature coefficient of the reflected peak wavelength from -70 ° C to 1-96 ° C (liquid nitrogen temperature) in Specific Examples 1 and 2 can be approximated by a straight line. 0.013 nm / ° C, which is a value close to the temperature coefficient on the high temperature side (0.012 nm / ° C).
  • the temperature coefficient on the low temperature side can be increased, so that a single temperature coefficient can be obtained over a wide temperature range (for example, -196 ° C to 10170 ° C).
  • ⁇ / ⁇ 0.012 nm / ° C
  • a fiber grating with a temperature dependence of the reflection peak wavelength that can be approximated well can be obtained.
  • the temperature coefficient (0.005 nm / ° C) of the reflection peak wavelength on the low temperature side (approximately ⁇ 75 ° C or less) of Comparative Example 1 is the temperature coefficient (0.012 nm / ° C), indicating a different temperature dependence from the high temperature side.
  • a decrease in the temperature coefficient on the low temperature side is also observed in Comparative Example 2. This phenomenon is thought to be due to the fact that the temperature change of the refractive index of the core forming the grating becomes smaller on the low temperature side.
  • the reflection at the low temperature side is controlled by controlling the magnitude of the compressive stress applied to the fiber by the coating layer, which increases as the temperature decreases.
  • the temperature coefficient of the peak wavelength is adjusted.
  • the adjustment of the temperature coefficient on the low temperature side is not performed so as to match the temperature coefficient on the high temperature side, but may be adjusted so as to increase the temperature coefficient depending on the application.
  • a large temperature coefficient means high temperature measurement sensitivity, so if accurate measurement of cryogenic temperatures (for example, less than 10 oC) is required, May be designed so as to increase the temperature coefficient of the coating layer.
  • the temperature coefficient in a temperature range of ⁇ 100 ° C. or less is preferably larger than 0.01 nm / ° C.
  • the temperature dependence of the reflection peak wavelength be expressed by a single temperature coefficient (it can be approximated by a straight line), because the temperature can be easily obtained from the measured wavelength. Even if it cannot be expressed by a single temperature coefficient, for example, if a graph as shown in Fig. 11, that is, a calibration curve is created in advance, and the temperature is determined from the measured reflection peak wavelength of the fiber grating and the calibration curve, Good.
  • FIG. 12 schematically shows an embodiment of a temperature sensor 50 using a fiber grating according to the present embodiment.
  • the temperature sensor 50 receives the reflected light from the optical fiber 1 on which the grating 21 is formed, the light source 52 for emitting light to the optical fiber 1, and the grating 21 and detects the wavelength of the reflected light.
  • An optical spectrum analyzer 58 is provided. If necessary, an optical isolator 54 may be provided to select light having a specific wavelength from the light emitted from the light source 52. Further, an optical coupler 56 is provided to couple an optical path for transmitting light from the light source 52 to the grating 21 and an optical path for guiding the light reflected from the grating 21 to the optical spectrum analyzer 58. You may.
  • the fino 1 on which the gratings 21a and 21b are formed is arranged, for example, in a tank 60 filled with liquefied methane gas (1183 ° C).
  • the gratings 21a and 21b are formed using the above-described tension application method, and have mutually different reflection peak wavelengths. Therefore, by detecting the reflection peak wavelength, it is possible to determine which of the gratings 21a and 21b is the reflected light. Therefore, by using one fiber having a plurality of gratings, it is possible to easily measure temperatures at different positions. Of course, it is not necessary to provide a plurality of gratings.
  • the temperature sensor of the present embodiment does not have a package structure for fixing the fiber, it can be easily installed on a curved surface, a narrow place, or the like.
  • the coated fiber has high mechanical strength and does not break, especially at low temperatures. Therefore, the temperature sensor of the present embodiment is suitably used as a temperature sensor for measuring the temperature of a curved surface at a low temperature like the above-mentioned liquefied natural gas tank.
  • the core when the grating is written, the core is distorted in the axial direction, thereby increasing the photosensitivity to ultraviolet light.
  • the rate of change of the refractive index due to irradiation increases. Therefore, the time required for the writing operation can be reduced.
  • the increase in the refractive index is promoted. If the fiber grating is used with a tension smaller than the above applied tension, the reflectance will be higher than the reflectance when the grating is manufactured. High reflectivity can be realized.
  • the temperature coefficient of the reflection peak wavelength of the grating formed on the coated fiber can be adjusted to a desired value. Therefore, a package structure is not required, and a simple structure is realized.
  • a fiber grating that can be suitably used for a temperature sensor capable of measuring a temperature down to a low temperature can be manufactured.
  • manufacturing fiber gratings used in temperature sensors that can measure low temperatures with high sensitivity and temperature sensors that can easily measure a wide temperature range from high to extremely low temperatures. Can be.

Abstract

A method for making a fiber grating by increasing the photosensitivity of glass and writing a grating. The outer surface of an optical fiber is covered with a cover layer formed of ultraviolet-transmitting resin. Ultraviolet radiation is applied to the core in which the distortion in the axial direction is in the range from +0.8% to +6% to write a grating. As a result, the rate of formation of a grating is improved, and the reflectance of the grating after the tension is released is increased. A method for making a fiber grating preferably used for a temperature sensor having a simple structure and adapted for measuring temperature ranging to cryogenic temperature and a temperature sensor are also disclosed. Before the step of forming the cover layer covering the optical fiber, the material of the resin and the thickness of the cover layer are determined so that the rate of change (temperature coefficient) of the reflection peak wavelength of the grating to be produced with temperature may be a predetermined value.

Description

明 細 書 ファイバグレーティングの製造方法および光通信用コンポーネントならびに温度 センサ 技術分野  Description Fiber grating manufacturing method, optical communication components, and temperature sensor
本発明は、 光ファイバのコアが縞状の屈折率分布を有するファイバグレーティ ングの製造方法および、 ファイバグレーティングを備えた光通信用コンポーネン 卜ならびに温度センサに関する。 背景技術  The present invention relates to a method for manufacturing a fiber grating in which the core of an optical fiber has a striped refractive index distribution, an optical communication component having a fiber grating, and a temperature sensor. Background art
ファイバグレーティングは、 2光束干渉法もしくは位相マスク法等によって光 ファイバのコアに周期的屈折率変調構造を形成することによって作製される (特 開平 6— 2 3 5 8 0 8号公報、 特開平 7— 1 4 0 3 1 1号公報、 特許第 2 5 2 1 7 0 8号参照) 。 このようなファイバグレーティングでは、 ゲルマニウム (G e ) をドープした石英ガラス (コア) に対し、 コヒ一レントな紫外レーザー光を照射 することによって該当箇所に光誘起屈折率変化を生ぜしめ、 それによつてグレー ティング構造の生成 (書き込み) を行っている。 この屈折率変化の周期や変調形 状を変化させることによって、 フィル夕、 分波器、 分散補償器、 ファイバレーザ 一ミラー、 E D F利得等化器、 共振器、 および温度センサ等への応用が考えられ ている。 これらの各種用途に用いられるファイバグレーティングには、 所定の伝 送特性が必要機能として求められるは当然のこととして、 いずれの用途に用いる 場合であっても所定の機械的強度特性を有していることが実用に供する上で重要 になる。  A fiber grating is manufactured by forming a periodic refractive index modulation structure on the core of an optical fiber by a two-beam interference method or a phase mask method (Japanese Patent Application Laid-Open No. Hei 6-235808, Japanese Patent Application Laid-Open No. — Refer to Japanese Patent Application Laid-Open No. 140301 / Patent No. 2521078). In such a fiber grating, a coherent ultraviolet laser beam is applied to silica glass (core) doped with germanium (Ge) to cause a photo-induced refractive index change in a corresponding portion, thereby causing a change in the refractive index. We are creating (writing) a grating structure. By changing the period of the refractive index change and the modulation form, applications to filters, demultiplexers, dispersion compensators, fiber laser mirrors, EDF gain equalizers, resonators, temperature sensors, etc. are considered. It has been. Fiber gratings used for these various applications are required to have predetermined transmission characteristics as a required function, and naturally have predetermined mechanical strength characteristics regardless of the application. Is important for practical use.
しかし、 伝送特性を満足させようとすると機械的強度特性が犠牲になり、 それ を補完する処理が必要になる一方、 機械的強度特性を満足させようとすると伝送 特性が犠牲になるというように、 伝送特性と機械的強度特性とを両立させるのは 困難な状況にある。 この理由を以下に説明する。  However, when trying to satisfy the transmission characteristics, the mechanical strength characteristics are sacrificed, and processing to complement them is required.On the other hand, when trying to satisfy the mechanical strength characteristics, the transmission characteristics are sacrificed. It is difficult to achieve both transmission characteristics and mechanical strength characteristics. The reason will be described below.
グレーティングの書き込み対象である光ファイバは、 一般に、 コアとクラッ ド とからなる光ファイバ素線の外周面に紫外線を吸収して硬化反応を生じる紫外線 硬化型樹脂等による被覆層が被覆されたものであり、 紫外線照射によってグレー ティングを書き込むには、 上記の 2光束干渉法もしくは位相マスク法等にしても 通常は書き込み対象部位の被覆層を除去した状態で行われるため、 機械的強度特 性は低下する傾向にある。 このため、 グレーティングの書き込み終了後にその被 覆層除去部分に対し再被覆が行われることになるが、 再被覆を行うにはリコート もしくはパッケージング等の再被覆のための処理技術が必要になる。 上記被覆層 を除去すると、 光ファイバ素線の外表面 (クラッ ドの外表面) が外気と接触する ことになり、 書き込み作業期間における空気との接触により光フアイバ素線に劣 化が進行して伝送特性の悪化を招くおそれがある。 その上に、 上記書き込み対象 部位の被覆層の除去は光ファイバ素線に対する損傷防止のために機械的手段では なく例えば薬品により溶解させるという化学的処理によって行われ、 この被覆層 の除去工程に手間がかかるためグレーティング書き込みを大量処理する上で効率 を阻害する要因となっている。 The optical fiber on which the grating is written is typically a core and a cladding. The outer peripheral surface of the optical fiber consisting of the following is coated with a coating layer of an ultraviolet curable resin that absorbs ultraviolet rays and causes a curing reaction. Even if an interferometry or a phase mask method is used, the mechanical strength characteristic tends to decrease because the coating is usually performed in a state where the coating layer of the portion to be written is removed. For this reason, after the writing of the grating is completed, the portion where the coating layer is removed is re-coated. However, in order to perform the re-coating, a processing technique for re-coating such as re-coating or packaging is required. When the coating layer is removed, the outer surface of the optical fiber (the outer surface of the clad) comes into contact with the outside air, and the optical fiber is deteriorated due to contact with air during the writing operation. Transmission characteristics may be degraded. In addition, the removal of the coating layer at the portion to be written is performed not by mechanical means but by a chemical treatment of dissolving with a chemical, for example, to prevent damage to the optical fiber. Therefore, it is a factor that hinders the efficiency of mass processing of grating writing.
一方、 上記の如く被覆層の形成後にグレーティングの書き込みを行うために被 覆層を除去するのではなく、 被覆層を形成する前にいわゆるィンラインにてシン グルパルスによるグレーティングの書き込みを行うことも試みられているが、 こ の場合には、 上記の如き強度劣化は生じないとの知見が示されているものの (V. Hagemann et al , Mechanical resistance oi draw- tower - Bragg - grating sensors, Electron. Lett. , 34, pp.211〜212, 1998.参照) 、 紫外線照射による屈折率増加 の度合いが低く、 それに対応して、 書き込まれたグレーティングの反射率は低い ものになってしまう。  On the other hand, instead of removing the coating layer to write the grating after the formation of the coating layer as described above, it has been attempted to write the grating with a so-called single line using a so-called single pulse before forming the coating layer. In this case, although it has been shown that strength deterioration does not occur as described above (V. Hagemann et al, Mechanical resistance oi draw-tower-Bragg-grating sensors, Electron. Lett. , 34, pp. 211-212, 1998), and the degree of increase in the refractive index due to UV irradiation is low, and the reflectivity of the written grating is correspondingly low.
また、 被覆層の形成後であっても、 その被覆層を除去しないで被覆層の外側か ら紫外線を照射することによりグレーティングの書き込みを有効に行うには、 書 き込み対象の光ファイバのコア部分の光誘起屈折率変化に対する感度 (フォトセ ンシティビティ) を高めることが考えられる。 このフォトセンシティビティを高 める、 すなわち、 比較的大きな光誘起屈折率変化を生じさせる手法として、 書き 込み対象のコアとして、通常濃度(コア/クラッ ドの比屈折率差が例えば 0 . 9 % になる程度の濃度) よりも高濃度 (比屈折率差が例えば 1 . 5〜2 . 0 %になる 程度の濃度) の G eをドープしたコアを用いるか、 もしくは、 通常濃度の G eを ドープした後に高圧下で水素を充填したコアを用いることが提案されている (電 子情報通信学会論文誌 Vol. J79. 1, No.11, 415頁, 1 9 9 6年 1 1月参照) 。 Also, even after the formation of the coating layer, the effective writing of the grating by irradiating ultraviolet rays from outside the coating layer without removing the coating layer requires the core of the optical fiber to be written. It is conceivable to increase the sensitivity (photosensitivity) to the light-induced refractive index change of the part. As a method of increasing this photosensitivity, that is, a method of causing a relatively large change in the refractive index induced by light, as a core to be written, a normal density (a relative refractive index difference between the core and the clad is, for example, 0.9%). Higher than the density (the relative refractive index difference is, for example, 1.5 to 2.0%) It has been proposed to use a Ge-doped core of about the same concentration) or to use a core doped with normal concentration of Ge and then filled with hydrogen under high pressure (Transactions of the Institute of Electronics, Information and Communication Engineers). Vol. J79.1, No.11, pp. 415, January 1996.
しかしながら、 高濃度の G eをドープしたコアを用いてファイバグレーティン グを製作した場合、 このファイバグレーティングに接続 (融着) される通常仕様 の光ファイバが通常濃度で G e ドープがなされたコアを持つものであるため、 両 コア間の整合がとれず、 G e ドープの濃度の差に起因して接続損失が増大してし まうという不都合が生じる。  However, when a fiber grating is manufactured using a core doped with a high concentration of Ge, a normal specification optical fiber connected (fused) to the fiber grating has a core doped with a normal concentration of Ge. Therefore, there is a disadvantage that matching between the two cores cannot be achieved, and the connection loss increases due to the difference in the Ge doping concentration.
一方、 高圧水素充填を施したコアを用いてファイバグレーティングを製作した 場合、 ガラス部分と被覆層との間に気泡が発生し、 ガラス部分に対する被覆層の 密着度が低下するという不都合が生じるおそれがある。被覆層の密着度が悪いと、 光ファイバ心線の機械的強度が低下し、 実用に耐えないものとなってしまう。 このため、 できる限り G e濃度を低下させたり、 または高圧水素充填を緩和若 しくは割愛することを可能ならしめるようなグレーティング書き込み方法の開発 が求められている。  On the other hand, when fabricating a fiber grating using a core filled with high-pressure hydrogen, bubbles may be generated between the glass part and the coating layer, which may cause a problem that the adhesion of the coating layer to the glass part is reduced. is there. If the degree of adhesion of the coating layer is poor, the mechanical strength of the optical fiber core is reduced, and the optical fiber is not practical. Therefore, there is a need to develop a grating writing method that can reduce the Ge concentration as much as possible or make it possible to relax or omit high-pressure hydrogen filling.
また、 ファイバグレーティングのうちグレーティングビツチが約 1〃m以下の 短周期グレーティング(ファイバプラッググレーティング: F B Gとも称される。) は、 グレーティングピッチに対応した特定波長 (ピーク波長) の光を反射すると いう特性を有している。 グレ一ティングピッチを P、 実効屈折率を nとすると、 グレーティングからの反射光のピーク波長え Bは次式 ( 1 ) により表される。  Also, among the fiber gratings, short-period gratings with a grating pitch of about 1 m or less (Fiber plug grating: also called FBG) reflect light of a specific wavelength (peak wavelength) corresponding to the grating pitch. Characteristics. Assuming that the grating pitch is P and the effective refractive index is n, the peak wavelength B of the reflected light from the grating is expressed by the following equation (1).
え B= 2 · n · P ( 1 ) ファイバグレーティングからの反射光のピーク波長人 B の変化を見知すること によって温度を測定する温度センサが、例えば、水波、 0 p l u s E、 N o . 2 0 5、 8 1 - 8 4 ( 1 9 9 6 ) および、 Gup t aら、 Ap p l i e d 0 p t i c s, 3 5 ( 2 5) 、 5 2 0 2 - 5 2 0 5 ( 1 9 9 6 ) に開示されている。 ファイバグレーティングの温度が変化すると、 グレーティングピッチ Pおよび屈 折率が変化し、 反射ピーク波長; IBが下記の式 ( 2 ) に従って変化する。  B = 2nP (1) The peak wavelength of the reflected light from the fiber grating The temperature sensor that measures the temperature by detecting the change in the person B is, for example, a water wave, 0 plus E, No. 2 0 5, 8 1-84 (1996) and Gupta et al., Applied 0 ptics, 35 (2 5), 52 0 2-52 0 5 (1996) ing. When the temperature of the fiber grating changes, the grating pitch P and the refractive index change, and the reflection peak wavelength; IB changes according to the following equation (2).
Δ ΛΒ/λΒ= ( + ξ) Δ Τ ( 2 ) ここで、 ひはファイバの熱膨張係数(石英の室温付近の値は 0. 5 5 x 1 0一 6 / d e g ) であり、 は屈折率の温度変化を表す熱光学係数 (約 8 X 1 0— 6 / d e g、温度と G e濃度によって変化する)、 Δ Τは温度変化の幅をそれぞれ示す。 石英ファイバの熱膨張係数は小さいので、 主に屈折率の温度変化に起因して、 石 英ファイバグレーティングの反射ピーク波長が変化する。 Δ ΛΒ / λΒ = (+ ξ ) Δ Τ (2) where the flight is a value in the vicinity of room temperature thermal expansion coefficient (quartz fiber 0. 5 5 x 1 0 one 6 / Deg) and is, changes with the thermo-optic coefficient (about 8 X 1 0- 6 / deg, the temperature and G e concentration representing the temperature change of the refractive index), delta T represents the width of the temperature change, respectively. Since the thermal expansion coefficient of quartz fiber is small, the reflection peak wavelength of the quartz fiber grating changes mainly due to the temperature change of the refractive index.
上記文献に開示されている従来の温度センサ(室温附近用または極低温用)は、 センサの感度を向上するために、 熱膨張係数が大きな基板 (たとえば、 アルミ二 ゥム基板やアクリル基板) に石英ファイバを固定していた。 なお、 高温用 ( 0 °C 〜8 0 0 °C ) の温度センサとして、 基板にファイバを固定しない構造の温度セン サも知られている。  The conventional temperature sensor (for use near room temperature or for cryogenic temperature) disclosed in the above-mentioned document is used for a substrate with a large coefficient of thermal expansion (for example, aluminum substrate or acrylic substrate) in order to improve the sensitivity of the sensor. The quartz fiber was fixed. As a temperature sensor for high temperature (0 ° C to 800 ° C), a temperature sensor having a structure in which a fiber is not fixed to a substrate is also known.
しかしながら、 ファイバグレーティングを用いた従来の温度センサには下記の ような問題があった。  However, conventional temperature sensors using fiber gratings have the following problems.
基板にファイバを固定した構造 (以下、 「パッケージ構造」 と呼ぶ。 ) を採用 すると、 センサが比較的大きくなるとともに、 センサの外形を変形する (たとえ ば、 曲げる) ことが困難となるので、 センサを設置する場所が制限されるという 問題がある。 また、 上述の従来の低温および常温用温度センサは、 被覆されてい ないファイバを用いていたので、 特に極低温における機械強度が弱く、 取り扱い が難しく、 長期間に亘る使用が困難であるという問題もあった。 特に、 パッケ一 ジ構造のセンサにおいては、 基板とファイバとの熱膨張係数の差が大きいので、 極低温でファイバが破壊されやすい。 さらに、 センサの反射ピーク波長の温度変 化に対する変化率が温度によって大きく異なるので、 測定できる温度範囲が狭い という問題があった。  If a structure in which the fiber is fixed to the substrate (hereinafter, referred to as “package structure”) is adopted, the sensor becomes relatively large and it becomes difficult to deform (for example, bend) the external shape of the sensor. There is a problem that the place to install is limited. In addition, since the conventional temperature sensors for low temperature and normal temperature described above use uncoated fibers, the mechanical strength at cryogenic temperatures is weak, handling is difficult, and it is difficult to use for a long period of time. there were. In particular, in a sensor having a package structure, the fiber has a large difference in thermal expansion coefficient between the substrate and the fiber. Furthermore, since the rate of change of the reflection peak wavelength of the sensor with respect to temperature changes greatly depending on the temperature, there is a problem that the measurable temperature range is narrow.
本発明は、 上述のような事情に鑑みてなされたものであり、 本発明の主な目的 に 1つは、 ガラスのフォトセンシティビティを高めた状態でグレーティング書き 込みを行うファイバグレーティングの製造方法を提供することにある。  The present invention has been made in view of the circumstances described above, and one of the main objects of the present invention is to provide a method of manufacturing a fiber grating in which a grating is written in a state where the photosensitivity of glass is increased. To provide.
また、 本発明の他の主な目的は、 このようにして製造されたファイバグレーテ ィングの性能をより有効に活用しうる光通信用コンポ一ネン卜を提供することに ある。  Another main object of the present invention is to provide a component for optical communication that can more effectively utilize the performance of the fiber grating manufactured as described above.
さらに、 本発明の他の主な目的は、 パッケージ構造を必要とせず、 単純な構造 で、 極低温まで温度測定が可能な温度センサに好適に用いられ得るファイバグレ —ティングの製造方法およびそのようなファイバグレーティングを用いた温度セ ンサを提供することにある。 発明の開示 Further, another main object of the present invention is to provide a fiber grating which can be suitably used for a temperature sensor capable of measuring a temperature up to a very low temperature with a simple structure without requiring a package structure. —To provide a manufacturing method of a laser and a temperature sensor using such a fiber grating. Disclosure of the invention
本発明によるファイバグレーティングの製造方法は、 グレーティングが書き込 まれるべきコアと前記コアを囲むクラッ ドとを備えたファイバの外周面を紫外線 透過型樹脂から形成した被覆層で覆う工程と、 紫外線を前記被覆層の外側から前 記コアに対して照射することによって前記コアにグレーティングを書き込む工程 とを包含するファイバグレーティングの製造方法であって、 前記グレーティング を前記コアに書き込む工程において、 前記コアを軸方向に + 0 . 8 %以上 + 6 % 以下の歪みが生じている状態にして、 その状態で前記コアに前記紫外線を照射す る。  A method of manufacturing a fiber grating according to the present invention includes a step of covering an outer peripheral surface of a fiber including a core on which a grating is to be written and a cladding surrounding the core with a coating layer formed of an ultraviolet-transmissive resin; Writing a grating in the core by irradiating the core from outside of the coating layer, wherein the grating is written in the core. The core is irradiated with the ultraviolet ray in a state where a strain of + 0.8% or more and + 6% or less is generated in the direction.
前記グレーティングを前記コアに書き込む工程において、 前記コアに対して軸 方向張力を与えながら前記グレーティングの書き込みを実行することが好ましい 前記グレーティングの書き込みを実行した後、 前記軸方向張力を開放すること が好ましい。  In the step of writing the grating on the core, it is preferable to execute the writing of the grating while applying an axial tension to the core. After executing the writing of the grating, it is preferable to release the axial tension. .
本発明による光通信用コンポーネントは、 上記いずれかのファイバグレーティ ングの製造方法によって製造されたファイバグレーティングと、 前記ファイバグ レーティングを支持する手段とを備えていることを特徴とする。  An optical communication component according to the present invention is characterized by comprising: a fiber grating manufactured by any one of the fiber grating manufacturing methods described above; and means for supporting the fiber grating.
前記ファイバグレーティングを支持する手段は、 前記グレーティングを前記コ ァに書き込む工程において前記コアに与えられた軸方向歪みよりも小さな歪みが 生じるようにして前記ファイバグレ一ティングを支持することが好ましい。  It is preferable that the means for supporting the fiber grating supports the fiber grating so that a strain smaller than an axial strain applied to the core is generated in a step of writing the grating on the core.
本発明のファイバグレーティングの製造方法は、 コアおよびクラッ ドを有する ファイバ素線と、 前記ファイバ素線の表面を覆う被覆層とを有するファイバグレ —ティングの製造方法であって、 ファイバ素線を用意する工程と、 前記ファイバ 素線の表面を覆う被覆層を樹脂材料を用いて形成する工程と、 前記被覆層を形成 する工程の前に、 製造するグレーティングティングの反射ピーク波長の温度変化 に対する変化率が所定値となるように、 前記樹脂材料の選定および前記被覆層の 厚さの設定を行う被覆層設計工程とを包含する。 前記被覆層設計工程は、 ファイバ素線の弾性率および熱膨張係数、 ならびに前 記樹脂材料の弾性率および熱膨張係数に基づいて、 前記樹脂材料の選定および前 記被覆層の厚さの設定を行う工程であってもよい。 The method for manufacturing a fiber grating according to the present invention is a method for manufacturing a fiber grating, comprising: a fiber strand having a core and a cladding; and a coating layer covering a surface of the fiber strand. A step of forming a coating layer covering the surface of the fiber strand using a resin material; and a step of changing the reflection peak wavelength of the grating to be manufactured to a temperature change before the step of forming the coating layer. And a coating layer designing step of selecting the resin material and setting the thickness of the coating layer so that the predetermined value is obtained as a predetermined value. In the coating layer designing step, the selection of the resin material and the setting of the thickness of the coating layer are performed based on the elastic modulus and the thermal expansion coefficient of the fiber and the elastic modulus and the thermal expansion coefficient of the resin material. The process may be performed.
前記反射ピーク波長の温度変化に対する変化率は、 一 1 9 6 °C ~ + 1 7 0 °Cの 範囲で一定としてもよい。  The rate of change of the reflection peak wavelength with respect to temperature change may be constant in the range of 196 ° C. to + 170 ° C.
前記反射ピーク波長の温度変化に対する変化率は、 被覆されていない前記ファ ィバ素線に形成されたグレーティングの反射ピーク波長の— 2 0 ° (:〜 + 6 0 °Cに おける温度変化に対する変化率と同じにしてもよい。  The rate of change of the reflection peak wavelength with respect to temperature change is the change of the reflection peak wavelength of the grating formed on the uncoated fiber strand with respect to the temperature change at −20 ° (: to + 60 ° C.). It may be the same as the rate.
本発明の温度センサは、 コアおよびクラッ ドを有するファイバ素線と、 前記フ アイバ素線の表面を覆う被覆層とを有するファイバグレーティングと、 前記ファ ィバグレーティングに光を出射する光源と、 前記ファイバグレ一ティングからの 反射光を受け取り、 前記反射光の波長を検出する検出器とを有する温度センサで あって、前記反射光の波長の温度変化に対する変化率は、— 1 9 6 °C〜十 1 7 0 °C の範囲で一定である。 図面の簡単な説明  The temperature sensor according to the present invention includes: a fiber element having a core and a clad; a fiber grating having a coating layer covering a surface of the fiber element; a light source that emits light to the fiber element; A temperature sensor that receives the reflected light from the fiber grating and detects a wavelength of the reflected light, wherein a rate of change of the wavelength of the reflected light with respect to a temperature change is from −196 ° C. It is constant within the range of 170 ° C. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施形態におけるファイバグレーティングの作製原理を示す 図である。  FIG. 1 is a diagram illustrating a principle of manufacturing a fiber grating according to an embodiment of the present invention.
図 2は、 光ファイバ心線の拡大横断面図である。  FIG. 2 is an enlarged cross-sectional view of the optical fiber.
図 3は、 作製装置を示す模式図である。  FIG. 3 is a schematic diagram showing a manufacturing apparatus.
図 4は、 グレーティング書き込み時の印加張力とグレーティング作製時間との 関係を示すグラフである。  FIG. 4 is a graph showing the relationship between the applied tension at the time of writing the grating and the grating fabrication time.
図 5は、 グレーティング書き込み時の印加張力とグレーティング形成速度との 関係を示すグラフである。  FIG. 5 is a graph showing the relationship between the applied tension at the time of writing the grating and the grating formation speed.
図 6は、 被照射ファイバへ印加した張力と、 作製時の最終到達反射率および作 製後に同ファイバの張力を開放したときの反射率との関係を示すグラフである。 図 7は、 印加張力と張力開放による反射率の上昇分 (%) との関係を示すグラ フである。  FIG. 6 is a graph showing the relationship between the tension applied to the fiber to be irradiated, the final arrival reflectance during fabrication, and the reflectance when the tension of the fiber is released after fabrication. Figure 7 is a graph showing the relationship between the applied tension and the increase (%) in reflectance due to release of the tension.
図 8は、 図 3の張力印加機構の拡大説明図である。 図 9は、 図 8の A— A線における拡大断面図である。 FIG. 8 is an enlarged explanatory view of the tension applying mechanism of FIG. FIG. 9 is an enlarged sectional view taken along line AA of FIG.
図 1 0は、 光ファイノ 心線とシリンドリカルレンズ系との位置関係を示す図で ある。  FIG. 10 is a diagram showing a positional relationship between an optical fiber core and a cylindrical lens system.
図 1 1は、 本発明の実施形態によるファイバグレーティングの反射ピーク波長 の温度依存性を示すグラフである。  FIG. 11 is a graph showing the temperature dependence of the reflection peak wavelength of the fiber grating according to the embodiment of the present invention.
図 1 2は、 本発明の実施形態によるファイバグレーティングを用いた温度セン サを示す模式図である。 発明を実施するための最良の形態  FIG. 12 is a schematic diagram showing a temperature sensor using the fiber grating according to the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しながら本発明の実施形態について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[第 1の実施形態]  [First Embodiment]
ガラスのフォトセンシティビティを高めた状態でグレーティング書き込みを行 うファイバグレーティングの製造方法の実施形態を説明する。  An embodiment of a method for manufacturing a fiber grating that writes a grating while increasing the photosensitivity of glass will be described.
まず、 図 1を参照する。 図 1には、 グレ一ティング書き込みの対象である所定 長の光ファイバ心線 1が示されている。 この光ファイバ心線 1は、 グレーティン グ 2 1が書き込まれるコア 2と、 コア 2の周りに形成されたクラッド 3と、 クラ ッ ド 3の外表面を被覆する被覆層 4とから構成されている。 上記光ファイバ心線 1は、 図 2にも示すように光ファイバ母材から線引きにより作製されたコア 2及 びクラヅド 3からなる光ファイバ素線 1 ' に対し被覆層 4がコ一ティングされた ものである。 そして、 その被覆層 4の外側から紫外線としての紫外レーザ光が位 相マスク 5を介して照射されることにより、 光ファイノ 心線 1のコア 2に対しフ アイバ軸方向に周期的な屈折率変調縞 (グレーティング) が書き込まれてフアイ バグレーティングが作製されるようになっている。 この多数の屈折率変調縞の間 隔がグレーティングピッチである。 このように被覆層 4の外側から紫外レーザ光 を照射することによりグレーティングの書き込みを有効に行うために、 以下に説 明するようにコア 2及び被覆層 4として特別な構成を採用するのが好ましい。 コア 2には、 通常仕様の光ファイバのコアに含まれている G eと同程度の濃度 を有する G eがド一プされている。 ここで、 通常仕様の光ファイバとは、 前記光 ファイノ 心線 1に接続される光ファイバ心線のことである。 このような光フアイ バ心線のコアには、 通常、 比屈折率差が 0. 9 %程度なる量の G eがドープされ ている。 First, refer to FIG. FIG. 1 shows an optical fiber core 1 of a predetermined length to be subjected to the grating writing. The optical fiber core 1 is composed of a core 2 on which a grating 21 is written, a cladding 3 formed around the core 2, and a coating layer 4 covering the outer surface of the cladding 3. I have. As shown in FIG. 2, the coating layer 4 was coated on the optical fiber 1 ′ composed of the core 2 and the clad 3 made by drawing from the optical fiber preform. Things. Ultraviolet laser light as ultraviolet rays is irradiated from outside the coating layer 4 through the phase mask 5, so that the core 2 of the optical fiber core 1 has a periodic refractive index modulation in the fiber axis direction. The stripes (gratings) are written to create a fire bug rating. The interval between these many refractive index modulation fringes is the grating pitch. In order to effectively perform writing of the grating by irradiating the ultraviolet laser beam from outside the coating layer 4 as described above, it is preferable to adopt a special configuration as the core 2 and the coating layer 4 as described below. . The core 2 is doped with Ge having a concentration similar to that of the Ge contained in the core of the normal specification optical fiber. Here, the normal specification optical fiber is an optical fiber core connected to the optical fiber core 1. Such an optical fire The core of the core wire is usually doped with Ge so that the relative refractive index difference is about 0.9%.
図示されている光ファイバ心線 1のコア 2には、 光誘起屈折率変化を定常的に 高めるためには、 Geに加えて、 Sn、 !!及び八丄 、 または、 Sn、 A 1及び Bのドーパントをコア 2にドープしておくことが好ましい。 例えば、 上記の通常 仕様の光ファイバのコアと同量 (比屈折率差が 0. 9%となる程度の量) の Ge に加え、 濃度 1000 O ppm以上、 好ましくは濃度 10000〜15000 p pmの Sn、 或いは、 このような濃度の S n及び濃度 1000 ppm以下の A 1 等を共ドープすればよい。 このようなド一プは、 種々の公知方法によって行えば よく、 例えば液浸により行う場合には、 上記 Snの化合物 (Snの場合、 例えば S n C 12 · 2 H20) をメチルアルコールと混合し、 その溶液の中に浸漬すれば よい。 In the core 2 of the optical fiber core 1 shown in the figure, in addition to Ge, Sn,! ! Preferably, the core 2 is doped with dopants of Sn, Al, and B. For example, in addition to the same amount of Ge as the above-mentioned core of the optical fiber of the normal specification (an amount such that the relative refractive index difference becomes 0.9%), a concentration of 1000 O ppm or more, preferably 10,000 to 15000 ppm Sn or Sn at such a concentration and A 1 at a concentration of 1000 ppm or less may be co-doped. Such de one-flop may be performed by various known methods, for example, when carried out by immersion, the compound of the Sn (For Sn, for example, S n C 1 2 · 2 H 2 0) of methyl alcohol And dipped in the solution.
被覆層 4は、 コア 2及びクラッ ド 3からなる光ファイバ素線 1 ' の線引き工程 に引き続いてシングルコート法によって、 少なくとも 30〃m程度の膜厚になる ように形成されたものである。 本実施形態では、 被覆層 4の材料として、 ある波 長帯域の紫外線 (第 1の紫外線) で硬化する特性と、 他の波長帯域の紫外線 (第 2の紫外線) を透過する特性の両方を備えた樹脂を用いる。 このような樹脂を本 願明細書では 「紫外線透過型紫外線硬化樹脂」 と称することがある。  The coating layer 4 is formed so as to have a thickness of at least about 30 μm by a single coating method following the step of drawing the optical fiber 1 ′ including the core 2 and the clad 3. In the present embodiment, the material of the coating layer 4 has both a property of curing with ultraviolet light of a certain wavelength band (first ultraviolet light) and a property of transmitting ultraviolet light of another wavelength band (second ultraviolet light). Use the resin that was used. Such a resin may be referred to as “ultraviolet-transmissive ultraviolet-curable resin” in the present specification.
この紫外線透過型紫外線硬化樹脂は、 グレーティング 2 1の書き込みのために コアに照射する特定波長帯 (例えば 240 nm〜270 nmの波長帯) の紫外線 を少なくとも透過させる(好ましくは、 この紫外線を殆ど吸収せずに透過させる) 一方で、 上記特定波長帯よりも短い波長または長い波長の紫外線を吸収して硬化 反応を生じさせる。 つまり、 同じ樹脂ではあるが、 波長によって紫外線吸収特性 が異なり、 特定波長帯では紫外線透過型である一方、 上記特定波長帯よりも短い 波長域または長い波長域では紫外線硬化型であるような樹脂を用いて被覆層 4を 形成することになる。  The ultraviolet-transmissive ultraviolet-curing resin transmits at least ultraviolet rays of a specific wavelength band (for example, a wavelength band of 240 nm to 270 nm) to be irradiated to the core for writing the grating 21 (preferably, almost all of the ultraviolet rays are absorbed) On the other hand, it absorbs ultraviolet light having a wavelength shorter or longer than the specific wavelength band to cause a curing reaction. In other words, although the same resin has different UV absorption characteristics depending on the wavelength, it is a UV-transmitting type resin in a specific wavelength band, and a UV-curable resin in a shorter or longer wavelength range than the above specific wavelength band. Thus, the coating layer 4 is formed.
本実施形態では、 ウレタン系ァクリレートもしくはエポキシ系ァクリレートに 対し、 例えば 240 nmよりも短い波長域または 270 nmよりも長い波長域の 紫外線を受けて硬化反応を開始 ·促進させるような光開始剤 (フォトイニシエー 夕) を配合した樹脂を 「紫外線透過型紫外線硬化樹脂」 として用いる。 In the present embodiment, for example, a photoinitiator (a photo-initiator (a photo-initiator) that initiates and promotes a curing reaction by receiving ultraviolet rays in a wavelength range shorter than 240 nm or a wavelength range longer than 270 nm is applied to urethane acrylate or epoxy acrylate. Initiator Evening) The resin containing is used as “ultraviolet transparent ultraviolet curing resin”.
このような樹脂の層で光ファイバの外周面を被覆した後、 まず、 その被覆層に 対して第 1の紫外線を照射し、 被覆層 4を硬化する。  After coating the outer peripheral surface of the optical fiber with such a resin layer, first, the coating layer is irradiated with first ultraviolet rays to cure the coating layer 4.
なお、 本実施形態では、 紫外線硬化型樹脂を用いているが、 他の種類の樹脂を 用いる場合は、 この第 1の紫外線照射工程を省略し、 他の樹脂硬化工程 (例えば 熱による硬化工程) を実行することになる。  In the present embodiment, an ultraviolet curing resin is used. However, when another type of resin is used, the first ultraviolet irradiation step is omitted, and another resin curing step (for example, a curing step using heat) is performed. Will be executed.
硬化した被覆層 4によって被覆された状態の光ファイバ心線 1に対して第 2の 紫外線を照射する前に、 コア 2に対して水素充填を行うことが光誘起屈折率変化 を高める上で好ましい。 従って、 本実施形態では、 この高圧水素充填を行う。 具 体的には、 光ファイバ心線 1を水素が充填された密閉容器内に入れ、 室温状態で ほぼ 2 O M P aの圧力下で約 2週間放置すればよい。  It is preferable to fill the core 2 with hydrogen before irradiating the second ultraviolet ray to the optical fiber core 1 covered with the cured coating layer 4 in order to increase the photoinduced refractive index change. . Therefore, in this embodiment, this high-pressure hydrogen filling is performed. Specifically, the optical fiber core 1 is placed in a sealed container filled with hydrogen and left at room temperature under a pressure of about 2 OMPa for about 2 weeks.
前述の高圧水素充填を行ってから、今度は、光ファイバ心線 1の外側、つまり、 被覆層 4の外側から第 2の紫外線を照射することによりコア 2に対しグレーティ ング 2 1の書き込みを行う。  After the above-mentioned high-pressure hydrogen filling is performed, the core 2 is written with the grating 21 by irradiating the second ultraviolet ray from outside the optical fiber core wire 1, that is, outside the coating layer 4. .
グレーティング 2 1の書き込みは、 周知の種々の方法を採用して行えばよい。 例えば位相マスク法によって行う場合には、 図 3に作製装置の例を示すように上 記光ファイバ心線 1の側方直前に格子状の位相マスク 5を配設し、 この位相マス ク 5に対し N d— Y A Gレーザ源 6から例えばその 4倍波 (4 ω ) である 2 6 6 n mのコヒ一レント紫外レーザ光をシリンドリカルレンズ系 7により集光した状 態で照射すればよい。 これにより、 上記紫外レーザ光が位相マスク 5及び被覆層 4を透過し、 コア 2に対し位相マスク 5の格子ピッチに対応したグレーティング ピッチの部分の屈折率が増大されてブラッググレーティング 2 1が書き込まれる ことになる。 なお、 図 3中、 参照符号 「8」 は紫外レーザ光を拡大して平行ビー ム化するビームエキスパンダー、 参照符号 「9」 は上記の平行ビーム化された紫 外レーザ光のパワーが均一の部分を切り出す微小幅のスリツ ト、参照符号「 1 0」 は上記光ファイバ心線 1の長手方向 (一点鎖線の矢印参照) に移動可能とされた 可動式反射ミラー、 参照符号 「 1 1」 は光スペクトルアナライザ、 参照符号 「 1 2」 は光アイソレー夕、 参照符号 「 1 3」 は光力ブラである。  The writing of the grating 21 may be performed by using various known methods. For example, when the phase mask method is used, a lattice-shaped phase mask 5 is disposed immediately before the optical fiber core 1 as shown in FIG. On the other hand, the Nd-YAG laser source 6 may irradiate, for example, a coherent ultraviolet laser beam having a fourth harmonic (4ω) of 2666 nm, which is condensed by the cylindrical lens system 7. As a result, the ultraviolet laser light passes through the phase mask 5 and the coating layer 4, the refractive index of the portion of the grating pitch corresponding to the grating pitch of the phase mask 5 with respect to the core 2 is increased, and the Bragg grating 21 is written. Will be. In FIG. 3, reference numeral “8” is a beam expander that expands the ultraviolet laser beam into a parallel beam, and reference numeral “9” is a portion where the power of the above-mentioned parallel laser beam is uniform. The slit “10” is a movable reflecting mirror that can be moved in the longitudinal direction of the optical fiber core wire 1 (see the dashed line arrow), and the symbol “1 1” is light. Spectrum analyzer, reference number “1 2” is optical isolator, reference number “1 3” is optical power blur.
本実施形態によるグレーティング書き込みの際、 図 3に示す張力印加機構 3 0 を用いて、 書き込み対象の光ファイバ心線 1に対して長軸方向に張力を与える。 このような張力印加の具体的方法および効果については、 のちに図面を参照しな がら詳細に説明する。 In writing the grating according to the present embodiment, the tension applying mechanism 30 shown in FIG. Is used to apply tension in the long axis direction to the optical fiber 1 to be written. The specific method and effect of such tension application will be described later in detail with reference to the drawings.
グレーティング書き込みに使用できる紫外線光源としては、 例えば、 最大平均 パワーが 100mW、 ノ レス幅が 50 ns、 パルス周波数が 10 H zの N d— Y AGレーザ源 6 (図 3参照) を用いることができる。 この Nd— YAGレーザの 4倍波である 266 nmの紫外レーザ光を光ファイバ心線 1に対し被覆層 4上で 照射エネルギー密度が例えば 1. 5 k J/cm2となるように照射する。 この場 合、 位相マスク 5上に入射される平均パワーは例えば 10mW、 外径 200〃m の光ファイバ心線 1に照射される紫外線光の寸法は約 2 mm (ファイバ軸方向) X約 0. 2mm (ファイバ怪方向) となる。 For example, an Nd—YAG laser source 6 (see Fig. 3) with a maximum average power of 100 mW, a pulse width of 50 ns, and a pulse frequency of 10 Hz can be used as an ultraviolet light source that can be used for grating writing. . Ultraviolet laser light of 266 nm, which is the fourth harmonic of this Nd-YAG laser, is irradiated onto the optical fiber core 1 on the coating layer 4 so that the irradiation energy density becomes, for example, 1.5 kJ / cm 2 . In this case, the average power incident on the phase mask 5 is, for example, 10 mW, and the dimension of the ultraviolet light applied to the optical fiber core 1 having an outer diameter of 200 m is about 2 mm (in the direction of the fiber axis). It is 2 mm (in the direction of the fiber).
上記位相マスク 5としては格子ピッチが例えば 1065 nm、 長さが 25 mm のものを用いることができる。 そして、 可動式ミラー 10を滑らかに連続して上 記ファイバ軸方向 (長手方向) に移動させれば、 軸方向に長さ 24 mmのブラヅ ググレーティング 2 1を書き込むことができる。  As the phase mask 5, a mask having a grating pitch of, for example, 1065 nm and a length of 25 mm can be used. Then, by moving the movable mirror 10 smoothly and continuously in the fiber axial direction (longitudinal direction), a 24 mm long grating 25 can be written in the axial direction.
図 4は、 グレーティング書き込み時の印加張力とグレーティング作製時間との 関係を示している。 また、 図 5は、 グレーティング書き込み時の印加張力とグレ 一ティング形成速度との関係を示している。 なお、 ここでは、 印加張力を軸方向 歪み (%) で表現している。  FIG. 4 shows the relationship between the applied tension at the time of writing the grating and the grating fabrication time. FIG. 5 shows the relationship between the applied tension at the time of writing the grating and the grating forming speed. Here, the applied tension is represented by axial strain (%).
図 4および図 5からわかるように、 ファイバグレーティング形成速度は、 張力 0. 8%以上になると、 張力無印加の場合に比較して急激に増大し、 グレーティ ング形成時間が短縮される。 張力が 1. 0%以上なると、 ファイバグレーティン グ形成速度は、張力 0. 2 %以下の場合に比較して 2〜 6倍に増加する。ただし、 張力が 1. 0%を超えても、 ファイバグレーティング形成速度はほぼ飽和してい る。  As can be seen from Figs. 4 and 5, the fiber grating formation speed increases more rapidly when the tension is 0.8% or more than when no tension is applied, and the grating formation time is shortened. When the tension is 1.0% or more, the fiber grating forming speed increases 2 to 6 times compared to the case where the tension is 0.2% or less. However, even if the tension exceeds 1.0%, the fiber grating formation speed is almost saturated.
以上のことから、 印加張力は 0. 8%以上であることが好ましく、 1. 0%以 上であることが更に好ましい。印加張力の好ましい上限は 6 %である。張力が 6 % を超えると、 ファイバが機械的に破断するおそれがあるからである。  From the above, the applied tension is preferably 0.8% or more, and more preferably 1.0% or more. A preferable upper limit of the applied tension is 6%. If the tension exceeds 6%, the fiber may break mechanically.
このように張力印加によってファイバグレーティング形成速度が向上する理由 は、 張力の印加によって紫外線感度が増加したためと考えられるが、 その詳細な メ力二ズムは解明できていない。 The reason why the fiber grating formation speed is improved by applying tension It is thought that UV sensitivity was increased by the application of tension, but the detailed mechanism has not been elucidated.
なお、 紫外線照射前にファイバ素線の被覆を剥がす方法によれば、 ファイバの 機械的強度が低下するため、 1 . 0 %以上の張力を印加することは事実上無理で ある。 このため、 紫外線透過型樹脂を用いて被覆層を形成した後、 その被覆層を 透過するようにして紫外線をコアに照射する方法を用いない限り、 張力印加によ る紫外線感度増加の効果を発揮させることは困難である。  In addition, according to the method of stripping the coating of the fiber before irradiation with ultraviolet light, it is practically impossible to apply a tension of 1.0% or more because the mechanical strength of the fiber is reduced. For this reason, unless a method of forming a coating layer using an ultraviolet-transmitting resin and then irradiating the core with ultraviolet light so as to transmit the coating layer is used, the effect of increasing the ultraviolet sensitivity by applying tension is exerted. It is difficult to do that.
以上、 ファイバグレーティング形成速度の増加に対する張力印加効果を説明し てきたが、 次に、 反射率増加効果を説明する。  The effect of applying a tension to the increase in the fiber grating forming speed has been described above. Next, the effect of increasing the reflectance will be described.
図 6は、 横軸に被照射ファイバへ印加した張力、 横軸に作製時の最終到達反射 率および作製後に同ファイバの張力を開放したときの反射率を示している。 印加 張力は、 伸び率約 1 %から 3 %の範囲内で 4段階に設定した。 全ての張力につい て、 張力開放後の反射率が作製時の最終到達反射率を上回っている。 この実験に 用いたファイバは S n ドープファイバであり、 3 . 8気圧 (=約 0 . 3 8 M P a ) の水素雰囲気中で 2週間水素処理を受けたものである。  In Fig. 6, the horizontal axis shows the tension applied to the fiber to be irradiated, the horizontal axis shows the final arrival reflectance during fabrication, and the reflectance when the tension of the fiber is released after fabrication. The applied tension was set in four steps within an elongation ratio of about 1% to 3%. For all tensions, the reflectance after releasing the tension exceeds the ultimate reflectance at the time of fabrication. The fiber used in this experiment was a Sn-doped fiber, which had been subjected to hydrogen treatment for 2 weeks in a hydrogen atmosphere at 3.8 atm (= about 0.38 MPa).
図 7は、 横軸に印加張力、 縦軸に張力開放による反射率の上昇分 (%) を示し ている。 作製時の印加張力が大きいほど、 張力開放後の反射率増加が大きいこと がわかる。 紫外線透過型樹脂を用いた被覆上照射によれば、 ファイバグレーティ ング作製時に最大 6 %程度の張力をフアイバに印加することができるため、 張力 開放後に反射率を大きく上昇させることが可能になる。 このことは、 上述した感 度向上と相まって、 性能の高いグレーティングを、 より短時間で効率的に作製す ることを可能にする。  In Fig. 7, the horizontal axis shows the applied tension, and the vertical axis shows the increase (%) in reflectance due to release of the tension. It can be seen that the greater the applied tension during fabrication, the greater the increase in reflectance after releasing the tension. Irradiation on the coating using UV-transmitting resin can apply a maximum of about 6% tension to the fiber during fiber grating production, making it possible to significantly increase the reflectance after releasing the tension. . This, in combination with the above-mentioned sensitivity enhancement, makes it possible to efficiently produce a high-performance grating in a shorter time.
ファイバグレーティングの反射率増加の効果を光通信用コンポーネントにおい て発揮させるには、 コンポ一ネント内でファイバグレーティングを支持する部材 がファイバに対して大きな張力を与えないようにようにする必要がある。  In order for the reflectivity of the fiber grating to increase in the optical communication component, it is necessary to ensure that the member supporting the fiber grating in the component does not apply a large tension to the fiber.
く張力印加機構 > Tension applying mechanism>
光ファイバ心線 1に対しファイバ軸方向の張力を印加する張力印加機構 3 0の 例を以下に説明する。 この張力印加機構 3 0は、 その詳細を図 8に示すように、 光ファイバ心線 1の紫外線照射領域を囲むようにして配設されたフレーム 3 1と、 このフレーム 3 1から上記光ファイバ心線 1のファイバ軸方向両側にそれそれ突 出された一対のアーム部材 3 2, 3 3と、 各アーム部材 3 2, 3 3の先端に支持 された一対の固定手段としての巻胴 3 4, 3 5と、 ファイバ軸方向一側 (図 8の 右側)の卷胴 3 5を回転駆動するモータ 3 6 (図 9参照)とを備えたものである。 上記フレーム 3 1は、 少なくとも光ファイバ心線 1の側方部分 (図 8の上方部 分) に紫外レーザ光が通過し得る開口部 3 1 1を有し、 上記一対のアーム部材 3 2, 3 3を保持し得るものであればその形状等についての制約はない。 上記各ァ 一ム部材 3 2, 3 3は、 L字状に形成され、 一端が上記フレーム 3 1に固定され る一方、 他端に上記巻胴 3 4 , 3 5が連結されている。 上記各卷胴 3 4, 3 5は 巻胴本体を構成するマンドレル 3 4 1, 3 5 1と、 それそれの両側に配設された 一対の鍔部 3 4 2 , 3 5 2とから構成されている。 ファイバ軸方向一側 (図 8の 右側) の卷胴 3 5がアーム部材 3 3に対しファイバ軸方向に直交する方向に配置 された軸 Yの回りに回転可能に連結される一方、 ファイバ軸方向他側 (図 8の左 側) の卷胴 3 4がアーム部材 3 2に対し相対回転しないように固定されている。 また、 上記モー夕 3 6はパルスモー夕により構成され、 その出力軸が上記マンド レル 3 5 1に対し直結もしくは連結部材を介して接続されている。 上記モー夕 3 6は図示省略のコントロ一ラからの制御信号を受けて設定回転量だけ上記マンド レル 3 5 1を強制回転させるようになつている。 An example of the tension applying mechanism 30 for applying a tension in the fiber axis direction to the optical fiber core 1 will be described below. As shown in FIG. 8 in detail, the tension applying mechanism 30 includes a frame 31 disposed so as to surround the ultraviolet irradiation region of the optical fiber core 1, and A pair of arm members 32, 33 protruding from the frame 31 on both sides of the optical fiber core 1 in the fiber axial direction, and a pair of arm members 32, 33 supported at the distal ends of the arm members 32, 33, respectively. It is provided with winding cylinders 34 and 35 as fixing means, and a motor 36 (see FIG. 9) for rotating and driving the winding cylinder 35 on one side in the axial direction of the fiber (the right side in FIG. 8). The frame 31 has an opening 311 through which the ultraviolet laser light can pass at least at a side portion (upper portion in FIG. 8) of the optical fiber core 1, and the pair of arm members 32, 3 There is no restriction on the shape and the like as long as 3 can be maintained. Each of the arm members 32 and 33 is formed in an L shape, and one end is fixed to the frame 31 and the other end is connected to the winding drums 34 and 35. Each of the above winding cylinders 34, 35 is composed of a mandrel 341, 351, which constitutes a winding drum main body, and a pair of flanges 34, 32, 35 2 disposed on both sides thereof. ing. The winding cylinder 35 on one side in the fiber axis direction (the right side in FIG. 8) is rotatably connected to the arm member 33 around an axis Y arranged in a direction orthogonal to the fiber axis direction, while being connected to the fiber axis direction. The other side (left side in FIG. 8) of the winding cylinder 34 is fixed so as not to rotate relative to the arm member 32. The motor 36 is constituted by a pulse motor, and its output shaft is directly connected to the mandrel 351 or connected via a connecting member. The motor 36 receives a control signal from a controller (not shown) and forcibly rotates the mandrel 351 by a set rotation amount.
次に、 上記ファイバグレーティング作製装置を用いてファイバグレーティング を作製する方法について説明する。  Next, a method of manufacturing a fiber grating using the above-described fiber grating manufacturing apparatus will be described.
ファイバグレーティングを作製するには、 張力印加工程と、 照射工程と、 張力 解放工程と、スクリーニング工程とを順に行う。すなわち、張力印加工程として、 まず、 グレーティング 2 1の書き込み予定領域を挟んだ両側位置の光ファイバ心 線 1を巻胴 3 4 , 3 5のマンドレル 3 4 1, 3 5 1の外周面に対し互いに重なら ないように二重もしくは三重 (図 9参照) に巻き付けて光ファイバ心線 1を一直 線状に延ばした状態にセッ トする。 これにより、 上記各巻胴 3 4 , 3 5のマンド レル 3 4 1, 3 5 1の外周面と光ファイバ心線 1の外表面との間の摩擦抵抗によ つて光ファイバ心線 1が上記各マンドレル 3 4 1 , 3 5 1の外周面に対しフアイ バ軸方向に相対移動しないように固定する。 次に、 モー夕 3 6を作動させてマン ドレル 3 5 1を設定回転量だけ強制回転させ、 この状態を保持させる。 これによ り、 一対のマンドレル 3 4 1, 3 5 1の間の光ファイバ心線 1は上記マンドレル 3 5 1の強制回転量に対応する周長だけファイバ軸方向に強制的に延ばされて、 つまり、 張力が印加されてコア 2に引張側の弾性歪み (伸び歪み) が生じた状態 となり、 この状態で次の照射工程が行われる。 In order to fabricate a fiber grating, a tension applying step, an irradiation step, a tension releasing step, and a screening step are sequentially performed. That is, in the tension applying step, first, the optical fiber core wires 1 on both sides of the writing area of the grating 21 are attached to the outer peripheral surfaces of the mandrels 341, 351 of the winding drums 34, 35 with respect to each other. Wrap it twice or three times (see Fig. 9) so that it does not overlap, and set the optical fiber core wire 1 in a state where it extends in a straight line. As a result, the optical fiber core 1 is moved by the frictional resistance between the outer peripheral surface of the mandrel 341, 351 of each of the winding drums 34, 35 and the outer surface of the optical fiber core 1. The mandrel is fixed so that it does not move relative to the outer peripheral surface of the mandrel 3 4 1, 3 5 1 in the fiber axis direction. Next, activate the mode 3 6 Forcibly rotate the drain 3 5 1 by the set amount of rotation to maintain this state. As a result, the optical fiber core wire 1 between the pair of mandrels 341, 351 is forcibly extended in the fiber axial direction by a circumferential length corresponding to the forcible rotation amount of the mandrel 351. In other words, the tension is applied, and the core 2 is in a state in which elastic strain (elongation strain) on the tensile side is generated. In this state, the next irradiation step is performed.
上記照射工程として、 まず、 上記位相マスク 5が上記光ファイバ心線 1のグレ —ティング 2 1の書き込み予定領域に対しセットされ、 この位相マスク 5のファ ィバ軸方向の一端側から他端側までの範囲にわたり紫外線照射系からの紫外レー ザ光が上記位相マスク 5を介して光ファイバ心線 1に対し照射される。 上記のフ アイバ軸方向範囲における紫外レーザ光の照射位置の変更は反射ミラー 1 0のフ アイバ軸方向に対する移動により行われる。 そして、 この紫外レ一ザ光の照射に より上記の伸び歪みが生じた状態のコア 2に対し上記位相格子 5の格子ピツチに 対応したグレ一ティングピッチのグレーティング 2 1が書き込まれることになる。 この照射工程によりグレーティング 2 1の書き込みが行われた後、 張力解放ェ 程が行われ、 この張力解放工程において、 上記モー夕 3 6が上記の設定回転量だ け逆回転作動されて光ファイバ心線 1が張力印加前の元の状態に復元されて無負 荷状態になる。 これにより、 上記のコア 2に生じていた伸び歪みが元の状態に復 元、 つまり収縮され、 この収縮に伴い上記の書き込まれたグレーティング 2 1の グレーティングピッチが狭められることになる。 このため、 グレ一ティング 2 1 の波長特性が上記のグレーティングピッチの狭くなつた分だけ短波長側にシフト される。 また、 前述のように、 張力開放前に比較してグレーティングの反射率も 向上する。  In the irradiation step, first, the phase mask 5 is set with respect to the writing area of the grating 21 of the optical fiber core 1, and one end to the other end of the phase mask 5 in the fiber axis direction. Ultraviolet laser light from an ultraviolet irradiation system is applied to the optical fiber core 1 through the phase mask 5 over a range up to. The change of the irradiation position of the ultraviolet laser light in the above-mentioned fiber axis direction range is performed by moving the reflection mirror 10 in the fiber axis direction. Then, the grating 21 having a grating pitch corresponding to the grating pitch of the phase grating 5 is written into the core 2 in a state where the above-described elongation distortion occurs due to the irradiation of the ultraviolet laser light. After writing of the grating 21 in this irradiation step, a tension release step is performed. In this tension release step, the motor 36 is rotated in the reverse direction by the above-mentioned set rotation amount, and the optical fiber core is rotated. Line 1 is restored to its original state before the tension was applied, and there is no load. As a result, the elongation strain generated in the core 2 is restored to its original state, that is, contracted, and the grating pitch of the written grating 21 is reduced in accordance with the contraction. Therefore, the wavelength characteristic of the grating 21 is shifted to the shorter wavelength side by the narrower grating pitch. In addition, as described above, the reflectance of the grating is improved as compared to before the release of the tension.
以上でファイバグレーティングの作製自体は終了するが、 本実施形態では、 引 き続いてスクリーニング工程が行われる。 すなわち、 このスクリーニング工程に おいては、 張力印加機構 3 0のモータ 3 6を作動させることによりファイバグレ 一ティングに対しファイバ軸方向に一定の伸び歪みを所定時間与え、 機械強度特 性についてのスクリーニング試験を実施する。 そして、 欠陥のあるファイバグレ 一ティングを製品から排除し、 欠陥のないファイバグレーティングを製品とする ようにする。 スクリーニング試験を合格したファイバグレ一ティングは、 ファイバグレ一テ ィングを支持する部材ゃ他の部品と組み合わせられて、 光通信用コンポ一ネント を構成することになる。 Thus, the fabrication of the fiber grating is completed, but in the present embodiment, the screening step is performed subsequently. In other words, in this screening step, a constant elongation strain is given to the fiber grating in the fiber axis direction for a predetermined time by operating the motor 36 of the tension applying mechanism 30 to screen for mechanical strength characteristics. Perform the test. Then, defective fiber gratings are eliminated from the product, and fiber gratings without defects are used as products. Fiber gratings that have passed the screening test will be combined with members supporting fiber gratings and other components to form optical communication components.
なお、 張力開放によって生じる波長シフトの制御は、 印加張力と短波長側への 波長特性のシフト量との関係を予め試験により求めておき、 この関係に基づいて シフト制御する波長のシフト量に対応した印加張力を設定し、 この印加張力が光 ファイバ心線 1に発生するようにモ一夕 3 6の設定回転数を定めればよい。 以上のファイバグレ一ティング作製方法において、 被覆層 4の上からの紫外レ 一ザ光の照射によるグレ一ティング 2 1の書き込みをより確実なものとするため に、 紫外レーザ光の照射を以下のようにしてもよい。  To control the wavelength shift caused by releasing the tension, the relationship between the applied tension and the shift amount of the wavelength characteristic to the shorter wavelength side is determined in advance by a test, and based on this relationship, the relationship between the shift amount of the wavelength to be shifted and the wavelength is controlled. The applied tension is set, and the set rotational speed of the motor 36 is determined so that the applied tension is generated in the optical fiber core 1. In the above fiber grating manufacturing method, in order to make writing of the grating 21 by irradiation of the ultraviolet laser light from above the coating layer 4 more reliable, irradiation of the ultraviolet laser light is performed as follows. You may do so.
すなわち、 上記紫外レーザ光の照射を、 その照射エネルギー密度が 1 . 5 k J / c m2程度になるように行う。 これにより、 被覆層 4の外側から紫外レーザ光 の照射を行う場合に、 その被覆層 4がほぼ 3 0 / m以上というかなり厚肉の膜厚 を有していても、 その被覆層 4を透過してコア 2に対し高屈折率変調を生じさせ て高反射率のブラヅググレ一ティング 2 1を書き込みし得るようになる。 That is, the irradiation with the ultraviolet laser light is performed so that the irradiation energy density becomes about 1.5 kJ / cm 2 . Thus, when ultraviolet laser light is irradiated from the outside of the coating layer 4, even if the coating layer 4 has a considerably thick film thickness of about 30 / m or more, the ultraviolet light is transmitted through the coating layer 4. As a result, high-refractive-index modulation is generated on the core 2 to enable writing of the high-reflection Bragg grating 21.
加えて、 図 1 0に示すように書き込み対象の光フアイノ^;心線 1をシリンドリカ ルレンズ系 7により集光される紫外レーザ光のビームパターン B Pに対し特定の 位置に位置付け、 この状態で紫外レ一ザ光の照射を行うようにする。 上記ビーム パターン B Pはシリンドリカルレンズ系 7に入射した平行ビームが焦点 Fに向か うように集光されたものであり、 このビームパターン B Pに対し上記光ファイバ 心線 1の全体が上記ビームパターン B Pの内部に位置し、 かつ、 その光ファイバ 心線 1の被覆層 4の外周面が上記ビームパターン B Pの外縁に内接するように上 記光ファイバ心線 1を位置付ける。 なお、 このような位置関係を満足すれば、 上 記光ファイバ心線 1の配設位置は図 1 0に実線で示すように焦点 Fの前側である と、 同図に一点鎖線で示すように焦点 Fの後側であるとを問わない。 一例を示す と、 焦点距離 L 1が 1 0 O mmの場合に、 外径 2 0 0〃mの光ファイバ心線 1を 焦点 Fからほぼ 2 mmの距離 L 2だけ離れた光軸上に配設すればよい。 光フアイ バ心線 1の全体を上記ビームパターン B Pの内部に位置付けることにより、 上記 の被覆層 4の全体に対し均一な照射エネルギー密度で紫外レーザ光を照射するこ とができるようになる。 その上に、 上記光ファイノ 心線 1を焦点 F側に対しより 近づけた位置に配設した場合に生じ易い被覆層 4の局部的なダメージ(強度劣化) 発生等を防止し、 かつ、 このような強度劣化の発生を防止し得る範囲で最も照射 エネルギー密度が高くなる位置において上記光ファイバ心線 1に対する照射を行 うことができ、 グレーティングの書き込みに要する時間の短縮化を図ることがで ぎる。 In addition, as shown in Fig. 10, the optical fiber to be written ^; the core 1 is positioned at a specific position with respect to the beam pattern BP of the ultraviolet laser light focused by the cylindrical lens system 7, and in this state, the ultraviolet laser Irradiation of light is performed. The beam pattern BP is obtained by converging the parallel beam incident on the cylindrical lens system 7 so as to be directed to the focal point F. In contrast to the beam pattern BP, the entirety of the optical fiber core 1 is the beam pattern BP. The optical fiber 1 is positioned so that the outer peripheral surface of the coating layer 4 of the optical fiber 1 is inscribed in the outer edge of the beam pattern BP. If such a positional relationship is satisfied, it is assumed that the optical fiber core 1 is located in front of the focal point F as shown by a solid line in FIG. 10 as indicated by a dashed line in FIG. It does not matter if it is behind the focus F. For example, when the focal length L1 is 100 mm, the optical fiber core wire 1 with an outer diameter of 200 m is placed on the optical axis at a distance L2 of approximately 2 mm from the focal point F. Just set it. By positioning the entire optical fiber core 1 inside the beam pattern BP, the entire coating layer 4 can be irradiated with ultraviolet laser light at a uniform irradiation energy density. And be able to. Furthermore, it is possible to prevent local damage (deterioration in strength) of the coating layer 4 which is likely to occur when the optical fiber core 1 is disposed closer to the focal point F side, and Irradiation to the optical fiber core wire 1 can be performed at a position where the irradiation energy density is highest within a range where the occurrence of a large strength deterioration can be prevented, and the time required for writing the grating can be reduced. .
なお、 上記実施形態では、 張力印加機構における張力の印加を一方の巻胴 3 5 をアーム部材 3 3に対し回転可能に支持し、 その巻胴 3 5をモー夕 3 6により強 制回転させることにより行っているが、 これに限らず、 両卷胴 3 4 , 3 5をァー ム部材 3 2 , 3 3に対し共に回転しないように固定し、 一方のアーム部材 3 3の 一端部 3 3 1を図 8に一点鎖線により示すようにフレーム 3 1に対しファイバ軸 方向に移動可能に案内 ·支持させ、 このアーム部材 3 3を例えばラック及びビニ オン等の伝達機構とモータの組み合わせ、 又は、 流体圧シリンダ等のァクチユエ 一夕によって図 8の右側に強制移動させるように装置を構成することにより光フ ァイノ 心線 1に対し張力を印加させるようにしてもよい。  In the above embodiment, the application of the tension by the tension applying mechanism is performed by rotatably supporting one of the winding drums 35 with respect to the arm member 33 and forcibly rotating the winding drum 35 with the motor 36. However, the present invention is not limited to this, and both winding cylinders 34 and 35 are fixed to the arm members 32 and 33 so as not to rotate together, and one end 33 of one arm member 33 is fixed. 8 is guided and supported movably in the fiber axis direction with respect to the frame 31 as shown by a dashed line in FIG. 8, and this arm member 33 is combined with a transmission mechanism such as a rack and a binion and a motor, or The tension may be applied to the optical fiber core 1 by configuring the apparatus such that the hydraulic cylinder or the like is forcibly moved to the right in FIG.
本実施形態のファイバーグレーティングの製造方法は、 短周期グレーティング および長周期グレーティングのいずれの製造にも好適に適用される。 短周期グレ 一ティングは約 1 m以下のピッチを有し、 長周期グレーティングは数百〃 m程 度のピッチを有するグレーティングである。  The method for manufacturing a fiber grating of the present embodiment is suitably applied to the manufacture of both a short-period grating and a long-period grating. The short-period grating has a pitch of about 1 m or less, and the long-period grating is a grating having a pitch of about several hundred m.
[第 2の実施形態]  [Second embodiment]
温度センサに好適に用いられ得るファイバグレーティングの製造方法およびそ のようなファイバグレーティングを用いた温度センサの実施形態を説明する。 ファイバ素線の表面が被覆層によって覆われた被覆型ファイバに形成されたグ レーティング (以下、 「被覆型ファイバグレーティング」 と呼ぶ。 ) の反射ビー ク波長の温度依存性を詳細に検討した結果、 パッケージ構造を必要とせず、 単純 な構造で、 極低温まで温度測定が可能な温度センサに好適に用いられ得るフアイ バグレーティングを製造できることを見出した。  A method of manufacturing a fiber grating that can be suitably used for a temperature sensor and an embodiment of a temperature sensor using such a fiber grating will be described. As a result of a detailed study of the temperature dependence of the reflection peak wavelength of a grating formed on a coated fiber whose surface is covered with a coating layer (hereinafter referred to as a “coated fiber grating”), It has been found that it is possible to manufacture a fiber bag rating that does not require a package structure and has a simple structure and can be suitably used for a temperature sensor capable of measuring a temperature up to an extremely low temperature.
被覆型ファイバグレーティングの被覆層は、 低温領域でファイバ素線を均一に 圧縮する。 ファイバ素線に形成されたグレーティングの反射ピーク波長は、 この 圧縮力の影響を受けシフ トする。 被覆層による圧縮力は、 主に、 ファイバ素線の 熱膨張係数と弾性率、および被覆層の弾性率、熱膨張係数と厚さによって決まる。 従って、 被覆層の材料を適宜選択し、 適切な厚さの被覆層を形成することによつ て、ファイバグレーティングの反射ピーク波長の温度変化に対する変化率(以下、 単に 「反射ピーク波長の温度係数」 と呼ぶこともある。 ) を所定値とすることが できる。 また、 被覆層は低温領域においてファイバ素線を均一に圧縮するので、 パッケージ構造のようにファイバに不均一な応力が印加されないので、 低温にお いても安定した機械強度を有する。 また、 パッケージ構造のセンサと異なり、 小 型で、 曲げることができるので、 様々な位置に配置することができる。 The coating layer of the coated fiber grating uniformly compresses the fiber at low temperatures. The reflection peak wavelength of the grating formed on the fiber strand is Shifts under the influence of compression force. The compressive force of the coating layer is mainly determined by the coefficient of thermal expansion and elastic modulus of the fiber strand, and the elastic modulus, coefficient of thermal expansion and thickness of the coating layer. Therefore, by appropriately selecting the material of the coating layer and forming the coating layer of an appropriate thickness, the rate of change of the reflection peak wavelength of the fiber grating with respect to temperature change (hereinafter simply referred to as the “temperature coefficient of the reflection peak wavelength”) ) May be set to a predetermined value. Further, since the coating layer uniformly compresses the fiber in the low temperature region, non-uniform stress is not applied to the fiber unlike the package structure, so that the coating has stable mechanical strength even at a low temperature. Also, unlike a packaged sensor, it is small and can be bent, so it can be placed in various locations.
さらに、 被覆層の材料および厚さを適宜設定することによって、 グレーティン グの反射ピーク波長の温度係数が、 広い温度範囲 (特に、 室温以上の温度から極 低温まで) に亘つて一定値にすることができる。 このように、 グレーティングの 反射ピーク波長の温度係数が広い範囲で一定であると、 広い温度範囲を容易に測 定することができる。 また、 被覆層による応力に起因するグレーティングの反射 ピーク波長の温度係数の変化が、 ファイバグレーティングの反射ビーク波長の温 度係数の外的歪み等の他要因に起因する変化を相殺するように、 被覆層を形成す ることが可能で、 簡便に温度が測定できる温度センサが得られる。  In addition, by appropriately setting the material and thickness of the coating layer, the temperature coefficient of the reflection peak wavelength of the grating is kept constant over a wide temperature range (particularly from a temperature above room temperature to a very low temperature). be able to. As described above, when the temperature coefficient of the reflection peak wavelength of the grating is constant over a wide range, a wide temperature range can be easily measured. The change in the temperature coefficient of the reflection peak wavelength of the grating caused by the stress caused by the coating layer offsets the change caused by other factors such as external distortion of the temperature coefficient of the reflection beak wavelength of the fiber grating. A layer can be formed, and a temperature sensor that can easily measure the temperature can be obtained.
上述のように、 極低温から室温以上の広い温度範囲に亘つて一定の温度係数で 表せされる温度依存性を示すことが好ましいが、 複数の温度範囲のそれぞれの温 度範囲において一定の温度係数を有せば、それそれの温度係数が異なってもよい。 すなわち、 反射ピーク波長の温度依存性を連続する複数の直線で近似できれば、 直線で近似できるそれそれの温度範囲の温度を簡便に測定できる温度センサが得 られる。 それそれの温度範囲は広いほうが好ましいが、 測定の対象の温度範囲や 要求される測定精度等を考慮して、 適宜設定すればよい。  As described above, it is preferable to exhibit a temperature dependency expressed by a constant temperature coefficient over a wide temperature range from extremely low temperature to room temperature or higher.However, a constant temperature coefficient is shown in each of a plurality of temperature ranges. , The respective temperature coefficients may be different. That is, if the temperature dependence of the reflection peak wavelength can be approximated by a plurality of continuous straight lines, a temperature sensor that can easily measure the temperature in each temperature range that can be approximated by a straight line can be obtained. It is preferable that the temperature range of each is wide, but it may be set appropriately in consideration of the temperature range of the object to be measured and the required measurement accuracy.
本実施形態のファイバグレーティングも、 実施形態 1と同様に、 コア 2および クラッ ド 3を有する光ファイバ素線 1 ' の表面を被覆層 4で覆った光ファイバ心 線 1を用いて形成される。  Similarly to the first embodiment, the fiber grating of the present embodiment is formed by using the optical fiber 1 in which the surface of the optical fiber 1 ′ having the core 2 and the clad 3 is covered with the coating layer 4.
コア 2としては、 実施形態 1と同様に、 通常仕様の光ファイバと同等濃度の G eに加え、 S n、 或いは、 3 ]1及び八 1、 もしくは、 S n、 A 1及び Bのドーパ ン卜を添加したものを用いることが光誘起屈折率変化を定常的に高める上で好ま しい。 As the core 2, similarly to the first embodiment, in addition to Ge having the same concentration as that of the optical fiber of the normal specification, the dope of Sn, or 3] 1 and 81, or Sn, A 1 and B is used. It is preferable to use a material to which the light is added in order to constantly increase the photoinduced refractive index change.
被覆層 4は上記光ファィバ素線 1 ' の線引き工程に引き続いてシングルコ一 トにより形成される。 被覆層 4を形成する材料および被覆層 4の厚さは、 グレー ティングの反射ピーク波長の温度係数が所定の値となるように、 材料の選択およ び厚さの決定が行わる。 熱膨張係数の大きな被覆層 4を用いることによって、 グ レーティングの反射ピーク波長の温度係数を大きくできるし、 また、 逆に、 熱膨 張係数の小さな被覆層 4を用いることによって、 グレーティングの反射ピーク波 長の温度係数を小さくできる。 また、 被覆層 4の厚さを制御することによって、 被覆層 4による反射ピーク波長の温度係数に対する寄与の程度を変えることがで きる。  The coating layer 4 is formed by a single coating following the step of drawing the optical fiber 1 '. The material for forming the coating layer 4 and the thickness of the coating layer 4 are selected and the thickness is determined so that the temperature coefficient of the reflection peak wavelength of the grating becomes a predetermined value. By using the coating layer 4 having a large coefficient of thermal expansion, the temperature coefficient of the reflection peak wavelength of the grating can be increased, and conversely, by using the coating layer 4 having a small coefficient of thermal expansion, the reflection peak of the grating can be increased. The temperature coefficient of the wavelength can be reduced. In addition, by controlling the thickness of the coating layer 4, the degree of contribution of the reflection peak wavelength by the coating layer 4 to the temperature coefficient can be changed.
この被覆層設計工程は、 光ファイバ素線 1 ' の弾性率 (ヤング率 E ) 、 熱膨張 係数 (線熱膨張係数ひ) 、 屈折率の温度係数 (熱光学係数 ) 、 および被覆層の 材料の弾性率 (ヤング率) 、 熱膨張係数 (線熱膨張係数) に基づいて、 ファイバ グレーティングを用いて測定する温度範囲におけるグレーティングの反射ピーク 波長の温度係数が所定の値となるように、 材料の選択および被覆層の厚さの決定 を行う。 典型的には、 ファイバグレーティングの反射ピーク波長の温度係数が、 室温以上の温度 (例えば 1 Ί 0 °C) から極低温 (例えば— 1 9 6 °C ) まで、 一定 値となるように設計する。 被覆層 4を形成する材料は、 実施形態 1と同様に、 紫 外線透過型紫外線硬化樹脂を用いることが好ましい。  This coating layer design process includes the elastic modulus (Young's modulus E), thermal expansion coefficient (linear thermal expansion coefficient), temperature coefficient of refractive index (thermo-optic coefficient), and material of the coating layer of the optical fiber 1 '. Material selection based on elastic modulus (Young's modulus) and thermal expansion coefficient (linear thermal expansion coefficient), so that the temperature coefficient of the reflection peak wavelength of the grating in the temperature range measured using the fiber grating becomes a predetermined value. And the thickness of the coating layer is determined. Typically, the fiber grating is designed so that the temperature coefficient of the reflection peak wavelength is constant from a temperature above room temperature (for example, 1 10 ° C) to a very low temperature (for example, -196 ° C). . As a material for forming the coating layer 4, it is preferable to use an ultraviolet ray transmitting type ultraviolet curable resin as in the first embodiment.
グレ一ティングの書き込み工程は、 図 3に示したファイバグレーティング作製 装置を用いて、 ファイク 心線 1に張力 (または歪み) を印加しながら実施するこ とによって、 グレーティングの反射ピーク波長のシフト量を制御することができ る。 なお、 紫外線照射によるグレーティング 2 1の書き込み自体は周知の種々の 方法を採用して行えばよく、 上記の図 3は例えば位相マスク法により行う場合を 例にとって示したものである。  The writing process of the grating is performed while applying tension (or strain) to the fiber core 1 using the fiber grating manufacturing apparatus shown in FIG. 3 to reduce the shift amount of the reflection peak wavelength of the grating. Can be controlled. It should be noted that the writing itself of the grating 21 by ultraviolet irradiation may be performed by using various well-known methods, and FIG. 3 shows an example in which the writing is performed by, for example, a phase mask method.
以下、 具体例を用いて本実施形態を説明する。  Hereinafter, the present embodiment will be described using a specific example.
ファイバ素線 1, として、 G eと S nとを共ドープした石英ガラス系ファイバ を用いた (直径: 1 2 5 z m、 熱膨張係数: 0 . 5 5 X 1 0— 6 (常温) Zd e g、 弾性率: 73 GP a (常温) ) 。 このファイバ素線の比屈折率差 (△) は 0. 9 7%、 カツ トオフ波長 (人 c) は 1. 27〃m、 Sn濃度は 15、 000 p p m であった。 ファイバ素線 1 ' の表面をグレ一ティング書き込み用の紫外線に対す る透過率が高い紫外線透過型 UV硬化樹脂を用いて被覆し、被覆層 4を形成した。 本具体例においては、 波長約 240 nm〜約 270 nmの紫外線に対する透過率 が約 10%以上の脂肪族系ウレタンァクリレート (光重合開始剤: 2, 4, 6 , 一トリメチルベンゾィルジフエニルホスフィンォキサイ ド) を用いて、 厚さ約 3 7. 5〃mの被覆層 4 (単層 :両側で厚さ約 75〃m) を形成することによって 被覆ファイバ心線 (被覆外径約 200 m) を得た。 この被覆層 4の熱膨張係数 は 1 X 10"4/d e g、 弾性率は 54 OMP a (常温) である。 得られた被覆型 ファイバ心線 1の光誘起屈折率変化を大きくするために、 被覆型ファイバ心線 1 を約 2 OMP aの高圧水素ガス中に約 2週間放置し、 水素充填処理を施した。 上記被覆ファイバ心線に、 位相マスク法を用いてグレ一ティングの書き込みを 行った。 グレーティングの書き込みには、 図 3に示したファイバグレーティング 作製装置を用いた。 ファイバ心線 1に張力を印加せず (具体例 1) 、 およびファ ィバ心線 1の軸方向に張力 (3. 9 N) を印加しながら (具体例 2) 、 Nd-Y AGレーザの 4倍波 ( 266 nm:強度 10 mW) を掃引照射 (約 22 mm) し た。 なお、 反射ピーク波長の反射レベルが同じになるように、 レーザの照射時間 を調節した。 具体例 1の反射ピーク波長は、 25°Cで 1 544. 4 nm、 具体例 2の反射ピーク波長は、 25°〇で 1539. 4 nmであった。 また、 上記の方法 で作製された具体例 1および具体例 2のファイバグレーティングの被覆層を除去 したものをそれそれ比較例 1および比較例 2とした。 Fiber 1 as,, and G e and S n using a co-doped quartz glass-based fiber (diameter: 1 2 5 zm, thermal expansion coefficient:. 0 5 5 X 1 0- 6 ( room temperature) Zd eg , Modulus: 73 GPa (room temperature)). The relative refractive index difference (△) of this fiber was 0.97%, the cut-off wavelength (person c) was 1.27〃m, and the Sn concentration was 15,000 ppm. The surface of the fiber strand 1 ′ was coated with a UV-transmissive UV-curable resin having a high transmittance to ultraviolet rays for the writing of a grating to form a coating layer 4. In this specific example, an aliphatic urethane acrylate having a transmittance of about 10% or more for ultraviolet rays having a wavelength of about 240 nm to about 270 nm (photopolymerization initiator: 2,4,6,1-trimethylbenzoyldiphne) By forming a coating layer 4 (single layer: thickness of about 75 μm on both sides) with a thickness of about 37.5 μm using enylphosphine oxide), 200 m). The thermal expansion coefficient of the coating layer 4 is 1 × 10 " 4 / deg, and the elastic modulus is 54 OMPa (normal temperature). In order to increase the photoinduced refractive index change of the obtained coated fiber core 1, The coated fiber core 1 was left in a high-pressure hydrogen gas of about 2 OMPa for about 2 weeks, and was filled with hydrogen.Grating was written on the coated fiber core using the phase mask method. The writing of the grating was performed using the fiber grating manufacturing apparatus shown in Fig. 3. No tension was applied to the fiber core 1 (concrete example 1), and the tension was applied in the axial direction of the fiber core 1 ( While applying 3.9 N) (Specific Example 2), a fourth harmonic (266 nm, intensity 10 mW) of the Nd-YAG laser was swept and irradiated (about 22 mm). The laser irradiation time was adjusted so that the levels were the same. The length was 154.4 nm at 25 ° C., and the reflection peak wavelength of Example 2 was 1539.4 nm at 25 ° C. Further, Example 1 and Example 2 produced by the above method The fiber gratings from which the coating layer was removed were referred to as Comparative Examples 1 and 2, respectively.
これら具体例 1、 2および比較例 1、 2のファイバグレーティングの反射ピー ク波長の温度依存性を測定した結果を図 1 1に示す。  FIG. 11 shows the results of measuring the temperature dependence of the reflection peak wavelengths of the fiber gratings of Examples 1 and 2 and Comparative Examples 1 and 2.
図 1 1から明らかなように、 具体例 1のファイバグレーティングの反射ピーク 波長は、 約— 70°Cから約 170°Cまでほぼ直線的に変化し、 その傾き (温度係 数: ΔλΒ/ΔΤ) は、 0. 0 12 nm/°Cであった。 また、 この温度係数は、 比較例 1の反射ビーク波長の— 20°C〜+60°Cにおける温度係数と同じであつ た。 さらに、 具体例 1の室温 (ここでは 20°C) から— 1 96°Cまでの温度依存 性は、 良好に直線に近似でき、 温度係数は 0. 0 1 3 nm/°Cであった。 なお、 ここでは室温を 20°Cとした力 これに限られず、 「室温」 はファイバの雰囲気 温度 (温度測定の対象以外の領域の温度、 作業環境の温度) を指す。 As is clear from Fig. 11, the reflection peak wavelength of the fiber grating of Example 1 changes almost linearly from about -70 ° C to about 170 ° C, and its slope (temperature coefficient: ΔλΒ / ΔΤ) Was 0.012 nm / ° C. Further, this temperature coefficient was the same as the temperature coefficient of the reflection beak wavelength of Comparative Example 1 at −20 ° C. to + 60 ° C. Furthermore, the temperature dependence from the room temperature of Example 1 (here, 20 ° C) to -196 ° C The property was well approximated by a straight line, and the temperature coefficient was 0.013 nm / ° C. Note that here, the force at room temperature of 20 ° C is not limited to this, but “room temperature” refers to the ambient temperature of the fiber (the temperature of the area other than the temperature measurement target, the temperature of the working environment).
具体例 1および具体例 2の— 70°C〜一 1 96°C (液体窒素温度) の反射ピー ク波長の温度係数は、 直線に近似すると、 それそれ、 0. O l l nm/^ (、 0. 0 13 nm/°Cであり、 高温側の温度係数 (0. 0 12 nm/°C) に近い値を示 している。 なお、 例えば、 具体例 1について、 被覆層の厚さを厚くするまたは被 覆層の弾性率を大きくすることによって、低温側の温度係数を大きくできるので、 広い温度範囲 (例えば、 ― 1 96°C〜十 170°C) に亘つて単一の温度係数 (こ こでは Δ ΐΒ/ΔΤ = 0. 0 12 nm/°C) で良好に近似できる反射ピーク波長 の温度依存性を有するファイバグレーティングを得ることができる。  The temperature coefficient of the reflected peak wavelength from -70 ° C to 1-96 ° C (liquid nitrogen temperature) in Specific Examples 1 and 2 can be approximated by a straight line. 0.013 nm / ° C, which is a value close to the temperature coefficient on the high temperature side (0.012 nm / ° C). By increasing the thickness or increasing the elastic modulus of the coating layer, the temperature coefficient on the low temperature side can be increased, so that a single temperature coefficient can be obtained over a wide temperature range (for example, -196 ° C to 10170 ° C). (Here, ΔΐΒ / ΔΤ = 0.012 nm / ° C), and a fiber grating with a temperature dependence of the reflection peak wavelength that can be approximated well can be obtained.
これに対して、 比較例 1の低温側 (約一 75 °C以下) における反射ピーク波長 の温度係数 ( 0. 005 nm/°C) は、 高温側の温度係数 ( 0. 0 1 2 nm/°C) よりもかなり小さくなつており、 高温側と異なる温度依存性を示している。 低温 側における温度係数の低下は比較例 2についてもみられる。 この現象は、 グレー ティングを形成するコァの屈折率の温度変化が低温側で小さくなつていることに 起因すると考えらる。  On the other hand, the temperature coefficient (0.005 nm / ° C) of the reflection peak wavelength on the low temperature side (approximately −75 ° C or less) of Comparative Example 1 is the temperature coefficient (0.012 nm / ° C), indicating a different temperature dependence from the high temperature side. A decrease in the temperature coefficient on the low temperature side is also observed in Comparative Example 2. This phenomenon is thought to be due to the fact that the temperature change of the refractive index of the core forming the grating becomes smaller on the low temperature side.
本実施形態による具体例 1および 2のグレ一ティングにおいては、 低温になる ほど大きくなる、 被覆層がファイバ素線 (コア) に与える圧縮応力の大きさを制 御することによって、低温側における反射ピーク波長の温度係数を調整している。 低温側の温度係数の調整は、 上述したように、 高温側の温度係数と一致するよう に調整するのではなく、 用途によっては、 温度係数を大きくするように調整して もよい。 温度係数が大きいということは、 温度の測定感度が高いことを意味する ので、 極低温 (例えば、 一 10 o°c以下) の温度を正確に測定することが要求さ れる場合には、低温側の温度係数を大きくするように、被覆層を設計すればよい。 例えば、 — 100°C以下の温度範囲における温度係数は、 0. 0 1 nm/°Cより も大きいことが好ましい。  In the gratings of Examples 1 and 2 according to the present embodiment, the reflection at the low temperature side is controlled by controlling the magnitude of the compressive stress applied to the fiber by the coating layer, which increases as the temperature decreases. The temperature coefficient of the peak wavelength is adjusted. As described above, the adjustment of the temperature coefficient on the low temperature side is not performed so as to match the temperature coefficient on the high temperature side, but may be adjusted so as to increase the temperature coefficient depending on the application. A large temperature coefficient means high temperature measurement sensitivity, so if accurate measurement of cryogenic temperatures (for example, less than 10 oC) is required, May be designed so as to increase the temperature coefficient of the coating layer. For example, the temperature coefficient in a temperature range of −100 ° C. or less is preferably larger than 0.01 nm / ° C.
また、 反射ピーク波長の温度依存性を単一の温度係数で表せる (直線に近似で きる)と、測定された波長から簡単に温度を求めることができるので好ましいが、 単一の温度係数で表せなくても、 例えば、 図 1 1に示したようなグラフ、 すなわ ち検量線をあらかじめ作成し、 測定したファイバグレーティングの反射ピーク波 長と検量線から温度を求めればよい。 In addition, it is preferable that the temperature dependence of the reflection peak wavelength be expressed by a single temperature coefficient (it can be approximated by a straight line), because the temperature can be easily obtained from the measured wavelength. Even if it cannot be expressed by a single temperature coefficient, for example, if a graph as shown in Fig. 11, that is, a calibration curve is created in advance, and the temperature is determined from the measured reflection peak wavelength of the fiber grating and the calibration curve, Good.
図 1 2は、 本実施形態によるファイバグレーティングを用いた温度センサ 5 0 の実施形態を模式的に示す。  FIG. 12 schematically shows an embodiment of a temperature sensor 50 using a fiber grating according to the present embodiment.
温度センサ 5 0は、 グレーティング 2 1が形成された光ファイバ 1と、 光ファ ィバ 1に光を出射する光源 5 2と、グレーティング 2 1からの反射光を受け取り、 反射光の波長を検出する光スぺクトラムアナライザ 5 8とを有している。 また、 必要に応じて、 光源 5 2から出射される光から特定波長の光を選択するために光 アイソレー夕 5 4を設けてもよい。 さらに、 光源 5 2からグレーティング 2 1に 光を送る光路と、 グレーティング 2 1から反射された光を光スぺク トラムアナラ ィザ 5 8に導く光路とを結合するために、 光カップラ 5 6を設けてもよい。  The temperature sensor 50 receives the reflected light from the optical fiber 1 on which the grating 21 is formed, the light source 52 for emitting light to the optical fiber 1, and the grating 21 and detects the wavelength of the reflected light. An optical spectrum analyzer 58 is provided. If necessary, an optical isolator 54 may be provided to select light having a specific wavelength from the light emitted from the light source 52. Further, an optical coupler 56 is provided to couple an optical path for transmitting light from the light source 52 to the grating 21 and an optical path for guiding the light reflected from the grating 21 to the optical spectrum analyzer 58. You may.
グレーティング 2 1 aおよび 2 1 bが形成されたファイノ 1は、 例えば、 液化 メタンガス (一 1 8 3 °C) を充填されたタンク 6 0内に配置されている。 グレー ティング 2 1 aと 2 1 bとは、 上述した張力印加法を用いて形成されており、 互 いに異なる反射ピーク波長を有する。 従って、 反射ピーク波長を検出することに よって、 グレーティング 2 1 aおよび 2 1 bのいずれからの反射光であるかを判 別するこが可能となる。 従って、 複数のグレーティングを形成した 1本のフアイ バを用いることによって、 異なる位置の温度を簡便に測定することができる。 勿 論、 グレーティングを複数設け無くてもよい。  The fino 1 on which the gratings 21a and 21b are formed is arranged, for example, in a tank 60 filled with liquefied methane gas (1183 ° C). The gratings 21a and 21b are formed using the above-described tension application method, and have mutually different reflection peak wavelengths. Therefore, by detecting the reflection peak wavelength, it is possible to determine which of the gratings 21a and 21b is the reflected light. Therefore, by using one fiber having a plurality of gratings, it is possible to easily measure temperatures at different positions. Of course, it is not necessary to provide a plurality of gratings.
また、 本実施形態の温度センサはファイバを固定するパッケージ構造を有さな いので、 曲面や狭い場所等に簡便に設置することができる。 さらに、 ファイバは 被覆されているので、 機械的強度が高く、 特に低温においても破壊されることが ない。従って、本実施形態の温度センサは、上述の液化天然ガスタンクのように、 低温で湾曲した面の温度測定するための温度センサとして好適に用いられる。 産業上の利用可能性  Further, since the temperature sensor of the present embodiment does not have a package structure for fixing the fiber, it can be easily installed on a curved surface, a narrow place, or the like. In addition, the coated fiber has high mechanical strength and does not break, especially at low temperatures. Therefore, the temperature sensor of the present embodiment is suitably used as a temperature sensor for measuring the temperature of a curved surface at a low temperature like the above-mentioned liquefied natural gas tank. Industrial applicability
本発明によれば、 グレーティング書き込みに際して、 コアを軸方向に歪ませる ことによって、 紫外線に対するフォトセンシティビティが高まるために、 紫外線 照射による屈折率変化の速度が速まる。 このため、 書き込み作業の要する時間を 短縮できる。 According to the present invention, when the grating is written, the core is distorted in the axial direction, thereby increasing the photosensitivity to ultraviolet light. The rate of change of the refractive index due to irradiation increases. Therefore, the time required for the writing operation can be reduced.
書き込み時にコアに印加していた張力を開放すると、 屈折率増加が促進される ため、 上記の印加張力よりも小さい張力を与えた状態でファイバグレーティング を使用すれば、 グレーティング作製時の反射率よりも高い反射率を実現すること ができる。  If the tension applied to the core at the time of writing is released, the increase in the refractive index is promoted.If the fiber grating is used with a tension smaller than the above applied tension, the reflectance will be higher than the reflectance when the grating is manufactured. High reflectivity can be realized.
また、 本発明によれば、 被覆型ファイバに形成されたグレーティングの反射ピ ーク波長の温度係数を所望の値に調整することができるので、 パッケージ構造を 必要とせず、 単純な構造で、 極低温まで温度測定が可能な温度センサに好適に用 いられ得るファイバグレ一ティングを製造することができる。  Further, according to the present invention, the temperature coefficient of the reflection peak wavelength of the grating formed on the coated fiber can be adjusted to a desired value. Therefore, a package structure is not required, and a simple structure is realized. A fiber grating that can be suitably used for a temperature sensor capable of measuring a temperature down to a low temperature can be manufactured.
さらに、 低温における温度係数を調整することによって、 低温を高感度で測定 可能な温度センサや、 高温から極低温までの広い温度範囲を簡便に測定できる温 度センサに用いられるファイバグレーティングを製造することができる。  Furthermore, by adjusting the temperature coefficient at low temperatures, manufacturing fiber gratings used in temperature sensors that can measure low temperatures with high sensitivity and temperature sensors that can easily measure a wide temperature range from high to extremely low temperatures. Can be.

Claims

請 求 の 範 囲 The scope of the claims
1 . グレーティングが書き込まれるべきコアと前記コアを囲むクラッドとを 備えたファイバの外周面を紫外線透過型樹脂から形成した被覆層で覆う工程と、 紫外線を前記被覆層の外側から前記コアに対して照射することによって前記コ ァにグレーティングを書き込む工程と  1. a step of covering an outer peripheral surface of a fiber having a core on which a grating is to be written and a clad surrounding the core with a coating layer formed of an ultraviolet-transmissive resin, and applying ultraviolet light to the core from outside the coating layer. Writing a grating in the core by irradiating;
を包含するファイバグレーティ ングの製造方法であって、 A method for producing a fiber grating, comprising:
前記グレーティングを前記コアに書き込む工程において、 前記コアを軸方向に + 0 . 8 %以上 + 6 %以下の歪みが生じている状態にして、 その状態で前記コア に前記紫外線を照射することを特徴とするファイバグレーティングの製造方法。  In the step of writing the grating on the core, the core is irradiated with the ultraviolet rays in a state where a distortion of + 0.8% or more and + 6% or less is generated in the axial direction. A method for manufacturing a fiber grating.
2 . 前記グレーティングを前記コアに書き込む工程において、 前記コアに対 して軸方向張力を与えながら前記グレーティングの書き込みを実行することを特 徴とする請求項 1に記載のファイバグレーティングの製造方法。  2. The method for manufacturing a fiber grating according to claim 1, wherein, in the step of writing the grating on the core, the writing of the grating is performed while applying an axial tension to the core.
3 . 前記グレーティ ングの書き込みを実行した後、 前記軸方向張力を開放す ることを特徴とする請求項 2に記載のファイバグレーティングの製造方法。  3. The method according to claim 2, wherein the axial tension is released after the writing of the grating is performed.
4 . 請求項 1から 3のいずれかひとつに記載のファイバグレ一ティングの製 造方法によって製造されたファイバグレーティングと、  4. A fiber grating manufactured by the fiber grating manufacturing method according to any one of claims 1 to 3,
前記ファイバグレーティングを支持する手段と  Means for supporting the fiber grating;
を備えた光通信用コンポーネント。  Component for optical communication with.
5 . 前記ファイバグレーティングを支持する手段は、 前記グレーティングを 前記コアに書き込む工程において前記コアに与えられた軸方向歪みよりも小さな 歪みが生じるようにして前記ファイバグレーティングを支持することを特徴とす る請求項 4に記載の光通信用コンポーネント。  5. The means for supporting the fiber grating is characterized in that the fiber grating is supported such that in the step of writing the grating into the core, a strain smaller than an axial strain applied to the core is generated. The optical communication component according to claim 4.
6 . コアおよびクラッ ドを有するファイバ素線と、 前記ファイバ素線の表面 を覆う被覆層とを有するファイバグレーティングの製造方法であって、  6. A method for producing a fiber grating, comprising: a fiber strand having a core and a cladding; and a coating layer covering a surface of the fiber strand,
ファイバ素線を用意する工程と、  A step of preparing a fiber strand;
前記ファイバ素線の表面を覆う被覆層を樹脂材料を用いて形成する工程と、 前記被覆層を形成する工程の前に、 製造するグレーティングティングの反射ビ 一ク波長の温度変化に対する変化率が所定値となるように、 前記樹脂材料の選定 および前記被覆層の厚さの設定を行う被覆層設計工程と、 を包含するファイバグレ一ティングの製造方法。 A step of forming a coating layer covering the surface of the fiber strand by using a resin material; and before the step of forming the coating layer, a rate of change of the reflection peak wavelength of the grating to be manufactured with respect to temperature change is predetermined. A coating layer design step of selecting the resin material and setting the thickness of the coating layer so as to be a value; A method for producing fiber gratings, comprising:
7 . 前記被覆層設計工程は、 ファイバ素線の弾性率および熱膨張係数、 な らびに前記樹脂材料の弾性率および熱膨張係数に基づいて、 前記樹脂材料の選定 および前記被覆層の厚さの設定を行う工程である請求項 6に記載のファイバグレ 一ティングの製造方法。  7. The coating layer designing step includes selecting the resin material and determining the thickness of the coating layer based on the elastic modulus and thermal expansion coefficient of the fiber strand and the elastic modulus and thermal expansion coefficient of the resin material. 7. The method for manufacturing a fiber grating according to claim 6, which is a step of setting.
8 . 前記反射ピーク波長の温度変化に対する変化率は、 _ 1 9 6 °C〜十 1 7 0 °Cの範囲で一定である請求項 6または 7に記載のファイバグレーティングの 製造方法。  8. The method for manufacturing a fiber grating according to claim 6, wherein a rate of change of the reflection peak wavelength with respect to a temperature change is constant in a range of _196 ° C to 110 ° C.
9 . 前記反射ピーク波長の温度変化に対する変化率は、 被覆されていない 前記ファイバ素線に形成されたグレーティングの反射ピーク波長の— 2 0 °C〜+ 6 0 °Cにおける温度変化に対する変化率と同じである請求項 8に記載のファイバ グレ一ティングの製造方法。  9. The rate of change of the reflection peak wavelength with respect to temperature change is the rate of change of the reflection peak wavelength of the grating formed on the uncoated fiber strand with respect to the temperature change at −20 ° C. to + 60 ° C. 9. The method for producing fiber gratings according to claim 8, which is the same.
1 0 . コアおよびクラッ ドを有するファイバ素線と、 前記ファイバ素線の 表面を覆う被覆層とを有するファイバグレーティングと、 前記ファイバグレーテ ィングに光を出射する光源と、 前記ファイバグレーティングからの反射光を受け 取り、前記反射光のピーク波長を検出する検出器とを有する温度センサであって、 前記反射光のピーク波長の温度変化に対する変化率は、 一 1 9 6 °C〜十 1 7 0 °Cの範囲で一定である温度センサ。  10. A fiber grating having a core fiber having a core and a clad, a coating layer covering the surface of the core fiber, a light source for emitting light to the fiber grating, and a reflected light from the fiber grating And a detector for detecting the peak wavelength of the reflected light, wherein the rate of change of the peak wavelength of the reflected light with respect to temperature change is from 1196 ° C to 110 ° C. Temperature sensor that is constant in the range of C.
PCT/JP2000/004219 1999-06-29 2000-06-27 Method for making fiber grating, component for optical communication, and temperature sensor WO2001001174A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/183612 1999-06-29
JP11183612A JP2001013333A (en) 1999-06-29 1999-06-29 Production of fiber grating and component for optical communication
JP11220826A JP2001042142A (en) 1999-08-04 1999-08-04 Manufacture of fiber grating and temperature sensor using fiber grating
JP11/220826 1999-08-04

Publications (1)

Publication Number Publication Date
WO2001001174A1 true WO2001001174A1 (en) 2001-01-04

Family

ID=26501977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004219 WO2001001174A1 (en) 1999-06-29 2000-06-27 Method for making fiber grating, component for optical communication, and temperature sensor

Country Status (1)

Country Link
WO (1) WO2001001174A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169028A (en) * 2011-01-20 2011-08-31 中国电力科学研究院 System for measuring temperature in thyristor in real time
RU2695286C1 (en) * 2018-12-17 2019-07-22 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Device for creation of periodic structures of refraction index inside transparent materials

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010151A1 (en) * 1989-12-26 1991-07-11 United Technologies Corporation Incorporated bragg filter temperature compensated optical waveguide device
WO1992008999A1 (en) * 1990-11-08 1992-05-29 British Telecommunications Public Limited Company Method of forming optical fibre gratings
EP0650083A2 (en) * 1993-10-22 1995-04-26 AT&T Corp. Optical fiber package
JPH08286056A (en) * 1995-04-18 1996-11-01 Sumitomo Electric Ind Ltd Method and device for producing fiber grating
JPH08286040A (en) * 1995-04-17 1996-11-01 Sumitomo Electric Ind Ltd Optical fiber type diffraction grating
WO1997014983A1 (en) * 1995-10-16 1997-04-24 Sumitomo Electric Industries, Ltd. Optical fiber diffraction grating, production method thereof and laser light source
JPH1082919A (en) * 1996-07-15 1998-03-31 Sumitomo Electric Ind Ltd Formation of fiber grating and optical fiber
WO1999027399A1 (en) * 1997-11-26 1999-06-03 Mitsubishi Cable Industries, Ltd. Fiber grating, its manufacturing method and its manufacturing device
WO2000000858A1 (en) * 1998-06-26 2000-01-06 The Furukawa Electric Co., Ltd. Method for forming fiber grating and fiber grating formed by the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010151A1 (en) * 1989-12-26 1991-07-11 United Technologies Corporation Incorporated bragg filter temperature compensated optical waveguide device
WO1992008999A1 (en) * 1990-11-08 1992-05-29 British Telecommunications Public Limited Company Method of forming optical fibre gratings
EP0650083A2 (en) * 1993-10-22 1995-04-26 AT&T Corp. Optical fiber package
JPH08286040A (en) * 1995-04-17 1996-11-01 Sumitomo Electric Ind Ltd Optical fiber type diffraction grating
JPH08286056A (en) * 1995-04-18 1996-11-01 Sumitomo Electric Ind Ltd Method and device for producing fiber grating
WO1997014983A1 (en) * 1995-10-16 1997-04-24 Sumitomo Electric Industries, Ltd. Optical fiber diffraction grating, production method thereof and laser light source
JPH1082919A (en) * 1996-07-15 1998-03-31 Sumitomo Electric Ind Ltd Formation of fiber grating and optical fiber
WO1999027399A1 (en) * 1997-11-26 1999-06-03 Mitsubishi Cable Industries, Ltd. Fiber grating, its manufacturing method and its manufacturing device
WO2000000858A1 (en) * 1998-06-26 2000-01-06 The Furukawa Electric Co., Ltd. Method for forming fiber grating and fiber grating formed by the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUPTA S. ET AL.: "Fiber bragg grating cryogenic temperature sensors", APPLIED OPTICS, vol. 35, no. 25, 1 September 1996 (1996-09-01), pages 5202 - 5205, XP002931799 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169028A (en) * 2011-01-20 2011-08-31 中国电力科学研究院 System for measuring temperature in thyristor in real time
RU2695286C1 (en) * 2018-12-17 2019-07-22 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Device for creation of periodic structures of refraction index inside transparent materials

Similar Documents

Publication Publication Date Title
US6751380B1 (en) Fiber grating and method and apparatus for fabricating the same
Thomas et al. Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology
US10845533B2 (en) Writing of high mechanical strength fiber bragg gratings using ultrafast pulses and a phase mask
CA2504765C (en) Optical fiber sensor based on retro-reflective fiber bragg gratings
US6568220B1 (en) Method of fabricating optical fiber gratings maximizing residual mechanical stress in the optical fibers
Geernaert et al. Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers
US20030002795A1 (en) Fiber bragg grating fabrication method
WO1994019713A1 (en) Optical waveguide grating
JPH1082919A (en) Formation of fiber grating and optical fiber
JP2000089045A (en) Manufacture of fiber grating and manufacturing device
WO2001001174A1 (en) Method for making fiber grating, component for optical communication, and temperature sensor
WO2002077683A2 (en) Method of forming a grating in a waveguide
JP2001042142A (en) Manufacture of fiber grating and temperature sensor using fiber grating
JPH11305051A (en) Production of fiber grating and the fiber grating
JP2001013333A (en) Production of fiber grating and component for optical communication
JP2000258641A (en) Production of fiber grating
US20220283540A1 (en) Volume bragg grating in a cylindrical bulk medium
JPH11160554A (en) Fiber grating
JP2007114534A (en) Manufacturing device for fiber bragg grating
JP3860038B2 (en) Manufacturing method of optical fiber grating
Yang et al. Hermetic sealing of long period fiber gratings
JP2000258642A (en) Optical fiber suitable for measurement of strain with high resolution and method for measurement of physical quantity
Zhou et al. Femtosecond laser inscription of phase-shifted grating by post-processing
Harun et al. Fabrication of fiber Bragg gratings in high germania boron co-doped optical fiber by the phase mask method
JP2000089013A (en) Manufacture of fiber grating

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase