WO2001001058A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2001001058A1
WO2001001058A1 PCT/JP2000/001808 JP0001808W WO0101058A1 WO 2001001058 A1 WO2001001058 A1 WO 2001001058A1 JP 0001808 W JP0001808 W JP 0001808W WO 0101058 A1 WO0101058 A1 WO 0101058A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
tank
tube element
fin
pair
Prior art date
Application number
PCT/JP2000/001808
Other languages
French (fr)
Japanese (ja)
Inventor
Kunihiko Nishishita
Original Assignee
Zexel Valeo Climate Control Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corporation filed Critical Zexel Valeo Climate Control Corporation
Publication of WO2001001058A1 publication Critical patent/WO2001001058A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins

Definitions

  • the present invention relates to a heat exchanger having a fin formed in a corrugated shape, which is used for a refrigeration cycle mounted on a vehicle, and particularly used as an evaporator.
  • Japanese Patent Application Laid-Open No. 7-167578 discloses a laminated heat exchanger in which the width of a fin in the ventilation direction is 50 mm or more and 65 mm or less.
  • the best fin that balances heat exchange efficiency and airflow resistance is a fin height FH of 7.0 mm or more.
  • the reference discloses that the fin is 9.0 mm or less, the fin pitch FP is 2.0 mm or more and 3.6 mm or less, and the fin thickness is 0.06 mm or more and 0.10 mm or less. .
  • the surface of the heat exchanger is coated with a corrosion-resistant film, and a hydrophilic film is further coated thereon. Then, the drainage of the condensed water adhering to the fins is reduced, and conversely, the heat exchange efficiency is reduced and the condensed water freezes, so that the fin pitch cannot be reduced.
  • an object of the present invention is to provide a heat exchanger having a reduced width without deteriorating the performance of the heat exchanger. Disclosure of the invention
  • the present invention has at least a tube element through which a refrigerant flows, and a corrugated fin disposed between the tube elements, wherein the corrugated fin has a vent portion in contact with the tube element, and one of the tube elements And a flat portion located between the vent portion in contact with the other tube element, and the flat portion includes a plurality of loops extending in a direction perpendicular to the ventilation direction.
  • the width of the heat exchanger in the ventilation direction of the air flowing through the corrugated fin is formed within a range of 30 mm or more and 57 mm or less, and
  • the louver tilt angle should be between 28 ° and 55 °.
  • the fin pitch between the bent portion contacting one of the tube elements and the next bent portion contacting the one tube element can obtain the maximum value of the above factor at about 3.8 mm, and
  • the desired condition can be satisfied in the range of about 3.0 mm or more and 5.0 mm or less, and the fin height can obtain the maximum value of the above factor in about 7.5 mm and about 5.0 mm.
  • the desired condition can be satisfied within the range of m or more and 9.5 mm or less. Further, it is desirable to set the fin height so that the interval between the tube elements is formed corresponding to the fin height.
  • a distance between an end of the louver and the tube element is in a range of about 0.2 mm or more and 1.5 mm or less.
  • the thickness of the corrugated fin is 0.09 mm or more and 0.2 mm or less.
  • the heat exchanger includes a tube element having a pair of tank portions formed at at least one end in the longitudinal direction and a refrigerant passage communicating with the tank portions, and a corrugate disposed between the tube element.
  • the present invention can be applied to the case of a stacked heat exchanger formed by alternately stacking fins.
  • the tube element may include a pair of upper tank portions formed at one longitudinal end, a pair of lower tank portions formed at the other longitudinal end, and one of the upper tank portions.
  • a double-tank heat exchanger having a first refrigerant passage communicating with one of the lower tank portions and a second refrigerant passage communicating with the other of the upper tank portion and the other of the lower ink portion may be provided.
  • the tube element may be a single-tank heat exchanger having a pair of tank portions formed at one end in the longitudinal direction and a U-shaped passage communicating the pair of tank portions.
  • FIG. 1 is a front view showing a heat exchanger according to an embodiment of the present invention, which is a one-tank stacked heat exchanger, and (b) of FIG. 1 is a side view thereof.
  • FIG. 2 (a) is a front view showing the fin height Fh of the fin
  • FIG. 2 (b) is a cross-sectional view thereof
  • FIG. 3 is the fin lever angle.
  • FIG. 4 is a schematic side view showing the fin pitch Fp, the fin height Fp, and the distance Dr between the end of the lever and the top of the vent.
  • Fig. 5 is a characteristic diagram showing the relationship between the louver angle Ra and the heat exchanger capacity Fa, and Fig.
  • FIG. 6 is a graph showing the relationship between the fin pitch Fp and the heat exchanger capacity Fa.
  • FIG. 7 is a characteristic diagram showing a relationship between the fin height Fh and the heat exchanger capacity Fa
  • FIG. 8 is a ventilation direction of the heat exchanger.
  • Width Cw and heat exchanger capacity F a A characteristic diagram showing the relationship
  • FIG. 9 is a heat exchanger according to the embodiment of the present invention, is a perspective view showing a laminated heat exchanger of the two-tank.
  • the heat exchanger 1 shown in FIGS. 1 (a) and 1 (b) is a one-tank laminated heat exchanger, and includes a pair of tank portions 2 and 2 formed at one longitudinal end, and the pair of tank portions. It is composed of a plurality of tube elements 4 each including a refrigerant passage portion 3 communicating with each other, and a corrugated fin 5 disposed between the refrigerant passage portions 3 of the tube element 4.
  • end plates 6 and 6 are disposed at both ends of the tube element 4 and the fin 5 in the stacking direction, and are located substantially at the center in the stacking direction.
  • the tube element 4 ′ is formed by connecting the tank portion 2 in the laminating direction. It has a blind tank section 2 'that divides one of the pair of tank groups 7, 7 into two tank blocks 7A, 7B.
  • an inlet-side mounting portion 8 for mounting a refrigerant inflow pipe (not shown) is formed extending from the tank portion 2 along the direction of air flow.
  • an outlet-side mounting portion 9 for mounting a refrigerant outflow pipe (not shown) is formed extending from the tank portion 2 along the direction of air flow.
  • the refrigerant flowing into the tank block 7A from the inflow pipe mounted on the inlet-side mounting portion 8 flows through the refrigerant flow path 3 into the tank group 7 on the other side, and flows through the tank group 7.
  • the refrigerant having moved through the other tank group 7 passes through the refrigerant flow path 3 and moves to the tank block 7B, and flows out to the refrigerant outflow pipe mounted on the outlet side mounting portion 9. It is.
  • the width Cw in the ventilation direction is within the range of 30 mm or more and 57 mm or less in order to save the space of the air conditioner itself and the space of the vehicle itself. It is desired to be formed. And, in the present embodiment, the width C w of the heat exchanger 1 is formed as 40 mm.
  • the fins 5 are connected to the vent portions 1 la and 11 b which are in contact with the refrigerant flow path portion 3 of the tube element 4 and to one of the tube elements 4. It has a flat portion 12 located between the contacting vent portion 11a and the vent portion 11b contacting the other tube element 4, and corresponds to a portion between the refrigerant flow passage portions 3 of the adjacent tube elements 4.
  • the fin 5 has a predetermined fin height Fh and a fin bit Fp between the vertices of the vent portion 11a to be in contact with the one tube element 4.
  • the fin 5 is formed with a plurality of loopers 10 extending vertically in the ventilation direction, which are cut and raised in order in the ventilation direction, and the air passing along the fins 5 is transmitted to the looper 10.
  • the fins 5 can pass along the fins 5 so as to intersect, so increasing the inclination angle (louver angle) Ra of the louver with respect to the flat portion 12 of the fins 5 can increase the heat exchange capacity.
  • the angle Ra is increased, the ventilation resistance is increased and the heat exchange capacity is reduced.
  • heat exchanger capacity Fa cooling performance / ventilation resistance
  • the characteristic diagram showing the relationship between the louver angle Ra and the heat exchanger capacity F a obtained by the experiment is shown in Fig. 5, and the maximum value is obtained when the louver angle Ra is approximately 42 °. It turns out that it becomes ability. Then, the range where the maximum capacity is 80% or more when the maximum capacity is 100% is defined as an appropriate range Ras of the louver angle Ra.
  • the proper range Ras is in the range from 28 ° to 55 ° according to the characteristic diagram shown in FIG.
  • the relationship between the fin pitch Fp and the heat exchanger capacity Fa obtained by an experiment is shown in FIG. 6, in which the fin pitch Fp is about 4.0 mm. It can be seen that the maximum capacity is obtained at the time. Assuming that the range in which the heat exchanger capacity Fa is 80% or more of the maximum is the appropriate range Fps of the fine pitch Fp, as in the case described above, the appropriate range Fps is as shown in FIG. According to the characteristic diagram shown by, it is 3.0 mm or more and 5.0 mm or less.
  • Fig. 7 shows that the maximum capacity is obtained when the fin height Fh is about 7.5 mm.
  • the appropriate range Fhs of the fin height Fh As in the case described above, the appropriate range Fhs is as shown in Fig. 6. According to the characteristic diagram, it becomes 5.0mm or more and 9.5mm or less.
  • the fin plate thickness Ft is preferably as thin as possible in a cost-like manner.
  • the fin plate thickness Ft needs to be more than a predetermined value. It is desirable to set it within the range of 09 mm or more and 0.2 mm or less.
  • the distance D r between the end of the louver 10 formed in the fin 5 and the top of the fin vents 11 a and 11 b is not less than 0.2 mm and not more than 1.5 mm It is desirable.
  • the distance Dr in this range, the drainage of the fin can be improved and the fin strength when the fin is formed in a corrugated shape can be maintained. Further, the joining property by brazing between the fin 5 and the tube element 4 can be improved.
  • the width Cw in the ventilation direction was set to 40 mm, but as shown in Fig. 8, the width in the ventilation direction was within the range of 30 mm to 57 mm. With the heat exchanger set to, the various appropriate ranges described above could be obtained.
  • a heat exchanger 30 shown in FIG. 9 shows another embodiment of the above-described heat exchanger 1, and the shape of the fin 5 and the shape of the louver 10 are the same as those of the heat exchanger 1. What can be used.
  • the heat exchanger 30 includes a pair of upper tank portions 31 and 32 formed at one longitudinal end and a pair of lower tank portions 33 and 3 formed at the other longitudinal end. 4, a first refrigerant flow path 35 communicating between one upper tank section 31 and one lower ink section 33, and a first refrigerant path 35 communicating with the other upper tank section 32 and the other lower tank section.
  • a plurality of tube elements 37 having a second refrigerant flow path 36 are provided, and the fins 5 satisfying the above-described conditions are arranged between the tube elements 37.
  • the width of the heat exchanger 30 along the ventilation direction can be formed to be 30 mm or more and 57 mm or less.
  • Reference numerals 44 are end plates disposed at both ends in the stacking direction.
  • the heat exchanger 30 is composed of four tank groups 38, 39, 40, 41 each having the tank sections 31, 32, 33, 34 communicating with each other in the stacking direction. It has.
  • a refrigerant inlet pipe 42 is connected to a first tank group 38 composed of one upper tank part 31 and a refrigerant outlet pipe is connected to a fourth sunset group 41 composed of the other upper tank part 32. 4 3 is communicated.
  • a second tank group 39 composed of one lower tank part 33 and a third tank group 40 composed of the other lower tank part 34 are formed at the end of the second tank group 39.
  • the opening 45, the bypass flow path 44, and the opening 46 formed at the end of the third tank group 40 communicate with each other.
  • the refrigerant flowing from the refrigerant inlet pipe 42 flows from the first tank group 38 to the first refrigerant flow path 35, flows to the second tank group 39, and flows into the bypass flow path. It flows into the third tank group 40 via the section 44, passes through the second refrigerant flow path 35, flows into the fourth tank group 41, and flows out from the refrigerant outlet pipe 43. Is what it is. Industrial applicability
  • the louver angle is set to 28 ° or more and 55 ° or less.
  • the fin pitch 3.0 mm or more Since the capacity of the heat exchanger can be maintained at a predetermined level or more even when the thickness is 0 mm or less, the drainage of the fins can be improved while maintaining the performance of the heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A heat exchanger having a width of 30 mm or longer to 57 mm or shorter in ventilating direction capable of eliminating such defects that, when the angle of a louver formed in a fin is varied in order to increase a heat exchange efficiency, though a cooling performance is increased when a louver angle is increased, a ventilating resistance is increased, wherein, based on an experiment to obtain a relationship between the louver angle and a factor (capacity of heat exchanger) indicated by the cooling performance/ventilating resistance carried out by varying the louver angle, the maximum value of the factor can be obtained when an inclination angle relative to a louver ventilating direction is approx. 42°, and an appropriate angle to meet the desired requirements (approx. 80% of the maximum value) is within the range of 28° or higher and 55° or lower.

Description

明 細 書 熱交換器 技術分野  Description Heat exchanger Technical field
この発明は、車両に搭載される冷凍サイクルに用いられ、特に蒸発器 として使用されるもので、コルゲ一ト状に形成されたフィンを有する熱 交換器に関する。 背景技術  The present invention relates to a heat exchanger having a fin formed in a corrugated shape, which is used for a refrigeration cycle mounted on a vehicle, and particularly used as an evaporator. Background art
従来の熱交換器として、特開平 7 - 1 67578号公報は、 フィ ンの 通風方向の幅が 50 mm以上 65 mm以下の積層型熱交換器を開示す る。この通風方向の幅が 50 mm以上 6 5 mm以下の積層型熱交換器に おいて、熱交換効率と通気抵抗とが折り合う最適なフィ ンは、 フィ ンの 高さ FHが 7. 0 mm以上 9. 0 mm以下であり、 フィ ンピッチ F Pが 2. 0mm以上 3. 6 mm以下であり且つフィ ン厚さが 0. 06 mm以 上 0. 10mm以下であるフィンであることを引例は開示する。  As a conventional heat exchanger, Japanese Patent Application Laid-Open No. 7-167578 discloses a laminated heat exchanger in which the width of a fin in the ventilation direction is 50 mm or more and 65 mm or less. In a stacked heat exchanger with a width in the ventilation direction of 50 mm or more and 65 mm or less, the best fin that balances heat exchange efficiency and airflow resistance is a fin height FH of 7.0 mm or more. The reference discloses that the fin is 9.0 mm or less, the fin pitch FP is 2.0 mm or more and 3.6 mm or less, and the fin thickness is 0.06 mm or more and 0.10 mm or less. .
しかしながら、上述したような積層型熱交換器において、熱交換器表 面は耐食性皮膜が被覆され、さらにその上に親水性皮膜が被覆されるが、 熱交換効率を向上させるためにフィ ンビツチを狭くすると、フィ ンに付 着する結露水の水はけ性が低下し、逆に熱交換効率が低下したり、結露 水の凍結するという不具合を生じるので、フィンピッチを小さくできな いという不具合が生じる。  However, in the above-described stacked heat exchanger, the surface of the heat exchanger is coated with a corrosion-resistant film, and a hydrophilic film is further coated thereon. Then, the drainage of the condensed water adhering to the fins is reduced, and conversely, the heat exchange efficiency is reduced and the condensed water freezes, so that the fin pitch cannot be reduced.
また、 近年、 熱交換器の小型化、 薄幅化の要求が強くなる反面、 冷媒 として二酸化炭素を使用する冷凍サイクルに用いたり、また冷暖房サイ クルにように、蒸発器を凝縮器として使用する場合から、高圧に耐えう るような構造が望まれるようになつている。 In recent years, while demands for downsizing and thinning of heat exchangers have become stronger, they have been used in refrigeration cycles that use carbon dioxide as refrigerant, and evaporators have been used as condensers, as in cooling and heating cycles. Withstand high pressure from time to time Such a structure is being desired.
以上のことから、この発明は、熱交換器の性能を低下させることなく、 薄幅化を達成した熱交換器を提供することにある。 発明の開示  In view of the above, an object of the present invention is to provide a heat exchanger having a reduced width without deteriorating the performance of the heat exchanger. Disclosure of the invention
したがって、 この発明は、 少なくとも冷媒が流れるチューブエレメン トと、 該チューブエレメント間に配されるコルゲートフィ ンとを有し、 該コルゲ一トフインが、 前記チューブエレメントと当接するベント部、 一方のチューブエレメントに当接するベント部及び他方のチューブェ レメントに当接するベント部の間に位置するフラッ ト部からなり、前記 フラッ ト部には、通風方向に対して垂直となる方向に延出する複数のル ーバが、通風方向に順に形成される熱交換器において、前記コルゲート フィンを流れる空気の通風方向における熱交換器の幅を 3 0 mm以上 5 7 m m以下の範囲内で形成すると共に、通風方向に対するルーバの傾 斜角度を、 2 8 ° 以上 5 5 ° 以下とすることにある。  Therefore, the present invention has at least a tube element through which a refrigerant flows, and a corrugated fin disposed between the tube elements, wherein the corrugated fin has a vent portion in contact with the tube element, and one of the tube elements And a flat portion located between the vent portion in contact with the other tube element, and the flat portion includes a plurality of loops extending in a direction perpendicular to the ventilation direction. In the heat exchanger formed in order in the ventilation direction, the width of the heat exchanger in the ventilation direction of the air flowing through the corrugated fin is formed within a range of 30 mm or more and 57 mm or less, and The louver tilt angle should be between 28 ° and 55 °.
通風方向における幅が 3 0 mm以上 5 7 mm以下の熱交換器におい て、熱交換効率を向上させるために、 フィ ンに形成されたルーバの角度 を変化させた場合、 ルーバ角度を増加させると冷房性能が構造するが、 通気抵抗が増加するという不具合も生じる。 このため、ルーバ角度を変 化させて、ルーバ角度と冷房性能/通気抵抗で示される因子(冷房能力 に比例し、通気抵抗に反比例する)との関係を求める実験を行つた結果、 ルーバの通風方向に対する傾斜角度が 4 2。 前後である時に上記因子 の最大値を求めることができ、 さらに所望の条件 (前記最大値の略 8 0 % )を満たす範囲として 2 8 ° 以上 5 5 ° 以下の範囲を設定すること ができた。  In a heat exchanger with a width in the ventilation direction of 30 mm or more and 57 mm or less, if the angle of the louver formed on the fin is changed to increase the heat exchange efficiency, the louver angle may be increased. Although the cooling performance is structured, there is a problem that the ventilation resistance increases. For this reason, we conducted experiments to change the louver angle and to determine the relationship between the louver angle and the factor indicated by cooling performance / airflow resistance (proportional to cooling capacity and inversely proportional to airflow resistance). The angle of inclination to the direction is 42. The maximum value of the above factors could be obtained before and after, and a range from 28 ° to 55 ° could be set as a range satisfying the desired condition (about 80% of the maximum value). .
また、 フィンピッチと上述した因子の関係を求める実験において、一 方のチューブエレメントと当接する折曲部と一方のチューブエレメン トと当接する次の折曲部との間のフィンピッチは、略 3 . 8 mmにおい て前記因子の最大値を得ることができると共に略 3 . 0 m m以上 5 . 0 m m以下の範囲において所望の条件を満たすことができ、フィン高さで は、略 7 . 5 m mにおいて前記因子の最大値を得ることができると共に 略 5 . 0 m 以上 9 . 5 mm以下の範囲内において所望の条件を満たす ことができるものである。 また、 フィン高さを設定することにより、 前 記チューブエレメント間の間隔をこのフィン高さに対応して形成する ことが望ましい。 In experiments to determine the relationship between the fin pitch and the factors described above, The fin pitch between the bent portion contacting one of the tube elements and the next bent portion contacting the one tube element can obtain the maximum value of the above factor at about 3.8 mm, and The desired condition can be satisfied in the range of about 3.0 mm or more and 5.0 mm or less, and the fin height can obtain the maximum value of the above factor in about 7.5 mm and about 5.0 mm. The desired condition can be satisfied within the range of m or more and 9.5 mm or less. Further, it is desirable to set the fin height so that the interval between the tube elements is formed corresponding to the fin height.
さらに、前記ルーバを形成するに当り、前記ル一バの端部と前記チュ —ブエレメントの間の距離を、 略 0 . 2 mm以上 1 . 5 m m以下の範囲 内とすることが望ましく、 また、 前記コルゲートフィ ンの板厚を、 0 . 0 9 mm以上 0 . 2 mm以下とすることが望ましい。  Further, in forming the louver, it is desirable that a distance between an end of the louver and the tube element is in a range of about 0.2 mm or more and 1.5 mm or less. Preferably, the thickness of the corrugated fin is 0.09 mm or more and 0.2 mm or less.
以上の条件は、前記熱交換器が、 長手方向の少なくとも一端に形成さ れた一対のタンク部及び該タンク部を連通する冷媒通路を有するチュ ーブエレメントと、該チューブェレメント間に配されるコルゲートフィ ンとを交互に積層して形成された積層型熱交換器である場合に適用可 能である。  The above conditions are satisfied when the heat exchanger includes a tube element having a pair of tank portions formed at at least one end in the longitudinal direction and a refrigerant passage communicating with the tank portions, and a corrugate disposed between the tube element. The present invention can be applied to the case of a stacked heat exchanger formed by alternately stacking fins.
また、 前記積層型熱交換器は、 前記チューブエレメントが、 長手方向 一端に形成された一対の上部タンク部、長手方向他端に形成された一対 の下部タンク部、前記上部タンク部の一方と前記下部タンク部の一方と を連通する第 1の冷媒通路及び前記上部タンク部の他方と前記下部夕 ンク部の他方とを連通する第 2の冷媒通路を有する両タンク型熱交換 器であっても良く、 さらに、 前記チューブエレメントが、 長手方向一端 に形成された一対のタンク部及び該一対のタンク部を連通する U字型 通路を有する片タンク型熱交換器であってもよいものである。 図面の簡単な説明 Further, in the laminated heat exchanger, the tube element may include a pair of upper tank portions formed at one longitudinal end, a pair of lower tank portions formed at the other longitudinal end, and one of the upper tank portions. A double-tank heat exchanger having a first refrigerant passage communicating with one of the lower tank portions and a second refrigerant passage communicating with the other of the upper tank portion and the other of the lower ink portion may be provided. Further, the tube element may be a single-tank heat exchanger having a pair of tank portions formed at one end in the longitudinal direction and a U-shaped passage communicating the pair of tank portions. BRIEF DESCRIPTION OF THE FIGURES
第 1図の (a)はこの発明の実施の形態に係る熱交換器で、 片タンク の積層型熱交換器を示した正面図であり、 第 1図の (b)はその側面図 であり、 第 2図の (a)は、 フィ ンのフィン高さ Fhを示した正面図で あり、 第 2図の (b) はその断面図であり、 第 3図は、 フィンのル一バ 角度 R aを示した一部拡大断面図であり、第 4図は、フィンピッチ Fp、 フィン高さ F p、及びル一バ端部とベント部頂点との間の距離 D rを示 した概略側面図であり、第 5図は、ルーバ角度 R aと熱交換器能力 F a との関係を示した特性線図であり、第 6図は、 フィ ンピッチ Fpと熱交 換器能力 F aとの関係を示した特性線図であり、第 7図は、 フィ ン高さ Fhと熱交換器能力 F aとの関係を示した特性線図であり、 第 8図は、 熱交換器の通風方向の幅 Cwと熱交換器能力 F aとの関係を示した特 性線図であり、 第 9図は、 この発明の実施の形態に係る熱交換器で、 両 タンク型の積層型熱交換器を示した斜視図である。 発明を実施するための最良の形態  (A) of FIG. 1 is a front view showing a heat exchanger according to an embodiment of the present invention, which is a one-tank stacked heat exchanger, and (b) of FIG. 1 is a side view thereof. FIG. 2 (a) is a front view showing the fin height Fh of the fin, FIG. 2 (b) is a cross-sectional view thereof, and FIG. 3 is the fin lever angle. FIG. 4 is a schematic side view showing the fin pitch Fp, the fin height Fp, and the distance Dr between the end of the lever and the top of the vent. Fig. 5 is a characteristic diagram showing the relationship between the louver angle Ra and the heat exchanger capacity Fa, and Fig. 6 is a graph showing the relationship between the fin pitch Fp and the heat exchanger capacity Fa. FIG. 7 is a characteristic diagram showing a relationship between the fin height Fh and the heat exchanger capacity Fa, and FIG. 8 is a ventilation direction of the heat exchanger. Width Cw and heat exchanger capacity F a A characteristic diagram showing the relationship, FIG. 9 is a heat exchanger according to the embodiment of the present invention, is a perspective view showing a laminated heat exchanger of the two-tank. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の形態について図面により説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1図 (a), (b) に示す熱交換器 1は、 片タンクの積層型熱交換器 であり、 長手方向一端に形成された一対のタンク部 2, 2と、 該一対の タンク部 2 , 2を連通する冷媒通路部 3とからなる複数のチューブエレ メント 4と、該チューブエレメント 4の冷媒通路部 3間に配されるコル ゲート状のフィ ン 5とによって構成される。 尚、 図 1 (a), (b)で示 す熱交換器 1は、チューブエレメント 4とフィ ン 5との積層方向両端に エンドプレート 6 , 6が配され、積層方向の略中央に位置するチューブ エレメント 4 ' は、前記タンク部 2が積層方向に連通されて形成された 一対のタンク群 7, 7の一方を 2つのタンクブロック 7 A , 7 Bに分割 する盲タンク部 2 ' を有する。 The heat exchanger 1 shown in FIGS. 1 (a) and 1 (b) is a one-tank laminated heat exchanger, and includes a pair of tank portions 2 and 2 formed at one longitudinal end, and the pair of tank portions. It is composed of a plurality of tube elements 4 each including a refrigerant passage portion 3 communicating with each other, and a corrugated fin 5 disposed between the refrigerant passage portions 3 of the tube element 4. In the heat exchanger 1 shown in FIGS. 1 (a) and 1 (b), end plates 6 and 6 are disposed at both ends of the tube element 4 and the fin 5 in the stacking direction, and are located substantially at the center in the stacking direction. The tube element 4 ′ is formed by connecting the tank portion 2 in the laminating direction. It has a blind tank section 2 'that divides one of the pair of tank groups 7, 7 into two tank blocks 7A, 7B.
そして、前記タンクプロック 7 Aの略中央には、冷媒の流入パイプ(図 示せず)を装着するための入口側装着部 8が前記タンク部 2から空気の 通風方向に沿って延出して形成され、また前記夕ンクブロック 7 Bの略 中央には、 冷媒の流出パイプ(図示せず) を装着するために出口側装着 部 9が前記タンク部 2から空気の通風方向に沿って延出して形成され る o  At an approximate center of the tank block 7A, an inlet-side mounting portion 8 for mounting a refrigerant inflow pipe (not shown) is formed extending from the tank portion 2 along the direction of air flow. At the approximate center of the evening block 7B, an outlet-side mounting portion 9 for mounting a refrigerant outflow pipe (not shown) is formed extending from the tank portion 2 along the direction of air flow. O
これによつて、入口側装着部 8に装着された流入パイブからタンクブ ロック 7 Aに流入した冷媒は、冷媒流路 3を介して他方の側のタンク群 7に流れ、 このタンク群 7内を移動する。 そして、 他方のタンク群 7を 移動した冷媒は、 冷媒流路 3を通過してタンクプロック 7 Bに移動し、 出口側装着部 9に装着された冷媒の流出パイプに流れ出るようになつ ているものである。  As a result, the refrigerant flowing into the tank block 7A from the inflow pipe mounted on the inlet-side mounting portion 8 flows through the refrigerant flow path 3 into the tank group 7 on the other side, and flows through the tank group 7. Moving. Then, the refrigerant having moved through the other tank group 7 passes through the refrigerant flow path 3 and moves to the tank block 7B, and flows out to the refrigerant outflow pipe mounted on the outlet side mounting portion 9. It is.
以上の構成の熱交換器 1において、空調装置自体の省スペース化や車 両自体の省スペース化に対応して、通風方向の幅 C wが、 3 0 m m以上 5 7 m m以下の範囲内に形成されることが要望される。そして、 本実施 の形態においては、 熱交換器 1の幅 C wは 4 0 m mとして形成される。 前記フィン 5は、第 2図乃至第 4図に示すように、チューブエレメン ト 4の冷媒流路部 3に当接接合されるベント部 1 l a , 1 1 bと、一方 のチューブエレメント 4に当接するベント部 1 1 aと他方のチューブ エレメント 4に当接するベント部 1 1 bとの間に位置するフラッ ト部 1 2とを有し、隣合うチューブエレメント 4の冷媒流路部 3間に相当す る所定のフィン高さ F hと、前記一方のチューブエレメント 4と当接接 合される前記ベント部 1 1 aの頂点間であるフィンビツチ F pとを有 する。 また、 前記フィ ン 5には、 通風方向に垂直に延出するルーパ 1 0が、 通風方向に順に複数切起こされて形成されており、フィン 5に沿って通 過する空気がルーパ 1 0に沿ってフィン 5を交差するように通過する ことができるので、フィン 5のフラッ ト部 1 2に対するル一バの傾斜角 度(ルーバ角度) R aを増加させると熱交換能力を上昇させることがで きるものであるが、反面、ル一バ角度 R aを大きくすると通風抵抗が大 きくなり、 熱交換能力は低下する。 In the heat exchanger 1 with the above configuration, the width Cw in the ventilation direction is within the range of 30 mm or more and 57 mm or less in order to save the space of the air conditioner itself and the space of the vehicle itself. It is desired to be formed. And, in the present embodiment, the width C w of the heat exchanger 1 is formed as 40 mm. As shown in FIGS. 2 to 4, the fins 5 are connected to the vent portions 1 la and 11 b which are in contact with the refrigerant flow path portion 3 of the tube element 4 and to one of the tube elements 4. It has a flat portion 12 located between the contacting vent portion 11a and the vent portion 11b contacting the other tube element 4, and corresponds to a portion between the refrigerant flow passage portions 3 of the adjacent tube elements 4. It has a predetermined fin height Fh and a fin bit Fp between the vertices of the vent portion 11a to be in contact with the one tube element 4. Further, the fin 5 is formed with a plurality of loopers 10 extending vertically in the ventilation direction, which are cut and raised in order in the ventilation direction, and the air passing along the fins 5 is transmitted to the looper 10. The fins 5 can pass along the fins 5 so as to intersect, so increasing the inclination angle (louver angle) Ra of the louver with respect to the flat portion 12 of the fins 5 can increase the heat exchange capacity. On the other hand, if the angle Ra is increased, the ventilation resistance is increased and the heat exchange capacity is reduced.
以上のことから、通風方向の幅が 4 0 m mの熱交換器において、ル一 バ角度 R aを変化させて実験し、冷房性能示す因子と通風抵抗を示す因 子を求め、 これらの因子から熱交換器の総合的な能力を示す因子(熱交 換器能力) F aを求めた (F a =冷房性能/通風抵抗)。 尚、 この熱交 換器能力 F aは、 冷房能力に比例し、 通風抵抗に反比例する。  Based on the above, in a heat exchanger with a width of 40 mm in the ventilation direction, experiments were performed with varying the roof angle Ra, and the factors indicating the cooling performance and the factors indicating the ventilation resistance were determined.From these factors, The factor indicating the overall capacity of the heat exchanger (heat exchanger capacity) Fa was determined (Fa = cooling performance / ventilation resistance). The heat exchanger capacity Fa is proportional to the cooling capacity and inversely proportional to the ventilation resistance.
実験によって求められたこのル一バ角度 R aと熱交換器能力 F aと の関係を示す特性線図は、第 5図に示すものであり、ルーバ角度 R aが 略 4 2 ° の時に最大能力となることがわかる。そして、 この最大能力を 1 0 0 %とした場合に 8 0 %以上となる範囲を、ルーバ角度 R aの適正 範囲 R a sとした。 そして、 その適正範囲 R a sは、 前記図 5で示す特 性線図より、 2 8 ° 以上 5 5 ° 以下の範囲である。  The characteristic diagram showing the relationship between the louver angle Ra and the heat exchanger capacity F a obtained by the experiment is shown in Fig. 5, and the maximum value is obtained when the louver angle Ra is approximately 42 °. It turns out that it becomes ability. Then, the range where the maximum capacity is 80% or more when the maximum capacity is 100% is defined as an appropriate range Ras of the louver angle Ra. The proper range Ras is in the range from 28 ° to 55 ° according to the characteristic diagram shown in FIG.
また、 同様に、前記フィンピッチ F pと前記熱交換器能力 F aとの関 係を実験によって求めたものが、第 6図で示すものであり、 フィ ンピッ チ F pが約 4 . 0 m mの時に最大能力となることがわかる。 そして、 前 述した場合と同様に熱交換器能力 F aが最大時の 8 0 %以上となる範 囲をフィ ンピッチ F pの適正範囲 F p sとすると、その適正範囲 F p s は、 第 6図で示す前記特性線図より、 3 . 0 mm以上 5 . 0 m m以下と なる。  Similarly, the relationship between the fin pitch Fp and the heat exchanger capacity Fa obtained by an experiment is shown in FIG. 6, in which the fin pitch Fp is about 4.0 mm. It can be seen that the maximum capacity is obtained at the time. Assuming that the range in which the heat exchanger capacity Fa is 80% or more of the maximum is the appropriate range Fps of the fine pitch Fp, as in the case described above, the appropriate range Fps is as shown in FIG. According to the characteristic diagram shown by, it is 3.0 mm or more and 5.0 mm or less.
さらに、前記フィン高さ F hと前記熱交換器能力 F aとの関係を実験 によって求めたものが、第 7図で示すものであり、 フィ ン高さ Fhが約 7. 5 mmの時に最大能力となることがわかる。 そして、 前述した場合 と同様に熱交換器能力 F aが最大時の 80%以上となる範囲をフィン 高さ Fhの適正範囲 Fh sとすると、 その適正範囲 Fh sは、 図 6で示 す前記特性線図より、 5. 0mm以上 9. 5mm以下となる。 また、 こ のフィ ン高さ F hに合わせて、隣合うチューブエレメント 4の冷媒流路 部 3間の幅を形成する必要がある。 Further, the relationship between the fin height F h and the heat exchanger capacity F a was tested. Fig. 7 shows that the maximum capacity is obtained when the fin height Fh is about 7.5 mm. Assuming that the range where the heat exchanger capacity Fa is 80% or more of the maximum is the appropriate range Fhs of the fin height Fh, as in the case described above, the appropriate range Fhs is as shown in Fig. 6. According to the characteristic diagram, it becomes 5.0mm or more and 9.5mm or less. In addition, it is necessary to form a width between the refrigerant flow paths 3 of the adjacent tube elements 4 in accordance with the fin height Fh.
また、 フィン板厚さ F tに関しては、 コス ト状薄ければ薄いほど好ま しいが、フィン強度を高めるためには所定以上の厚さを必要とするので、 フィ ン板厚さ F tを 0. 09 mm以上 0. 2 mm以下の範囲内に設定す ることが望ましい。さらに、 フィ ン 5に形成されるルーバ 1 0の端部と フィンのベント部 1 1 a, 1 1 bの頂点との間の距離 D rは、 0. 2 m m以上 1. 5 mm以下とすることが望ましい。前記距離 D rをこの範囲 に設定することによって、フィ ンの水はけ性を向上できると共にフィン をコルゲート状に形成する場合のフィ ン強度を保持できるものである。 またフィ ン 5とチューブエレメント 4との間のろう付けによる接合性 を向上できるものである。  Further, the fin plate thickness Ft is preferably as thin as possible in a cost-like manner. However, in order to increase the fin strength, the fin plate thickness Ft needs to be more than a predetermined value. It is desirable to set it within the range of 09 mm or more and 0.2 mm or less. Further, the distance D r between the end of the louver 10 formed in the fin 5 and the top of the fin vents 11 a and 11 b is not less than 0.2 mm and not more than 1.5 mm It is desirable. By setting the distance Dr in this range, the drainage of the fin can be improved and the fin strength when the fin is formed in a corrugated shape can be maintained. Further, the joining property by brazing between the fin 5 and the tube element 4 can be improved.
以上の熱交換器 1は、前述したように通風方向の幅 Cwを 40 mmと して設定したが、第 8図に示すように、通風方向の幅が 30 mm以上 5 7 mm以下の範囲内に設定した熱交換器において前述した種々の適正 範囲を得ることができた。  As described above, in the heat exchanger 1, the width Cw in the ventilation direction was set to 40 mm, but as shown in Fig. 8, the width in the ventilation direction was within the range of 30 mm to 57 mm. With the heat exchanger set to, the various appropriate ranges described above could be obtained.
第 9図に示す熱交換器 30は、上述した熱交換器 1の別の実施の形態 を示すものであり、上記フィ ン 5の形状及びルーバ 1 0の形状を前記熱 交換器 1と同様に使用することができるものである。  A heat exchanger 30 shown in FIG. 9 shows another embodiment of the above-described heat exchanger 1, and the shape of the fin 5 and the shape of the louver 10 are the same as those of the heat exchanger 1. What can be used.
この熱交換器 30は、長手方向一端に形成された一対の上部夕ンク部 3 1 , 32と、 長手方向他端に形成された一対の下部タンク部 33, 3 4と、一方の上部タンク部 3 1と一方の下部夕ンク部 3 3とを連通する 第 1の冷媒流路 3 5と、他方の上部タンク部 3 2と他方の下部タンク部 とを連通する第 2の冷媒流路 3 6とを有する複数のチューブエレメン ト 3 7を有し、このチューブエレメント 3 7の間に前述して条件のフィ ン 5が配されるものである。 これによつて、 この熱交換器 3 0の通風方 向に沿った幅を、 3 0 m m以上 5 7 m m以下に形成することができるも のである。尚、 4 4は、積層方向両端に配されるェンドプレートである。 尚、 この熱交換器 3 0は、 前記タンク部 3 1, 3 2, 3 3, 3 4が積 層方向に連通して構成された 4つのタンク群 3 8, 3 9 , 4 0, 4 1を 有する。一方の上部タンク部 3 1からなる第 1のタンク群 3 8には冷媒 入口パイプ 4 2が連通され、他方の上部タンク部 3 2からなる第 4の夕 ンク群 4 1には、 冷媒出口パイプ 4 3が連通される。 また、 一方の下部 タンク部 3 3からなる第 2のタンク群 3 9と他方の下部タンク部 3 4 からなる第 3のタンク群 4 0は、第 2のタンク群 3 9の端部に形成され た開口部 4 5、迂回流路部 4 4及び第 3のタンク群 4 0の端部形成され た開口部 4 6を介して連通される。 The heat exchanger 30 includes a pair of upper tank portions 31 and 32 formed at one longitudinal end and a pair of lower tank portions 33 and 3 formed at the other longitudinal end. 4, a first refrigerant flow path 35 communicating between one upper tank section 31 and one lower ink section 33, and a first refrigerant path 35 communicating with the other upper tank section 32 and the other lower tank section. A plurality of tube elements 37 having a second refrigerant flow path 36 are provided, and the fins 5 satisfying the above-described conditions are arranged between the tube elements 37. Thus, the width of the heat exchanger 30 along the ventilation direction can be formed to be 30 mm or more and 57 mm or less. Reference numerals 44 are end plates disposed at both ends in the stacking direction. The heat exchanger 30 is composed of four tank groups 38, 39, 40, 41 each having the tank sections 31, 32, 33, 34 communicating with each other in the stacking direction. It has. A refrigerant inlet pipe 42 is connected to a first tank group 38 composed of one upper tank part 31 and a refrigerant outlet pipe is connected to a fourth sunset group 41 composed of the other upper tank part 32. 4 3 is communicated. A second tank group 39 composed of one lower tank part 33 and a third tank group 40 composed of the other lower tank part 34 are formed at the end of the second tank group 39. The opening 45, the bypass flow path 44, and the opening 46 formed at the end of the third tank group 40 communicate with each other.
以上の構成から、 冷媒入口パイプ 4 2から流入した冷媒は、第 1の夕 ンク群 3 8から第 1の冷媒流路 3 5を通過して第 2のタンク群 3 9に 流れ、迂回流路部 4 4を介して第 3のタンク群 4 0に流れ、第 2の冷媒 流路 3 5を通過して第 4のタンク群 4 1に流れ込み、冷媒出口パイプ 4 3から流出するようになっているものである。 産業上の利用可能性  With the above configuration, the refrigerant flowing from the refrigerant inlet pipe 42 flows from the first tank group 38 to the first refrigerant flow path 35, flows to the second tank group 39, and flows into the bypass flow path. It flows into the third tank group 40 via the section 44, passes through the second refrigerant flow path 35, flows into the fourth tank group 41, and flows out from the refrigerant outlet pipe 43. Is what it is. Industrial applicability
以上説明したように、 この発明によれば、通風方向の幅が 3 5 mm以 上 5 7 mm以下に形成された熱交換器において、ルーバの角度を 2 8 ° 以上 5 5 ° 以下にすることによって、フィンピッチを 3 . 0 m m以上 5 . 0 m m以下としても熱交換器の能力を所定以上に確保できるので、熱交 換器の能力を維持しつつフィンの水はけ性を良好にすることができる ものである。 As described above, according to the present invention, in a heat exchanger having a width in the ventilation direction of 35 mm or more and 57 mm or less, the louver angle is set to 28 ° or more and 55 ° or less. Depending on the fin pitch, 3.0 mm or more Since the capacity of the heat exchanger can be maintained at a predetermined level or more even when the thickness is 0 mm or less, the drainage of the fins can be improved while maintaining the performance of the heat exchanger.

Claims

請 求 の 範 囲 The scope of the claims
1 .少なく とも冷媒が流れるチューブエレメントと、該チューブエレメ ント間に配されるコルゲ一トフインとを有し、 該コルゲ一トフィンが、 前記チューブエレメントと当接するベント部、一方のチューブエレメン トに当接するベント部及び他方のチューブエレメントに当接するベン ト部の間に位置するフラッ ト部からなり、前記フラッ ト部には、通風方 向に対して垂直となる方向に延出する複数のルーバが、通風方向に順に 形成される熱交換器において、 1. At least a tube element through which a refrigerant flows and a corrugated fin disposed between the tube elements, wherein the corrugated fin is applied to one of the tube elements and a vent portion in contact with the tube element. A flat portion is provided between the vent portion in contact with the vent portion and the vent portion in contact with the other tube element, and the flat portion has a plurality of louvers extending in a direction perpendicular to the ventilation direction. , In a heat exchanger formed in order in the ventilation direction,
前記コルゲートフィンを流れる空気の通風方向における熱交換器の 幅を 3 0 mm以上 5 7 mm以下の範囲内で形成すると共に、  The width of the heat exchanger in the ventilation direction of the air flowing through the corrugated fin is formed within a range of 30 mm or more and 57 mm or less,
通風方向に対するル一バの傾斜角度を、 2 8 ° 以上 5 5 ° 以下とする ことを特徴とする熱交換器。  A heat exchanger characterized in that the inclination angle of the chamber with respect to the ventilation direction is in the range of 28 ° to 55 °.
2 .前記コルゲ一トフィンの各々において、 一方のチューブエレメント と当接する折曲部と一方のチューブエレメントと当接する次の折曲部 との間のフイ ンピッチを、 略 3 . 0 m m以上 5 . 0 m m以下とすること を特徴とする請求の範囲第 1項記載の熱交換器。  2. In each of the corrugated fins, the fine pitch between the bent portion in contact with one tube element and the next bent portion in contact with one tube element is approximately 3.0 mm or more and 5.0 or more. 2. The heat exchanger according to claim 1, wherein the diameter is not more than mm.
3 . 前記コルゲートフイ ンの各々において、 フィ ン高さを略 5 . 0 mm 以上 9 . 5 m m以下の範囲内に形成すると共に、前記チューブエレメン ト間の間隔をこのフィン高さに対応して形成することを特徴とする請 求の範囲第 1項または第 2項記載の熱交換器。  3. In each of the corrugated fins, the fin height is formed in a range of approximately 5.0 mm or more and 9.5 mm or less, and the interval between the tube elements is set corresponding to the fin height. 3. The heat exchanger according to claim 1, wherein the heat exchanger is formed.
4 . 前記ルーバの端部と前記チューブエレメントの間の距離を、 略 0 . 2 m m以上 1 . 5 m m以下の範囲内とすることを特徴とする請求の範囲 第 1項、 第 2項又は第 3項記載の熱交換器。  4. The distance between the end of the louver and the tube element is within a range of approximately 0.2 mm or more and 1.5 mm or less. The heat exchanger according to item 3.
5 . 前記コルゲートフィンの板厚を、 0 . 0 9 111111以上0 . 2 mm以下 とすることを特徴とする請求の範囲第 1項〜第 4項のいずれか一つに 記載の熱交換器。 5. The method according to any one of claims 1 to 4, wherein the plate thickness of the corrugated fin is not less than 0.09111111 and not more than 0.2 mm. The heat exchanger as described.
6 .前記熱交換器は、長手方向の少なく とも一端に形成された一対の夕 ンク部及び該タンク部を連通する冷媒通路を有するチューブエレメン トと、該チューブエレメント間に配されるコルゲートフィンとを交互に 積層して形成された積層型熱交換器であることを特徴とする請求の範 囲第 1項〜第 5項のいずれか一つに記載の熱交換器。  6. The heat exchanger includes a tube element having a pair of ink tanks formed at at least one end in the longitudinal direction and a refrigerant passage communicating with the tank, and a corrugated fin arranged between the tube elements. 6. The heat exchanger according to any one of claims 1 to 5, wherein the heat exchanger is a stacked heat exchanger formed by alternately stacking the heat exchangers.
7 .前記チューブエレメントが、長手方向一端に形成された一対の上部 タンク部、長手方向他端に形成された一対の下部タンク部、前記上部夕 ンク部の一方と前記下部タンク部の一方とを連通する第 1の冷媒通路 及び前記上部タンク部の他方と前記下部タンク部の他方とを連通する 第 2の冷媒通路を有する両タンク型熱交換器であることを特徴とする 請求の範囲第 6項記載の熱交換器。  7.The tube element includes a pair of upper tanks formed at one end in the longitudinal direction, a pair of lower tanks formed at the other end in the longitudinal direction, and one of the upper tank and one of the lower tanks. 7. A double-tank heat exchanger having a first refrigerant passage communicating therewith and a second refrigerant passage communicating the other of the upper tank portion and the other of the lower tank portion. The heat exchanger according to the item.
8 .前記チューブエレメントが、 長手方向一端に形成された一対の夕ン ク部及び該一対のタンク部を連通する U字型通路を有する片タンク型 熱交換器であることを特徴とする請求の範囲第 6項記載の熱交換器。  8. The tube element is a single-tank heat exchanger having a pair of neck portions formed at one longitudinal end and a U-shaped passage communicating the pair of tank portions. 7. The heat exchanger according to item 6, wherein
PCT/JP2000/001808 1999-06-30 2000-03-24 Heat exchanger WO2001001058A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11184555A JP2001012883A (en) 1999-06-30 1999-06-30 Heat exchanger
JP11/184555 1999-06-30

Publications (1)

Publication Number Publication Date
WO2001001058A1 true WO2001001058A1 (en) 2001-01-04

Family

ID=16155266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001808 WO2001001058A1 (en) 1999-06-30 2000-03-24 Heat exchanger

Country Status (2)

Country Link
JP (1) JP2001012883A (en)
WO (1) WO2001001058A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636070A (en) * 2012-04-28 2012-08-15 上海交通大学 Low thermal-resistance and low flow-resistance combined enhanced heat transfer fin and manufacturing method thereof
US8945884B2 (en) 2000-12-11 2015-02-03 Life Technologies Corporation Methods and compositions for synthesis of nucleic acid molecules using multiplerecognition sites

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918782B1 (en) * 2002-05-17 2009-09-23 한라공조주식회사 A fin of heat exchanger
DE10235038A1 (en) * 2002-07-31 2004-02-12 Behr Gmbh & Co. Flat-tube heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146756B2 (en) * 1978-11-21 1986-10-15 Nippon Denso Co
JPS63163788A (en) * 1986-12-26 1988-07-07 Matsushita Refrig Co Heat exchanger
JPH05106985A (en) * 1991-10-18 1993-04-27 Nippondenso Co Ltd Corrugated louver fin type heat exchanger
EP0650023A1 (en) * 1993-10-22 1995-04-26 Zexel Corporation Multilayered heat exchanger
JPH10220983A (en) * 1997-02-05 1998-08-21 Denso Corp Laminated type heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146756B2 (en) * 1978-11-21 1986-10-15 Nippon Denso Co
JPS63163788A (en) * 1986-12-26 1988-07-07 Matsushita Refrig Co Heat exchanger
JPH05106985A (en) * 1991-10-18 1993-04-27 Nippondenso Co Ltd Corrugated louver fin type heat exchanger
EP0650023A1 (en) * 1993-10-22 1995-04-26 Zexel Corporation Multilayered heat exchanger
JPH10220983A (en) * 1997-02-05 1998-08-21 Denso Corp Laminated type heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9309520B2 (en) 2000-08-21 2016-04-12 Life Technologies Corporation Methods and compositions for synthesis of nucleic acid molecules using multiple recognition sites
US8945884B2 (en) 2000-12-11 2015-02-03 Life Technologies Corporation Methods and compositions for synthesis of nucleic acid molecules using multiplerecognition sites
CN102636070A (en) * 2012-04-28 2012-08-15 上海交通大学 Low thermal-resistance and low flow-resistance combined enhanced heat transfer fin and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001012883A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
JP4122578B2 (en) Heat exchanger
US4712612A (en) Horizontal stack type evaporator
JP3814917B2 (en) Stacked evaporator
WO2004099695A1 (en) Heat exchanger
EP3875878B1 (en) Heat exchanger and refrigeration cycle device
US6431264B2 (en) Heat exchanger with fluid-phase change
JP2008267686A (en) Refrigerant evaporator
JP3965901B2 (en) Evaporator
JPH10325645A (en) Refrigerant evaporator
JP2003021432A (en) Condenser
WO2001006193A1 (en) Serpentine type heat exchanger
WO2001001058A1 (en) Heat exchanger
JP2002130973A (en) Heat exchanger
JP4731212B2 (en) Heat exchanger
JP2001324290A (en) Refrigerant evaporator
EP0935115A2 (en) Heat exchanger constructed by plural heat conductive plates
JPH0596773U (en) Heat exchanger
JPH10170101A (en) Lamination type heat exchanger
JP4785397B2 (en) Vehicular air conditioner evaporator
JP3805665B2 (en) Heat exchanger
US11820199B2 (en) Heat exchanger
JP2003240387A (en) Inner fin for heat-exchanger
JP2005061648A (en) Heat exchanger
JP3651091B2 (en) Laminate heat exchanger
KR100531016B1 (en) Heat exchanger manifold plate and heat exchanger using the same to improve refrigerant flow

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase