WO2001000638A2 - Novel genes encoding proteins having diagnostic, preventive, therapeutic, and other uses - Google Patents
Novel genes encoding proteins having diagnostic, preventive, therapeutic, and other uses Download PDFInfo
- Publication number
- WO2001000638A2 WO2001000638A2 PCT/US2000/016658 US0016658W WO0100638A2 WO 2001000638 A2 WO2001000638 A2 WO 2001000638A2 US 0016658 W US0016658 W US 0016658W WO 0100638 A2 WO0100638 A2 WO 0100638A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- amino acid
- seq
- pta
- polypeptide
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title abstract description 560
- 102000004169 proteins and genes Human genes 0.000 title abstract description 552
- 230000001225 therapeutic effect Effects 0.000 title abstract description 5
- 230000003449 preventive effect Effects 0.000 title abstract description 3
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 224
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 217
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 217
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 216
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 209
- 229920001184 polypeptide Polymers 0.000 claims abstract description 207
- 241000282414 Homo sapiens Species 0.000 claims abstract description 153
- 125000000539 amino acid group Chemical group 0.000 claims description 232
- 239000002299 complementary DNA Substances 0.000 claims description 105
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 103
- 125000003729 nucleotide group Chemical group 0.000 claims description 90
- 239000002773 nucleotide Substances 0.000 claims description 69
- 230000000694 effects Effects 0.000 claims description 60
- 239000012634 fragment Substances 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 32
- 230000000295 complement effect Effects 0.000 claims description 26
- 150000001875 compounds Chemical class 0.000 claims description 20
- 150000001413 amino acids Chemical class 0.000 claims description 11
- 239000000523 sample Substances 0.000 claims description 11
- 241000251539 Vertebrata <Metazoa> Species 0.000 claims description 9
- 108020004999 messenger RNA Proteins 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 239000013598 vector Substances 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 7
- 238000012360 testing method Methods 0.000 claims description 7
- 210000004369 blood Anatomy 0.000 claims description 5
- 239000008280 blood Substances 0.000 claims description 5
- 238000003556 assay Methods 0.000 claims description 4
- 210000002966 serum Anatomy 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 2
- 238000003306 harvesting Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 108020004711 Nucleic Acid Probes Proteins 0.000 claims 3
- 239000002853 nucleic acid probe Substances 0.000 claims 3
- 238000000159 protein binding assay Methods 0.000 claims 1
- 241001465754 Metazoa Species 0.000 abstract description 12
- 239000003795 chemical substances by application Substances 0.000 abstract description 11
- 108091005461 Nucleic proteins Proteins 0.000 abstract description 9
- 230000004927 fusion Effects 0.000 abstract description 6
- 230000033077 cellular process Effects 0.000 abstract description 4
- 239000013604 expression vector Substances 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract description 4
- 230000000692 anti-sense effect Effects 0.000 abstract description 3
- 230000009261 transgenic effect Effects 0.000 abstract description 2
- 238000002560 therapeutic procedure Methods 0.000 abstract 2
- 230000000890 antigenic effect Effects 0.000 abstract 1
- 238000003745 diagnosis Methods 0.000 abstract 1
- 230000002265 prevention Effects 0.000 abstract 1
- 238000012216 screening Methods 0.000 abstract 1
- 235000018102 proteins Nutrition 0.000 description 549
- 238000005400 testing for adjacent nuclei with gyration operator Methods 0.000 description 342
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 156
- 208000035475 disorder Diseases 0.000 description 141
- 101000793115 Homo sapiens Aryl hydrocarbon receptor nuclear translocator Proteins 0.000 description 102
- 102000049150 human ARNT Human genes 0.000 description 102
- 108010076504 Protein Sorting Signals Proteins 0.000 description 92
- 210000004027 cell Anatomy 0.000 description 84
- 210000001519 tissue Anatomy 0.000 description 56
- 230000001086 cytosolic effect Effects 0.000 description 43
- 241001529936 Murinae Species 0.000 description 39
- 230000014509 gene expression Effects 0.000 description 34
- 108010006444 Leucine-Rich Repeat Proteins Proteins 0.000 description 33
- 210000004901 leucine-rich repeat Anatomy 0.000 description 33
- 241000699694 Gerbillinae Species 0.000 description 32
- 230000002209 hydrophobic effect Effects 0.000 description 32
- 230000012010 growth Effects 0.000 description 31
- 230000004069 differentiation Effects 0.000 description 28
- 230000035755 proliferation Effects 0.000 description 27
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 26
- 230000004083 survival effect Effects 0.000 description 22
- 206010028980 Neoplasm Diseases 0.000 description 21
- 230000035790 physiological processes and functions Effects 0.000 description 21
- 229940024606 amino acid Drugs 0.000 description 18
- 206010012601 diabetes mellitus Diseases 0.000 description 18
- 230000001154 acute effect Effects 0.000 description 17
- 239000011159 matrix material Substances 0.000 description 17
- 230000004048 modification Effects 0.000 description 17
- 238000012986 modification Methods 0.000 description 17
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 16
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 16
- 108091028043 Nucleic acid sequence Proteins 0.000 description 16
- 210000004556 brain Anatomy 0.000 description 16
- 238000003776 cleavage reaction Methods 0.000 description 16
- 230000001419 dependent effect Effects 0.000 description 16
- 235000005772 leucine Nutrition 0.000 description 16
- 230000007017 scission Effects 0.000 description 16
- 102000035160 transmembrane proteins Human genes 0.000 description 16
- 108091005703 transmembrane proteins Proteins 0.000 description 16
- 201000010099 disease Diseases 0.000 description 15
- 230000001594 aberrant effect Effects 0.000 description 14
- 238000011161 development Methods 0.000 description 14
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 14
- 238000012423 maintenance Methods 0.000 description 14
- 210000000952 spleen Anatomy 0.000 description 14
- 230000018109 developmental process Effects 0.000 description 13
- 210000004185 liver Anatomy 0.000 description 13
- 230000004481 post-translational protein modification Effects 0.000 description 13
- 108020004414 DNA Proteins 0.000 description 12
- 239000003102 growth factor Substances 0.000 description 12
- 201000011461 pre-eclampsia Diseases 0.000 description 12
- 201000001320 Atherosclerosis Diseases 0.000 description 11
- 102000004127 Cytokines Human genes 0.000 description 11
- 108090000695 Cytokines Proteins 0.000 description 11
- 206010020772 Hypertension Diseases 0.000 description 11
- 102000018697 Membrane Proteins Human genes 0.000 description 11
- 108010052285 Membrane Proteins Proteins 0.000 description 11
- 102000000395 SH3 domains Human genes 0.000 description 11
- 108050008861 SH3 domains Proteins 0.000 description 11
- 229930003448 Vitamin K Natural products 0.000 description 11
- 235000001014 amino acid Nutrition 0.000 description 11
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 11
- 230000021523 carboxylation Effects 0.000 description 11
- 238000006473 carboxylation reaction Methods 0.000 description 11
- 210000002216 heart Anatomy 0.000 description 11
- 210000004072 lung Anatomy 0.000 description 11
- 230000001537 neural effect Effects 0.000 description 11
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 235000019168 vitamin K Nutrition 0.000 description 11
- 239000011712 vitamin K Substances 0.000 description 11
- 150000003721 vitamin K derivatives Chemical class 0.000 description 11
- 229940046010 vitamin k Drugs 0.000 description 11
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 10
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 10
- 102000009203 Sema domains Human genes 0.000 description 10
- 108050000099 Sema domains Proteins 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 208000019622 heart disease Diseases 0.000 description 10
- 208000017169 kidney disease Diseases 0.000 description 10
- 108050001049 Extracellular proteins Proteins 0.000 description 9
- 206010016654 Fibrosis Diseases 0.000 description 9
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 9
- 206010033645 Pancreatitis Diseases 0.000 description 9
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 9
- 102000014105 Semaphorin Human genes 0.000 description 9
- 108050003978 Semaphorin Proteins 0.000 description 9
- 230000001580 bacterial effect Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 210000002744 extracellular matrix Anatomy 0.000 description 9
- 230000001605 fetal effect Effects 0.000 description 9
- 238000009396 hybridization Methods 0.000 description 9
- 210000000987 immune system Anatomy 0.000 description 9
- 210000003734 kidney Anatomy 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 210000004379 membrane Anatomy 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 229910021645 metal ion Inorganic materials 0.000 description 9
- 208000031225 myocardial ischemia Diseases 0.000 description 9
- 210000004923 pancreatic tissue Anatomy 0.000 description 9
- 230000008929 regeneration Effects 0.000 description 9
- 238000011069 regeneration method Methods 0.000 description 9
- 208000023275 Autoimmune disease Diseases 0.000 description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- 208000008964 Chemical and Drug Induced Liver Injury Diseases 0.000 description 8
- 241000699802 Cricetulus griseus Species 0.000 description 8
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 8
- 239000000232 Lipid Bilayer Substances 0.000 description 8
- 108700026244 Open Reading Frames Proteins 0.000 description 8
- 208000019547 Placental disease Diseases 0.000 description 8
- 102100027745 Semaphorin-4C Human genes 0.000 description 8
- 101710199418 Semaphorin-4C Proteins 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 208000019425 cirrhosis of liver Diseases 0.000 description 8
- 238000005755 formation reaction Methods 0.000 description 8
- 230000002440 hepatic effect Effects 0.000 description 8
- 208000015181 infectious disease Diseases 0.000 description 8
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 8
- 201000006370 kidney failure Diseases 0.000 description 8
- 210000002826 placenta Anatomy 0.000 description 8
- 208000025934 placenta disease Diseases 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000012916 structural analysis Methods 0.000 description 8
- 206010002383 Angina Pectoris Diseases 0.000 description 7
- 201000009030 Carcinoma Diseases 0.000 description 7
- 102000053602 DNA Human genes 0.000 description 7
- 208000024869 Goodpasture syndrome Diseases 0.000 description 7
- 208000018565 Hemochromatosis Diseases 0.000 description 7
- 206010061218 Inflammation Diseases 0.000 description 7
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 7
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 7
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 7
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 7
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 7
- 208000016222 Pancreatic disease Diseases 0.000 description 7
- 238000012300 Sequence Analysis Methods 0.000 description 7
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 7
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 7
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 7
- 235000004279 alanine Nutrition 0.000 description 7
- 210000000988 bone and bone Anatomy 0.000 description 7
- 210000000981 epithelium Anatomy 0.000 description 7
- 210000005003 heart tissue Anatomy 0.000 description 7
- 125000001165 hydrophobic group Chemical group 0.000 description 7
- 230000002163 immunogen Effects 0.000 description 7
- 230000004054 inflammatory process Effects 0.000 description 7
- 208000014674 injury Diseases 0.000 description 7
- 210000002510 keratinocyte Anatomy 0.000 description 7
- 210000002569 neuron Anatomy 0.000 description 7
- 210000000496 pancreas Anatomy 0.000 description 7
- 230000002688 persistence Effects 0.000 description 7
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 7
- 235000008729 phenylalanine Nutrition 0.000 description 7
- 210000002027 skeletal muscle Anatomy 0.000 description 7
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 7
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 7
- 235000002374 tyrosine Nutrition 0.000 description 7
- 239000004474 valine Substances 0.000 description 7
- 206010000234 Abortion spontaneous Diseases 0.000 description 6
- 206010003210 Arteriosclerosis Diseases 0.000 description 6
- 208000002330 Congenital Heart Defects Diseases 0.000 description 6
- 201000003883 Cystic fibrosis Diseases 0.000 description 6
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 6
- 102000012545 EGF-like domains Human genes 0.000 description 6
- 108050002150 EGF-like domains Proteins 0.000 description 6
- 208000029523 Interstitial Lung disease Diseases 0.000 description 6
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 6
- 206010029164 Nephrotic syndrome Diseases 0.000 description 6
- 108010032605 Nerve Growth Factor Receptors Proteins 0.000 description 6
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 6
- 208000006265 Renal cell carcinoma Diseases 0.000 description 6
- 102100033725 Tumor necrosis factor receptor superfamily member 16 Human genes 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 208000011775 arteriosclerosis disease Diseases 0.000 description 6
- 230000008827 biological function Effects 0.000 description 6
- 230000031018 biological processes and functions Effects 0.000 description 6
- 230000023555 blood coagulation Effects 0.000 description 6
- 230000001684 chronic effect Effects 0.000 description 6
- 230000007882 cirrhosis Effects 0.000 description 6
- 208000028831 congenital heart disease Diseases 0.000 description 6
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 6
- 235000018417 cysteine Nutrition 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 208000002296 eclampsia Diseases 0.000 description 6
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 208000006454 hepatitis Diseases 0.000 description 6
- 231100000283 hepatitis Toxicity 0.000 description 6
- 230000028993 immune response Effects 0.000 description 6
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 6
- 229960000310 isoleucine Drugs 0.000 description 6
- 208000008443 pancreatic carcinoma Diseases 0.000 description 6
- 239000013615 primer Substances 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- -1 several (e.g. Proteins 0.000 description 6
- 208000000995 spontaneous abortion Diseases 0.000 description 6
- 208000011580 syndromic disease Diseases 0.000 description 6
- 208000012175 toxemia of pregnancy Diseases 0.000 description 6
- 231100000331 toxic Toxicity 0.000 description 6
- 230000002588 toxic effect Effects 0.000 description 6
- 239000003053 toxin Substances 0.000 description 6
- 231100000765 toxin Toxicity 0.000 description 6
- 108700012359 toxins Proteins 0.000 description 6
- 230000032895 transmembrane transport Effects 0.000 description 6
- 101000919300 Cricetulus griseus Protein disulfide isomerase CRELD2 Proteins 0.000 description 5
- 241000257465 Echinoidea Species 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 101000835995 Homo sapiens Slit homolog 1 protein Proteins 0.000 description 5
- 238000000636 Northern blotting Methods 0.000 description 5
- 208000002193 Pain Diseases 0.000 description 5
- 101710123186 Slit homolog 1 protein Proteins 0.000 description 5
- 102100025490 Slit homolog 1 protein Human genes 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 239000012190 activator Substances 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 210000000845 cartilage Anatomy 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 210000002919 epithelial cell Anatomy 0.000 description 5
- 230000002538 fungal effect Effects 0.000 description 5
- 102000057618 human SLIT1 Human genes 0.000 description 5
- 206010020871 hypertrophic cardiomyopathy Diseases 0.000 description 5
- 208000026278 immune system disease Diseases 0.000 description 5
- 230000003211 malignant effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 230000008520 organization Effects 0.000 description 5
- 230000001766 physiological effect Effects 0.000 description 5
- 210000005084 renal tissue Anatomy 0.000 description 5
- 208000017612 Acute Hemorrhagic Pancreatitis Diseases 0.000 description 4
- 208000009304 Acute Kidney Injury Diseases 0.000 description 4
- 208000003918 Acute Kidney Tubular Necrosis Diseases 0.000 description 4
- 208000003200 Adenoma Diseases 0.000 description 4
- 201000003076 Angiosarcoma Diseases 0.000 description 4
- 101100010506 Arabidopsis thaliana DUF6 gene Proteins 0.000 description 4
- 208000035143 Bacterial infection Diseases 0.000 description 4
- 206010061000 Benign pancreatic neoplasm Diseases 0.000 description 4
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 4
- 206010004659 Biliary cirrhosis Diseases 0.000 description 4
- 208000020084 Bone disease Diseases 0.000 description 4
- 208000007257 Budd-Chiari syndrome Diseases 0.000 description 4
- 206010008909 Chronic Hepatitis Diseases 0.000 description 4
- 208000005595 Chronic Idiopathic Jaundice Diseases 0.000 description 4
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 4
- 208000000668 Chronic Pancreatitis Diseases 0.000 description 4
- 206010009208 Cirrhosis alcoholic Diseases 0.000 description 4
- 206010062328 Congenital cyst Diseases 0.000 description 4
- 208000026372 Congenital cystic kidney disease Diseases 0.000 description 4
- 206010072268 Drug-induced liver injury Diseases 0.000 description 4
- 201000004943 Dubin-Johnson syndrome Diseases 0.000 description 4
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 description 4
- 206010014561 Emphysema Diseases 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 4
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 4
- 108010058643 Fungal Proteins Proteins 0.000 description 4
- 206010017533 Fungal infection Diseases 0.000 description 4
- 241000287828 Gallus gallus Species 0.000 description 4
- 208000009139 Gilbert Disease Diseases 0.000 description 4
- 208000022412 Gilbert syndrome Diseases 0.000 description 4
- 208000022461 Glomerular disease Diseases 0.000 description 4
- 206010018366 Glomerulonephritis acute Diseases 0.000 description 4
- 206010018367 Glomerulonephritis chronic Diseases 0.000 description 4
- 206010018404 Glucagonoma Diseases 0.000 description 4
- 208000002705 Glucose Intolerance Diseases 0.000 description 4
- 208000001258 Hemangiosarcoma Diseases 0.000 description 4
- 206010019663 Hepatic failure Diseases 0.000 description 4
- 206010019713 Hepatic vein thrombosis Diseases 0.000 description 4
- 206010019755 Hepatitis chronic active Diseases 0.000 description 4
- 206010019799 Hepatitis viral Diseases 0.000 description 4
- 206010020586 Hypercalcaemic nephropathy Diseases 0.000 description 4
- 102000004877 Insulin Human genes 0.000 description 4
- 108090001061 Insulin Proteins 0.000 description 4
- 208000009164 Islet Cell Adenoma Diseases 0.000 description 4
- 206010023126 Jaundice Diseases 0.000 description 4
- 206010027527 Microangiopathic haemolytic anaemia Diseases 0.000 description 4
- 208000034578 Multiple myelomas Diseases 0.000 description 4
- 208000031888 Mycoses Diseases 0.000 description 4
- 206010028851 Necrosis Diseases 0.000 description 4
- 206010029148 Nephrolithiasis Diseases 0.000 description 4
- 208000001132 Osteoporosis Diseases 0.000 description 4
- 208000000407 Pancreatic Cyst Diseases 0.000 description 4
- 206010033649 Pancreatitis chronic Diseases 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 206010058989 Portal vein occlusion Diseases 0.000 description 4
- 201000009454 Portal vein thrombosis Diseases 0.000 description 4
- 108010029485 Protein Isoforms Proteins 0.000 description 4
- 102000001708 Protein Isoforms Human genes 0.000 description 4
- 206010056658 Pseudocyst Diseases 0.000 description 4
- 206010037596 Pyelonephritis Diseases 0.000 description 4
- 208000033626 Renal failure acute Diseases 0.000 description 4
- 206010038470 Renal infarct Diseases 0.000 description 4
- 206010038540 Renal tubular necrosis Diseases 0.000 description 4
- 208000020619 Rotor syndrome Diseases 0.000 description 4
- 206010041329 Somatostatinoma Diseases 0.000 description 4
- 208000006011 Stroke Diseases 0.000 description 4
- 206010048302 Tubulointerstitial nephritis Diseases 0.000 description 4
- 208000036142 Viral infection Diseases 0.000 description 4
- 208000008383 Wilms tumor Diseases 0.000 description 4
- 201000008629 Zollinger-Ellison syndrome Diseases 0.000 description 4
- 201000011040 acute kidney failure Diseases 0.000 description 4
- 208000012998 acute renal failure Diseases 0.000 description 4
- 208000031112 adenoma of pancreas Diseases 0.000 description 4
- 208000010002 alcoholic liver cirrhosis Diseases 0.000 description 4
- 208000006673 asthma Diseases 0.000 description 4
- 208000022362 bacterial infectious disease Diseases 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 201000009267 bronchiectasis Diseases 0.000 description 4
- 206010006451 bronchitis Diseases 0.000 description 4
- 235000013330 chicken meat Nutrition 0.000 description 4
- 208000037976 chronic inflammation Diseases 0.000 description 4
- 208000037893 chronic inflammatory disorder Diseases 0.000 description 4
- 208000020832 chronic kidney disease Diseases 0.000 description 4
- 208000022831 chronic renal failure syndrome Diseases 0.000 description 4
- 230000001054 cortical effect Effects 0.000 description 4
- 208000031513 cyst Diseases 0.000 description 4
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 102000038379 digestive enzymes Human genes 0.000 description 4
- 108091007734 digestive enzymes Proteins 0.000 description 4
- 201000008865 drug-induced hepatitis Diseases 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 201000000052 gastrinoma Diseases 0.000 description 4
- 208000004104 gestational diabetes Diseases 0.000 description 4
- 231100000852 glomerular disease Toxicity 0.000 description 4
- 231100000853 glomerular lesion Toxicity 0.000 description 4
- 208000037824 growth disorder Diseases 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 208000007475 hemolytic anemia Diseases 0.000 description 4
- 208000006359 hepatoblastoma Diseases 0.000 description 4
- 230000000396 hypokalemic effect Effects 0.000 description 4
- 229940125396 insulin Drugs 0.000 description 4
- 206010022498 insulinoma Diseases 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 201000006334 interstitial nephritis Diseases 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 208000022013 kidney Wilms tumor Diseases 0.000 description 4
- 230000006651 lactation Effects 0.000 description 4
- 210000000265 leukocyte Anatomy 0.000 description 4
- 208000007903 liver failure Diseases 0.000 description 4
- 231100000835 liver failure Toxicity 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 208000009242 medullary sponge kidney Diseases 0.000 description 4
- 230000017074 necrotic cell death Effects 0.000 description 4
- 230000009826 neoplastic cell growth Effects 0.000 description 4
- 230000001613 neoplastic effect Effects 0.000 description 4
- 201000008026 nephroblastoma Diseases 0.000 description 4
- 230000002988 nephrogenic effect Effects 0.000 description 4
- 201000002648 nephronophthisis Diseases 0.000 description 4
- 201000009925 nephrosclerosis Diseases 0.000 description 4
- 210000000440 neutrophil Anatomy 0.000 description 4
- 235000016709 nutrition Nutrition 0.000 description 4
- 201000002528 pancreatic cancer Diseases 0.000 description 4
- 208000022102 pancreatic neuroendocrine neoplasm Diseases 0.000 description 4
- 210000005059 placental tissue Anatomy 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 108010057105 porcine ribonuclease inhibitor Proteins 0.000 description 4
- 201000009104 prediabetes syndrome Diseases 0.000 description 4
- 201000008171 proliferative glomerulonephritis Diseases 0.000 description 4
- 230000004850 protein–protein interaction Effects 0.000 description 4
- 230000002685 pulmonary effect Effects 0.000 description 4
- 201000008158 rapidly progressive glomerulonephritis Diseases 0.000 description 4
- 201000010384 renal tubular acidosis Diseases 0.000 description 4
- 208000007056 sickle cell anemia Diseases 0.000 description 4
- 230000019491 signal transduction Effects 0.000 description 4
- 210000003491 skin Anatomy 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 230000009885 systemic effect Effects 0.000 description 4
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- 208000019553 vascular disease Diseases 0.000 description 4
- 201000001862 viral hepatitis Diseases 0.000 description 4
- 230000009385 viral infection Effects 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 206010066728 Acute interstitial pneumonitis Diseases 0.000 description 3
- 206010001881 Alveolar proteinosis Diseases 0.000 description 3
- 206010002329 Aneurysm Diseases 0.000 description 3
- 206010002412 Angiocentric lymphomas Diseases 0.000 description 3
- 206010003598 Atelectasis Diseases 0.000 description 3
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 3
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- 206010006458 Bronchitis chronic Diseases 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 201000004624 Dermatitis Diseases 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 101800003838 Epidermal growth factor Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 102000018638 GTP binding domains Human genes 0.000 description 3
- 108050007795 GTP binding domains Proteins 0.000 description 3
- 206010018338 Glioma Diseases 0.000 description 3
- 102000005720 Glutathione transferase Human genes 0.000 description 3
- 108010070675 Glutathione transferase Proteins 0.000 description 3
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 3
- 208000002927 Hamartoma Diseases 0.000 description 3
- 208000031071 Hamman-Rich Syndrome Diseases 0.000 description 3
- 206010019280 Heart failures Diseases 0.000 description 3
- 208000031220 Hemophilia Diseases 0.000 description 3
- 208000009292 Hemophilia A Diseases 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 description 3
- 208000009995 Idiopathic pulmonary hemosiderosis Diseases 0.000 description 3
- 206010025323 Lymphomas Diseases 0.000 description 3
- 208000000172 Medulloblastoma Diseases 0.000 description 3
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 3
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- 102000002151 Microfilament Proteins Human genes 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 108010002998 NADPH Oxidases Proteins 0.000 description 3
- 102000004722 NADPH Oxidases Human genes 0.000 description 3
- 206010035720 Pneumonia lipoid Diseases 0.000 description 3
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 3
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 3
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 3
- 201000004681 Psoriasis Diseases 0.000 description 3
- 208000007123 Pulmonary Atelectasis Diseases 0.000 description 3
- 206010037368 Pulmonary congestion Diseases 0.000 description 3
- 206010037423 Pulmonary oedema Diseases 0.000 description 3
- 108010058778 Schizosaccharomyces pombe Proteins Proteins 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 201000004073 acute interstitial pneumonia Diseases 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000003376 axonal effect Effects 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 239000003114 blood coagulation factor Substances 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 3
- 230000002308 calcification Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 208000002458 carcinoid tumor Diseases 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 3
- 208000007451 chronic bronchitis Diseases 0.000 description 3
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 3
- 239000007979 citrate buffer Substances 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 239000000306 component Substances 0.000 description 3
- 230000001496 desquamative effect Effects 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 206010014665 endocarditis Diseases 0.000 description 3
- 210000000750 endocrine system Anatomy 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 210000003989 endothelium vascular Anatomy 0.000 description 3
- 229940116977 epidermal growth factor Drugs 0.000 description 3
- 201000001155 extrinsic allergic alveolitis Diseases 0.000 description 3
- 230000004761 fibrosis Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 208000022098 hypersensitivity pneumonitis Diseases 0.000 description 3
- 208000030603 inherited susceptibility to asthma Diseases 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 208000028867 ischemia Diseases 0.000 description 3
- 208000007067 lipid pneumonia Diseases 0.000 description 3
- 210000005228 liver tissue Anatomy 0.000 description 3
- 208000006116 lymphomatoid granulomatosis Diseases 0.000 description 3
- 201000008806 mesenchymal cell neoplasm Diseases 0.000 description 3
- 230000009401 metastasis Effects 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 108091008819 oncoproteins Proteins 0.000 description 3
- 102000027450 oncoproteins Human genes 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 206010035653 pneumoconiosis Diseases 0.000 description 3
- 201000003489 pulmonary alveolar proteinosis Diseases 0.000 description 3
- 208000005333 pulmonary edema Diseases 0.000 description 3
- 201000009732 pulmonary eosinophilia Diseases 0.000 description 3
- 208000005069 pulmonary fibrosis Diseases 0.000 description 3
- 201000003456 pulmonary hemosiderosis Diseases 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 208000021569 rheumatoid lung disease Diseases 0.000 description 3
- 201000000306 sarcoidosis Diseases 0.000 description 3
- 208000017520 skin disease Diseases 0.000 description 3
- 230000003393 splenic effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 229940088594 vitamin Drugs 0.000 description 3
- 229930003231 vitamin Natural products 0.000 description 3
- 235000013343 vitamin Nutrition 0.000 description 3
- 239000011782 vitamin Substances 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 208000009206 Abruptio Placentae Diseases 0.000 description 2
- 208000002016 Adenosine monophosphate deaminase deficiency Diseases 0.000 description 2
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 2
- 102100022146 Arylsulfatase A Human genes 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 201000006935 Becker muscular dystrophy Diseases 0.000 description 2
- 206010048962 Brain oedema Diseases 0.000 description 2
- 108010085074 Brevican Proteins 0.000 description 2
- 102100032312 Brevican core protein Human genes 0.000 description 2
- 208000029402 Bulbospinal muscular atrophy Diseases 0.000 description 2
- 101100202502 Caenorhabditis elegans scd-2 gene Proteins 0.000 description 2
- 101100149252 Caenorhabditis elegans sem-5 gene Proteins 0.000 description 2
- 206010007027 Calculus urinary Diseases 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 2
- 206010007559 Cardiac failure congestive Diseases 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 206010058892 Carnitine deficiency Diseases 0.000 description 2
- 206010050215 Carnitine palmitoyltransferase deficiency Diseases 0.000 description 2
- 208000015374 Central core disease Diseases 0.000 description 2
- 201000003728 Centronuclear myopathy Diseases 0.000 description 2
- 206010057854 Cerebral Toxoplasmosis Diseases 0.000 description 2
- 108010036867 Cerebroside-Sulfatase Proteins 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 206010010904 Convulsion Diseases 0.000 description 2
- 102100033149 Cytochrome b5 reductase 4 Human genes 0.000 description 2
- 108030005700 Cytochrome-b5 reductases Proteins 0.000 description 2
- 230000033616 DNA repair Effects 0.000 description 2
- 206010012559 Developmental delay Diseases 0.000 description 2
- 208000012239 Developmental disease Diseases 0.000 description 2
- 108700043208 Dimauro disease Proteins 0.000 description 2
- 108700019745 Disks Large Homolog 4 Proteins 0.000 description 2
- 102000047174 Disks Large Homolog 4 Human genes 0.000 description 2
- 102100024099 Disks large homolog 1 Human genes 0.000 description 2
- 102100024117 Disks large homolog 2 Human genes 0.000 description 2
- 101710185758 Disks large homolog 2 Proteins 0.000 description 2
- 108700042352 Drosophila drk Proteins 0.000 description 2
- 102100034239 Emerin Human genes 0.000 description 2
- 201000009344 Emery-Dreifuss muscular dystrophy Diseases 0.000 description 2
- 208000037149 Facioscapulohumeral dystrophy Diseases 0.000 description 2
- 206010018364 Glomerulonephritis Diseases 0.000 description 2
- 102000042092 Glucose transporter family Human genes 0.000 description 2
- 108091052347 Glucose transporter family Proteins 0.000 description 2
- 206010053185 Glycogen storage disease type II Diseases 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 206010018498 Goitre Diseases 0.000 description 2
- 102100033067 Growth factor receptor-bound protein 2 Human genes 0.000 description 2
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 2
- 206010018985 Haemorrhage intracranial Diseases 0.000 description 2
- 101000871017 Homo sapiens Growth factor receptor-bound protein 2 Proteins 0.000 description 2
- 101001051093 Homo sapiens Low-density lipoprotein receptor Proteins 0.000 description 2
- 101001070790 Homo sapiens Platelet glycoprotein Ib alpha chain Proteins 0.000 description 2
- 101000689199 Homo sapiens Src-like-adapter Proteins 0.000 description 2
- 101000648656 Homo sapiens Transmembrane gamma-carboxyglutamic acid protein 2 Proteins 0.000 description 2
- 206010020850 Hyperthyroidism Diseases 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- 208000019468 Iatrogenic Disease Diseases 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 206010061216 Infarction Diseases 0.000 description 2
- 208000008574 Intracranial Hemorrhages Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 208000015710 Iron-Deficiency Anemia Diseases 0.000 description 2
- 208000007766 Kaposi sarcoma Diseases 0.000 description 2
- 208000027747 Kennedy disease Diseases 0.000 description 2
- 208000001126 Keratosis Diseases 0.000 description 2
- 208000003397 Keutel syndrome Diseases 0.000 description 2
- 108700006394 Lactate Dehydrogenase Deficiency Proteins 0.000 description 2
- 102100022745 Laminin subunit alpha-2 Human genes 0.000 description 2
- 201000009342 Limb-girdle muscular dystrophy Diseases 0.000 description 2
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 2
- 208000002720 Malnutrition Diseases 0.000 description 2
- 208000015021 Meningeal Neoplasms Diseases 0.000 description 2
- 206010027202 Meningitis bacterial Diseases 0.000 description 2
- 206010027260 Meningitis viral Diseases 0.000 description 2
- 102000003792 Metallothionein Human genes 0.000 description 2
- 108090000157 Metallothionein Proteins 0.000 description 2
- 108010040897 Microfilament Proteins Proteins 0.000 description 2
- 206010061291 Mineral deficiency Diseases 0.000 description 2
- 201000002169 Mitochondrial myopathy Diseases 0.000 description 2
- 108010085220 Multiprotein Complexes Proteins 0.000 description 2
- 102000007474 Multiprotein Complexes Human genes 0.000 description 2
- 208000021642 Muscular disease Diseases 0.000 description 2
- 201000009623 Myopathy Diseases 0.000 description 2
- 102000005604 Myosin Heavy Chains Human genes 0.000 description 2
- 108010084498 Myosin Heavy Chains Proteins 0.000 description 2
- 201000002481 Myositis Diseases 0.000 description 2
- 208000010316 Myotonia congenita Diseases 0.000 description 2
- 208000012905 Myotonic disease Diseases 0.000 description 2
- 206010068871 Myotonic dystrophy Diseases 0.000 description 2
- 230000004988 N-glycosylation Effects 0.000 description 2
- 208000034965 Nemaline Myopathies Diseases 0.000 description 2
- 206010029098 Neoplasm skin Diseases 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 201000009110 Oculopharyngeal muscular dystrophy Diseases 0.000 description 2
- 208000010191 Osteitis Deformans Diseases 0.000 description 2
- 102000004067 Osteocalcin Human genes 0.000 description 2
- 108090000573 Osteocalcin Proteins 0.000 description 2
- 208000027868 Paget disease Diseases 0.000 description 2
- 208000035467 Pancreatic insufficiency Diseases 0.000 description 2
- 108700010203 Phosphoglycerate Kinase 1 Deficiency Proteins 0.000 description 2
- 102000009097 Phosphorylases Human genes 0.000 description 2
- 108010073135 Phosphorylases Proteins 0.000 description 2
- 208000036216 Placenta Previa Diseases 0.000 description 2
- 206010036608 Premature separation of placenta Diseases 0.000 description 2
- 208000033522 Proximal spinal muscular atrophy type 2 Diseases 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 208000001647 Renal Insufficiency Diseases 0.000 description 2
- 102000037054 SLC-Transporter Human genes 0.000 description 2
- 108091006207 SLC-Transporter Proteins 0.000 description 2
- 101100381532 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) BEM1 gene Proteins 0.000 description 2
- 206010039710 Scleroderma Diseases 0.000 description 2
- 206010061363 Skeletal injury Diseases 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- 206010041067 Small cell lung cancer Diseases 0.000 description 2
- 102100024519 Src-like-adapter Human genes 0.000 description 2
- 208000032978 Structural Congenital Myopathies Diseases 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 208000035954 Thomsen and Becker disease Diseases 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 102100028872 Transmembrane gamma-carboxyglutamic acid protein 2 Human genes 0.000 description 2
- 208000009443 Vascular Malformations Diseases 0.000 description 2
- 206010052428 Wound Diseases 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 201000006960 adult spinal muscular atrophy Diseases 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 2
- 206010003119 arrhythmia Diseases 0.000 description 2
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 2
- 230000036523 atherogenesis Effects 0.000 description 2
- 208000010668 atopic eczema Diseases 0.000 description 2
- 230000006472 autoimmune response Effects 0.000 description 2
- 210000003050 axon Anatomy 0.000 description 2
- 230000004009 axon guidance Effects 0.000 description 2
- 201000009904 bacterial meningitis Diseases 0.000 description 2
- 239000012503 blood component Substances 0.000 description 2
- 230000004641 brain development Effects 0.000 description 2
- 208000006752 brain edema Diseases 0.000 description 2
- 230000036952 cancer formation Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 230000011712 cell development Effects 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 201000007303 central core myopathy Diseases 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 201000006815 congenital muscular dystrophy Diseases 0.000 description 2
- 208000029078 coronary artery disease Diseases 0.000 description 2
- 230000016396 cytokine production Effects 0.000 description 2
- 201000001981 dermatomyositis Diseases 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 238000006471 dimerization reaction Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 201000009338 distal myopathy Diseases 0.000 description 2
- 206010014599 encephalitis Diseases 0.000 description 2
- 230000012202 endocytosis Effects 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 210000003038 endothelium Anatomy 0.000 description 2
- 206010015037 epilepsy Diseases 0.000 description 2
- 208000008570 facioscapulohumeral muscular dystrophy Diseases 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 230000037433 frameshift Effects 0.000 description 2
- 230000005714 functional activity Effects 0.000 description 2
- 201000004502 glycogen storage disease II Diseases 0.000 description 2
- 201000009339 glycogen storage disease VII Diseases 0.000 description 2
- 201000003872 goiter Diseases 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 208000029824 high grade glioma Diseases 0.000 description 2
- 230000013632 homeostatic process Effects 0.000 description 2
- 210000003917 human chromosome Anatomy 0.000 description 2
- 208000003906 hydrocephalus Diseases 0.000 description 2
- 230000033444 hydroxylation Effects 0.000 description 2
- 238000005805 hydroxylation reaction Methods 0.000 description 2
- 201000009939 hypertensive encephalopathy Diseases 0.000 description 2
- 208000003532 hypothyroidism Diseases 0.000 description 2
- 230000002989 hypothyroidism Effects 0.000 description 2
- 230000007954 hypoxia Effects 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 208000023692 inborn mitochondrial myopathy Diseases 0.000 description 2
- 230000007574 infarction Effects 0.000 description 2
- 230000028709 inflammatory response Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 201000006913 intermediate spinal muscular atrophy Diseases 0.000 description 2
- 238000007917 intracranial administration Methods 0.000 description 2
- 230000037427 ion transport Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 208000019423 liver disease Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 230000001071 malnutrition Effects 0.000 description 2
- 235000000824 malnutrition Nutrition 0.000 description 2
- 208000027202 mammary Paget disease Diseases 0.000 description 2
- 102000043253 matrix Gla protein Human genes 0.000 description 2
- 108010057546 matrix Gla protein Proteins 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 208000030159 metabolic disease Diseases 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 208000005264 motor neuron disease Diseases 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 230000004118 muscle contraction Effects 0.000 description 2
- 201000006938 muscular dystrophy Diseases 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 208000009928 nephrosis Diseases 0.000 description 2
- 231100001027 nephrosis Toxicity 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 230000007514 neuronal growth Effects 0.000 description 2
- 208000014500 neuronal tumor Diseases 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 2
- 208000030212 nutrition disease Diseases 0.000 description 2
- 208000015380 nutritional deficiency disease Diseases 0.000 description 2
- 201000008482 osteoarthritis Diseases 0.000 description 2
- 208000005368 osteomalacia Diseases 0.000 description 2
- 208000027838 paramyotonia congenita of Von Eulenburg Diseases 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 208000008494 pericarditis Diseases 0.000 description 2
- 208000029308 periodic paralysis Diseases 0.000 description 2
- 201000008532 placental abruption Diseases 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 208000005987 polymyositis Diseases 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 201000009395 primary hyperaldosteronism Diseases 0.000 description 2
- 201000008752 progressive muscular atrophy Diseases 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000000163 radioactive labelling Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 230000021014 regulation of cell growth Effects 0.000 description 2
- 230000025053 regulation of cell proliferation Effects 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 230000019254 respiratory burst Effects 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 208000007442 rickets Diseases 0.000 description 2
- 201000000372 schizophrenia 4 Diseases 0.000 description 2
- 208000000587 small cell lung carcinoma Diseases 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 208000002320 spinal muscular atrophy Diseases 0.000 description 2
- 206010041823 squamous cell carcinoma Diseases 0.000 description 2
- 208000016505 systemic primary carnitine deficiency disease Diseases 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000000472 traumatic effect Effects 0.000 description 2
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 2
- 208000032521 type II spinal muscular atrophy Diseases 0.000 description 2
- 208000005606 type IV spinal muscular atrophy Diseases 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- 208000008281 urolithiasis Diseases 0.000 description 2
- 230000001457 vasomotor Effects 0.000 description 2
- 201000010044 viral meningitis Diseases 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- YYLQUHNPNCGKJQ-NHYDCYSISA-N (3R)-3-hydroxy-L-aspartic acid Chemical compound OC(=O)[C@@H](N)[C@@H](O)C(O)=O YYLQUHNPNCGKJQ-NHYDCYSISA-N 0.000 description 1
- 208000010543 22q11.2 deletion syndrome Diseases 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- 102000021527 ATP binding proteins Human genes 0.000 description 1
- 108091011108 ATP binding proteins Proteins 0.000 description 1
- 208000002874 Acne Vulgaris Diseases 0.000 description 1
- 208000026872 Addison Disease Diseases 0.000 description 1
- 102100026439 Adhesion G protein-coupled receptor E1 Human genes 0.000 description 1
- 208000020576 Adrenal disease Diseases 0.000 description 1
- 108010067219 Aggrecans Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 102100039160 Amiloride-sensitive amine oxidase [copper-containing] Human genes 0.000 description 1
- 102000007299 Amphiregulin Human genes 0.000 description 1
- 108010033760 Amphiregulin Proteins 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 208000003017 Aortic Valve Stenosis Diseases 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 102100036597 Basement membrane-specific heparan sulfate proteoglycan core protein Human genes 0.000 description 1
- 101800001382 Betacellulin Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 102100037084 C4b-binding protein alpha chain Human genes 0.000 description 1
- 102100027207 CD27 antigen Human genes 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- 241000244203 Caenorhabditis elegans Species 0.000 description 1
- 108010080818 Caenorhabditis elegans Proteins Proteins 0.000 description 1
- 101100379376 Caenorhabditis elegans apx-1 gene Proteins 0.000 description 1
- 101100337060 Caenorhabditis elegans glp-1 gene Proteins 0.000 description 1
- 101100074828 Caenorhabditis elegans lin-12 gene Proteins 0.000 description 1
- 101100181929 Caenorhabditis elegans lin-3 gene Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 101710175515 Calcium-dependent serine proteinase Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000020446 Cardiac disease Diseases 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 206010065929 Cardiovascular insufficiency Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 241000251556 Chordata Species 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 208000014526 Conduction disease Diseases 0.000 description 1
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 201000006306 Cor pulmonale Diseases 0.000 description 1
- 108010037663 Cortactin Proteins 0.000 description 1
- 102000010958 Cortactin Human genes 0.000 description 1
- 208000014311 Cushing syndrome Diseases 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 101710185746 Disks large homolog 1 Proteins 0.000 description 1
- 102100022263 Disks large homolog 3 Human genes 0.000 description 1
- 101710185762 Disks large homolog 3 Proteins 0.000 description 1
- 101710167313 Drebrin-like protein Proteins 0.000 description 1
- 108010035533 Drosophila Proteins Proteins 0.000 description 1
- 101000937129 Drosophila melanogaster Cadherin-related tumor suppressor Proteins 0.000 description 1
- 101000833382 Drosophila melanogaster Protein giant-lens Proteins 0.000 description 1
- 101000666342 Drosophila melanogaster Teneurin-a Proteins 0.000 description 1
- 101000837192 Drosophila melanogaster Teneurin-m Proteins 0.000 description 1
- 108700041850 Drosophila tld Proteins 0.000 description 1
- 208000005189 Embolism Diseases 0.000 description 1
- 208000017701 Endocrine disease Diseases 0.000 description 1
- 102100030013 Endoribonuclease Human genes 0.000 description 1
- 101710199605 Endoribonuclease Proteins 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 206010015866 Extravasation Diseases 0.000 description 1
- 101150089023 FASLG gene Proteins 0.000 description 1
- 102100031812 Fibulin-1 Human genes 0.000 description 1
- 101710170731 Fibulin-1 Proteins 0.000 description 1
- 102100031813 Fibulin-2 Human genes 0.000 description 1
- 102000004300 GABA-A Receptors Human genes 0.000 description 1
- 108090000839 GABA-A Receptors Proteins 0.000 description 1
- 101150022345 GAS6 gene Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 102000018898 GTPase-Activating Proteins Human genes 0.000 description 1
- 108091006094 GTPase-accelerating proteins Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000009329 Graft vs Host Disease Diseases 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 102000016285 Guanine Nucleotide Exchange Factors Human genes 0.000 description 1
- 108010067218 Guanine Nucleotide Exchange Factors Proteins 0.000 description 1
- 108020004202 Guanylate Kinase Proteins 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 101100163161 Homo sapiens AREG gene Proteins 0.000 description 1
- 101000718225 Homo sapiens Adhesion G protein-coupled receptor E1 Proteins 0.000 description 1
- 101000718243 Homo sapiens Adhesion G protein-coupled receptor E5 Proteins 0.000 description 1
- 101000959594 Homo sapiens Agrin Proteins 0.000 description 1
- 101000779845 Homo sapiens Amphiphysin Proteins 0.000 description 1
- 101000731086 Homo sapiens Brevican core protein Proteins 0.000 description 1
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 1
- 101100059511 Homo sapiens CD40LG gene Proteins 0.000 description 1
- 101100273745 Homo sapiens CD70 gene Proteins 0.000 description 1
- 101001018382 Homo sapiens Cartilage matrix protein Proteins 0.000 description 1
- 101000725508 Homo sapiens Cartilage oligomeric matrix protein Proteins 0.000 description 1
- 101001053984 Homo sapiens Disks large homolog 1 Proteins 0.000 description 1
- 101000951365 Homo sapiens Disks large-associated protein 5 Proteins 0.000 description 1
- 101500025419 Homo sapiens Epidermal growth factor Proteins 0.000 description 1
- 101000887490 Homo sapiens Guanine nucleotide-binding protein G(z) subunit alpha Proteins 0.000 description 1
- 101001066338 Homo sapiens Hepatocyte growth factor activator Proteins 0.000 description 1
- 101000972946 Homo sapiens Hepatocyte growth factor receptor Proteins 0.000 description 1
- 101000764535 Homo sapiens Lymphotoxin-alpha Proteins 0.000 description 1
- 101000764294 Homo sapiens Lymphotoxin-beta Proteins 0.000 description 1
- 101000624643 Homo sapiens M-phase inducer phosphatase 3 Proteins 0.000 description 1
- 101000871708 Homo sapiens Proheparin-binding EGF-like growth factor Proteins 0.000 description 1
- 101000928535 Homo sapiens Protein delta homolog 1 Proteins 0.000 description 1
- 101000655540 Homo sapiens Protransforming growth factor alpha Proteins 0.000 description 1
- 101001061518 Homo sapiens RNA-binding protein FUS Proteins 0.000 description 1
- 101000580039 Homo sapiens Ras-specific guanine nucleotide-releasing factor 1 Proteins 0.000 description 1
- 101000881168 Homo sapiens SPARC Proteins 0.000 description 1
- 101500025568 Homo sapiens Saposin-D Proteins 0.000 description 1
- 101000626163 Homo sapiens Tenascin-X Proteins 0.000 description 1
- 101000763314 Homo sapiens Thrombomodulin Proteins 0.000 description 1
- 101000799461 Homo sapiens Thrombopoietin Proteins 0.000 description 1
- 101000694103 Homo sapiens Thyroid peroxidase Proteins 0.000 description 1
- 101500025614 Homo sapiens Transforming growth factor beta-1 Proteins 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 101000638255 Homo sapiens Tumor necrosis factor ligand superfamily member 8 Proteins 0.000 description 1
- 101000801254 Homo sapiens Tumor necrosis factor receptor superfamily member 16 Proteins 0.000 description 1
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 1
- 101000659267 Homo sapiens Tumor suppressor candidate 2 Proteins 0.000 description 1
- 101000818543 Homo sapiens Tyrosine-protein kinase ZAP-70 Proteins 0.000 description 1
- 101000638886 Homo sapiens Urokinase-type plasminogen activator Proteins 0.000 description 1
- 101000749634 Homo sapiens Uromodulin Proteins 0.000 description 1
- 206010020571 Hyperaldosteronism Diseases 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 101000668058 Infectious salmon anemia virus (isolate Atlantic salmon/Norway/810/9/99) RNA-directed RNA polymerase catalytic subunit Proteins 0.000 description 1
- 208000035478 Interatrial communication Diseases 0.000 description 1
- 108010092694 L-Selectin Proteins 0.000 description 1
- 102000004016 L-Type Calcium Channels Human genes 0.000 description 1
- 108090000420 L-Type Calcium Channels Proteins 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 102000016551 L-selectin Human genes 0.000 description 1
- 108010001831 LDL receptors Proteins 0.000 description 1
- 102100039648 Lactadherin Human genes 0.000 description 1
- 101710191666 Lactadherin Proteins 0.000 description 1
- 108090000726 Limulus clotting factor C Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000001851 Low Density Lipoprotein Receptor-Related Protein-1 Human genes 0.000 description 1
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 101710159527 Maturation protein A Proteins 0.000 description 1
- 101710091157 Maturation protein A2 Proteins 0.000 description 1
- 208000036626 Mental retardation Diseases 0.000 description 1
- 108090000265 Meprin A Proteins 0.000 description 1
- 201000011442 Metachromatic leukodystrophy Diseases 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 208000003430 Mitral Valve Prolapse Diseases 0.000 description 1
- 108010008699 Mucin-4 Proteins 0.000 description 1
- 102400000812 Mucin-4 beta chain Human genes 0.000 description 1
- 101000718227 Mus musculus Adhesion G protein-coupled receptor E1 Proteins 0.000 description 1
- 101100340196 Mus musculus Il27ra gene Proteins 0.000 description 1
- 101000623899 Mus musculus Mucin-13 Proteins 0.000 description 1
- 206010028424 Myasthenic syndrome Diseases 0.000 description 1
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 1
- 208000021908 Myocardial disease Diseases 0.000 description 1
- 208000009525 Myocarditis Diseases 0.000 description 1
- 241001467460 Myxogastria Species 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 102000014413 Neuregulin Human genes 0.000 description 1
- 108050003475 Neuregulin Proteins 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 102000002111 Neuropilin Human genes 0.000 description 1
- 108050009450 Neuropilin Proteins 0.000 description 1
- 102100023620 Neutrophil cytosol factor 1 Human genes 0.000 description 1
- 101710120102 Neutrophil cytosol factor 1 Proteins 0.000 description 1
- 102100023618 Neutrophil cytosol factor 2 Human genes 0.000 description 1
- 101710120095 Neutrophil cytosol factor 2 Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 102000004473 OX40 Ligand Human genes 0.000 description 1
- 108010042215 OX40 Ligand Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 108091007960 PI3Ks Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102100030476 POU domain class 2-associating factor 1 Human genes 0.000 description 1
- 101710114665 POU domain class 2-associating factor 1 Proteins 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 101100272680 Paracentrotus lividus BP10 gene Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 208000034565 Peripheral pulmonary stenosis Diseases 0.000 description 1
- 241001520299 Phascolarctos cinereus Species 0.000 description 1
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 1
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 1
- 208000014993 Pituitary disease Diseases 0.000 description 1
- 241000224016 Plasmodium Species 0.000 description 1
- 101000621511 Potato virus M (strain German) RNA silencing suppressor Proteins 0.000 description 1
- 102100029837 Probetacellulin Human genes 0.000 description 1
- 101710136733 Proline-rich protein Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101710194368 Protein crumbs Proteins 0.000 description 1
- 101710184023 Protein gurken Proteins 0.000 description 1
- 101710114829 Protein lag-2 Proteins 0.000 description 1
- 101710152606 Protein lin-2 Proteins 0.000 description 1
- 102100027378 Prothrombin Human genes 0.000 description 1
- 108010094028 Prothrombin Proteins 0.000 description 1
- 208000004186 Pulmonary Heart Disease Diseases 0.000 description 1
- 239000012083 RIPA buffer Substances 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 102100028469 RNA-binding protein FUS Human genes 0.000 description 1
- 241000700564 Rabbit fibroma virus Species 0.000 description 1
- 206010037779 Radiculopathy Diseases 0.000 description 1
- 102000003901 Ras GTPase-activating proteins Human genes 0.000 description 1
- 108090000231 Ras GTPase-activating proteins Proteins 0.000 description 1
- 102100027551 Ras-specific guanine nucleotide-releasing factor 1 Human genes 0.000 description 1
- 108090000244 Rat Proteins Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102000004278 Receptor Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 241000238680 Rhipicephalus microplus Species 0.000 description 1
- 101150034822 SDC25 gene Proteins 0.000 description 1
- 239000012722 SDS sample buffer Substances 0.000 description 1
- 101150026794 SHO1 gene Proteins 0.000 description 1
- 102100037599 SPARC Human genes 0.000 description 1
- 101100381485 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) BBC1 gene Proteins 0.000 description 1
- 101100165573 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) BOI2 gene Proteins 0.000 description 1
- 101000934623 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Protein BOB1 Proteins 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 101100309600 Schizosaccharomyces pombe (strain 972 / ATCC 24843) scd2 gene Proteins 0.000 description 1
- 206010039966 Senile dementia Diseases 0.000 description 1
- 101710113029 Serine/threonine-protein kinase Proteins 0.000 description 1
- 102000011842 Serrate-Jagged Proteins Human genes 0.000 description 1
- 108010036039 Serrate-Jagged Proteins Proteins 0.000 description 1
- 102000005890 Spectrin Human genes 0.000 description 1
- 101710090563 Spectrin alpha chain Proteins 0.000 description 1
- 101710157175 Spectrin alpha chain, non-erythrocytic 1 Proteins 0.000 description 1
- 102100031874 Spectrin alpha chain, non-erythrocytic 1 Human genes 0.000 description 1
- 206010041660 Splenomegaly Diseases 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 229940100514 Syk tyrosine kinase inhibitor Drugs 0.000 description 1
- 241000239224 Tachypleus tridentatus Species 0.000 description 1
- 101000588258 Taenia solium Paramyosin Proteins 0.000 description 1
- 108010008125 Tenascin Proteins 0.000 description 1
- 102000007000 Tenascin Human genes 0.000 description 1
- 101710098080 Teratocarcinoma-derived growth factor Proteins 0.000 description 1
- 206010043276 Teratoma Diseases 0.000 description 1
- 206010043540 Thromboangiitis obliterans Diseases 0.000 description 1
- 102100026966 Thrombomodulin Human genes 0.000 description 1
- 108010079274 Thrombomodulin Proteins 0.000 description 1
- 108060008245 Thrombospondin Proteins 0.000 description 1
- 102000002938 Thrombospondin Human genes 0.000 description 1
- 208000024799 Thyroid disease Diseases 0.000 description 1
- 102100034686 Tight junction protein ZO-1 Human genes 0.000 description 1
- 108050001370 Tight junction protein ZO-1 Proteins 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 102100033142 Transcription factor 20 Human genes 0.000 description 1
- 101710119730 Transcription factor 20 Proteins 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 101150025935 Tspo gene Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 1
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 1
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 1
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 1
- 102100021125 Tyrosine-protein kinase ZAP-70 Human genes 0.000 description 1
- 241000795442 Uranoscopus chinensis Species 0.000 description 1
- 108010023795 VLDL receptor Proteins 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 102100026383 Vasopressin-neurophysin 2-copeptin Human genes 0.000 description 1
- 208000001910 Ventricular Heart Septal Defects Diseases 0.000 description 1
- 102100039066 Very low-density lipoprotein receptor Human genes 0.000 description 1
- 101100348839 Xenopus laevis notch1 gene Proteins 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 108091000387 actin binding proteins Proteins 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 239000002506 anticoagulant protein Substances 0.000 description 1
- 210000002403 aortic endothelial cell Anatomy 0.000 description 1
- 206010002906 aortic stenosis Diseases 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000001746 atrial effect Effects 0.000 description 1
- 208000013914 atrial heart septal defect Diseases 0.000 description 1
- 206010003664 atrial septal defect Diseases 0.000 description 1
- 230000003305 autocrine Effects 0.000 description 1
- 230000001109 autodigestive effect Effects 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000000625 blastula Anatomy 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 229940019700 blood coagulation factors Drugs 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000010083 bronchial hyperresponsiveness Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000023715 cellular developmental process Effects 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000003920 cognitive function Effects 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 108700041286 delta Proteins 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 201000010064 diabetes insipidus Diseases 0.000 description 1
- ZPTBLXKRQACLCR-XVFCMESISA-N dihydrouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)CC1 ZPTBLXKRQACLCR-XVFCMESISA-N 0.000 description 1
- 201000011304 dilated cardiomyopathy 1A Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 210000003617 erythrocyte membrane Anatomy 0.000 description 1
- 235000021321 essential mineral Nutrition 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 230000036251 extravasation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 102000013370 fibrillin Human genes 0.000 description 1
- 108060002895 fibrillin Proteins 0.000 description 1
- 108010034065 fibulin 2 Proteins 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 102000006638 guanylate kinase Human genes 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 210000002064 heart cell Anatomy 0.000 description 1
- 208000018578 heart valve disease Diseases 0.000 description 1
- 230000002607 hemopoietic effect Effects 0.000 description 1
- 230000003284 homeostatic effect Effects 0.000 description 1
- 102000049405 human ADGRE5 Human genes 0.000 description 1
- 102000043494 human AREG Human genes 0.000 description 1
- 102000051203 human BCAN Human genes 0.000 description 1
- 102000050578 human COMP Human genes 0.000 description 1
- 102000057336 human DLK1 Human genes 0.000 description 1
- 102000052301 human GNAZ Human genes 0.000 description 1
- 102000043417 human HBEGF Human genes 0.000 description 1
- 102000047270 human LTA Human genes 0.000 description 1
- 102000055414 human LTB Human genes 0.000 description 1
- 102000057421 human MET Human genes 0.000 description 1
- 102000043392 human TGFA Human genes 0.000 description 1
- 102000051206 human THBD Human genes 0.000 description 1
- 102000057041 human TNF Human genes 0.000 description 1
- 102000054539 human TNFSF8 Human genes 0.000 description 1
- 102000053400 human TPO Human genes 0.000 description 1
- 102000053430 human UMOD Human genes 0.000 description 1
- 229940116978 human epidermal growth factor Drugs 0.000 description 1
- 210000004293 human mammary gland Anatomy 0.000 description 1
- 229940100689 human protein c Drugs 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 208000015210 hypertensive heart disease Diseases 0.000 description 1
- 230000001969 hypertrophic effect Effects 0.000 description 1
- 230000036543 hypotension Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 235000021125 infant nutrition Nutrition 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000034153 membrane organization Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 208000005135 methemoglobinemia Diseases 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 230000000921 morphogenic effect Effects 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- GVUGOAYIVIDWIO-UFWWTJHBSA-N nepidermin Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CS)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CS)NC(=O)[C@H](C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C(C)C)C(C)C)C1=CC=C(O)C=C1 GVUGOAYIVIDWIO-UFWWTJHBSA-N 0.000 description 1
- 230000007830 nerve conduction Effects 0.000 description 1
- 208000007538 neurilemmoma Diseases 0.000 description 1
- 230000007472 neurodevelopment Effects 0.000 description 1
- 230000000955 neuroendocrine Effects 0.000 description 1
- 230000001272 neurogenic effect Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- 230000003961 neuronal insult Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 108010008217 nidogen Proteins 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002669 organ and tissue protective effect Effects 0.000 description 1
- 208000003278 patent ductus arteriosus Diseases 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 108010049224 perlecan Proteins 0.000 description 1
- 230000002399 phagocytotic effect Effects 0.000 description 1
- 230000002974 pharmacogenomic effect Effects 0.000 description 1
- 208000028591 pheochromocytoma Diseases 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 230000002633 protecting effect Effects 0.000 description 1
- 229940039716 prothrombin Drugs 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 201000003068 rheumatic fever Diseases 0.000 description 1
- 208000004124 rheumatic heart disease Diseases 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000004739 secretory vesicle Anatomy 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000007781 signaling event Effects 0.000 description 1
- 210000002363 skeletal muscle cell Anatomy 0.000 description 1
- 208000013363 skeletal muscle disease Diseases 0.000 description 1
- 230000012488 skeletal system development Effects 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 208000027140 splenic disease Diseases 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000000946 synaptic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 201000000866 velocardiofacial syndrome Diseases 0.000 description 1
- 201000003130 ventricular septal defect Diseases 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 229960001134 von willebrand factor Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention provides sequence information for polynucleotides derived from human genes and for proteins encoded thereby, and thus enables the practitioner to assess, predict, and affect the physiological state of various human tissues.
- Summary of the Invention The present invention is based, at least in part, on the discovery of a variety of human cDNA molecules which encode proteins which are herein designated INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331 , and TANGO 332. These seven proteins, fragments thereof, derivatives thereof, and variants thereof are collectively referred to herein as the polypeptides of the invention or the proteins of the invention.
- nucleic acid molecules encoding polypeptides of the invention are collectively referred to as nucleic acids of the invention.
- the nucleic acids and polypeptides of the present invention are useful as modulating agents in regulating a variety of cellular processes. Accordingly, in one aspect, the present invention provides isolated nucleic acid molecules encoding a polypeptide of the invention or a biologically active portion thereof.
- the present invention also provides nucleic acid molecules which are suitable as primers or hybridization probes for the detection of nucleic acids encoding a polypeptide of the invention.
- nucleic acids and polypeptides of the present invention are useful as modulating agents in regulating a variety of cellular processes. Accordingly, in one aspect, the present invention provides isolated nucleic acid molecules encoding a polypeptide of the invention or a biologically active portion thereof. The present invention also provides nucleic acid molecules which are suitable as primers or hybridization probes for the detection of nucleic acids encoding a polypeptide of the invention.
- the invention also features nucleic acid molecules which are at least 40% (or 50%, 60%, 70%, 80%, 90%, 95%, or 98%) identical to the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, and 92, or the nucleotide sequence of a cDNA clone deposited with ATCC ® as one of Accession numbers PTA- 147, PTA- 150, 207230, and PTA-151 ("a cDNA of a clone deposited as ATCC ® PTA- 147, PTA- 150, 207230, or PTA-151”), or a complement thereof.
- the invention features nucleic acid molecules which include a fragment of at least 15 (25, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 550, 650, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3500, 4000, 4500, or 4928) consecutive nucleotide residues of any of SEQ ID NOs: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, and 92, or.a cDNA of a clone deposited as ATCC ® PTA-147, PTA-150, 207230, or PTA-151, or a complement thereof.
- the invention also features nucleic acid molecules which include a nucleotide sequence encoding a protein having an amino acid sequence that is at least 50% (or 60%, 70%, 80%, 90%, 95%, or 98%) identical to the amino acid sequence of any of SEQ ID NOs: 3-8, 11-32, 35-37, 40-45, 48-53, 56-58, 61-63, 83- 88, and 93-98, or the amino acid sequence encoded by a cDNA of a clone deposited as ATCC ® PTA-147, PTA-150, 207230, or PTA-151, or a complement thereof.
- the nucleic acid molecules have the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, and 92, or a cDNA of a clone deposited as ATCC ® PTA-147, PTA-150, 207230, or PTA-151.
- nucleic acid molecules which encode a fragment of a polypeptide having the amino acid sequence of any of SEQ ID NOs: 3-8, 11-32, 35-37, 40-45, 48-53, 56-58, 61-63, 83-88, and 93-98, or the amino acid sequence encoded by a cDNA of a clone deposited as ATCC ® PTA-147, PTA-150, 207230, or PTA-151 , the fragment including at least 8 (10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, or 200) consecutive amino acids of any of SEQ ID NOs: 3-8, 11- 32, 35-37, 40-45, 48-53, 56-58, 61-63, 83-88, and 93-98, or the amino acid sequence encoded by a cDNA of a clone deposited as ATCC ® PTA-147, PTA-150, 207230, or PTA-151.
- the invention includes nucleic acid molecules which encode a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of any of SEQ ID NOs: 3-8, 11-32, 35-37, 40-45, 48-53, 56-58, 61-63, 83- 88, and 93-98, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC ® PTA-147, PTA-150, 207230, and PTA-151, wherein the nucleic acid molecule hybridizes under stringent conditions to a nucleic acid molecule having a nucleic acid sequence encoding any of SEQ ID NOs: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, and 92, or a cDNA of a clone deposited as ATCC ® PTA-147, PTA-150, 207230, or PTA-151, or a complement thereof.
- isolated polypeptides or proteins having an amino acid sequence that is at least about 50%, preferably 60%, 75%, 90%, 95%, or 98% identical to the amino acid sequence of any of SEQ ID NOs: 3- 8, 11-32, 35-37, 40-45, 48-53, 56-58, 61-63, 83-88, and 93-98.
- isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence that is at least about 40%, preferably 50%, 75%, 85%, or 95% identical the nucleic acid sequence encoding any of SEQ ID NOs: 3-8, 11-32, 35-37, 40-45, 48-53, 56-58, 61-63, 83- 88, and 93-98, and isolated polypeptides or proteins which are encoded by a nucleic acid molecule consisting of the nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule having the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, and 92.
- polypeptides which are naturally occurring allelic variants of a polypeptide that includes the amino acid sequence of any of SEQ ID NOs: 3-8, 11-32, 35-37, 40-45, 48-53, 56-58, 61-63, 83-88, and 93- 98, or the amino acid sequence encoded by a cDNA of a clone deposited as ATCC ® PTA-147, PTA-150, 207230, or PTA-151 , wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes under stringent conditions to a nucleic acid molecule having the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, and 92, or a complement thereof.
- the invention also features nucleic acid molecules that hybridize under stringent conditions to a nucleic acid molecule having the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, and 92, or a cDNA of a clone deposited as ATCC ® PTA-147, PTA-150, 207230, or PTA-151 , or a complement thereof.
- the nucleic acid molecules are at least 15 (25, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 550, 650, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3500, 4000, 4500, or 4928) nucleotides in length and hybridize under stringent conditions to a nucleic acid molecule having the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, and 92, or a cDNA of a clone deposited as ATCC ® PTA-147, PTA-150, 207230, or PTA-151, or a complement thereof.
- the isolated nucleic acid molecules encode a cytoplasmic, transmembrane, extracellular, or other domain of a polypeptide of the invention.
- the invention provides an isolated nucleic acid molecule which is antisense to the coding strand of a nucleic acid of the invention.
- vectors e.g., recombinant expression vectors, comprising a nucleic acid molecule of the invention.
- the invention provides isolated host cells, e.g., mammalian and non- mammalian cells, containing such a vector or a nucleic acid of the invention.
- the invention also provides methods for producing a polypeptide of the invention by culturing, in a suitable medium, a host cell of the invention containing a recombinant expression vector encoding a polypeptide of the invention such that the polypeptide of the invention is produced.
- Another aspect of this invention features isolated or recombinant proteins and polypeptides of the invention.
- Preferred proteins and polypeptides possess at least one biological activity possessed by the corresponding naturally- occurring human polypeptide.
- An activity, a biological activity, and a functional activity of a polypeptide of the invention refers to an activity exerted by a protein or polypeptide of the invention on a responsive cell as determined in vivo, or in vitro, according to standard techniques.
- activities can be a direct activity, such as an association with or an enzymatic activity on a second protein or an indirect activity, such as a cellular processes mediated by interaction of the protein with a second protein.
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof exhibit the ability to affect growth, proliferation, survival, differentiation, and activity of human pancreas, skeletal muscle, heart, brain, placenta, lung, liver, and kidney cells.
- INTERCEPT 217 modulates cellular binding to one or more mediators, modulates activity and release of one or more pancreatically secreted digestive enzymes, and protects tissue from endogenous digestive enzymes.
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof can be used to prevent, diagnose, or treat disorders relating to aberrant endogenous digestive enzyme activity, inappropriate interaction (or noninteraction) of cells with mediators, inappropriate cellular development and proliferation, inappropriate inflammation, and inappropriate immune responses.
- Exemplary disorders for which INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof are useful include immune disorders (e.g., insufficient immune responses and auto-immune disorders), infectious diseases, auto-immune disorders, pancreatic disorders (e.g., pancreatitis and pancreatic carcinoma), disorders related to mal-expression of growth factors, cancers, inflammatory disorders, acute and chronic traumas, and the like.
- immune disorders e.g., insufficient immune responses and auto-immune disorders
- infectious diseases e.g., infectious diseases, auto-immune disorders
- pancreatic disorders e.g., pancreatitis and pancreatic carcinoma
- disorders related to mal-expression of growth factors e.g., cancers, inflammatory disorders, acute and chronic traumas, and the like.
- INTERCEPT 297 polypeptides, nucleic acids, and modulators thereof exhibit the ability to affect growth, proliferation, survival, differentiation, and activity of human fetal cells and spleen cells and of (e.g., bacterial or fungal) cells and viruses which infect humans. Furthermore, INTERCEPT 297 modulates organization, structure, and function of biological membranes. Thus, INTERCEPT 297 polypeptides, nucleic acids, and modulators thereof can be used to affect development and persistence of atherogenesis and arteriosclerosis, for example, or to modulate transmembrane transport processes such as ion transport across neuronal and muscle cell membranes (e.g., ion transport relating to nerve impulse conduction and muscle contraction).
- INTERCEPT 297 polypeptides, nucleic acids, and modulators thereof can be used to prevent, diagnose, or treat transmembrane transport disorders such as cystic fibrosis, pain, seizure, epilepsy, mental disorders, and the like.
- Other exemplary disorders for which INTERCEPT 297 polypeptides, nucleic acids, and modulators thereof are useful include disorders involving generation and persistence of an immune response to bacterial, fungal, and viral infections.
- TANGO 276 polypeptides, nucleic acids, and modulators thereof modulate growth, proliferation, survival, differentiation, and activity of human heart, placenta, brain, lung, liver, skin, kidney, pancreas, spleen, and fetal tissues.
- TANGO 276 guides neuronal growth and development and modulates growth, homeostasis, and regeneration of other epithelial tissues.
- TANGO 276 is a secreted protein which mediates cellular interaction with cells, molecules, and structures (e.g., extracellular matrix) in the extracellular environment. TANGO 276 is therefore involved in growth, ' organization, migration, and adhesion of tissues and the cells which constitute those tissues.
- TANGO 276 modulates growth, proliferation, survival, differentiation, and activity of neuronal cells and immune system cells.
- TANGO 276 polypeptides, nucleic acids, and modulators thereof can be used, for example, to prevent, diagnose, or treat disorders characterized by aberrant organization or development of a tissue or organ, for modulating migration and adhesion of cells (e.g., in disorders such as cancer metastasis, autoimmune disorders, and graft-versus-host disease or in normal or aberrant processes involving angiogenesis, such as tumor growth and persistence), for guiding neural axon development and regeneration, for modulating differentiation of cells of the immune system (e.g., to treat bacterial, fungal, or viral infection or to prevent, diagnose, or treat autoimmune disorders), for modulating cytokine production by cells of the immune system (e.g., to prevent, detect, or treat inflammation and pain), for modulating reactivity of cells of the immune system toward cytokines, for modulating initiation and persistence of an inflammatory response, and for modulating
- TANGO 292 polypeptides, nucleic acids, and modulators thereof modulate growth, proliferation, survival, differentiation, and activity of human keratinocytes, including embryonic keratinocytes.
- TANGO 292 a transmembrane protein, is also involved in binding and uptake of calcium and other metal ions, and in responses of cells which express it to the presence and uptake of such ions.
- TANGO 292 polypeptides, nucleic acids, and modulators thereof can therefore be used to prevent, diagnose, and treat disorders involving one or more physiological activities mediated by TANGO 292 protein.
- TANGO 292 is also related to a variety of disorders which involve these activities.
- Such disorders include, for example, various bone-related disorders such as osteoporosis, skeletal development disorders, bone fragility, traumatic bone injuries, rickets, osteomalacia, Paget's disease, and other bone disorders, osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, and other disorders of the joints and cartilage, skin disorders such as psoriasis, eczema, scleroderma, and skin tumors (e.g., keratoses, squamous cell carcinomas, malignant melanomas, and Kaposi's sarcomas), iron deficiency anemia, hemophilia, inappropriate blood coagulation, stroke, arteriosclerosis, atherosclerosis, aneurysm, and other disorders related to blood and blood vessels, metastasis and other disorders related to inappropriate movement of cells through extracellular matrices, and the like.
- various bone-related disorders such as osteoporosis, skeletal development disorders, bone
- TANGO 292 polypeptides, nucleic acids, and modulators thereof can thus be used to prevent, diagnose, and treat one or more of these disorders.
- TANGO 292 is also involved in skin disorders such as psoriasis, eczema, scleroderma, skin tumors (e.g., keratoses, squamous cell carcinomas, malignant melanomas, and Kaposi's sarcomas), in placental disorders such as placenta previa and abruptio placentae, in liver disorders such as cirrhosis of the liver, liver fibrosis, hepatitis, and hepatic cancers, in kidney disorders such as urolithiasis, glomerulonephritis, nephrosis, renal cell carcinomas, and renal failure (both acute and chronic), in lung disorders such as cystic fibrosis, chronic obstructive pulmonary diseases (e.g., emphysema,
- TANGO 325 polypeptides, nucleic acids, and modulators thereof modulate growth, proliferation, survival, differentiation, and activity of human tissues such as vascular endothelium, including aortic endothelium, other heart tissues, placenta, liver, kidney, and pancreas tissues.
- TANGO 325 polypeptides, nucleic acids, and modulators thereof can therefore be used to prevent, diagnose, and treat disorders involving one or more physiological activities mediated by TANGO 325 protein in tissues in which it is expressed.
- Such activities include, for example, modulation of cardiac contractility and vasomotor tone, modulation of leukocyte extravasation, sensing physiological signals by the endocrine system, modulating growth, development, maintenance, and regeneration of neurons, and the like.
- Disorders related to these activities include, by way of example and not limitation, cardiovascular disorders such as arteriosclerosis, atherosclerosis, coronary artery disease (and other ischemic heart diseases), angina, myocardial infarction, restenotic disorders, hypertension, Buerger's disease, aneurysm, stroke, arrythmia, congestive heart failure, endocarditis, and pericarditis, placental disorders such as placenta previa and abruptio placentae, liver disorders such as cirrhosis of the liver, liver fibrosis, hepatitis, and hepatic cancers, kidney disorders such as urolithiasis, glomerulonephritis, nephrosis, renal cell carcinomas, and
- TANGO 331 polypeptides, nucleic acids, and modulators thereof modulate growth, proliferation, survival, differentiation, and activity of human fetal, lung, spleen, and thymus cells and tissues. As described herein, TANGO 331 is involved in physiological activities such as maintenance of epithelia, carcinogenesis, modulation and storage of protein factors and metals, lactation, and infant nutrition. TANGO 331 also modulates cellular binding and uptake of cytokines, growth factors, and metal ions.
- TANGO 331 polypeptides, nucleic acids, and modulators thereof can be used to prevent, diagnose, and treat disorders such as breast cancer, insufficient lactation, infant nutritional and growth disorders, malnutrition and mineral deficiency disorders, hemochromatosis, inappropriate calcification of body tissues, bone disorders such as osteoporosis, autoimmune disorders, insufficient or inappropriate host responses to infection, acquired immune deficiency syndrome, and the like.
- TANGO 332 polypeptides, nucleic acids, and modulators thereof modulate growth, proliferation, survival, differentiation, and activity of human brain and other tissues.
- TANGO 332 is involved in modulating establishment and maintenance of neural connections, cell- to-cell adhesion, tissue and extracellular matrix invasivity, and the like.
- TANGO 332 polypeptides, nucleic acids, and modulators thereof can be used to prevent, diagnose, and treat disorders such as brain cancers (e.g., gliomas, astrocytomas, medulloblastomas, ependymomas, Schwannomas, pituitary adenomas, teratomas, and the like), disorders of neural connection establishment or maintenance, impaired cognitive function, dementia, senility, Alzheimer's disease, mental retardation, inflammation, immune and autoimmune responses, and the like.
- brain cancers e.g., gliomas, astrocytomas, medulloblastomas, ependymomas, Schwannomas, pituitary adenomas, teratomas, and the like
- disorders of neural connection establishment or maintenance impaired cognitive function, dementia
- a polypeptide of the invention has an amino acid sequence sufficiently identical to an identified domain of a polypeptide of the invention.
- the term "sufficiently identical" refers to a first amino acid or nucleotide sequence which contains a sufficient or minimum number of identical or equivalent (e.g., with a similar side chain) amino acid residues or nucleotides to a second amino acid or nucleotide sequence such that the first and second amino acid or nucleotide sequences have a common structural domain and/or common functional activity.
- amino acid or nucleotide sequences which contain a common structural domain having about 65% identity, preferably 75% identity, more preferably 85%, 95%, or 98% identity are defined herein as sufficiently identical.
- the isolated polypeptide of the invention lacks both a transmembrane and a cytoplasmic domain. In another embodiment, the polypeptide lacks both a transmembrane domain and a cytoplasmic domain and is soluble under physiological conditions.
- the polypeptides of the present invention can be operably linked to a heterologous amino acid sequence to form fusion proteins.
- the invention further features antibody substances that specifically bind a polypeptide of the invention such as monoclonal or polyclonal antibodies, antibody fragments, single-chain antibodies, and the like.
- the polypeptides of the invention or biologically active portions thereof can be incorporated into pharmaceutical compositions, which optionally include pharmaceutically acceptable carriers.
- These antibody substances can be made, for example, by providing the polypeptide of the invention to an immunocompetent vertebrate and thereafter harvesting blood or serum from the vertebrate.
- the present invention provides methods for detecting the presence of the activity or expression of a polypeptide of the invention in a biological sample by contacting the biological sample with an agent capable of detecting an indicator of activity such that the presence of activity is detected in the biological sample.
- the invention provides methods for modulating activity of a polypeptide of the invention comprising contacting a cell with an agent that modulates (inhibits or enhances) the activity or expression of a polypeptide of the invention such that activity or expression in the cell is modulated.
- the agent is an antibody that specifically binds to a polypeptide of the invention.
- the agent modulates expression of a polypeptide of the invention by modulating transcription, splicing, or translation of an mRNA encoding a polypeptide of the invention.
- the agent is a nucleic acid molecule having a nucleotide sequence that is antisense with respect to the coding strand of an mRNA encoding a polypeptide of the invention.
- the present invention also provides methods to treat a subject having a disorder characterized by aberrant activity of a polypeptide of the invention or aberrant expression of a nucleic acid of the invention by administering an agent which is a modulator of the activity of a polypeptide of the invention or a modulator of the expression of a nucleic acid of the invention to the subject.
- the modulator is a protein of the invention.
- the modulator is a nucleic acid of the invention.
- the modulator is a peptide, peptidomimetic, or other small molecule.
- the present invention also provides diagnostic assays for identifying the presence or absence of a genetic lesion or mutation characterized by at least one of: (i) aberrant modification or mutation of a gene encoding a polypeptide of the invention, (ii) mis-regulation of a gene encoding a polypeptide of the invention, and (iii) aberrant post-translational modification of a polypeptide of the invention wherein a wild-type form of the gene encodes a polypeptide having the activity of the polypeptide of the invention.
- the invention provides a method for identifying a compound that binds to or modulates the activity of a polypeptide of the invention. In general, such methods entail measuring a biological activity of the polypeptide in the presence and absence of a test compound and identifying those compounds which alter the activity of the polypeptide.
- the invention also features methods for identifying a compound which modulates the expression of a polypeptide or nucleic acid of the invention by measuring the expression of the polypeptide or nucleic acid in the presence and absence of the compound.
- the invention provides substantially purified antibodies or fragments thereof, including non-human antibodies or fragments thereof, which antibodies or fragments specifically bind to a polypeptide having an amino acid sequence comprising a sequence selected from the group consisting of (i) SEQ ID NOs: 3-8, 11-32, 35-37, 40-45, 48-53, 56-58, 61-63, 83-88, and 93-98;
- the invention provides non-human antibodies or fragments thereof, which antibodies or fragments specifically bind with a polypeptide having an amino acid sequence comprising a sequence selected from the group consisting of
- nucleic acid molecule (v) an amino acid sequence which is encoded by a nucleic acid molecule, the complement of which hybridizes with a nucleic acid molecule having the sequence of SEQ ID NO: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, or 92, or with a cDNA of a clone deposited as ATCC ® PTA-147, PTA-150, 207230, or PTA-151, under conditions of hybridization of 6 ⁇ SSC (standard saline citrate buffer) at 45°C and washing in 0.2 ⁇ SSC, 0.1% SDS at 65°C.
- non-human antibodies can be goat, mouse, sheep, horse, chicken, rabbit, or rat antibodies.
- the non-human antibodies of the invention can be chimeric and/or humanized antibodies.
- the non- human antibodies of the invention can be polyclonal antibodies or monoclonal antibodies.
- the invention provides monoclonal antibodies or fragments thereof, which antibodies or fragments specifically bind to a polypeptide having an amino acid sequence comprising a sequence selected from the group consisting of
- nucleic acid molecule (v) an amino acid sequence which is encoded by a nucleic acid molecule, the complement of which hybridizes with a nucleic acid molecule having the sequence of SEQ ID NO: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, or 92, or with a cDNA of a clone deposited as ATCC ® PTA-147, PTA-150, 207230, or PTA-151, under conditions of hybridization of 6x SSC (standard saline citrate buffer) at 45°C and washing in 0.2 ⁇ SSC, 0.1% SDS at 65°C.
- the monoclonal antibodies can be human, humanized, chimeric and/or non-human antibodies.
- the antibody substance of the invention specifically binds with an extracellular domain of one of INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, and TANGO 332.
- the extracellular domain with which the antibody substance binds has an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 14-18, 37, 43, 51, 58, 63, 83, or 93.
- any of the antibodies of the invention can be conjugated with a therapeutic moiety or with a detectable substance.
- detectable substances that can be conjugated with the antibodies of the invention include an enzyme, a prosthetic group, a fluorescent material, a luminescent material, a bioluminescent material, and a radioactive material.
- the invention also provides a kit containing an antibody of the invention conjugated to a detectable substance, and instructions for use.
- Still another aspect of the invention is a pharmaceutical composition comprising an antibody of the invention and a pharmaceutically acceptable carrier.
- the pharmaceutical composition contains an antibody of the invention, a therapeutic moiety, and a pharmaceutically acceptable carrier.
- Figure 1 comprises Figures 1 A through 1M.
- the nucleotide sequence (SEQ ID NO: 1) of a cDNA encoding the human INTERCEPT 217 protein described herein is listed in Figures 1 A through IE.
- the open reading frame (ORF; residues 215 to 1579; SEQ ID NO: 2) of the cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 3) of human INTERCEPT 217 is listed.
- Figure IF is a hydrophilicity plot of human INTERCEPT 217 protein, in which the locations of cysteine residues (“Cys”) and potential N-glycosylation sites (“Ngly”) are indicated by vertical bars and the predicted extracellular (“out”), intracellular (“ins”), or transmembrane (“TM”) locations of the protein backbone is indicated by a horizontal bar.
- An alignment of the amino acid sequences of human INTERCEPT 217 protein (“H”; SEQ ID NO: 3) and porcine ribonuclease inhibitor protein (“P”; SwissProt Accession number PI 0775; SEQ ID NO: 64) is shown in Figures 1G and 1H, wherein identical amino acid residues are indicated by “:” and similar amino acid residues are indicated by ".”.
- Figure IL is a hydrophilicity plot of murine INTERCEPT 217 protein, in which the locations of cysteine residues ("Cys”) and potential N-glycosylation sites (“Ngly”) are indicated by vertical bars and the predicted extracellular (“out”), intracellular (“ins”), or transmembrane (“TM”) locations of the protein backbone is indicated by a horizontal bar.
- An alignment of the amino acid sequences of human INTERCEPT 217 protein (“H”; SEQ ID NO: 3) and murine INTERCEPT 217 protein (“M”; SEQ ID NO: 93) is shown in Figure 1M, wherein identical amino acid residues are indicated by "
- Figure 2 comprises Figures 2A through 2D.
- the nucleotide sequence (SEQ ID NO: 9) of a cDNA encoding the human INTERCEPT 297 protein described herein is listed in Figures 2A, 2B, and 2C.
- the open reading frame (ORF; residues 40 to 1152; SEQ ID NO: 10) of the cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 11) of human INTERCEPT 297 is listed.
- Figure 2D is a hydrophilicity plot of human INTERCEPT 297 protein.
- Figure 3 comprises Figures 3 A through 3R.
- the nucleotide sequence (SEQ ID NO: 33) of a cDNA encoding the human TANGO 276 protein described herein is listed in Figures 3A to 3D.
- the ORF (residues 58 to 786; SEQ ID NO: 34) of the cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 35) of human TANGO 276 is listed.
- Figure 3E is a hydrophilicity plot of TANGO 276 protein.
- Figure 4 comprises Figures 4A through 4M.
- the nucleotide sequence (SEQ ID NO: 38) of a cDNA encoding the human TANGO 292 protein described herein is listed in Figures 4A to 4C.
- the ORF (residues 205 to 882; SEQ ID NO: 39) of the cDNA is indicated by nucleotide triplets, beneath which the amino acid sequence (SEQ ID NO: 40) of human TANGO 292 is listed.
- Figure 4D is a hydrophilicity plot of human TANGO 292 protein.
- nucleotide sequence (SEQ ID NO: 81) of a cDNA encoding the gerbil TANGO 292 protein described herein is listed in Figures 4E to 4H.
- the ORF (residues 89 to 763; SEQ ID NO: 82) of the cDNA is indicated by nucleotide triplets, below which the amino acid sequence (SEQ ID NO: 83) of gerbil TANGO 292 is listed.
- Figure 4L is an alignment of the human (H) and gerbil (G) TANGO 292 amino acid sequences, made using the same software and parameters, wherein identical amino acid residues are indicated by "
- Figure 4M is a hydrophilicity plot of gerbil TANGO 292 protein.
- Figure 5 comprises Figures 5A through 5Mxviii.
- the nucleotide sequence (SEQ ID NO: 46) of a cDNA encoding the human TANGO 325 protein described herein is listed in Figures 5 A through 5E.
- the ORF (residues 135 to 2000; SEQ ID NO: 47) of the cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 48) of human TANGO 325 is listed.
- Figure 5F is a hydrophilicity plot of TANGO 325 protein.
- Figure 6 comprises Figures 6A through 6J.
- the nucleotide sequence (SEQ ID NO: 54) of a cDNA encoding the human TANGO 331 protein described herein is listed in Figures 6A, 6B, and 6C.
- the ORF (residues 114 to 1172; SEQ ID NO: 55) of the cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 56) of human TANGO 331 is listed.
- Figure 6D is a hydrophilicity plot of TANGO 331 protein.
- Figure 7 comprises Figures 7A through 7U.
- the nucleotide sequence (SEQ ID NO: 59) of a cDNA encoding the human TANGO 332 protein described herein is listed in Figures 7 A through 7E.
- the ORF (residues 173 to 2185; SEQ ID NO: 60) of the cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 61) of human TANGO 332 protein is listed.
- Figure 7F is a hydrophilicity plot of TANGO 332 protein.
- the present invention is based, at least in part, on the discovery of a variety of human cDNA molecules which encode proteins which are herein designated INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, and TANGO 332. These proteins exhibit a variety of physiological activities, and are included in a single application for the sake of convenience. It is understood that the allowability or non-allowability of claims directed to one of these proteins has no bearing on the allowability of claims directed to the others. The characteristics of each of these proteins and the cDNAs encoding them are now described separately.
- INTERCEPT 217 A cDNA clone (designated jthqc035f08) encoding at least a portion of human INTERCEPT 217 protein was isolated from a human prostate cDNA library.
- the human INTERCEPT 217 protein is predicted by structural analysis to be a transmembrane protein.
- cDNA clones including those designated jtmca047g07, jTmob373b05, and jambd078dl2
- encoding at least a portion of murine INTERCEPT 217 protein were isolated from murine cDNA libraries.
- the full length of the cDNA encoding human INTERCEPT 217 protein (Figure 1; SEQ ID NO: 1) is 2895 nucleotide residues.
- the ORF of this cDNA encodes a 455-amino acid transmembrane protein ( Figure 1; SEQ ID NO: 3).
- the murine ORF ( Figure 1 ; SEQ ID NO: 92) comprises at least 962 nucleotide residues.
- the protein encoded by the murine ORF compises at least 320 amino acid residues (i.e., SEQ ID NO: 93), and is also a transmembrane protein.
- the invention also includes purified human INTERCEPT 217 protein, both in the form of the immature 455 amino acid residue protein (SEQ ID NO: 3) and in the form of the mature, approximately 435 amino acid residue protein (SEQ ID NO: 5).
- Mature human INTERCEPT 217 protein can be synthesized without the signal sequence polypeptide at the amino terminus thereof, or it can be synthesized by generating immature INTERCEPT 217 protein and cleaving the signal sequence therefrom.
- the invention thus includes purified murine INTERCEPT 217 protein, both in the immature form comprising the 320 amino acid residues of SEQ ID NO: 93 and in the mature form comprising the approximately 305 carboxyl terminal amino acid residues of SEQ ID NO: 93 (i.e., comprising SEQ ID NO: 95).
- Mature murine INTERCEPT 217 protein can be synthesized without the signal sequence polypeptide at the amino terminus thereof, or it can be synthesized by generating immature INTERCEPT 217 protein and cleaving the signal sequence therefrom.
- the invention includes fragments, derivatives, and variants of these INTERCEPT 217 proteins, as described herein. These proteins, fragments, derivatives, and variants are collectively referred to herein as INTERCEPT 217 polypeptides of the invention or INTERCEPT 217 proteins of the invention.
- the invention also includes nucleic acid molecules which encode an INTERCEPT 217 polypeptide of the invention.
- nucleic acids include, for example, a DNA molecule having the nucleotide sequence listed in SEQ ID NO: 1, in SEQ ID NO: 92 (i.e., the murine ORF), or in some portion of either of these, such as the portion which encodes mature human INTERCEPT 217 protein, immature human INTERCEPT 217 protein, or a domain of human INTERCEPT 217 protein.
- These nucleic acids are collectively referred to as INTERCEPT 217 nucleic acids of the invention.
- INTERCEPT 217 proteins and nucleic acid molecules encoding them comprise a family of molecules having certain conserved structural and functional features. Each of these molecules is included in the invention.
- family is intended to mean two or more proteins or nucleic acid molecules having a common or similar domain structure and having sufficient amino acid or nucleotide sequence identity as defined herein.
- Family members can be from either the same or different species.
- a family can comprise two or more proteins of human origin, or can comprise one or more proteins of human origin and one or more of non-human origin (e.g., the human and murine INTERCEPT 217 proteins described herein).
- a common domain present in INTERCEPT 217 proteins is a signal sequence.
- a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the amino terminus of membrane- bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine.
- a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more preferably at least about 45% hydrophobic residues.
- a signal sequence serves to direct a protein containing such a sequence to a lipid bilayer.
- a INTERCEPT 217 protein contains a signal sequence corresponding to about amino acid residues 1 to 20 of SEQ ID NO: 3 (SEQ ID NO: 4). The signal sequence is cleaved during processing of the mature protein.
- INTERCEPT 217 proteins can include an extracellular domain.
- an "extracellular domain” refers to a portion of a protein which is localized to the non-cytoplasmic side of a lipid bilayer of a cell when a nucleic acid encoding the protein is expressed in the cell.
- the human INTERCEPT 217 protein extracellular domain is located from about amino acid residue 21 to about amino acid residue 383 of SEQ ID NO: 3 (SEQ ID NO: 6).
- the murine INTERCEPT 217 protein extracellular domain is located from about amino acid residue 17 to about amino acid residue 213 of SEQ ID NO: 93 (SEQ ID NO: 96).
- INTERCEPT 217 includes a transmembrane domain.
- a transmembrane domain refers to an amino acid sequence which is at least about 20 to 25 amino acid residues in length and which contains at least about 65-70% hydrophobic amino acid residues such as alanine, leucine, phenylalanine, protein, tyrosine, tryptophan, or valine.
- a transmembrane domain contains at least about 15 to 30 amino acid residues, preferably about 20-25 amino acid residues, and has at least about 60-80%, more preferably 65-75%, and more preferably at least about 70% hydrophobic residues.
- an INTERCEPT 217 protein of the invention contains a transmembrane domain corresponding to about amino acid residues 384 to 403 of SEQ ID NO: 3 (SEQ ID NO: 7) or to about amino acid residues 214 to 233 of SEQ ID NO: 93 (SEQ ID NO: 97).
- the present invention includes INTERCEPT 217 proteins having a cytoplasmic domain, particularly including proteins having a carboxyl-terminal cytoplasmic domain.
- a "cytoplasmic domain” refers to a portion of a protein which is localized to the cytoplasmic side of a lipid bilayer of a cell when a nucleic acid encoding the protein is expressed in the cell.
- the human INTERCEPT 217 cytoplasmic domain is located from about amino acid residue 404 to amino acid residue 455 of SEQ ID NO: 3 (SEQ ID NO: 8).
- INTERCEPT 217 cytoplasmic domain is located from aboud amino acid residue 234 to amino acid residue 320 of SEQ ID NO: 93 (SEQ ID NO: 98).
- amino acid residues of human INTERCEPT 217 corresponding to SEQ ID NO: 8 are part of an extracellular domain, and the amino acid residues corresponding to SEQ ID NO: 6 are part of a cytoplasmic domain.
- amino acid residues of murine INTERCEPT 217 corresponding to SEQ ID NO: 98 are part of an extracellular domain, and the amino acid residues corresponding to SEQ ID NO: 96 are part of a cytoplasmic domain.
- INTERCEPT 217 proteins typically comprise a variety of potential post-translational modification sites (often within an extracellular domain), such as those described herein in Tables IA (for human INTERCEPT 217) and IB (for murine INTERCEPT 217), as predicted by computerized sequence analysis of INTERCEPT 217 proteins using amino acid sequence comparison software (comparing the amino acid sequence of INTERCEPT 217 with the information in the PROSITE database ⁇ rel. 12.2; Feb, 1995 ⁇ and the Hidden Markov Models database ⁇ Rel. PFAM 3.3 ⁇ ).
- a protein of the invention has at least 1, 2, 4, 6, or 10 or more of the post-translational modification sites listed in Tables IA and IB.
- the protein of the invention has at least one domain that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to one of these domains.
- the protein has at least one of each of the LRR, LRRNT, and LRRCT domains described herein in Tables I A and IB.
- the protein has at least one LRRNT domain, at least one LRRCT domain, and a plurality of (e.g., 2, 3, 4, or more) LRR domains.
- LRR domains are present in a variety of proteins involved in protein-protein interactions. Such proteins include, for example, proteins involved in signal transduction, cell-to-cell adhesion, cell-to-extracellular matrix adhesion, cell development, DNA repair, RNA processing, and cellular molecular recognition processes. Specialized LRR domains, designated LRR amino terminal (LRRNT) domains and LRR carboxyl terminal (LRRCT) domains often occur near the amino and carboxyl, respectively, ends of a series of LRR domains.
- LRRNT LRR amino terminal
- LRRTCT LRR carboxyl terminal
- Human INTERCEPT 217 protein has eight clustered LRR domains, including (from the amino terminus toward the carboxyl terminus of INTERCEPT 217) an LRRNT domain, six LRR domains, and an LRRCT domain.
- LRR domains in human INTERCEPT 217 protein closely mirrors the organization of LRR domains in human platelet glycoprotein IB alpha chain precursor (GP-IB ⁇ ), which also has eight clustered LRR domains from about amino acid residue 19 to about amino acid residue 281 thereof.
- the eight LRR domains of GP-IB ⁇ include an LRRNT domain at the end of the cluster nearest the amino terminus of GP-IB ⁇ and an LRRCT domain at the end of the cluster nearest the carboxyl terminus of GP-IB ⁇ .
- GP-IB ⁇ is a membrane- bound protein of human platelets that is involved in binding of von Willebrand's factor and in aggregation of platelets during thrombus formation.
- INTERCEPT 217 is involved in both normal and aberrant physiological activities involving blood clotting and thrombus formation.
- disorders involving such activities include, for example, stroke, embolism (e.g., cerebral, renal, and pulmonary emboli), hemophilia, restenotic injury, prosthesis-associated thrombogenesis, atherosclerosis, and arteriosclerosis.
- INTERCEPT 217 is involved in one or more physiological processes in which these other LRR domain-containing proteins are involved, namely binding of cells with extracellular proteins such as soluble extracellular proteins and cell surface proteins of other cells.
- Human INTERCEPT 217 comprises a leucine zipper region at about amino acid residue 45 to about amino acid residue 66 (i.e., 45 LsctglgLqdvpaeLpaa tadL 66).
- Leucine zipper regions are known to be involved in dimerization of proteins. Leucine zipper regions interact with one another, leading to formation of homo- or hetero-dimers between proteins, depending on their identity. The presence in INTERCEPT 217 of a leucine zipper region is a further indication that this protein is involved in protein-protein interactions.
- the amino acid sequence of human INTERCEPT 217 protein includes multiple potential proline-rich Src homology 3 (SH3) domain binding sites in the cytoplasmic portion of the protein.
- SH3 domains mediate specific assembly of protein complexes, presumably by interacting with proline-rich protein domains (Morton and Campbell (1994) Curr. Biol. 4:615-617).
- SH3 domains also mediate interactions between proteins involved in transmembrane signal transduction. Coupling of proteins mediated by SH3 domains has been implicated in a variety of physiological systems, including those involving regulation of cell growth and proliferation, endocytosis, and activation of respiratory burst.
- SH3 domains have been described in the art (e.g., Mayer et al.
- proteins in which one or more SH3 domains occur are protein tyrosine kinases such as those of the Src, Abl, Bkt, Csk and ZAP70 families, mammalian phosphatidylinositol-specific phospholipases C- gamma-1 and -2, mammalian phosphatidylinositol 3-kinase regulatory p85 subunit, mammalian Ras GTPase-activating protein (GAP), proteins which mediate binding of guanine nucleotide exchange factors and growth factor receptors (e.g., vertebrate GRB2, Caenorhabditis elegans sem-5, and Drosophila DRK proteins), mammalian Vav oncoprotein, guanidine nucleotide releasing factors of the CDC 25 family (e.g., yeast CDC25, yeast SCD25, and fission yeast ste6 proteins), MAGUK proteins (e.g., mamma),
- elegans protein lin-2 rat protein CASK, and mammalian synaptic proteins SAP90/PSD-95, CHAPSYN-110/PSD-93, SAP97/DLG1, and SAP102
- proteins which interact with vertebrate receptor protein tyrosine kinases e.g., mammalian cytoplasmic protein Nek and oncoprotein Crk
- human hemopoietic lineage cell specific protein Hsl e.g., mammalian dihydrouridine-sensitive L-type calcium channel beta subunit, human myasthenic syndrome antigen B (MSYB), mammalian neutrophil cytosolic activators ofNADPH oxidase (e.g., p47 ⁇ NCF-1 ⁇ , ⁇ 67 ⁇ NCF-2 ⁇ , and C.
- vertebrate receptor protein tyrosine kinases e.g., mammalian cytoplasmic protein Nek and
- myosin heavy chains from amoebae, from slime molds, and from yeast, vertebrate and Drosophila spectrin and fodrin alpha chain proteins, human amphiphysin, yeast actin-binding proteins ABP1 and SLA3, yeast protein BEM1, fission yeast protein scd2 (ral3), yeast BEM1 -binding proteins BOI2 (BEB1) and BOB1 (BOH), yeast fusion protein FUS1, yeast protein RSV167, yeast protein SSU81, yeast hypothetical proteins YAR014c, YFR024c, YHL002w, YHR016c, YJL020C, and YHR114w, hypothetical fission yeast protein
- S ⁇ AC12C2.05c and C. elegans hypothetical protein F42H10.3.
- multiple SH3 domains occur in vertebrate GRB2 protein, C. elegans sem-5 protein, Drosophila DRK protein, oncoprotein Crk, mammalian neutrophil cytosolic activators of NADPH oxidase p47 and p67, yeast protein BEM1, fission yeast protein scd2, yeast hypothetical protein YHR114w, mammalian cytoplasmic protein Nek, C. elegans neutrophil cytosolic activator of NADPH oxidase B0303.7, and yeast actin-binding protein SLA1.
- SH3 domains occur in mammalian cytoplasmic protein Nek, C. elegans neutrophil cytosolic activator of NADPH oxidase B0303.7, and yeast actin-binding protein SLA1.
- the presence of SH3 domain binding sites in INTERCEPT 217 indicates that INTERCEPT 217 interacts with one or more of these and other SH3 domain- containing proteins and is thus involved in physiological processes in which one or more of these or other SH3 domain-containing proteins are involved.
- Human INTERCEPT 217 exhibits amino acid sequence similarity to porcine ribonuclease inhibitor, a protein which binds with high affinity to pancreatic ribonucleases and inhibits their activity. INTERCEPT 217 thus is involved with similar physiological processes in humans.
- human INTERCEPT 217 protein includes an approximately 20 (i.e., 18, 19, 20, 21, or 22) amino acid residue signal peptide (amino acid residues 1 to 20 of SEQ ID NO: 3; SEQ ID NO: 4) preceding the mature INTERCEPT 217 protein (i.e., approximately amino acid residues 21 to 455 of SEQ ID NO: 3; SEQ ID NO: 5).
- human INTERCEPT 217 protein includes an extracellular domain (amino acid residues 21 to 383 of SEQ ID NO: 3; SEQ ID NO: 6); a transmembrane domain (amino acid residues 384 to 403 of SEQ ID NO: 3; SEQ ID NO: 7); and a cytoplasmic domain (amino acid residues 404 to 455 of SEQ ID NO: 3; SEQ ID NO: 8).
- human INTERCEPT 217 protein includes a cytoplasmic domain
- amino acid residues 21 to 383 of SEQ ID NO: 3; SEQ ID NO: 6 amino acid residues 21 to 383 of SEQ ID NO: 3; SEQ ID NO: 6
- a transmembrane domain amino acid residues 384 to 403 of SEQ ID NO: 3; SEQ ID NO: 7
- an extracellular domain amino acid residues 404 to 455 of SEQ ID NO: 3; SEQ ID NO: 8.
- murine INTERCEPT 217 protein includes an approximately 15 (i.e., 13, 14, 15, 16, or 17) amino acid residue signal peptide (amino acid residues 1 to 16 of SEQ ID NO: 93; SEQ ID NO: 94) preceding the mature INTERCEPT 217 protein (i.e., approximately amino acid residues 16 to 320 of SEQ ID NO: 93; SEQ ID NO: 95).
- murine INTERCEPT 217 protein includes an extracellular domain (amino acid residues 16 to 213 of SEQ ID NO: 93; SEQ ID NO: 96); a transmembrane domain (amino acid residues 214 to 233 of SEQ ID NO: 93; SEQ ID NO: 97); and a cytoplasmic domain (amino acid residues 234 to 320 of SEQ ID NO: 93; SEQ ID NO: 98).
- murine INTERCEPT 217 protein includes a cytoplasmic domain (amino acid residues 16 to 213 of SEQ ID NO: 93; SEQ ID NO: 96); a transmembrane domain (amino acid residues 214 to 233 of SEQ ID NO: 93; SEQ ID NO: 97); and an extracellular domain (amino acid residues 234 to 320 of SEQ ID NO: 93; SEQ ID NO: 98).
- Figure IF depicts a hydrophilicity plot of human INTERCEPT 217 protein. Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line.
- the hydrophobic region which corresponds to amino acid residues 1 to 20 of SEQ ID NO: 3 is the signal sequence of human INTERCEPT 217 (SEQ ID NO: 4).
- the hydrophobic region which corresponds to amino acid residues 384 to 403 of SEQ ID NO: 3 is the transmembrane domain of human INTERCEPT 217 (SEQ ID NO: 7).
- relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions.
- Figure IL depicts a hydrophilicity plot of murine INTERCEPT 217 protein.
- the predicted molecular weight of human INTERCEPT 217 protein without modification and prior to cleavage of the signal sequence is about 49.8 kilodaltons.
- the predicted molecular weight of the mature human INTERCEPT 217 protein without modification and after cleavage of the signal sequence is about 47.4 kilodaltons.
- the predicted molecular weight of murine INTERCEPT 217 protein, without modification and prior to cleavage of the signal sequence is about 35.5 kilodaltons.
- the predicted molecular weight of the mature human INTERCEPT 217 protein without modification and after cleavage of the signal sequence is about 33.8 kilodaltons.
- INTERCEPT 217 cDNA is expressed in the tissues listed in Table II, wherein “++” indicates strong expression, “+” indicates lower expression, and “+/-” indicates still lower expression.
- An assay to detect possible secretion of INTERCEPT 217 protein was negative. This assay was performed as follows. About 8 x 10 5 293T cells were incubated at 37°C in wells containing growth medium (Dulbecco's modified Eagle's medium ⁇ DMEM ⁇ supplemented with 10% fetal bovine serum) under a 5% (v/v) CO 2 , 95% air atmosphere to about 60-70% confluence. The cells were then transfected using a standard transfection mixture comprising 2 micrograms of DNA and 10 microliters of LIPOFECTAMINETM (GIBCO/BRL Catalog no. 18342-012) per well. The transfection mixture was maintained for about 5 hours, and then replaced with fresh growth medium and maintained in an air atmosphere.
- growth medium Dulbecco's modified Eagle's medium ⁇ DMEM ⁇ supplemented with 10% fetal bovine serum
- a standard transfection mixture comprising 2 micrograms of DNA and 10 microliters of LIPOFECTAMINETM (GIBCO/BR
- DMEM-MC DMEM which did not contain methionine or cysteine
- DMEM-MC DMEM which did not contain methionine or cysteine
- About 1 milliliter of DMEM-MC and about 50 microcuries of TRANS- 35 STM reagent (ICN Catalog no. 51006) were added to each well.
- the wells were maintained under the 5% CO 2 atmosphere described above and incubated at 37°C for a selected period.
- 150 microliters of conditioned medium was removed, centrifuged to remove floating cells and debris, and combined with 150 microliters of 2x SDS sample buffer. The sample was boiled at 100°C for 5 minutes, and about 40 microliters of sample was loaded onto a NO VEXTM 4-20% (w/v) SDS-containing polyacrylamide gel.
- the gel was stained for protein and dried according to the NO VEXTM procedure.
- the dried gel was exposed to radiation-sensitive film in order to detect the position of secreted proteins.
- INTERCEPT 217 proteins are involved in disorders which affect both tissues in which they are normally expressed and tissues in which they are normally not expressed. Based on the observation that INTERCEPT 217 is expressed in pancreas, skeletal muscle, heart, brain, placenta, lung, liver, and kidney tissue, INTERCEPT 217 protein is involved in one or more biological processes which occur in these tissues. In particular, INTERCEPT 217 is involved in modulating binding of cells of one or more of these tissues with proteins of other cells or with secreted proteins which occur in the extracellular environment of one or more of these tissues.
- INTERCEPT 217 is especially implicated in disorders of skeletal muscle (e.g., protection of skeletal muscle cells during ischemia and in bruised tissue), and more especially those involving the pancreas (e.g., diabetes, pancreatitis, and the like).
- INTERCEPT 217 protein Structural similarity of human INTERCEPT 217 protein with human GP-IB ⁇ indicates that INTERCEPT 217 is involved in binding extracellular proteins and other ligands.
- INTERCEPT 217 protein is involved in binding of proteins which induce release of pancreatic digestive enzymes (e.g., amylases, lipases, proteases, and nucleases) from pancreatic cells, and in disorders associated with insufficient or inappropriate release of such enzymes.
- INTERCEPT 217 protein is also involved in binding of secreted pancreatic digestive enzymes in pancreatic tissue, thereby protecting pancreatic tissue from autodigestion.
- INTERCEPT 217 protein is involved in disorders such as diabetes, pancreatitis, and pancreatic carcinoma which involve acute and chronic autodigestive damage to pancreatic tissues. Homology of INTERCEPT 217 protein with porcine ribonuclease inhibitor protein is a further indication of this involvement. The presence of LRR domains in human INTERCEPT 217 protein and detection of its expression in a variety of tissues indicate that the tissue protective functions of INTERCEPT 217 are not limited to pancreatic tissues, but are involved in protection of other tissues as well (e.g., skeletal muscle, heart, brain, placenta, lung, liver, prostate, and kidney tissues).
- tissue protective functions of INTERCEPT 217 are not limited to pancreatic tissues, but are involved in protection of other tissues as well (e.g., skeletal muscle, heart, brain, placenta, lung, liver, prostate, and kidney tissues).
- INTERCEPT 217 is therefore involved in protection of these (and likely other tissues) from the effects of inflammation, autoimmunity, infection, and acute and chronic traumas. Presence in INTERCEPT 217 protein of multiple SH3 domain binding sites indicates that INTERCEPT 217 protein interacts with one or more SH3 domain-containing proteins. Thus, INTERCEPT 217 protein mediates binding of proteins (i.e., binding of proteins to INTERCEPT 217 and to one another to form protein complexes) in cells in which it is expressed. INTERCEPT 217 is also involved in transduction of signals between the exterior environment of cells (i.e., including from other cells) and the interior of cells in which it is expressed.
- INTERCEPT 217 mediates regulation of cell growth and proliferation, endocytosis, activation of respiratory burst, and other physiological processes triggered by transmission of a signal via a protein with which INTERCEPT 217 interacts.
- INTERCEPT 217-related molecules can be used to modulate one or more of the activities in which INTERCEPT 217 is involved and can also be used to prevent, diagnose, or treat one or more of the disorders in which INTERCEPT 217 is involved.
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof can, for example, be used to treat pancreatic disorders, such as pancreatitis (e.g., acute hemorrhagic pancreatitis and chronic pancreatitis), pancreatic cysts (e.g., congenital cysts, pseudocysts, and benign or malignant neoplastic cysts), pancreatic tumors (e.g., pancreatic carcinoma and adenoma), diabetes mellitus (e.g., insulin- and non-insulin-dependent types, impaired glucose tolerance, and gestational diabetes), and islet cell tumors (e.g., insulinomas, adenomas, Zollinger- Ellison syndrome, glucagonomas, and somatostatinoma).
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof can be used to treat disorders of skeletal muscle, such as muscular dystrophy (e.g., Duchenne muscular dystrophy, Becker muscular dystrophy, Emery-Dreifuss muscular dystrophy, limb-girdle muscular dystrophy, facioscapulohumeral muscular dystrophy, myotonic dystrophy, oculopharyngeal muscular dystrophy, distal muscular dystrophy, and congenital muscular dystrophy), motor neuron diseases (e.g., amyotrophic lateral sclerosis, infantile progressive spinal muscular atrophy, intermediate spinal muscular atrophy, spinal bulbar muscular atrophy, and adult spinal muscular atrophy), myopathies (e.g., inflammatory myopathies ⁇ e.g., dermatomyositis and polymyositis ⁇ , myotonia congenita, paramyotonia congenita, central core disease, nemaline myopathy, myopathy, myopathie
- INTERCEPT 217 exhibits expression in heart tissue
- INTERCEPT 217 nucleic acids, proteins, and modulators thereof can be used to treat heart disorders (e.g., ischemic heart disease, atherosclerosis, hypertension, angina pectoris, hypertrophic cardiomyopathy, and congenital heart disease).
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof can be used to treat disorders of the brain, such as cerebral edema, hydrocephalus, brain hemiations, iatrogenic disease (due to, e.g., infection, toxins, or drugs), inflammations (e.g., bacterial and viral meningitis, encephalitis, and cerebral toxoplasmosis), cerebrovascular diseases (e.g., hypoxia, ischemia, and infarction, intracranial hemorrhage and vascular malformations, and hypertensive encephalopathy), and tumors (e.g., neuroglial tumors, neuronal tumors, tumors of pineal cells, meningeal tumors, primary and secondary lymphomas, intracranial tumors, and medulloblastoma), and to treat injury or trauma to the brain.
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose,
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof can be used to treat placental disorders, such as toxemia of pregnancy (e.g., preeclampsia and eclampsia), placentitis, and spontaneous abortion.
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof can be used to treat pulmonary (i.e., lung) disorders, such as atelectasis, cystic fibrosis, rheumatoid lung disease, pulmonary congestion, pulmonary edema, chronic obstructive airway disease (e.g., emphysema, chronic bronchitis, bronchial asthma, and bronchiectasis), diffuse interstitial diseases (e.g., sarcoidosis, pneumoconiosis, hypersensitivity pneumonitis, Goodpasture's syndrome, idiopathic pulmonary hemosiderosis, pulmonary alveolar proteinosis, desquamative interstitial pneumonitis, chronic interstitial pneumonia, fibrosing alveolitis, hamman-rich syndrome, pulmonary eosinophilia, diffuse interstitial fibrosis, Wegener's granulomatosis, lymph
- pulmonary
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof can be used to treat cardiovascular disorders, such as ischemic heart disease (e.g., angina pectoris, myocardial infarction, and chronic ischemic heart disease), hypertensive heart disease, pulmonary heart disease, valvular heart disease (e.g., rheumatic fever and rheumatic heart disease, endocarditis, mitral valve prolapse, and aortic valve stenosis), congenital heart disease (e.g., valvular and vascular obstructive lesions, atrial or ventricular septal defect, and patent ductus arteriosus), and myocardial disease (e.g., myocarditis, congestive cardiomyopathy, and hypertrophic cariomyopathy).
- ischemic heart disease e.g., angina pectoris, myocardial infarction, and chronic ischemic heart disease
- hypertensive heart disease e.g., an
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof can be used to treat hepatic (i.e., liver) disorders, such as jaundice, hepatic failure, hereditary hyperbiliruinemias (e.g., Gilbert's syndrome, Crigler-Naijar syndromes and Dubin- Johnson and Rotor's syndromes), hepatic circulatory disorders (e.g., hepatic vein thrombosis and portal vein obstruction and thrombosis), hepatitis (e.g., chronic active hepatitis, acute viral hepatitis, and toxic and drug-induced hepatitis), cirrhosis (e.g., alcoholic cirrhosis, biliary cirrhosis, and hemochromatosis), and malignant tumors (e.g., primary carcinoma, hepatoblastoma, and angiosarcoma).
- hepatic i.e., liver
- disorders such as jaund
- INTERCEPT 217 polypeptides, nucleic acids, and modulators thereof can be used to treat renal (i.e., kidney) disorders, such as glomerular diseases (e.g., acute and chronic glomerulonephritis, rapidly progressive glomerulonephritis, nephrotic syndrome, focal proliferative glomerulonephritis, glomerular lesions associated with systemic disease, such as systemic lupus erythematosus, Goodpasture's syndrome, multiple myeloma, diabetes, neoplasia, sickle cell disease, and chronic inflammatory diseases), tubular diseases (e.g., acute tubular necrosis and acute renal failure, polycystic renal diseasemedullary sponge kidney, medullary cystic disease, nephrogenic diabetes, and renal tubular acidosis), tubulointerstitial diseases (e.g., pyelonephritis, drug and toxin induced tubulointerstitial
- a cDNA clone (designated jthsa085g01) encoding at least a portion of human INTERCEPT 297 protein was isolated from a human fetal spleen cDNA library.
- the human INTERCEPT 297 protein is predicted by structural analysis to be a transmembrane protein.
- the full length of the cDNA encoding human INTERCEPT 297 protein ( Figure 2; SEQ ID NO: 9) is 1518 nucleotide residues.
- the invention thus includes purified human INTERCEPT 297 protein, both in the form of a 371 amino acid residue protein (SEQ ID NO: 11) in which the 'signal sequence' (i.e., the portion of INTERCEPT 297 protein corresponding to amino acid residues 1 to 18) described in this section is not cleaved and in the form of a 353 amino acid residue protein (SEQ ID NO: 13) in which the 'signal sequence' is cleaved.
- Human INTERCEPT 297 protein can exist with or without the signal sequence polypeptide at the amino terminus thereof. It is likely that the 'signal sequence' is not cleaved, but is instead a transmembrane domain of the protein.
- the invention includes fragments, derivatives, and variants of these INTERCEPT 297 proteins, as described herein. These proteins, fragments, derivatives, and variants are collectively referred to herein as INTERCEPT 297 polypeptides of the invention or INTERCEPT 297 proteins of the invention.
- the invention also includes nucleic acid molecules which encode an INTERCEPT 297 polypeptide of the invention.
- nucleic acids include, for example, a DNA molecule having the nucleotide sequence listed in SEQ ID NO: 9 or some portion thereof, such as the portion which encodes mature INTERCEPT 297 protein, immature INTERCEPT 297 protein, or a domain of INTERCEPT 297 protein. These nucleic acids are collectively referred to as INTERCEPT 297 nucleic acids of the invention.
- INTERCEPT 297 proteins and nucleic acid molecules encoding them comprise a family of molecules having certain conserved structural and functional features.
- a common domain present in INTERCEPT 297 proteins is a signal sequence.
- a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the amino terminus of membrane- bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine.
- a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more preferably at least about 45% hydrophobic residues.
- a signal sequence serves to direct a protein containing such a sequence to a lipid bilayer.
- a INTERCEPT 297 protein contains a signal sequence corresponding to about amino acid residues 1 to 18 of SEQ ID NO: 11 (SEQ ID NO: 12).
- the signal sequence can be cleaved during processing of the mature protein, but it is likely that amino acid residues 1 to 18 of SEQ ID NO: 11 represent a (non-cleaved) transmembrane region of the protein.
- INTERCEPT 297 proteins can include one or more extracellular domains.
- extracellular domains are located from about amino acid residues 19 to 47, from about amino acid residues 110 to 118, from about amino acid residues 162 to 175, from about amino acid residues 234 to 260, and from about amino acid residues 313 to 319 of SEQ ID NO: 11 (SEQ ID NOs: 14-18, respectively).
- extracellullar domains are located from about amino acid residue 69 to 88, from about amino acid residue 138 to 144, from about amino acid residue 193 to 215, from about amino acid residue 284 to 292, and from about amino acid residue 337 to 371 of SEQ ID NO: 11 (SEQ ID NOs: 28-32, respectively).
- INTERCEPT 297 includes one or more transmembrane domains.
- a INTERCEPT 297 protein of the invention contains transmembrane domains corresponding to about amino acid residues 48 to 68, about amino acid residues 89 to 109, about amino acid residues 119 to 137, about amino acid residues 145 to 161, about amino acid residues 176 to 192, about amino acid residues 216 to 233, about amino acid residues 261 to 283, about amino acid residues 293 to 312, and about amino acid residues 320 to 336 of SEQ ID NO: 11 (SEQ ID NOs: 19-27, respectively).
- SEQ ID NOs: 19-27 SEQ ID NOs: 19-27
- the present invention includes INTERCEPT 297 proteins having one or more cytoplasmic domains.
- cytoplasmic domains are located from about amino acid residue 69 to 88, from about amino acid residue 138 to 144, from about amino acid residue 193 to 215, from about amino acid residue 284 to 292, and from about amino acid residue 337 to 371 of SEQ ID NO: 11 (SEQ ID NOs: 28-32, respectively).
- cytoplasmic domains are located from about amino acid residues 19 to 47, from about amino acid residues 110 to 118, from about amino acid residues 162 to 175, from about amino acid residues 234 to 260, and from about amino acid residues 313 to 319 of SEQ ID NO: 11 (SEQ ID NOs: 14-18, respectively).
- INTERCEPT 297 proteins typically comprise a variety of potential post-translational modification sites (often within an extracellular domain), such as those described herein in Table III, as predicted by computerized sequence analysis of INTERCEPT 297 proteins using amino acid sequence comparison software (comparing the amino acid sequence of INTERCEPT 297 with the information in the PROSITE database ⁇ rel. 12.2; Feb, 1995 ⁇ and the Hidden Markov Models database ⁇ Rel. PFAM 3.3 ⁇ ).
- a protein of the invention has at least 1, 2, 4, 6, 10, 15, or 20 or more of the post-translational modification sites listed in Table III.
- the protein of the invention has at least one domain that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to this DUF6 domain.
- the DUF6 domain is a transmembrane domain that is highly conserved among eukaryote, prokaryote, and archae kingdoms. This high degree of domain sequence conservation indicates that proteins of the class which includes INTERCEPT 297 are involved in fundamental membrane physiology of living cells.
- INTERCEPT 297 protein is therefore involved in disorders which are associated with aberrant membrane function including, for example, disorders involving abnormal membrane fluidity, disorders involving aberrant transmembrane transport, disorders involving abnormal membrane organization, disorders involving abnormal membrane synthesis, disorders involving aberrant cell division, and the like.
- the signal peptide prediction program SIGNALP (Nielsen et al. (1997) Protein Engineering 10:1-6) predicted that human INTERCEPT 297 protein includes an approximately 18 (i.e., 16, 17, 18, 19, or 20) amino acid residue signal peptide (amino acid residues 1 to 18 of SEQ ID NO: 11; SEQ ID NO: 12) preceding the mature INTERCEPT 297 protein (i.e., approximately amino acid residues 19 to 371 of SEQ ID NO: 11; SEQ ID NO: 13).
- human INTERCEPT 297 protein includes about five extracellular domains (amino acid residues 19 to 47, 110 to 118, 162 to 175, 234 to 260, and 313 to 319 of SEQ ID NO: 11); about nine transmembrane domains (amino acid residues 48 to 68, 89 to 109, 119 to 137, 145 to 161, 176 to 192, 216 to 233, 261 to 283, 293 to 312, and 320 to 326 of SEQ ID NO: 11); and about five cytoplasmic domains (amino acid residues 69 to 88, 138 to 144, 193 to 215, 284 to 292, and 337 to 371 of SEQ ID NO: 11).
- human INTERCEPT 297 protein includes about five cytoplasmic domains (amino acid residues 19 to 47, 110 to 118, 162 to 175, 234 to 260, and 313 to 319 of SEQ ID NO: 11); about nine transmembrane domains (amino acid residues 48 to 68, 89 to 109, 119 to 137, 145 to 161, 176 to 192, 216 to 233, 261 to 283, 293 to 312, and 320 to 326 of SEQ ID NO: 11); and about five extracellular domains (amino acid residues 69 to 88, 138 to 144, 193 to 215, 284 to 292, and 337 to 371 of SEQ ID NO: 11).
- Figure 2D depicts a hydrophilicity plot of human INTERCEPT 297 protein. Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line. Hydrophobic region corresponding to the signal sequence and the transmembrane domains are observed in this figure. As described elsewhere herein, relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions. For example, the region of human INTERCEPT 297 protein from about amino acid residue 165 to about amino acid residue 175 appears to be located at or near the surface of the protein.
- the predicted molecular weight of human INTERCEPT 297 protein without modification and prior to cleavage of the signal sequence is about 40.2 kilodaltons.
- the predicted molecular weight of the mature human INTERCEPT 297 protein without modification and after cleavage of the signal sequence is about 38.2 kilodaltons.
- INTERCEPT 297 proteins are involved in disorders which affect both tissues in which they are normally expressed and tissues in which they are normally not expressed. Based on the observation that INTERCEPT 297 is expressed in human fetal spleen, INTERCEPT 297 protein is involved in one or more biological processes which occur in fetal and spleen tissues. In particular, INTERCEPT 297 is involved in modulating growth, proliferation, survival, differentiation, and activity of cells including, but not limited to, spleen and fetal cells of the animal in which it is normally expressed. Thus, INTERCEPT 297 has a role in disorders which affect these cells and their growth, proliferation, survival, differentiation, and activity (e.g., hematoiogic and immune disorders). Expression of INTERCEPT 297 in an animal is also involved in modulating growth, proliferation, survival, differentiation, and activity of cells and viruses which are foreign to the host (i.e., bacterial, fungal, and viral infections).
- INTERCEPT 297 bears amino acid sequence similarity to Caenorhabditis elegans protein C2G 12.12, and therefore exhibits one or more activities analogous to that protein.
- INTERCEPT 297 nucleic acids, proteins, and modulators thereof can be used to modulate the proliferation, differentiation, or function of cells of the spleen (e.g., cells of the splenic connective tissue, splenic smooth muscle cells, and endothelial cells of the splenic blood vessels).
- INTERCEPT 297 nucleic acids, proteins, and modulators thereof can also be used to modulate the proliferation, differentiation, and function of cells that are processed within the spleen (e.g., regenerated or phagocytized within the spleen, erythrocytes, B and T lymphocytes, and macrophages).
- INTERCEPT 297 nucleic acids, proteins, and modulators thereof can be used to treat disorders of the spleen (including disorders of the fetal spleen).
- splenic disorders include, splenic lymphoma, splenomegaly, and phagocytotic disorders (e.g., those in which macrophage engulfment of bacteria and viruses in the bloodstream is inhibited).
- INTERCEPT 297 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders. Structural analysis of INTERCEPT 297 and the presence of a DUF6 domain therein indicate that INTERCEPT 297 is involved in disorders which affect membrane structure and function. INTERCEPT 297 can be used to affect development and persistence of disorders involving inappropriate membrane structure and function, such as atherogenesis, arteriosclerosis, and various transmembrane transport disorders. Other exemplary disorders for which
- INTERCEPT 297 is useful include disorders involving generation and persistence of an immune response to bacterial, fungal, and viral infections.
- INTERCEPT 297 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- the structure of INTERCEPT 297 is analogous to the structures of integral membrane proteins responsible for transmembrane transport of molecules such as sugars, ions, and the like.
- INTERCEPT 297 is thus involved in one or more transmembrane transport-related disorders such as cystic fibrosis, nerve conduction disorders (e.g., pain and loss or failure of sensation), muscle contraction disorders (e.g., cardiac insufficiency), metal ion uptake disorders (e.g., hemochromatosis), and the like.
- INTERCEPT 297 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 276 A cDNA clone (designated jthsa006e01) encoding at least a portion of human TANGO 276 protein was isolated from a human fetal spleen cDNA library. The human TANGO 276 protein is predicted by structural analysis to be a secreted protein.
- the full length of the cDNA encoding human TANGO 276 protein ( Figure 3; SEQ ID NO: 33) is 2811 nucleotide residues.
- the invention thus includes purified human TANGO 276 protein, both in the form of the immature 243 amino acid residue protein (SEQ ID NO: 35) and in the form of the mature, approximately 223 amino acid residue protein (SEQ ID NO: 37).
- Mature human TANGO 276 protein can be synthesized without the signal sequence polypeptide at the amino terminus thereof, or it can be synthesized by generating immature TANGO 276 protein and cleaving the signal sequence therefrom.
- the invention includes fragments, derivatives, and variants of these TANGO 276 proteins, as described herein. These proteins, fragments, derivatives, and variants are collectively referred to herein as TANGO 276 polypeptides of the invention or TANGO 276 proteins of the invention.
- the invention also includes nucleic acid molecules which encode a
- TANGO 276 polypeptide of the invention include, for example, a DNA molecule having the nucleotide sequence listed in SEQ ID NO: 33 or some portion thereof, such as the portion which encodes mature TANGO 276 protein, immature TANGO 276 protein, or a domain of TANGO 276 protein. These nucleic acids are collectively referred to as TANGO 276 nucleic acids of the invention.
- TANGO 276 proteins and nucleic acid molecules encoding them comprise a family of molecules having certain conserved structural and functional features, as indicated by the conservation of amino acid sequence between human TANGO 276 protein and the murine protein designated M-Sema-F (see Inagaki et al. (1995) FEBSLett. 370:269-272), as shown in Figures 3F to 3H.
- a common domain present in TANGO 276 proteins is a signal sequence.
- a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the amino terminus of membrane- bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine.
- a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more preferably at least about 45% hydrophobic residues.
- a signal sequence serves to direct a protein containing such a sequence to a lipid bilayer.
- a TANGO 276 protein contains a signal sequence corresponding to about amino acid residues 1 to 20 of SEQ ID NO: 35 (SEQ ID NO: 36). The signal sequence is cleaved during processing of the mature protein.
- TANGO 276 proteins can exist in a secreted form, such as a mature protein having the amino acid sequence of amino acid residues 21 to 243 of SEQ ID NO: 35 (SEQ ID NO: 37).
- TANGO 276 proteins typically comprise a variety of potential posttranslational modification sites (often within an extracellular domain), such as those described herein in Table IV, as predicted by computerized sequence analysis of TANGO 276 proteins using amino acid sequence comparison software (comparing the amino acid sequence of TANGO 276 with the information in the PROSITE database ⁇ rel. 12.2; Feb, 1995 ⁇ and the Hidden Markov Models database ⁇ Rel.
- a protein of the invention has at least 1, 2, 4, 6, or all 8 of the post-translational modification sites listed in Table IV. Table IV
- a Sema domain occurs in human TANGO 276 protein.
- the protein of the invention has at least one domain that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to this Sema domain.
- Sema domains occur in semaphorin proteins. Semaphorins are a large family of secreted and transmembrane proteins, some of which function as repellent signals during neural axon guidance. The Sema domain and a variety of semaphorin proteins in which it occurs are described, for example, in Winberg et al. (1998 Cell 95:903-916). Sema domains also occur in human hepatocyte growth factor receptor (SwissProt Accession no. P08581) and the similar neuronal and epithelial transmembrane receptor protein (SwissProt Accession no. P51805).
- TANGO 276 The presence of a Sema domain in human TANGO 276 protein indicates that TANGO 276 is involved in one or more physiological processes in which the semaphorins are involved, has biological activity in common with one or more of the semaphorins, or both.
- Human TANGO 276 protein exhibits considerable sequence similarity to murine M-Sema F protein (GenBank Accession no. S79463), as indicated herein in Figures 3F to 3H.
- semaphorins are bi-functional, capable of functioning either as attractive axonal guidance proteins or as repellent axonal guidance proteins (Wong et al. (1997) Development 124:3597-3607). Furthermore, semaphorins bind with neuronal cell surface proteins designated plexins, which are expressed on both neuronal cells and cells of the immune system (Comeau et al.
- human TANGO 276 protein includes an approximately 20 (i.e., 18, 19, 20, 21, or 22) amino acid signal peptide (amino acid residues 1 to 20 of SEQ ID NO: 35; SEQ ID NO: 36) preceding the mature TANGO 276 protein (i.e., approximately amino acid residues 21 to 243 of SEQ ID NO: 34; SEQ ID NO: 37).
- Human TANGO 276 protein is a secreted protein.
- Figure 3E depicts a hydrophilicity plot of human TANGO 276 protein. Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line. The hydrophobic region which corresponds to about amino acid residues 1 to 20 of SEQ ID NO: 35 is the signal sequence of human TANGO 276. As described elsewhere herein, relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions.
- the region of human TANGO 276 protein from about amino acid residue 90 to about amino acid residue 105 appears to be located at or near the surface of the protein, while the region from about amino acid residue 170 to about amino acid residue 180 appears not to be located at or near the surface.
- the predicted molecular weight of human TANGO 276 protein without modification and prior to cleavage of the signal sequence is about 27.1 kilodaltons.
- the predicted molecular weight of the mature human TANGO 276 protein without modification and after cleavage of the signal sequence is about 24.8 kilodaltons.
- TANGO 276 proteins are involved in disorders which affect both tissues in which they are normally expressed and tissues in which they are normally not expressed. Based on the observation that TANGO 276 is expressed in human heart and placenta tissues, to a lesser extent in brain, lung, liver, skin, kidney, and pancreas tissues, and in fetal spleen tissue, TANGO 276 protein is involved in one or more biological processes which occur in these tissues. In particular, TANGO 276 is involved in modulating growth, proliferation, survival, differentiation, and activity of cells including, but not limited to, heart, placenta, spleen, brain, lung, liver, skin, kidney, and pancreas cells of the animal in which it is normally expressed. Thus, TANGO 276 has a role in disorders which affect these cells and their growth, proliferation, survival, differentiation, and activity.
- TANGO 276 exhibits expression in the heart
- TANGO 276 nucleic acids, proteins, and modulators thereof can be used to treat heart disorders.
- heart disorders with which TANGO 276 can be involved include ischemic heart disease, atherosclerosis, hypertension, angina pectoris, hypertrophic cardiomyopathy, and congenital heart disease.
- TANGO 276 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 276 polypeptides, nucleic acids, and modulators thereof can be used to treat placental disorders, such as toxemia of pregnancy (e.g., preeclampsia and eclampsia), placentitis, and spontaneous abortion.
- TANGO 276 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 276 polypeptides, nucleic acids, or modulators thereof can be used to treat disorders of the brain, such as cerebral edema, hydrocephalus, brain hemiations, iatrogenic disease (due to, e.g., infection, toxins, or drugs), inflammations (e.g., bacterial and viral meningitis, encephalitis, and cerebral toxoplasmosis), cerebrovascular diseases (e.g., hypoxia, ischemia, and infarction, intracranial hemorrhage and vascular malformations, and hypertensive encephalopathy), and tumors (e.g., neuroglial tumors, neuronal tumors, tumors of pineal cells, meningeal tumors, primary and secondary lymphomas, intracranial tumors, and medulloblastoma), and to treat injury or trauma to the brain.
- disorders of the brain such as cerebral edema, hydrocephalus, brain hemiations, iatrogenic disease (due
- TANGO 276 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 276 polypeptides, nucleic acids, and modulators thereof can be associated with pulmonary (i.e., lung) disorders, such as atelectasis, cystic fibrosis, rheumatoid lung disease, pulmonary congestion, pulmonary edema, chronic obstructive airway disease (e.g., emphysema, chronic bronchitis, bronchial asthma, and bronchiectasis), diffuse interstitial diseases (e.g., sarcoidosis, pneumoconiosis, hypersensitivity pneumonitis, Goodpasture's syndrome, idiopathic pulmonary hemosiderosis, pulmonary alveolar proteinosis, desquamative interstitial pneumonitis, chronic interstitial pneumonia, fibrosing alveo
- TANGO 276 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 276 polypeptides, nucleic acids, and modulators thereof can be used to treat hepatic (i.e., liver) disorders, such as jaundice, hepatic failure, hereditary hyperbiliruinemias (e.g., Gilbert's syndrome, Crigler-Naijar syndromes and Dubin- Johnson and Rotor's syndromes), hepatic circulatory disorders (e.g., hepatic vein thrombosis and portal vein obstruction and thrombosis) hepatitis (e.g., chronic active hepatitis, acute viral hepatitis, and toxic and drug-induced hepatitis) cirrhosis (e.g., alcoholic cirrhosis, biliary cirrhosis, and hemochromatosis), and malignant
- Exemplary skin disorders with which TANGO 276 can be associated include, by way of example, psoriasis, infections, wounds (and healing of wounds), inflammation, dermatitis, acne, benign and malignant dermatological tumors, and the like.
- TANGO 276 proteins, nucleic acids encoding them, and agents that modulate activity or expression of either of these can be used to prognosticate, diagnose, treat, and inhibit one or more of these disorders.
- TANGO 276 polypeptides, nucleic acids, or modulators thereof can be used to treat renal (i.e., kidney) disorders, such as glomerular diseases (e.g., acute and chronic glomerulonephritis, rapidly progressive glomerulonephritis, nephrotic syndrome, focal proliferative glomerulonephritis, glomerular lesions associated with systemic disease, such as systemic lupus erythematosus, Goodpasture's syndrome, multiple myeloma, diabetes, neoplasia, sickle cell disease, and chronic inflammatory diseases), tubular diseases (e.g., acute tubular necrosis and acute renal failure, polycystic renal diseasemedullary sponge kidney, medullary cystic disease, nephrogenic diabetes, and renal tubular acidosis), tubulointerstitial diseases (e.g., pyelonephritis, drug and toxin induced tubulointerstitial
- Pancreatic disorders in which TANGO 276 can be involved include pancreatitis (e.g., acute hemorrhagic pancreatitis and chronic pancreatitis), pancreatic cysts (e.g., congenital cysts, pseudocysts, and benign or malignant neoplastic cysts), pancreatic tumors (e.g., pancreatic carcinoma and adenoma), diabetes mellitus (e.g., insulin- and non-insulin-dependent types, impaired glucose tolerance, and gestational diabetes), and islet cell tumors (e.g., insulinomas, adenomas, Zollinger-Ellison syndrome, glucagonomas, and somatostatinoma).
- pancreatitis e.g., acute hemorrhagic pancreatitis and chronic pancreatitis
- pancreatic cysts e.g., congenital cysts, pseudocysts, and benign or malignant neoplastic cyst
- TANGO 276 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- the presence of the Sema domain in TANGO 276 indicates that this protein is involved in development of neuronal and epithelial tissues and also functions as a repellant protein which guides axonal development.
- TANGO 276 modulates nerve growth and regeneration and also modulates growth and regeneration of other epithelial tissues.
- TANGO 276 is thus involved in a variety of neuronal disorder including, but not limited to, one or more of seizure, epilepsy, (regeneration of) neuronal damage, pain (including, for example, migraine, headache, and other chronic pain), infections of the central nervous system, multiple sclerosis, sleep disorders, psychological disorders, nerve root disorders, and the like. Presence of a Sema domain in TANGO 276 further indicates that TANGO 276 has one or more physiological roles in common with other proteins (e.g., secreted and transmembrane semaphorins, collapsins, neuropilins, plexins, and the like) in which the Sema domain occurs.
- proteins e.g., secreted and transmembrane semaphorins, collapsins, neuropilins, plexins, and the like
- TANGO 276 is implicated in development, maintenance, and regeneration of neuronal connections and networks, in modulating differentiation of cells of the immune system, in modulating cytokine production by cells of the immune system, in modulating reactivity of cells of the immune system toward cytokines, in modulating initiation and persistence of an inflammatory response, and in modulating proliferation of epithelial cells.
- Sema domain-containing proteins have also been implicated in development and progression of small cell lung cancer, in normal brain development, and immune system regulation. This indicates that TANGO 276 is also involved in one or more of these processes and in disorders relating to these processes (e.g., small cell lung cancer, brain development disorders, and immune and auto-immune disorders).
- TANGO 276 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- M-Sema F murine semaphorin protein designated M-Sema F suggests that TANGO 276 has activity identical or analogous to the activity of this protein.
- TANGO 276 modulates growth, proliferation, survival, differentiation, and activity of neuronal cells.
- TANGO 276 protein is useful, for example, for modulating and guiding neural axon development and for modulating establishment and maintenance of neuronal networks.
- a cDNA clone (designated jthkf040bl 1) encoding at least a portion of human TANGO 292 protein was isolated from a human normal embryonic keratinocyte cDNA library.
- a corresponding gerbil cDNA clone (designated jtiba040el2) was also isolated, and encoded at least a portion of gerbil TANGO 292 protein.
- the human and TANGO 292 proteins are predicted by structural analysis to be transmembrane proteins.
- the full length of the cDNA encoding human TANGO 292 protein ( Figure 4; SEQ ID NO: 38) is 2498 nucleotide residues.
- the full length of the cDNA encoding gerbil TANGO 292 protein ( Figure 4; SEQ ID NO: 81) is 2002 nucleotide residues.
- the invention thus includes purified human TANGO 292 protein, both in the form of the immature 226 amino acid residue protein (SEQ ID NO: 40) and in the form of the mature, approximately 209 amino acid residue protein (SEQ ID NO: 42).
- the invention also includes purified gerbil TANGO 292 protein, both in the form of the immature 225-amino acid residue (SEQ ID NO: 83) protein and in the form of the mature, approximately 208-amino acid residue protein (SEQ ID NO: 85).
- Mature human or gerbil TANGO 292 protein can be synthesized without the signal sequence polypeptide at the amino terminus thereof, or it can be synthesized by generating immature TANGO 292 protein and cleaving the signal sequence therefrom.
- the invention includes fragments, derivatives, and variants of these TANGO 292 proteins, as described herein. These proteins, fragments, derivatives, and variants are collectively referred to herein as TANGO 292 polypeptides of the invention or TANGO 292 proteins of the invention.
- the invention also includes nucleic acid molecules which encode a TANGO 292 polypeptide of the invention.
- nucleic acids include, for example, a DNA molecule having the nucleotide sequence listed in SEQ ID NO: 38 or 81 or some portion thereof, such as the portion which encodes mature human or gerbil TANGO 292 protein, immature human or gerbil TANGO 292 protein, or a domain of human or gerbil TANGO 292 protein. These nucleic acids are collectively referred to as TANGO 292 nucleic acids of the invention.
- TANGO 292 proteins and nucleic acid molecules encoding them comprise a family of molecules having certain conserved structural and functional features. This family includes, for example, human and gerbil TANGO 292 proteins and nucleic acid molecules described herein.
- a common domain present in TANGO 292 proteins is a signal sequence.
- a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the amino terminus of membrane- bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine.
- a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more preferably at least about 45% hydrophobic residues.
- a signal sequence serves to direct a protein containing such a sequence to a lipid bilayer.
- a TANGO 292 protein contains a signal sequence corresponding to about amino acid residues 1 to 17 of SEQ ID NO: 40 (SEQ ID NO: 41) or to about amino acid residues 1 to 17 of SEQ ID NO: 83 (SEQ ID NO: 84).
- the signal sequence is cleaved during processing of the mature protein.
- TANGO 292 proteins can include an extracellular domain.
- the human TANGO 292 protein extracellular domain is located from about amino acid residue 18 to about amino acid residue 113 of SEQ ID NO: 40 (SEQ ID NO: 43).
- the gerbil TANGO 292 protein extracellular domain includes at least about amino acid residues 18 to 112 of SEQ ID NO: 83 (SEQ ID NO: 86).
- TANGO 292 include a transmembrane domain.
- a human TANGO 292 protein contains a transmembrane domain corresponding to about amino acid residues 114 to 138 of SEQ ID NO: 40 (SEQ ID NO: 44).
- Gerbil TANGO 292 protein includes a transmembrane domain corresponding to about amino acid residues 113 to 137 of SEQ ID NO: 83 (SEQ ID NO: 87).
- the present invention includes TANGO 292 proteins having a cytoplasmic domain, particularly including proteins having a carboxyl-terminal cytoplasmic domain.
- the human TANGO 292 cytoplasmic domain is located from about amino acid residue 139 to amino acid residue 226 of SEQ ID NO: 40 (SEQ ID NO: 45).
- the gerbil TANGO 292 cytoplasmic domain is located from about amino acid residue 138 to amino acid residue 225 of SEQ ID NO: 83 (SEQ ID NO: 88).
- TANGO 292 proteins typically comprise a variety of potential posttranslational modification sites (often within an extracellular domain), such as those described herein in Table Via as predicted by computerized sequence analysis of human TANGO 292 protein, or in Table VIb as predicted by computerized sequence analysis of gerbil TANGO 292 protein, using amino acid sequence comparison software (comparing the amino acid sequence of TANGO 292 with the information in the PROSITE database ⁇ rel. 12.2; Feb, 1995 ⁇ and the Hidden Markov Models database ⁇ Rel. PFAM 3.3 ⁇ ).
- a protein of the invention has at least 1, 2, 4, 6, or all of the post-translational modification sites listed in Table Via or in Table VIb.
- the protein of the invention has at least one domain that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to this vitamin K-dependent carboxylation domain.
- the vitamin K-dependent carboxylation domain has the following consensus sequence, wherein standard single-letter amino acid codes are used and 'X' refers to any amino acid residue.
- Glutamic acid residues within this consensus region are potential vitamin K- dependent carboxylation sites.
- Human TANGO 292 has 9 glutamic acid residues in the vitamin K-dependent carboxylation domain located from about amino acid residue 56 to 98 of SEQ ID NO: 40, namely at amino acid residues 58, 66, 68, 71, 72, 77, 78, 81, and 86 of SEQ ID NO: 40, and gerbil TANGO 292 has 10 glutamic acid residues in the vitamin K-dependent carboxylation domain located from about amino acid residue 55 to 92 of SEQ ID NO: 83, namely at amino acid residues 57, 65, 67, 70, 71, 76, 77, 80, 86, and 87 of SEQ ID NO: 83.
- the protein of the invention is carboxylated at one or more of these glutamic acid residues.
- many of the glutamic acid residues which occur from the amino terminus of the protein through the conserved aromatic residue at the carboxyl terminal end of the domain are carboxylated.
- Human TANGO 292 has 13 glutamic acid residues in the region from the amino terminus of (both the immature and mature forms of) the protein and the tryptophan residue at amino acid residue 93 of SEQ ID NO: 40, and also has another glutamic acid residue at position 95 of SEQ ID NO: 40 which can also be carboxylated.
- human TANGO 292 protein has four sets of paired (i.e., adjacent) glutamic acid residues, at residues 33-34, 40-41, 71-72, and 77-78 and a pair of glutamic acid residues (66 and 68) which are separated by a single residue.
- gerbil TANGO 292 has 12 glutamic acid residues in the region from the amino terminus of (both the immature and mature forms of) the protein and the tryptophan residue at amino acid residue 92 of SEQ ID NO: 83, and also has another glutamic acid residue at position 94 of SEQ ID NO: 83 which can also be carboxylated.
- gerbil TANGO 292 protein has three sets of glutamic acid residues, at residues 70-71, 76-77, and 86-87, and a pair of glutamic acid residues (65 and 67) which are separated by a single residue.
- the protein of the invention includes proteins which are carboxylated at one or more of the individual or paired glutamic acid residues.
- TANGO 292 like other vitamin K-dependent carboxylation domain- containing proteins, is involved in binding, uptake, and response to metal cations such as calcium, to proteins, and to small molecules.
- Other proteins in which a vitamin K-dependent carboxylation domain occurs include, for example, osteocalcin (bone-Gla protein), matrix Gla protein, various plasma proteins such as prothrombin, coagulation factors VII, IX, and X, proline rich Gla domain- containing proteins PRGPl and PRGP2, and proteins C, S, and Z.
- osteocalcin bone-Gla protein
- matrix Gla protein various plasma proteins such as prothrombin, coagulation factors VII, IX, and X
- proline rich Gla domain- containing proteins PRGPl and PRGP2 proteins C, S, and Z.
- the signal peptide prediction program SIGNALP (Nielsen et al. (1997) Protein Engineering 10:1-6) predicted that human TANGO 292 protein includes an approximately 17 (i.e., 15, 16, 17, 18, or 19) amino acid residue signal peptide (amino acid residues 1 to 17 of SEQ ID NO: 40; SEQ ID NO: 41) preceding the mature TANGO 292 protein (i.e., approximately amino acid residues 18 to 226 of SEQ ID NO: 40; SEQ ID NO: 42).
- human TANGO 292 protein includes an extracellular domain (amino acid residues 18 to 113 of SEQ ID NO: 40; SEQ ID NO: 43); a transmembrane domain (amino acid residues 114 to 138 of SEQ ID NO: 40; SEQ ID NO: 44); and a cytoplasmic domain (amino acid residues 139 to 225 of SEQ ID NO: 40; SEQ ID NO: 45).
- human TANGO 292 protein includes a cytoplasmic domain (amino acid residues 18 to 113 of SEQ ID NO: 40; SEQ ID NO: 43); a transmembrane domain (amino acid residues 114 to 138 of SEQ ID NO: 40; SEQ ID NO: 44); and an extracellular domain (amino acid residues 139 to 225 of SEQ ID NO: 40; SEQ ID NO: 45).
- the SignalP program predicted that gerbil TANGO 292 protein includes an approximately 17 (i.e., 15, 16, 17, 18, or 19) amino acid residue amino acid signal peptide (amino acid residues 1 to 17 of SEQ ID NO: 83; SEQ ID NO: 84) preceding the mature TANGO 292 protein (i.e., approximately amino acid residues 18 to 225 of SEQ ID NO: 83; SEQ ID NO: 85).
- gerbil TANGO 292 protein includes an extracellular domain (amino acid residues 18 to 112 of SEQ ID NO: 83; SEQ ID NO: 86); a transmembrane domain (amino acid residues 113 to 137 of SEQ ID NO: 83; SEQ ID NO: 87); and a cytoplasmic domain (amino acid residues 138 to 225 of SEQ ID NO: 83; SEQ ID NO: 88).
- gerbil TANGO 292 protein includes a cytoplasmic domain (amino acid residues 18 to 112 of SEQ ID NO: 83; SEQ ID NO: 86); a transmembrane domain (amino acid residues 113 to 137 of SEQ ID NO: 83; SEQ ID NO: 87); and an extracellular domain (amino acid residues 138 to 225 of SEQ ID NO: 83; SEQ ID NO: 88).
- Figure 4E depicts a hydrophilicity plot of human TANGO 292 protein. Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line.
- the hydrophobic region which corresponds to amino acid residues 1 to 17 of SEQ ID NO: 40 is the signal sequence of human TANGO 292.
- the hydrophobic region which corresponds to amino acid residues 114 to 138 of SEQ ID NO: 40 is the transmembrane domain of human TANGO 292.
- relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions.
- the region of human TANGO 292 protein from about amino acid residue 90 to about amino acid residue 110 appears to be located at or near the surface of the protein, while the region from about amino acid residue 190 to about amino acid residue 195 appears not to be located at or near the surface.
- Figure 4M depicts a hydrophilicity plot of gerbil TANGO 292 protein. Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line.
- the hydrophobic region which corresponds to amino acid residues 1 to 17 of SEQ ID NO: 83 is the signal sequence of gerbil TANGO 292.
- the hydrophobic region which corresponds to amino acid residues 113 to 137 of SEQ ID NO: 40 is the transmembrane domain of gerbil TANGO 292.
- relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions. For example, the region of gerbil TANGO 292 protein from about amino acid residue 90 to about amino acid residue 110 appears to be located at or near the surface of the protein.
- the predicted molecular weight of human TANGO 292 protein without modification and prior to cleavage of the signal sequence is about 25.4 kilodaltons.
- the predicted molecular weight of the mature human TANGO 292 protein without modification and after cleavage of the signal sequence is about 23.6 kilodaltons.
- the predicted molecular weight of gerbil TANGO 292 protein without modification and prior to cleavage of the signal sequence is about 25.4 kilodaltons.
- the predicted molecular weight of the mature human TANGO 292 protein without modification and after cleavage of the signal sequence is about 23.5 kilodaltons.
- TANGO 292 proteins are involved in disorders which affect both tissues in which they are normally expressed and tissues in which they are normally not expressed. Based on the observation that TANGO 292 is expressed in human embryonic keratinocytes, and in placenta, liver, kidney, lung, pancreas, and heart tissues, TANGO 292 protein is involved in one or more biological processes which occur in these tissues. In particular, TANGO 292 is involved in modulating growth, proliferation, survival, differentiation, and activity of cells including, but not limited to, keratinocytes and cells with which keratinocytes interact in the animal in which TANGO 292 is normally expressed.
- TANGO 292 is also involved in modulating growth, proliferation, survival, differentiation, and activity of placenta, liver, kidney, lung, pancreas, and heart cells. Thus, TANGO 292 has a role in disorders which affect these cells and their growth, proliferation, survival, differentiation, and activity.
- TANGO 292 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 292 polypeptides, nucleic acids, and modulators thereof can be used to treat placental disorders, such as toxemia of pregnancy (e.g., preeclampsia and eclampsia), placentitis, and spontaneous abortion.
- TANGO 292 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 292 polypeptides, nucleic acids, and modulators thereof can be used to treat hepatic (i.e., liver) disorders, such as jaundice, hepatic failure, hereditary hyperbiliruinemias (e.g., Gilbert's syndrome, Crigler-Naijar syndromes and Dubin- Johnson and Rotor's syndromes), hepatic circulatory disorders (e.g., hepatic vein thrombosis and portal vein obstruction and thrombosis) hepatitis (e.g., chronic active hepatitis, acute viral hepatitis, and toxic and drug-induced hepatitis) cirrhosis (e.g., alcoholic cirrhosis, biliary cirrhosis, and hemochromatosis), and malignant tumors (e.g., primary carcinoma, hepatoblastoma, and angiosarcoma).
- hepatic i.e., liver
- TANGO 292 polypeptides, nucleic acids, or modulators thereof can be used to treat renal (i.e., kidney) disorders, such as glomerular diseases (e.g., acute and chronic glomerulonephritis, rapidly progressive glomerulonephritis, nephrotic syndrome, focal proliferative glomerulonephritis, glomerular lesions associated with systemic disease, such as systemic lupus erythematosus, Goodpasture's syndrome, multiple myeloma, diabetes, neoplasia, sickle cell disease, and chronic inflammatory diseases), tubular diseases (e.g., acute tubular necrosis and acute renal failure, polycystic renal diseasemeduUary sponge kidney, medullary cystic disease, nephrogenic diabetes, and renal tubular acidosis), tubulointerstitial diseases (e.g., pyelonephritis, drug and toxin induced tubulointerstitial
- TANGO 292 polypeptides, nucleic acids, and modulators thereof can be associated with pulmonary (i.e., lung) disorders, such as atelectasis, cystic fibrosis, rheumatoid lung disease, pulmonary congestion, pulmonary edema, chronic obstructive airway disease (e.g., emphysema, chronic bronchitis, bronchial asthma, and bronchiectasis), diffuse interstitial diseases (e.g., sarcoidosis, pneumoconiosis, hypersensitivity pneumonitis, Goodpasture's syndrome, idiopathic pulmonary hemosiderosis, pulmonary alveolar proteinosis, desquamative interstitial pneumonitis, chronic interstitial pneumonia, fibrosing alveolitis, hamman-rich syndrome, pulmonary eosinophilia, diffuse interstitial fibrosis, Wegener's granulomatosis, lymphomatoid gran
- Pancreatic disorders in which TANGO 292 can be involved include pancreatitis (e.g., acute hemorrhagic pancreatitis and chronic pancreatitis), pancreatic cysts (e.g., congenital cysts, pseudocysts, and benign or malignant neoplastic cysts), pancreatic tumors (e.g., pancreatic carcinoma and adenoma), diabetes mellitus (e.g., insulin- and non-insulin-dependent types, impaired glucose tolerance, and gestational diabetes), and islet cell tumors (e.g., insulinomas, adenomas, Zollinger-Ellison syndrome, glucagonomas, and somatostatinoma).
- pancreatitis e.g., acute hemorrhagic pancreatitis and chronic pancreatitis
- pancreatic cysts e.g., congenital cysts, pseudocysts, and benign or malignant neoplastic cyst
- TANGO 292 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders. Because TANGO 292 exhibits expression in the heart, TANGO 292 nucleic acids, proteins, and modulators thereof can be used to treat heart disorders. Examples of heart disorders with which TANGO 292 can be involved include ischemic heart disease, atherosclerosis, hypertension, angina pectoris, hypertrophic cardiomyopathy, and congenital heart disease. TANGO 292 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 292 Presence in TANGO 292 of a vitamin K-dependent carboxylation (Gla) domain indicates that TANGO 292 is involved in physiological functions identical or analogous to the functions performed by other proteins having such domains. For example, like other Gla domain-containing proteins, TANGO 292 modulates binding and uptake of calcium and other metal ions by cells which express it and the response of those cells to the presence and uptake of such ions.
- Human matrix Gla protein for example, is involved in Keutel syndrome, an autosomal recessive disorder characterized by abnormal cartilage calcification, peripheral pulmonary stenosis, and midfacial hypoplasia (Munroe et al. (1999) Nat. Genet. 21:142-144).
- Gla domains include, for example, two human proline-rich Gla proteins designated PRGPl and PRGP2, human G domain-containing protein Gas6, and several human blood coagulation factors ( Kulman et al. (1997) Proc. Natl. Acad. Sci. USA 94:9058-9062; Mark et al., (1996) J Biol. Chem. 271 :9785-9786; Cancela et al. (1990) J Biol. Chem. 265:15040- 15048). These proteins are involved in binding of mineral ions such as calcium, phosphate, and hydroxyapatite, binding of proteins, binding of vitamins and small molecules, and mediation of blood coagulation.
- mineral ions such as calcium, phosphate, and hydroxyapatite
- TANGO 292 is involved in numerous physiological processes which are influenced by levels of calcium and other metal ions in body fluids or by the presence of proteins, vitamins, or small molecules. Such processes include, for example, bone uptake, maintenance, and deposition, formation, maintenance, and repair of cartilage, formation and maintenance of extracellular matrices, movement of cells through extracellular matrices, coagulation and dissolution of blood components (e.g., blood cells and proteins), and deposition of materials (e.g., lipids, cells, calcium, and the like) in arterial walls.
- TANGO 292 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 292 is involved in disorders which affect the tissues in which it is normally expressed and upon which it normally acts. Thus, TANGO 292 is involved in disorders which involve aberrant binding or aberrant failure to bind of keratinocytes or similar cells with a tissue affected by the disorder.
- Such disorders include, by way of example and not limitation, osteoporosis, (repair of) traumatic bone injuries, rickets, osteomalacia, Paget's disease, and other bone disorders, osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, Keutel syndrome, and other disorders of the joints and cartilage, iron deficiency anemia, hemophilia, inappropriate blood coagulation, stroke, arteriosclerosis, atherosclerosis, aneurysm, and other disorders related to blood and blood vessels, metastasis and other disorders related to inappropriate movement of cells through extracellular matrices, and the like.
- TANGO 292 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- a cDNA clone (designated jthdc071al 2) encoding at least a portion of human TANGO 325 protein was isolated from a human aortic endothelial cell cDNA library.
- the human TANGO 325 protein is predicted by structural analysis to be a transmembrane protein.
- the full length of the cDNA encoding human TANGO 325 protein ( Figure 5; SEQ ID NO: 46) is 2169 nucleotide residues.
- the invention thus includes purified human TANGO 325 protein, both in the form of the immature 622 amino acid residue protein (SEQ ID NO: 48) and in the form of the mature, approximately 591 amino acid residue protein (SEQ ID NO: 50).
- Mature human TANGO 325 protein can be synthesized without the signal sequence polypeptide at the amino terminus thereof, or it can be synthesized by generating immature TANGO 325 protein and cleaving the signal sequence therefrom.
- the invention includes fragments, derivatives, and variants of these TANGO 325 proteins, as described herein. These proteins, fragments, derivatives, and variants are collectively referred to herein as TANGO 325 polypeptides of the invention or TANGO 325 proteins of the invention.
- the invention also includes nucleic acid molecules which encode a TANGO 325 polypeptide of the invention.
- nucleic acids include, for example, a DNA molecule having the nucleotide sequence listed in SEQ ID NO: 46 or some portion thereof, such as the portion which encodes mature TANGO 325 protein, immature TANGO 325 protein, or a domain of TANGO 325 protein. These nucleic acids are collectively referred to as TANGO 325 nucleic acids of the invention.
- TANGO 325 proteins and nucleic acid molecules encoding them comprise a family of molecules having certain conserved structural and functional features.
- a common domain present in TANGO 325 proteins is a signal sequence.
- a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the amino terminus of membrane- bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine.
- a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more preferably at least about 45% hydrophobic residues.
- a TANGO 325 protein contains a signal sequence corresponding to about amino acid residues 1 to 31 of SEQ ID NO: 48 (SEQ ID NO: 49). The signal sequence is cleaved during processing of the mature protein.
- TANGO 325 proteins can include an extracellular domain.
- the human TANGO 325 protein extracellular domain is located from about amino acid residue 32 to about amino acid residue 529 of SEQ ID NO: 48 (SEQ ID NO: 51).
- TANGO 325 include a transmembrane domain.
- a TANGO 325 protein of the invention contains a transmembrane domain corresponding to about amino acid residues 530 to 547 of SEQ ID NO: 48 (SEQ ID NO: 52).
- the present invention includes TANGO 325 proteins having a cytoplasmic domain, particularly including proteins having a carboxyl-terminal cytoplasmic domain.
- the human TANGO 325 cytoplasmic domain is located from about amino acid residue 548 to amino acid residue 622 of SEQ ID NO: 48 (SEQ ID NO: 53).
- TANGO 325 proteins typically comprise a variety of potential posttranslational modification sites (often within an extracellular domain), such as those described herein in Table VII, as predicted by computerized sequence analysis of TANGO 325 proteins using amino acid sequence comparison software (comparing the amino acid sequence of TANGO 325 with the information in the PROSITE database ⁇ rel. 12.2; Feb, 1995 ⁇ and the Hidden Markov Models database ⁇ Rel.
- a protein of the invention has at least 1, 2, 4, 6, 10, 15, or 20 or more of the post-translational modification sites listed in Table VII.
- the protein of the invention has at least one domain that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to one of these domains.
- the protein has at least on amino terminal LRR domain, at least one carboxyl terminal LRR domain, and a plurality of LRR domains interposed therebetween.
- the protein has at least one P-loop domain, and a plurality (e.g., 2, 3, 4, or more) of the LRR domains described herein in Table VII.
- LRR domains is present in a variety of proteins involved in protein-protein interactions. Such proteins include, for example, proteins involved in signal transduction, cell-to-cell adhesion, cell-to-extracellular matrix adhesion, cell development, DNA repair, RNA processing, and cellular molecular recognition processes. Specialized LRR domains, designated LRR amino terminal (LRRNT) domains and LRR carboxyl terminal (LRRCT) domains often occur near the amino and carboxyl, respectively, ends of a series of LRR domains.
- TANGO 325 protein has fourteen clustered LRR domains, including (from the amino terminus toward the carboxyl terminus of TANGO 325) an
- LRRNT domain twelve LRR domains, and an LRRCT domain.
- TANGO 325 is thus involved in one or more physiological processes in which these other LRR domain-containing proteins are involved, namely binding of cells with extracellular proteins such as soluble extracellular proteins and cell surface proteins of other cells.
- TANGO 325 has an ATP/GTP-binding domain (i.e., a P-loop domain) within the extracellular domain of the protein indicates that this protein is involved in transmembrane signaling events.
- ATP/GTP-binding domain i.e., a P-loop domain
- the presence of the ATP/GTP-binding domain indicates that TANGO 325 protein is capable of sensing extracellular proteins, including ATP-binding proteins and GTP- binding proteins, and extracellular nucleotides (e.g., ATP, ADP, and AMP).
- TANGO 325 protein is involved in translating information (e.g., environmental conditions or signaling molecules provided to the environment by other cells) from the extracellular environment of the cell in which it is expressed to one or more intracellular biochemical systems.
- TANGO 325 exhibits amino acid sequence and nucleic acid sequence homology with human Slit-1 protein.
- An alignment of the amino acid sequences of TANGO 325 and human Slit-1 protein is shown in Figures 5G to 5L. In this alignment (made using the ALIGN software ⁇ Myers and Miller (1989) CABIOS, ver.
- the signal peptide prediction program SIGNALP (Nielsen et al. (1997) Protein Engineering 10:1-6) predicted that human TANGO 325 protein includes an approximately 31 (i.e., 29, 30, 31, 32, or 33) amino acid residue signal peptide (amino acid residues 1 to 31 of SEQ ID NO: 48; SEQ ID NO: 49) preceding the mature TANGO 325 protein (i.e., approximately amino acid residues 42 to 622 of SEQ ID NO: 48; SEQ ID NO: 50).
- human TANGO 325 protein includes an extracellular domain (amino acid residues 32 to 529 of SEQ ID NO: 48; SEQ ID NO: 51); a transmembrane domain (amino acid residues 530 to 547 of SEQ ID NO: 48; SEQ ID NO: 52); and a cytoplasmic domain (amino acid residues 548 to 622 of SEQ ID NO: 48; SEQ ID NO: 53).
- human TANGO 325 protein includes a cytoplasmic domain (amino acid residues 32 to 529 of SEQ ID NO: 48; SEQ ID NO: 51); a transmembrane domain (amino acid residues 530 to 547 of SEQ ID NO: 48; SEQ ID NO: 52); and an extracellular domain (amino acid residues 548 to 622 of SEQ ID NO: 48; SEQ ID NO: 53).
- Figure 5F depicts a hydrophilicity plot of human TANGO 325 protein. Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line.
- the hydrophobic region which corresponds to amino acid residues 1 to 31 of SEQ ID NO: 48 is the signal sequence of human TANGO 325 (SEQ ID NO: 49).
- the hydrophobic region which corresponds to amino acid residues 530 to 547 of SEQ ID NO: 48 is the transmembrane domain of human TANGO 325 (SEQ ID NO: 52).
- relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions.
- the region of human TANGO 325 protein from about amino acid residue 550 to about amino acid residue 565 appears to be located at or near the surface of the protein, while the region from about amino acid residue 168 to about amino acid residue 185 appears not to be located at or near the surface.
- the predicted molecular weight of human TANGO 325 protein without modification and prior to cleavage of the signal sequence is about 70.3 kilodaltons.
- the predicted molecular weight of the mature human TANGO 325 protein without modification and after cleavage of the signal sequence is about 66.8 kilodaltons.
- TANGO 325 proteins are involved in disorders which affect both tissues in which they are normally expressed and tissues in which they are normally not expressed. Based on the observation that TANGO 325 is expressed in human aortic endothelial tissue and in placenta, liver, kidney, pancreas, and heart tissues, TANGO 325 protein is involved in one or more biological processes which occur in these tissues. In particular, TANGO 325 is involved in modulating growth, proliferation, survival, differentiation, and activity of endothelial cells including, but not limited to, vascular and cardiac (including valvular) endothelial cells of the animal in which it is normally expressed.
- TANGO 325 also modulates growth, proliferation, survival, differentiation, and activity of placenta, liver, kidney, and pancreas cells. Thus, TANGO 325 has a role in disorders which affect these cells and their growth, proliferation, survival, differentiation, and activity.
- TANGO 325 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 325 polypeptides, nucleic acids, and modulators thereof can be used to treat placental disorders, such as toxemia of pregnancy (e.g., preeclampsia and eclampsia), placentitis, and spontaneous abortion.
- TANGO 325 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 325 polypeptides, nucleic acids, and modulators thereof can be used to treat hepatic (i.e., liver) disorders, such as jaundice, hepatic failure, hereditary hyperbiliruinemias (e.g., Gilbert's syndrome, Crigler-Naijar syndromes and Dubin- Johnson and Rotor's syndromes), hepatic circulatory disorders (e.g., hepatic vein thrombosis and portal vein obstruction and thrombosis) hepatitis (e.g., chronic active hepatitis, acute viral hepatitis, and toxic and drug-induced hepatitis) cirrhosis (e.g., alcoholic cirrhosis, biliary cirrhosis, and hemochromatosis), and malignant tumors (e.g., primary carcinoma, hepatoblastoma, and angiosarcoma).
- hepatic i.e., liver
- disorders such as jaund
- TANGO 325 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 325 polypeptides, nucleic acids, or modulators thereof can be used to treat renal (i.e., kidney) disorders, such as glomerular diseases (e.g., acute and chronic glomerulonephritis, rapidly progressive glomerulonephritis, nephrotic syndrome, focal proliferative glomerulonephritis, glomerular lesions associated with systemic disease, such as systemic lupus erythematosus, Goodpasture's syndrome, multiple myeloma, diabetes, neoplasia, sickle cell disease, and chronic inflammatory diseases), tubular diseases (e.g., acute tubular necrosis and acute renal failure, polycystic renal diseasemeduUary sponge kidney, medullary cystic disease, nephrogenic diabetes, and renal tubular diseases
- Pancreatic disorders in which TANGO 325 can be involved include pancreatitis (e.g., acute hemorrhagic pancreatitis and chronic pancreatitis), pancreatic cysts (e.g., congenital cysts, pseudocysts, and benign or malignant neoplastic cysts), pancreatic tumors (e.g., pancreatic carcinoma and adenoma), diabetes mellitus (e.g., insulin- and non-insulin-dependent types, impaired glucose tolerance, and gestational diabetes), and islet cell tumors (e.g., insulinomas, adenomas, Zollinger-Ellison syndrome, glucagonomas, and somatostatinoma).
- pancreatitis e.g., acute hemorrhagic pancreatitis and chronic pancreatitis
- pancreatic cysts e.g., congenital cysts, pseudocysts, and benign or malignant neoplastic cyst
- TANGO 325 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders. Because TANGO 325 exhibits expression in the heart, TANGO 325 nucleic acids, proteins, and modulators thereof can be used to treat heart disorders. Examples of heart disorders with which TANGO 325 can be involved include ischemic heart disease, atherosclerosis, hypertension, angina pectoris, hypertrophic cardiomyopathy, and congenital heart disease. TANGO 325 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 325 It is known that serum nucleotide levels (e.g., ATP) affect cardiac contractility and vasomotor tone. Presence in TANGO 325 of an ATP/GTP binding domain in the extracellular portion thereof implicates this transmembrane protein in sensing of serum nucleotide levels and transmission of the sensed level by mechanisms not yet fully understood to myocytes underlying the epithelium. Thus, TANGO 325 is involved in disorders such as cardiovascular insufficiency, hypertension, hypotension, shock, and the like.
- ATP serum nucleotide levels
- Leukocytes are known to bind with vascular endothelial surfaces in a reversible manner prior to penetrating the vascular endothelium in route to an underlying tissue. Although a few proteins have previously been implicated in the leukocyte-endothelium binding process, the identities of all of the proteins involved remain unknown. The presence of numerous LRR domains on the exterior portion of TANGO 325 protein implicates this protein in reversible binding of leukocytes to vascular endothelium. Thus, TANGO 325 is involved in physiological processes and disorders which involve leukocyte-endothelium binding. Such processes and disorders include, by way of example, cellular aspects of immune responses, autoimmune responses and disorders, and migration of leukocytes to lymph nodes.
- aortic endothelium as well as other vascular endothelia, are known to be involved in detection of signals (e.g., metabolites, proteins, and the like) in the blood stream.
- Mammalian Slit-1 protein is known to be involved in the human endocrine system (Itoh et al. (1998) Brain Res. Mol. Brain Res. 62:175-186). Amino acid and nucleic acid sequence similarity of TANGO 325 with human Slit-1 protein, as described herein, indicates that TANGO 325 is involved in sensing physiological signals by the endocrine system.
- TANGO 325 is involved in one or more human endocrine disorders such as pituitary disorders (e.g., diabetes insipidus), thyroid disorders (e.g., hyperthyroidism, hypothyroidism, diabetes, goiter, and growth and developmental disorders), adrenal disorders (e.g., Addison's disease, Cushing's syndrome, hyperaldosteronism, and pheochromocytoma), and the like.
- Human Slit-1 protein is also known to be involved in guidance of neuronal growth.
- sequence similarity of TANGO 325 with Slit-1 implicates TANGO 325 in growth, development, maintenance, and regeneration of neurons. TANGO 325 can thus be used to prevent, diagnose, and treat a variety of neurological disorders.
- TANGO 331 A cDNA clone (designated jthvb042g08) encoding at least a portion of human TANGO 331 protein was isolated from a human mammary epithelium cDNA library. A corresponding cDNA clone (designated jchrc045a03) was isolated from a human heart library. The human TANGO 331 protein is predicted by structural analysis to be a secreted protein. The full length of the cDNA encoding human TANGO 331 protein
- Figure 6 is 1432 nucleotide residues.
- the invention thus includes purified human TANGO 331 protein, both in the form of the immature 353 amino acid residue protein (SEQ ID NO: 56) and in the form of the mature, approximately 329 amino acid residue protein (SEQ ID NO: 58).
- Mature human TANGO 331 protein can be synthesized without the signal sequence polypeptide at the amino terminus thereof, or it can be synthesized by generating immature TANGO 331 protein and cleaving the signal sequence therefrom.
- the invention includes fragments, derivatives, and variants of these TANGO 331 proteins, as described herein. These proteins, fragments, derivatives, and variants are collectively referred to herein as TANGO 331 polypeptides of the invention or TANGO 331 proteins of the invention.
- the invention also includes nucleic acid molecules which encode a TANGO 331 polypeptide of the invention.
- nucleic acids include, for example, a DNA molecule having the nucleotide sequence listed in SEQ ID NO: 54 or some portion thereof, such as the portion which encodes mature TANGO 331 protein, immature TANGO 331 protein, or a domain of TANGO 331 protein. These nucleic acids are collectively referred to as TANGO 331 nucleic acids of the invention.
- TANGO 331 proteins and nucleic acid molecules encoding them comprise a family of molecules having certain conserved structural and functional features, as indicated by the conservation of amino acid sequence between human TANGO 331 protein and the Chinese hamster (Cricetulus griseus) protein designated HT and having GenBank Accession number U48852, as shown in
- a common domain present in TANGO 331 proteins is a signal sequence.
- a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the amino terminus of membrane- bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine.
- a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more preferably at least about 45% hydrophobic residues.
- a signal sequence serves to direct a protein containing such a sequence to a lipid bilayer.
- a TANGO 331 protein contains a signal sequence corresponding to about amino acid residues 1 to 24 of SEQ ID NO: 56 (SEQ ID NO: 57). The signal sequence is cleaved during processing of the mature protein.
- TANGO 331 proteins can include an extracellular domain.
- the human TANGO 331 protein is a secreted protein, and thus includes an 'extracellular domain' consisting of the entire mature protein (i.e., approximately residues 25 to 353 of SEQ ID NO: 56; SEQ ID NO: 58).
- TANGO 331 proteins typically comprise a variety of potential posttranslational modification sites (often within an extracellular domain), such as those described herein in Table VIII, as predicted by computerized sequence analysis of TANGO 331 proteins using amino acid sequence comparison software (comparing the amino acid sequence of TANGO 331 with the information in the PROSITE database ⁇ rel. 12.2; Feb, 1995 ⁇ and the Hidden Markov Models database ⁇ Rel. PFAM 3.3 ⁇ ).
- a protein of the invention has at least 1, 2, 4, 6, 10, 15, or 20 or more of the post-translational modification sites listed in Table VIII.
- EGF domains including a laminin-like EGF domain, a TNFR/NGFR cysteine-rich domain, a metallothionein-like domain, and a leucine zipper domain.
- EGF-like domains are about 30 to 40 amino acid residues in length and comprise several conserved cysteine residues in one of several patterns.
- EGF-like domains occur in a large number of proteins including, for example, human epidermal growth factor (EGF), murine adipocyte differentiation inhibitor, human agrin, human growth factor amphiregulin, human growth factor betacellulin, sea urchin blastula tissue patterning proteins BP10 and Span, cattle tick glycoprotein BM86, human bone morphogenic protein 1, sea urchin suBMP, Drosophila tolloid protein, Caenorhabditis elegans developmental proteins lin-12 and glp-1, C.
- EGF epidermal growth factor
- murine adipocyte differentiation inhibitor human agrin
- human growth factor amphiregulin human growth factor betacellulin
- sea urchin blastula tissue patterning proteins BP10 and Span cattle tick glycoprotein BM86
- human bone morphogenic protein 1 sea urchin suBMP
- Drosophila tolloid protein Caenorhabditis elegans developmental proteins lin-12 and glp-1, C.
- elegans tissue patterning protein APX-1 human calcium-dependent serine proteinase, human cartilage matrix protein, human cartilage oligomeric matrix protein, human cell surface antigen 114/A10, rat cell surface glycoprotein complex transmembrane subunit ASGP-2, human coagulation associated proteins C, Z, and S, human coagulation factors VII, IX, X, and XII, human complement components Clr, Cls, C6, C7, C8 ⁇ , C8 ⁇ , and C9, human complement-activating components of Ra-reactive factor, Drosophila epithelial development protein Crumbs, sea urchin exogastrula-inducing peptides A, C, D, and X, Drosophila cadherin-related tumor suppressor protein Fat, human fetal antigen 1 (a neuroendocrine differentiation protein derived from the delta-like protein), human fibrillins 1 and 2, sea urchin fibropellins IA, IB, IC, II, and III, human extracellular matrix
- Elegans protein T20G5.3 Elegans protein T20G5.3. Although these proteins have a variety of activities and sites of expression, a common characteristic of most of them is that they are involved in protein-to-protein binding in the extracellular space - either to a secreted protein, a component of the extracellular matrix, or to an extracellular portion of an integral membrane protein. Based on this shared characteristic, the presence of multiple EGF-like domains in TANGO 331 indicates that TANGO 331 is involved in binding to proteins extracellularly.
- Post-translational hydroxylation of aspartic acid or asparagine to form erythro- ⁇ -hydroxyaspartic acid or erythro- ⁇ -hydroxyasparagine occurs in various proteins having one or more EGF-like domains (e.g., blood coagulation protein factors VII, IX, and X, blood coagulation proteins C, S, and Z, the LDL receptor, thrombomodulin, and the like).
- TANGO 331 has a signature sequence which is characteristic of hydroxylation of the asparagine residue at amino acid residue 310.
- the invention thus includes TANGO 331 proteins having a hydroxylated asparagine residue at position 310 of SEQ ID NO: 56.
- TNFR NGFR tumor necrosis factor receptor/nerve growth factor receptor
- cysteine-rich region domains are about 30 to 40 amino acid residues in length, and generally exhibit a conserved pattern of six or more cysteine residues. These domains occur in several soluble and transmembrane proteins which are known to be receptors for growth factors or for cytokines. Examples of
- TNFR/NGFR cysteine-rich region domain-containing proteins are human tumor necrosis factor (TNF) cysteine-rich region domains type I and type II receptors, Shope fibroma virus soluble TNF receptor, human lymphotoxin ⁇ / ⁇ , human low- affinity nerve growth factor receptor, human CD40L (cytokine) receptor CD40, human CD27L (cytokine) receptor CD27, human CD30L (cytokine) receptor CD30, human T-cell cytokine receptor 4- IBB, human apoptotic FASL protein receptor FAS, human T-cell OX40L (cytokine) receptor OX40, human apoptosis-related receptor Wsl-1, and Vaccinia protein A53.
- TNF tumor necrosis factor
- Presence of a TNFR/NGFR cysteine- rich region domain in TANGO 331 is an indication that TANGO 331 is involved in one or more physiological processes involving extracellular binding with a cytokine or growth factor.
- Such processes include, for example, growth, homeostasis, regeneration, and proliferation of cells and tissues, immune (including autoimmune) responses, host defenses against infection, and the like.
- Metallothioneins are cysteine-rich proteins which are capable of binding heavy metals such as calcium, zinc, copper, cadmium, cobalt, nickel, and the like. Proteins which have a domain which resembles a metal-binding domain of a metallothionein are also capable of binding such metals.
- TANGO 331 comprises a metallothionein-like domain, and is capable of binding one or more heavy metals. This is an indication that TANGO 331 is involved in one or more physiological processes which involve metal binding. Such processes include, by way of example and not limitation, nutritional supply of metals to cells on a controlled basis, removal of toxic metal species from body tissues, storage of metals, and the like.
- TANGO 331 comprises a leucine zipper region at about amino acid residue 94 to about amino acid residue 115 (i.e., 94 LeaqeehLeawwlqLkseypdL 115).
- Leucine zipper regions are known to be involved in dimerization of proteins. Leucine zipper regions interact with one another, leading to formation of homo- or hetero-dimers between proteins, depending on their identity. The presence in TANGO 331 of a leucine zipper region is a further indication that this protein is involved in protein-protein interactions.
- TANGO 331 shares amino acid and nucleic acid homology with a Chinese hamster protein designated HT, and thus is involved in corresponding physiological processes in humans.
- An alignment of the nucleotide sequences of the ORFs encoding (human) TANGO 331 and Chinese hamster protein HT is shown in Figures 6F through 6J. The two ORFs are 74.5% identical, as assessed using the same software and parameters.
- human TANGO 331 protein includes an approximately 24 (i.e., 22, 23, 24, 25, or 26) amino acid residue signal peptide (amino acid residues 1 to 24 of SEQ ID NO: 56; SEQ ID NO: 57) preceding the mature TANGO 331 protein (i.e., approximately amino acid residues 25 to 353 of SEQ ID NO: 56; SEQ ID NO: 58).
- Mature human TANGO 331 is a secreted protein.
- Figure 6D depicts a hydrophilicity plot of human TANGO 331 protein.
- Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line.
- the hydrophobic region which corresponds to amino acid residues 1 to 24 of SEQ ID NO: 56 is the signal sequence of human TANGO 331 (SEQ ID NO: 57).
- relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions.
- the region of human TANGO 331 protein from about amino acid residue 140 to about amino acid residue 170 appears to be located at or near the surface of the protein, while the region from about amino acid residue 115 to about amino acid residue 130 appears not to be located at or near the surface.
- the predicted molecular weight of human TANGO 331 protein without modification and prior to cleavage of the signal sequence is about 38.2 kilodaltons.
- the predicted molecular weight of the mature human TANGO 331 protein without modification and after cleavage of the signal sequence is about 35.6 kilodaltons.
- Tissue distribution of TANGO 331 mRNA was determined by Northern blot hybridization.
- Northern blot hybridizations with the various RNA samples were performed using standard Northern blotting conditions and washing under stringent conditions (i.e., 0.2x SSC at 65°C).
- the DNA probe used in the Northern Blot experiments was radioactively labeled with 32P-dCTP using the PRIME-ITTM kit (Stratagene, La Jolla, CA) according to the instructions of the supplier.
- TANGO 331 can be expressed as a recombinant glutathione-S- transferase (GST) fusion polypeptide in E. coli and the fusion polypeptide is isolated and characterized. Specifically, TANGO 331 can be fused with GST and this fusion polypeptide can expressed in E. coli, e.g., in strain PEB199. Expression of the GST-TANGO 331 fusion protein in PEB199 is induced with IPTG. The recombinant fusion polypeptide can be purified from crude bacterial lysates of the induced PEB199 strain by affinity chromatography, e.g., using glutathione- substituted beads. Using polyacrylamide gel electrophoretic analysis of the polypeptide purified from the bacterial ly sates, the molecular weight of the resultant fusion polypeptide can be determined.
- GST glutathione-S- transferase
- the pcDNA/Amp vector by Invitrogen Corporation (San Diego, CA) can be used.
- This vector contains an SV40 origin of replication, an ampicillin resistance gene, an E. coli replication origin, a CMV promoter followed by a polylinker region, and an SV40 intron and polyadenylation site.
- a DNA fragment encoding the entire TANGO 331 protein and an HA tag (Wilson et al. (1984) Cell 37:767) or a FLAG tag fused in- frame to its 3' end of the fragment can be cloned into the polylinker region of the vector, thereby placing the expression of the recombinant protein under the control of the CMV promoter.
- the TANGO 331 DNA sequence is amplified by PCR using two primers.
- the 5' primer contains the restriction site of interest followed by approximately twenty nucleotides of the TANGO 331 coding sequence starting from the initiation codon; the 3' end sequence contains complementary sequences to the other restriction site of interest, a translation stop codon, the HA tag or FLAG tag and the last 20 nucleotides of the TANGO 331 coding sequence.
- the PCR amplified fragment and the pCDNA/Amp vector are digested with the appropriate restriction enzymes and the vector is dephosphorylated using the CIAP enzyme (New England Biolabs, Beverly, MA).
- the two restriction sites chosen are different so that the TANGO 331 gene is inserted in the correct orientation.
- the ligation mixture is transformed into E. coli cells (e.g., one or more of strains HB101, DH5a, SURE, available from Stratagene Cloning Systems, La Jolla, CA), the transformed culture is plated on ampicillin media plates, and resistant colonies are selected. Plasmid DNA is isolated from transformants and examined by restriction analysis for the presence of the correct fragment.
- COS cells are subsequently transfected using the TANGO 331- pcDNA/Amp plasmid DNA using the calcium phosphate or calcium chloride co- precipitation methods, DEAE-dextran-mediated transfection, lipofection, or electroporation.
- Other suitable methods of transfecting host cells can be found in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
- the expression of the TANGO 331 polypeptide can be detected by radiolabelling ( 35 S-methionine or 35 S-cysteine available from NEN, Boston, MA, can be used) and immunoprecipitation (Harlow, E. and Lane, D. Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1988) using an HA specific monoclonal antibody. Briefly, the cells are labelled for 8 hours with 35 S-methionine (or 35 S-cysteine). The culture media are then collected and the cells are lysed using detergents (RIPA buffer, 150 millimolar NaCl, 1% NP-40, 0.1% SDS, 0.5% DOC, 50 millimolar Tris, pH 7.5). Both the cell lysate and the culture media are precipitated with an HA specific monoclonal antibody. Precipitated polypeptides are then analyzed by SDS- PAGE.
- DNA containing the TANGO 331 coding sequence can be cloned directly into the polylinker of the pCDNA/Amp vector using the appropriate restriction sites.
- the resulting plasmid is transfected into COS cells in the manner described above, and the expression of the TANGO 331 polypeptide can be detected by radiolabelling and immunoprecipitation using an TANGO 331 specific monoclonal antibody.
- the human TANGO 331 gene was mapped using the Genebridge 4 Human Radiation hybrid mapping panel with
- ATTATTCAGAAGGATGTCCCGTGG (SEQ ID NO: 99) as the forward primer
- CCTCCTGATTACCTACAATGGTC (SEQ ID NO: 100) as the reverse primer.
- the human TANGO 331 gene maps to human 22ql l-ql3. Flanking markers for this region are WI-4572 and WI-8917.
- the schizophrenia 4 (sczd4) locus also maps to this region of the human chromosome.
- mapping to this region of the human chromosome are the following genes: transcription factor 20 (tcf20), Benzodiazepine receptor, peripheral type (bzrp), Arylsulfatase A (arsa), diaphorase (NADH); cytochrome b-5 reductase (dial), and Solute carrier family 5 (sodium/glucose transporter), member 1 (slcal).
- transcription factor 20 tcf20
- Benzodiazepine receptor peripheral type
- Arylsulfatase A arsa
- NADH cytochrome b-5 reductase
- dial cytochrome b-5 reductase
- Solute carrier family 5 sodium/glucose transporter
- the stargazer (stg), gray tremor (gt), brachyury modifier 2 (Brm2), bronchial hyperresponsiveness 2 (Bhr2), loss of righting induced by ethanol 5 (Lore5), fluctuating asymmetry QTL 8 (Faq8), jerky (Jrk), belted (bt), and koala (Koa) loci also map to this region of the mouse chromosome, several of which are neuromuscular related.
- TANGO 331 proteins are involved in disorders which affect both tissues in which they are normally expressed and tissues in which they are normally not expressed. Based on the observation that TANGO 331 is expressed in human mammary epithelial tissue and human heart tissue, TANGO 331 protein is involved in one or more biological processes which occur in mammary epithelial tissue, in other epithelial tissues, and in heart tissue. In particular, TANGO 331 is involved in modulating growth, proliferation, survival, differentiation, and activity of cells including, but not limited to, epithelial cells (e.g., mammary epithelial cells) of the animal in which it is normally expressed. Thus, TANGO 331 has a role in disorders which affect these cells and their growth, proliferation, survival, differentiation, and activity.
- epithelial cells e.g., mammary epithelial cells
- TANGO 331 is therefore involved in physiological processes such as maintenance of epithelia, carcinogenesis, modulation and storage of protein factors and metals, and lactation. Furthermore, because TANGO 331 is expressed in human mammary epithelial cells, it also has a role in nutrition of human infants (e.g., providing nutrients such as minerals to infants and providing protein factors not synthesized by infants) and in disorders which affect them. Thus, TANGO 331 is involved in a number of disorders such as breast cancer, insufficient lactation, infant nutritional and growth disorders, and the like. TANGO 331 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 331 exhibits expression in the heart
- TANGO 331 nucleic acids, proteins, and modulators thereof can be used to treat heart disorders.
- heart disorders with which TANGO 331 can be involved include ischemic heart disease, atherosclerosis, hypertension, angina pectoris, hypertrophic cardiomyopathy, and congenital heart disease.
- TANGO 331 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 331 polypeptides, nucleic acids, and modulators thereof can be involved in normal and aberrant functioning of skeletal muscle tissue, and can thus be involved in disorders of such tissue.
- Examples of skeletal muscle disorders include muscular dystrophy (e.g., Duchenne muscular dystrophy, Becker muscular dystrophy, Emery-Dreifuss muscular dystrophy, limb- girdle muscular dystrophy, facioscapulohumeral muscular dystrophy, myotonic dystrophy, oculopharyngeal muscular dystrophy, distal muscular dystrophy, and congenital muscular dystrophy), motor neuron diseases (e.g., amyotrophic lateral sclerosis, infantile progressive spinal muscular atrophy, intermediate spinal muscular atrophy, spinal bulbar muscular atrophy, and adult spinal muscular atrophy), myopathies (e.g., inflammatory myopathies (e.g., dermatomyositis and polymyositis), myotonia congenita, paramyotonia congenita, central core disease, nemaline myopathy, myotubular myopathy, and periodic paralysis), and metabolic diseases of muscle (e.g., phosphorylase deficiency
- TANGO 331 polypeptides, nucleic acids, and modulators thereof can be used to treat placental disorders, such as toxemia of pregnancy (e.g., preeclampsia and eclampsia), placentitis, and spontaneous abortion.
- TANGO 331 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 331 polypeptides, nucleic acids, and modulators thereof can be used to treat placental disorders, such as toxemia of pregnancy (e.g., preeclampsia and eclampsia), placentitis, and spontaneous abortion.
- placental disorders such as toxemia of pregnancy (e.g., preeclampsia and eclampsia), placentitis, and spontaneous abortion.
- TANGO 331 Presence in TANGO 331 of numerous EGF-like domains, including the laminin-like EGF-like domain indicates that TANGO 331 is involved in extracellular binding of proteins, including both other secreted proteins (e.g., growth factors and cytokines) and cell-surface proteins. Binding of TANGO 331 to other secreted proteins modulates their activity, their rate of uptake by cells, and their rate of degradation. Binding of TANGO 331 to cell surface proteins modulates their activity, including, for example, their ability to bind with other secreted proteins, and transmits a signal to the cell expressing the cell-surface protein.
- proteins including both other secreted proteins (e.g., growth factors and cytokines) and cell-surface proteins. Binding of TANGO 331 to other secreted proteins modulates their activity, their rate of uptake by cells, and their rate of degradation. Binding of TANGO 331 to cell surface proteins modulates their activity, including, for example, their ability to
- Presence in TANGO 331 of a TNFR/NGFR cysteine-rich region domain is further indicative of the ability of TANGO 331 to bind with growth factors and cytokines.
- TANGO 331 is involved in a number of proliferative and immune disorders including, but not limited to, cancers (e.g., breast cancer), autoimmune disorders, insufficient or inappropriate host responses to infection, acquired immune deficiency syndrome, and the like.
- TANGO 331 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 331 has a metallothionein-like region is indicative of the ability of TANGO 331 to bind with metal ions, including nutritionally required metal ions (e.g., calcium, magnesium, zinc, manganese, cobalt, iron, and the like).
- metal ions including nutritionally required metal ions (e.g., calcium, magnesium, zinc, manganese, cobalt, iron, and the like).
- TANGO 331 is involved in binding with essential minerals and in delivering them to their proper body locations.
- TANGO 331 is also involved in binding excess or toxic metal ions so that they can be excreted.
- TANGO 331 is thus involved in disorders involving insufficient or inappropriate localization of metal ions. Such disorders include, but are not limited to, malnutrition and mineral deficiency disorders, hemochromatosis, inappropriate calcification of body tissues, bone disorders such as osteoporosis, and the like.
- TANGO 331 polypeptides, nucleic acids, or modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- Mapping of the human TANGO 331 gene to chromosomal region 22ql l-ql3 is an indication of disorders with which its expression (or non- or aberrant-expression) can be associated.
- arylsulfatase A is associated with Metachromatic leukodystrophy.
- Diaphorase NADH:cytochrome b-5 reductase
- Solute carrier family 5 sodium/glucose transporter
- member 1 is associated with glucose/galactose malabso tion.
- the gene designated schizophrenia 4 is associated with schizophrenia and velocardiofacial syndrome, as described in Online Mendelian Inheritance in Man, Johns Hopkins University, Baltimore, MD.
- TANGO 331 polypeptides, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, inhibit, prevent, or alleviate one or more of these disorders.
- TANGO 332 A cDNA clone (designated jlhbab463gl2) encoding at least a portion of human TANGO 332 protein was isolated from a human adult brain cDNA library.
- the human TANGO 332 protein is predicted by structural analysis to be a secreted protein.
- the full length of the cDNA encoding human TANGO 332 protein ( Figure 7; SEQ ID NO: 59) is 2730 nucleotide residues.
- the invention thus includes purified human TANGO 332 protein, both in the form of the immature 671 amino acid residue protein (SEQ ID NO: 61) and in the form of the mature, approximately 649 amino acid residue protein (SEQ ID NO: 63).
- Mature human TANGO 332 protein can be synthesized without the signal sequence polypeptide at the amino terminus thereof, or it can be synthesized by generating immature TANGO 332 protein and cleaving the signal sequence therefrom.
- the invention includes fragments, derivatives, and variants of these TANGO 332 proteins, as described herein. These proteins, fragments, derivatives, and variants are collectively referred to herein as TANGO 332 polypeptides of the invention or TANGO 332 proteins of the invention.
- the invention also includes nucleic acid molecules which encode a
- TANGO 332 polypeptide of the invention include, for example, a DNA molecule having the nucleotide sequence listed in SEQ ID NO: 59 or some portion thereof, such as the portion which encodes mature TANGO 332 protein, immature TANGO 332 protein, or a domain of TANGO 332 protein. These nucleic acids are collectively referred to as TANGO 332 nucleic acids of the invention.
- TANGO 332 proteins and nucleic acid molecules encoding them comprise a family of molecules having certain conserved structural and functional features, as indicated by the conservation of amino acid sequence between human TANGO 332 protein, human brain-enriched hyaluronan-binding factor (BEF), as shown in Figures 7G and 7H, and murine brevican protein, as shown in Figures 71 to 7K. This conservation is further indicated by conservation of nucleotide sequence between the ORFs encoding human TANGO 332 protein and murine brevican protein, as shown in Figures 7L through 7U.
- BEF human brain-enriched hyaluronan-binding factor
- a common domain present in TANGO 332 proteins is a signal sequence.
- a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the amino terminus of membrane- bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine.
- a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more preferably at least about 45% hydrophobic residues.
- a signal sequence serves to direct a protein containing such a sequence to a lipid bilayer.
- a TANGO 332 protein contains a signal sequence corresponding to about amino acid residues 1 to 22 of SEQ ID NO: 61 (SEQ ID NO: 62). The signal sequence is cleaved during processing of the mature protein.
- TANGO 332 proteins are secreted proteins.
- the mature form of human TANGO 332 protein has the amino acid sequence of approximately amino acid residues 23 to 671 of SEQ ID NO: 61.
- TANGO 332 proteins typically comprise a variety of potential posttranslational modification sites (often within an extracellular domain), such as those described herein in Table IX, as predicted by computerized sequence analysis of TANGO 332 proteins using amino acid sequence comparison software (comparing the amino acid sequence of TANGO 332 with the information in the PROSITE database ⁇ rel. 12.2; Feb, 1995 ⁇ and the Hidden Markov Models database ⁇ Rel. PFAM 3.3 ⁇ ).
- a protein of the invention has at least 1, 2, 4, 6, 10, 15, or 20 or more of the post-translational modification sites listed in Table IX.
- the protein of the invention has at least one domain that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to one of these domains.
- the protein has at least one Ig-/MHC-like domain and one extracellular link domain described herein in Table IX.
- the protein has at least one Ig-/MHC-like domain and at least two extracellular link domains.
- Ig-/MHC-like domains are conserved among immunoglobulin (Ig) constant (CL) regions and one of the three extracellular domains of major histocompatibihty proteins (MHC).
- Ig immunoglobulin
- MHC major histocompatibihty proteins
- Extracellular link domains occur in hyaluronan- (HA-)binding proteins. Proteins having this domain include cartilage link protein, proteoglycans such as aggrecan, brevican, neurocan, and versican, CD44 antigen (the primary cell surface receptor for HA), and tumor necrosis factor-inducible protein TSG-6. Presence of a pair of extracellular link domains in TANGO 332 indicates that this protein is also involved in HA-binding, and therefore is involved in physiological processes such as cartilage (and other tissue) organization, extracellular matrix organization, neural growth and branching, and cell-to-cell and cell-to-matrix interactions.
- TANGO 332 Involvement of TANGO 332 in these processes implicates this protein in disorders such as tumor growth and metastasis, movement of cells (e.g., leukocytes) through extracellular matrix, inappropriate inflammation, and the like.
- Brevican is a murine nervous system-specific chondroitin sulfate proteoglycan which binds in a calcium-dependent manner with two classes of sulfated glycolipids, namely sulfatides and HNK-1 -reactive sulfoglucuronylglycolipids (Miura et al. (1999) J Biol. Chem. 274:11431-11438).
- a human orthologue, designated BEF ('Brain-Enriched hyaluronan-binding Factor'), of murine brevican is expressed by human glioma cells, but not by brain tumors of non-glial origin (P.C.T. application publication number WO98/31800; Zhang et al. (1998) J. Neurosci. 18:2370-2376). Those authors suggested that cleavage of that human orthologue mediates glioma cell invasion in vivo.
- TANGO 332 exhibits many of the same properties as BEF.
- TANGO 332 is also related to murine brevican protein, and thus is involved with corresponding physiological processes (i.e., such as those described above) in humans.
- TANGO 332 modulates intracellular binding and migration of cells in a tissue or extracellular matrix.
- the absence from BEF of one of the two extracellular link domains present in TANGO 332 indicates that one or more of the subunit structure, the tissue specificity, and the binding specificity of TANGO 332 and BEF proteins differ.
- TANGO 332 is involved in many of the physiological processes and disorders in which BEF protein is involved.
- TANGO 332 acts in vivo as a tissue organizing protein, influences growth and maturation of tissues in which it is expressed, modulates growth factor-mediated activities, modulates structural features of tissues (e.g., collagen fibrillogenesis), modulates tumor cell growth and invasivity, and influences neurite growth and branching.
- the signal peptide prediction program SIGNALP (Nielsen et al.
- Human TANGO 332 protein includes an approximately 22 (i.e., 20, 21, 22, 23, or 24) amino acid residue signal peptide (amino acid residues 1 to 22 of SEQ ID NO: 61; SEQ ID NO: 62) preceding the mature TANGO 332 protein (i.e., approximately amino acid residues 23 to 671 of SEQ ID NO: 61 ; SEQ ID NO: 63).
- Human TANGO 332 protein is a secreted protein, as assessed using the secretion assay described herein. Secreted TANGO 332 proteins having approximate sizes of 148 kilodaltons and 100 kilodaltons could be detected using this assay.
- Figure 7F depicts a hydrophilicity plot of human TANGO 332 protein. Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line.
- the hydrophobic region which corresponds to amino acid residues 1 to 22 of SEQ ID NO: 61 is the signal sequence of human TANGO 332 (SEQ ID NO: 62).
- relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions.
- the region of human TANGO 332 protein from about amino acid residue 445 to about amino acid residue 475 appears to be located at or near the surface of the protein, while the region from about amino acid residue 45 to about amino acid residue 62 appears not to be located at or near the surface.
- the predicted molecular weight of human TANGO 332 protein without modification and prior to cleavage of the signal sequence is about 71.7 kilodaltons.
- the predicted molecular weight of the mature human TANGO 332 protein without modification and after cleavage of the signal sequence is about 69.5 kilodaltons.
- TANGO 332 proteins are involved in disorders which affect both tissues in which they are normally expressed and tissues in which they are normally not expressed. Based on the observation that TANGO 332 is expressed in human adult brain tissue, TANGO 332 protein is involved in one or more biological processes which occur in these tissues. In particular, TANGO 332 is involved in modulating growth, proliferation, survival, differentiation, and activity of cells including, but not limited to, adult brain cells of the animal in which it is normally expressed. Thus, TANGO 332 has a role in disorders which affect these cells and their growth, proliferation, survival, differentiation, interaction, and activity.
- disorders of neural connection establishment or maintenance include, by way of example and not limitation, disorders of neural connection establishment or maintenance, impaired cognitive function, dementia, senility, Alzheimer's disease, mental retardation, brain tumors (e.g., gliomas such as astrocytomas, endophytic and exophytic retinoblastomas, ependymomas, gangliogliomas, mixed gliomas, nasal gliomas, optic gliomas, and Schwannomas, and other brain cell tumors such as medulloblastomas, pituitary adenomas, teratomas, etc.), and the like.
- gliomas such as astrocytomas, endophytic and exophytic retinoblastomas, ependymomas, gangliogliomas, mixed gliomas, nasal gliomas, optic gliomas, and Schwannomas
- other brain cell tumors such as medulloblastomas, pit
- TANGO 332 Homology of human TANGO 332 with murine brevican protein and with human brevican homolog BEF indicates that TANGO 332 has physiological functions in humans analogous to the functions of these proteins.
- Brevican is a member of the aggrecan/versican family of proteoglycans, and has a hyaluronic acid-binding domain in its amino terminal region and a lectin-like domain in its carboxyl terminal region. Expression of brevican is highly specific to brain tissue, and increases as the mammalian brain develops. Thus, brevican is involved in maintaining the extracellular environment of mature brain tissue and is a constituent of adult brain extracellular matrix.
- TANGO 332 is involved in modulating cell-to- cell adhesion, tissue and extracellular matrix invasivity of cells, and the like.
- TANGO 332 is involved in disorders in which these physiological processes are relevant. Such disorders include, for example, loss of control of cell growth, tumor metastasis, malformation of neurological connections, inflammation, immune and autoimmune responses, and the like.
- presence in TANGO 332 of extracellular link domains indicates that this protein is involved in physiological processes involving structure and function of extracellular matrices and interaction of cells with such matrices and with each other. This is further evidence that TANGO 332 is involved in disorders such as inappropriate inflammation, tumor metastasis, inappropriate leukocyte extravasation, localization, and reactivity, and the like.
- TANGO 332-related molecules can be used to modulate one or more of the activities in which TANGO 332 is involved and can also be used to prevent, diagnose, or treat one or more of the disorders in which TANGO 332 is involved.
- Tables A and B summarize sequence data corresponding to the human proteins herein designated INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, and TANGO 332.
- nucleic acid molecules that encode a polypeptide of the invention or a biologically active portion thereof, as well as nucleic acid molecules sufficient for use as hybridization probes to identify nucleic acid molecules encoding a polypeptide of the invention and fragments of such nucleic acid molecules suitable for use as PCR primers for the amplification or mutation of nucleic acid molecules.
- nucleic acid molecule is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs.
- the nucleic acid molecule can be single- stranded or double-stranded, but preferably is double-stranded DNA.
- An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule.
- an "isolated” nucleic acid molecule is free of sequences (preferably protein-encoding sequences) which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
- the isolated nucleic acid molecule can contain less than about 5 kilobases, 4 kilobases, 3 kilobases, 2 kilobases, 1 kilobases, 0.5 kilobases, or 0.1 kilobases of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived.
- an "isolated" nucleic acid molecule such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.
- a nucleic acid molecule of the present invention e.g., a nucleic acid molecule having the nucleotide sequence of all or a portion of SEQ ID NO: 1 , 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, and 92, or a complement thereof, or which has a nucleotide sequence comprising one of these sequences, can be isolated using standard molecular biology techniques and the sequence information provided herein.
- nucleic acid molecules of the invention can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook et al., eds., Molecular Cloning: A Laboratory Manual, 2nded., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).
- a nucleic acid molecule of the invention can be amplified using cDNA, mRNA or genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques.
- the nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis.
- oligonucleotides corresponding to all or a portion of a nucleic acid molecule of the invention can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.
- an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of the nucleotide sequence of SEQ ID NO: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, or 92, or a portion thereof.
- a nucleic acid molecule which is complementary to a given nucleotide sequence is one which is sufficiently complementary to the given nucleotide sequence that it can hybridize to the given nucleotide sequence thereby forming a stable duplex.
- a nucleic acid molecule of the invention can comprise only a portion of a nucleic acid sequence encoding a full length polypeptide of the invention for example, a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of a polypeptide of the invention.
- the nucleotide sequence determined from the cloning one gene allows for the generation of probes and primers designed for use in identifying and/or cloning homologs in other cell types, e.g., from other tissues, as well as homologs from other mammals.
- the probe/primer typically comprises substantially purified oligonucleotide.
- the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 15, preferably about 25, more preferably about 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, or 400 or more consecutive nucleotides of the sense or anti-sense sequence of one of any of SEQ ID NOs: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, and 92, or of a naturally occurring mutant of one of SEQ ID NO: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, and 92.
- Probes based on the sequence of a nucleic acid molecule of the invention can be used to detect transcripts or genomic sequences encoding the same protein molecule encoded by a selected nucleic acid molecule.
- the probe comprises a label group attached thereto, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor.
- Such probes can be used as part of a diagnostic test kit for identifying cells or tissues which mis-express the protein, such as by measuring levels of a nucleic acid molecule encoding the protein in a sample of cells from a subject, e.g., detecting mRNA levels or determining whether a gene encoding the protein has been mutated or deleted.
- a nucleic acid fragment encoding a biologically active portion of a polypeptide of the invention can be prepared by isolating a portion of one of SEQ ID NO: 2, 10, 34, 39, 47, 55, 60, 82, and 92, expressing the encoded portion of the polypeptide protein (e.g., by recombinant expression in vitro), and assessing the activity of the encoded portion of the polypeptide.
- the invention further encompasses nucleic acid molecules that differ from the nucleotide sequence of SEQ ID NO: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, or 92 due to degeneracy of the genetic code and thus encode the same protein as that encoded by the nucleotide sequence of SEQ ID NO: 2, 10, 34, 39, 47, 55, 60, 82, or 92.
- DNA sequence polymorphisms that lead to changes in the amino acid sequence can exist within a population (e.g., the human population). Such genetic polymorphisms can exist among individuals within a population due to natural allelic variation.
- An allele is one of a group of genes which occur alternatively at a given genetic locus.
- allelic variant refers to a nucleotide sequence which occurs at a given locus or to a polypeptide encoded by the nucleotide sequence.
- the terms "gene” and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame encoding a polypeptide of the invention.
- Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of a given gene.
- Alternative alleles can be identified by sequencing the gene of interest in a number of different individuals. This can be readily carried out by using hybridization probes to identify the same genetic locus in a variety of individuals. Any and all such nucleotide variations and resulting amino acid polymorphisms or variations that are the result of natural allelic variation and that do not alter the functional activity are intended to be within the scope of the invention.
- nucleic acid molecules encoding proteins of the invention from other species which have a nucleotide sequence which differs from that of the specific proteins described herein are intended to be within the scope of the invention.
- Nucleic acid molecules corresponding to natural allelic variants and homologs of a cDNA of the invention can be isolated based on their identity to human nucleic acid molecules using the cDNAs described herein, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.
- a cDNA encoding a soluble form of a membrane-bound protein of the invention isolated based on its hybridization to a nucleic acid molecule encoding all or part of the membrane-bound form.
- a cDNA encoding a membrane-bound form can be isolated based on its hybridization to a nucleic acid molecule encoding all or part of the soluble form.
- an isolated nucleic acid molecule of the invention is at least 15 (25, 40, 60, 80, 100, 150, 200, 250, 300,
- nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, or 92, or a complement thereof.
- hybridizes under stringent conditions is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% (65%, 70%, preferably 75%) identical to each other typically remain hybridized to each other.
- stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.
- a preferred, non-limiting example of stringent hybridization conditions are hybridization in 6x sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 ⁇ SSC, 0.1% SDS at 50-65°C.
- an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequence of SEQ ID NO: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, or 92, or a complement thereof, corresponds to a naturally-occurring nucleic acid molecule.
- a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).
- allelic variants of a nucleic acid molecule of the invention sequence that can exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation thereby leading to changes in the amino acid sequence of the encoded protein, without altering the biological activity of the protein. For example, one can make nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues.
- a "non-essential” amino acid residue is a residue that can be altered from the wild-type sequence without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity.
- amino acid residues that are not conserved or only semi-conserved among homologs of various species may be non-essential for activity and thus would be likely targets for alteration.
- amino acid residues that are conserved among the homologs of various species e.g., murine and human
- amino acid residues that are conserved among the homologs of various species may be essential for activity and thus would not be likely targets for alteration.
- nucleic acid molecules encoding a polypeptide of the invention that contain changes in amino acid residues that are not essential for activity.
- polypeptides differ in amino acid sequence from SEQ ID NO: 3-8, 11-32, 35-37, 40-45, 48-53, 56-58, 61-63, 83- 88, and 93-98, yet retain biological activity.
- the isolated nucleic acid molecule includes a nucleotide sequence encoding a protein that includes an amino acid sequence that is at least about 40% identical, 50%, 60%, 70%, 80%, 90%, 95%, or 98% identical to the amino acid sequence of one of SEQ ID NO: 3-8, 11-32, 35-37, 40-45, 48-53, 56-58, 61-63, 83-88, and 93-98.
- An isolated nucleic acid molecule encoding a variant protein can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81 , 82, or 92, such that one or more amino acid residue substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues.
- a “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
- Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), non-polar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta- branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
- mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity.
- the encoded protein can be expressed recombinantly and the activity of the protein can be determined.
- a mutant polypeptide that is a variant of a polypeptide of the invention can be assayed for: (1) the ability to form proteimprotein interactions with the polypeptide of the invention; (2) the ability to bind a ligand of the polypeptide of the invention (e.g., another protein identified herein); (3) the ability to bind to a modulator or substrate of the polypeptide of the invention; or (4) the ability to modulate a physiological activity of the protein, such as one of those disclosed herein.
- the present invention encompasses antisense nucleic acid molecules, i.e., molecules which are complementary to a sense nucleic acid encoding a polypeptide of the invention, e.g., complementary to the coding strand of a double- stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid.
- the antisense nucleic acid can be complementary to an entire coding strand, or to only a portion thereof, e.g., all or part of the protein coding region (or open reading frame).
- An antisense nucleic acid molecule can be antisense to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding a polypeptide of the invention.
- the non-coding regions (“5' and 3' un-translated regions") are the 5' and 3' sequences which flank the coding region and are not translated into amino acids.
- An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides in length.
- An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art.
- an antisense nucleic acid e.g., an antisense oligonucleotide
- an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.
- modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5 -(carboxyhydroxylmethyl) uracil, 5- carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N 6 -isopentenyladenine, 1- methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2- methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D- mannosylqueosine, 5'-
- the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been sub- cloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
- the antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a selected polypeptide of the invention to thereby inhibit expression, e.g., by inhibiting transcription and/or translation.
- the hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix.
- An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site.
- antisense nucleic acid molecules can be modified to target selected cells and then administered systemically.
- antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens.
- the antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.
- An antisense nucleic acid molecule of the invention can be an ⁇ - anomeric nucleic acid molecule.
- An ⁇ -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual beta-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids Res. 15:6625-6641).
- the antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).
- Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single- stranded nucleic acid, such as an mRNA, to which they have a complementary region.
- ribozymes e.g., hammerhead ribozymes as described in Haselhoff and Gerlach (1988) Nature 334:585-591
- a ribozyme having specificity for a nucleic acid molecule encoding a polypeptide of the invention can be designed based upon the nucleotide sequence of a cDNA disclosed herein.
- a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a Cech et al. U.S. Patent No. 4,987,071; and Cech et al. U.S. Patent No. 5,116,742.
- an mRNA encoding a polypeptide of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel and Szostak (1993) Science 261 :1411-1418.
- the invention also encompasses nucleic acid molecules which form triple helical structures.
- expression of a polypeptide of the invention can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the polypeptide (e.g., the promoter and/or enhancer) to form triple helical structures that prevent transcription of the gene in target cells.
- nucleotide sequences complementary to the regulatory region of the gene encoding the polypeptide e.g., the promoter and/or enhancer
- the nucleic acid molecules of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule.
- the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorganic & Medicinal Chemistry 4(1): 5-23).
- peptide nucleic acids refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained.
- the neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength.
- the synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996), supra; Perry- O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93: 14670-675.
- PNAs can be used in therapeutic and diagnostic applications.
- PNAs can be used as antisense or anti-gene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.
- PNAs can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., SI nucleases (Hyrup (1996), supra; or as probes or primers for DNA sequence and hybridization (Hyrup (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci.
- PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art.
- PNA-DNA chimeras can be generated which can combine the advantageous properties of PNA and DNA.
- Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity.
- PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996), supra).
- the synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996), supra, and Finn et al. (1996) Nucleic Acids Res. 24(17):3357-63.
- a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs.
- PNA monomers are then coupled in a step-wise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) Nucleic Acids Res. 24(17):3357-63).
- chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment (Peterser et al. (1975) Bioorganic Med. Chem. Lett. 5:1119-11124).
- the oligonucleotide can include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad. Sci. USA 84:648-652; PCT Publication No. WO 88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134).
- peptides e.g., for targeting host cell receptors in vivo
- agents facilitating transport across the cell membrane see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al. (1987) Proc. Natl.
- oligonucleotides can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al. (1988) Bio/Techniques 6:958-976) or intercalating agents (see, e.g., Zon (1988) Pharm. Res. 5:539-549).
- the oligonucleotide can be conjugated to another molecule, e.g., a peptide, hybridization triggered cross- linking agent, transport agent, hybridization-triggered cleavage agent, etc.
- One aspect of the invention pertains to isolated proteins, and biologically active portions thereof, as well as polypeptide fragments suitable for use as immunogens to raise antibodies directed against a polypeptide of the invention.
- the native polypeptide can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques.
- polypeptides of the invention are produced by recombinant DNA techniques.
- a polypeptide of the invention can be synthesized chemically using standard peptide synthesis techniques.
- an “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized.
- the language “substantially free of cellular material” includes preparations of protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced.
- protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a "contaminating protein").
- the protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation.
- culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation.
- the protein is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly such preparations of the protein have less than about 30%, 20%, 10%, 5% (by dry weight) of chemical precursors or compounds other than the polypeptide of interest.
- Biologically active portions of a polypeptide of the invention include polypeptides comprising amino acid sequences sufficiently identical to or derived from the amino acid sequence of the protein (e.g., the amino acid sequence shown in any of SEQ ID NOs: 3-8, 11-32, 35-37, 40-45, 48-53, 56-58, 61-63, 83-88, and 93-98), which include fewer amino acids than the full length protein, and exhibit at least one activity of the corresponding full-length protein.
- biologically active portions comprise a domain or motif with at least one activity of the corresponding protein.
- a biologically active portion of a protein of the invention can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length.
- polypeptides in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of the native form of a polypeptide of the invention.
- Preferred polypeptides have the amino acid sequence of one of SEQ ID NO: 1
- Other useful proteins are substantially identical (e.g., at least about 40%, preferably 50%, 60%, 70%, 80%, 90%, 95%, or 99%) to any of SEQ ID NO: 3-8, 11-32, 35-37, 40- 45, 48-53, 56-58, 61-63, 83-88, and 93-98, and retain the functional activity of the protein of the corresponding naturally-occurring protein yet differ in amino acid sequence due to natural allelic variation or mutagenesis.
- the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence).
- the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position.
- the determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
- a preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873- 5877.
- Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990) J Mol. Biol. 215:403-410.
- Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402.
- PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules. Id.
- a "chimeric protein” or “fusion protein” comprises all or part (preferably biologically active) of a polypeptide of the invention operably linked to a heterologous polypeptide (i.e., a polypeptide other than the same polypeptide of the invention).
- a heterologous polypeptide i.e., a polypeptide other than the same polypeptide of the invention.
- the term "operably linked” is intended to indicate that the polypeptide of the invention and the heterologous polypeptide are fused in-frame to each other.
- the heterologous polypeptide can be fused to the amino-terminus or the carboxyl-terminus of the polypeptide of the invention.
- fusion protein is a GST fusion protein in which the polypeptide of the invention is fused to the carboxyl terminus of GST sequences. Such fusion proteins can facilitate the purification of a recombinant polypeptide of the invention.
- the fusion protein contains a heterologous signal sequence at its amino terminus.
- the native signal sequence of a polypeptide of the invention can be removed and replaced with a signal sequence from another protein.
- the gp67 secretory sequence of the baculovirus envelope protein can be used as a heterologous signal sequence (Current Protocols in Molecular Biology, Ausubel et al., eds., John Wiley & Sons, 1992).
- eukaryotic heterologous signal sequences include the secretory sequences of melittin and human placental alkaline phosphatase (Stratagene; La Jolla, California).
- useful prokaryotic heterologous signal sequences include the phoA secretory signal (Sambrook et al., supra) and the protein A secretory signal (Pharmacia Biotech; Piscataway, New Jersey).
- the fusion protein is an immunoglobulin fusion protein in which all or part of a polypeptide of the invention is fused to sequences derived from a member of the immunoglobulin protein family.
- the immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand (soluble or membrane-bound) and a protein on the surface of a cell (receptor), to thereby suppress signal transduction in vivo.
- the immunoglobulin fusion protein can be used to affect the bioavailability of a cognate ligand of a polypeptide of the invention.
- Inhibition of ligand/receptor interaction can be useful therapeutically, both for treating proliferative and differentiative disorders and for modulating (e.g., promoting or inhibiting) cell survival.
- the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies directed against a polypeptide of the invention in a subject, to purify ligands and in screening assays to identify molecules which inhibit the interaction of receptors with ligands.
- Chimeric and fusion proteins of the invention can be produced by standard recombinant DNA techniques.
- the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.
- PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see, e.g., Ausubel et al., supra).
- many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide).
- a nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the polypeptide of the invention.
- a signal sequence of a polypeptide of the invention e.g., the signal sequence in one of SEQ ID NO: 3, 4, 11, 12, 35, 36, 40, 41, 48, 49, 56, 57, 61, 62, 83, 84, 93, and 94
- Signal sequences are typically characterized by a core of hydrophobic amino acids which are generally cleaved from the mature protein during secretion in one or more cleavage events.
- a nucleic acid sequence encoding a signal sequence of the invention can be operably linked in an expression vector to a protein of interest, such as a protein which is ordinarily not secreted or is otherwise difficult to isolate.
- the signal sequence directs secretion of the protein, such as from a eukaryotic host into which the expression vector is transformed, and the signal sequence is subsequently or concurrently cleaved.
- the protein can then be readily purified from the extracellular medium by art recognized methods.
- the signal sequence can be linked to the protein of interest using a sequence which facilitates purification, such as with a GST domain.
- the signal sequences of the present invention can be used to identify regulatory sequences, e.g., promoters, enhancers, repressors. Since signal sequences are the most amino-terminal sequences of a peptide, the nucleic acids which flank the signal sequence on its amino-terminal side are likely regulatory sequences which affect transcription. Thus, a nucleotide sequence which encodes all or a portion of a signal sequence can be used as a probe to identify and isolate signal sequences and their flanking regions, and these flanking regions can be studied to identify regulatory elements therein.
- the present invention also pertains to variants of the polypeptides of the invention. Such variants have an altered amino acid sequence which can function as either agonists (mimetics) or as antagonists.
- Variants can be generated by mutagenesis, e.g., discrete point mutation or truncation.
- An agonist can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the protein.
- An antagonist of a protein can inhibit one or more of the activities of the naturally occurring form of the protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the protein of interest.
- specific biological effects can be elicited by treatment with a variant of limited function.
- Treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein can have fewer side effects in a subject relative to treatment with the naturally occurring form of the protein.
- Variants of a protein of the invention which function as either agonists (mimetics) or as antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the protein of the invention for agonist or antagonist activity.
- a variegated library of variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library.
- a variegated library of variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential protein sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display).
- methods which can be used to produce libraries of potential variants of the polypeptides of the invention from a degenerate oligonucleotide sequence. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11 :477).
- libraries of fragments of the coding sequence of a polypeptide of the invention can be used to generate a variegated population of polypeptides for screening and subsequent selection of variants.
- a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of the coding sequence of interest with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, re-naturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S 1 nuclease, and ligating the resulting fragment library into an expression vector.
- an expression library can be derived which encodes amino terminal and internal fragments of various sizes of the protein of interest.
- REM Recursive ensemble mutagenesis
- An isolated polypeptide of the invention, or a fragment thereof, can be used as an immunogen to generate antibodies using standard techniques for polyclonal and monoclonal antibody preparation.
- the full-length polypeptide or protein can be used or, alternatively, the invention provides antigenic peptide fragments for use as immunogens.
- the antigenic peptide of a protein of the invention comprises at least 8 (preferably 10, 15, 20, or 30 or more) amino acid residues of the amino acid sequence of one of SEQ ID NOs: 3-8, 11-32, 35-37, 40- 45, 48-53, 56-58, 61-63, 83-88, and 93-98, and encompasses an epitope of the protein such that an antibody raised against the peptide forms a specific immune complex with the protein.
- Preferred epitopes encompassed by the antigenic peptide are regions that are located on the surface of the protein, e.g., hydrophilic regions.
- Figures IF, 1M, 2D, 3E, 4E, 4M, 5F, 6D, and 7F are hydrophobicity plots of the proteins of the invention. These plots or similar analyses can be used to identify hydrophilic regions.
- An immunogen typically is used to prepare antibodies by immunizing a suitable (i.e., immunocompetent) subject such as a rabbit, goat, mouse, or other mammal or vertebrate.
- a suitable (i.e., immunocompetent) subject such as a rabbit, goat, mouse, or other mammal or vertebrate.
- An appropriate immunogenic preparation can contain, for example, recombinantly-expressed or chemically-synthesized polypeptide.
- the preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or a similar immunostimulatory agent.
- another aspect of the invention pertains to antibodies directed against a polypeptide of the invention.
- antibody and “antibody substance” as used interchangeably herein refer to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site which specifically binds an antigen, such as a polypeptide of the invention.
- a molecule which specifically binds to a given polypeptide of the invention is a molecule which binds the polypeptide, but does not substantially bind other molecules in a sample, e.g., a biological sample, which naturally contains the polypeptide.
- immunologically active portions of immunoglobulin molecules include F(ab) and F(ab') 2 fragments which can be generated by treating the antibody with an enzyme such as pepsin.
- the invention provides polyclonal and monoclonal antibodies.
- Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a polypeptide of the invention as an immunogen.
- Preferred polyclonal antibody compositions are ones that have been selected for antibodies directed against (i.e., which bind specifically with) one or more polypeptides of the invention.
- Particularly preferred polyclonal antibody preparations are ones that contain only antibodies directed against one or more polypeptides of the invention.
- Particularly prefe ⁇ ed immunogen compositions are those that contain no other human proteins such as, for example, immunogen compositions made using a non-human host cell for recombinant expression of a polypeptide of the invention.
- the only human epitope or epitopes recognized by the resulting antibody compositions raised against this immunogen will be present as part of a polypeptide or polypeptides of the invention.
- the antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide.
- ELISA enzyme linked immunosorbent assay
- the antibody molecules can be harvested or isolated from the subject (e.g., from the blood or serum of the subject) and further purified by well-known techniques, such as protein A chromatography to obtain the IgG fraction.
- antibodies which bind specifically with a protein or polypeptide of the invention can be selected (e.g., partially purified) or purified using chromatographic methods, such as affinity chromatography.
- chromatographic methods such as affinity chromatography.
- a recombinantly expressed and purified (or partially purified) protein of the invention can be produced as described herein, and covalently or non-covalently coupled with a solid support such as, for example, a chromatography column.
- the column thus exhibits specific affinity for antibody substances which bind specifically with the protein of the invention, and these antibody substances can be purified from a sample containing antibody substances directed against a large number of different epitopes, thereby generating a substantially purified antibody substance composition, i.e., one that is substantially free of antibody substances which do not bind specifically with the protein.
- a substantially purified antibody composition is meant, in this context, that the antibody sample contains at most only 30% (by dry weight) of contaminating antibodies directed against epitopes other than those on the desired protein or polypeptide of the invention, preferably at most 20%, more preferably at most 10%, most preferably at most 5% (by dry weight), of the sample is contaminating antibodies.
- a purified antibody composition means that at least 99% of the antibodies in the composition are directed against the desired protein or polypeptide of the invention.
- antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein (1975) Nature 256:495-497, the human B cell hybridoma technique (Kozbor et al. (1983) Immunol. Today 4:72), the EBV-hybridoma technique (Cole et al. (1985), Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96) or trioma techniques.
- the technology for producing hybridomas is well known (see generally Current Protocols in Immunology (1994) Coligan et al.
- Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture supernatants for antibodies that bind the polypeptide of interest, e.g., using a standard ELISA assay.
- a monoclonal antibody directed against a polypeptide of the invention can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide of interest.
- Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01 ; and the Stratagene SURFZAPTM Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Patent No. 5,223,409; PCT Publication No. WO 92/18619; PCT Publication No. WO 91/17271; PCT Publication No. WO 92/20791; PCT Publication No. WO 92/15679; PCT Publication No. WO 93/01288; PCT Publication No.
- recombinant antibodies such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention.
- a chimeric antibody is a molecule in which different portions of the antibody amino acid sequence are derived from different animal species, such as those having a variable region derived from a murine monoclonal antibody and a constant region derived from a human immunoglobulin. (See, e.g., CabiUy et al., U.S. Patent No. 4,816,567; and Boss et al., U.S. Patent No. 4,816,397).
- Humanized antibodies are antibody molecules which are obtained from non-human species, which have one or more complementarity-determining regions (CDRs) derived from the non-human species, and which have a framework region derived from a human immunoglobulin molecule. (See, e.g., Queen, U.S. Patent No. 5,585,089).
- CDRs complementarity-determining regions
- Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT Publication No. WO 87/02671; European Patent Application 184,187; European Patent Application 171,496; European Patent Application 173,494; PCT Publication No. WO 86/01533; U.S. Patent No. 4,816,567; European Patent Application 125,023; Better et al. (1988) Science
- Monoclonal antibodies directed against the antigen can be obtained using conventional hybridoma technology.
- the human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation.
- Lonberg and Huszar (1995, Int. Rev. Immunol. 13:65-93).
- this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies see, e.g., U.S. Patent
- An antibody directed against a polypeptide of the invention can be used to isolate the polypeptide by standard techniques, such as affinity chromatography or immunoprecipitation. Moreover, such an antibody can be used to detect the protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the polypeptide.
- the antibodies can also be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance.
- detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.
- suitable enzymes include horseradish peroxidase, alkaline phosphatase, ⁇ - galactosidase, or acetylcholinesterase;
- suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin;
- suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin;
- an example of a luminescent material includes luminol;
- bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125 1, 131 1, 35 S or 3 H.
- an antibody substance can be conjugated with a therapeutic moiety such as a cytotoxin, a therapeutic agent, or a radioactive metal ion.
- Cytotoxins and cytotoxic agents include any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, and analogs or homologs of these compounds.
- Therapeutic agents include, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil, and decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine ⁇ BSNU ⁇ , lomustine ⁇ CCNU ⁇ , cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin ⁇ formerly daunomycin ⁇ and doxorubicin), antibiotics (e.g., dactinomycin ⁇ formerly actinomycin ⁇ , bleomycin, mithramycin, and anthramycin ⁇ AMC ⁇ ), and anti-mitotic agents (e
- the conjugates of the invention can be used to modify a biological response; the drug moiety is not to be construed as limited to classical chemical therapeutic agents.
- the drug moiety can be a protein or polypeptide which exhibits a desired biological activity.
- proteins include, for example, toxins such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; proteins such as tumor necrosis factor, alpha-interferon, beta-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; and biological response modifiers such as lymphokines, interleukin- 1 (IL-1), interleukin-2 (IL-2), interleukin-6 (IL-6), granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), and other growth factors.
- IL-1 interleukin-1
- IL-2 interleukin-2
- IL-6 interleukin-6
- GM-CSF
- the invention provides substantially purified antibodies or fragment thereof, and non-human antibodies or fragments thereof, which antibodies or fragments specifically bind with a polypeptide having an amino acid sequence which comprises a sequence selected from the group consisting of (i) SEQ ID NOs: 3-8, 11-32, 35-37, 40-45, 48-53, 56-58, 61-63, 83-88, and 93-98;
- nucleic acid molecule (v) an amino acid sequence which is encoded by a nucleic acid molecule, the complement of which hybridizes with a nucleic acid molecule having the sequence of SEQ ID NO: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, or 92, or with a cDNA of a clone deposited as ATCC ® PTA-147, PTA-150, 207230, or PTA-151, under conditions of hybridization of 6 ⁇ SSC (standard saline citrate buffer) at 45°C and washing in 0.2x SSC, 0.1% SDS at 65°C.
- 6 ⁇ SSC standard saline citrate buffer
- the invention provides non-human antibodies or fragments thereof, which antibodies or fragments specifically bind with a polypeptide having an amino acid sequence which comprises a sequence selected from the group consisting of:
- non-human antibodies can be goat, mouse, sheep, horse, chicken, rabbit, or rat antibodies.
- the non-human antibodies of the invention can be chimeric and/or humanized antibodies.
- the non-human antibodies of the invention can be polyclonal antibodies or monoclonal antibodies.
- the invention provides monoclonal antibodies or fragments thereof, which antibodies or fragments specifically bind with a polypeptide having an amino acid sequence which comprises a sequence selected from the group consisting of: (i) SEQ ID NOs: 3-8, 11-32, 35-37, 40-45, 48-53, 56-58, 61-63, 83-88, and
- nucleic acid molecule (v) an amino acid sequence which is encoded by a nucleic acid molecule, the complement of which hybridizes with a nucleic acid molecule having the sequence of SEQ ID NO: 1, 2, 9, 10, 33, 34, 38, 39, 46, 47, 54, 55, 59, 60, 81, 82, or 92, or with a cDNA of a clone deposited as ATCC ® PTA-147, PTA-150, 207230, or PTA-151 , under conditions of hybridization of 6 ⁇ SSC (standard saline citrate buffer) at 45°C and washing in 0.2x SSC, 0.1% SDS at 65°C.
- the monoclonal antibodies can be human, humanized, chimeric and/or non-human antibodies.
- the substantially purified antibodies or fragments thereof can specifically bind with a signal peptide, a secreted sequence, an extracellular domain, a transmembrane or a cytoplasmic domain cytoplasmic membrane of a polypeptide of the invention.
- the substantially purified antibodies or fragments thereof, the non-human antibodies or fragments thereof, and/or the monoclonal antibodies or fragments thereof, of the invention specifically bind with a secreted sequence or with an extracellular domain of one of INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, and TANGO 332.
- the extracellular domain with which the antibody substance binds has an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 14-18, 37, 43, 51, 58, or 63.
- any of the antibody substances of the invention can be conjugated with a therapeutic moiety or to a detectable substance.
- detectable substances include an enzyme, a prosthetic group, a fluorescent material (i.e., a fluorophore), a luminescent material, a bioluminescent material, and a radioactive material (e.g., a radionuclide or a substituent comprising a radionuclide).
- the invention also provides a kit containing an antibody substance of the invention conjugated with a detectable substance, and instructions for use.
- a pharmaceutical composition comprising an antibody substance of the invention and a pharmaceutically acceptable carrier.
- the pharmaceutical composition contains an antibody substance of the invention, a therapeutic moiety (preferably conjugated with the antibody substance), and a pharmaceutically acceptable carrier.
- Still another aspect of the invention is a method of making an antibody that specifically recognizes one of INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, and TANGO 332.
- This method comprises immunizing a vertebrate (e.g., a mammal such as a rabbit, goat, or pig) with a polypeptide.
- a vertebrate e.g., a mammal such as a rabbit, goat, or pig
- the polypeptide used as an immunogen has an amino acid sequence that comprises a sequence selected from the group consisting of:
- a sample is collected from the vertebrate that contains an antibody that specifically recognizes the polypeptide with which the vertebrate was immunized.
- the polypeptide is recombinantly produced using a non-human host cell.
- an antibody substance can be further purified from the sample using techniques well known to those of skill in the art.
- the method can further comprise making a monoclonal antibody-producing cell from a cell of the vertebrate.
- antibodies can be collected from the antibody-producing cell.
- vectors preferably expression vectors, containing a nucleic acid encoding a polypeptide of the invention (or a portion thereof).
- vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- plasmid refers to a circular double stranded DNA loop into which additional DNA segments can be ligated.
- viral vector Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome.
- Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
- vectors e.g., non- episomal mammalian vectors
- expression vectors are capable of directing the expression of genes to which they are operably linked.
- expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors).
- the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adeno viruses and adeno-associated viruses), which serve equivalent functions.
- the recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell.
- the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed.
- "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
- regulatory sequence is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like.
- the expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein.
- the recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic (e.g., E. coli) or eukaryotic cells (e.g., insect cells (using baculovirus expression vectors), yeast cells or mammalian cells). Suitable host cells are discussed further in Goeddel, supra.
- the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase. Expression of proteins in prokaryotes is most often carried out in E. coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins.
- Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein.
- Such enzymes, and their cognate recognition sequences include Factor Xa, thrombin and enterokinase.
- Typical fusion expression vectors include pGEX (Pharmacia Biotech Ine; Smith and Johnson (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.
- Suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., (1988) Gene 69:301-315) and pET l id (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89).
- Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter.
- Target gene expression from the pET l id vector relies on transcription from a T7 gnlO-lac fusion promoter mediated by a co-expressed viral RNA polymerase (T7 gnl). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident lambda prophage harboring a T7 gnl gene under the transcriptional control of the lacUV 5 promoter.
- One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128).
- Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (Wada et al. (1992) Nucleic Acids Res. 20:2111 -2118).
- Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.
- the expression vector is a yeast expression vector.
- yeast expression vectors for expression in yeast S. cerevisiae include pYepSecl (Baldari et al. (1987) EMBO J. 6:229-234), pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123), pYES2 (Invitrogen Corporation, San Diego, CA), and pPicZ (Invitrogen Corp, San Diego, CA).
- the expression vector is a baculovirus expression vector.
- Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31- 39).
- a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector.
- mammalian expression vectors include pCDM8 (Seed (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBOJ. 6:187-195).
- the expression vector's control functions are often provided by viral regulatory elements.
- commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40.
- suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook et al., supra.
- the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid).
- tissue-specific regulatory elements are known in the art.
- suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoid- specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J.
- promoters are also encompassed, for example the murine hox promoters (Kessel and Grass (1990) Science 249:374-379) and the ⁇ - fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546).
- the invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operably linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to the mRNA encoding a polypeptide of the invention.
- Regulatory sequences operably linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA.
- the antisense expression vector can be in the form of a recombinant plasmid, phagemid, or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced.
- a high efficiency regulatory region the activity of which can be determined by the cell type into which the vector is introduced.
- host cell and "recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
- a host cell can be any prokaryotic (e.g., E. coli) or eukaryotic cell (e.g., insect cells, yeast or mammalian cells).
- prokaryotic e.g., E. coli
- eukaryotic cell e.g., insect cells, yeast or mammalian cells.
- Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques.
- transformation and “transfection” are intended to refer to a variety of art- recognized techniques for introducing foreign nucleic acid into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals.
- a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest.
- selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate.
- Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).
- an endogenous nucleic acid within a cell, cell line, or microorganism e.g., a INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, or TANGO 332 nucleic acid, as described herein
- a heterologous DNA regulatory element i.e., one that is heterologous with respect to the endogenous gene
- the inserted regulatory element can be operatively linked with the endogenous gene (e.g., INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, or TANGO 332) and thereby control, modulate, or activate the endogenous gene.
- the endogenous gene e.g., INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, or TANGO 332
- an endogenous INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, or TANGO 332 gene which is normally "transcriptionally silent" i.e., a INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, or TANGO 332 gene which is normally not expressed, or is normally expressed only at only a very low level
- a regulatory element which is capable of promoting expression of the gene in the cell, cell line, or microorganism.
- a transcriptionally silent, endogenous INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, or TANGO 332 gene can be activated by inserting a promiscuous regulatory element that works across cell types.
- a heterologous regulatory element can be inserted into a stable cell line or cloned microorganism such that it is operatively linked with and activates expression of an endogenous INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, or TANGO 332 gene, using techniques, such as targeted homologous recombination, which are well known to those of skill in the art (described e.g., in Chappel, U.S. Patent No. 5,272,071; PCT publication No. WO 91/06667, published May 16, 1991).
- a host cell of the invention such as a prokaryotic or eukaryotic host cell in culture, can be used to produce a polypeptide of the invention.
- the invention further provides methods for producing a polypeptide of the invention using the host cells of the invention.
- the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced.
- the method further comprises isolating the polypeptide from the medium or the host cell.
- the host cells of the invention can also be used to produce non- human transgenic animals.
- a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which a sequences encoding a polypeptide of the invention have been introduced.
- Such host cells can then be used to create non-human transgenic animals in which exogenous sequences encoding a polypeptide of the invention have been introduced into their genome or homologous recombinant animals in which endogenous encoding a polypeptide of the invention sequences have been altered.
- Such animals are useful for studying the function and/or activity of the polypeptide and for identifying and/or evaluating modulators of polypeptide activity.
- a "transgenic animal” is a non- human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene.
- Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc.
- a transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal.
- an "homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.
- a transgenic animal of the invention can be created by introducing nucleic acid encoding a polypeptide of the invention (or a homologue thereof) into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal.
- Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene.
- a tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of the polypeptide of the invention to particular cells.
- transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009, U.S. Patent No. 4,873,191 and in Hogan, Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986), and in Wakayama et al., 1999, Proc. Natl. Acad. Sci. USA 96:14984-14989. Similar methods are used for production of other transgenic animals.
- a transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of mRNA encoding the transgene in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying the transgene can further be bred to other transgenic animals carrying other transgenes.
- a vector which contains at least a portion of a gene encoding a polypeptide of the invention into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the gene.
- the vector is designed such that, upon homologous recombination, the endogenous gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector).
- the vector can be designed such that, upon homologous recombination, the endogenous gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous protein).
- the altered portion of the gene is flanked at its 5' and 3' ends by additional nucleic acid of the gene to allow for homologous recombination to occur between the exogenous gene carried by the vector and an endogenous gene in an embryonic stem cell.
- the additional flanking nucleic acid sequences are of sufficient length for successful homologous recombination with the endogenous gene.
- flanking DNA both at the 5' and 3' ends
- flanking DNA both at the 5' and 3' ends
- the vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced gene has homologously recombined with the endogenous gene are selected (see, e.g., Li et al. (1992) Cell 69:915).
- the selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras (see, e.g., Bradley in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed. (IRL, Oxford, 1987) pp. 113-152).
- a chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term.
- Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene.
- transgenic non-human animals can be produced which contain selected systems which allow for regulated expression of the transgene.
- a system is the cre/loxP recombinase system of bacteriophage PI .
- cre/loxP recombinase system for a description of the cre/loxP recombinase system, see, e.g., Lakso et al. (1992) Proc. Natl. Acad. Sci. USA 89:6232-6236.
- Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355.
- mice containing transgenes encoding both the Cre recombinase and a selected protein are required.
- Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
- Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut et al. (1997) Nature 385:810-813 and PCT Publication NOS. WO 97/07668 and WO 97/07669.
- compositions suitable for administration typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier.
- pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration.
- the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
- the invention includes methods for preparing pharmaceutical compositions for modulating the expression or activity of a polypeptide or nucleic acid of the invention. Such methods comprise formulating a pharmaceutically acceptable earner with an agent which modulates expression or activity of a polypeptide or nucleic acid of the invention. Such compositions can further include additional active agents. Thus, the invention further includes methods for preparing a pharmaceutical composition by formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or nucleic acid of the invention and one or more additional active compounds.
- the agent which modulates expression or activity can, for example, be a small molecule.
- small molecules include peptides, peptidomimetics, amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.
- Exemplary doses of a small molecule include milligram or microgram amounts per kilogram of subject or sample weight (e.g., about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram).
- Exemplary doses of a protein or polypeptide include gram, milligram or microgram amounts per kilogram of subject or sample weight (e.g., about 1 microgram per kilogram to about 5 grams per kilogram, about 100 micrograms per kilogram to about 500 milligrams per kilogram, or about 1 milligram per kilogram to about 50 milligrams per kilogram).
- appropriate doses of one of these agents depend upon the potency of the agent with respect to the expression or activity to be modulated. Such appropriate doses can be determined using the assays described herein.
- an animal e.g., a human
- a physician, veterinarian, or researcher can, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained.
- a pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration.
- routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration.
- Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediamine-tetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
- the parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials made of glass or plastic.
- compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- suitable carriers include physiological saline, bacteriostatic water, Cremophor EL (BASF; Parsippany, NJ) or phosphate buffered saline (PBS).
- the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
- isotonic agents for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition.
- Prolonged abso ⁇ tion of the injectable compositions can be brought about by including in the composition an agent which delays abso ⁇ tion, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions can be prepared by inco ⁇ orating the active compound (e.g., a polypeptide or antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
- the active compound e.g., a polypeptide or antibody
- dispersions are prepared by inco ⁇ orating the active compound into a sterile vehicle which contains a basic dispersion medium, and then inco ⁇ orating the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Oral compositions generally include an inert diluent or an edible earner. They can be enclosed in gelatin capsules or compressed into tablets. For the pu ⁇ ose of oral therapeutic administration, the active compound can be inco ⁇ orated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed.
- compositions can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystaliine cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- a binder such as microcrystaliine cellulose, gum tragacanth or gelatin
- an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch
- a lubricant such as magnesium stearate or Sterotes
- a glidant such as colloidal silicon dioxide
- a sweetening agent such as
- the compounds are delivered in the form of an aerosol spray from a pressurized container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
- a suitable propellant e.g., a gas such as carbon dioxide, or a nebulizer.
- Systemic administration can also be by transmucosal or transdermal means.
- penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
- Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
- the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
- the compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
- the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
- a controlled release formulation including implants and microencapsulated delivery systems.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Co ⁇ oration and Nova Pharmaceuticals, Inc.
- Liposomal suspensions including liposomes having one or more monoclonal antibodies inco ⁇ orated therein or thereon; e.g., liposomes comprising a monoclonal antibody which binds specifically with a virus antigen
- liposomes comprising a monoclonal antibody which binds specifically with a virus antigen
- Dosage unit form refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- the specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
- the preferred dosage is 0.1 mg/kg to 100 mg/kg of body weight (generally 10 mg/kg to 20 mg/kg). If the antibody is to act in the brain, a dosage of 50 mg/kg to 100 mg/kg is usually appropriate. Generally, partially human antibodies and fully human antibodies have a longer half-life within the human body than other antibodies. Accordingly, lower dosages and less frequent administration is often possible. Modifications such as lipidation can be used to stabilize antibodies and to enhance uptake and tissue penetration (e.g., into the brain). A method for lipidation of antibodies is described by Cruikshank et al. ((1997) J Acquired Immune Deficiency Syndromes and Human Retrovirology 14:193).
- the nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors.
- Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S. Patent 5,328,470), or by stereotactic injection (see, e.g., Chen et al. (1994) Proc. Natl. Acad. Sci. USA 91:3054-3057).
- the pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded.
- the pharmaceutical preparation can include one or more cells which produce the gene delivery system.
- the pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.
- nucleic acid molecules, proteins, protein homologs, and antibodies described herein can be used in one or more of the following methods: a) screening assays; b) detection assays (e.g., chromosomal mapping, tissue typing, forensic biology); c) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenomics); and d) methods of treatment (e.g., therapeutic and prophylactic).
- detection assays e.g., chromosomal mapping, tissue typing, forensic biology
- predictive medicine e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenomics
- methods of treatment e.g., therapeutic and prophylactic.
- polypeptides of the invention can to used for all of the pu ⁇ oses identified herein in portions of the disclosure relating to individual types of protein of the invention (e.g., INTERCEPT 217 proteins, INTERCEPT 297 proteins, TANGO 276 proteins, TANGO 292 proteins, TANGO 325 proteins, TANGO 331 proteins, and TANGO 332 proteins).
- the isolated nucleic acid molecules of the invention can be used to express proteins (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect mRNA (e.g., in a biological sample) or a genetic lesion, and to modulate activity of a polypeptide of the invention.
- polypeptides of the invention can be used to screen drags or compounds which modulate activity or expression of a polypeptide of the invention as well as to treat disorders characterized by insufficient or excessive production of a protein of the invention or production of a form of a protein of the invention which has decreased or aberrant activity compared to the wild type protein.
- the antibodies of the invention can be used to detect and isolate a protein of the and modulate activity of a protein of the invention.
- This invention further pertains to novel agents identified by the above-described screening assays and uses thereof for treatments as described herein.
- the invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drags) which bind to polypeptide of the invention or have a stimulatory or inhibitory effect on, for example, expression or activity of a polypeptide of the invention.
- modulators i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drags) which bind to polypeptide of the invention or have a stimulatory or inhibitory effect on, for example, expression or activity of a polypeptide of the invention.
- the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of a polypeptide of the invention or biologically active portion thereof.
- the test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection.
- the biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam (1997) Anticancer Drug Des. 12:145).
- an assay is a cell-based assay in which a cell which expresses a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to the polypeptide determined.
- the cell for example, can be a yeast cell or a cell of mammalian origin. Determining the ability of the test compound to bind to the polypeptide can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the polypeptide or biologically active portion thereof can be determined by detecting the labeled compound in a complex.
- test compounds can be labeled with 125 1, 35 S, 14 C, or 3 H, either directly or indirectly, and the radioisotope detected by direct counting of radio-emission or by scintillation counting.
- test compounds can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.
- the assay comprises contacting a cell which expresses a membrane- bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the test compound to preferentially bind to the polypeptide or a biologically active portion thereof as compared to the known compound.
- the assay involves assessment of an activity characteristic of the polypeptide, wherein binding of the test compound with the polypeptide or a biologically active portion thereof alters (i.e., increases or decreases) the activity of the polypeptide.
- an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the polypeptide or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of the polypeptide or a biologically active portion thereof can be accomplished, for example, by determining the ability of the polypeptide to bind to or interact with a target molecule or to transport molecules across the cytoplasmic membrane.
- a target molecule is a molecule with which a selected polypeptide (e.g., a polypeptide of the invention binds or interacts with in nature, for example, a molecule on the surface of a cell which expresses the selected protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule.
- a target molecule can be a polypeptide of the invention or some other polypeptide or protein.
- a target molecule can be a component of a signal transduction pathway which facilitates transduction of an extracellular signal (e.g., a signal generated by binding of a compound to a polypeptide of the invention) through the cell membrane and into the cell or a second intercellular protein which has catalytic activity or a protein which facilitates the association of downstream signaling molecules with a polypeptide of the invention. Determining the ability of a polypeptide of the invention to bind to or interact with a target molecule can be accomplished by determining the activity of the target molecule.
- an extracellular signal e.g., a signal generated by binding of a compound to a polypeptide of the invention
- the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (e.g., an mRNA, intracellular Ca 2+ , diacylglycerol, IP3, and the like), detecting catalytic/enzymatic activity of the target on an appropriate substrate, detecting the induction of a reporter gene (e.g., a regulatory element that is responsive to a polypeptide of the invention operably linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a cellular response, for example, cellular differentiation, or cell proliferation.
- a reporter gene e.g., a regulatory element that is responsive to a polypeptide of the invention operably linked to a nucleic acid encoding a detectable marker, e.g., luciferase
- a cellular response for example, cellular differentiation, or cell proliferation.
- an assay of the present invention is a cell-free assay comprising contacting a polypeptide of the invention or biologically active portion thereof with a test compound and determining the ability of the test compound to bind to the polypeptide or biologically active portion thereof. Binding of the test compound to the polypeptide can be determined either directly or indirectly as described above.
- the assay includes contacting the polypeptide of the invention or biologically active portion thereof with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the test compound to preferentially bind to the polypeptide or biologically active portion thereof as compared to the known compound.
- an assay is a cell-free assay comprising contacting a polypeptide of the invention or biologically active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the polypeptide or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of the polypeptide can be accomplished, for example, by determining the ability of the polypeptide to bind to a target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of the polypeptide can be accomplished by determining the ability of the polypeptide of the invention to further modulate the target molecule. For example, the catalytic activity, the enzymatic activity, or both, of the target molecule on an appropriate substrate can be determined as previously described.
- the cell-free assay comprises contacting a polypeptide of the invention or biologically active portion thereof with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the polypeptide to preferentially bind to or modulate the activity of a target molecule.
- the cell-free assays of the present invention are amenable to use of both a soluble form or the membrane-bound form of a polypeptide of the invention.
- solubilizing agents include non-ionic detergents such as n-octylglucoside, n- dodecylglucoside, n-octylmaltoside, octanoyl-N-methylglucamide, decanoyl-N- methylglucamide, Triton X-100, Triton X-l 14, Thesit, Isotridecypoly(ethylene glycol ether)n, 3-[(3-cholamidopropyl)dimethylamminio]-l-propane sulfonate (CHAPS), 3-[(3-cholamidopropyl)dimethylamminio]-2-hydroxy- 1 -propane sulfonate (CHAPSO), or N-dodecyl-N,N-dimethyl-3-ammonio-l -propane sulfonate.
- non-ionic detergents such as n-octylglucoside,
- binding of a test compound to the polypeptide, or interaction of the polypeptide with a target molecule in the presence and absence of a candidate compound can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes.
- a fusion protein can be provided which adds a domain that allows one or both of the proteins to be bound to a matrix.
- glutathione-S-transferase fusion proteins or glutathione-S-transferase fusion proteins can be adsorbed onto glutathione Sepharose beads (Sigma Chemical; St. Louis, MO) or glutathione derivatized microtiter plates, which are then combined with the test compound or the test compound and either the non- adsorbed target protein or A polypeptide of the invention, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components and complex formation is measured either directly or indirectly, for example, as described above.
- the complexes can be dissociated from the matrix, and the level of binding or activity of the polypeptide of the invention can be determined using standard techniques.
- polypeptide of the invention or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin.
- Biotinylated polypeptide of the invention or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals; Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical).
- antibodies reactive with the polypeptide of the invention or target molecules but which do not interfere with binding of the polypeptide of the invention to its target molecule can be derivatized to the wells of the plate, and unbound target or polypeptide of the invention trapped in the wells by antibody conjugation.
- Methods for detecting such complexes include immunodetection of complexes using antibodies reactive with the polypeptide of the invention or target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the polypeptide of the invention or target molecule.
- modulators of expression of a polypeptide of the invention are identified in a method in which a cell is contacted with a candidate compound and the expression of the selected mRNA or protein (i.e., the mRNA or protein co ⁇ esponding to a polypeptide or nucleic acid of the invention) in the cell is determined.
- the level of expression of the selected mRNA or protein in the presence of the candidate compound is compared to the level of expression of the selected mRNA or protein in the absence of the candidate compound.
- the candidate compound can then be identified as a modulator of expression of the polypeptide of the invention based on this comparison.
- the candidate compound when expression of the selected mRNA or protein is greater (i.e., statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of the selected mRNA or protein expression.
- the candidate compound when expression of the selected mRNA or protein is less (i.e., statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of the selected mRNA or protein expression.
- the level of the selected mRNA or protein expression in the cells can be determined by methods described herein.
- a polypeptide of the inventions can be used as "bait proteins" in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J Biol. Chem. 268:12046-12054; Bartel et al. (1993) Bio/Techniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and PCT Publication No.
- binding proteins are also likely to be involved in the propagation of signals by the polypeptide of the inventions as, for example, upstream or downstream elements of a signaling pathway involving the polypeptide of the invention.
- This invention further pertains to novel agents identified by the above-described screening assays and uses thereof for treatments as described herein.
- cDNA sequences identified herein can be used in numerous ways as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a chromosome and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. These applications are described in the subsections below.
- Chromosome Mapping Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. Accordingly, nucleic acid molecules described herein or fragments thereof, can be used to map the location of the co ⁇ esponding genes on a chromosome. The mapping of the sequences to chromosomes is an important first step in co ⁇ elating these sequences with genes associated with disease.
- genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 base pairs in length) from the sequence of a gene of the invention.
- Computer analysis of the sequence of a gene of the invention can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process.
- These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene co ⁇ esponding to the gene sequences will yield an amplified fragment.
- D'Eustachio et al. see D'Eustachio et al. ((1983) Science 220:919-924).
- PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the nucleic acid sequences of the invention to design oligonucleotide primers, sub-localization can be achieved with panels of fragments from specific chromosomes. Other mapping strategies which can similarly be used to map a gene to its chromosome include in situ hybridization (described in Fan et al. (1990) Proc. Natl. Acad. Sci. USA 87:6223-27), pre-screening with labeled flow-sorted chromosomes, and preselection by hybridization to chromosome specific cDNA libraries.
- Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step.
- FISH Fluorescence in situ hybridization
- Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents co ⁇ esponding to non-coding regions of the genes actually are prefe ⁇ ed for mapping pu ⁇ oses. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.
- a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymo ⁇ hisms.
- nucleic acid sequences disclosed herein can be used to perform searches against "mapping databases", e.g., BLAST-type search, such that the chromosome position of the gene is identified by sequence homology or identity with known sequence fragments which have been mapped to chromosomes.
- a polypeptide and fragments and sequences thereof and antibodies which bind specifically with such polypeptides/fragments can be used to map the location of the gene encoding the polypeptide on a chromosome.
- This mapping can be performed by specifically detecting the presence of the polypeptide/fragments in members of a panel of somatic cell hybrids between cells obtained from a first species of animal from which the protein originates and cells obtained from a second species of animal, determining which somatic cell hybrid(s) expresses the polypeptide, and noting the chromosome(s) of the first species of animal that it contains.
- this technique see Pajunen et al., 1988, Cytogenet. Cell Genet. 47:37-41 and Van Keuren et al., 1986, Hum. Genet. 74:34-40).
- the presence of the polypeptide in the somatic cell hybrids can be determined by assaying an activity or property of the polypeptide (e.g., enzymatic activity, as described in Bordelon-Riser et al., 1979, Som. Cell Genet. 5:597-613 and Owerbach et al., 1978, Proc. Natl. Acad. Sci. USA 75:5640-5644).
- an activity or property of the polypeptide e.g., enzymatic activity, as described in Bordelon-Riser et al., 1979, Som. Cell Genet. 5:597-613 and Owerbach et al., 1978, Proc. Natl. Acad. Sci. USA 75:5640-5644).
- the nucleic acid sequences of the present invention can also be used to identify individuals from minute biological samples.
- the United States military for example, is considering the use of restriction fragment length polymo ⁇ hism (RFLP) for identification of its personnel.
- RFLP restriction fragment length polymo ⁇ hism
- an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification.
- This method does not suffer from the cu ⁇ ent limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult.
- the sequences of the present invention are useful as additional DNA markers for RFLP (described in U.S. Patent 5,272,057).
- sequences of the present invention can be used to provide an alternative technique which determines the actual base-by-base DNA sequence of selected portions of an individual's genome.
- the nucleic acid sequences described herein can be used to prepare two PCR primers from the 5' and 3' ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.
- Panels of co ⁇ esponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences.
- the sequences of the present invention can be used to obtain such identification sequences from individuals and from tissue.
- the nucleic acid sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the non-coding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases.
- Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification pu ⁇ oses.
- the non-coding sequences of SEQ ID NO: 1, 9, 33, 38, 46, 54, 59, and 81 can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers which each yield a non-coding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NO: 2, 10, 34, 39, 47, 55, 60, 82, and 92 are used, a more appropriate number of primers for positive individual identification would be 500-2,000.
- a panel of reagents from the nucleic acid sequences described herein is used to generate a unique identification database for an individual, those same reagents can later be used to identify tissue from that individual.
- positive identification of the individual, living or dead can be made from extremely small tissue samples.
- DNA-based identification techniques can also be used in forensic biology. Forensic biology is a scientific field employing genetic typing of biological evidence found at a crime scene as a means for positively identifying, for example, a pe ⁇ etrator of a crime.
- PCR technology can be used to amplify DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, or semen found at a crime scene. The amplified sequence can then be compared to a standard, thereby allowing identification of the origin of the biological sample.
- sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification marker" (i.e., another DNA sequence that is unique to a particular individual).
- an "identification marker” i.e., another DNA sequence that is unique to a particular individual.
- actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments.
- Sequences targeted to non-coding regions are particularly appropriate for this use as greater numbers of polymo ⁇ hisms occur in the non-coding regions, making it easier to differentiate individuals using this technique.
- polynucleotide reagents include the nucleic acid sequences of the invention or portions thereof, e.g., fragments derived from non-coding regions having a length of at least 20 or 30 bases.
- nucleic acid sequences described herein can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes which can be used in, for example, an in situ hybridization technique, to identify a specific tissue, e.g., brain tissue. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such probes can be used to identify tissue by species and/or by organ type.
- polynucleotide reagents e.g., labeled or labelable probes which can be used in, for example, an in situ hybridization technique, to identify a specific tissue, e.g., brain tissue. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such probes can be used to identify tissue by species and/or by organ type.
- the present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) pu ⁇ oses to thereby treat an individual prophylactically.
- diagnostic assays for determining expression of a polypeptide or nucleic acid of the invention and/or activity of a polypeptide of the invention, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with abe ⁇ ant expression or activity of a polypeptide of the invention.
- a biological sample e.g., blood, serum, cells, tissue
- the invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with abe ⁇ ant expression or activity of a polypeptide of the invention. For example, mutations in a gene of the invention can be assayed in a biological sample. Such assays can be used for prognostic or predictive pu ⁇ ose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with abe ⁇ ant expression or activity of a polypeptide of the invention.
- determinations can be based on normalized expression levels of the gene.
- a gene expression level is normalized by co ⁇ ecting the absolute expression level of the gene (e.g., an INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, or TANGO 332 gene as described herein) by comparing its expression to expression of a gene for which expression is not believed to be co-regulated with the gene of interest, e.g., a housekeeping gene that is constitutively expressed.
- Suitable genes for normalization include housekeeping genes such as the actin gene.
- Such normalization allows comparison of the expression level in one sample, e.g., a patient sample, with the expression level in another sample, e.g., a sample obtained from a patient known not to be afflicted with a disease or condition, or between samples obtained from different sources.
- the expression level can be assessed as a relative expression level.
- a gene e.g., an INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, or TANGO 332 gene, as described herein
- the level of expression of the gene is determined for 10 or more samples (preferably 50 or more samples) of different isolates of cells in which the gene is believed to be expressed, prior to assessing the level of expression of the gene in the sample of interest.
- the mean expression level of the gene detected in the large number of samples is determined, and this value is used as a baseline expression level for the gene.
- the expression level of the gene assessed in the test sample (i.e., its absolute level of expression) is divided by the mean expression value to yield a relative expression level.
- Such a method can identify tissues or individuals which are afflicted with a disorder associated with abe ⁇ ant expression of a gene of the invention.
- the samples used in the baseline determination are generated either using cells obtained from a tissue or individual known to be afflicted with a disorder (e.g., a disorder associated with abe ⁇ ant expression of one of the INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, or TANGO 332 genes) or using cells obtained from a tissue or individual known not to be afflicted with the disorder.
- a disorder e.g., a disorder associated with abe ⁇ ant expression of one of the INTERCEPT 217, INTERCEPT 297, TANGO 276, TANGO 292, TANGO 325, TANGO 331, or TANGO 332 genes
- levels of expression of these genes in tissues or individuals known to be or not to be afflicted with the disorder can be used to assess whether the abe ⁇ ant expression of the gene is associated with the disorder (e.g., with onset of the disorder, or as a symptom of the disorder over time).
- Another aspect of the invention provides methods for expression of a nucleic acid or polypeptide of the invention or activity of a polypeptide of the invention in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (refe ⁇ ed to herein as "pharmacogenomics").
- Pharmacogenomics allows for the selection of agents (e.g., drags) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent).
- agents e.g., drugs or other compounds
- An exemplary method for detecting the presence or absence of a polypeptide or nucleic acid of the invention in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting a polypeptide or nucleic acid (e.g., mRNA, genomic DNA) of the invention such that the presence of a polypeptide or nucleic acid of the invention is detected in the biological sample.
- a prefe ⁇ ed agent for detecting mRNA or genomic DNA encoding a polypeptide of the invention is a labeled nucleic acid probe capable of hybridizing to mRNA or genomic DNA encoding a polypeptide of the invention.
- the nucleic acid probe can be, for example, a full-length cDNA, such as the nucleic acid of SEQ ID NO: 1 , 9, 33, 38, 46, 54, 59, 62, or 81, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to a mRNA or genomic DNA encoding a polypeptide of the invention.
- a full-length cDNA such as the nucleic acid of SEQ ID NO: 1 , 9, 33, 38, 46, 54, 59, 62, or 81, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to a mRNA or genomic DNA encoding a polypeptide of the invention.
- Other suitable probes for use in the diagnostic assays of the invention are described
- a prefe ⁇ ed agent for detecting a polypeptide of the invention is an antibody capable of binding to a polypeptide of the invention, preferably an antibody with a detectable label.
- Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab') 2 ) can be used.
- the term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled.
- Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin.
- biological sample is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo.
- in vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations.
- In vitro techniques for detection of a polypeptide of the invention include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence.
- In vitro techniques for detection of genomic DNA include Southern hybridizations.
- in vivo techniques for detection of a polypeptide of the invention include introducing into a subject a labeled antibody directed against the polypeptide.
- the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
- the biological sample contains protein molecules from the test subject.
- the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject.
- a prefe ⁇ ed biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.
- the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting a polypeptide of the invention or mRNA or genomic DNA encoding a polypeptide of the invention, such that the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide is detected in the biological sample, and comparing the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide in the control sample with the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide in the test sample.
- the invention also encompasses kits for detecting the presence of a polypeptide or nucleic acid of the invention in a biological sample (a test sample).
- kits can be used to determine if a subject is suffering from or is at increased risk of developing a disorder associated with abe ⁇ ant expression of a polypeptide of the invention (e.g., one of the disorders described in the section of this disclosure wherein the individual polypeptide of the invention is discussed).
- the kit can comprise a labeled compound or agent capable of detecting the polypeptide or mRNA encoding the polypeptide in a biological sample and means for determining the amount of the polypeptide or mRNA in the sample (e.g., an antibody which binds the polypeptide or an oligonucleotide probe which binds to DNA or mRNA encoding the polypeptide).
- Kits can also include instructions for observing that the tested subject is suffering from or is at risk of developing a disorder associated with abe ⁇ ant expression of the polypeptide if the amount of the polypeptide or mRNA encoding the polypeptide is above or below a normal level.
- the kit can comprise, for example: (1) a first antibody (e.g., attached to a solid support) which binds to a polypeptide of the invention; and, optionally, (2) a second, different antibody which binds to either the polypeptide or the first antibody and is conjugated to a detectable agent.
- the kit can comprise, for example: (1) an oligonucleotide, e.g., a detectably labeled oligonucleotide, which hybridizes to a nucleic acid sequence encoding a polypeptide of the invention or (2) a pair of primers useful for amplifying a nucleic acid molecule encoding a polypeptide of the invention.
- the kit can also comprise, e.g., a buffering agent, a preservative, or a protein stabilizing agent.
- the kit can also comprise components necessary for detecting the detectable agent (e.g., an enzyme or a substrate).
- the kit can also contain a control sample or a series of control samples which can be assayed and compared to the test sample contained.
- Each component of the kit is usually enclosed within an individual container and all of the various containers are within a single package along with instructions for observing whether the tested subject is suffering from or is at risk of developing a disorder associated with abe ⁇ ant expression of the polypeptide.
- the methods described herein can furthermore be utilized as diagnostic or prognostic assays to identify subjects having or at risk of developing a disease or disorder associated with abe ⁇ ant expression or activity of a polypeptide of the invention.
- the assays described herein such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with abe ⁇ ant expression or activity of a polypeptide of the invention (e.g., one of the disorders described in the section of this disclosure wherein the individual polypeptide of the invention is discussed).
- the prognostic assays can be utilized to identify a subject having or at risk for developing such a disease or disorder.
- test sample refers to a biological sample obtained from a subject of interest.
- a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.
- the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with abe ⁇ ant expression or activity of a polypeptide of the invention.
- an agent e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate
- agents e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate
- agents e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate
- such methods can be used to determine whether a subject can be effectively treated with a specific agent or class of agents (e.g., agents of a type which decrease activity
- the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with abe ⁇ ant expression or activity of a polypeptide of the invention in which a test sample is obtained and the polypeptide or nucleic acid encoding the polypeptide is detected (e.g., wherein the presence of the polypeptide or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with abe ⁇ ant expression or activity of the polypeptide).
- the methods of the invention can also be used to detect genetic lesions or mutations in a gene of the invention, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized abe ⁇ ant expression or activity of a polypeptide of the invention.
- the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion or mutation characterized by at least one of an alteration affecting the integrity of a gene encoding the polypeptide of the invention, or the mis-expression of the gene encoding the polypeptide of the invention.
- such genetic lesions or mutations can be detected by ascertaining the existence of at least one of: 1) a deletion of one or more nucleotides from the gene; 2) an addition of one or more nucleotides to the gene; 3) a substitution of one or more nucleotides of the gene; 4) a chromosomal rea ⁇ angement of the gene; 5) an alteration in the level of a messenger RNA transcript of the gene; 6) an abe ⁇ ant modification of the gene, such as of the methylation pattern of the genomic DNA; 7) the presence of a non-wild type splicing pattern of a messenger RNA transcript of the gene; 8) a non-wild type level of the protein encoded by the gene; 9) an allelic loss of the gene; and 10) an inappropriate post-translational modification of the protein encoded by the gene.
- assay techniques known in the art which can be used for detecting lesions in a gene.
- detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. , U.S. Patent Nos.
- PCR polymerase chain reaction
- This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to the selected gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample.
- PCR and/or LCR can be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.
- Alternative amplification methods include: self-sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh, et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio/Technology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
- mutations in a selected gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns.
- sample and control DNA is isolated, (optionally) amplified, digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA.
- sequence specific ribozymes see, e.g., U.S. Patent No. 5,498,531 can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.
- genetic mutations can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotides probes (Cronin et al. (1996) Human Mutation 7:244-255; Kozal et al. (1996) Nature Medicine 2:753- 759).
- genetic mutations can be identified in two-dimensional a ⁇ ays containing light-generated DNA probes as described in Cronin et al., supra.
- a first hybridization a ⁇ ay of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear a ⁇ ays of sequential overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected.
- Each mutation a ⁇ ay is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.
- any of a variety of sequencing reactions known in the art can be used to directly sequence the selected gene and detect mutations by comparing the sequence of the sample nucleic acids with the co ⁇ esponding wild-type (control) sequence.
- Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert ((1977) Proc. Natl. Acad. Sci. USA 74:560) or Sanger ((1977) Proc. Natl. Acad. Sci. USA 74:5463). It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays ((1995)
- Bio/Techniques 19:448) including sequencing by mass spectrometry (see, e.g., PCT Publication No. WO 94/16101; Cohen et al. (1996) Adv. Chromatogr. 36:127-162; and Griffin et al. (1993) Appl. Biochem. Biotechnol 38:147-159).
- RNA/RNA or RNA/DNA heteroduplexes Other methods for detecting mutations in a selected gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230: 1242).
- the technique of mismatch cleavage entails providing heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild- type sequence with potentially mutant RNA or DNA obtained from a tissue sample.
- the double-stranded duplexes are treated with an agent which cleaves single- stranded regions of the duplex such as which will exist due to base pair mismatches between the control and sample strands.
- RNA/DNA duplexes can be treated with RNase to digest mismatched regions, and DNA/DNA hybrids can be treated with SI nuclease to digest mismatched regions.
- either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton et al. (1988) Proc. Natl. Acad. Sci. USA 85:4397; Saleeba et al. (1992) Methods Enzymol 217:286-295. In a prefe ⁇ ed embodiment, the control DNA or RNA can be labeled for detection.
- the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double- stranded DNA (so called DNA mismatch repair enzymes) in defined systems for detecting and mapping point mutations in cDNAs obtained from samples of cells.
- DNA mismatch repair enzymes proteins that recognize mismatched base pairs in double- stranded DNA
- the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662).
- a probe based on a selected sequence is hybridized to a cDNA or other DNA product from a test cell(s).
- the duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g., U.S. Patent No. 5,459,039.
- alterations in electrophoretic mobility will be used to identify mutations in genes.
- single strand conformation polymo ⁇ hism SSCP
- SSCP single strand conformation polymo ⁇ hism
- the secondary structure of single-stranded nucleic acids varies according to sequence, and the resulting alteration in electrophoretic mobility enables the detection of even a single base change.
- the DNA fragments can be labeled or detected with labeled probes.
- the sensitivity of the assay can be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence.
- the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet. 7:5).
- the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495).
- DGGE denaturing gradient gel electrophoresis
- DNA will be modified to insure that it does not completely denature, for example by adding a 'GC clamp' of approximately 40 base pairs of high-melting GC-rich DNA by PCR.
- a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys. Chem. 265:12753).
- oligonucleotide primers can be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163); Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230).
- Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.
- Oligonucleotides used as primers for specific amplification can carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; Gibbs et al. (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3' end of one primer where, under appropriate conditions, mismatching can prevent or reduce polymerase extension (Prossner (1993) Tibtech 11 :238).
- Amplification can also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci. USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3' end of the 5' sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
- the methods described herein can be performed, for example, using pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which can be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a gene encoding a polypeptide of the invention.
- any cell type or tissue, preferably peripheral blood leukocytes, in which the polypeptide of the invention is expressed can be utilized in the prognostic assays described herein.
- Agents, or modulators which have a stimulatory or inhibitory effect on activity or expression of a polypeptide of the invention as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders associated with abe ⁇ ant activity of the polypeptide.
- the pharmacogenomics i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drag
- the individual may be considered.
- the pharmacogenomics of the individual permits the selection of effective agents (e.g., drags) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of a polypeptide of the invention, expression of a nucleic acid of the invention, or mutation content of a gene of the invention in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.
- Pharmacogenomics deals with clinically significant hereditary variations in the response to drags due to altered drug disposition and abnormal action in affected persons. See, e.g., Linder (1997) Clin. Chem. 43(2):254-266.
- two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body are refe ⁇ ed to as "altered drug action.” Genetic conditions transmitted as single factors altering the way the body acts on drags are refe ⁇ ed to as "altered drag metabolism”. These pharmacogenetic conditions can occur either as rare defects or as polymo ⁇ hisms.
- G6PD glucose-6-phosphate dehydrogenase
- the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drag action.
- drug metabolizing enzymes e.g., N- acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19
- NAT 2 N- acetyltransferase 2
- CYP2D6 and CYP2C19 cytochrome P450 enzymes
- CYP2D6 and CYP2C19 cytochrome P450 enzymes
- These polymo ⁇ hisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations.
- the gene coding for CYP2D6 is highly polymo ⁇ hic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drag response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, a PM will show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite mo ⁇ hine. The other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses.
- the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.
- the activity of a polypeptide of the invention, expression of a nucleic acid encoding the polypeptide, or mutation content of a gene encoding the polypeptide in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.
- pharmacogenetic studies can be used to apply genotyping of polymo ⁇ hic alleles encoding drug-metabolizing enzymes to the identification of an individual's drag responsiveness phenotype.
- Monitoring the influence of agents (e.g., drag compounds) on the expression or activity of a polypeptide of the invention can be applied not only in basic drag screening, but also in clinical trials.
- agents e.g., drag compounds
- the effectiveness of an agent, as determined by a screening assay as described herein, to increase gene expression, protein levels, or protein activity can be monitored in clinical trials of subjects exhibiting decreased gene expression, protein levels, or protein activity.
- the effectiveness of an agent, as determined by a screening assay, to decrease gene expression, protein levels or protein activity can be monitored in clinical trials of subjects exhibiting increased gene expression, protein levels, or protein activity.
- expression or activity of a polypeptide of the invention and preferably, that of other polypeptide that have been implicated in for example, a cellular proliferation disorder can be used as a marker of the immune responsiveness of a particular cell.
- genes, including those of the invention, that are modulated in cells by treatment with an agent (e.g., compound, drag or small molecule) which modulates activity or expression of a polypeptide of the invention e.g., as identified in a screening assay described herein
- an agent e.g., compound, drag or small molecule
- RNA prepared and analyzed for the levels of expression of a gene of the invention and other genes implicated in the disorder can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of a gene of the invention or other genes.
- the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state can be determined before, and at various points during, treatment of the individual with the agent.
- the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drag candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of the polypeptide or nucleic acid of the invention in the pre-administration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level the of the polypeptide or nucleic acid of the invention in the post-administration samples; (v) comparing the level of the polypeptide or nucleic acid of the invention in the pre-administration sample with the level of the polypeptide or nucleic acid of the invention in the post-administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly.
- an agent e.g., an agonist, antagonist,
- increased administration of the agent can be desirable to increase the expression or activity of the polypeptide to higher levels than detected, i.e., to increase the effectiveness of the agent.
- decreased administration of the agent can be desirable to decrease expression or activity of the polypeptide to lower levels than detected, i.e., to decrease the effectiveness of the agent.
- the present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with abe ⁇ ant expression or activity of a polypeptide of the invention and/or in which the polypeptide of the invention is involved. Disorders characterized by abe ⁇ ant expression or activity of the polypeptides of the invention are described elsewhere in this disclosure.
- the invention provides a method for preventing in a subject, a disease or condition associated with an abe ⁇ ant expression or activity of a polypeptide of the invention, by administering to the subject an agent which modulates expression or at least one activity of the polypeptide.
- Subjects at risk for a disease which is caused or contributed to by abe ⁇ ant expression or activity of a polypeptide of the invention can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein.
- Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the abe ⁇ ance, such that a disease or disorder is prevented or, alternatively, delayed in its progression.
- an agonist or antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein.
- the modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of the polypeptide.
- An agent that modulates activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of the polypeptide, a peptide, a peptidomimetic, or other small molecule.
- the agent stimulates one or more of the biological activities of the polypeptide. Examples of such stimulatory agents include the active polypeptide of the invention and a nucleic acid molecule encoding the polypeptide of the invention that has been introduced into the cell.
- the agent inhibits one or more of the biological activities of the polypeptide of the invention.
- inhibitory agents include antisense nucleic acid molecules and antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject).
- the present invention provides methods of treating an individual afflicted with a disease or disorder characterized by abe ⁇ ant expression or activity of a polypeptide of the invention.
- the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., up-regulates or down-regulates) expression or activity.
- an agent e.g., an agent identified by a screening assay described herein
- the method involves administering a polypeptide of the invention or a nucleic acid molecule of the invention as therapy to compensate for reduced or abe ⁇ ant expression or activity of the polypeptide.
- Stimulation of activity is desirable in situations in which activity or expression is abnormally low or down-regulated and/or in which increased activity is likely to have a beneficial effect, e.g., in wound healing.
- inhibition of activity is desirable in situations in which activity or expression is abnormally high or up-regulated and/or in which decreased activity is likely to have a beneficial effect.
- Clones comprising cDNA molecules encoding human INTERCEPT 217, human INTERCEPT 297, human TANGO 325, and human TANGO 331 were deposited with ATCC ® on May 28, 1999, as part of a composite deposit representing a mixture of five strains, each carrying one recombinant plasmid harboring a particular cDNA clone. This deposit was assigned Accession Number PTA-147
- human INTERCEPT 297 (clone EpT297): 1.2 kilobases and 0.3 kilobases (human INTERCEPT 297 has a Smal cut site at about base pair 1183).
- human TANGO 325 (clone EpT325): 2.2 kilobases
- strains can be infe ⁇ ed from the fragments liberated.
- Human TANGO 276, human TANGO 292, and human TANGO 332 were each deposited as single deposits. Their clone names, deposit dates, and accession numbers are as follows:
- human TANGO 276 clone EpT276 was deposited with ATCC ® on May 28, 1999, and was assigned Accession Number PTA-150.
- human TANGO 292 clone EpT292 was deposited with ATCC ® on April 28, 1999, and was assigned Accession Number 207230.
- human TANGO 332 clone EpT332 was deposited with ATCC ® on May 28, 1999, and was assigned Accession Number PTA-151. Equivalents
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00941494A EP1194534A4 (en) | 1999-06-29 | 2000-06-16 | Novel genes encoding proteins having diagnostic, preventive, therapeutic, and other uses |
AU56197/00A AU5619700A (en) | 1999-06-29 | 2000-06-16 | Novel genes encoding proteins having diagnostic, preventive, therapeutic, and other uses |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US34236499A | 1999-06-29 | 1999-06-29 | |
US09/342,364 | 1999-06-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001000638A2 true WO2001000638A2 (en) | 2001-01-04 |
WO2001000638A3 WO2001000638A3 (en) | 2001-07-05 |
Family
ID=23341516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/016658 WO2001000638A2 (en) | 1999-06-29 | 2000-06-16 | Novel genes encoding proteins having diagnostic, preventive, therapeutic, and other uses |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1194534A4 (en) |
AU (1) | AU5619700A (en) |
WO (1) | WO2001000638A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1254269A1 (en) * | 2000-02-03 | 2002-11-06 | Hyseq Inc. | Methods and materials relating to neuronal guidance molecule-like (ngm-like) polypeptides and polynucleotides |
WO2004007711A1 (en) * | 2002-07-10 | 2004-01-22 | Takeda Pharmaceutical Company Limited | Novel proteins and use thereof |
WO2004072605A2 (en) * | 2003-02-17 | 2004-08-26 | Universiteit Utrecht Holding B.V. | Method for the characterization of proteins, isolated proteins and uses therefore |
EP1683811A2 (en) * | 1999-06-09 | 2006-07-26 | Genentech, Inc. | Compositions and methods for the treatment of tumors |
CN116223818A (en) * | 2023-05-09 | 2023-06-06 | 四川大学华西医院 | Application of DR3 protein detection reagent in preparation of reagent kit for screening AECOPD and reagent kit for screening AECOPD |
WO2024138074A1 (en) * | 2022-12-21 | 2024-06-27 | Codexis, Inc. | Engineered rnase inhibitor variants |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995026201A1 (en) * | 1994-03-28 | 1995-10-05 | La Jolla Cancer Research Foundation | Brevican, a glial cell proteoglycan |
US5635370A (en) * | 1994-04-08 | 1997-06-03 | Yale University | DNA encoding BEHAB, a brain hyaluronan-binding protein, and recombinant expression systems for production of BEHAB polypeptides |
WO1998021328A2 (en) * | 1996-11-13 | 1998-05-22 | Sagami Chemical Research Center | Human proteins having transmembrane domains and dnas encoding these proteins |
US5952171A (en) * | 1996-11-19 | 1999-09-14 | Millennium Biotherapeutics, Inc. | Method for identifying genes encoding secreted or membrane-associated proteins |
AU5923398A (en) * | 1997-01-21 | 1998-08-07 | Human Genome Sciences, Inc. | Polynucleotides and polypeptides encoding receptors |
EP0972029A1 (en) * | 1997-03-07 | 2000-01-19 | Human Genome Sciences, Inc. | Human secreted proteins |
ES2332916T3 (en) * | 1999-06-09 | 2010-02-15 | Genentech Inc | COMPOSITIONS AND METHOD FOR TUMOR TREATMENT. |
CA2382015A1 (en) * | 1999-08-17 | 2001-02-22 | Incyte Genomics, Inc. | Membrane associated proteins |
-
2000
- 2000-06-16 EP EP00941494A patent/EP1194534A4/en not_active Ceased
- 2000-06-16 AU AU56197/00A patent/AU5619700A/en not_active Abandoned
- 2000-06-16 WO PCT/US2000/016658 patent/WO2001000638A2/en active Application Filing
Non-Patent Citations (6)
Title |
---|
DATABASE GENBANK [Online] 01 February 1999 NCU-CGAP, XP002935220 Retrieved from EST Database accession no. AI304312 * |
DATABASE GENBANK [Online] 09 March 1998 HILLIER ET AL., XP002935217 Retrieved from EST Database accession no. AA176796 * |
DATABASE GENBANK [Online] 09 March 1998 HILLIER ET AL., XP002935218 Retrieved from EST Database accession no. AA173251 * |
DATABASE GENBANK [Online] 10 November 1998 NCI-CGAP, XP002935216 Retrieved from EST Database accession no. AI184538 * |
DATABASE GENBANK [Online] 30 March 1999 NCI-CGAP, XP002935219 Retrieved from EST Database accession no. AI380446 * |
See also references of EP1194534A2 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1683811A2 (en) * | 1999-06-09 | 2006-07-26 | Genentech, Inc. | Compositions and methods for the treatment of tumors |
EP1683811A3 (en) * | 1999-06-09 | 2006-10-11 | Genentech, Inc. | Compositions and methods for the treatment of tumors |
EP1254269A1 (en) * | 2000-02-03 | 2002-11-06 | Hyseq Inc. | Methods and materials relating to neuronal guidance molecule-like (ngm-like) polypeptides and polynucleotides |
EP1254269A4 (en) * | 2000-02-03 | 2004-10-27 | Nuvelo Inc | Methods and materials relating to neuronal guidance molecule-like (ngm-like) polypeptides and polynucleotides |
WO2004007711A1 (en) * | 2002-07-10 | 2004-01-22 | Takeda Pharmaceutical Company Limited | Novel proteins and use thereof |
US7833972B2 (en) | 2002-07-10 | 2010-11-16 | Takeda Pharmaceutical Company Limited | Proteins and use thereof |
WO2004072605A2 (en) * | 2003-02-17 | 2004-08-26 | Universiteit Utrecht Holding B.V. | Method for the characterization of proteins, isolated proteins and uses therefore |
WO2004072605A3 (en) * | 2003-02-17 | 2005-03-17 | Univ Utrecht Holding Bv | Method for the characterization of proteins, isolated proteins and uses therefore |
WO2024138074A1 (en) * | 2022-12-21 | 2024-06-27 | Codexis, Inc. | Engineered rnase inhibitor variants |
CN116223818A (en) * | 2023-05-09 | 2023-06-06 | 四川大学华西医院 | Application of DR3 protein detection reagent in preparation of reagent kit for screening AECOPD and reagent kit for screening AECOPD |
Also Published As
Publication number | Publication date |
---|---|
EP1194534A2 (en) | 2002-04-10 |
AU5619700A (en) | 2001-01-31 |
EP1194534A4 (en) | 2004-03-24 |
WO2001000638A3 (en) | 2001-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8076086B2 (en) | Methods of modulating the activity of TANGO332 | |
US7459530B2 (en) | Tango 405 polypeptides and uses thereof | |
AU757699B2 (en) | Novel molecules of the card-related protein family and uses thereof | |
US20070031439A1 (en) | Novel protein related to melanoma-inhibiting protein and uses thereof | |
EP1196563A2 (en) | Novel molecules of the card-related protein family and uses thereof | |
US7160694B2 (en) | Nucleic acids encoding TANGO405 and functional fragments and uses thereof | |
WO2001018016A1 (en) | Novel genes encoding proteins having prognostic, diagnostic, preventive, therapeutic, and other uses | |
EP1194534A2 (en) | Novel genes encoding proteins having diagnostic, preventive, therapeutic, and other uses | |
US6872811B1 (en) | HRPCa9 and HRPCa10 nucleic acids and polypeptides | |
EP1189938A1 (en) | Secreted proteins and uses thereof | |
WO2001030971A2 (en) | Novel molecules and the card-related protein family and uses thereof | |
US6380382B1 (en) | Gene encoding a protein having diagnostic, preventive, therapeutic, and other uses | |
US6326481B1 (en) | Molecules of the AIP-related protein family and uses thereof | |
WO2002085939A1 (en) | Novel molecules of the card-related protein family and uses thereof | |
WO2001023523A2 (en) | Secreted proteins and uses thereof | |
US20050260702A1 (en) | Novel integrin alpha subunit and uses thereof | |
WO2001000672A1 (en) | Secreted proteins and uses thereof | |
EP1159413A2 (en) | Secreted proteins and uses thereof | |
WO2000039150A2 (en) | Secreted proteins and uses thereof | |
WO2001029088A1 (en) | Novel genes encoding proteins having prognostic, diagnostic, preventive, therapeutic, and other uses | |
WO2000032746A2 (en) | Netrin-like and ependymin-like nucleic acids and polypeptides and uses thereof | |
US20020182675A1 (en) | Novel genes encoding proteins having diagnostic, preventive, therapeutic and other uses | |
WO2001009185A2 (en) | Transmembrane transport proteins, nucleic acids encoding them and uses therefor | |
WO2001081414A2 (en) | Integrin alpha subunit and uses thereof | |
WO2001000644A1 (en) | Novel genes encoding proteins having diagnostic, preventive, therapeutic, and other uses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000941494 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2000941494 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase in: |
Ref country code: JP |