WO2000079547A1 - Organic-inorganic composite magnetic material and method for preparing the same - Google Patents

Organic-inorganic composite magnetic material and method for preparing the same Download PDF

Info

Publication number
WO2000079547A1
WO2000079547A1 PCT/JP2000/003982 JP0003982W WO0079547A1 WO 2000079547 A1 WO2000079547 A1 WO 2000079547A1 JP 0003982 W JP0003982 W JP 0003982W WO 0079547 A1 WO0079547 A1 WO 0079547A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
fine particles
inorganic composite
organic radical
gold
Prior art date
Application number
PCT/JP2000/003982
Other languages
English (en)
French (fr)
Inventor
Tadashi Sugawara
Akira Izuoka
Hiromi Sakurai
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to EP00939097A priority Critical patent/EP1211698A4/en
Priority to CA2374181A priority patent/CA2374181C/en
Publication of WO2000079547A1 publication Critical patent/WO2000079547A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/005Thin magnetic films, e.g. of one-domain structure organic or organo-metallic films, e.g. monomolecular films obtained by Langmuir-Blodgett technique, graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/301Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying ultrathin or granular layers

Definitions

  • the present invention relates to an organic magnetic material, particularly to an organic-inorganic hybrid magnetic material produced by chemically adsorbing an organic radical to a metal surface as an inorganic component, and a method for producing the same.
  • an organic-inorganic composite material related to the present invention there are gold fine particles to which alkanethiol is chemically adsorbed.
  • These fine gold particles can be synthesized by adding alkanethiol dissolved in an organic solvent to an aqueous solution of chloroauric acid and adding a reducing agent in the presence of a surfactant. It is known that the generated fine gold particles are stabilized by chemisorption of alkanethiol.
  • JP-A-9-1278598 discloses that in a micelle-type metal fine particle, a molecular chain of an organic substance is adsorbed on the surface of the fine particle to form a metal. It describes that the fine particles are covered in the form of micelles, and discloses that these fine particles are used for metal fine particle materials, metal coating materials, fine particle gel materials, metal ultra-thin film forming devices, light energy conversion devices, etc. .
  • molecules constituting a monomolecular film or a cumulative film are directly or indirectly connected to a substrate by Si, Ge, Sn, Ti. , Zr, an organic film fixed by a covalent bond via at least one atom selected from S, C, having unpaired electrons derived from a metal and Z or a radical in the organic film;
  • a magnetic film having force magnetism is known, since a metal having unpaired electrons and Z or a radical are connected to the substrate via a saturated hydrocarbon chain, the magnetic interaction between unpaired electrons is It is considered extremely weak. Disclosure of the invention
  • An object of the present invention is to solve this problem and to provide a method for producing an organic-inorganic hybrid magnetic material having superparamagnetism or ferromagnetism, and to further develop a way to apply an organic material to a magnetic device. It is assumed that.
  • the present invention relates to an organic radical molecule that is responsible for localized spin caused by unpaired electrons.
  • a method of manufacturing an organic-inorganic composite material formed by chemisorption on a metal surface the localized spin of organic radicals adsorbed on the metal surface is changed by magnetic interaction with conduction electrons of the metal. This is a method for producing a ferromagnetically aligned organic / inorganic composite magnetic material.
  • Thiols such as Ag (silver), Pt (platinum), Pd (palladium), Rh (rhodium), and Ru (ruthenium) are chemically adsorbed in addition to Au (gold) as the metal. All metals and their alloys are covered. By coexisting a thiol group-containing radical and its derivative with these metals, an organic radical is adsorbed on the metal surface.
  • an organic-inorganic composite magnetic material composed of organic radical chemisorption type gold fine particles formed by chemically adsorbing thiol coordination type organic radical molecules on the surface of gold fine particles is obtained.
  • the organic radical is preferably phenyl nitryl nitroxide having a thiol group at the para position or a derivative thereof, or phenyl nitroxide having a thiol group at the meta position or a derivative thereof.
  • the radical ligand used does not necessarily need to be a radical having thiol as a substituent. Radicals having substituents derived from disulfide dithiocarboxylic acids that chemisorb to metals are also possible.
  • the present invention provides a method for reducing a salt containing a metal ion to which thiol can be chemically adsorbed with a reducing agent in the presence of a stabilizing ligand to thereby form a stabilizing ligand adsorbed on the generated soluble metal fine particles.
  • a method for producing an organic-inorganic composite magnetic material comprising synthesizing organically adsorbable metal fine particles by substituting a thiol-type organic radical having unpaired electrons.
  • Stabilizing ligands used include alkanethiol, Ligands that can be stabilized so that metal particles do not associate, such as aromatic thiols, quaternary ammonium salts, quaternary phosphonium salts, and polymers having a metal ligand as a side chain, can be used.
  • chloroauric acid is reduced with a reducing agent in the presence of a thiol coordination type organic radical having a long-chain alkyl group or a derivative thereof, and Synthesize radical chemisorption type gold particles.
  • the present invention provides an organic-inorganic composite type magnetic thin film produced using the organic radical chemisorption type metal fine particles obtained by the above method, and a cross-linking ligand added during film formation. This is an organic-inorganic composite type ferromagnetic thin film produced by the above method.
  • the organic radical chemisorption-type metal fine particles obtained by the above method are dissolved alone or in a self-aggregation together with a crosslinking ligand in an organic solvent, and then applied to a substrate to form an organic or inorganic fine particle.
  • a composite magnetic thin film is manufactured.
  • a coating method a spin coating method, a water surface aggregation method of self-aggregation on the water surface, or the like can be applied.
  • the organic / inorganic composite magnetic material obtained by the production method of the present invention is different from the prior art in that it is thiol Since the unpaired electron of the coordinating type organic radical is directly chemisorbed to the fine metal particles via the ⁇ - bond, strong magnetic interaction between the chemisorbed radicals via the conductive electrons of the fine metal particles There is a feature in the point that is generated.
  • Magnetism can be imparted by adding a thiol chemisorption radical to a conductive nonmagnetic fine material.
  • a thiol chemisorption radical to a conductive nonmagnetic fine material.
  • the unpaired electrons on the radicals face in the same direction due to the interaction with the conduction electrons in the metal, and a ferromagnetic spin arrangement is realized.
  • the unpaired electrons on each fine particle are ferromagnetically aligned and exhibit superparamagnetism, but are not uniform among the particles.
  • a bridging ligand having a thiol group is added and the electronic structure between the particles is joined, unpaired electrons are aligned between the particles, and a ferromagnetic thin film can be formed.
  • FIG. 1 is a schematic diagram of gold fine particles having adsorbed radicals.
  • FIG. 2 is a conceptual diagram showing a metal surface chemical formation method using a thiol-coordinated organic radical.
  • Figure 3 shows the EPR spectrum of the organic radical chemisorption type fine particles (solid).
  • Figure 4 is a graph showing the temperature dependence of the EPR signal intensity and the line width of organic radical chemisorbed gold particles.
  • FIG. 5 is a graph showing the temperature dependence of the product (X para ⁇ T) of the magnetic susceptibility and the temperature of the organic radical chemisorption type gold fine particles.
  • FIG. 6a is a schematic diagram of a superparamagnetic ultra-thin film of fine particles exhibiting ferromagnetic spin arrangement
  • Figure 6b is a structure in which fine particles exhibiting ferromagnetic spin arrangement are linked by a bridging ligand.
  • FIG. 2 is a schematic view of an ultra-thin film appearing as a result.
  • FIG. 7 shows Equations 1, 2, and 3 in the manufacturing method of the present invention.
  • Fig. 1 shows a model of gold particles with adsorbed radicals, which are magnetic materials. These organic radical chemisorption-type gold particles can be synthesized according to the reaction routes shown in Formula 1 and Formula 2 shown in FIG.
  • chloroauric acid is reduced with a reducing agent in the presence of a quaternary ammonium salt or alkanethiol to synthesize ligand-stabilized gold microparticles 1 and using thiol or its derivative as a substituent.
  • Coordination by adding organic radical 2 By performing a substitution reaction, organic fine particles 3 chemically adsorbed with organic radicals can be synthesized.
  • radical ligand does not necessarily have to be a thiol.
  • a disulfide dicarboxylic acid derivative which chemically adsorbs to a metal is also possible.
  • Thiols adsorbed on gold are generally considered to exist as thiolates from which protons have been eliminated. Since the radical consisting of thiolate and phenyl nitronyl nitroxide is a spin-polarized donor, when this radical is chemically adsorbed on the fine gold particles, it is polarized into the conduction band of the fine gold particles. Therefore, all the localized electrons are ferromagnetically aligned.
  • the reducing agent lithium triethylborohydride
  • the ice bath was removed, and the mixture was stirred at room temperature overnight.
  • the ethanethiol complex of chloroauric acid is reduced, Gold fine particles with all chemically adsorbed were produced.
  • Figure 5 shows that the magnetic susceptibility (diamagnetism, Pauli paramagnetism, ferromagnetic component, etc.) that does not depend on the temperature was subtracted in the susceptibility measurement of the same sample using a superconducting quantum interferometer (SQUID).
  • This graph shows the temperature dependence of the paramagnetic susceptibility (X p) obtained in this way.
  • the dashed line shows the constant number of Curie when there is no magnetic interaction between organic radicals in a sample containing gold and organic radicals at a ratio of 3: 1.
  • the Curie constant is analyzed as 3 X 1 O ⁇ emu K / gram and the Weiss temperature is 2.5 K. From this Curie constant, the average spin quantum number is determined to be about 8 soil 3 . This indicates that, on average, about 16 organic radicals adsorbed on a single gold particle ferromagnetically align spin directions at room temperature.
  • the results of the above examples may be considered to be evidence that organic radical chemisorption-type gold fine particles exhibiting superparamagnetism shown in the schematic diagram at the top of FIG. 6 are generated.
  • the spin quantum number since the distribution of the size of the gold fine particles and the number of organic radicals chemically adsorbed to one gold fine particle are distributed, the spin quantum number also shows a constant distribution.
  • a magnetic thin film can be formed by a water surface aggregation method in which a solvent is vaporized and gold particles are aggregated on the water surface. This thin film shows superparamagnetism like a solid sample. Further, by adding the cross-linking ligand to the organic solvent, a ferromagnetic thin film in which the spin directions between the fine gold particles are all uniform can be prepared as shown in the lower schematic diagram of FIG. Industrial applicability
  • the present invention provides a composite material of an organic radical molecule and a metal that is an inorganic component.
  • the composite material uses the magnetic interaction between the unpaired electron of the organic radical and the conduction electron of the metal. It realizes a superparamagnetic material by ferromagnetically aligning unpaired electrons of organic radicals. Further, a novel organic-inorganic composite ferromagnetic material is provided by connecting these superparamagnetic metal fine particles with a bridging ligand to form a ferromagnetic thin film.
  • the metal morphology can be applied to metal thin films, nanometer-level fine particles, microfabricated metal wiring, or electrode patterns. Therefore, the magnetic material according to the manufacturing method of the present invention can be widely used for magnetic devices of various microelectronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Record Carriers (AREA)

Description

明 細 書 有機 ·無機複合磁性材料とその製造方法 技術分野
本発明は、 有機磁性材料、 特に、 有機ラジカルを無機成分である金属表面に化 学吸着することによって作製される有機 ·無機複合型磁性材料とその製造方法に 関する。 背景技術
本発明に関係した有機 ·無機複合型材料として、 アルカンチオールが化学吸着 した金微粒子がある。 この金微粒子は、 塩化金酸水溶液に有機溶媒に溶かしたァ ルカンチオールを添加し、 界面活性剤存在下、 還元剤を加えることにより合成で きる。 また、 生成した金微粒子は、 アルカンチオールが化学吸着することにより 安定化されていることが知られている。
これまで、 アル力ンチオールが化学吸着した金微粒子が自己集合化する性質を 利用して、 導電性を中心とした機能性有機材料の開発が試みられている。 しかし ながら、 チオールが化学吸着した金微粒子からなる機能性材料において、 磁性に 着眼した例はない。 従って、 チオールが化学吸着した金およびその他の金属微粒 子を、 有機 ·無機複合型材料として磁気デバイスに適用した報告は皆無である。 有機 ·無機複合型材料として、 アルカンチオールが化学吸着した金微粒子につ いては、 これまで下記のような報告がなされている。 すなわち、 合成方法に関し て、 M. B r u s tらは、 テトラオクチルアンモニゥムを層間移動触媒として用 いて 2層系で金イオンを金に還元して金一アルカンチオールを合成する方法を紹 介している(J.Chem. So , Chem. Comm. ,801,1994) 。 Κ· V. S a r a t h yらは、 水酸化ナトリウム水溶液中で、 テトラキス (ヒ ドロキシルメチル) ホスホニゥム クロリ ドにより金イオンを還元し、 酸性にして有機層中のドデカンチオールと配 位子交換させるとサイズ (5 nm位) の揃ったクラスターが規則的構造体を作つ ていると報告している (Chem. Comm. , 537, 1997) 。
また、 その物性、 構造に関して、 R. H. T e r r i 1 1らは、 アルキル鎖の 長さの異なるチオールを金粒子に吸着させ、 その固体物性の測定を行っている(J. Am. Chem. Soc. , 117, 12537, 1995) 。 Μ. Β r u s tらは、 ジチォ一ノレでコートした 金粒子の伝導挙動について、 金粒子が構造体を形成している透過型電子顕微鏡の 写真を用いて報告している (Adv. Mater.,7,795,1995)。 S. Ch e nらは、 サイ ズの異なる金ーチオールナノ粒子の伝導挙動について、 走査型トンネル顕微鏡で の測定結果を報告している(Science, 280, 2098、 1998) 。 さらに、 R. P. An d r e sらは、 金の (1 1 1) 面にジチオールを並べ、 その上に金ナノ粒子を吸着 させ、 走査型トンネル顕微鏡で I一 V曲線を測定したところ、 一電子トンネリン グに基づく Coulomb staircase が観測されたことを報告している(Science, 272, 1 323,1996) 。 上記の各報告は、 金微粒子の合成法や電気的性質および自己集合化 した系について述べたものである。
従来、 チオール金微粒子の自己組織的に配列する性質を利用して、 種々の機能 性有機材料の開発が試みられている。 例えば、 特開平 9一 278598号公報に は、 ミセル型金属微粒子において微粒子の表面に有機物の分子鎖が吸着して金属 微粒子をミセル状に覆ったものが記載され、 この微粒子は、 金属微粒子材料、 金 属塗装材料、 微粒子ゲル材、 金属極超薄膜作成装置、 光エネルギー変換装置等に 用いられることを開示している。
特開平 6— 4 5 1 4 2号公報に記載されているように、 単分子膜や累積膜を構 成する分子が基体と直接または間接的に、 S i , G e , S n, T i, Z r, S, Cから選ばれる少なくとも一つの原子を介して共有結合で固定されている有機膜 であって、 前記有機膜内に金属及び Zまたはラジカルに由来する不対電子を有し、 力つ磁性を有する磁性膜が公知であるが、 不対電子を有する金属および Zまたは ラジカルが飽和の炭化水素鎖を介し、 基板につながれているため、 不対電子間で の磁気的相互作用は極めて弱いと考えられる。 発明の開示
(発明が解決しようとする課題)
本発明は、 この点を解決し、 超常磁性または強磁性を有する有機 ·無機複合型 磁性材料の製造方法とを提供することを目的とし、 さらに有機材料を磁気デバィ スに応用する道を拓こうとするものである。
(課題を解決するための手段)
金微粒子を分子と見立て、 ナノスピンデバイスの構成分子として利用することも 可能であろうと考えられるので、 我々は、 金微粒子に化学吸着させるチオールに 有機ラジカルを導入し、 金微粒子の伝導電子とラジカルの局在スピンとの間の磁 気的相互作用についての研究を行い、 本発明を完成した。
すなわち、 本発明は、 不対電子に起因する局在スピンを担う有機ラジカル分子 力 金属表面に化学吸着して形成された有機 ·無機の複合型材料の製造方法にお いて、 金属表面に吸着した有機ラジカルの局在スピンが、 金属の伝導電子との磁 気的相互作用によって、 強磁性的に整列した有機 ·無機複合型磁性材料を製造す る方法である。
前記金属としては、 A u (金) の他、 A g (銀) 、 P t (白金) 、 P d (パラ ジゥム) 、 R h (ロジウム) 、 R u (ルテニウム) 等、 チオールが化学吸着する 全ての金属、 およびその合金が対象となる。 これらの金属と、 チオール基を有す るラジカルおよびその誘導体を共存させることにより、 金属表面に有機ラジカル が吸着する。 例えば、 前記金属が金の場合、 金微粒子表面にチオール配位型有機 ラジカル分子が化学吸着して形成された有機ラジカル化学吸着型金微粒子からな る有機 ·無機複合磁性材料が得られる。
有機ラジカルは、 パラ位にチオール基を有するフエニルニトロニルニトロキシ ドもしくはその誘導体、 またはメタ位にチオール基を有するフエニルニトロキシ ドもしくはその誘導体であることが好ましい。 なお、 使用するラジカル配位子は、 必ずしもチオールを置換基として有するラジカルでなくともよい。 金属に化学吸 着するジスルフィ ドゃチォカルボン酸から誘導される置換基を有するラジカルも 可能である。
また、 本発明は、 チオールが化学吸着し得る金属のイオンを含む塩を、 安定化 配位子存在下、 還元剤で還元し、 生成した可溶性金属微粒子に吸着している安定 化配位子を、 不対電子を有するチオール型有機ラジカルに置換することにより有 機吸着型金属微粒子を合成することを特徴とする有機 ·無機複合磁性材料の製造 方法である。 用いる安定化配位子としては、 アルカンチオールをはじめとして、 芳香族チオール、 四級アンモニゥム塩、 四級ホスホニゥム塩、 金属配位子を側鎖 として有するポリマーといった、 金属粒子が会合しないように安定化できる配位 子が利用可能である。
好ましくは、 有機ラジカル化学吸着型金微粒子を合成する際に、 長鎖アルキル 基を有するチオール配位型有機ラジカルまたはその誘導体の存在下、 塩化金酸を 還元剤で還元し、 直接、 上記の有機ラジカル化学吸着型金微粒子を合成する。 さらに、 本発明は、 上記の方法で得られた有機ラジカル化学吸着型金属微粒子 を用いて作製された有機 ·無機複合型磁性薄膜、 および同様に成膜の際に、 架橋 型配位子を添加して作製された有機 ·無機複合型強磁性薄膜である。
好ましくは、 上記の方法で得られた有機ラジカル化学吸着型金属微粒子を単独 で、 あるいは自己凝集化の際に架橋型配位子と共に有機溶媒に溶かして、 これを 基板に塗布して有機,無機複合型磁性薄膜を作製する。 塗布方法としては、 スピ ンコーティング法、 あるいは水面上で自己凝集させる水面凝集法等を適用できる 本発明の製造方法で得られた有機 ·無機複合型磁性材料は、 従来技術とは異な り、 チオール配位型有機ラジカル部の不対電子が π - 結合を介し、 金属微粒子に 直接化学吸着しているため、 化学吸着しているラジカル間に金属微粒子の伝導電 子を介した強い磁気的相互作用が生じる点に特色がある。
導電性を持つ非磁性の微細材料に、 チオール化学吸着型ラジカルを添加するこ とにより、 磁性を付与することができる。 このような磁性材料においては、 金属 内の伝導電子との相互作用により、 ラジカル上の不対電子が同じ方向を向き、 強 磁性的スピン配列が実現する。 なお、 伝導電子を有する微粒子の場合は、 各微粒 子上の不対電子は強磁性的に整列し超常磁性を示すが、 粒子間では揃っていない。 チオール基をもつ架橋型配位子を添加し、 微粒子間の電子構造を接合すると、 粒 子間でも不対電子が整列し、 強磁性薄膜を作成することが出来る。 図面の簡単な説明
図 1は、 ラジカルの吸着した金微粒子の模式図である。 図 2は、 チオール配位型 有機ラジカルを用いた金属表面化学形成法を示す概念図である。 図 3は、 有機ラ ジカル化学吸着型微粒子 (固体) の E P Rスペク トルである。 図 4は、 有機ラジ カル化学吸着型金微粒子の E P Rシグナル強度および線幅の温度依存性を示すグ ラフである。 図 5は、 有機ラジカル化学吸着型金微粒子の磁化率と温度の積 (X para · T ) の温度依存性を示すグラフである。 図 6の a ) は、 強磁性的スピン配列を 示す微粒子の超常磁性超薄膜の模式図、 図 6の b ) は、 強磁性的スピン配列を示 す微粒子を架橋型配位子で連結することにより出現する性超薄膜の模式図である。 図 7は、 本発明の製造方法における式 1, 式 2、 式 3を示す。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 金属として金を対象とした場合について、 図を参照しながら説明する。 図 1は、 磁性材料となるラジカルの吸着した金微粒 子のモデルを示す。 この有機ラジカル化学吸着型金微粒子は、 図 7に示す式 1お よび式 2に示す反応経路に従い合成できる。
まず、 塩化金酸を、 四級アンモニゥム塩あるいはアルカンチオール等の存在下、 還元剤で還元し、 配位子で安定化した金微粒子 1を合成し、 これにチオールまた はその誘導体を置換基として有する有機ラジカル 2を添加することにより、 配位 子置換反応を行い、 有機ラジカルが化学吸着した金微粒子 3を合成することがで さる。
なお、 ラジカル配位子は、 必ずしもチオールでなくてよい。 金属に化学吸着す るジスルフィ ドゃチォカルボン酸誘導体等も可能である。
金に吸着したチオールは、 一般的にプロ トンが脱離したチォレートとして存在 していると考えられている。 チォレートとフエニルニトロニルニトロキシドから なるラジカルは、 スピン分極ドナ一であることから、 このラジカルが金微粒子に 化学吸着すると金微粒子の伝導バンドへ分極する。 そのため全ての局在電子が強 磁性的にそろう。
(実施例)
さらに、 実施例に基づいて合成法および化学吸着金微粒子の磁気的性質を詳細 に説明する。
実施例 1
[有機ラジカルが吸着した磁性金微粒子の合成法]
図 7に示す式 3にしたがって合成した。 すなわち、 塩化金酸 (HAuC し · 4H 20) 1. 0 g (2. 4mmo 1 ) を乾燥テトラヒ ドロフラン (THF) 30mLに 溶かし、 エタンチオール 0. 54mL (7. 3 mm o 1 ) を加え、 窒素雰囲気下 で撹拌した。 反応溶液を氷浴で冷やしながら水素化トリェチルホウ素リチウム (L i E t3 BH) の THF溶液 (1 · Omo 1 / L) 50 m Lを約 30分かけ滴 下した。
還元剤 (水素化トリェチルホウ素リチウム) を滴下後、 氷浴をはずし、 室温で 一晩撹拌した。 この過程で塩化金酸のエタンチオール錯体が還元され、 エタンチ オールが化学吸着した金微粒子が生成した。
一旦、 この微粒子を析出させ、 溶液中の無機イオンと分離するために、 ェタノ ール 2mL、 さらに氷水 1 OmLを加え、 1時間撹拌後、 析出する黒色粉末を濾 別した。 黒色固体を 3 OmLのトルエンに懸濁させ、 さらにエタンチオール 0. 2mLを加え、 懸濁溶液を 5分間撹拌後、 式 3中の 4で示す構造のラジカルジス ノレフイ ド 1 64m g (0. 32mmo 1 ) の塩化メチレン溶液 1 8mLを加えた。 数分後、 チオール配位型有機ラジカルが化学吸着した金微粒子 (黒色固体) が析 出したので、 これを単離した。
析出した金アル力ンチオールにチオール配位型有機ラジカルをジスルフィ ドの 形で加えることにより、 金微粒子表面でエタンチォレートとの酸化還元過程を含 む交換反応が起こり、 有機ラジカル化学吸着型金微粒子が生成した。 また、 この 際、 長鎖アルキル鎖を有するチオール配位型有機ラジカルを用いると、 エタンチ オールを介さず直接金微粒子に化学吸着させることが出来る。
[有機ラジカルが化学吸着した磁性金微粒子の磁気的性質]
黒色固体状のラジカル磁性金微粒子の室温の電子スピン共鳴 (EPR) スぺク ト ルは、 図 3に示すように、 ラジカル金微粒子に由来する広い半値幅を有する吸収 (g = 1. 947、
Figure imgf000010_0001
36mT) を与える。 また、 図 4に示すように、 吸収 強度(Signal Intensity)の温度依存性は、 20 Kから 200 Kにおいて C u r i e常磁性的な振舞いをする。 また、 吸収の線幅が温度の逆数に比例する点が特徴 的である。
図 5に、 同試料の超伝導量子干渉計(SQUID) による磁化率の測定において、 温 度に依存しない磁化率 (反磁性、 P a u l i常磁性、 強磁性成分等) を差し引い l て求めた常磁性磁化率 (X p ) の温度依存性を示す。 破線は、 金と有機ラジカル を 3 : 1の割合で含む試料において、 有機ラジカル間に磁気的相互作用がないと 仮定した時のキュリ一定数を示す。
図 5に示すように、 キュリー定数 3 X 1 O ^ e m u K/ g r a mおよびワイス温 度一2 . 5 Kと解析され、 このキュリー定数より、 平均のスピン量子数が約 8土 3と決定される。 このことは、 1つの金微粒子に吸着した有機ラジカルが室温で 平均して約 1 6個強磁性的にスピンの向きを揃えていることを示している。
すなわち、 以上の実施例の結果は、 図 6の上寄りに模式図で示す超常磁性を示 す有機ラジカル化学吸着型金微粒子が生成した証拠と考えてよい。 なお、 この試 0 料は、 金微粒子のサイズおよび 1つの金微粒子に化学吸着する有機ラジカルの個 数に分布があるため、 スピン量子数も一定の分布を示す。
また、 長鎖アルキル基を有するチオール配位型有機ラジカルが化学吸着した磁 性金微粒子は有機溶媒に可溶であることから、 その溶液をスピンコート法、 また は溶液を水面に浮かべた後、 溶媒を気化させ、 水面で金微粒子を凝集させる水面 凝集法により、 磁性薄膜を作成することができる。 この薄膜は、 固体試料と同様 に超常磁性を示す。 さらに、 架橋型配位子を有機溶媒に添加することにより、 図 6の下寄りの模式図に示すように、 金微粒子間のスピンの向きがすべて揃った強 磁性薄膜を作成することが出来る。 産業上の利用可能性
以上のように、 本発明は、 有機ラジカル分子と無機成分である金属の複合材料 で、 有機ラジカルの不対電子と、 金属の伝導電子の磁気的相互作用を用いて、 有 機ラジカルの不対電子を強磁性的に整列させることにより超常磁性体を実現する ものである。 さらには、 これら超常磁性を示す金属微粒子を架橋型配位子でつな ぎ、 強磁性を示す薄膜とすることにより新規な有機 ·無機複合強磁性材料を提供 する。
金属の形態は、 金属薄膜、 ナノメータレベルの微粒子、 微細加工された金属配 線、 または電極パターンにも適用できる。 したがって、 本発明の製造方法による 磁性材料は、 各種の微細エレク トロニクスデバイスの磁気デバイスに広範に利用 することができる。

Claims

請 求 の 範 囲
1 . チオールが化学吸着し得る金属のイオンを含む塩を、 安定化配位子存在下、 還元剤で還元し、 生成した可溶性金属微粒子に吸着している安定化配位子を、 不 対電子を有するチオール型有機ラジカルに置換することにより有機吸着型金属微 粒子を合成することを特徴とする有機 ·無機複合磁性材料の製造方法。
2 . 有機ラジカル化学吸着型金微粒子を合成する際に、 長鎖アルキル基を有する チオール配位型有機ラジカルまたはその誘導体の存在下、 塩化金酸を還元剤で還 元し、 直接、 有機ラジカル化学吸着型金微粒子を合成することを特徴とする請求 の範囲第 1項記載の有機 ·無機複合磁性材料の製造方法。
3 . 請求の範囲第 1項または第 2項記載の方法で得られた有機ラジカル化学吸着 型金属微粒子を用いて作製された有機 ·無機複合型磁性薄膜。
4 . 請求の範囲第 1項または第 2項記載の方法で得られた有機ラジカル化学吸着 型金属微粒子を用いて、 成膜の際に、 架橋型配位子を添加して作製された有機 - 無機複合型強磁性薄膜。
5 . 請求の範囲第 1項または第 2項記載の方法で得られた有機ラジカル化学吸着 型金属微粒子を単独、 あるいは架橋型配位子と共に有機溶媒に溶かして、 これを 基板に塗布して作製された有機 ·無機複合型磁性薄膜。
PCT/JP2000/003982 1999-06-18 2000-06-16 Organic-inorganic composite magnetic material and method for preparing the same WO2000079547A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00939097A EP1211698A4 (en) 1999-06-18 2000-06-16 ORGANIC-INORGANIC COMPOSITE, MAGNETIC MATERIAL AND MANUFACTURING PROCESS
CA2374181A CA2374181C (en) 1999-06-18 2000-06-16 Organic-inorganic composite magnetic material and method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17339599A JP4361168B2 (ja) 1999-06-18 1999-06-18 有機・無機複合磁性材料とその製造方法
JP11/173395 1999-06-18

Publications (1)

Publication Number Publication Date
WO2000079547A1 true WO2000079547A1 (en) 2000-12-28

Family

ID=15959622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003982 WO2000079547A1 (en) 1999-06-18 2000-06-16 Organic-inorganic composite magnetic material and method for preparing the same

Country Status (6)

Country Link
US (1) US20050205851A1 (ja)
EP (1) EP1211698A4 (ja)
JP (1) JP4361168B2 (ja)
CA (1) CA2374181C (ja)
TW (1) TW466512B (ja)
WO (1) WO2000079547A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945966A (zh) * 2011-09-23 2014-07-23 南洋理工大学 用于在基底上形成金纳米线的方法及由该方法形成的金纳米线

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501404A (ja) * 2001-08-30 2005-01-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁気抵抗装置および電子装置
ES2242528B1 (es) * 2004-03-25 2006-12-01 Consejo Sup. Investig. Cientificas Nanoparticulas magneticas de metales nobles.
JP4379450B2 (ja) * 2006-08-22 2009-12-09 ソニー株式会社 電子デバイス及びその製造方法
JP5526271B1 (ja) * 2013-09-17 2014-06-18 小島化学薬品株式会社 有機金化合物、その製造方法及び導電性ペースト
US20220153902A1 (en) * 2019-03-04 2022-05-19 ARIZONA BOARD OF REGENTS on behalf of THE UNIVERSITY OF ARIZONA, A BODY CORPORATE High Verdet Constant Nanoparticles and Methods For Producing and Using the Same
KR20210080672A (ko) * 2019-12-20 2021-07-01 삼성디스플레이 주식회사 양자점 조성물의 제조 방법 및 이를 포함하는 발광 소자의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645142A (ja) 1992-03-16 1994-02-18 Matsushita Electric Ind Co Ltd 有機磁性膜およびその製造方法
JPH1160581A (ja) * 1997-08-21 1999-03-02 Mitsui Chem Inc 金超微粒子反応試剤

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294369A (en) * 1990-12-05 1994-03-15 Akzo N.V. Ligand gold bonding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645142A (ja) 1992-03-16 1994-02-18 Matsushita Electric Ind Co Ltd 有機磁性膜およびその製造方法
JPH1160581A (ja) * 1997-08-21 1999-03-02 Mitsui Chem Inc 金超微粒子反応試剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INGRAM ROYCHELLE S ET AL.: "Electroactive three-dimensional monolayers: Anthraquionine ro-alkanethiolate-stabilized gold clusters", LANGMUIR, 21 July 1998 (1998-07-21), pages 4115 - 4121
See also references of EP1211698A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945966A (zh) * 2011-09-23 2014-07-23 南洋理工大学 用于在基底上形成金纳米线的方法及由该方法形成的金纳米线
CN103945966B (zh) * 2011-09-23 2018-11-16 南洋理工大学 用于在基底上形成金纳米线的方法及由该方法形成的金纳米线

Also Published As

Publication number Publication date
US20050205851A1 (en) 2005-09-22
JP2001006930A (ja) 2001-01-12
CA2374181C (en) 2010-08-10
EP1211698A1 (en) 2002-06-05
TW466512B (en) 2001-12-01
EP1211698A4 (en) 2009-01-28
CA2374181A1 (en) 2000-12-28
JP4361168B2 (ja) 2009-11-11

Similar Documents

Publication Publication Date Title
Veisi et al. Preparation of polydopamine sulfamic acid-functionalized magnetic Fe 3 O 4 nanoparticles with a core/shell nanostructure as heterogeneous and recyclable nanocatalysts for the acetylation of alcohols, phenols, amines and thiols under solvent-free conditions
US6805904B2 (en) Process of forming a multilayer nanoparticle-containing thin film self-assembly
Li et al. Efficient synthesis of carbon nanotube–nanoparticle hybrids
CA2921610C (en) Carbene-functionalized composite materials
Zhang et al. Halloysite nanotubes coated with magnetic nanoparticles
Nath et al. Is gold really softer than silver? HSAB principle revisited
Leopold et al. Growth, conductivity, and vapor response properties of metal ion-carboxylate linked nanoparticle films
US20060177660A1 (en) Core-shell nanostructures and microstructures
JP4580359B2 (ja) 磁性ナノ粒子複合体
JP4289475B2 (ja) 多機能性リンカー及びアセンブリ
US20050205851A1 (en) Organic-inorganic compositie magnetic material and method for manufacturing same
Zhang et al. Preparation, characterization and catalytic activity of core–satellite Au/Pdop/SiO 2/Fe 3 O 4 magnetic nanocomposites
US20190169132A1 (en) Methods of Forming Carbene-Functionalized Composite Materials
Huang et al. BN nanotubes coated with uniformly distributed Fe 3 O 4 nanoparticles: novel magneto-operable nanocomposites
Zarenezhad et al. Gold nanoparticle decorated dithiocarbamate modified natural boehmite as a catalyst for the synthesis of biologically essential propargylamines
Chaudret Synthesis and surface reactivity of organometallic nanoparticles
WO2009031714A1 (ja) 溶媒分散性粒子
RU2233791C2 (ru) Способ получения наночастиц и изготовления материалов и устройств, содержащих наночастицы
Bertok et al. Synthesis and characterization of Au nanoshells with a magnetic core and betaine derivatives
JP3859882B2 (ja) 新規なオリゴフェロセニレン誘導体及び電気化学的に活性なクラスター薄膜の製造方法
Wieckowska et al. Ultrasmall Au nanoparticles coated with hexanethiol and anthraquinone/hexanethiol for enzyme-catalyzed oxygen reduction
Mandal et al. Electrostatic entrapment of chloroaurate ions in patterned lipid films and the in situ formation of gold nanoparticles
Saadat Preparation of Silica-Coated Magnetite Nanoparticles with Thiophosphoramide for Removal of Heavy Metals from Aqueous Solutions
Xiao et al. Formation and characterization of two-dimensional arrays of silver oxide nanoparticles under Langmuir monolayers of n-hexadecyl dihydrogen phosphate
Kongor et al. Calix-assisted fabrication of metal nanoparticles: Applications and theoretical insights

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2374181

Country of ref document: CA

Ref country code: CA

Ref document number: 2374181

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000939097

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000939097

Country of ref document: EP