WO2000078952A2 - Human rna metabolism proteins (rmep) - Google Patents

Human rna metabolism proteins (rmep) Download PDF

Info

Publication number
WO2000078952A2
WO2000078952A2 PCT/US2000/016644 US0016644W WO0078952A2 WO 2000078952 A2 WO2000078952 A2 WO 2000078952A2 US 0016644 W US0016644 W US 0016644W WO 0078952 A2 WO0078952 A2 WO 0078952A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
rmep
polynucleotide
polypeptide
sequence
Prior art date
Application number
PCT/US2000/016644
Other languages
French (fr)
Other versions
WO2000078952A3 (en
WO2000078952A8 (en
Inventor
Olga Bandman
Henry Yue
Preeti Lal
Y. Tom Tang
Roopa Reddy
Mariah R. Baughn
Yalda Azimzai
Original Assignee
Incyte Genomics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incyte Genomics, Inc. filed Critical Incyte Genomics, Inc.
Priority to AU54947/00A priority Critical patent/AU5494700A/en
Priority to JP2001505694A priority patent/JP2003527083A/en
Priority to EP00939941A priority patent/EP1192250A2/en
Priority to CA002375407A priority patent/CA2375407A1/en
Publication of WO2000078952A2 publication Critical patent/WO2000078952A2/en
Publication of WO2000078952A3 publication Critical patent/WO2000078952A3/en
Publication of WO2000078952A8 publication Critical patent/WO2000078952A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/10Anthelmintics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/38Drugs for disorders of the endocrine system of the suprarenal hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • This invention relates to nucleic acid and amino acid sequences of RNA metabolism proteins and to the use of these sequences in the diagnosis, treatment, and prevention of nervous system, autoimmune/inflammatory, and cell proliferative disorders, including cancer.
  • RNA Ribonucleic acid
  • DNA deoxyribonucleic acid
  • RNA copies of the genetic material encode proteins or serve various structural, catalytic, or regulatory roles in organisms.
  • RNA is classified according to its cellular localization and function.
  • Messenger RNAs (mRNAs) encode polypeptides.
  • Ribosomal RNAs are assembled, along with ribosomal proteins, into ribosomes, which are cytoplasmic particles that translate mRNA into polypeptides.
  • Transfer RNAs tRNAs
  • tRNAs Transfer RNAs
  • hnRNAs Heterogeneous nuclear RNAs
  • snRNAs Small nuclear RNAs
  • snRNAs are a part of the nuclear spliceosome complex that removes intervening, non-coding sequences (introns) and rejoins exons in pre-mRNAs.
  • Proteins are associated with RNA during its transcription from DNA, RNA processing, and translation of mRNA into protein. Proteins are also associated with RNA as it is used for structural, catalytic, and regulatory purposes.
  • RNAs are necessary for processing of transcribed RNAs in the nucleus.
  • Pre- mRNA processing steps include capping at the 5 ' end with methylguanosine, polyadenylating the 3' end, and splicing to remove introns.
  • the spliceosomal complex is comprised of five small nuclear ribonucleoprotein particles (snRNPs) designated UI, U2, U4, U5, and U6.
  • snRNPs contains a single species of snRNA and about ten proteins.
  • the RNA components of some snRNPs recognize and base-pair with intron consensus sequences.
  • the protein components mediate spliceosome assembly and the splicing reaction.
  • CF Im cleavage factor Im
  • the human CF Im protein aids in the recruitment and assembly of processing factors that make up the 3' end processing complex (Ruegsegger, U. et al (1998) Mol. Cell. 1 :243-253).
  • the murine formin binding proteins (FBP's) FBP11 and FBP12 are components of pre-mRNA splicing complexes that facilitate the bridging of 5' and 3' ends of the intron. These proteins function through bridging interactions invloving UI and U2 snRNPs. Autoantibodies to snRNP proteins are found in the blood of patients with systemic lupus erythematosus (Stryer, L. (1995) Biochemistry W.H. Freeman and Company, New York NY, p. 863).
  • hnRNPs Heterogeneous nuclear ribonucleoproteins
  • Some examples of hnRNPs include the yeast proteins Hrplp, involved in cleavage and polyadenylation at the 3' end of the RNA; Cbp80p, involved in capping the 5' end of the RNA; and Npl3p, a homolog of mammalian hnRNP Al , involved in export of mRNA from the nucleus (Shen, E.C.
  • HnRNPs have been shown to be important targets of the autoimmune response in rheumatic diseases (Biamonti, supra).
  • Many snRNP and hnRNP proteins are characterized by an RNA recognition motif (RRM).
  • RRM RNA recognition motif
  • the RRM is about 80 amino acids in length and forms four ⁇ -strands and two ⁇ -helices arranged in an ⁇ / ⁇ sandwich.
  • the RRM contains a core RNP-1 octapeptide motif along with surrounding conserved sequences.
  • RNA-binding proteins which contain the above motifs include heteronuclear ribonucleoproteins which stabilize nascent RNA and factors which regulate alternative splicing.
  • Alternative splicing factors include developmentally regulated proteins, specific examples of which have been identified in lower eukaryotes such as Drosophila melanogaster and Caenorhabditis elegans. These proteins play key roles in developmental processes such as pattern formation and sex determination, respectively. (See, for example, Hodgkin, J. et al.
  • RNases Ribonucleases catalyze the hydrolysis of phosphodiester bonds in RNA chains, thus cleaving the RNA.
  • RNase P is a ribonucleoprotein enzyme which cleaves the 5' end of pre-tRNAs as part of their maturation process.
  • RNase H digests the RNA strand of an RNA/DNA hybrid. Such hybrids occur in cells invaded by retroviruses, and RNase H is an important enzyme in the retroviral replication cycle.
  • RNase H domains are often found as a domain associated with reverse transcriptases.
  • RNase activity in serum and cell extracts is elevated in a variety of cancers and infectious diseases (Schein, CH.
  • NMD nonsense-mediated mRNA decay
  • the eukaryotic ribosome is composed of a 60S (large) subunit and a 40S (small) subunit, which together form the 80S ribosome.
  • the ribosome also contains more than fifty proteins.
  • the ribosomal proteins have a prefix which denotes the subunit to which they belong, either L (large) or S (small). Initiation of translation requires the participation of several initiation factors, many of which contain multiple subunits.
  • EIF5A is an 18-kD protein containing the unique amino acid residue, hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine) (Rinaudo, M. et al. (1993) Gene 137:303-307).
  • the release factor eRF carries out termination of translation. eRF recognizes stop codons in the mRNA, leading to the release of the polypeptide chain from the ribosome.
  • RNA metabolism proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of nervous system, autoimmune/inflammatory, and cell proliferative disorders, including cancer.
  • the invention features purified polypeptides, RNA metabolism proteins, referred to collectively as “RMEP” and individually as “RMEP-1", “RMEP-2”, “RMEP-3”, “RMEP-4”, “RMEP-5”, “RMEP-6”, “RMEP-7”, “RMEP-8”, “RMEP-9”, “RMEP- 10", “RMEP-11”, “RMEP- 12” and “RMEP-13”.
  • the invention provides an isolated polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13.
  • the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:l-13.
  • the invention further provides an isolated polynucleotide encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l- 13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13.
  • the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO: 1-13.
  • the polynucleotide is selected from the group consisting of SEQ ID NO: 14-26.
  • the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13.
  • the invention provides a cell transformed with the recombinant polynucleotide.
  • the invention provides a transgenic organism comprising the recombinant polynucleotide.
  • the invention also provides a method for producing a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13.
  • the method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
  • the invention provides an isolated antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13.
  • the invention further provides an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14-26, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14-26, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d).
  • the polynucleotide comprises at least 60 contiguous nucleotides.
  • the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14-26, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14-26, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d).
  • the method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof.
  • the probe comprises at least 60 contiguous nucleotides.
  • the invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14-26, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14-26, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d).
  • the method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
  • the invention further provides a pharmaceutical composition
  • a pharmaceutical composition comprising an effective amount of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO : 1 - 13 , and a pharmaceutically acceptable excipient.
  • the pharmaceutical composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:l-13.
  • the invention additionally provides a method of treating a disease or condition associated with decreased expression of functional RMEP, comprising administering to a patient in need of such treatment the pharmaceutical composition.
  • the invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13.
  • the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample.
  • the invention provides a pharmaceutical composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient.
  • the invention provides a method of treating a disease or condition associated with decreased expression of functional RMEP, comprising administering to a patient in need of such treatment the pharmaceutical composition.
  • the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13.
  • the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample.
  • the invention provides a pharmaceutical composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient.
  • the invention provides a method of treating a disease or condition associated with overexpression of functional RMEP, comprising administering to a patient in need of such treatment the pharmaceutical composition.
  • the invention further provides a method of screening for a compound that specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13.
  • the method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.
  • the invention further provides a method of screening for a compound that modulates the activity of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13.
  • the method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
  • the invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID NO: 14-26, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
  • Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full- length sequences encoding RMEP.
  • Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods, algorithms, and searchable databases used for analysis of RMEP.
  • Table 3 shows selected fragments of each nucleic acid sequence; the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis; diseases, disorders, or conditions associated with these tissues; and the vector into which each cDNA was cloned.
  • Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding RMEP were isolated.
  • Table 5 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.
  • a reference to “a host cell” includes a plurality of such host cells
  • a reference to “an antibody” is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.
  • all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs.
  • any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. None herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention. DEFINITIONS
  • RMEP refers to the amino acid sequences of substantially purified RMEP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
  • agonist refers to a molecule which intensifies or mimics the biological activity of RMEP.
  • Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of RMEP either by directly interacting with RMEP or by acting on components of the biological pathway in which RMEP participates.
  • allelic variant is an alternative form of the gene encoding RMEP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allehc variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides.
  • altered nucleic acid sequences encoding RMEP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as RMEP or a polypeptide with at least one functional characteristic of RMEP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding RMEP, and improper or unexpected hybridization to allehc variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding RMEP.
  • the encoded protein may also be "altered,” and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent RMEP.
  • Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of RMEP is retained.
  • negatively charged amino acids may include aspartic acid and glutamic acid
  • positively charged amino acids may include lysine and arginine.
  • Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine.
  • Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
  • amino acid and amino acid sequence refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where “amino acid sequence” is recited to refer to a sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
  • Amplification relates to the production of additional copies of a nucleic acid sequence. AmpUfication is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
  • PCR polymerase chain reaction
  • Antagonist refers to a molecule which inhibits or attenuates the biological activity of RMEP.
  • Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of RMEP either by directly interacting with RMEP or by acting on components of the biological pathway in which RMEP participates.
  • antibody refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab and Fv fragments, which are capable of binding an epitopic determinant.
  • Antibodies that bind RMEP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen.
  • the polypeptide or oligopeptide used to immunize an animal e.g., a mouse, a rat, or a rabbit
  • an animal e.g., a mouse, a rat, or a rabbit
  • an animal e.g., a mouse, a rat, or a rabbit
  • RNA or synthesized chemically can be conjugated to a carrier protein if desired.
  • antigenic determinant refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody.
  • an antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
  • antisense refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence.
  • Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oUgonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oUgonucleotides having modified bases such as 5 -methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine.
  • Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translatioa
  • the designation "negative” or “minus” can refer to the antisense strand, and the designation “positive” or “plus” can refer to the sense strand of a reference DNA molecule.
  • biologically active refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule.
  • immunologically active or “immunogenic” refers to the capabiUty of the natural, recombinant, or synthetic RMEP, or of any oUgopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
  • compositions comprising a given polynucleotide sequence and a “composition comprising a given amino acid sequence” refer broadly to any composition containing the given polynucleotide or amino acid sequence.
  • the composition may comprise a dry formulation or an aqueous solution.
  • Compositions comprising polynucleotide sequences encoding RMEP or fragments of RMEP may be employed as hybridization probes.
  • the probes may be stored in freeze-dried form and may be associated with a stabiUzing agent such as a carbohydrate.
  • a stabiUzing agent such as a carbohydrate.
  • the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
  • salts e.g., NaCl
  • detergents e.g., sodium dodecyl sulfate
  • other components e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.
  • Consensus sequence refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (PE Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GEL VIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.
  • Constant amino acid substitutions are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions.
  • the table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.
  • Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha heUcal conformation,
  • deletion refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
  • derivative refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group.
  • a derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule.
  • a derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
  • a “detectable label” refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.
  • a “fragment” is a unique portion of RMEP or the polynucleotide encoding RMEP which is identical in sequence to but shorter in length than the parent sequence.
  • a fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue.
  • a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues.
  • a fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule.
  • a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50% of a polypeptide) as shown in a certain defined sequence.
  • these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.
  • a fragment of SEQ ID NO: 14-26 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO: 14-26, for example, as distinct from any other sequence in the genome from which the fragment was obtained.
  • a fragment of SEQ ID NO: 14-26 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO: 14-26 from related polynucleotide sequences.
  • the precise length of a fragment of SEQ ID NO: 14-26 and the region of SEQ ID NO: 14-26 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment
  • a fragment of SEQ ID NO: 1-13 is encoded by a fragment of SEQ ID NO: 14-26.
  • a fragment of SEQ ID NO: 1-13 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO: 1- 13.
  • a fragment of SEQ ID NO: 1-13 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:l-13.
  • the precise length of a fragment of SEQ ID NO: 1-13 and the region of SEQ ID NO: 1-13 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
  • a "full-length" polynucleotide sequence is one containing at least a translation initiation codon
  • a "full- length" polynucleotide sequence encodes a "full-length” polypeptide sequence.
  • Homology refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
  • percent identity and “% identity,” as appUed to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aUgned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize ahgnment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
  • Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence ahgnment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise aUgnments of polynucleotide sequences, the default parameters are set as follows:
  • NCBI National Center for Biotechnology Information
  • BLAST Basic Local AUgnment Search Tool
  • NCBI National Center for Biotechnology Information
  • BLAST Basic Local AUgnment Search Tool
  • the BLAST software suite includes various sequence analysis programs including "blastn,” that is used to aUgn a known polynucleotide sequence with other polynucleotide sequences from a variety of databases.
  • BLAST 2 Sequences are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:
  • Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides.
  • Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
  • nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
  • percent identity and % identity refer to the percentage of residue matches between at least two polypeptide sequences aUgned using a standardized algorithm.
  • Methods of polypeptide sequence ahgnment are well-known. Some aUgnment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
  • NCBI BLAST software suite may be used.
  • BLAST 2 Sequences Version 2.0.12 (Apr-21-2000) with blastp set at default parameters.
  • Such default parameters may be, for example: Matrix: BLOSUM62
  • Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues.
  • Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
  • "Human artificial chromosomes" are Unear microchromosomes which may contain
  • DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome repUcation, segregation and maintenance.
  • humanized antibody refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding abihty.
  • Hybridization refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive anneahng conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched.
  • Permissive conditions for anneahng of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive anneahng conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 ⁇ g/ml sheared, denatured salmon sperm DNA
  • wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (TJ for the specific sequence at a defined ionic strength and pH.
  • TJ thermal melting point
  • the T m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
  • High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65 °C, 60°C, 55 °C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%.
  • blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 ⁇ g ml.
  • Organic solvent such as formamide at a concentration of about 35-50% v/v
  • RNA:DNA hybridizations Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art.
  • Hybridization particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
  • hybridization complex refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases.
  • a hybridization complex may be formed in solution (e.g., C 0 t or R 0 t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobiUzed on a soUd support (e.g., paper, membranes, filters, chips, pins or glass shdes, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
  • insertion and “addition” refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
  • Immuno response can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaUng molecules, which may affect cellular and systemic defense systems.
  • an “immunogenic fragment” is a polypeptide or oUgopeptide fragment of RMEP which is capable of eliciting an immune response when introduced into a Uving organism, for example, a mammal.
  • the term “immunogenic fragment” also includes any polypeptide or oUgopeptide fragment of RMEP which is useful in any of the antibody production methods disclosed herein or known in the art.
  • microarray refers to an arrangement of a pluraUty of polynucleotides, polypeptides, or other chemical compounds on a substrate.
  • the terms “element” and “array element” refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.
  • modulate refers to a change in the activity of RMEP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of RMEP.
  • nucleic acid and nucleic acid sequence refer to a nucleotide, oUgonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-hke or RNA-Uke material.
  • operably linked refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence.
  • a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
  • Operably Unked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
  • PNA protein nucleic acid
  • PNA refers to an antisense molecule or anti-gene agent which comprises an oUgonucleotide of at least about 5 nucleotides in length Unked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubiUty to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their Ufespan in the cell.
  • Post-translational modification of an RMEP may involve Upidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic iheu of RMEP.
  • Probe refers to nucleic acid sequences encoding RMEP, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences.
  • Probes are isolated oUgonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, Ugands, chemiluminescent agents, and enzymes.
  • Primarymers are short nucleic acids, usually DNA oUgonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for ampUfication (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
  • PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
  • OUgonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oUgonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabiUties.
  • the PrimOU primer selection program (available to the pubUc from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope.
  • the Primer3 primer selection program (available to the pubUc from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming Ubrary," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oUgonucleotides for microarrays.
  • the source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.
  • the PrimeGen program (available to the pubUc from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence aUgnments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aUgned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oUgonucleotides and polynucleotide fragments.
  • oUgonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oUgonucleotide selection are not Umited to those described above.
  • a "recombinant nucleic acid” is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra.
  • the term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid.
  • a recombinant nucleic acid may include a nucleic acid sequence operably Unked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
  • such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
  • a “regulatory element” refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stabiUty.
  • Reporter molecules are chemical or biochemical moieties used for labeUng a nucleic acid, amino acid, or antibody. Reporter molecules include radionucUdes; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.
  • RNA equivalent in reference to a DNA sequence, is composed of the same Unear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
  • sample is used in its broadest sense.
  • a sample suspected of containing nucleic acids encoding RMEP, or fragments thereof, or RMEP itself may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.
  • binding and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A,” the presence of a polypeptide comprising the epitope A or the presence of free unlabeled A in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
  • substantially purified refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.
  • substitution refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.
  • Substrate refers to any suitable rigid or semi-rigid support including membranes, filters, chips, sUdes, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries.
  • the substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
  • a “transcript image” refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
  • Transformation describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, Upofection, and particle bombardment.
  • transformed cells includes stably transformed cells in which the inserted DNA is capable of repUcation either as an autonomously rephcating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for Umited periods of time.
  • a "transgenic organism,” as used herein, is any organism, including but not Umited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art.
  • the nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of dehberate genetic manipulation, such as by microinjection or by infection with a recombinant virus.
  • the term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule.
  • the transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants, and animals.
  • the isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.
  • a "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters.
  • Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% or at least 98% or greater sequence identity over a certain defined length.
  • a variant may be described as, for example, an "alleUc” (as defined above), “spUce,” “species,” or “polymorphic” variant.
  • a sphce variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternative spUcing of exons during mRNA processing.
  • the corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule.
  • Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other.
  • a polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species.
  • Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
  • a "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters.
  • Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides.
  • the invention is based on the discovery of new human RNA metaboUsm proteins (RMEP), the polynucleotides encoding RMEP, and the use of these compositions for the diagnosis, treatment, or prevention of nervous system, autoimmune/inflammatory, and cell proliferative disorders, including cancer.
  • RMEP RNA metaboUsm proteins
  • Table 1 Usts the Incyte clones used to assemble full length nucleotide sequences encoding RMEP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each RMEP were identified, and column 4 shows the cDNA Ubraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA Ubraries. Clones for which cDNA Ubraries are not indicated were derived from pooled cDNA Ubraries.
  • column 5 The Incyte clones in column 5 were used to assemble the consensus nucleotide sequence of each RMEP and are useful as fragments in hybridization technologies.
  • the columns of Table 2 show various properties of each of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosylation sites; column 5 shows the amino acid residues comprising signature sequences and motifs; column 6 shows homologous sequences as identified by BLAST analysis; and column 7 shows analytical methods and in some cases, searchable databases to which the analytical methods were appUed. The methods of column 7 were used to characterize each polypeptide through sequence homology and protein motifs.
  • the columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding RMEP.
  • the first column of Table 3 Usts the nucleotide SEQ ID NOs.
  • Column 2 Usts fragments of the nucleotide sequences of column 1. These fragments are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO: 14-26 and to distinguish between SEQ ID NO: 14-26 and related polynucleotide sequences.
  • the polypeptides encoded by these fragments are useful, for example, as immunogenic peptides.
  • Column 3 Usts tissue categories which express RMEP as a fraction of total tissues expressing RMEP.
  • Table 4 show descriptions of the tissues used to construct the cDNA Ubraries from which cDNA clones encoding RMEP were isolated.
  • Column 1 references the nucleotide SEQ ID NOs
  • column 2 shows the cDNA Ubraries from which these clones were isolated
  • column 3 shows the tissue origins and other descriptive information relevant to the cDNA Ubraries in column 2.
  • SEQ ID NO:14 maps to chromosome 3 within the interval from 176.40 to 179.80 centiMorgans.
  • SEQ ID NO: 15 maps to chromosome 22 within the interval from 24.30 to 36.60 centiMorgans, to chromosome 16 within the interval from 19.70 to 33.30 centiMorgans, and to chromosome 5 within the interval from 174.30 centiMorgans to q-terminus.
  • SEQ ID NO:17 maps to chromosome 11 within the interval from 70.90 to 72.10 centiMorgans.
  • SEQ ID NO:26 maps to chromosome 8 within the interval from 64.60 to 78.80 centiMorgans.
  • the invention also encompasses RMEP variants.
  • a preferred RMEP variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the RMEP amino acid sequence, and which contains at least one functional or structural characteristic of RMEP.
  • the invention also encompasses polynucleotides which encode RMEP.
  • the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO: 14-26, which encodes RMEP.
  • the polynucleotide sequences of SEQ ID NO: 14-26, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
  • the invention also encompasses a variant of a polynucleotide sequence encoding RMEP.
  • a variant polynucleotide sequence will have at least about 80%, or alternatively at least about 90%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding RMEP.
  • a particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO: 14-26 which has at least about 80%, or alternatively at least about 90%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO: 14-26.
  • Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of RMEP.
  • nucleotide sequences which encode RMEP and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring RMEP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding RMEP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utiUzed by the host.
  • RNA transcripts having more desirable properties such as a greater half-Ufe, than transcripts produced from the naturally occurring sequence.
  • the invention also encompasses production of DNA sequences which encode RMEP and RMEP derivatives, or fragments thereof, entirely by synthetic chemistry.
  • the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art.
  • synthetic chemistry may be used to introduce mutations into a sequence encoding RMEP or any fragment thereof.
  • polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:14-26 and fragments thereof under various conditions of stringency.
  • Hybridization conditions including anneahng and wash conditions, are described in "Definitions.”
  • Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention.
  • the methods may employ such enzymes as the Klenow fragment of
  • DNA polymerase I SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (PE Biosystems, Foster City CA), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE ampUfication system (Life Technologies, Gaithersburg MD).
  • sequence preparation is automated with machines such as the MICROLAB 2200 Uquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (PE Biosystems).
  • Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (PE Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art.
  • the resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology. John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology. Wiley VCH, New York NY, pp. 856-853.)
  • the nucleic acid sequences encoding RMEP may be extended utihzing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
  • PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
  • restriction-site PCR uses universal and nested primers to ampUfy unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods AppUc. 2:318-322.)
  • Another method, inverse PCR uses primers that extend in divergent directions to ampUfy unknown sequence from a circularized template.
  • the template is derived from restriction fragments comprising a known genomic locus and surrounding sequences.
  • a third method, capture PCR involves PCR ampUfication of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods AppUc. 1:111-119.)
  • multiple restriction enzyme digestions and Ugations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR.
  • Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al.
  • primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.
  • Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products.
  • capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide- specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths.
  • Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, PE Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled.
  • Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in Umited amounts in a particular sample.
  • polynucleotide sequences or fragments thereof which encode RMEP may be cloned in recombinant DNA molecules that direct expression of RMEP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of ti e genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express RMEP.
  • nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter RMEP-encoding sequences for a variety of purposes including, but not Umited to, modification of the cloning, processing, and/or expression of the gene product.
  • DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences.
  • oligonucleotide- mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
  • the nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARB REEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of RMEP, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds.
  • MOLECULARB REEDING Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C.
  • DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening.
  • genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
  • sequences encoding RMEP may be synthesized, in whole or in part, using chemical methods well known in the art.
  • chemical methods See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.
  • RMEP itself or a fragment thereof may be synthesized using chemical methods.
  • peptide synthesis can be performed using various solution-phase or soUd-phase techniques.
  • RMEP amino acid sequence of RMEP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.
  • the peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.)
  • the composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)
  • the nucleotide sequences encoding RMEP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host.
  • these elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding RMEP. Such elements may vary in their strength and specificity.
  • Specific initiation signals may also be used to achieve more efficient translation of sequences encoding RMEP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence.
  • a variety of expression vector/host systems may be utilized to contain and express sequences encoding RMEP. These include, but are not Umited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauhflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors
  • yeast transformed with yeast expression vectors insect cell systems infected with viral expression vectors (e.g., baculovirus)
  • plant cell systems transformed with viral expression vectors e.g., cauhflower
  • Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population.
  • a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding RMEP.
  • routine cloning, subcloning, and propagation of polynucleotide sequences encoding RMEP can be achieved using a multifunctional E. coU vector such as PBLUESCRJPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies).
  • PBLUESCRJPT Stratagene, La Jolla CA
  • PSPORT1 plasmid Life Technologies
  • these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence.
  • vectors which direct high level expression of RMEP may be used.
  • vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.
  • Yeast expression systems may be used for production of RMEP.
  • a number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris.
  • constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH promoters
  • PGH promoters may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris.
  • such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Bitter, supra; and Scorer, supra.)
  • Plant systems may also be used for expression of RMEP. Transcription of sequences encoding RMEP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:17-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used.
  • constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)
  • pathogen-mediated transfection See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.
  • mammaUan cells a number of viral-based expression systems may be utiUzed.
  • sequences encoding RMEP may be hgated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence.
  • Insertion in a non-essential El or E3 region of the viral genome may be used to obtain infective virus which expresses RMEP in host cells.
  • transcription enhancers such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.
  • SV40 or EBV- based vectors may also be used for high-level protein expressioa
  • HACs Human artificial chromosomes
  • HACs may also be employed to deUver larger fragments of DNA than can be contained in and expressed from a plasmid.
  • HACs of about 6 kb to 10 Mb are constructed and deUvered via conventional deUvery methods (Uposomes, polycationic amino polymers, or vesicles) for therapeutic purposes.
  • deUvery methods Uposomes, polycationic amino polymers, or vesicles
  • sequences encoding RMEP can be transformed into cell Unes using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media.
  • the purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences.
  • Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
  • any number of selection systems may be used to recover transformed cell Unes. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk ⁇ and apr ⁇ cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabohte, antibiotic, or herbicide resistance can be used as the basis for selection.
  • dhfr confers resistance to methotrexate
  • neo confers resistance to the aminoglycosides neomycin and G-418
  • als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively.
  • Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metaboUtes.
  • Visible markers e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), ⁇ glucuronidase and its substrate ⁇ -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, CA. (1995) Methods Mol. Biol. 55:121-131.)
  • marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed.
  • sequence encoding RMEP is inserted within a marker gene sequence
  • transformed cells containing sequences encoding RMEP can be identified by the absence of marker gene function.
  • a marker gene can be placed in tandem with a sequence encoding RMEP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
  • host cells that contain the nucleic acid sequence encoding RMEP and that express RMEP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not Umited to, DNA-DNA or DNA-RNA hybridizations, PCR ampUfication, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.
  • Immunological methods for detecting and measuring the expression of RMEP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-Unked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS).
  • ELISAs enzyme-Unked immunosorbent assays
  • RIAs radioimmunoassays
  • FACS fluorescence activated cell sorting
  • Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding RMEP include oUgolabeUng, nick translation, end-labeling, or PCR ampUfication using a labeled nucleotide.
  • the sequences encoding RMEP, or any fragments thereof may be cloned into a vector for the production of an mRNA probe.
  • RNA polymerase such as T7, T3, or SP6 and labeled nucleotides.
  • T7, T3, or SP6 an appropriate RNA polymerase
  • SP6 labeled nucleotides
  • reporter molecules or labels which may be used for ease of detection include radionucUdes, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the Uke.
  • Host cells transformed with nucleotide sequences encoding RMEP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture.
  • the protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used.
  • expression vectors containing polynucleotides which encode RMEP may be designed to contain signal sequences which direct secretion of RMEP through a prokaryotic or eukaryotic cell membrane.
  • a host cell strain may be chosen for its abihty to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion.
  • Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, Upidation, and acylation.
  • Post-translational processing which cleaves a "prepro” or “pro” form of the protein may also be used to specify protein targeting, folding, and/or activity.
  • Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.
  • ATCC American Type Culture Collection
  • natural, modified, or recombinant nucleic acid sequences encoding RMEP may be Ugated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems.
  • a chimeric RMEP protein containing a heterologous moiety that can be recognized by a commercially available antibody may faciUtate the screening of peptide libraries for inhibitors of RMEP activity.
  • Heterologous protein and peptide moieties may also faciUtate purification of fusion proteins using commercially available affinity matrices.
  • Such moieties include, but are not Umited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmoduUn binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA).
  • GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobiUzed glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively.
  • FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags.
  • a fusion protein may also be engineered to contain a proteolytic cleavage site located between the RMEP encoding sequence and the heterologous protein sequence, so that RMEP may be cleaved away from the heterologous moiety following purificatioa Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10).
  • a variety of commercially available kits may also be used to faciUtate expression and purification of fusion proteins.
  • synthesis of radiolabeled RMEP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35 S-methionine.
  • RMEP of the present invention or fragments thereof may be used to screen for compounds that specifically bind to RMEP. At least one and up to a pluraUty of test compounds may be screened for specific binding to RMEP.
  • test compounds include antibodies, oUgonucleotides, proteins (e.g., receptors), or small molecules.
  • the compound thus identified is closely related to the natural ligand of
  • RMEP e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner.
  • the compound can be closely related to the natural receptor to which RMEP binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment screening for these compounds involves producing appropriate cells which express RMEP, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing RMEP or cell membrane fractions which contain RMEP are then contacted with a test compound and binding, stimulation, or inhibition of activity of either RMEP or the compound is analyzed.
  • An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label.
  • the assay may comprise the steps of combining at least one test compound with RMEP, either in solution or affixed to a solid support, and detecting the binding of RMEP to the compound.
  • the assay may detect or measure binding of a test compound in the presence of a labeled competitor.
  • the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a soUd support.
  • RMEP of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of RMEP.
  • Such compounds may include agonists, antagonists, or partial or inverse agonists.
  • an assay is performed under conditions permissive for RMEP activity, wherein RMEP is combined with at least one test compound, and the activity of RMEP in the presence of a test compound is compared with the activity of RMEP in the absence of the test compound. A change in the activity of RMEP in the presence of the test compound is indicative of a compound that modulates the activity of RMEP.
  • a test compound is combined with an in vitro or cell-free system comprising RMEP under conditions suitable for RMEP activity, and the assay is performed.
  • a test compound which modulates the activity of RMEP may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurahty of test compounds may be screened.
  • polynucleotides encoding RMEP or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No.
  • mouse ES cells such as the mouse 129/SvJ cell line
  • the ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292).
  • the vector integrates into the corresponding region of the host genome by homologous recombination.
  • homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest.
  • Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain.
  • the blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains.
  • Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.
  • Polynucleotides encoding RMEP may also be manipulated in vitro in ES cells derived from human blastocysts.
  • Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell Uneages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).
  • Polynucleotides encoding RMEP can also be used to create "knockin” humanized animals (pigs) or transgenic animals (mice or rats) to model human disease.
  • knockin technology a region of a polynucleotide encoding RMEP is injected into animal ES cells, and the injected sequence integrates into the animal cell genome.
  • Transformed cells are injected into blastulae, and the blastulae are implanted as described above.
  • Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease.
  • a mammal inbred to overexpress RMEP may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).
  • THERAPEUTICS Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of RMEP and RNA metabolism proteins.
  • the expression of RMEP is closely associated with cell proliferation, cancer, and inflammation. Therefore, RMEP appears to play a role in nervous system, autoimmune/inflammatory, and cell proliferative disorders, including cancer. In the treatment of disorders associated with increased RMEP expression or activity, it is desirable to decrease the expression or activity of RMEP. In the treatment of disorders associated with decreased RMEP expression or activity, it is desirable to increase the expression or activity of RMEP.
  • RMEP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of RMEP.
  • disorders include, but are not limited to, a nervous system disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyeUnating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radicuUtis, viral central nervous system disease; prion diseases including kuru, Creutzfeldt-Jakob disease, and Ger
  • a vector capable of expressing RMEP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of RMEP including, but not limited to, those described above.
  • a pharmaceutical composition comprising a substantially purified
  • RMEP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of RMEP including, but not Umited to, those provided above.
  • an agonist which modulates the activity of RMEP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of RMEP including, but not Umited to, those hsted above.
  • an antagonist of RMEP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of RMEP.
  • disorders include, but are not Umited to, those nervous system, autoimmune/inflammatory, and cell proliferative disorders, including cancer described above.
  • an antibody which specifically binds RMEP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express RMEP.
  • a vector expressing the complement of the polynucleotide encoding RMEP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of RMEP including, but not Umited to, those described above.
  • any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
  • An antagonist of RMEP may be produced using methods which are generally known in the art.
  • purified RMEP may be used to produce antibodies or to screen Ubraries of pharmaceutical agents to identify those which specifically bind RMEP.
  • Antibodies to RMEP may also be generated using methods that are well known in the art. Such antibodies may include, but are not Umited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression Ubrary.
  • NeutraUzing antibodies i.e., those which inhibit dimer formation
  • various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with RMEP or with any fragment or oUgopeptide thereof which has immunogenic properties.
  • various adjuvants may be used to increase immunological response.
  • adjuvants include, but are not Umited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol.
  • BCG Bacilti Calmette-Guerin
  • Corvnebacterium parvum are especially preferable.
  • the oUgopeptides, peptides, or fragments used to induce antibodies to RMEP have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oUgopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural proteia Short stretches of RMEP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
  • Monoclonal antibodies to RMEP may be prepared using any technique which provides for the production of antibody molecules by continuous cell Unes in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)
  • chimeric antibodies such as the spUcing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity.
  • techniques developed for the production of “chimeric antibodies” such as the spUcing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used.
  • techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce RMEP-specific single chain antibodies.
  • Antibodies with related specificity, but of distinct idiotypic composition may be generated by chain shuffling from random combinatorial immunoglobuUn Ubraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)
  • Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobuUn Ubraries or panels of highly specific binding reagents as disclosed in theUterature. (See, e.g., Oriandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)
  • Antibody fragments which contain specific binding sites for RMEP may also be generated.
  • fragments include, but are not hmited to, F(ab') 2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments.
  • Fab expression Ubraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)
  • immunoassays may be used for screening to identify antibodies having the desired specificity.
  • Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with estabhshed specificities are well known in the art.
  • Such immunoassays typically involve the measurement of complex formation between RMEP and its specific antibody.
  • a two-site, monoclonal-based immunoassay utiUzing monoclonal antibodies reactive to two non-interfering RMEP epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).
  • Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for RMEP.
  • K is expressed as an association constant, which is defined as the molar concentration of RMEP-antibody complex divided by the molar concentrations of free antigen and free antibody under equiUbrium conditions.
  • the K determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple RMEP epitopes, represents the average affinity, or avidity, of the antibodies for RMEP.
  • the K determined for a preparation of monoclonal antibodies, which are monospecific for a particular RMEP epitope, represents a true measure of affinity.
  • High-affinity antibody preparations with K ranging from about 10 9 to 10 12 L ⁇ nole are preferred for use in immunoassays in which the RMEP-antibody complex must withstand rigorous manipulations.
  • polyclonal antibody preparations may be further evaluated to determine the quaUty and suitabiUty of such preparations for certain downstream appUcations.
  • a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml is generally employed in procedures requiring precipitation of RMEP-antibody complexes.
  • Procedures for evaluating antibody specificity, titer, and avidity, and guideUnes for antibody quaUty and usage in various appUcations are generally available. (See, e.g., Catty, supra, and CoUgan et al., supra.)
  • the polynucleotides encoding RMEP may be used for therapeutic purposes.
  • modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA RNA, PNA or modified oligonucleotides) to the coding or regulatory regions of the gene encoding RMEP.
  • complementary sequences or antisense molecules DNA RNA, PNA or modified oligonucleotides
  • antisense oUgonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding RMEP. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., TotawaNJ.)
  • Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein.
  • Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors.
  • polynucleotides encoding RMEP may be used for somatic or germhne gene therapy.
  • Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-Xl disease characterized by X-Unked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C et al.
  • SCID severe combined immunodeficiency
  • ADA adenosine deaminase
  • hepatitis B or C virus HBV, HCV
  • fungal parasites such as Candida albicans and Paracoccidioides brasihensis
  • protozoan parasites such as Plasmodium falciparum and Trvpanosoma cruzi.
  • the expression of RMEP from an appropriate population of transduced cells may alleviate the cUnical manifestations caused by the genetic deficiency.
  • diseases or disorders caused by deficiencies in RMEP are treated by constructing mammaUan expression vectors encoding RMEP and introducing these vectors by mechanical means into RMEP-deficient cells.
  • Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, ( ⁇ ) balUstic gold particle deUvery, (Ui) Uposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivies, Z. (1997) Cell 91 :501-510; Boulay, J-L. and H. Recipon (1998) Curr. Opia Biotechnol. 9:445- 450).
  • Expression vectors that may be effective for the expression of RMEP include, but are not hmited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA).
  • RMEP may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes), (U) an inducible promoter (e.g., the tetracycUne-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. U.S.A 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr.
  • a constitutively active promoter e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes
  • Uposome transformation kits e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen
  • PERFECT LIPID TRANSFECTION KIT available from Invitrogen
  • transformation is performed using the calcium phosphate method (Graham, F.L. and AJ. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. ( 1982) EMBO J. 1:841 -845).
  • the introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.
  • diseases or disorders caused by genetic defects with respect to RMEP expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding RMEP under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (U) appropriate RNA packaging signals, and (Ui) a Rev-responsive element (RRE) along with additional retrovirus s-acting RNA sequences and coding sequences required for efficient vector propagation.
  • Retrovirus vectors e.g., PFB and PFBNEO
  • Retrovirus vectors are commercially available (Stratagene) and are based on pubUshed data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci.
  • the vector is propagated in an appropriate vector producing cell Une (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A et al. (1987) J. Virol. 61:1639-1646; Adam, M.A and AD. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J.
  • VPCL vector producing cell Une
  • U.S. Patent Number 5,910,434 to Rigg discloses a method for obtaining retrovirus packaging cell hnes and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4 + T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71 :7020-7029; Bauer, G. et al.
  • an adenovirus-based gene therapy deUvery system is used to deUver polynucleotides encoding RMEP to cells which have one or more genetic abnormaUties with respect to the expression of RMEP.
  • the construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art.
  • RepUcation defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S.
  • a herpes-based, gene therapy delivery system is used to dehver polynucleotides encoding RMEP to target cells which have one or more genetic abnormahties with respect to the expression of RMEP.
  • the use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing RMEP to cells of the central nervous system, for which HSV has a tropism
  • the construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art.
  • a replication-competent herpes simplex virus (HSV) type 1 -based vector has been used to dehver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp.
  • HSV-1 virus vector has also been disclosed in detail in U.S. Patent Number 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference.
  • U.S. Patent Number 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22.
  • HSV vectors see also Goins, W.F. et al. (1999) J. Virol.
  • herpesvirus sequences The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.
  • an alphavirus (positive, single-stranded RNA virus) vector is used to deUver polynucleotides encoding RMEP to target cells.
  • SFV SemUki Forest Virus
  • This subgenomic RNA rephcates to higher levels than the full-length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase).
  • enzymatic activity e.g., protease and polymerase.
  • inserting the coding sequence for RMEP into the alphavirus genome in place of the capsid-coding region results in the production of a large number of RMEP-coding RNAs and the synthesis of high levels of RMEP in vector transduced cells.
  • alphavirus infection is typically associated with cell lysis within a few days
  • the abihty to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic repUcation of alphaviruses can be altered to suit the needs of the gene therapy appUcation (Dryga, S.A et al. (1997) Virology 228:74-83).
  • the wide host range of alphaviruses will allow the introduction of RMEP into a variety of cell types.
  • the specific transduction of a subset of cells in a population may require the sorting of cells prior to transductioa
  • the methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.
  • OUgonucleotides derived from the transcription initiation site may also be employed to inhibit gene expressioa Similarly, inhibition can be achieved using triple hehx base-pairing methodology.
  • Triple hehx pairing is useful because it causes inhibition of the abiUty of the double heUx to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules.
  • Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, ML Kisco NY, pp. 163-177.)
  • a complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
  • Ribozymes enzymatic RNA molecules
  • Ribozymes may also be used to catalyze the specific cleavage of RNA
  • the mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA followed by endonucleolytic cleavage.
  • engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding RMEP.
  • RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oUgonucleotide inoperable.
  • the suitabiUty of candidate targets may also be evaluated by testing accessibihty to hybridization with complementary oUgonucleotides using ribonuclease protection assays.
  • RNA molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oUgonucleotides such as soUd phase phosphoramidite chemical synthesis.
  • RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding RMEP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6.
  • these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell Unes, cells, or tissues.
  • RNA molecules may be modified to increase intracellular stabihty and half-life. Possible modifications include, but are not hmited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase hnkages within the backbone of the molecule.
  • An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding RMEP.
  • Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oUgonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression.
  • a compound which specifically inhibits expression of the polynucleotide encoding RMEP may be therapeutically useful, and in the treament of disorders associated with decreased RMEP expression or activity, a compound which specifically promotes expression of the polynucleotide encoding RMEP may be therapeutically useful.
  • test compounds may be screened for effectiveness in altering expression of a specific polynucleotide.
  • a test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly.
  • a sample comprising a polynucleotide encoding RMEP is exposed to at least one test compound thus obtained.
  • the sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system.
  • Alterations in the expression of a polynucleotide encoding RMEP are assayed by any method commonly known in the art.
  • the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding RMEP.
  • the amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds.
  • a screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5.932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun.
  • a particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).
  • oligonucleotides such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides
  • vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. DeUvery by transfectioa by Uposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K et al. (1997) Nat. Biotechnol. 15:462-466.)
  • any of the therapeutic methods described above may be apphed to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
  • An additional embodiment of the invention relates to the administration of a pharmaceutical composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient.
  • Excipients may include, for example, sugars, starches, celluloses, gums, and proteins.
  • Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack PubUshing, Easton PA).
  • Such pharmaceutical compositions may consist of RMEP, antibodies to RMEP, and mimetics, agonists, antagonists, or inhibitors of RMEP.
  • compositions utilized in this invention may be administered by any number of routes including, but not Umited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, inttaventricular, pulmonary, transdermal, subcutaneous, inttaperitoneal, inttanasal, enteral, topical, subhngual, or rectal means.
  • compositions for pulmonary administration may be prepared in Uquid or dry powder form. These compositions are generally aerosoUzed immediately prior to inhalation by the patient.
  • aerosol deUvery of fast-acting formulations is well-known in the art.
  • macromolecules e.g. larger peptides and proteins
  • recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical deUvery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848).
  • Pulmonary deUvery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.
  • Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capabiUty of those skilled in the art.
  • SpeciaUzed forms of pharmaceutical compositions may be prepared for direct inttacellular delivery of macromolecules comprising RMEP or fragments thereof.
  • macromolecules comprising RMEP or fragments thereof.
  • hposome preparations containing a cell-impermeable macromolecule may promote cell fusion and inttacellular deUvery of the macromolecule.
  • RMEP or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 proteia Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).
  • the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs.
  • An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
  • a therapeutically effective dose refers to that amount of active ingredient, for example RMEP or fragments thereof, antibodies of RMEP, and agonists, antagonists or inhibitors of RMEP, which ameUorates the symptoms or conditioa
  • Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED 50 (the dose therapeutically effective in 50% of the population) or LD 50 (the dose lethal to 50% of the population) statistics.
  • the dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD 50 /ED 50 ratio.
  • Pharmaceutical compositions which exhibit large therapeutic indices are preferred.
  • the data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use.
  • the dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED 50 with Uttle or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of
  • Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combinations), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-Ufe and clearance rate of the particular formulatioa
  • Normal dosage amounts may vary from about 0.1 ⁇ g to 100,000 ⁇ g, up to a total dose of about 1 gram, depending upon the route of administration.
  • Guidance as to particular dosages and methods of delivery is provided in the Uterature and generally available to practitioners in the art. Those skiUed in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, deUvery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc. DIAGNOSTICS
  • antibodies which specifically bind RMEP may be used for the diagnosis of disorders characterized by expression of RMEP, or in assays to monitor patients being treated with RMEP or agonists, antagonists, or inhibitors of RMEP.
  • Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for RMEP include methods which utilize the antibody and a label to detect RMEP in human body fluids or in extracts of cells or tissues.
  • the antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule.
  • a wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
  • RMEP a variety of protocols for measuring RMEP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of RMEP expressioa
  • Normal or standard values for RMEP expression are estabUshed by combining body fluids or cell extracts taken from normal mammaUan subjects, for example, human subjects, with antibody to RMEP under conditions suitable for complex formatioa
  • the amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of RMEP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values estabUshes the parameters for diagnosing disease.
  • the polynucleotides encoding RMEP may be used for diagnostic purposes.
  • the polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs.
  • the polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of RMEP may be correlated with disease.
  • the diagnostic assay may be used to determine absence, presence, and excess expression of RMEP, and to monitor regulation of RMEP levels during therapeutic interventioa
  • hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding RMEP or closely related molecules may be used to identify nucleic acid sequences which encode RMEP.
  • the specificity of the probe whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding RMEP, alleUc variants, or related sequences.
  • Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the RMEP encoding sequences.
  • the hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO: 14-26 or from genomic sequences including promoters, enhancers, and introns of the RMEP gene.
  • Means for producing specific hybridization probes for DNAs encoding RMEP include the cloning of polynucleotide sequences encoding RMEP or RMEP derivatives into vectors for the production of mRNA probes.
  • vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides.
  • Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32 P or 35 S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin couphng systems, and the Uke.
  • Polynucleotide sequences encoding RMEP may be used for the diagnosis of disorders associated with expression of RMEP.
  • disorders include, but are not hmited to, a nervous system disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other exttapyramidal disorders, amyottophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyeUnating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative inttacranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease; prion diseases including kuru, Creutzfeldt-Jakob disease, and Ger
  • the polynucleotide sequences encoding RMEP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pia and multiformat ELISA-like assays; and in microarrays utiUzing fluids or tissues from patients to detect altered RMEP expressioa Such quaUtative or quantitative methods are well known in the art.
  • the nucleotide sequences encoding RMEP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above.
  • the nucleotide sequences encoding RMEP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding RMEP in the sample indicates the presence of the associated disorder.
  • Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in cUnical trials, or to monitor the treatment of an individual patient.
  • a normal or standard profile for expression is estabhshed. This may be accompUshed by combining body fluids or cell exttacts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding RMEP, under conditions suitable for hybridization or amphficatioa Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to estabhsh the presence of a disorder.
  • hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject
  • the results obtained from successive assays may be used to show the efficacy of tteatment over a period ranging from several days to months.
  • the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms.
  • a more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive tteatment earUer thereby preventing the development or further progression of the cancer.
  • oligonucleotides designed from the sequences encoding RMEP may involve the use of PCR. These ohgomers may be chemically synthesized, generated enzymatically, or produced in vitro. OUgomers will preferably contain a fragment of a polynucleotide encoding
  • RMEP or a fragment of a polynucleotide complementary to the polynucleotide encoding RMEP, and will be employed under optimized conditions for identification of a specific gene or conditioa OUgomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
  • oUgonucleotide primers derived from the polynucleotide sequences encoding RMEP may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans.
  • SNPs single nucleotide polymorphisms
  • Methods of SNP detection include, but are not hmited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods.
  • SSCP single-stranded conformation polymorphism
  • fSSCP fluorescent SSCP
  • oligonucleotide primers derived from the polynucleotide sequences encoding RMEP are used to amplify DNA using the polymerase chain reaction (PCR).
  • the DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the Uke.
  • SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electtophoresis in non-denaturing gels.
  • the oUgonucleotide primers are fluorescently labeled, which allows detection of the ampUmers in high-throughput equipment such as DNA sequencing machines.
  • sequence database analysis methods termed in sihco SNP (isSNP) are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence.
  • SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASS ARRAY system (Sequenom, Inc., San Diego CA).
  • Methods which may also be used to quantify the expression of RMEP include radiolabehng or biotinylating nucleotides, coampUfication of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem.
  • oUgonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray.
  • the microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described in Seilhamer, J.J. et al., "Comparative Gene Transcript Analysis," U.S. Patent No.
  • the microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expressioa and to develop and monitor the activities of therapeutic agents in the tteatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.
  • antibodies specific for RMEP, or RMEP or fragments thereof may be used as elements on a microarray.
  • the microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.
  • Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g.,
  • nucleic acid sequences encoding RMEP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping.
  • sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA libraries.
  • HACs human artificial chromosomes
  • YACs yeast artificial chromosomes
  • BACs bacterial artificial chromosomes
  • PI constructions or single chromosome cDNA libraries.
  • nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP).
  • RFLP restriction fragment length polymorphism
  • Fluorescent in situ hybridization may be correlated with other physical and genetic map data.
  • FISH Fluorescent in situ hybridization
  • Examples of genetic map data can be found in various scientific journals or at the Online MendeUan Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding RMEP on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.
  • In situ hybridization of chromosomal preparations and physical mapping techniques such as Unkage analysis using estabUshed chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammaUan species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not knowa This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques.
  • any sequences mapping to that area may represent associated or regulatory genes for further investigatioa (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.)
  • the nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to ttanslocation, inversion, etc., among normal, carrier, or affected individuals.
  • RMEP its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening Ubraries of compounds in any of a variety of drug screening techniques.
  • the fragment employed in such screening may be free in solution, affixed to a sohd support, borne on a cell surface, or located intracellularly. The formation of binding complexes between RMEP and the agent being tested may be measured.
  • Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest.
  • This method large numbers of different small test compounds are synthesized on a soUd substrate. The test compounds are reacted with RMEP, or fragments thereof, and washed. Bound RMEP is then detected by methods well known in the art. Purified RMEP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neuttaUzing antibodies can be used to capture the peptide and immobiUze it on a soUd support.
  • nucleotide sequences which encode RMEP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not hmited to, such properties as the triplet genetic code and specific base pair interactions.
  • RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
  • TRIZOL a monophasic solution of phenol and guanidine isothiocyanate
  • poly(A+) RNA was isolated using oUgo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN).
  • Sttatagene was provided with RNA and constructed the corresponding cDNA Ubraries. Otherwise, cDNA was synthesized and cDNA Ubraries were constructed with the UNIZAP vector system (Sttatagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oUgo d(T) or random primers. Synthetic oUgonucleotide adapters were Ugated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes.
  • the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis.
  • cDNAs were hgated into compatible restriction enzyme sites of the polyUnker of a suitable plasmid, e.g., PBLUESCRD plasmid (Sttatagene), PSPORT1 plasmid (Life Technologies), pcDNA2.1 plasmid (Invitrogen, Carlsbad CA), or pINCY plasmid (Incyte Genomics, Palo Alto CA).
  • PBLUESCRD plasmid e.g., PBLUESCRD plasmid (Sttatagene), PSPORT1 plasmid (Life Technologies), pcDNA2.1 plasmid (Invitrogen, Carlsbad CA), or pINCY plasmid (Incyte Genomics
  • Recombinant plasmids were transformed into competent E. coh cells including XLl-Blue, XLl-BlueMRF, or SOLR from Sttatagene or DH5 ⁇ , DH10B, or ElecttoMAX DH10B from Life Technologies.
  • Plasmids obtained as described in Example I were recovered from host cells by in vivo excision using the UNIZAP vector system (Sttatagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E. AL. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C
  • plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cychng steps were carried out in a single reaction mixture. Samples were processed and stored in 384- well plates, and the concentration of ampUfied plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).
  • PICOGREEN dye Molecular Probes, Eugene OR
  • FLUOROSKAN II fluorescence scanner Labsystems Oy, Helsinki, Finland.
  • Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (PE Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) Uquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (PE Biosystems).
  • cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (PE Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VI.
  • Table 5 summarizes the tools, programs, and algorithms used and provides apphcable descriptions, references, and threshold parameters.
  • the first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where apphcable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences).
  • the polynucleotide sequences were vahdated by removing vector, Unker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of pubUc databases such as the GenBank primate, rodent, mammaUaa vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation using programs based on BLAST, FAST A, and BLIMPS.
  • pubUc databases such as the GenBank primate, rodent, mammaUaa vertebrate, and eukaryote databases
  • BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation using programs based on BLAST, FAST A, and BLIMPS.
  • the sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA
  • the full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM.
  • HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) Curr. Opia Struct. Biol. 6:361-365.)
  • Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel, 1995, supra, ch. 4 and 16.)
  • the product score takes into account both the degree of similarity between two sequences and the length of the sequence match.
  • the product score is a normahzed value between 0 and 100, and is calculated as follows: the BLAST score is multipUed by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences).
  • the BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score.
  • the product score represents a balance between fractional overlap and quality in a BLAST aUgnment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.
  • the results of northern analyses are reported as a percentage distribution of Ubraries in which the transcript encoding RMEP occurred.
  • Analysis involved the categorization of cDNA Ubraries by organ/tissue and disease.
  • the organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic.
  • the disease/condition categories included cancer, inflammation, trauma, cell prohferation, neurological, and pooled. For each category, the number of Ubraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3. V. Chromosomal Mapping of RMEP Encoding Polynucleotides
  • the cDNA sequences which were used to assemble SEQ ID NO: 14 through 26 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith- Waterman algorithm. Sequences from these databases that matched SEQ ID NO: 14 through 26 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 5). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Gen ⁇ thon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.
  • SHGC Stanford Human Genome Center
  • WIGR Whitehead Institute for Genome Research
  • Gen ⁇ thon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in
  • SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, and SEQ ID NO:26 are described in The Invention as ranges, or intervals, of human chromosomes. More than one map location is reported for SEQ ID NO: 15, indicating that previously mapped sequences having similarity, but not complete identity, to SEQ ID NO: 15 were assembled into their respective clusters.
  • the map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm.
  • centiMorgan is a unit of measurement based on recombination frequencies between chromosomal markers.
  • cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.
  • Mb megabase
  • the cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.
  • the full length nucleic acid sequences of SEQ ID NO: 14-26 were produced by extension of an appropriate fragment of the full length molecule using oUgonucleotide primers designed from this fragment.
  • One primer was synthesized to initiate 5 ' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment.
  • the initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72°C Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
  • Selected human cDNA Ubraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
  • the concenttation of DNA in each well was determined by dispensing 100 ⁇ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in IX TE and 0.5 ⁇ l of undiluted PCR product into each well of an opaque fiuorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent.
  • the plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DN
  • a 5 ⁇ l to 10 ⁇ l ahquot of the reaction mixture was analyzed by electtophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.
  • the extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WT), and sonicated or sheared prior to reUgation into pUC 18 vector (Amersham Pharmacia Biotech).
  • Step 1 94°C, 3 min
  • Step 2 94°C, 15 sec
  • Step 3 60°C, 1 min
  • Step 4 72°C, 2 min
  • Step 5 steps 2, 3, and 4 repeated 29 times
  • Step 6 72°C, 5 min
  • Step 7 storage at 4°C DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reampUfied using the same conditions as described above.
  • polynucleotide sequences of SEQ ID NO: 14-26 are used to obtain 5' regulatory sequences using the procedure above, along with oligonucleotides designed for such extension, and an appropriate genomic Ubrary.
  • Hybridization probes derived from SEQ ID NO: 14-26 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeUng of oUgonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. OUgonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oUgomer, 250 ⁇ Ci of [ ⁇ - 32 P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA).
  • the labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An ahquot containing 10 7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).
  • the DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nyttan Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared. VIII. Microarrays
  • Unkage or synthesis of array elements upon a microarray can be achieved utilizing photoUthography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, supra), mechanical microspotting technologies, and derivatives thereof.
  • the substrate in each of the aforementioned technologies should be uniform and sohd with a non-porous surface (Schena (1999), supra).
  • Suggested substtates include sihcon, silica, glass sUdes, glass chips, and sihcon wafers.
  • a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures.
  • a typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shaloa D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)
  • Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oUgomers thereof may comprise the elements of the microarray. Fragments or oUgomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR).
  • the array elements are hybridized with polynucleotides in a biological sample.
  • the polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element.
  • microarray preparation and usage is described in detail below.
  • Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A) + RNA is purified using the oligo-(dT) cellulose method.
  • Each poly(A) + RNA sample is reverse transcribed using MMLV reverse-ttanscriptase, 0.05 pg/ ⁇ l oligo-(dT) primer (21mer), IX first strand buffer, 0.03 units/ ⁇ l RNase inhibitor, 500 ⁇ M dATP, 500 ⁇ M dGTP, 500 ⁇ M dTTP, 40 ⁇ M dCTP, 40 ⁇ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech).
  • the reverse ttanscription reaction is performed in a 25 ml volume containing 200 ng poly(A) + RNA with GEMBRIGHT kits (Incyte).
  • Specific conttol poly(A) + RNAs are synthesized by in vitto ttanscription from non-coding yeast genomic DNA. After incubation at 37 °C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85 °C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc.
  • Microarray Preparation Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 ⁇ g. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).
  • Purified array elements are immobilized on polymer-coated glass slides.
  • Glass microscope sUdes (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments.
  • Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C oven.
  • Array elements are apphed to the coated glass substrate using a procedure described in US Patent No. 5,807,522, incorporated herein by reference.
  • 1 ⁇ l of the array element DNA, at an average concenttation of 100 ng/ ⁇ l, is loaded into the open capillary printing element by a high-speed robotic apparatus.
  • the apparatus then deposits about 5 nl of array element sample per slide.
  • Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Sttatagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60 °C followed by washes in 0.2% SDS and distilled water as before.
  • PBS phosphate buffered saline
  • Hybridization reactions contain 9 ⁇ l of sample mixture consisting of 0.2 ⁇ g each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer.
  • the sample mixture is heated to 65 °C for 5 minutes and is aUquoted onto the microarray surface and covered with an 1.8 cm 2 coverslip.
  • the arrays are transferred to a waterproof chamber having a cavity just sUghtiy larger than a microscope shde.
  • the chamber is kept at 100% humidity internally by the addition of 140 ⁇ l of 5X SSC in a corner of the chamber.
  • the chamber containing the arrays is incubated for about 6.5 hours at 60 °C
  • the arrays are washed for 10 min at 45 °C in a first wash buffer (IX SSC, 0.1% SDS), three times for 10 minutes each at 45 C C in a second wash buffer (0.1X SSC), and dried. Detection
  • Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral Unes at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5.
  • the excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY).
  • the slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster- scanned past the objective.
  • the 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.
  • a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals.
  • the emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5.
  • Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.
  • the sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA conttol species added to the sample mixture at a known concenttation.
  • a specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000.
  • the calibration is done by labeling samples of the caUbrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
  • the output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer.
  • the digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal).
  • the data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore' s emission spectrum.
  • a grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid.
  • the fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal.
  • the software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).
  • RNA and virus-based expression systems For expression of RMEP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not hmited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express RMEP upon induction with isopropyl beta-D- thiogalactopyranoside (IPTG).
  • IPTG isopropyl beta-D- thiogalactopyranoside
  • RMEP RMEP in eukaryotic cells
  • AcMNPV Autographica californica nuclear polyhedrosis virus
  • the nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding RMEP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription.
  • Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases.
  • RMEP is synthesized as a fusion protein with, e.g., glutathione S- ttansferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates.
  • GST glutathione S- ttansferase
  • FLAG or 6-His a peptide epitope tag
  • GST a 26-kilodalton enzyme from Schistosoma iaponicum. enables the purification of fusion proteins on immobiUzed glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech).
  • the GST moiety can be proteolytically cleaved from RMEP at specifically engineered sites.
  • FLAG an 8-amino acid peptide
  • 6- His a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified RMEP obtained by these methods can be used directly in the assays shown in Examples X and XIV. XI. Demonstration of RMEP Activity
  • RMEP RNA-binding activity is demonstrated by a polyacrylamide gel mobiUty-shift assay.
  • RMEP is expressed by transforming a mammalian cell line such as COS7, HeLa or CHO with a eukaryotic expression vector containing RMEP cDNA. The cells are incubated for 48-72 hours after transformation under conditions appropriate for the cell line to allow expression and accumulation of RMEP.
  • Exttacts containing solubilized proteins can be prepared from cells expressing RMEP by methods well known in the art. Portions of the extract containing RMEP are added to [ 32 P] -labeled RNA. Radioactive RNA can be synthesized in vitro by techniques well known in the art.
  • the mixtures are incubated at 25 °C in the presence of RNase inhibitors under buffered conditions for 5-10 minutes. After incubation, the samples are analyzed by polyacrylamide gel electrophoresis followed by autoradiography. The presence of a band on the autoradiogram indicates the formation of a complex between RMEP and the radioactive transcript. A band of similar mobility will not be present in samples prepared using control exttacts prepared from unttansformed cells.
  • RMEP or biologically active fragments thereof, are labeled with 125 I Bolton-Hunter reagent and tested for interaction with candidate RNA metabohsm molecules.
  • Bolton-Hunter reagent e.g., Bolton et al. (1973) Biocheia J. 133:529.
  • Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled RMEP, washed, and any wells with labeled RMEP complex are assayed. Data obtained using different concentrations of RMEP are used to calculate values for the number, affinity, and association of RMEP with the candidate molecules.
  • molecules interacting with RMEP are analyzed using the yeast two-hybrid system as described in Fields, S. and Song, O. (1989) Nature 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (CLONTECH).
  • MATCHMAKER system CLONTECH
  • RMEP function is assessed by expressing the sequences encoding RMEP at physiologically elevated levels in mammaUan cell culture systems.
  • cDNA is subcloned into a mammaUan expression vector containing a strong promoter that drives high levels of cDNA expressioa
  • Vectors of choice include pCMV SPORT plasmid (Life Technologies) and pCR3.1 plasmid (Invittogen), both of which contain the cytomegalovirus promoter.
  • recombinant vector 5-10 ⁇ g of recombinant vector are transiently ttansfected into a human cell Une, for example, an endothehal or hematopoietic cell Une, using either liposome formulations or electtoporatioa 1-2 ⁇ g of an additional plasmid containing sequences encoding a marker protein are co-ttansfected.
  • Expression of a marker protein provides a means to distinguish ttansfected cells from nonttansfected cells and is a rehable predictor of cDNA expression from the recombinant vector.
  • Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein.
  • FCM Flow cytometty
  • RMEP The influence of RMEP on gene expression can be assessed using highly purified populations of cells ttansfected with sequences encoding RMEP and either CD64 or CD64-GFP.
  • CD64 and CD64- GFP are expressed on the surface of ttansfected cells and bind to conserved regions of human immunoglobuUn G (IgG).
  • Transfected cells are efficiently separated from nonttansfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY).
  • mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding RMEP and other genes of interest can be analyzed by northern analysis or microarray techniques.
  • PAGE polyacrylamide gel electtophoresis
  • the RMEP amino acid sequence is analyzed using LASERGENE software
  • oUgopeptides of about 15 residues in length are synthesized using an ABI 431 A peptide synthesizer (PE Biosystems) using FMOC chemistry and coupled to KLH (Sigma- Aldrich, St.
  • Naturally occurring or recombinant RMEP is substantially purified by immunoaffinity chromatography using antibodies specific for RMEP.
  • An immunoaffinity column is constructed by covalently coupling anti-RMEP antibody to an activated chromatographic resin, such as
  • Media containing RMEP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of RMEP (e.g., high ionic sttength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/RMEP binding
  • RMEP e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaottope, such as urea or thiocyanate ion
  • RMEP or biologically active fragments thereof, are labeled with 125 I Bolton-Hunter reagent.
  • Bolton-Hunter reagent See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.
  • Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled RMEP, washed, and any wells with labeled RMEP complex are assayed. Data obtained using different concentrations of RMEP are used to calculate values for the number, affinity, and association of RMEP with the candidate molecules.
  • molecules interacting with RMEP are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989, Nature 340:245-246), or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
  • RMEP may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-uiroughput manner to determine all interactions between the proteins encoded by two large Ubraries of genes (Nandabalan, K et al. (2000) U.S. Patent No. 6,057,101).
  • ABI FACTURA A program that removes vector sequences and masks PE Biosystems, Foster City, CA. ambiguous bases in nucleic acid sequences.
  • ABI/PARACEL FDF A Fast Data Finder useful in comparing and annotating PE Biosystems, Foster City, CA; Mismatch ⁇ 50% amino acid or nucleic acid sequences. Paracel Inc., Pasadena, CA.
  • ABI AutoAssembler A program that assembles nucleic acid sequences. PE Biosystems, Foster City, CA.
  • Phred A base-calling algorithm that examines automated Ewing, B. et al. ( 1998) Genome Res. sequencer traces with high sensitivity and probability. 8: 175-185; Ewing, B. and P. Green ( 1998) Genome Res . 8 : 186- 194.

Abstract

The invention provides human RNA metabolism proteins (RMEP) and polynucleotides which identify and encode RMEP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expresssion of RMEP.

Description

RNA METABOLISM PROTEINS
TECHNICAL FIELD
This invention relates to nucleic acid and amino acid sequences of RNA metabolism proteins and to the use of these sequences in the diagnosis, treatment, and prevention of nervous system, autoimmune/inflammatory, and cell proliferative disorders, including cancer.
BACKGROUND OF THE INVENTION
Ribonucleic acid (RNA) is a linear single-stranded polymer of four nucleotides, ATP, CTP, UTP, and GTP. In most organisms, RNA is transcribed as a copy of deoxyribonucleic acid (DNA), the genetic material of the organism. In retroviruses RNA rather than DNA serves as the genetic material. RNA copies of the genetic material encode proteins or serve various structural, catalytic, or regulatory roles in organisms. RNA is classified according to its cellular localization and function. Messenger RNAs (mRNAs) encode polypeptides. Ribosomal RNAs (rRNAs) are assembled, along with ribosomal proteins, into ribosomes, which are cytoplasmic particles that translate mRNA into polypeptides. Transfer RNAs (tRNAs) are cytosolic adaptor molecules that function in mRNA translation by recognizing both an mRNA codon and the amino acid that matches that codon. Heterogeneous nuclear RNAs (hnRNAs) include mRNA precursors and other nuclear RNAs of various sizes. Small nuclear RNAs (snRNAs) are a part of the nuclear spliceosome complex that removes intervening, non-coding sequences (introns) and rejoins exons in pre-mRNAs.
Proteins are associated with RNA during its transcription from DNA, RNA processing, and translation of mRNA into protein. Proteins are also associated with RNA as it is used for structural, catalytic, and regulatory purposes.
Various proteins are necessary for processing of transcribed RNAs in the nucleus. Pre- mRNA processing steps include capping at the 5 ' end with methylguanosine, polyadenylating the 3' end, and splicing to remove introns. The spliceosomal complex is comprised of five small nuclear ribonucleoprotein particles (snRNPs) designated UI, U2, U4, U5, and U6. Each snRNP contains a single species of snRNA and about ten proteins. The RNA components of some snRNPs recognize and base-pair with intron consensus sequences. The protein components mediate spliceosome assembly and the splicing reaction.
An early step in pre-mRNA cleavage involves the cleavage factor Im (CF Im). The human CF Im protein aids in the recruitment and assembly of processing factors that make up the 3' end processing complex (Ruegsegger, U. et al (1998) Mol. Cell. 1 :243-253). The murine formin binding proteins (FBP's) FBP11 and FBP12 are components of pre-mRNA splicing complexes that facilitate the bridging of 5' and 3' ends of the intron. These proteins function through bridging interactions invloving UI and U2 snRNPs. Autoantibodies to snRNP proteins are found in the blood of patients with systemic lupus erythematosus (Stryer, L. (1995) Biochemistry W.H. Freeman and Company, New York NY, p. 863).
Heterogeneous nuclear ribonucleoproteins (hnRNPs) have been identified that have roles in splicing, exporting of the mature RNAs to the cytoplasm, and mRNA translation (Biamonti, G. et al. (1998) Clin. Exp. Rheumatol. 16:317-326). Some examples of hnRNPs include the yeast proteins Hrplp, involved in cleavage and polyadenylation at the 3' end of the RNA; Cbp80p, involved in capping the 5' end of the RNA; and Npl3p, a homolog of mammalian hnRNP Al , involved in export of mRNA from the nucleus (Shen, E.C. et al. (1998) Genes Dev. 12:679-691). HnRNPs have been shown to be important targets of the autoimmune response in rheumatic diseases (Biamonti, supra). Many snRNP and hnRNP proteins are characterized by an RNA recognition motif (RRM). (Reviewed in Birney, E. et al. (1993) Nucleic Acids Res. 21:5803-5816.) The RRM is about 80 amino acids in length and forms four β-strands and two α-helices arranged in an α/β sandwich. The RRM contains a core RNP-1 octapeptide motif along with surrounding conserved sequences. In addition to snRNP proteins, examples of RNA-binding proteins which contain the above motifs include heteronuclear ribonucleoproteins which stabilize nascent RNA and factors which regulate alternative splicing. Alternative splicing factors include developmentally regulated proteins, specific examples of which have been identified in lower eukaryotes such as Drosophila melanogaster and Caenorhabditis elegans. These proteins play key roles in developmental processes such as pattern formation and sex determination, respectively. (See, for example, Hodgkin, J. et al. (1994) Development 120:3681-3689.) Ribonucleases (RNases) catalyze the hydrolysis of phosphodiester bonds in RNA chains, thus cleaving the RNA. For example, RNase P is a ribonucleoprotein enzyme which cleaves the 5' end of pre-tRNAs as part of their maturation process. RNase H digests the RNA strand of an RNA/DNA hybrid. Such hybrids occur in cells invaded by retroviruses, and RNase H is an important enzyme in the retroviral replication cycle. RNase H domains are often found as a domain associated with reverse transcriptases. RNase activity in serum and cell extracts is elevated in a variety of cancers and infectious diseases (Schein, CH. (1997) Nat Biotechnol. 15:529-536). Regulation of RNase activity is being investigated as a means to control tumor angiogenesis, allergic reactions, viral infection and' replication, and fungal infections. Degradation of mRNAs having premature termination or nonsense codons is accomplished through a surveillance mechanism that has been termed nonsense-mediated mRNA decay (NMD). This mechanism helps eliminate flawed mRNAs that might code for nonfunctional or deleterious polypeptides. Various NMD components are linked to both yeast and human RNA metabolism disorders (Hentze, M. and Kulozik, A. (1999) Cell 96:307-310). The conversion of information in the form of mRNA to protein involves the many ribosomal proteins of the translation machinery of the cell. The eukaryotic ribosome is composed of a 60S (large) subunit and a 40S (small) subunit, which together form the 80S ribosome. In addition to the 18S, 28S, 5S, and 5.8S rRNAs, the ribosome also contains more than fifty proteins. The ribosomal proteins have a prefix which denotes the subunit to which they belong, either L (large) or S (small). Initiation of translation requires the participation of several initiation factors, many of which contain multiple subunits. One eukaryotic initiation factor (EIF) EIF5A is an 18-kD protein containing the unique amino acid residue, hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine) (Rinaudo, M. et al. (1993) Gene 137:303-307).
The release factor eRF carries out termination of translation. eRF recognizes stop codons in the mRNA, leading to the release of the polypeptide chain from the ribosome.
The discovery of new RNA metabolism proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of nervous system, autoimmune/inflammatory, and cell proliferative disorders, including cancer.
SUMMARY OF THE INVENTION The invention features purified polypeptides, RNA metabolism proteins, referred to collectively as "RMEP" and individually as "RMEP-1", "RMEP-2", "RMEP-3", "RMEP-4", "RMEP-5", "RMEP-6", "RMEP-7", "RMEP-8", "RMEP-9", "RMEP- 10", "RMEP-11", "RMEP- 12" and "RMEP-13". In one aspect, the invention provides an isolated polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:l-13.
The invention further provides an isolated polynucleotide encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l- 13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO: 1-13. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO: 14-26.
Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.
The invention also provides a method for producing a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13.
The invention further provides an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14-26, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14-26, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides. Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14-26, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14-26, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.
The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14-26, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14-26, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
The invention further provides a pharmaceutical composition comprising an effective amount of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO : 1 - 13 , and a pharmaceutically acceptable excipient. In one embodiment, the pharmaceutical composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:l-13. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional RMEP, comprising administering to a patient in need of such treatment the pharmaceutical composition. The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional RMEP, comprising administering to a patient in need of such treatment the pharmaceutical composition.
Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional RMEP, comprising administering to a patient in need of such treatment the pharmaceutical composition.
The invention further provides a method of screening for a compound that specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide. The invention further provides a method of screening for a compound that modulates the activity of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l-13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-13. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID NO: 14-26, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
BRIEF DESCRIPTION OF THE TABLES
Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full- length sequences encoding RMEP.
Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods, algorithms, and searchable databases used for analysis of RMEP.
Table 3 shows selected fragments of each nucleic acid sequence; the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis; diseases, disorders, or conditions associated with these tissues; and the vector into which each cDNA was cloned.
Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding RMEP were isolated.
Table 5 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.
DESCRIPTION OF THE INVENTION Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention. DEFINITIONS
"RMEP" refers to the amino acid sequences of substantially purified RMEP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
The term "agonist" refers to a molecule which intensifies or mimics the biological activity of RMEP. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of RMEP either by directly interacting with RMEP or by acting on components of the biological pathway in which RMEP participates.
An "allelic variant" is an alternative form of the gene encoding RMEP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allehc variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides.
Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
"Altered" nucleic acid sequences encoding RMEP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as RMEP or a polypeptide with at least one functional characteristic of RMEP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding RMEP, and improper or unexpected hybridization to allehc variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding RMEP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent RMEP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of RMEP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
"Amplification" relates to the production of additional copies of a nucleic acid sequence. AmpUfication is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of RMEP. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of RMEP either by directly interacting with RMEP or by acting on components of the biological pathway in which RMEP participates.
The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind RMEP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal. The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
The term "antisense" refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oUgonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oUgonucleotides having modified bases such as 5 -methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translatioa The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.
The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic" refers to the capabiUty of the natural, recombinant, or synthetic RMEP, or of any oUgopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5'. A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding RMEP or fragments of RMEP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabiUzing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
"Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (PE Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GEL VIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence. "Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions. Original Residue Conservative Substitution
Ala Gly, Ser
Arg His, Lys
Asn Asp, Gin, His
Asp Asn, Glu Cys Ala, Ser
Gin Asn, Glu, His
Glu Asp, Gin, His
Gly Ala
His Asn, Arg, Gin, Glu Be Leu, Val
Leu Be, Val
Lys Arg, Gin, Glu
Met Leu, He
Phe His, Met, Leu, Tip, Tyr Ser Cys, Thr
Thr Ser, Val
Tip Phe, Tyr
Tyr His, Phe, Trp Val He, Leu, Thr
Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha heUcal conformation,
(b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chaia A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
The term "derivative" refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.
A "fragment" is a unique portion of RMEP or the polynucleotide encoding RMEP which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50% of a polypeptide) as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.
A fragment of SEQ ID NO: 14-26 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO: 14-26, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO: 14-26 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO: 14-26 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO: 14-26 and the region of SEQ ID NO: 14-26 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment
A fragment of SEQ ID NO: 1-13 is encoded by a fragment of SEQ ID NO: 14-26. A fragment of SEQ ID NO: 1-13 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO: 1- 13. For example, a fragment of SEQ ID NO: 1-13 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:l-13. The precise length of a fragment of SEQ ID NO: 1-13 and the region of SEQ ID NO: 1-13 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment. A "full-length" polynucleotide sequence is one containing at least a translation initiation codon
(e.g., methionine) followed by an open reading frame and a translation termination codon. A "full- length" polynucleotide sequence encodes a "full-length" polypeptide sequence.
"Homology" refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences. The terms "percent identity" and "% identity," as appUed to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aUgned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize ahgnment between two sequences, and therefore achieve a more meaningful comparison of the two sequences. Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence ahgnment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise aUgnments of polynucleotide sequences, the default parameters are set as follows:
Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aUgned polynucleotide sequences.
Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local AUgnment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to aUgn a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.htrnl. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:
Matrix: BLOSUM62
Reward for match: 1
Penalty for mismatch: -2 Open Gap: 5 and Extension Gap: 2 penalties
Gap x drop-off: 50
Expect: 10
Word Size: 11
Filter: on Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
The phrases "percent identity" and "% identity," as appUed to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aUgned using a standardized algorithm. Methods of polypeptide sequence ahgnment are well-known. Some aUgnment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence ahgnment program (described and referenced above). For pairwise aUgnments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=l , gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide aUgnments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aUgned polypeptide sequence pairs.
Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (Apr-21-2000) with blastp set at default parameters. Such default parameters may be, for example: Matrix: BLOSUM62
Open Gap: 11 and Extension Gap: 1 penalties Gap x drop-off: 50 Expect: 10
Word Size: 3 Filter: on
Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured. "Human artificial chromosomes" (HACs) are Unear microchromosomes which may contain
DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for chromosome repUcation, segregation and maintenance.
The term "humanized antibody" refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding abihty.
"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive anneahng conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for anneahng of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive anneahng conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 μg/ml sheared, denatured salmon sperm DNA
Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (TJ for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating Tm and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual. 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.
High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65 °C, 60°C, 55 °C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 μg ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C0t or R0t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobiUzed on a soUd support (e.g., paper, membranes, filters, chips, pins or glass shdes, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively. "Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaUng molecules, which may affect cellular and systemic defense systems.
An "immunogenic fragment" is a polypeptide or oUgopeptide fragment of RMEP which is capable of eliciting an immune response when introduced into a Uving organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oUgopeptide fragment of RMEP which is useful in any of the antibody production methods disclosed herein or known in the art. The term "microarray" refers to an arrangement of a pluraUty of polynucleotides, polypeptides, or other chemical compounds on a substrate. The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.
The term "modulate" refers to a change in the activity of RMEP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of RMEP. The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oUgonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-hke or RNA-Uke material.
"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably Unked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oUgonucleotide of at least about 5 nucleotides in length Unked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubiUty to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their Ufespan in the cell.
"Post-translational modification" of an RMEP may involve Upidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic iheu of RMEP.
"Probe" refers to nucleic acid sequences encoding RMEP, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oUgonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, Ugands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oUgonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for ampUfication (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).
Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed, vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al.,1987, Current Protocols in Molecular Biology. Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al., 1990, PCR Protocols. A Guide to Methods and Applications. Academic Press, San Diego CA PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA). OUgonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oUgonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabiUties. For example, the PrimOU primer selection program (available to the pubUc from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the pubUc from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming Ubrary," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oUgonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the pubUc from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence aUgnments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aUgned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oUgonucleotides and polynucleotide fragments. The oUgonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oUgonucleotide selection are not Umited to those described above.
A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably Unked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell. Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stabiUty.
"Reporter molecules" are chemical or biochemical moieties used for labeUng a nucleic acid, amino acid, or antibody. Reporter molecules include radionucUdes; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.
An "RNA equivalent," in reference to a DNA sequence, is composed of the same Unear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose. The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding RMEP, or fragments thereof, or RMEP itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.
The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope A or the presence of free unlabeled A in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated. A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.
"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, sUdes, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
A "transcript image" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
"Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, Upofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of repUcation either as an autonomously rephcating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for Umited periods of time.
A "transgenic organism," as used herein, is any organism, including but not Umited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of dehberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants, and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra. A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% or at least 98% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "alleUc" (as defined above), "spUce," "species," or "polymorphic" variant. A sphce variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternative spUcing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state. A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides. THE INVENTION
The invention is based on the discovery of new human RNA metaboUsm proteins (RMEP), the polynucleotides encoding RMEP, and the use of these compositions for the diagnosis, treatment, or prevention of nervous system, autoimmune/inflammatory, and cell proliferative disorders, including cancer.
Table 1 Usts the Incyte clones used to assemble full length nucleotide sequences encoding RMEP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each RMEP were identified, and column 4 shows the cDNA Ubraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA Ubraries. Clones for which cDNA Ubraries are not indicated were derived from pooled cDNA Ubraries. The Incyte clones in column 5 were used to assemble the consensus nucleotide sequence of each RMEP and are useful as fragments in hybridization technologies. The columns of Table 2 show various properties of each of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosylation sites; column 5 shows the amino acid residues comprising signature sequences and motifs; column 6 shows homologous sequences as identified by BLAST analysis; and column 7 shows analytical methods and in some cases, searchable databases to which the analytical methods were appUed. The methods of column 7 were used to characterize each polypeptide through sequence homology and protein motifs.
The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding RMEP. The first column of Table 3 Usts the nucleotide SEQ ID NOs. Column 2 Usts fragments of the nucleotide sequences of column 1. These fragments are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO: 14-26 and to distinguish between SEQ ID NO: 14-26 and related polynucleotide sequences. The polypeptides encoded by these fragments are useful, for example, as immunogenic peptides. Column 3 Usts tissue categories which express RMEP as a fraction of total tissues expressing RMEP. Column 4 Usts diseases, disorders, or conditions associated with those tissues expressing RMEP as a fraction of total tissues expressing RMEP. Column 5 Usts the vectors used to subclone each cDNA Ubrary. Of particular note is the expression of SEQ ID NO:24 in muscle tumor and fetal brain.
The columns of Table 4 show descriptions of the tissues used to construct the cDNA Ubraries from which cDNA clones encoding RMEP were isolated. Column 1 references the nucleotide SEQ ID NOs, column 2 shows the cDNA Ubraries from which these clones were isolated, and column 3 shows the tissue origins and other descriptive information relevant to the cDNA Ubraries in column 2. SEQ ID NO:14 maps to chromosome 3 within the interval from 176.40 to 179.80 centiMorgans. SEQ ID NO: 15 maps to chromosome 22 within the interval from 24.30 to 36.60 centiMorgans, to chromosome 16 within the interval from 19.70 to 33.30 centiMorgans, and to chromosome 5 within the interval from 174.30 centiMorgans to q-terminus. SEQ ID NO:17 maps to chromosome 11 within the interval from 70.90 to 72.10 centiMorgans. SEQ ID NO:26 maps to chromosome 8 within the interval from 64.60 to 78.80 centiMorgans.
The invention also encompasses RMEP variants. A preferred RMEP variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the RMEP amino acid sequence, and which contains at least one functional or structural characteristic of RMEP.
The invention also encompasses polynucleotides which encode RMEP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO: 14-26, which encodes RMEP. The polynucleotide sequences of SEQ ID NO: 14-26, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
The invention also encompasses a variant of a polynucleotide sequence encoding RMEP. In particular, such a variant polynucleotide sequence will have at least about 80%, or alternatively at least about 90%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding RMEP. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO: 14-26 which has at least about 80%, or alternatively at least about 90%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO: 14-26. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of RMEP.
It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding RMEP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as appUed to the polynucleotide sequence of naturally occurring RMEP, and all such variations are to be considered as being specifically disclosed.
Although nucleotide sequences which encode RMEP and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring RMEP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding RMEP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utiUzed by the host. Other reasons for substantially altering the nucleotide sequence encoding RMEP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-Ufe, than transcripts produced from the naturally occurring sequence.
The invention also encompasses production of DNA sequences which encode RMEP and RMEP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding RMEP or any fragment thereof.
Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:14-26 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, AR. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including anneahng and wash conditions, are described in "Definitions."
Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of
DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (PE Biosystems, Foster City CA), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE ampUfication system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 Uquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (PE Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (PE Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology. John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology. Wiley VCH, New York NY, pp. 856-853.)
The nucleic acid sequences encoding RMEP may be extended utihzing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to ampUfy unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods AppUc. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to ampUfy unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., TrigUa, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR ampUfication of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods AppUc. 1:111-119.) In this method, multiple restriction enzyme digestions and Ugations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen Ubraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.
When screening for full-length cDNAs, it is preferable to use Ubraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oUgo d(T) Ubrary does not yield a full-length cDN Genomic Ubraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide- specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, PE Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in Umited amounts in a particular sample.
In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode RMEP may be cloned in recombinant DNA molecules that direct expression of RMEP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of ti e genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express RMEP.
The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter RMEP-encoding sequences for a variety of purposes including, but not Umited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide- mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth. The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARB REEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of RMEP, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
In another embodiment, sequences encoding RMEP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.) Alternatively, RMEP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or soUd-phase techniques. (See, e.g., Creighton, T. (1984) Proteins. Structures and Molecular Properties. WH Freeman, New York NY, pp. 55-60; and Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431 A peptide synthesizer (PE Biosystems). Additionally, the amino acid sequence of RMEP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.
The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)
In order to express a biologically active RMEP, the nucleotide sequences encoding RMEP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding RMEP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding RMEP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding RMEP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)
Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding RMEP and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)
A variety of expression vector/host systems may be utilized to contain and express sequences encoding RMEP. These include, but are not Umited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauhflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supra; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; Scorer, CA. et al. (1994) Bio/Technology 12:181-184; Engelhard, E.K et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; BrogUe, R. et al. (1984) Science 224:838-843; Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp.
191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659; and Harrington, J.J. et al. (1997) Nat. Genet 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al., (1993) Proc. Natl. Acad. Sci. USA 90(13):6340-6344; Buller, R.M. et al. (1985) Nature 317(6040):813-815; McGregor, D.P. et al. (1994) Mol. Immunol. 31(3):219-226; and Verma, I.M. and N. Somia (1997) Nature 389:239-242.) The invention is not Umited by the host cell employed.
In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding RMEP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding RMEP can be achieved using a multifunctional E. coU vector such as PBLUESCRJPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding RMEP into the vector's multiple cloning site disrupts the lacL gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of RMEP are needed, e.g. for the production of antibodies, vectors which direct high level expression of RMEP may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.
Yeast expression systems may be used for production of RMEP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Bitter, supra; and Scorer, supra.)
Plant systems may also be used for expression of RMEP. Transcription of sequences encoding RMEP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, supra; BrogUe, supra; and Winter, supra.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.) In mammaUan cells, a number of viral-based expression systems may be utiUzed. In cases where an adenovirus is used as an expression vector, sequences encoding RMEP may be hgated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome may be used to obtain infective virus which expresses RMEP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81 :3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV- based vectors may also be used for high-level protein expressioa
Human artificial chromosomes (HACs) may also be employed to deUver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and deUvered via conventional deUvery methods (Uposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.) For long term production of recombinant proteins in mammalian systems, stable expression of RMEP in cell Unes is preferred. For example, sequences encoding RMEP can be transformed into cell Unes using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
Any number of selection systems may be used to recover transformed cell Unes. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk~ and apr~ cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabohte, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides neomycin and G-418; and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metaboUtes. (See, e.g., Hartman, S.C. and R.C MulUgan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, CA. (1995) Methods Mol. Biol. 55:121-131.)
Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding RMEP is inserted within a marker gene sequence, transformed cells containing sequences encoding RMEP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding RMEP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
In general, host cells that contain the nucleic acid sequence encoding RMEP and that express RMEP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not Umited to, DNA-DNA or DNA-RNA hybridizations, PCR ampUfication, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.
Immunological methods for detecting and measuring the expression of RMEP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-Unked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utiUzing monoclonal antibodies reactive to two non-interfering epitopes on RMEP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual. APS Press, St. Paul MN, Sect. IV; CoUgan, J.E. et al. (1997) Current Protocols in Immunology. Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)
A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding RMEP include oUgolabeUng, nick translation, end-labeling, or PCR ampUfication using a labeled nucleotide. Alternatively, the sequences encoding RMEP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega
(Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionucUdes, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the Uke.
Host cells transformed with nucleotide sequences encoding RMEP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode RMEP may be designed to contain signal sequences which direct secretion of RMEP through a prokaryotic or eukaryotic cell membrane. In addition, a host cell strain may be chosen for its abihty to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, Upidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.
In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding RMEP may be Ugated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric RMEP protein containing a heterologous moiety that can be recognized by a commercially available antibody may faciUtate the screening of peptide libraries for inhibitors of RMEP activity. Heterologous protein and peptide moieties may also faciUtate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not Umited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmoduUn binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobiUzed glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the RMEP encoding sequence and the heterologous protein sequence, so that RMEP may be cleaved away from the heterologous moiety following purificatioa Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to faciUtate expression and purification of fusion proteins.
In a further embodiment of the invention, synthesis of radiolabeled RMEP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35S-methionine.
RMEP of the present invention or fragments thereof may be used to screen for compounds that specifically bind to RMEP. At least one and up to a pluraUty of test compounds may be screened for specific binding to RMEP. Examples of test compounds include antibodies, oUgonucleotides, proteins (e.g., receptors), or small molecules. In one embodiment, the compound thus identified is closely related to the natural ligand of
RMEP, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, Coligan, J.E. et al. (1991) Current Protocols in Immunology 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which RMEP binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment screening for these compounds involves producing appropriate cells which express RMEP, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing RMEP or cell membrane fractions which contain RMEP are then contacted with a test compound and binding, stimulation, or inhibition of activity of either RMEP or the compound is analyzed.
An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with RMEP, either in solution or affixed to a solid support, and detecting the binding of RMEP to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a soUd support.
RMEP of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of RMEP. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for RMEP activity, wherein RMEP is combined with at least one test compound, and the activity of RMEP in the presence of a test compound is compared with the activity of RMEP in the absence of the test compound. A change in the activity of RMEP in the presence of the test compound is indicative of a compound that modulates the activity of RMEP. Alternatively, a test compound is combined with an in vitro or cell-free system comprising RMEP under conditions suitable for RMEP activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of RMEP may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurahty of test compounds may be screened. In another embodiment, polynucleotides encoding RMEP or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97: 1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.
Polynucleotides encoding RMEP may also be manipulated in vitro in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell Uneages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).
Polynucleotides encoding RMEP can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding RMEP is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress RMEP, e.g., by secreting RMEP in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74). THERAPEUTICS Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of RMEP and RNA metabolism proteins. In addition, the expression of RMEP is closely associated with cell proliferation, cancer, and inflammation. Therefore, RMEP appears to play a role in nervous system, autoimmune/inflammatory, and cell proliferative disorders, including cancer. In the treatment of disorders associated with increased RMEP expression or activity, it is desirable to decrease the expression or activity of RMEP. In the treatment of disorders associated with decreased RMEP expression or activity, it is desirable to increase the expression or activity of RMEP.
Therefore, in one embodiment, RMEP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of RMEP. Examples of such disorders include, but are not limited to, a nervous system disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyeUnating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radicuUtis, viral central nervous system disease; prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome; fatal famiUal insomnia, nutritional and metaboUc diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorder of the central nervous system, cerebral palsy, a neuroskeletal disorder, an autonomic nervous system disorder, a cranial nerve disorder, a spinal cord disease, muscular dystrophy and other neuromuscular disorder, a peripheral nervous system disorder, dermatomyositis and polymyositis; inherited, metaboUc, endocrine, and toxic myopathy; myasthenia gravis, periodic paralysis; a mental disorder including mood, anxiety, and schizophrenic disorders; seasonal affective disorder (SAD); akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder, an autoimmune/inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison' s disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophiha, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjόgren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus.
In another embodiment, a vector capable of expressing RMEP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of RMEP including, but not limited to, those described above. In a further embodiment, a pharmaceutical composition comprising a substantially purified
RMEP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of RMEP including, but not Umited to, those provided above.
In still another embodiment, an agonist which modulates the activity of RMEP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of RMEP including, but not Umited to, those hsted above.
In a further embodiment, an antagonist of RMEP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of RMEP. Examples of such disorders include, but are not Umited to, those nervous system, autoimmune/inflammatory, and cell proliferative disorders, including cancer described above. In one aspect, an antibody which specifically binds RMEP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express RMEP.
In an additional embodiment, a vector expressing the complement of the polynucleotide encoding RMEP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of RMEP including, but not Umited to, those described above. In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
An antagonist of RMEP may be produced using methods which are generally known in the art. In particular, purified RMEP may be used to produce antibodies or to screen Ubraries of pharmaceutical agents to identify those which specifically bind RMEP. Antibodies to RMEP may also be generated using methods that are well known in the art. Such antibodies may include, but are not Umited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression Ubrary. NeutraUzing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use. For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with RMEP or with any fragment or oUgopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not Umited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilti Calmette-Guerin) and Corvnebacterium parvum are especially preferable.
It is preferred that the oUgopeptides, peptides, or fragments used to induce antibodies to RMEP have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oUgopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural proteia Short stretches of RMEP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
Monoclonal antibodies to RMEP may be prepared using any technique which provides for the production of antibody molecules by continuous cell Unes in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)
In addition, techniques developed for the production of "chimeric antibodies," such as the spUcing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce RMEP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobuUn Ubraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)
Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobuUn Ubraries or panels of highly specific binding reagents as disclosed in theUterature. (See, e.g., Oriandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)
Antibody fragments which contain specific binding sites for RMEP may also be generated. For example, such fragments include, but are not hmited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression Ubraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)
Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with estabhshed specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between RMEP and its specific antibody. A two-site, monoclonal-based immunoassay utiUzing monoclonal antibodies reactive to two non-interfering RMEP epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra). Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for RMEP. Affinity is expressed as an association constant, K,, which is defined as the molar concentration of RMEP-antibody complex divided by the molar concentrations of free antigen and free antibody under equiUbrium conditions. The K, determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple RMEP epitopes, represents the average affinity, or avidity, of the antibodies for RMEP. The K, determined for a preparation of monoclonal antibodies, which are monospecific for a particular RMEP epitope, represents a true measure of affinity. High-affinity antibody preparations with K, ranging from about 109 to 1012 LΛnole are preferred for use in immunoassays in which the RMEP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K^ ranging from about 106 to 107 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of RMEP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach. IRL Press, Washington DC; Liddell, J.E. and A Cryer (1991) A Practical Guide to Monoclonal Antibodies. John Wiley & Sons, New York NY).
The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quaUty and suitabiUty of such preparations for certain downstream appUcations. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of RMEP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guideUnes for antibody quaUty and usage in various appUcations, are generally available. (See, e.g., Catty, supra, and CoUgan et al., supra.)
In another embodiment of the invention, the polynucleotides encoding RMEP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA RNA, PNA or modified oligonucleotides) to the coding or regulatory regions of the gene encoding RMEP. Such technology is well known in the art, and antisense oUgonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding RMEP. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., TotawaNJ.)
In therapeutic use, any gene deUvery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) J. Allergy Clin. Immunol. 102(3):469-475; and Scanlon, KJ. et al. (1995) 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990) Blood 76:271 ; Ausubel, supra; Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63(3):323-347.) Other gene deUvery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J.J. (1995) Br. Med. Bull. 51(l):217-225; Boado, R.J. et al. (1998) J. Pharm. Sci. 87(11):1308-1315; and Morris, M.C. et al. (1997) Nucleic Acids Res. 25(14):2730-2736.) In another embodiment of the invention, polynucleotides encoding RMEP may be used for somatic or germhne gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-Xl disease characterized by X-Unked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassamias, famiUal hypercholesterolemia, and hemophiha resulting from Factor VIII or Factor IX deficiencies (Crystal, R.G. (1995) Science 270:404-410; Verma, I.M. and Somia, N. (1997) Nature 389:239-242)), (u) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proUferation), or (ui) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasihensis: and protozoan parasites such as Plasmodium falciparum and Trvpanosoma cruzi). In the case where a genetic deficiency in RMEP expression or regulation causes disease, the expression of RMEP from an appropriate population of transduced cells may alleviate the cUnical manifestations caused by the genetic deficiency.
In a further embodiment of the invention, diseases or disorders caused by deficiencies in RMEP are treated by constructing mammaUan expression vectors encoding RMEP and introducing these vectors by mechanical means into RMEP-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ϋ) balUstic gold particle deUvery, (Ui) Uposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivies, Z. (1997) Cell 91 :501-510; Boulay, J-L. and H. Recipon (1998) Curr. Opia Biotechnol. 9:445- 450).
Expression vectors that may be effective for the expression of RMEP include, but are not hmited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). RMEP may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (U) an inducible promoter (e.g., the tetracycUne-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. U.S.A 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opia Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and H.M. Blau, supra)), or (in) a tissue-specific promoter or the native promoter of the endogenous gene encoding RMEP from a normal individual. Commercially available Uposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deUver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and AJ. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. ( 1982) EMBO J. 1:841 -845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.
In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to RMEP expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding RMEP under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (U) appropriate RNA packaging signals, and (Ui) a Rev-responsive element (RRE) along with additional retrovirus s-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on pubUshed data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. U.S.A. 92:6733-6737), incorporated by reference hereia The vector is propagated in an appropriate vector producing cell Une (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A et al. (1987) J. Virol. 61:1639-1646; Adam, M.A and AD. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent Number 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell Unes producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell hnes and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4+ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71 :7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71 :4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).
In the alternative, an adenovirus-based gene therapy deUvery system is used to deUver polynucleotides encoding RMEP to cells which have one or more genetic abnormaUties with respect to the expression of RMEP. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. RepUcation defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent Number 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P. A et al. (1999) Anna Rev. Nutr. 19:511-544; and Verma, I.M. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference hereia
In another alternative, a herpes-based, gene therapy delivery system is used to dehver polynucleotides encoding RMEP to target cells which have one or more genetic abnormahties with respect to the expression of RMEP. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing RMEP to cells of the central nervous system, for which HSV has a tropism The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1 -based vector has been used to dehver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res.169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent Number 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent Number 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al. (1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.
In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deUver polynucleotides encoding RMEP to target cells. The biology of the prototypic alphavirus, SemUki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K-J. Li (1998) Curr. Opia Biotech. 9:464-469). During alphavirus RNA rephcation, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA rephcates to higher levels than the full-length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for RMEP into the alphavirus genome in place of the capsid-coding region results in the production of a large number of RMEP-coding RNAs and the synthesis of high levels of RMEP in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the abihty to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic repUcation of alphaviruses can be altered to suit the needs of the gene therapy appUcation (Dryga, S.A et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of RMEP into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transductioa The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.
OUgonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expressioa Similarly, inhibition can be achieved using triple hehx base-pairing methodology. Triple hehx pairing is useful because it causes inhibition of the abiUty of the double heUx to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, ML Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding RMEP.
Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA GUU, and GUC Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oUgonucleotide inoperable. The suitabiUty of candidate targets may also be evaluated by testing accessibihty to hybridization with complementary oUgonucleotides using ribonuclease protection assays. Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oUgonucleotides such as soUd phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding RMEP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell Unes, cells, or tissues.
RNA molecules may be modified to increase intracellular stabihty and half-life. Possible modifications include, but are not hmited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase hnkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases. An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding RMEP. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oUgonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased RMEP expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding RMEP may be therapeutically useful, and in the treament of disorders associated with decreased RMEP expression or activity, a compound which specifically promotes expression of the polynucleotide encoding RMEP may be therapeutically useful.
At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding RMEP is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding RMEP are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding RMEP. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5.932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).
Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. DeUvery by transfectioa by Uposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K et al. (1997) Nat. Biotechnol. 15:462-466.)
Any of the therapeutic methods described above may be apphed to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
An additional embodiment of the invention relates to the administration of a pharmaceutical composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack PubUshing, Easton PA). Such pharmaceutical compositions may consist of RMEP, antibodies to RMEP, and mimetics, agonists, antagonists, or inhibitors of RMEP.
The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not Umited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, inttaventricular, pulmonary, transdermal, subcutaneous, inttaperitoneal, inttanasal, enteral, topical, subhngual, or rectal means.
Pharmaceutical compositions for pulmonary administration may be prepared in Uquid or dry powder form. These compositions are generally aerosoUzed immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol deUvery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical deUvery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary deUvery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers. Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capabiUty of those skilled in the art.
SpeciaUzed forms of pharmaceutical compositions may be prepared for direct inttacellular delivery of macromolecules comprising RMEP or fragments thereof. For example, hposome preparations containing a cell-impermeable macromolecule may promote cell fusion and inttacellular deUvery of the macromolecule. Alternatively, RMEP or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 proteia Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572). For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. A therapeutically effective dose refers to that amount of active ingredient, for example RMEP or fragments thereof, antibodies of RMEP, and agonists, antagonists or inhibitors of RMEP, which ameUorates the symptoms or conditioa Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED50 (the dose therapeutically effective in 50% of the population) or LD50 (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD50/ED50 ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED50 with Uttle or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administtatioa
The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combinations), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-Ufe and clearance rate of the particular formulatioa
Normal dosage amounts may vary from about 0.1 μg to 100,000 μg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the Uterature and generally available to practitioners in the art. Those skiUed in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, deUvery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc. DIAGNOSTICS
In another embodiment, antibodies which specifically bind RMEP may be used for the diagnosis of disorders characterized by expression of RMEP, or in assays to monitor patients being treated with RMEP or agonists, antagonists, or inhibitors of RMEP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for RMEP include methods which utilize the antibody and a label to detect RMEP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
A variety of protocols for measuring RMEP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of RMEP expressioa Normal or standard values for RMEP expression are estabUshed by combining body fluids or cell extracts taken from normal mammaUan subjects, for example, human subjects, with antibody to RMEP under conditions suitable for complex formatioa The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of RMEP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values estabUshes the parameters for diagnosing disease.
In another embodiment of the invention, the polynucleotides encoding RMEP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of RMEP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of RMEP, and to monitor regulation of RMEP levels during therapeutic interventioa
In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding RMEP or closely related molecules may be used to identify nucleic acid sequences which encode RMEP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding RMEP, alleUc variants, or related sequences. Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the RMEP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO: 14-26 or from genomic sequences including promoters, enhancers, and introns of the RMEP gene.
Means for producing specific hybridization probes for DNAs encoding RMEP include the cloning of polynucleotide sequences encoding RMEP or RMEP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32P or 35S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin couphng systems, and the Uke.
Polynucleotide sequences encoding RMEP may be used for the diagnosis of disorders associated with expression of RMEP. Examples of such disorders include, but are not hmited to, a nervous system disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other exttapyramidal disorders, amyottophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyeUnating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative inttacranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease; prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Sttaussler-Scheinker syndrome; fatal famiUal insomnia, nutritional and metaboUc diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorder of the central nervous system, cerebral palsy, a neuroskeletal disorder, an autonomic nervous system disorder, a cranial nerve disorder, a spinal cord disease, muscular dystrophy and other neuromuscular disorder, a peripheral nervous system disorder, dermatomyositis and polymyositis; inherited, metaboUc, endocrine, and toxic myopathy; myasthenia gravis, periodic paralysis; a mental disorder including mood, anxiety, and schizophrenic disorders; seasonal affective disorder (SAD); akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder, an autoimmune/inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison' s disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophiha, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and exttacorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus . The polynucleotide sequences encoding RMEP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pia and multiformat ELISA-like assays; and in microarrays utiUzing fluids or tissues from patients to detect altered RMEP expressioa Such quaUtative or quantitative methods are well known in the art.
In a particular aspect, the nucleotide sequences encoding RMEP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding RMEP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding RMEP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in cUnical trials, or to monitor the treatment of an individual patient.
In order to provide a basis for the diagnosis of a disorder associated with expression of RMEP, a normal or standard profile for expression is estabhshed. This may be accompUshed by combining body fluids or cell exttacts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding RMEP, under conditions suitable for hybridization or amphficatioa Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to estabhsh the presence of a disorder.
Once the presence of a disorder is estabhshed and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject The results obtained from successive assays may be used to show the efficacy of tteatment over a period ranging from several days to months.
With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive tteatment earUer thereby preventing the development or further progression of the cancer.
Additional diagnostic uses for oligonucleotides designed from the sequences encoding RMEP may involve the use of PCR. These ohgomers may be chemically synthesized, generated enzymatically, or produced in vitro. OUgomers will preferably contain a fragment of a polynucleotide encoding
RMEP, or a fragment of a polynucleotide complementary to the polynucleotide encoding RMEP, and will be employed under optimized conditions for identification of a specific gene or conditioa OUgomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences. In a particular aspect, oUgonucleotide primers derived from the polynucleotide sequences encoding RMEP may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not hmited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding RMEP are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the Uke. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electtophoresis in non-denaturing gels. In fSCCP, the oUgonucleotide primers are fluorescently labeled, which allows detection of the ampUmers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed in sihco SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer- based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASS ARRAY system (Sequenom, Inc., San Diego CA).
Methods which may also be used to quantify the expression of RMEP include radiolabehng or biotinylating nucleotides, coampUfication of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the ohgomer or polynucleotide of interest is presented in various dilutions and a specttophotomettic or colorimettic response gives rapid quantitatioa In further embodiments, oUgonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described in Seilhamer, J.J. et al., "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484, incorporated herein by reference. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expressioa and to develop and monitor the activities of therapeutic agents in the tteatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile. In another embodiment, antibodies specific for RMEP, or RMEP or fragments thereof may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above. Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g.,
Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT apphcation W095/251116; Shalon, D. et al. (1995) PCT apphcation WO95/35505; Heller, R.A et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150- 2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarrays are well known and thoroughly described in DNA Microarravs: A Practical Approach. M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference.
In another embodiment of the invention, nucleic acid sequences encoding RMEP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA libraries. (See, e.g., Harringtoa J-J- et al. (1997) Nat. Genet. 15:345-355; Price, CM. (1993) Blood Rev. 7:127-134; and Trask, BJ. (1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP). (See, e.g., Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.)
Fluorescent in situ hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online MendeUan Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding RMEP on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.
In situ hybridization of chromosomal preparations and physical mapping techniques, such as Unkage analysis using estabUshed chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammaUan species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not knowa This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely locaUzed by genetic Unkage to a particular genomic region, e.g., ataxia-telangiectasia to 1 lq22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigatioa (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to ttanslocation, inversion, etc., among normal, carrier, or affected individuals.
In another embodiment of the invention, RMEP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening Ubraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a sohd support, borne on a cell surface, or located intracellularly. The formation of binding complexes between RMEP and the agent being tested may be measured.
Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT apphcation WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a soUd substrate. The test compounds are reacted with RMEP, or fragments thereof, and washed. Bound RMEP is then detected by methods well known in the art. Purified RMEP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neuttaUzing antibodies can be used to capture the peptide and immobiUze it on a soUd support. In another embodiment, one may use competitive drug screening assays in which neuttaUzing antibodies capable of binding RMEP specifically compete with a test compound for binding RMEP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with RMEP.
In additional embodiments, the nucleotide sequences which encode RMEP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not hmited to, such properties as the triplet genetic code and specific base pair interactions.
Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illusttative, and not limitative of the remainder of the disclosure in any way whatsoever.
The disclosures of all patents, applications, and pubUcations mentioned above and below, in particular U.S. Ser. No. 60/139,922, are hereby expressly incorporated by reference.
EXAMPLES
I. Construction of cDNA Libraries
RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most Ubraries, poly(A+) RNA was isolated using oUgo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).
In some cases, Sttatagene was provided with RNA and constructed the corresponding cDNA Ubraries. Otherwise, cDNA was synthesized and cDNA Ubraries were constructed with the UNIZAP vector system (Sttatagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oUgo d(T) or random primers. Synthetic oUgonucleotide adapters were Ugated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most hbraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were hgated into compatible restriction enzyme sites of the polyUnker of a suitable plasmid, e.g., PBLUESCRD plasmid (Sttatagene), PSPORT1 plasmid (Life Technologies), pcDNA2.1 plasmid (Invitrogen, Carlsbad CA), or pINCY plasmid (Incyte Genomics, Palo Alto CA). Recombinant plasmids were transformed into competent E. coh cells including XLl-Blue, XLl-BlueMRF, or SOLR from Sttatagene or DH5α, DH10B, or ElecttoMAX DH10B from Life Technologies.
II. Isolation of cDNA Clones
Plasmids obtained as described in Example I were recovered from host cells by in vivo excision using the UNIZAP vector system (Sttatagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E. AL. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C
Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cychng steps were carried out in a single reaction mixture. Samples were processed and stored in 384- well plates, and the concentration of ampUfied plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).
III. Sequencing and Analysis
Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (PE Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) Uquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (PE Biosystems). Electtophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (PE Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VI.
The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utihze algorithms well known to those skilled in the art. Table 5 summarizes the tools, programs, and algorithms used and provides apphcable descriptions, references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where apphcable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence aUgnments were generated using the default parameters specified by the clustal algorithm as incorporated into the MEGALIGN multisequence ahgnment program (DNASTAR), which also calculates the percent identity between aUgned sequences.
The polynucleotide sequences were vahdated by removing vector, Unker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of pubUc databases such as the GenBank primate, rodent, mammaUaa vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation using programs based on BLAST, FAST A, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) Curr. Opia Struct. Biol. 6:361-365.)
The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO: 14-26. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above. IV. Analysis of Polynucleotide Expression
Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel, 1995, supra, ch. 4 and 16.)
Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:
BLAST Score x Percent Identity 5 x minimum {length(Seq. 1), length(Seq. 2)}
The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normahzed value between 0 and 100, and is calculated as follows: the BLAST score is multipUed by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST aUgnment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.
The results of northern analyses are reported as a percentage distribution of Ubraries in which the transcript encoding RMEP occurred. Analysis involved the categorization of cDNA Ubraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation, trauma, cell prohferation, neurological, and pooled. For each category, the number of Ubraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3. V. Chromosomal Mapping of RMEP Encoding Polynucleotides
The cDNA sequences which were used to assemble SEQ ID NO: 14 through 26 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith- Waterman algorithm. Sequences from these databases that matched SEQ ID NO: 14 through 26 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 5). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genέthon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.
The genetic map locations of SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, and SEQ ID NO:26 are described in The Invention as ranges, or intervals, of human chromosomes. More than one map location is reported for SEQ ID NO: 15, indicating that previously mapped sequences having similarity, but not complete identity, to SEQ ID NO: 15 were assembled into their respective clusters. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.
VI. Extension of RMEP Encoding Polynucleotides
The full length nucleic acid sequences of SEQ ID NO: 14-26 were produced by extension of an appropriate fragment of the full length molecule using oUgonucleotide primers designed from this fragment. One primer was synthesized to initiate 5 ' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72°C Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
Selected human cDNA Ubraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
High fidelity ampUfication was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg2+, (NH4)2S04, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Sttatagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68 °C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1 : 94CC, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68 °C, 5 min; Step 7: storage at 4°C
The concenttation of DNA in each well was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in IX TE and 0.5 μl of undiluted PCR product into each well of an opaque fiuorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DN A 5 μl to 10 μl ahquot of the reaction mixture was analyzed by electtophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence. The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WT), and sonicated or sheared prior to reUgation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concenttation (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were rehgated using T4 Ugase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham
Pharmacia Biotech), treated with Pfu DNA polymerase (Sttatagene) to fill-in restriction site overhangs, and ttansfected into competent E. coU cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37 °C in 384-well plates in LB/2x carb Uquid media. The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase
(Amersham Pharmacia Biotech) and Pfu DNA polymerase (Sttatagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reampUfied using the same conditions as described above. Samples were diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (PE Biosystems).
In like manner, the polynucleotide sequences of SEQ ID NO: 14-26 are used to obtain 5' regulatory sequences using the procedure above, along with oligonucleotides designed for such extension, and an appropriate genomic Ubrary.
VII. Labeling and Use of Individual Hybridization Probes
Hybridization probes derived from SEQ ID NO: 14-26 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeUng of oUgonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. OUgonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oUgomer, 250 μCi of [γ-32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An ahquot containing 107 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).
The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nyttan Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared. VIII. Microarrays
The Unkage or synthesis of array elements upon a microarray can be achieved utilizing photoUthography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, supra), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and sohd with a non-porous surface (Schena (1999), supra). Suggested substtates include sihcon, silica, glass sUdes, glass chips, and sihcon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shaloa D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)
Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oUgomers thereof may comprise the elements of the microarray. Fragments or oUgomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser desorbtion and mass spectrometry may be used for detection of hybridizatioa The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below. Tissue or Cell Sample Preparation
Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)+ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)+ RNA sample is reverse transcribed using MMLV reverse-ttanscriptase, 0.05 pg/μl oligo-(dT) primer (21mer), IX first strand buffer, 0.03 units/μl RNase inhibitor, 500 μM dATP, 500 μM dGTP, 500 μM dTTP, 40 μM dCTP, 40 μM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse ttanscription reaction is performed in a 25 ml volume containing 200 ng poly(A)+ RNA with GEMBRIGHT kits (Incyte). Specific conttol poly(A)+ RNAs are synthesized by in vitto ttanscription from non-coding yeast genomic DNA. After incubation at 37 °C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85 °C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 μl 5X SSC/0.2% SDS. Microarray Preparation Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 μg. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).
Purified array elements are immobilized on polymer-coated glass slides. Glass microscope sUdes (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C oven.
Array elements are apphed to the coated glass substrate using a procedure described in US Patent No. 5,807,522, incorporated herein by reference. 1 μl of the array element DNA, at an average concenttation of 100 ng/μl, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.
Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Sttatagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60 °C followed by washes in 0.2% SDS and distilled water as before. Hybridization
Hybridization reactions contain 9 μl of sample mixture consisting of 0.2 μg each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65 °C for 5 minutes and is aUquoted onto the microarray surface and covered with an 1.8 cm2 coverslip. The arrays are transferred to a waterproof chamber having a cavity just sUghtiy larger than a microscope shde. The chamber is kept at 100% humidity internally by the addition of 140 μl of 5X SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60 °C The arrays are washed for 10 min at 45 °C in a first wash buffer (IX SSC, 0.1% SDS), three times for 10 minutes each at 45 CC in a second wash buffer (0.1X SSC), and dried. Detection
Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral Unes at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster- scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.
In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously. The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA conttol species added to the sample mixture at a known concenttation. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and conttol cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the caUbrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore' s emission spectrum. A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).
IX. Complementary Polynucleotides Sequences complementary to the RMEP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring RMEP. Although use of oUgonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oUgonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of RMEP. To inhibit ttanscription, a complementary ohgonucleotide is designed from the most unique 5 ' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary ohgonucleotide is designed to prevent ribosomal binding to the RMEP-encoding transcript.
X. Expression of RMEP
Expression and purification of RMEP is achieved using bacterial or virus-based expression systems. For expression of RMEP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not hmited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express RMEP upon induction with isopropyl beta-D- thiogalactopyranoside (IPTG). Expression of RMEP in eukaryotic cells is achieved by infecting insect or mammalian cell Unes with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding RMEP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)
In most expression systems, RMEP is synthesized as a fusion protein with, e.g., glutathione S- ttansferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma iaponicum. enables the purification of fusion proteins on immobiUzed glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from RMEP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6- His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified RMEP obtained by these methods can be used directly in the assays shown in Examples X and XIV. XI. Demonstration of RMEP Activity
RMEP RNA-binding activity is demonstrated by a polyacrylamide gel mobiUty-shift assay. In preparation for this assay, RMEP is expressed by transforming a mammalian cell line such as COS7, HeLa or CHO with a eukaryotic expression vector containing RMEP cDNA. The cells are incubated for 48-72 hours after transformation under conditions appropriate for the cell line to allow expression and accumulation of RMEP. Exttacts containing solubilized proteins can be prepared from cells expressing RMEP by methods well known in the art. Portions of the extract containing RMEP are added to [32P] -labeled RNA. Radioactive RNA can be synthesized in vitro by techniques well known in the art. The mixtures are incubated at 25 °C in the presence of RNase inhibitors under buffered conditions for 5-10 minutes. After incubation, the samples are analyzed by polyacrylamide gel electrophoresis followed by autoradiography. The presence of a band on the autoradiogram indicates the formation of a complex between RMEP and the radioactive transcript. A band of similar mobility will not be present in samples prepared using control exttacts prepared from unttansformed cells.
Alternatively, RMEP, or biologically active fragments thereof, are labeled with 125I Bolton-Hunter reagent and tested for interaction with candidate RNA metabohsm molecules. (See, e.g., Bolton et al. (1973) Biocheia J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled RMEP, washed, and any wells with labeled RMEP complex are assayed. Data obtained using different concentrations of RMEP are used to calculate values for the number, affinity, and association of RMEP with the candidate molecules.
Alternatively, molecules interacting with RMEP are analyzed using the yeast two-hybrid system as described in Fields, S. and Song, O. (1989) Nature 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (CLONTECH). XII. Functional Assays
RMEP function is assessed by expressing the sequences encoding RMEP at physiologically elevated levels in mammaUan cell culture systems. cDNA is subcloned into a mammaUan expression vector containing a strong promoter that drives high levels of cDNA expressioa Vectors of choice include pCMV SPORT plasmid (Life Technologies) and pCR3.1 plasmid (Invittogen), both of which contain the cytomegalovirus promoter. 5-10 μg of recombinant vector are transiently ttansfected into a human cell Une, for example, an endothehal or hematopoietic cell Une, using either liposome formulations or electtoporatioa 1-2 μg of an additional plasmid containing sequences encoding a marker protein are co-ttansfected. Expression of a marker protein provides a means to distinguish ttansfected cells from nonttansfected cells and is a rehable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometty (FCM), an automated, laser optics- based technique, is used to identify ttansfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward Ught scatter and 90 degree side Ught scatter; down- regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and inttacellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometty are discussed in Ormerod, M.G. (1994) Flow Cvtometrv. Oxford, New York NY.
The influence of RMEP on gene expression can be assessed using highly purified populations of cells ttansfected with sequences encoding RMEP and either CD64 or CD64-GFP. CD64 and CD64- GFP are expressed on the surface of ttansfected cells and bind to conserved regions of human immunoglobuUn G (IgG). Transfected cells are efficiently separated from nonttansfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding RMEP and other genes of interest can be analyzed by northern analysis or microarray techniques.
XIII. Production of RMEP Specific Antibodies
RMEP substantially purified using polyacrylamide gel electtophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols. Alternatively, the RMEP amino acid sequence is analyzed using LASERGENE software
(DNASTAR) to determine regions of high immunogenicity, and a corresponding oUgopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.) Typically, oUgopeptides of about 15 residues in length are synthesized using an ABI 431 A peptide synthesizer (PE Biosystems) using FMOC chemistry and coupled to KLH (Sigma- Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oUgopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-RMEP activity by, for example, binding the peptide or RMEP to a substtate, blocking with 1 % BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.
XIV. Purification of Naturally Occurring RMEP Using Specific Antibodies Naturally occurring or recombinant RMEP is substantially purified by immunoaffinity chromatography using antibodies specific for RMEP. An immunoaffinity column is constructed by covalently coupling anti-RMEP antibody to an activated chromatographic resin, such as
CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the couphng, the resin is blocked and washed according to the manufacturer's instructions.
Media containing RMEP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of RMEP (e.g., high ionic sttength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/RMEP binding
(e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaottope, such as urea or thiocyanate ion), and RMEP is collected.
XV. Identification of Molecules Which Interact with RMEP
RMEP, or biologically active fragments thereof, are labeled with 125I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled RMEP, washed, and any wells with labeled RMEP complex are assayed. Data obtained using different concentrations of RMEP are used to calculate values for the number, affinity, and association of RMEP with the candidate molecules. Alternatively, molecules interacting with RMEP are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989, Nature 340:245-246), or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
RMEP may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-uiroughput manner to determine all interactions between the proteins encoded by two large Ubraries of genes (Nandabalan, K et al. (2000) U.S. Patent No. 6,057,101).
Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly Umited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.
Table 1
Figure imgf000066_0001
Tabl e 1 (cont'd)
Polypeptide Nucleotide Clone ID Library Fragments SEQ ID NO: SEQ ID NO:
13 26 5522684 LI RDIR01 118111R1 (MUSCNOTOl), 1303714F1 (PLACNOT02), 5522684H1 (LIVRDIR01)
Table 2
Figure imgf000068_0001
Table 2 Cont .
Figure imgf000069_0001
Table 3
•o
Figure imgf000070_0001
Table 3 Cont .
Figure imgf000071_0001
Table 4
Figure imgf000072_0001
Table 4 Cont .
Figure imgf000073_0001
Table 4 Cont .
Figure imgf000074_0001
Table 5
Program Description Reference Parameter Threshold
ABI FACTURA A program that removes vector sequences and masks PE Biosystems, Foster City, CA. ambiguous bases in nucleic acid sequences.
ABI/PARACEL FDF A Fast Data Finder useful in comparing and annotating PE Biosystems, Foster City, CA; Mismatch <50% amino acid or nucleic acid sequences. Paracel Inc., Pasadena, CA.
ABI AutoAssembler A program that assembles nucleic acid sequences. PE Biosystems, Foster City, CA.
BLAST A Basic Local Alignment Search Tool useful in sequence Altschul, S.F. et al. (1990) J. Mol. Biol. ESTs: Probability value= 1.0E-8 or similarity search for amino acid and nucleic acid 215:403-410; Altschul, S.F. et al. (1997) less sequences. BLAST includes five functions: blastp, blastn, Nucleic Acids Res. 25:3389-3402. Full Length sequences: Probability blastx, tblastn, and tblastx. value= l .OE-lO or less
FASTA A Pearson and Lipman algorithm that searches for Pearson, W.R. and D.J. Lipman ( 1988) Proc. ESTs: fasta E value= 1.06E-6 similarity between a query sequence and a group of Natl. Acad Sci. USA 85:2444-2448; Pearson, Assembled ESTs: fasta Identity= sequences of the same type. FASTA comprises as least W.R. ( 1990) Methods Enzymol. 183:63-98; 95% or greater and five functions: fasta, tfasta, fastx, tfastx, and ssearch. and Smith, T.F. and M.S. Waterman (1981) Match length=200 bases or greater; Adv. Appl. Math. 2:482-489. fastx E value=l .0E-8 or less Full Length sequences: fastx score= 100 or greater
BLIMPS A BLocks IMProved Searcher that matches a sequence Henikoff, S. and J.G. Henikoff (1991) Nucleic Score=1000 or greater; against those in BLOCKS, PRINTS, DOMO, PRODOM, Acids Res. 19:6565-6572; Henikoff, J.G. and Ratio of Score/Strength = 0.75 or and PFAM databases to search for gene families, sequence S. Henikoff (1996) Methods Enzymol. larger; and, if applicable, homology, and structural fingerprint regions. 266:88-105; and Attwood, T.K. et al. (1997) J. Probability value= 1.0E-3 or less Chem. Inf. Co put. Sci. 37:417-424.
HMMER An algorithm for searching a query sequence against Krogh, A. et al. ( 1994) J. Mol. Biol., Score= 10-50 bits for PFAM hits, hidden Markov model (HMM)-based databases of protein 235: 1501-1531 ; Sonnhammer, E.L.L. et al. depending on individual protein family consensus sequences, such as PFAM. (1988) Nucleic Acids Res. 26:320-322. families
Table 5 (cont.)
Program Description Reference Parameter Threshold
ProfileScan An algorithm that searches for structural and sequence Gribskov, M. et al. (1988) CABIOS 4:61-66; Normalized quality score≥GCG- motifs in protein sequences that match sequence patterns Gribskov, M. et al. ( 1989) Methods Enzymol. specified "HIGH" value for that defined in Prosite. 183: 146-159; Bairoch, A. et al. (1997) particular Prosite motif. Nucleic Acids Res. 25:217-221. Generally, score=l .4-2.1.
Phred A base-calling algorithm that examines automated Ewing, B. et al. ( 1998) Genome Res. sequencer traces with high sensitivity and probability. 8: 175-185; Ewing, B. and P. Green ( 1998) Genome Res . 8 : 186- 194.
Phrap A Phils Revised Assembly Program including SWAT and Smith, T.F. and M.S. Waterman (1981) Adv. Score= 120 or greater; CrossMatch, programs based on efficient implementation Appl. Math. 2:482-489; Smith, T.F. and M.S. Match length= 56 or greater of the Smith-Waterman algorithm, useful in searching Waterman (1981 ) J. Mol. Biol. 147: 195-197; sequence homology and assembling DNA sequences. and Green, P., University of Washington, Seattle, WA.
Consed A graphical tool for viewing and editing Phrap assemblies. Gordon, D. et al. ( 1998) Genome Res. 8:195-202.
SPScan A weight matrix analysis program that scans protein Nielson, H. et al. (1997) Protein Engineering Score=3.5 or greater sequences for the presence of secretory signal peptides. 10: 1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12:431-439.
Motifs A program that searches amino acid sequences for patterns Bairoch, A. et al. (1997) Nucleic Acids Res. that matched those defined in Prosite. 25:217-221 ; Wisconsin Package Program Manual, version 9, page M51 -59, Genetics Computer Group, Madison, WI.

Claims

What is claimed is:
1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of: a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1 , SEQ ID
NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:l l, SEQ ID NO:12 and SEQ ID NO:13, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO.10, SEQ ID NO:ll, SEQ ID NO: 12 and SEQ ID NO: 13, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:ll, SEQ ID NO:12 and SEQ ID NO: 13, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:l l, SEQ ID NO:12 and SEQ ID NO:13.
2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO: 1 ,
SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:l l, SEQ ID NO:12 and SEQ ID NO:13.
3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide encoding a polypeptide of claim 2.
5. An isolated polynucleotide of claim 4 selected from the group consisting of SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26.
6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
7. A cell transformed with a recombinant polynucleotide of claim 6.
8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
9. A method for producing a polypeptide of claim 1, the method comprising: a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim l. and b) recovering the polypeptide so expressed.
10. An isolated antibody which specifically binds to a polypeptide of claim 1.
11. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of: a) a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID
NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d).
12. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 11.
13. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising: a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
14. A method of claim 13, wherein the probe comprises at least 60 contiguous nucleotides.
15. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11 , the method comprising: a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
16. A pharmaceutical composition comprising an effective amount of a polypeptide of claim
1 and a pharmaceutically acceptable excipient.
17. A pharmaceutical composition of claim 16, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO:l l, SEQ ID NO:12 and SEQ ID NO:13.
18. A method for treating a disease or condition associated with decreased expression of functional RMEP, comprising administering to a patient in need of such treatment the pharmaceutical composition of claim 16.
19. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising: a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting agonist activity in the sample.
20. A pharmaceutical composition comprising an agonist compound identified by a method of claim 19 and a pharmaceutically acceptable excipient
21. A method for treating a disease or condition associated with decreased expression of functional RMEP, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 20.
22. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1 , the method comprising: a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting antagonist activity in the sample.
23. A pharmaceutical composition comprising an antagonist compound identified by a method of claim 22 and a pharmaceutically acceptable excipient.
24. A method for treating a disease or condition associated with overexpression of functional RMEP, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 23.
25. A method of screening for a compound that specifically binds to the polypeptide of claim 1, said method comprising the steps of: a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.
26. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, said method comprising: a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1 , b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.
27. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising: a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
PCT/US2000/016644 1999-06-17 2000-06-15 Human rna metabolism proteins (rmep) WO2000078952A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU54947/00A AU5494700A (en) 1999-06-17 2000-06-15 Rna metabolism proteins
JP2001505694A JP2003527083A (en) 1999-06-17 2000-06-15 RNA metabolism protein
EP00939941A EP1192250A2 (en) 1999-06-17 2000-06-15 Human rna metabolism proteins (rmep)
CA002375407A CA2375407A1 (en) 1999-06-17 2000-06-15 Rna metabolism proteins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13992299P 1999-06-17 1999-06-17
US60/139,922 1999-06-17

Publications (3)

Publication Number Publication Date
WO2000078952A2 true WO2000078952A2 (en) 2000-12-28
WO2000078952A3 WO2000078952A3 (en) 2002-01-17
WO2000078952A8 WO2000078952A8 (en) 2002-05-30

Family

ID=22488911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/016644 WO2000078952A2 (en) 1999-06-17 2000-06-15 Human rna metabolism proteins (rmep)

Country Status (5)

Country Link
EP (1) EP1192250A2 (en)
JP (1) JP2003527083A (en)
AU (1) AU5494700A (en)
CA (1) CA2375407A1 (en)
WO (1) WO2000078952A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002744A1 (en) * 2001-06-28 2003-01-09 Jin-Woo Kim Human cervical cancer 2 proto-oncogene and protein encoded therein
WO2004015082A2 (en) 2002-08-09 2004-02-19 Theravance, Inc. Oncokinase fusion polypeptides associated with hyperproliferative and related disorders, nucleic acids encoding the same and methods for detecting and identifying the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023744A1 (en) * 1996-11-26 1998-06-04 Incyte Pharmaceuticals, Inc. Novel human rna-binding protein

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023744A1 (en) * 1996-11-26 1998-06-04 Incyte Pharmaceuticals, Inc. Novel human rna-binding protein

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EMBL ACCESSION NUMBER Q9Y2Z6; SEQUENCE CHARACTERISATION CGI-07 PROTEIN. Homo sapiens (Human). DT 01-NOV-1999 (TrEMBLrel. 12, Created) Lin W.-C.; "Comparative gene cloning: Identification of novel human genes with C. elegans proteome as template."; XP002157664 *
See also references of EP1192250A2 *
WILSON R ET AL: "2.2 MB OF CONTIGUOUS NUCLEOTIDE SEQUENCE FROM CHROMOSOME III OF C. ELEGANS" NATURE,GB,MACMILLAN JOURNALS LTD. LONDON, vol. 368, no. 6466, 3 March 1994 (1994-03-03), pages 32-38, XP002029739 ISSN: 0028-0836 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002744A1 (en) * 2001-06-28 2003-01-09 Jin-Woo Kim Human cervical cancer 2 proto-oncogene and protein encoded therein
WO2004015082A2 (en) 2002-08-09 2004-02-19 Theravance, Inc. Oncokinase fusion polypeptides associated with hyperproliferative and related disorders, nucleic acids encoding the same and methods for detecting and identifying the same
EP1576129A2 (en) * 2002-08-09 2005-09-21 Theravance, Inc. Oncokinase fusion polypeptides associated with hyperproliferative and related disorders, nucleic acids encoding the same and methods for detecting and identifying the same
JP2006515983A (en) * 2002-08-09 2006-06-15 セラヴァンス インコーポレーテッド Oncokinase fusion polypeptides associated with hyperproliferation and related diseases, nucleic acids encoding the same, and methods for detecting and identifying the same
EP1576129A4 (en) * 2002-08-09 2008-01-23 Theravance Inc Oncokinase fusion polypeptides associated with hyperproliferative and related disorders, nucleic acids encoding the same and methods for detecting and identifying the same
US7585653B2 (en) 2002-08-09 2009-09-08 Theravance, Inc. Oncokinase fusion polypeptides associated with hyperproliferative and related disorders, nucleic acids encoding the same and methods for detecting and identifying the same
US7604944B2 (en) 2002-08-09 2009-10-20 Theravance, Inc. Oncokinase fusion polypeptides associated with hyperproliferative and related disorders, nucleic acids encoding the same and methods for detecting and identifying the same

Also Published As

Publication number Publication date
EP1192250A2 (en) 2002-04-03
JP2003527083A (en) 2003-09-16
WO2000078952A3 (en) 2002-01-17
WO2000078952A8 (en) 2002-05-30
CA2375407A1 (en) 2000-12-28
AU5494700A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
CA2431493A1 (en) Aminoacyl trna synthetases
WO2001072777A2 (en) Human transcription factors
WO2001016334A2 (en) Human hydrolytic enzymes
WO2000070047A2 (en) Full-length molecules expressed in human tissues
WO2001019860A2 (en) Proteins associated with cell differentiation
WO2000078954A2 (en) Human transcriptional regulator proteins
WO2001083524A2 (en) Rna metabolism proteins
EP1299546A2 (en) Aminoacyl trna synthetases
WO2002048362A2 (en) Embryogenesis associated proteins
WO2000078952A2 (en) Human rna metabolism proteins (rmep)
WO2002046413A2 (en) Molecules for disease detection and treatment
EP1124951A2 (en) Human sorting nexins
EP1242590A2 (en) Human lyases and associated proteins
WO2001070807A2 (en) G-protein associated molecules
WO2002064792A2 (en) Molecules for disease detection and treatment
CA2425767A1 (en) Lipocalins
EP1254241A2 (en) Phosphatases
WO2002004510A2 (en) Gtp-binding proteins
US20050059110A1 (en) Human nervous system-associated proteins
EP1196567A2 (en) Human immune response molecules
WO2002030966A2 (en) Alzheimer&#39;s disease-associated proteins
CA2417676A1 (en) Sequences for integrin alpha-8
EP1196569A2 (en) Electron transfer proteins
WO2002059283A2 (en) Nucleic acid modification enzymes
EP1200586A2 (en) Human nervous system-associated proteins

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase in:

Ref document number: 2375407

Country of ref document: CA

Ref country code: CA

Ref document number: 2375407

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase in:

Ref country code: JP

Ref document number: 2001 505694

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000939941

Country of ref document: EP

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWP Wipo information: published in national office

Ref document number: 2000939941

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

AK Designated states

Kind code of ref document: C1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i
WWW Wipo information: withdrawn in national office

Ref document number: 2000939941

Country of ref document: EP