WO2000078935A1 - Mevalonate pathway genes - Google Patents

Mevalonate pathway genes Download PDF

Info

Publication number
WO2000078935A1
WO2000078935A1 PCT/US2000/017262 US0017262W WO0078935A1 WO 2000078935 A1 WO2000078935 A1 WO 2000078935A1 US 0017262 W US0017262 W US 0017262W WO 0078935 A1 WO0078935 A1 WO 0078935A1
Authority
WO
WIPO (PCT)
Prior art keywords
ala
leu
glu
ser
gly
Prior art date
Application number
PCT/US2000/017262
Other languages
French (fr)
Other versions
WO2000078935A9 (en
Inventor
James R. Brown
Michael Gwynn
Thomas B. Mathie
Joseph E. Myers, Jr.
Christopher M. Traini
Stephanie Van Horn
Edwina Imogen Wilding
Original Assignee
Smithkline Beecham Corporation
Smithkline Beecham P.L.C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smithkline Beecham Corporation, Smithkline Beecham P.L.C. filed Critical Smithkline Beecham Corporation
Publication of WO2000078935A1 publication Critical patent/WO2000078935A1/en
Publication of WO2000078935A9 publication Critical patent/WO2000078935A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes

Definitions

  • This invention relates to newly identified polynucleotides and polypeptides, and their production and uses, as well as their variants, agonists and antagonists, and their uses.
  • the invention relates to polynucleotides and polypeptides of the mevalonate-mediated pathway family, as well as their variants, herein referred to as "mevalonate pathway genes," “mevalonate pathway gene polynucleotide(s),” and “mevalonate pathway gene polypeptide(s),” as the case may be.
  • IPP isopentenyl pyrophosphate
  • IPP is a precursor, for example, for the biosynthesis of isoprenoids which are ubiquitous in nature and comprise a family of more than 23,000 natural products, generally composed of repeating five carbon subunits.
  • Many isoprenoids play essential roles in cellular function such as undecaprenol in bacteria which is responsible for transmembrane transport of peptidoglycan precursors, and cholesterol in man.
  • IPP is produced by at least two different pathways, depending upon the organism in question. Biosynthesis of IPP in several species of Gram-negative bacteria, including Escherichia coli (Rohmer, et al., Biochem. J. 295:517-524 (1993), and mycobacteria (Putra, et al, FEMS Microbiol. Lett. 164:169-175 (1998)) has been shown to use a pathway originating from pyruvate and glyceraldehyde 3-phosphate (GAP). In man, IPP is produced by the so called 'mevalonate pathway', which originates with acetate and acetyl CoA. The subject matter of this patent application relates to the discovery of mevalonate pathway genes in certain Gram-positive bacteria.
  • Acetyl CoA is the precursors for the classical mevalonate pathway for the biosynthesis of IPP.
  • a acetyl-CoA acetyltransferase (thiolase), HMG-CoA synthetase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, and mevalonate diphosphate decarboxylase successively act to form 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) (MevA), which is then reduced to mevalonate and subsequently phosphorylated, decarboxylated and dehydrated to form IPP.
  • HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A
  • the present invention relates to mevalonate pathway genes, in particular mevalonate pathway gene polypeptides and mevalonate pathway gene polynucleotides, recombinant materials and methods for their production.
  • the invention relates to methods for using such polypeptides and polynucleotides, including treatment of microbial diseases, amongst others.
  • the invention relates to methods for identifying agonists and antagonists using the materials provided by the invention, and for treating microbial infections and conditions associated with such infections with the identified agonist or antagonist compounds.
  • the invention relates to diagnostic assays for detecting diseases associated with microbial infections and conditions associated with such infections, such as assays for detecting mevalonate pathway gene expression or activity.
  • the invention relates to mevalonate pathway gene polypeptides and polynucleotides as described in greater detail below.
  • the invention relates to polypeptides and polynucleotides of mevalonate pathway genes, that are related by amino acid sequence homology to mevalonate polypeptides from other species.
  • the invention relates especially to mevalonate pathway genes having a high degree of homology to the nucleotide and amino acid sequences set out in Table 1 as SEQ ID NOs: 1-72.
  • the "mevalonate pathway gene family" of the invention means a set of genes encoding a set of polypeptides involved in the production of isopentenyl pyrophosphate from bacteria falling within: the clade of Class II of the phylogenetic tree depicted in Figure 1 comprising the genera Streptococcus, Staphylococcus, and Entercoccus; within the clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 2 comprising the genera Streptococcus, Staphylococcus, or Entercoccus; the clade of Gram- positive bacteria of the phylogenetic tree depicted in Figure 3 comprising the genera Streptococcus, Staphylococcus, or Entercoccus; and a clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 4 comprising the genera Streptococcus, Staphylococcus, or Entercoccus.
  • mevalonate pathway gene(s) refers to a gene of the "mevalonate pathway gene family", defined above.
  • “Mevalonate pathway gene polynucleotide(s)” and “Mevalonate pathway gene polypeptide(s)” means, respectively, a polynucleotide of the invention or polypeptide of the invention, as more particulary set forth elsewhere herein.
  • the invention provides a set of genes encoding a set of polypeptides involved in the production of isopentenyl pyrophosphate from Gram-positive bacteria falling within the clade of Class II of the phylogenetic tree depicted in Figure 1. Still more preferably, the invention provides a set of genes encoding: HMGCoA
  • Reductase isolated from bacteria falling the clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 1 comprising the species Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Entercoccus faecalis, or Enterococcus faecium; encoding HMGCoA Synthase (PksG) isolated from bacteria falling within the clade of Class II of the phylogenetic tree depicted in Figure 2 comprising the species Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus Carnosus, Enterococcus faecalis, or Enterococcus
  • sequences recited in the Sequence Listing below as "DNA” represent an exemplification of the invention, since those of ordinary skill will recognize that such sequences can be usefully employed in polynucleotides in general, including ribopolynucleotides.
  • PksG Staphylococcus aureus HMG-CoA synthase
  • PksG Streptococcus pyogenes HMG-CoA synthetase
  • PksG Staphylococcus epidermidis HMG-CoA synthetase
  • Staphylocccus epidermidis HMG-CoA reductase (MevA) nucleotide sequence polynucleotide sequence [SEQ ID NO: 15].
  • Staphylocccus epidermidis HMG-CoA reductase (MevA) nucleotide sequence polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO: 16].
  • Streptococcus pyogenes HMG-CoA reductase (MevA) nucleotide sequence polynucleotide sequence [SEQ ID NO: 17].
  • Staphylococcus epidermidis mevalonate kinase (MevKl) polynucleotide sequence [SEQ ID NO:27].
  • Staphylococcus haemolyticus mevalonate kinase (MevKl) polynucleotide sequence [SEQ ID NO:29].
  • Staphylococcus aureus mevalonate kinase (MevK2) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:32].
  • Streptococcus pneumoniae mevalonate decarboxylase (MevD) polynucleotide sequence [SEQ ID NO:49].
  • Streptococcus pneumoniae mevalonate decarboxylase (MevD) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:50].
  • PksG Staphylococcus aureus HMG-CoA synthase
  • PksG Staphylococcus aureus HMG-CoA synthase
  • Staphylococcus aureus HMG-CoA reductase (MevA) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:54].
  • Staphylococcus aureus mevalonate kinase (MevK) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:56].
  • a deposit comprising a Streptococcus pneumoniae 0100993 strain has been deposited with the National Collections of Industrial and Marine Bacteria Ltd. (herein "NCIMB"), 23 St. Machar Drive, Aberdeen AB2 1RY, Scotland on 11 April 1996 and assigned deposit number 40794. The deposit was described as Streptococcus pneumoniae 0100993 on deposit.
  • NCIMB National Collections of Industrial and Marine Bacteria Ltd.
  • Streptococcus pneumoniae 0100993 DNA library in E. coli was similarly deposited with the NCIMB and assigned deposit number 40800.
  • the Streptococcus pneumoniae strain deposit is referred to herein as "the deposited strain” or as "the DNA of the deposited strain.”
  • the deposited strain comprises a full length mevalonate pathway gene.
  • the sequence of the polynucleotides comprised in the deposited strain, as well as the amino acid sequence of any polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.
  • a deposit comprising a Staphylococcus aureus WCUH 29 strain has been deposited with the NCIMB), 23 St. Machar Drive, Aberdeen AB2 1RY, Scotland on 11 September 1995 and assigned NCIMB Deposit No. 40771, and referred to as Staphylococcus aureus WCUH29 on deposit.
  • the Staphylococcus aureus strain deposit is referred to herein as "the deposited strain” or as "the DNA of the deposited strain.”
  • the deposited strain comprises a full length mevalonate pathway gene.
  • the sequence of the polynucleotides comprised in the deposited strain, as well as the amino acid sequence of any polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.
  • the deposit of the deposited strain has been made under the terms of the Budapest
  • the deposited strain will be irrevocably and without restriction or condition released to the public upon the issuance of a patent.
  • the deposited strain is provided merely as convenience to those of skill in the art and is not an admission that a deposit is required for enablement, such as that required under 35 U.S.C. ⁇ 112.
  • a license may be required to make, use or sell the deposited strain, and compounds derived therefrom, and no such license is hereby granted.
  • an isolated nucleic acid molecule encoding a mature polypeptide expressible by the Streptococcus pneumoniae 0100993 strain, which polypeptide is comprised in the deposited strain.
  • mevalonate pathway gene polynucleotide sequences in the deposited strain such as DNA and RNA, and amino acid sequences encoded thereby.
  • mevalonate pathway gene polypeptide and polynucleotide sequences isolated from the deposited strain are also provided by the invention.
  • an isolated nucleic acid molecule encoding a mature polypeptide expressible by the Staphylococcus aureus WCUH 29 strain, which polypeptide is comprised in the deposited strain.
  • mevalonate pathway gene polynucleotide sequences in the deposited strain such as DNA and RNA, and amino acid sequences encoded thereby.
  • mevalonate pathway gene polypeptide and polynucleotide sequences isolated from the deposited strain are also provided by the invention.
  • Mevalonate pathway gene polypeptides of the invention is substantially phylogenetically related to other proteins of the mevalonate pathway gene family.
  • Figure 1 shows the phylogenetic analysis of 3 of the disclosed mevonlate pathway proteins.
  • Phylogenetic trees are based on the neighbor-joining (NJ) method as implemented by the program NEIGHBOR of the PHYLIP 3.57c package (Felsenstein, J. 1993. Distributed by the author: http://evolution.genetics.washington. edu/phylip.html, Department of Genetics, University of Washington, Seattle.). The method used to create this phylogenetic tree is described in detail in Example 1.
  • mevalonate pathway genes and “mevalonate pathway gene polypeptides” as well as biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.
  • Among the particularly preferred embodiments of the invention are variants of mevalonate pathway gene polypeptides encoded by naturally occurring alleles of a mevalonate pathway gene.
  • the present invention further provides for an isolated polypeptide that: (a) comprises or consists of an amino acid sequence that has at least 95% identity, most preferably at least 97- 99% or exact identity, to that of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72 over the entire length of said amino acid sequence; (b) a polypeptide encoded by an isolated polynucleotide comprising or consisting of a polynucleotide sequence that has at least 95% identity, even more preferably at least 97-99% or exact identity to SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, and
  • polypeptides of the invention include the polypeptides of Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72] (in particular a mature polypeptide) as well as polypeptides and fragments, particularly those that has a biological activity of a mevalonate pathway gene, and also those that have at least 95% identity to a polypeptide of Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72] and also include portions of such polypeptides with such portion of the polypeptide generally comprising at least 30 amino acids and more preferably at least 50 amino acids.
  • the invention also includes a polypeptide consisting of or comprising a polypeptide of the formula:
  • X-(R 1 ) rn -(R 2 )-(R 3 ) n -Y wherein, at the amino terminus, X is hydrogen, a metal or any other moiety described herein for modified polypeptides, and at the carboxyl terminus, Y is hydrogen, a metal or any other moiety described herein for modified polypeptides, R and R3 are any amino acid residue or modified amino acid residue, m is an integer between 1 and 1000 or zero, n is an integer between 1 and 1000 or zero, and R 2 is an amino acid sequence of the invention, particularly an amino acid sequence selected from Table 1 or modified forms thereof.
  • R 2 is oriented so that its amino terminal amino acid residue is at the left, covalently bound to R ⁇ and its carboxy terminal amino acid residue is at the right, covalently bound to R3.
  • Any stretch of amino acid residues denoted by either Ri or R3, where m and/or n is greater than 1 may be either a heteropolymer or a homopolymer, preferably a heteropolymer.
  • Other preferred embodiments of the invention are provided where m is an integer between 1 and 50, 100 or 500, and n is an integer between 1 and 50, 100, or 500.
  • a polypeptide of the invention is derived from a bacterium of the mevalonate pathway gene family, however, it may preferably be obtained from other organisms of the same taxonomic genus.
  • a polypeptide of the invention may also be obtained, for example, from organisms of the same taxonomic family or order.
  • a fragment is a variant polypeptide having an amino acid sequence that is entirely the same as part but not all of any amino acid sequence of any polypeptide of the invention.
  • fragments may be "free-standing,” or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region in a single larger polypeptide.
  • Preferred fragments include, for example, truncation polypeptides having a portion of an amino acid sequence of Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72], or of variants thereof, such as a continuous series of residues that includes an amino- and/or carboxyl-terminal amino acid sequence.
  • Degradation forms of the polypeptides of the invention produced by or in a host cell, particularly a bacterium of the mevalonate pathway gene family, are also preferred.
  • fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta- sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.
  • Further preferred fragments include an isolated polypeptide comprising an amino acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous amino acids from the amino acid sequence of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72, or an isolated polypeptide comprising an amino acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous amino acids truncated or deleted from such amino acid sequence.
  • Fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention.
  • Polynucleotides It is an object of the invention to provide polynucleotides that encode mevalonate pathway gene polypeptides, particularly polynucleotides that encode a polypeptide herein designated a mevalonate pathway gene.
  • the polynucleotide comprises a region encoding mevalonate pathway gene polypeptides comprising a sequence set out in Table 1 [SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, and 71] that includes a full length gene, or a variant thereof.
  • a full-length gene from the mevalonate pathway gene family is essential to the growth and/or survival of an organism that possesses it, such as a bacteria from the mevalonate pathway gene family.
  • isolated nucleic acid molecules encoding and/or expressing mevalonate pathway gene polypeptides and polynucleotides, particularly mevalonate pathway gene polypeptides and polynucleotides, including, for example, unprocessed RNAs, ribozyme RNAs, mRNAs, cDNAs, genomic DNAs, B- and Z- DNAs.
  • Further embodiments of the invention include biologically, diagnostically, prophylactically, clinically or therapeutically useful polynucleotides and polypeptides, and variants thereof, and compositions comprising the same.
  • Another aspect of the invention relates to isolated polynucleotides, including at least one full length gene, that encodes a mevalonate pathway gene polypeptide having a deduced amino acid sequence of Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72] and polynucleotides closely related thereto and variants thereof.
  • a mevalonate pathway gene polypeptide from a bacterium of the mevalonate pathway gene family comprising or consisting of an amino acid sequence of Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72], or a variant thereof.
  • Table 1 SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72
  • a polynucleotide of the invention encoding mevalonate pathway gene polypeptide may be obtained using standard cloning and screening methods, such as those for cloning and sequencing chromosomal DNA fragments from bacteria using cells from a bacterium of the mevalonate pathway gene family as starting material, followed by obtaining a full length clone.
  • a polynucleotide sequence of the invention such as a polynucleotide sequence given in Table 1 [SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71]
  • a library of clones of chromosomal DNA from a bacteria of the mevalonate pathway gene family in E.coli or some other suitable host is probed with a radiolabeled oligonucleotide, preferably a 17-mer or longer, derived from a partial sequence.
  • Clones carrying DNA identical to that of the probe can then be distinguished using stringent hybridization conditions.
  • sequencing the individual clones thus identified by hybridization with sequencing primers designed from the original polypeptide or polynucleotide sequence it is then possible to extend the polynucleotide sequence in both directions to determine a full length gene sequence.
  • sequencing is performed, for example, using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook, et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).
  • each polynucleotide set out in Table 1 [SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71] was discovered in a DNA library derived from bacteria of the mevalonate pathway gene family.
  • each DNA sequence set out in Table 1 [SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, and 71] contains an open reading frame encoding a protein having about the number of amino acid residues set forth in Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18,
  • the present invention provides for an isolated polynucleotide comprising or consisting of: (a) a polynucleotide sequence that has at least 95% identity, even more preferably at least 97-99% or exact identity to SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, and 71 over the entire length of SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19,
  • polypeptide sequence encoding a polypeptide that has at least 95% identity, even more preferably at least 97-99% or 100% exact, to the amino acid sequence of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72 over the entire length of said amino acid sequence.
  • a polynucleotide encoding a polypeptide of the present invention may be obtained by a process that comprises the steps of screening an appropriate library under stringent hybridization conditions with a labeled or detectable probe consisting of or comprising the sequences of SEQ ID NOs: 1, 3, 5, 7, 9, 1 1 , 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, or a fragment thereof; and isolating a full-length gene and/or genomic clones comprising said polynucleotide sequence.
  • the invention provides a polynucleotide sequence identical over its entire length to a coding sequence (open reading frame) in Table 1 [SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71]. Also provided by the invention is a coding sequence for a mature polypeptide or a fragment thereof, by itself as well as a coding sequence for a mature polypeptide or a fragment in reading frame with another coding sequence, such as a sequence encoding a leader or secretory sequence, a pre-, or pro- or prepro-protein sequence.
  • the polynucleotide of the invention may also comprise at least one non-coding sequence, including for example, but not limited to, at least one non-coding 5' and 3' sequence, such as the transcribed but non- translated sequences, termination signals (such as rho-dependent and rho-independent termination signals), ribosome binding sites, Kozak sequences, sequences that stabilize mRNA, introns, and poiyadenylation signals.
  • the polynucleotide sequence may also comprise additional coding sequence encoding additional amino acids. For example, a marker sequence that facilitates purification of a fused polypeptide can be encoded.
  • the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz, etal, Proc. Natl. Acad. Sci., USA 86: 821-824 (1989), or an HA peptide tag (Wilson, et al., Cell 37: 767 (1984)), both of that may be useful in purifying polypeptide sequence fused to them.
  • Polynucleotides of the invention also include, but are not limited to, polynucleotides comprising a structural gene and its naturally associated sequences that control gene expression.
  • the invention also includes a polynucleotide consisting of or comprising a polynucleotide of the formula: X-(R ⁇ ) m -(R 2 )-(R 3 ) n -Y wherein, at the 5' end of the molecule, X is hydrogen, a metal or a modified nucleotide residue, or together with Y defines a covalent bond, and at the 3' end of the molecule, Y is hydrogen, a metal, or a modified nucleotide residue, or together with X defines the covalent bond, each occurrence of Ri and R3 is independently any nucleic acid residue or modified nucleic acid residue, m is an integer between 1 and 3000 or zero , n is an integer between 1 and 3000 or zero, and R 2 is a nucleic acid sequence or modified nucleic acid sequence of the invention, particularly a nucleic acid sequence selected from Table 1 or a modified nucleic acid sequence thereof.
  • R 2 is oriented so that its 5' end nucleic acid residue is at the left, bound to R ] and its 3' end nucleic acid residue is at the right, bound to R3.
  • Any stretch of nucleic acid residues denoted by either R and/or R 2 , where m and/or n is greater than 1 may be either a heteropolymer or a homopolymer, preferably a heteropolymer.
  • the polynucleotide of the above formula is a closed, circular polynucleotide, that can be a double-stranded polynucleotide wherein the formula shows a first strand to which the second strand is complementary.
  • m and/or n is an integer between 1 and 1000.
  • Other preferred embodiments of the invention are provided where m is an integer between 1 and 50, 100 or 500, and n is an integer between 1 and 50, 100, or 500.
  • a polynucleotide of the invention is derived from a bacterium of the mevalonate pathway gene family, however, it may preferably be obtained from other organisms of the same taxonomic genus.
  • a polynucleotide of the invention may also be obtained, for example, from organisms of the same taxonomic family or order.
  • polynucleotide encoding a polypeptide encompasses polynucleotides that include a sequence encoding a polypeptide of the invention, particularly a bacterial polypeptide and more particularly a polypeptide of a mevalonate pathway gene having an amino acid sequence set out in Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72].
  • polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, polynucleotides interrupted by integrated phage, an integrated insertion sequence, an integrated vector sequence, an integrated transposon sequence, or due to RNA editing or genomic DNA reorganization) together with additional regions, that also may comprise coding and/or non- coding sequences.
  • the invention further relates to variants of the polynucleotides described herein that encode variants of a polypeptide having a deduced amino acid sequence of Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72]. Fragments of polynucleotides of the invention may be used, for example, to synthesize full-length polynucleotides of the invention.
  • polynucleotides encoding mevalonate pathway gene variants that have the amino acid sequence of one of the mevalonate pathway gene polypeptides of Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72] in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, modified, deleted and/or added, in any combination. Especially preferred among these are silent substitutions, additions and deletions, that do not alter the properties and activities of a mevalonate pathway gene polypeptide.
  • Preferred isolated polynucleotide embodiments also include polynucleotide fragments, such as a polynucleotide comprising a nuclic acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous nucleic acids from the polynucleotide sequence of SEQ ID NOs:l , 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, or an polynucleotide comprising a nucleic acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous nucleic acids truncated or deleted from the 5' and/or 3' end of the polynucleotide sequence of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47,
  • polynucleotide encoding mevalonate pathway gene polypeptide having an amino acid sequence set out in Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72], and polynucleotides that are complementary to such polynucleotides. Most highly preferred are polynucleotides that comprise a region that is at least 95% are especially preferred.
  • Preferred embodiments are polynucleotides encoding polypeptides that retain substantially the same biological function or activity as a mature polypeptide encoded by a DNA of Table 1 [SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71].
  • polynucleotides that hybridize, particularly under stringent conditions, to mevalonate pathway gene polynucleotide sequences, such as those polynucleotides in Table 1.
  • the invention further relates to polynucleotides that hybridize to the polynucleotide sequences provided herein.
  • the invention especially relates to polynucleotides that hybridize under stringent conditions to the polynucleotides described herein.
  • stringent conditions and “stringent hybridization conditions” mean hybridization occurring only if there is at least 95% and preferably at least 97% identity between the sequences.
  • a specific example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/ml of denatured, sheared salmon sperm DNA, followed by washing the hybridization support in 0.1 x SSC at about 65°C.
  • Hybridization and wash conditions are well known and exemplified in Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL, Second Edition, Cold Spring Harbor, N.Y., (1989), particularly Chapter 11 therein. Solution hybridization may also be used with the polynucleotide sequences provided by the invention.
  • the invention also provides a polynucleotide consisting of or comprising a polynucleotide sequence obtained by screening an appropriate library comprising a complete gene for a polynucleotide sequence set forth in SEQ ID NOs:l , 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71 under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence set forth in SEQ ID NOs:l, 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, or a fragment thereof; and isolating said polynucleotide sequence. Fragments useful for
  • polynucleotides of the invention encoding HMGCoA Reductase be isolated from bacteria falling within the clade of Class II of phylogenetic tree depicted in Figure 1. It is also particularly preferred that that such bacteria are Gram- positive bacteria. It is more particularly preferred that such bacteria of the invention are bacteria of the genera Streptococcus, Staphylococcus, or Entercoccus.
  • bacteria of the invention are bacteria of the species Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Entercoccus faecalis, or Enterococcus faecium.
  • the E. faecium and E. faecalis HMG-CoA reductases are two proteins joined together (acetyl-CoA acetyltransferase and HMG-CoA reductase) that form a single bi-functional protein.
  • polynucleotides of the invention encoding HMGCoA Synthase be isolated from bacteria falling within the clade of Class II of the phylogenetic tree depicted in Figure 2. It is also particularly preferred that that such bacteria are Gram-positive bacteria. It is more particularly preferred that such bacteria of the invention are bacteria of the genera Streptococcus, Staphylococcus, or Entercoccus.
  • bacteria of the invention are bacteria of the species Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus Carnosus, Enterococcus faecalis, or Enterococcus faecium. It is also preferred that polynucleotides of the invention encoding Mevalonate
  • Diphosphate Decarboxlyase be isolated from bacteria falling within the clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 3. It is more particularly preferred that such bacteria of the invention are bacteria of the genera Streptococcus, Staphylococcus, or Entercoccus. It is most particularly preferred that such bacteria of the invention are bacteria of the species Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Enterococcus faecalis, or Enterococcus faecium.
  • Mevalonate Kinases including Mevalonate Kinase (MevKl) and Phosophomevalonate Kinase (MevKl)
  • Mevalonate Kinases Mevalonate Kinases
  • Mevalonate Kinase Mevalonate Kinase
  • Phosophomevalonate Kinase MevKl
  • such bacteria of the invention are bacteria of the genera Streptococcus, Staphylococcus, or Entercoccus.
  • bacteria of the invention are bacteria of the species Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Enterococcus faecalis, or Enterococcus faecium.
  • FIG. 1 For example, polynucleotides of the invention encoding HMGCoA Reductase (MevA) falling within the clade defined by: node A of Figure 1 ; node B of Figure 1 ; node C of Figure 1 ; node C of Figure 1 ; node D of Figure 1 ; node E of Figure 1 ; and node F of Figure 1.
  • MevA HMGCoA Reductase
  • Still further embodiments of the invention include, for example, polynucleotides of the invention encoding HMGCoA Synthase (PksG) falling within the clade defined by: node A of Figure 2; node B of Figure 2; node C of Figure 2; node C of Figure 2; node D of Figure 2; node E of Figure 2; node F of Figure 2; and node G of Figure 2.
  • PksG HMGCoA Synthase
  • Mevalonate Diphosphate Decarboxlase (MevD) falling within: the clade defined by node A of Figure 3; node B of Figure 3; node C of Figure 3; node C of Figure 3; node D of Figure 3; and node E of Figure 3.
  • Mevalonate Kinase (MevK) falling within: the clade defined by node A of Figure 4; node B of Figure 4; node C of Figure 4; node C of Figure 4; node D of Figure 4; node E of Figure 4; node F of Figure 4; node G of Figure 4; node G of Figure 4; node H of Figure 4; node I of Figure 4; node J of Figure 4; node K of Figure 4; node L of Figure 4; node M of Figure 4; and node N of Figure 4.
  • Mevalonate Kinase Mevalonate Kinase
  • Polynucleotides encoding any polypeptide defined by a cladisticl model set forth herein are also embodiments of the invention.
  • Polypeptides defined by a cladisticl model set forth herein are also embodiments of the invention.
  • each is determined using the cladistical analyses disclosed herein, in Example 1.
  • the polynucleotides of the invention may be used as a hybridization probe for RNA, cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding a mevalonate pathway gene and to isolate cDNA and genomic clones of other genes that have a high identity, particularly high sequence identity, to a mevalonate pathway gene.
  • Such probes generally will comprise at least 15 nucleotide residues or base pairs.
  • such probes will have at least 30 nucleotide residues or base pairs and may have at least 50 nucleotide residues or base pairs.
  • Particularly preferred probes will have at least 20 nucleotide residues or base pairs and will have lee than 30 nucleotide residues or base pairs.
  • a coding region of a mevalonate pathway gene may be isolated by screening using a DNA sequence provided in Table 1 [SEQ ID NOs:l, 3, 5, 7, 9, 1 1, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71] to synthesize an oligonucleotide probe.
  • a labeled oligonucleotide having a sequence complementary to that of a gene of the invention is then used to screen a library of cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.
  • PCR Nucleic acid amplification
  • PCR Nucleic acid amplification
  • the PCR reaction is then repeated using "nested" primers, that is, primers designed to anneal within the amplified product (typically an adaptor specific primer that anneals further 3' in the adaptor sequence and a gene specific primer that anneals further 5' in the selected gene sequence).
  • the products of this reaction can then be analyzed by DNA sequencing and a full-length DNA constructed either by joining the product directly to the existing DNA to give a complete sequence, or carrying out a separate full-length PCR using the new sequence information for the design of the 5' primer.
  • polynucleotides and polypeptides of the invention may be employed, for example, as research reagents and materials for discovery of treatments of and diagnostics for diseases, particularly human diseases, as further discussed herein relating to polynucleotide assays.
  • polynucleotides of the invention that are oligonucleotides derived from any polynucleotide or polypeptide sequence of Table 1 may be used in the processes herein as described, but preferably for PCR, to determine whether or not the polynucleotides identified herein in whole or in part are transcribed in bacteria in infected tissue. It is recognized that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.
  • the invention also provides polynucleotides that encode a polypeptide that is a mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to a mature polypeptide (when a mature form has more than one polypeptide chain, for instance).
  • Such sequences may play a role in processing of a protein from precursor to a mature form, may allow protein transport, may lengthen or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things.
  • the additional amino acids may be processed away from a mature protein by cellular enzymes.
  • polynucleotide of the invention there is provided a polynucleotide complementary to it. It is preferred that these complementary polynucleotides are fully complementary to each polynucleotide with which they are complementary.
  • a precursor protein, having a mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide.
  • inactive precursors When prosequences are removed such inactive precursors generally are activated. Some or all of the prosequences may be removed before activation. Generally, such precursors are called proproteins.
  • the entire polypeptide encoded by an open reading frame is often not required for activity. Accordingly, it has become routine in molecular biology to map the boundaries of the primary structure required for activity with N-terminal and C- terminal deletion experiments. These experiments utilize exonuclease digestion or convenient restriction sites to cleave coding nucleic acid sequence. For example, Promega (Madison, WI) sell an Erase-a-baseTM system that uses Exonuclease III designed to facilitate analysis of the deletion products (protocol available at www.promega.com). The digested endpoints can be repaired (e.g., by ligation to synthetic linkers) to the extent necessary to preserve an open reading frame.
  • nucleic acid of SEQ ID NO: 1 readily provides contiguous fragments of SEQ ID NO:2 sufficient to provide an activity, such as an enzymatic, binding or antibody-inducing activity.
  • Nucleic acid sequences encoding such fragments of the polypeptide sequences of Table 1 and variants thereof as described herein are within the invention, as are polypeptides so encoded.
  • a polynucleotide of the invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein, or a preproprotein, that is a precursor to a proprotein, having a leader sequence and one or more prosequences, that generally are removed during processing steps that produce active and mature forms of the polypeptide.
  • a leader sequence which may be referred to as a preprotein
  • a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein or a preproprotein, that is a precursor to a proprotein, having a leader sequence and one or more prosequences, that generally are removed during processing steps that produce active and mature forms of the polypeptide.
  • the invention also relates to vectors that comprise a polynucleotide or polynucleotides of the invention, host cells that are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.
  • Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the invention.
  • Recombinant polypeptides of the present invention may be prepared by processes well known in those skilled in the art from genetically engineered host cells comprising expression systems.
  • the present invention relates to expression systems that comprise a polynucleotide or polynucleotides of the present invention, to host cells that are genetically engineered with such expression systems, and to the production of polypeptides of the invention by recombinant techniques.
  • host cells can be genetically engineered to incorporate expression systems or portions thereof or polynucleotides of the invention.
  • Introduction of a polynucleotide into the host cell can be effected by methods described in many standard laboratory manuals, such as Davis, et al, BASIC METHODS IN MOLECULAR BIOLOGY, ( 1986) and Sambrook, et al. , MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • prokaryote including but not limited to, a member of the genus Streptococcus, Staphylococcus, Bordetella, Corynebacterium, Mycobacterium, Neisseria, Haemophilus, Actinomycetes, Streptomycetes, Nocardia, Enterobacter, Yersinia, Fancisella, Pasturella, Moraxella, Acinetobacter, Erysipelothrix, Branhamella, Actinobacillus, Streptobacillus, Listeria, Calymmatobacterium, Brucella, Bacillus, Clostridium, Treponema, Escherichia, Salmonella, Kle
  • vectors include, among others, chromosomal-, episomal- and virus-derived vectors, for example, vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses, picornaviruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids.
  • the expression system constructs may comprise control regions that regulate as well as engender expression.
  • any system or vector suitable to maintain, propagate or express polynucleotides and/or to express a polypeptide in a host may be used for expression in this regard.
  • the appropriate DNA sequence may be inserted into the expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook, et al., MOLECULAR CLONING, A LABORATORY MANUAL, supra.
  • secretion signals may be incorporated into the expressed polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.
  • Polypeptides of the invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.
  • This invention is also related to the use of mevalonate pathway gene polynucleotides and polypeptides of the invention for use as diagnostic reagents.
  • Detection of mevalonate pathway gene polynucleotides and/or polypeptides in a eukaryote, particularly a mammal, and especially a human will provide a diagnostic method for diagnosis of disease, staging of disease or response of an infectious organism to drugs.
  • Eukaryotes, particularly mammals, and especially humans, particularly those infected or suspected to be infected with an organism comprising the mevalonate pathway gene or protein may be detected at the nucleic acid or amino acid level by a variety of well known techniques as well as by methods provided herein.
  • Polypeptides and polynucleotides for prognosis, diagnosis or other analysis may be obtained from a putatively infected and/or infected individual's bodily materials.
  • Polynucleotides from any of these sources may be used directly for detection or may be amplified enzymatically by using PCR or any other amplification technique prior to analysis.
  • RNA, particularly mRNA, cDNA and genomic DNA may also be used in the same ways.
  • amplification, characterization of the species and strain of infectious or resident organism present in an individual may be made by an analysis of the genotype of a selected polynucleotide of the organism.
  • Deletions and insertions can be detected by a change in size of the amplified product in comparison to a genotype of a reference sequence selected from a related organism, preferably a different species of the same genus or a different strain of the same species.
  • Point mutations can be identified by hybridizing amplified DNA to labeled mevalonate pathway gene polynucleotide sequences. Perfectly or significantly matched sequences can be distinguished from imperfectly or more significantly mismatched duplexes by DNase or RNase digestion, for DNA or RNA respectively, or by detecting differences in melting temperatures or renaturation kinetics.
  • Polynucleotide sequence differences may also be detected by alterations in the electrophoretic mobility of polynucleotide fragments in gels as compared to a reference sequence. This may be carried out with or without denaturing agents. Polynucleotide differences may also be detected by direct DNA or RNA sequencing. See, e.g., Myers et al., Science, 230: 1242 (1985). Sequence changes at specific locations also may be revealed by nuclease protection assays, such as RNase, VI and SI protection assay or a chemical cleavage method. See, e.g., Cotton et al., Proc. Natl. Acad. Sci., USA, 85: 4397-4401 (1985).
  • an array of oligonucleotides probes comprising mevalonate pathway gene nucleotide sequence or fragments thereof can be constructed to conduct efficient screening of, for example, genetic mutations, serotype, taxonomic classification or identification.
  • Array technology methods are well known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability (see, for example, Chee, et al., Science, 274: 610 (1996)).
  • the present invention relates to a diagnostic kit that comprises: (a) a polynucleotide of the present invention, preferably the nucleotide sequence of SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67 69, or 71, or a fragment thereof ; (b) a nucleotide sequence complementary to that of (a); (c) a polypeptide of the present invention, preferably the polypeptide of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72, or a fragment thereof; or (d) an antibody to a polypeptide of the present invention, preferably to the
  • This invention also relates to the use of polynucleotides of the present invention as diagnostic reagents.
  • Detection of a mutated form of a polynucleotide of the invention preferably, SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, that is associated with a disease or pathogenicity will provide a diagnostic tool that can add to, or define, a diagnosis of a disease, a prognosis of a course of disease, a determination of a stage of disease, or a susceptibility to a disease, that results from under-expression, over-expression or altered expression of the polynucleotide.
  • Organisms, particularly infectious organisms, carrying mutations in such polynucleotide may be detected at the polynucleotide level by
  • the differences in a polynucleotide and/or polypeptide sequence between organisms possessing a first phenotype and organisms possessing a different, second different phenotype can also be determined. If a mutation is observed in some or all organisms possessing the first phenotype but not in any organisms possessing the second phenotype, then the mutation is likely to be the causative agent of the first phenotype.
  • Cells from an organism carrying mutations or polymorphisms (allelic variations) in a polynucleotide and/or polypeptide of the invention may also be detected at the polynucleotide or polypeptide level by a variety of techniques, to allow for serotyping, for example.
  • RT-PCR can be used to detect mutations in the RNA. It is particularly preferred to use RT-PCR in conjunction with automated detection systems, such as, for example, GeneScan.
  • RNA, cDNA or genomic DNA may also be used for the same purpose, PCR.
  • PCR primers complementary to a polynucleotide encoding a mevalonate pathway gene polypeptide can be used to identify and analyze mutations.
  • the invention further provides these primers with 1, 2, 3 or 4 nucleotides removed from the 5' and/or the 3' end.
  • These primers may be used for, among other things, amplifying mevalonate gene pathway DNA and/or RNA isolated from a sample derived from an individual, such as a bodily material.
  • the primers may be used to amplify a polynucleotide isolated from an infected individual, such that the polynucleotide may then be subject to various techniques for elucidation of the polynucleotide sequence. In this way, mutations in the polynucleotide sequence may be detected and used to diagnose and/or prognose the infection or its stage or course, or to serotype and/or classify the infectious agent.
  • the invention further provides a process for diagnosing, disease, preferably bacterial infections, more preferably infections caused by a bacterium of the mevalonate pathway gene family, comprising determining from a sample derived from an individual, such as a bodily material, an increased level of expression of polynucleotide having a sequence of Table 1 [SEQ ID NOs: l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71].
  • Increased or decreased expression of a mevalonate pathway gene polynucleotide can be measured using any on of the methods well known in the art for the quantitation of polynucleotides, such as, for example, amplification, PCR, RT-PCR, RNase protection, Northern blotting, spectrometry and other hybridization methods.
  • a diagnostic assay in accordance with the invention for detecting over- expression of a mevalonate pathway gene polypeptide compared to normal control tissue samples may be used to detect the presence of an infection, for example.
  • Assay techniques that can be used to determine levels of a mevalonate pathway gene polypeptide, in a sample derived from a host, such as a bodily material, are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis, antibody sandwich assays, antibody detection and ELISA assays.
  • Polypeptides and polynucleotides of the invention may also be used to assess the binding of small molecule substrates and ligands in, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures.
  • substrates and ligands may be natural substrates and ligands or may be structural or functional mimetics. See, e.g., Coligan et ai, Current Protocols in Immunology 1(2): Chapter 5 (1991).
  • Polypeptides and polynucleotides of the present invention are responsible for many biological functions, including many disease states, in particular the Diseases herein mentioned. It is therefore desirable to devise screening methods to identify compounds that agonize (e.g., stimulate) or that antagonize (e.g., inhibit) the function of the polypeptide or polynucleotide. Accordingly, in a further aspect, the present invention provides for a method of screening compounds to identify those that agonize or that antagonize the function of a polypeptide or polynucleotide of the invention, as well as related polypeptides and polynucleotides.
  • agonists or antagonists may be employed for therapeutic and prophylactic purposes for such Diseases as herein mentioned.
  • Compounds may be identified from a variety of sources, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures.
  • Such agonists and antagonists so-identified may be natural or modified substrates, ligands, receptors, enzymes, etc., as the case may be, of mevalonate pathway gene polypeptides and polynucleotides; or may be structural or functional mimetics thereof (see Coligan, et al., Current Protocols in Immunology l(2):Chapter 5 (1991)).
  • the screening methods may simply measure the binding of a candidate compound to the polypeptide or polynucleotide, or to cells or membranes bearing the polypeptide or polynucleotide, or a fusion protein of the polypeptide by means of a label directly or indirectly associated with the candidate compound.
  • the screening method may involve competition with a labeled competitor.
  • these screening methods may test whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide or polynucleotide, using detection systems appropriate to the cells comprising the polypeptide or polynucleotide. Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed.
  • Constitutively active polypeptide and/or constitutively expressed polypeptides and polynucleotides may be employed in screening methods for inverse agonists, in the absence of an agonist or antagonist, by testing whether the candidate compound results in inhibition of activation of the polypeptide or polynucleotide, as the case may be.
  • the screening methods may simply comprise the steps of mixing a candidate compound with a solution comprising a polypeptide or polynucleotide of the present invention, to form a mixture, measuring mevalonate pathway gene polypeptide and/or polynucleotide activity in the mixture, and comparing the mevalonate pathway gene polypeptide and/or polynucleotide activity of the mixture to a standard.
  • Fusion proteins such as those made from Fc portion and mevalonate pathway gene polypeptide, as herein described, can also be used for high-throughput screening assays to identify antagonists of the polypeptide of the present invention, as well as of phylogenetically and and/or functionally related polypeptides (see Bennett, et ai, J Mol Recognition, 8:52-58 (1995); and Johanson, et al., J Biol Chem, 270(16):9459-9471 (1995)).
  • polypeptides and antibodies that bind to and/or interact with a polypeptide of the present invention may also be used to configure screening methods for detecting the effect of added compounds on the production of mRNA and/or polypeptide in cells.
  • an ELISA assay may be constructed for measuring secreted or cell associated levels of polypeptide using monoclonal and polyclonal antibodies by standard methods known in the art. This can be used to discover agents that may inhibit or enhance the production of polypeptide (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues.
  • the invention also provides a method of screening compounds to identify those that enhance (agonist) or block (antagonist) the action of a mevalonate pathway gene polypeptides or polynucleotides, particularly those compounds that are bacteristatic and/or bactericidal.
  • the method of screening may involve high-throughput techniques. For example, to screen for agonists or antagonists, a synthetic reaction mix, a cellular compartment, such as a membrane, cell envelope or cell wall, or a preparation of any thereof, comprising a mevalonate pathway gene polypeptide and a labeled substrate or ligand of such polypeptide is incubated in the absence or the presence of a candidate molecule that may be a mevalonate pathway gene agonist or antagonist.
  • the ability of the candidate molecule to agonize or antagonize the mevalonate pathway gene polypeptide is reflected in decreased binding of the labeled ligand or decreased production of product from such substrate.
  • Molecules that bind gratuitously, i.e., without inducing the effects of a mevalonate pathway gene polypeptide are most likely to be good antagonists.
  • Molecules that bind well and, as the case may be, increase the rate of product production from substrate, increase signal transduction, or increase chemical channel activity are agonists. Detection of the rate or level of, as the case may be, production of product from substrate, signal transduction, or chemical channel activity may be enhanced by using a reporter system.
  • Reporter systems that may be useful in this regard include but are not limited to colorimetric, labeled substrate converted into product, a reporter gene that is responsive to changes in mevalonate pathway gene polynucleotide or polypeptide activity, and binding assays known in the art.
  • Polypeptides of the invention may be used to identify membrane bound or soluble receptors, if any, for such polypeptide, through standard receptor binding techniques known in the art.
  • ligand binding and crosslinking assays include, but are not limited to, ligand binding and crosslinking assays in which the polypeptide is labeled with a radioactive isotope (for instance, 1 ->l), chemically modified (for instance, biotinylated), or fused to a peptide sequence suitable for detection or purification, and incubated with a source of the putative receptor (e.g., cells, cell membranes, cell supernatants, tissue extracts, bodily materials).
  • a source of the putative receptor e.g., cells, cell membranes, cell supernatants, tissue extracts, bodily materials.
  • Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. These screening methods may also be used to identify agonists and antagonists of the polypeptide that compete with the binding of the polypeptide to its receptor(s), if any. Standard methods for conducting such assays are well understood in the art.
  • the fluorescence polarization value for a fluorescently-tagged molecule depends on the rotational correlation time or tumbling rate. Protein complexes, such as formed by a mevalonate pathway gene polypeptide associating with another mevalonate pathway gene polypeptide or other polypeptide, labeled to comprise a fluorescently-labeled molecule will have higher polarization values than a fluorescently labeled monomeric protein. It is preferred that this method be used to characterize small molecules that disrupt polypeptide complexes. Fluorescence energy transfer may also be used characterize small molecules that interfere with the formation of mevalonate pathway gene polypeptide dimers, trimers, tetramers or higher order structures, or structures formed by a mevalonate pathway gene polypeptide bound to another polypeptide.
  • a mevalonate pathway gene polypeptide can be labeled with both a donor and acceptor fluorophore. Upon mixing of the two labeled species and excitation of the donor fluorophore, fluorescence energy transfer can be detected by observing fluorescence of the acceptor. Compounds that block dimerization will inhibit fluorescence energy transfer.
  • Surface plasmon resonance can be used to monitor the effect of small molecules on a mevalonate pathway gene polypeptide self-association as well as an association of a mevalonate pathway gene polypeptide and another polypeptide or small molecule.
  • a mevalonate pathway gene polypeptide can be coupled to a sensor chip at low site density such that covalently bound molecules will be monomeric.
  • Solution protein can then passed over the mevalonate pathway gene polypeptide -coated surface and specific binding can be detected in real-time by monitoring the change in resonance angle caused by a change in local refractive index.
  • This technique can be used to characterize the effect of small molecules on kinetic rates and equilibrium binding constants for mevalonate pathway gene polypeptide self-association as well as an association of a mevalonate pathway gene polypeptide and another polypeptide or small molecule.
  • a scintillation proximity assay may be used to characterize the interaction between an association of a mevalonate pathway gene polypeptide with another mevalonate pathway gene polypeptide or a different polypeptide.
  • a mevalonate pathway gene polypeptide can be coupled to a scintillation-filled bead. Addition of radio-labeled mevalonate pathway gene polypeptide results in binding where the radioactive source molecule is in close proximity to the scintillation fluid. Thus, signal is emitted upon a mevalonate pathway gene polypeptide binding and compounds that prevent a mevalonate pathway gene polypeptide self-association or an association of a mevalonate pathway gene polypeptide and another polypeptide or small molecule will diminish signal.
  • inventions provide methods for identifying compounds that bind to or otherwise interact with and inhibit or activate an activity or expression of a polypeptide and/or polynucleotide of the invention comprising: contacting a polypeptide and/or polynucleotide of the invention with a compound to be screened under conditions to permit binding to or other interaction between the compound and the polypeptide and/or polynucleotide to assess the binding to or other interaction with the compound, such binding or interaction preferably being associated with a second component capable of providing a detectable signal in response to the binding or interaction of the polypeptide and/or polynucleotide with the compound; and determining whether the compound binds to or otherwise interacts with and activates or inhibits an activity or expression of the polypeptide and/or polynucleotide by detecting the presence or absence of a signal generated from the binding or interaction of the compound with the polypeptide and/or polynucleotide.
  • an assay for mevalonate pathway gene agonists is a competitive assay that combines a mevalonate pathway gene and a potential agonist with mevalonate pathway gene-binding molecules, recombinant mevalonate pathway gene binding molecules, natural substrates or ligands, or substrate or ligand mimetics, under appropriate conditions for a competitive inhibition assay.
  • a mevalonate pathway gene can be labeled, such as by radioactivity or a colorimetric compound, such that the number of mevalonate pathway gene molecules bound to a binding molecule or converted to product can be determined accurately to assess the effectiveness of the potential antagonist.
  • a polypeptide and/or polynucleotide of the present invention may also be used in a method for the structure- based design of an agonist or antagonist of the polypeptide and/or polynucleotide, by: (a) determining in the first instance the three-dimensional structure of the polypeptide and/or polynucleotide, or complexes thereof; (b) deducing the three-dimensional structure for the likely reactive site(s), binding site(s) or motif(s) of an agonist or antagonist; (c) synthesizing candidate compounds that are predicted to bind to or react with the deduced binding site(s), reactive site(s), and/or motif(s); and (d) testing whether the candidate compounds are indeed agonists or antagonists. It will be further appreciated that this will normally be an iterative process, and this iterative process may be performed using automated and computer-controlled steps.
  • the present invention provides methods of treating abnormal conditions such as, for instance, a Disease, related to either an excess of, an under-expression of, an elevated activity of, or a decreased activity of a mevalonate pathway gene polypeptide and/or polynucleotide.
  • abnormal conditions such as, for instance, a Disease, related to either an excess of, an under-expression of, an elevated activity of, or a decreased activity of a mevalonate pathway gene polypeptide and/or polynucleotide.
  • One approach comprises administering to an individual in need thereof an inhibitor compound (antagonist) as herein described, optionally in combination with a pharmaceutically acceptable carrier, in an amount effective to inhibit the function and/or expression of the polypeptide and/or polynucleotide, such as, for example, by blocking the binding of ligands, substrates, receptors, enzymes, etc., or by inhibiting a second signal, and thereby alleviating the abnormal condition.
  • soluble forms of the polypeptides still capable of binding the ligand, substrate, enzymes, receptors, etc., in competition with endogenous polypeptide and/or polynucleotide may be administered.
  • Typical examples of such competitors include fragments of a mevalonate pathway gene polypeptide and/or polypeptide.
  • expression of a gene encoding an endogenous mevalonate pathway gene polypeptide can be inhibited using expression blocking techniques.
  • This blocking may be targeted against any step in gene expression, but is preferably targeted against transcription and/or translation.
  • An examples of a known technique of this sort involve the use of antisense sequences, either internally generated or separately administered (see, for example, O'Connor, J. Neurochem. (1991) 56:560 in OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988)).
  • oligonucleotides that form triple helices with the gene can be supplied (see, for example, Lee, et al., Nucleic Acids Res (1979) 3:173; Cooney, et ai, Science (1988) 241:456; Dervan, et ai, Science (1991) 251 : 1360). These oligomers can be administered per se or the relevant oligomers can be expressed in vivo.
  • Each of the polynucleotide sequences provided herein may be used in the discovery and development of antibacterial compounds.
  • the encoded protein, upon expression, can be used as a target for the screening of antibacterial drugs.
  • polynucleotide sequences encoding the amino terminal regions of the encoded protein or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the coding sequence of interest.
  • the invention also provides the use of the polypeptide, polynucleotide, agonist or antagonist of the invention to interfere with the initial physical interaction between a pathogen or pathogens and a eukaryotic, preferably mammalian, host responsible for sequelae of infection.
  • the molecules of the invention may be used: in the prevention of adhesion of bacteria, in particular gram positive and/or gram negative bacteria, to eukaryotic, preferably mammalian, extracellular matrix proteins on in-dwelling devices or to extracellular matrix proteins in wounds; to block bacterial adhesion between eukaryotic, preferably mammalian, extracellular matrix proteins and bacterial mevalonate pathway gene proteins that mediate tissue damage and/or; to block the normal progression of pathogenesis in infections initiated other than by the implantation of in-dwelling devices or by other surgical techniques.
  • mevalonate pathway gene agonists and antagonists preferably bacteristatic or bactericidal agonists and antagonists.
  • the antagonists and agonists of the invention may be employed, for instance, to prevent, inhibit and/or treat diseases.
  • H. pylori Helicobacter pylori bacteria infect the stomachs of over one- third of the world's population causing stomach cancer, ulcers, and gastritis (International Agency for Research on Cancer (1994) Schistosomes, Liver Flukes and Helicobacter Pylori (International Agency for Research on Cancer, Lyon, France, http://www.uicc.ch/ecp/ecp 2904.htm). Moreover, the International Agency for Research on Cancer recently recognized a cause-and-effect relationship between H. pylori and gastric adenocarcinoma, classifying the bacterium as a Group I (definite) carcinogen.
  • Preferred antimicrobial compounds of the invention should be useful in the treatment of //, pylori infection. Such treatment should decrease the advent of H. pylori- induced cancers, such as gastrointestinal carcinoma. Such treatment should also prevent, inhibit and/or cure gastric ulcers and gastritis.
  • Bodily material(s) means any material derived from an individual or from an organism infecting, infesting or inhabiting an individual, including but not limited to, cells, tissues and waste, such as, bone, blood, serum, cerebrospinal fluid, semen, saliva, muscle, cartilage, organ tissue, skin, urine, stool or autopsy materials.
  • Disease(s) means any disease caused by or related to infection by a bacteria, including, for example, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema and endocarditis, and most particularly meningitis, such as, for example, infection of cerebrospinal fluid, disease, such as, infections of the upper respiratory tract (e.g., otitis media, bacterial tracheitis, acute epiglottitis, thyroiditis), lower respiratory (e.g., empyema, lung abscess), cardiac (e.g., infective endocarditis), gastrointestinal (e.g., secretory diarrhoea, splenic absces, retroperitoneal abscess), CNS (e.g., cerebral abscess), eye (e.g., blepharitis, conjunctivitis, keratitis, endophthalmitis, preseptal
  • “Host cell(s)” is a cell that has been introduced (e.g., transformed or transfected) or is capable of introduction (e.g., transformation or transfection) by an exogenous polynucleotide sequence.
  • Identity is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as the case may be, as determined by comparing the sequences.
  • identity also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences.
  • Identity can be readily calculated by known methods, including but not limited to those described in (Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M.
  • Methods to determine identity are designed to give the largest match between the sequences tested. Moreover, methods to determine identity are codified in publicly available computer programs. Computer program methods to determine identity between two sequences include, but are not limited to, the GCG program package (Devereux, et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Altschul, et al., J. Molec. Biol. 215: 403-410 (1990).
  • BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et ai, NCBI NLM NIH Bethesda, MD 20894; Altschul, et al., J. Mol. Biol. 215: 403-410 (1990).
  • the well known Smith Waterman algorithm may also be used to determine identity.
  • Parameters for polypeptide sequence comparison include the following: Algorithm:
  • Polynucleotide embodiments further include an isolated polynucleotide comprising a polynucleotide sequence having at least a 95, 97 or 100% identity to the reference sequence of SEQ ID NOs: 1 , 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, wherein said polynucleotide sequence may be identical to the reference sequence of SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, or may include up to a certain integer number of nucleotide alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one nu
  • n n is the number of nucleotide alterations
  • x n is the total number of nucleotides in SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71
  • y is 0.95 for 95%, 0.97 for 97% or 1.00 for 100%
  • is the symbol for the multiplication operator, and wherein any non- integer product of x n and y is rounded down to the nearest integer prior to subtracting it from x n .
  • Alterations of a polynucleotide sequence encoding a polypeptide of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72, may create nonsense, missense or frameshift mutations in this coding sequence and thereby alter the polypeptide encoded by the polynucleotide following such alterations.
  • Polypeptide embodiments further include an isolated polypeptide comprising a polypeptide having at least a 95, 97 or 100% identity to a polypeptide reference sequence of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72, wherein said polypeptide sequence may be identical to a reference sequence of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72, or may include up to a certain integer number of amino acid alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion, and wherein
  • n a is the number of amino acid alterations
  • x a is the total number of amino acids in SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72
  • y is 0.95 for 95%, 0.97 for 97% or 1.00 for 100%
  • is the symbol for the multiplication operator, and wherein any non- integer product of x a and y is rounded down to the nearest integer prior to subtracting it from x a .
  • “Individual(s)” means a multicellular eukaryote, including, but not limited to, a metazoan, a mammal, an ovid, a bovid, a simian, a primate, and a human.
  • Isolated means altered “by the hand of man” from its natural state, i.e., if it occurs in nature, it has been changed or removed from its original environment, or both.
  • a polynucleotide or a polypeptide naturally present in a living organism is not “isolated,” but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is “isolated”, as the term is employed herein.
  • a polynucleotide or polypeptide that is introduced into an organism by transformation, genetic manipulation or by any other recombinant method is "isolated” even if it is still present in said organism, which organism may be living or non-living.
  • 'Organism(s) means a (i) prokaryote, including but not limited to, a member of the genus Streptococcus, Staphylococcus, and further including, but not limited to, a member of the species or group, Group A Streptococcus, Group B Streptococcus, Group C Streptococcus, Group D Streptococcus, Group G Streptococcus, Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and Staphylococcus epidermidis.
  • Polynucleotide(s) generally refers to any polyribonucleotide or polydeoxyribonucleotide, that may be unmodified RNA or DNA or modified RNA or DNA.
  • Polynucleotide(s) include, without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions or single-, double- and triple-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double- stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded regions, or a mixture of single- and double- stranded regions.
  • polynucleotide refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA.
  • the strands in such regions may be from the same molecule or from different molecules.
  • the regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules.
  • One of the molecules of a triple-helical region often is an oligonucleotide.
  • the term "polynucleotide(s)” also includes DNAs or RNAs as described above that comprise one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotide(s)" as that term is intended herein.
  • DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art.
  • the term "polynucleotide(s)" as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including, for example, simple and complex cells. "Polynucleotide(s)” also embraces short polynucleotides often referred to as oligonucleotide(s).
  • Polypeptide(s) refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds.
  • Polypeptide(s) refers to both short chains, commonly referred to as peptides, oligopeptides and oligomers and to longer chains generally referred to as proteins. Polypeptides may comprise amino acids other than the 20 gene encoded amino acids.
  • Polypeptide(s) include those modified either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature, and they are well known to those of skill in the art.
  • a given polypeptide may comprise many types of modifications. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains, and the amino or carboxyl termini.
  • Modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, selenoylation
  • Polypeptides may be branched or cyclic, with or without branching. Cyclic, branched and branched circular polypeptides may result from post-translational natural processes and may be made by entirely synthetic methods, as well.
  • "Recombinant expression system(s)” refers to expression systems or portions thereof or polynucleotides of the invention introduced or transformed into a host cell or host cell lysate for the production of the polynucleotides and polypeptides of the invention.
  • Variant(s) is a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide respectively, but retains essential properties.
  • a typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusion proteins and truncations in the polypeptide encoded by the reference sequence, as discussed below.
  • a typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical.
  • a variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination.
  • a substituted or inserted amino acid residue may or may not be one encoded by the genetic code.
  • the present invention also includes include variants of each of the polypeptides of the invention, that is polypeptides that vary from the referents by conservative amino acid substitutions, whereby a residue is substituted by another with like characteristics.
  • variants are among Ala, Val, Leu and Ile; among Ser and Thr; among the acidic residues Asp and Glu; among Asn and Gin; and among the basic residues Lys and Arg; or aromatic residues Phe and Tyr.
  • Particularly preferred are variants in which several, 5-10, 1-5, 1-3, 1-2 or 1 amino acids are substituted, deleted, or added in any combination.
  • a variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally.
  • Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques, by direct synthesis, and by other recombinant methods known to skilled artisans.
  • Example 1 Phylogenetic Analysis of Mevalonate Pathway Enzymes
  • HMGCoA 3-hydroxy-3-methylglutartyl coenzyme A
  • Mevalonate Kinases Mevalonate Kinases (MevK)
  • Mevalonate Kinases Mevalonate Kinases (MevK)
  • Homologous protein sequences were retrieved from public and proprietary genomic sequence databases using the software BLASTP and TBLASTN (Altschul, et al., Nucleic Acids Res. 25:3389-3402 (1997)). The proteins were initially aligned using the program CLUSTALW vl .7 (Thompson, et al., Nucleic Acids Research 22: 4673- 4680 (1994)) with the BLOSUM62 (Henikoff, et al., Genomics 19:97-107 (1992). (http://blocks.fhcrc.org/blocks)) similarity matrix, and gap opening and extension penalties of 10.0 and 0.05, respectively.
  • the multiple sequence alignments were further refined manually using the program SEQLAB of the GCG v9.0 software package (Genetics Computer Group, Madison WI, USA).
  • Phylogenetic trees were constructed by neighbor-joining (N-J) and maximum parsimony (MP) methods for each set of alignments.
  • N-J trees depticted in Figure 1-4 were based on pairwise distances between amino acid sequences using the programs NEIGHBOR and PROTDIST of the PHYLIP 3.57c package (Felsenstein, J., 1993, http://evolution.genetics. washington.edu/phylip.html, Department of Genetics, University of Washington, Seattle).
  • the "Dayhoff program option was invoked in the latter program, which estimates the expected amino acid replacements per position (EAARP) using a replacement model based on the Dayhoff 120 matrix.
  • the programs SEQBOOT and CONSENSE were used to estimate the confidence limits of branching points from 1000 bootstrap replications.
  • MP analysis was done using the software package PAUP* (Swofford, D.L. 1999. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other
  • Gram-positive mevalonate pathway enzymes show higher levels of overall sequence similarity and cluster together as a single group or clade according to various phylogenetic methodologies.
  • All publications and references, including but not limited to patents and patent applications, cited in this specification are herein inco ⁇ orated by reference in their entirety as if each individual publication or reference were specifically and individually indicated to be inco ⁇ orated by reference herein as being fully set forth. Any patent application to which this application claims priority is also inco ⁇ orated by reference herein in its entirety in the manner described above for publications and references.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The invention provides mevalonate pathway gene polypeptides and polynucleotides encoding mevalonate pathway gene polypeptides and methods for producing such polypeptides by recombinant techniques. Also provided are methods for utilizing mevalonate pathway gene polypeptides to screen for antibacterial compounds.

Description

MEVALONATE PATHWAY GENES
FIELD OF THE INVENTION
This invention relates to newly identified polynucleotides and polypeptides, and their production and uses, as well as their variants, agonists and antagonists, and their uses. In particular, the invention relates to polynucleotides and polypeptides of the mevalonate-mediated pathway family, as well as their variants, herein referred to as "mevalonate pathway genes," "mevalonate pathway gene polynucleotide(s)," and "mevalonate pathway gene polypeptide(s)," as the case may be. BACKGROUND OF THE INVENTION
The subject matter in this patent application relates to a biosynthetic pathway for the production of isopentenyl pyrophosphate (IPP), which is a key cellular biosynthetic intermediate. IPP is a precursor, for example, for the biosynthesis of isoprenoids which are ubiquitous in nature and comprise a family of more than 23,000 natural products, generally composed of repeating five carbon subunits. Many isoprenoids play essential roles in cellular function such as undecaprenol in bacteria which is responsible for transmembrane transport of peptidoglycan precursors, and cholesterol in man.
IPP is produced by at least two different pathways, depending upon the organism in question. Biosynthesis of IPP in several species of Gram-negative bacteria, including Escherichia coli (Rohmer, et al., Biochem. J. 295:517-524 (1993), and mycobacteria (Putra, et al, FEMS Microbiol. Lett. 164:169-175 (1998)) has been shown to use a pathway originating from pyruvate and glyceraldehyde 3-phosphate (GAP). In man, IPP is produced by the so called 'mevalonate pathway', which originates with acetate and acetyl CoA. The subject matter of this patent application relates to the discovery of mevalonate pathway genes in certain Gram-positive bacteria.
Acetyl CoA is the precursors for the classical mevalonate pathway for the biosynthesis of IPP. A acetyl-CoA acetyltransferase (thiolase), HMG-CoA synthetase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, and mevalonate diphosphate decarboxylase successively act to form 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) (MevA), which is then reduced to mevalonate and subsequently phosphorylated, decarboxylated and dehydrated to form IPP.
The frequency of infections caused by bacteria containing the mevalonate pathway genes has risen dramatically in the past few decades. This has been attributed to the emergence of multiply antibiotic resistant strains and an increasing population of people with weakened immune systems. It is no longer uncommon to strains of bacteria that possess the mevalonate pathway genes that are resistant to some or all of the standard antibiotics. This phenomenon has created an unmet medical need and demand for new anti-microbial agents, vaccines, drug screening methods, and diagnostic tests for this organism. Moreover, the drug discovery process is currently undergoing a fundamental revolution as it embraces "functional genomics," that is, high throughput genome- or gene-based biology. This approach is rapidly superseding earlier approaches based on "positional cloning" and other methods. Functional genomics relies heavily on the various tools of bioinformatics to identify gene sequences of potential interest from the many molecular biology databases now available as well as from other sources. There is a continuing and significant need to identify and characterize further genes and other polynucleotides sequences and their related polypeptides, as targets for drug discovery.
Clearly, there exists a need for polynucleotides and polypeptides, such as the mevalonate pathway gene embodiments of the invention, that have a present benefit of, among other things, being useful to screen compounds for antimicrobial activity. Such factors are also useful to determine their role in pathogenesis of infection, dysfunction and disease. There is also a need for identification and characterization of such factors and their antagonists and agonists to find ways to prevent, ameliorate or correct such infection, dysfunction and disease. SUMMARY OF THE INVENTION The present invention relates to mevalonate pathway genes, in particular mevalonate pathway gene polypeptides and mevalonate pathway gene polynucleotides, recombinant materials and methods for their production. In another aspect, the invention relates to methods for using such polypeptides and polynucleotides, including treatment of microbial diseases, amongst others. In a further aspect, the invention relates to methods for identifying agonists and antagonists using the materials provided by the invention, and for treating microbial infections and conditions associated with such infections with the identified agonist or antagonist compounds. In a still further aspect, the invention relates to diagnostic assays for detecting diseases associated with microbial infections and conditions associated with such infections, such as assays for detecting mevalonate pathway gene expression or activity. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following descriptions and from reading the other parts of the present disclosure. DESCRIPTION OF THE INVENTION
The invention relates to mevalonate pathway gene polypeptides and polynucleotides as described in greater detail below. In particular, the invention relates to polypeptides and polynucleotides of mevalonate pathway genes, that are related by amino acid sequence homology to mevalonate polypeptides from other species. The invention relates especially to mevalonate pathway genes having a high degree of homology to the nucleotide and amino acid sequences set out in Table 1 as SEQ ID NOs: 1-72.
As used herein, the "mevalonate pathway gene family" of the invention means a set of genes encoding a set of polypeptides involved in the production of isopentenyl pyrophosphate from bacteria falling within: the clade of Class II of the phylogenetic tree depicted in Figure 1 comprising the genera Streptococcus, Staphylococcus, and Entercoccus; within the clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 2 comprising the genera Streptococcus, Staphylococcus, or Entercoccus; the clade of Gram- positive bacteria of the phylogenetic tree depicted in Figure 3 comprising the genera Streptococcus, Staphylococcus, or Entercoccus; and a clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 4 comprising the genera Streptococcus, Staphylococcus, or Entercoccus.
As used herein, "mevalonate pathway gene(s)" refers to a gene of the "mevalonate pathway gene family", defined above. "Mevalonate pathway gene polynucleotide(s)" and "Mevalonate pathway gene polypeptide(s)" means, respectively, a polynucleotide of the invention or polypeptide of the invention, as more particulary set forth elsewhere herein. Preferably, the invention provides a set of genes encoding a set of polypeptides involved in the production of isopentenyl pyrophosphate from Gram-positive bacteria falling within the clade of Class II of the phylogenetic tree depicted in Figure 1. Still more preferably, the invention provides a set of genes encoding: HMGCoA
Reductase (MevA) isolated from bacteria falling the clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 1 comprising the species Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Entercoccus faecalis, or Enterococcus faecium; encoding HMGCoA Synthase (PksG) isolated from bacteria falling within the clade of Class II of the phylogenetic tree depicted in Figure 2 comprising the species Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus Carnosus, Enterococcus faecalis, or Enterococcus faecium; Mevalonate Diphosphate Decarboxlyase (MevD) isolated from bacteria falling within the clade of Grani-positive bacteria of the phylogenetic tree depicted in Figure 3 comprising the species Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Enterococcus faecalis, or Enterococcus faecium; and Mevalonate Kinases (MevK), including Mevalonate Kinase (MevKl) and Phosophomevalonate Kinase (MevK2), isolated from bacteria falling within a clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 4 comprising the species Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Enterococcus faecalis, or Enterococcus faecium.
The sequences recited in the Sequence Listing below as "DNA" represent an exemplification of the invention, since those of ordinary skill will recognize that such sequences can be usefully employed in polynucleotides in general, including ribopolynucleotides.
TABLE 1 Mevalonate Pathway Genes -- Polynucleotide and Polypeptide Sequences
(1) Staphylococcus aureus HMG-CoA synthase (PksG) polynucleotide sequence [SEQ ID NO:l]. 5 ' -ATGACAATAGGTATCGACAAAATAAACTTTTACGTTCCAAAATACTATGTAGAC ATGGCTAAATTAGCAGAAGCACGCCAAGTAGACCCAAACAAATTTTTAATTGGA ATTGGTCAAACTGAAATGGCTGTTAGTCCTGTAAACCAAGACATCGTTTCAATG GGCGCTAACGCTGCTAAGGACATTATAACAGACGAAGATAAAAAGAAAATTGGT ATGGTAATTGTGGCAACTGAATCAGCAGTTGATGCTGCTAAAGCAGCCGCTGT TCAAATTCACAACTTATTAGGTATTCAACCTTTTGCACGTTGCTTTGAAATGA AAGAAGCTTGTTATGCTGCAACACCAGCAATTCAATTAGCTAAAGATTATTTA GCAACTAGACCGAATGAAAAAGTATTAGTTATTGCTACAGATACAGCACGTTA TGGATTGAATTCAGGCGGCGAGCCAACACAAGGTGCTGGCGCAGTTGCGATGG TTATTGCACATAATCCAAGCATTTTGGCATTAAATGAAGATGCTGTTGCTTAC ACTGAAGACGTTTATGATTTCTGGCGTCCAACTGGACATAAATATCCATTAGT TGATGGTGCATTATCTAAAGATGCTTATATCCGCTCATTCCAACAAAGCTGGA ATGAATACGCAAAACGTCAAGGTAAGTCGCTAGCTGACTTCGCATCTCTATGC TTCCATGTTCCATTTACAAAAATGGGTAAAAAGGCATTAGAGTCAATCATTGA TAACGCTGATGAAACAACTCAAGAGCGTTTACGTTCAGGATATGAAGATGCTG TAGATTATAACCGTTATGTCGGTAATATTTATACTGGATCATTATATTTAAGC CTAATATCATTACTTGAAAATCGTGATTTACAAGCTGGTGAAACAATCGGTTT ATTCAGTTATGGCTCAGGTTCAGTTGTTGAATTTTATAGTGCGACATTAGTTG TAGGCTACAAAGATCATTTAGATCAAGCTGCACATAAAGCATTATTAAATAAC CGTACTGAAGTATCTGTTGATGCATATGAAACATTCTTCAAACGTTTTGATGA
CGTTGAATTTGACGAAGAACAAGATGCTGTTCATGAAGATCGTCATATTTTCT ACTTATCAAATATTGAAAATAACGTTCGCGAATATCACAGACCAGAGTAA -3 '
(2) Staphylococcus aureus HMG-CoA synthase (PksG) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:2].
NH2-MTIGIDKINFYVPKYYVD AKLAEARQVDPNKFLIGIGQTEMAVSPVNQD
IVSMGANAAKDIITDEDKKKIGMVIVATESAVDAAKAAAVQIHNLLGIQP
FARCFEMKEACYAATPAIQLAKDYLATRPNEKVLVIATDTARYGLNSGGE PTQGAGAVAMVIAHNPSILA NEDAVAYTEDVYDFWRPTGHKYPLVDGAI-
SKDAYIRSFQQSWNEYAKRQGKSLADFAS CFHVPFTKMGKKALESIIDN
ADETTQERLRSGYEDAVDYNRYVGNIYTGSLYLS ISL ENRDLQAGETI
GLFSYGSGSWEFYSAT WGYKDHLDQAAHKALLN RTEVSVDAYETFF KRFDDVEFDEEQDAVHEDRHIFY SNIENNVREYHRPE-COOH
(3) Streptococcus pyogenes HMG-CoA synthetase (PksG) polynucleotide sequence [SEQ ID NO:3].
5 ' -
ATGACAATTGGAATTGATAAGATTGGTTTTGCAACCAGTCAATATGTCTTGAAATTGGAAGATTTAGC GCTTGCACGCCAAGTGGATCCAGCAAAATTTAGTCAAGGGCTACTCATTGAATCTTTTAGTGTGGCAC CAATCACTGAAGACATTATTACTTTAGCTGCTTCTGCAGCAGATCAAATCTTAACCGACGAAGATCGA GCTAAGATTGATATGGTTATTTTGGCAACTGAATCGAGTACTGATCAGTCAAAGGCATCAGCTATCTA TGTACATCACTTAGTTGGTATCCAGCCTTTTGCACGTTCCTTTGAAGTAAAACAAGCCTGCTATAGCG CAACTGCTGCTCTAGACTATGCTAAACTGCATGTGGCTTCTAAGCCAGATTCTCGTGTCCTTGTTATT GCTAGTGATATTGCTAGATACGGTGTAGGATCTCCTGGCGAATCAACTCAAGGATCTGGTAGTATTGC TCTTTTGGTAACTGCTGACCCTCGTATTCTTGCTCTAAATGAAGATAATGTGGCTCAAACTAGGGATA TTATGGACTTTTGGAGGCCTAACTATAGTTTCACACCTTATGTTGATGGTATTTACTCTACCAAGCAA TATCTCAATTGCTTAGAAACCACGTGGCAAGCTTATCAGAAAAGAGAAAACCTTCAGTTATCTGATTT TGCTGCAGTTTGTTTCCATATTCCATTTCCCAAGTTAGCCCTAAAAGGTCTAAATAACATTATGGATA ACACAGTACCTCCTGAACACAGGGAAAAACTAATAGAAGCCTTTCAAGCTTCTATTACTTATAGCAAA CAAATTGGAAATATTTATACTGGCTCACTTTATCTAGGATTGTTATCTTTACTTGAAAATAGTAAAGT ATTACAATCTGGAGATAAAATTGGTTTTTTTAGCTATGGTTCCGGTGCCGTAAGTGAATTTTATTCCG GTCAGTTAGTTGCTGGGTACGATAAAATGTTAATGACTAATCGACAAGCTTTACTAGATCAACGAACA CGTCTTTCCGTTTCTAAATACGAAGACCTTTTCTACGAACAAGTCCAATTAGATGATAATGGTAATGC CAATTTTGACATTTACTTAACTGGAAAATTTGCTCTAACAGCCATCAAGGAGCATCAAAGGATCTATC ATACCAATGACAAAAACTAA-3 '
(4) Streptococcus pyogenes HMG-CoA synthetase (PksG) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:4]. NH2-
MTIGIDKIGFATSQYVLKLEDLALARQVDPAKFSQG LIESFSVAPITEDIITLAASAADQI TDEDR AKIDMVI ATESSTDQSKASAIYVHHLVGIQPFARSFEVKQACYSATAALDYAKLHVASKPDSRVLVI ASDIARYGVGSPGESTQGSGSIA VTADPRILALNEDNVAQTRDIMDFWRPNYSFTPYVDGIYSTKQ Y NCLETTWQAYQKRENLQLSDFAAVCFHIPFPKLALKGLNNIMDNTVPPEHREKLIEAFQASITYSK QIGNIYTGSLY GLLSLLENSKV QSGDKIGFFSYGSGAVSEFYSGQ VAGYDKMLMTNRQALLDQRT R SVSKYEDLFYEQVQLDDNGNANFDIYLTGKFALTAIKEHQRIYHTNDK -COOH
(5) Staphylococcus epidermidis HMG-CoA synthetase(P^G) polynucleotide sequence [SEQ ID NO:5].
5 ' -ATGAATATAGGTATAGATAAAATAAGTTTCTATGTACCCAAATATTATGT AGACATGGCTAAACTTGCAGAAGCGCGCCAAGTCGATCCTAATAAATTTT TAATTGGAATTGGTCAAACTGAAATGACTGTGAGCCCAGTGAATCAAGAT ATCGTATCTATGGGAGCCAATGCTGCTAAAGATATTATAACAGAAGAAGA TAAAAAGAATATTGGTATGGTTATAGTAGCAACTGAGTCTGCGATTGATA ATGCCAAAGCAGCAGCCGTTCAAATTCACCATCTTTTAGGTATTCAACCC TTTGCAAGATGCTTTGAAATGAAAGAGGCTTGTTATGCAGCAACACCTGC AATTCAACTTGCCAAAGATTATCTTGCTCAACGCCCTAACGAAAAGGTTC TTGTCATTGCTAGTGACACAGCTCGTTATGGTATTCATTCTGGTGGTGAG CCTACTCAAGGTGCCGGTGCAGTTGCAATGATGATTTCACATGACCCAAG TATTTTAAAACTTAATGATGATGCCGTAGCATATACTGAAGACGTTTATG ATTTCTGGCGTCCAACGGGTCATCAATATCCCTTAGTTGCTGGTGCATTG TCGAAAGATGCCTATATCAAGTCATTCCAAGAAAGTTGGAATGAATATGC ACGTCGCCATAATAAAACACTCGCTGATTTCGCTTCACTATGTTTCCATG TACCATTCACCAAAATGGGACAAAAAGCTTTAGATTCTATTATTAATCAT GCCGATGAAACTACACAAGACCGTCTTAACTCTAGTTACCAAGATGCAGT TGATTATAATCGTTATGTCGGTAATATTTACACAGGGTCCTTATATTTAA GTCTCATCTCTTTATTAGAAACACGTGATTTAAAAGGCGGACAAACGATT GGTCTCTTTAGTTATGGTTCTGGTTCTGTAGGCGAGTTCTTTAGTGGAAC ATTAGTAGATGGATTCAAGGAGCAATTAGATGTTGAGCGCCACAAATCTT TATTAAATAATAGAATAGAGGTTTCTGTTGATGAATATGAACATTTCTTC AAACGCTTTGACCAATTAGAATTGAATCATGAACTTGAAAAATCAAATGC AGATCGTGACATTTTCTATTTAAAATCTATTGATAACAATATTCGTGAAT ATCATATAGCAGAATAA-3 '
(6) Staphylococcus epidermidis HMG-CoA synthetase (PksG) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:6].
NH2- MNIGIDKISFYVPKYYVD AKLAEARQVDPNKFLIGIGQTEMTVSPVNQD IVSMGANAAKDIITEEDKKNIGMVIVATESAIDNAKAAAVQIHH GIQP FARCFEMKEACYAATPAIQLAKDY AQRPNEKV VIASDTARYGIHSGGE PTQGAGAVAMMISHDPSI KLNDDAVAYTEDVYDF RPTGHQYPLVAGAL SKDAYIKSFQES NEYARRHNKT ADFAS CFHVPFTKMGQKALDSIINH ADETTQDRLNSSYQDAVDYNRYVGNIYTGSLYLSLIS LETRDLKGGQTI GLFSYGSGSVGEFFSGT VDGFKEQLDVERHKSL NNRIEVSVDEYEHFF KRFDQLELNHE EKSNADRDIFYLKSIDNNIREYHIAE-COOH
(7) Staphylococcus haemolyticus HMG-CoA synthetase (PksG) polynucleotide sequence [SEQ ID NO:7]. 5 ' -GTGAGTATAGGAATCGATAAAATTAACTTTTACGTACCTAAATACTATGT AGACATGGCTAAGCTTGCTGAAGCTCGCCAAGTTGATCCAAATAAATTTT TAATTGGGATTGGTCAAACCCAAATGGCAGTCAGTCCAGTATCACAAGAT ATTGTATCTATGGGGGCTAATGCTGCTAAAGATATTATAACAGATGATGA TAAAAAACATATTGGAATGGTCATTGTAGCAACTGAATCTGCAATCGATA ATGCCAAAGCTGCTGCAGTACAAATTCACAATTTACTAGGTGTTCAGCCA TTCGCACGCTGCTTCGAAATGAAAGAAGCTTGCTATGCTGCAACACCTGC AATCCAATTAGCTAAAGACTACATTGAGAAACGACCTAATGAAAAGGTAC TTGTTATCGCAAGTGATACAGCTCGTTACGGTATTCAATCTGGTGGTGAA CCGACACAAGGTGCTGGTGCCGTAGCTATGTTGATTTCAAATAATCCAAG TATCTTAGAATTGAATGATGATGCCGTTGCATATACTGAAGATGTGTATG ACTTCTGGAGACCAACTGGACATAAATATCCATTAGTTGCCGGTGCGTTA TCTAAAGATGCATATATCAAATCATTCCAAGAAAGTTGGAACGAATATGC TCGACGTGAAGATAAAACATTATCTGACTTTGAGTCATTATGTTTCCACG TACCTTTCACTAAAATGGGTAAAAAAGCTTTAGACTCAATTATCAATGAT GCCGATGAAACGACGCAAGAACGTTTAACATCTGGATATGAAGATGCAGT ATATTACAATCGCTATGTAGGTAATATTTATACTGGCTCTTTATATCTAA GTTTGATTTCATTATTAGAGAATAGATCACTTAAAGGTGGTCAAACTATT GGATTATTTAGCTATGGATCTGGTTCTGTAGGAGAATTCTTTAGTGCTAC GCTAGTCGAAGGCTATGAAAAACAATTAGATATTGAAGGACATAAAGCCT TATTGAATGAACGTCAAGAAGTTTCAGTTGAAGACTATGAAAGTTTCTTC AAGCGATTCGATGATTTAGAATTCGATCACGCTACTGAACAAACTGATGA CGATAAGTCTATTTACTACTTAGAAAATATTCAGGACGATATACGTCAAT ATCATATTCCTAAATAA-3 '
(8) Staphylococcus haemolyticus HMG-CoA synthetase (PksG) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:8].
NH2-MSIGIDKINFYVPKYYVDMAKLAEARQVDPNKFLIGIGQTQMAVSPVSQD IVSMGANAAKDIITDDDKKHIGMVIVATESAIDNA-AAAVQIHNL GVQP FARCFEMKEACYAATPAIQ AKDYIEKRPNEKVLVIASDTARYGIQSGGE PTQGAGAVAMLISNNPSILELNDDAVAYTEDVYDF RPTGHKYP VAGAL SKDAYIKSFQES NEYARREDKTLSDFESLCFHVPFTKMGKKA DSIIND ADETTQER TSGYEDAVYYNRYVGNIYTGSLYLSLISLLENRSLKGGQTI GLFSYGSGSVGEFFSATLVEGYEKQLDIEGHKAL- NERQEVSVEDYESFF KRFDDLEFDHATEQTDDDKSIYYLENIQDDIRQYHIPK-COOH (9) Enterococcus faecalis HMG-CoA synthetase (PksG) polynucleotide sequence [SEQ ID NO: 9].
5 ' -
ATGACAATTGGGATTGATAAAATTAGTTTTTTTGTGCCCCCTTATTATAT TGATATGACGGCACTGGCTGAAGCCAGAAATGTAGACCCTGGAAAATTTC ATATTGGTATTGGGCAAGACCAAATGGCGGTGAACCCAATCAGCCAAGAT ATTGTGACATTTGCAGCCAATGCCGCAGAAGCGATCTTGACCAAAGAAGA TAAAGAGGCCATTGATATGGTGATTGTCGGGACTGAGTCCAGTATCGATG AGTCAAAAGCGGCCGCAGTTGTCTTACATCGTTTAATGGGGATTCAACCT TTCGCTCGCTCTTTCGAAATCAAGGAAGCTTGTTACGGAGCAACAGCAGG CTTACAGTTAGCTAAGAATCACGTAGCCTTACATCCAGATAAAAAAGTCT TGGTTGTAGCAGCAGATATTGCAAAATATGGATTAAATTCTGGCGGTGAG CCTACACAAGGAGCTGGGGCGGTTGCAATGTTAGTTGCTAGTGAACCGCG CATCTTGGCTTTAAAAGAGGATAATGTGATGCTGACGCAAGATATCTATG ACTTTTGGCGTCC ACAGGCCATCCGTATCCTATGGTCGATGGTCCTTTG TCAAACGAAACCTACATCCAATCTTTTGCCCAAGTCTGGGATGAACATAA AAAAAGAACCGGTCTTGATTTTGCAGATTATGATGCTTTAGCGTTCCATA TTCCTTACACAAAAATGGGCAAAAAAGCCTTATTAGCAAAAATCTCCGAC CAAACTGAAGCAGAACAGGAACGAATTTTAGCCCGTTATGAAGAAAGCAT CATCTATAGTCGTCGCGTAGGAAACTTGTATACGGGTTCACTTTATCTGG GACTCATTTCCCTTTTAGAAAATGCAACGACTTTAACCGCAGGCAATCAA ATTGGGTTATTCAGTTATGGTTCTGGTGCTGTCGCTGAATTTTTCACTGG TGAATTAGTAGCTGGTTATCAAAATCATTTACAAAAAGAAACTCATTTAG CACTGCTAGATAATCGGACAGAACTTTCTATCGCTGAATATGAAGCCATG TTTGCAGAAACTTTAGACACAGATATTGATCAAACGTTAGAAGATGAATT AAAATATAGTATTTCTGCTATTAATAATACCGTTCGCTCTTATCGAAACT AA-3 '
(10) Enterococcus faecalis HMG-CoA synthetase (PksG) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO: 10].
NH2- TIGIDKISFFVPPYYID TALAEARNVDPGKFHIGIGQDQMAVNPISQD IVTFAA AAEAILTKEDKEAIDMVIVGTESSIDESKAAAWLHRLMGIQP FARSFEIKEACYGATAGLQ AK HVA HPDKKVLWAADIAKYGLNSGGE PTQGAGAVAM VASEPRILALKEDNVMLTQDIYDF RPTGHPYPMVDGPL SNETYIQSFAQVWDEHKKRTGLDFADYDALAFHIPYTK GKKALLAKISD QTEAEQERILARYEESIIYSRRVGNLYTGS YLGLISLLENATT TAGNQ IG FSYGSGAVAEFFTGELVAGYQNHLQKETHLALLDNRTE SIAEYEAM FAETLDTDIDQTLEDELKYSISAINNTVRSYRN-COOH (11) Enterococcus faecium HMG-CoA synthetase (PksG) nucleotide sequence polynucleotide sequence [SEQ ID NO:l 1].
5 ' - ATGAAAATAGGGATTGATCGTCTTTCCTTTTTTATTCCTAATTTATATTT AGATATGACAGAGTTGGCAGAAAGCCGTGGGGATGATCCTGCAAAATACC ATATAGGGATTGGTCAAGACCAAATGGCAGTCAATCGTGCAAATGAAGAC ATCATTACACTAGGAGCAAATGCTGCCAGCAAAATCGTAACAGAAAAAGA CCGTGAGCTAATCGACATGGTCATCGTCGGAACAGAATCCGGGATTGATC ATTCAAAAGCGAGTGCGGTAATTATCCACCATTTACTGAAAATCCAATCT TTTGCTCGTTCTTTTGAAGTAAAAGAGGCTTGCTACGGTGGCACCGCAGC TTTGCACATGGCGAAAGAATATGTCAAAAATCATCCAGAACGAAAAG AC TAGTCATAGCAAGTGATATTGCTCGTTACGGCTTGGCAAGCGGTGGTGAA GTGACGCAAGGTGTCGGTGCTGTTGCGATGATGATCACTCAAAACCCGCG TATTTTATCGATTGAAGACGACAGCGTATTTCTGACAGAAGATATCTATG ATTTCTGGCGTCCAGATTATAGCGAATTTCCTGTTGTTGATGGTCCTTTA TCTAATTCTACGTATATCGAATCATTCCAAAAAGTTTGGAATCGACATAA AGAATTGTCGGGTCGAGGACTCGAAGATTATCAGGCGATTGCTTTCCATA TTCCGTATACTAAGATGGGAAAAAAGGCATTGCAAAGCGTATTAGACCAA ACAGACGAAGATAATCAGGAACGTCTTATGGCTCGCTATGAAGAAAGCAT CCGTTACAGCCGACGAATCGGTAATCTTTACACTGGTTCATTATACCTGG GGCTAACTTCTCTACTGGAAAATTCGAAATCACTACAGCCAGGAGATCGC ATCGGTCTATTCAGCTACGGCTCTGGTGCAGTAAGTGAATTTTTTACAGG TTATCTGGAAGAAAACTATCAAGAATATCTCTTCGCACAATCTCATCAAG AGATGCTAGATTCTCGAACACGGATCACTGTTGACGAATATGAAACGATT TTCAGTGAGACGCTTCCTGAACACGGAGAATGTGCAGAATATACTTCAGA TGTACCTTTTTCGATTACAAAGATCGAAAATGATATTCGTTACTACAAAA TA AA -3 '
(12) Enterococcus faecium HMG-CoA synthetase (PksG) nucleotide sequence polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:12].
NH2-
MKIGIDR SFFIPN YLDMTELAESRGDDPAKYHIGIGQDQMAVNRANED IITLGANAASKIVTEKDRE IDMVIVGTESGIDHSKASAVIIHH LKIQS FARSFEVKEACYGGTAA HMAKEYVKNHPERKVLVIASDIARYGLASGGE VTQGVGAVAMMITQNPRILSIEDDSVF TEDIYDFWRPDYSEFPWDGPL SNSTYIESFQKV RHKE SGRGLEDYQAIAFHIPYTKMGKKALQSVLDQ TDEDNQERLMARYEESIRYSRRIGN YTGSLYLGLTS ENSKSLQPGDR IG FSYGSGAVSEFFTGYLEENYQEY FAQSHQEMLDSRTRITVDEYETI FSETLPEHGECAEYTSDVPFSITKIENDIRYYKI-COOH (13) Staphylococcus haemolyticus HMG-CoA reductase (MevA) polynucleotide sequence [SEQ ID NO: 13].
5 ' -
ATGAAGAGTTTAGATAAGACATTTCGACATTTATCTCGTGAAGATAAATTAAAACAACTTGTTGAT TATGGATGGTTAACTGATGAAAGCTATGATGTTTTACTAAAAAATCCATTAATTAATGAAGAAGTT GCGAATAGTTTAATTGAGAATGTAATTGGTCAAGGTACATTGCCTGTAGGTTTATTACCTAAAATC ATTGTCGATGATAAAGAATATGTTGTACCGATGATGGTTGAAGAACCTTCAGTAGTAGCTGCTGCA AGCTATGGCGCTAAGTTAGTCAACAATACAGGTGGCTTTAAAACAGTTAAGAGTGAACGATTAATG ATTGGCCAAATTGTATTTGATGATGTTAGTGATACAGATGCCTTAGCACAAGCCATATATGATTTA GAGCCACAAATTAAACAGATCGCAGCTGAAGCTTACCCATCAATTATAGAACGTGGTGGTGGTTAC AGACGTATTGAAATTGATACGTTCCCAGAGAATCAACTATTGTCTTTAAAAGTATTTGTAGATACT AAAGATGCAATGGGTGCCAATATGCTTAATACAATCTTGGAAGCTATAACTGCACATATGAAGAAT GAGTTTCCAAATCGCGATGTGCTTATGAGCATTTTGTCTAACCATGCCACAGCCTCAGTAGTACGA GTTCAAGGTGAAATTGATATCAAAGATTTAAATAAAGGTGATCGTTCTGGTGAAGAAGTAGCACAA CGCATGGAGCGTGCTTCTGTACTAGCACAAGTCGATATACATCGTGCTGCAACACACAATAAAGGT GTTATGAATGGCATTCACGCCGTAGTCTTAGCAACTGGTAATGATACGCGCGGAGCAGAAGCAAGT GCACATGCATATGCCAGTCGTGATGGACAATATAGAGGTATTGCGACTTGGAAGTTTGATAAAGAA CGTGGTCGCTTAGTCGGAACAATAGAAGTACCGATGACATTAGCGATCGTCGGTGGCGGTACGAAA GTATTGCCAATTGCGAAAGCATCACTTGAATTATTGAATGTTCAATCAGCACAAGAATTAGGTCAG GTTGTTGCTGCTGTTGGATTGGCACAGAACTTTTCAGCATGTAGAGCCTTAGTTTCTGAAGGTATT CAAAAAGGTCACATGAGTTTACAATACAAATCATTAGCTATCGTAGTAGGTGCTCAAGGTGATGAG ATTGCTCGTGTTGCCGAAGCATTGAAAGCTGCGCCTAAAGCTAATACTGCTACAGCTCAACAAATT TTAAAAGATTTACGACAACAATAA -3 '
(14) Staphylococcus haemolyticus HMG-CoA reductase (MevA) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO: 14].
NH2- MKSLDKTFRHLSREDKLKQLVDYG LTDESYDVLLKNPLINEEVANSLIENVIGQGT PVGLLPKIIV DDKEYVVPMMVEEPSVVAAASYGAKLVNNTGGFKTVKSERLMIGQIVFDDVSDTDALAQAIYDLEPQI KQIAAEAYPSIIERGGGYRRIEIDTFPENQLLSLKVFVDTKDA GA MLNTILEAITAH K EFPNRD VLMSILSNHATASVVRVQGEIDIKDLNKGDRSGEEVAQRMERASVLAQVDIHRAATHNKGVMNGIHAV VLATGNDTRGAEASAHAYASRDGQYRGIAT KFDKERGRLVGTIEVPMTLAIVGGGTKV PIAK--SLE L NVQSAQELGQWAAVGLAQNFSACRA VSEGIQKGHMSLQYKSLAIWGAQGDEIARVAEALKAAP KANTATAQQILKDLRQQ* -COOH
(15) Staphylocccus epidermidis HMG-CoA reductase (MevA) nucleotide sequence polynucleotide sequence [SEQ ID NO: 15].
5 ' -
ATGAAAAGTTTAGATAAAGGATTTAGACATTTAACACGAAAAGATAAATTAAAAAAACTTGTTGAA TACGGTTGGCTAGATGATGAAAACTATGAAATATTACTTAATCATCCGTTAATTAATGAGGAAGTC GCAAACAGTTTAATTGAAAATGTCATTGGTCAAGGTGCACTACCAGTAGGGTTATTACCTCGAATT ATAGTTGATGATAAAGAATATGTAGTACCTATGATGGTAGAGGAACCTTCTGTCGTAGCAGCAGCA AGTTATGGCGCAAAACTCGTTAATCAAAGTGGTGGATTTAAGACAATTTCAAGTGAACGTCTAATG ATTGGACAAATTGTCTTTGATGATGTTGAAGACACAGGCACATTAGCTAACTCAATATATCAAATA GAATCACAAATTCATCAAATCGCTGATGAAGCTTACCCTTCTATTAAAGCAAGAGGTGGAGGATAT CAACGTATTGAAATAGATACATTCCCTAATCATCGATTATTATCTTTGAAGGTTTTTGTTGATACT AAAGATGCTATGGGTGCTAATATGTTAATTACAATATTAGAAGCAATCACTGCACATCTAAAAGTT AAAATTTTCAATCAAAATGTTTTAATGAGTATTTTATCTAATCATGCGACAGCATCAGTAGTACAG GTACAAGGGGAAATAGATATTGAAGATTTACATAGAGGAGAGAGAAGTGGCGAAGAGGTAGCACAA CGTATGGAACGAGCGTCAGTTCTTGCACAAGTAGATATACATCGTGCTGCAACACATAACAAAGGT GTGATGAATGGTATACACGCTGTAGTATTGGCTACAGGCAATGATACAAGAGGAGTTGAAGCAAGT GCTCATGCATATGCAAGCAAAGATGGTCATTATAGAGGGATAGCTACTTGGGAATATGATCGCTCA CGTAATAAATTGGTTGGAACTATTGAAGTTCCTATGACTTTAGCGACAGTAGGTGGAGGTACGAAA GTTTTACCTATTGCTAAAGCCTCATTAAATTTGCTTAATGTTGAAAATGCACAGGAACTAGGGCAA GTTGTTGCTGCTGTTGGATTAGCACAAAATTTCTCTGCATGTAGAGCGCTAGTGTCTGAGGGGATA CAACAAGGACATATGAGTTTACAATATAAATCATTAGCGATTGTTGTAGGTGCAAAAGGCGAAGAA ATTGCGCAAGTAGCTGAAGCGCTCAAATATGAATCACAAGCTAATACTGCCAAAGCTCAAGAAATC TTGATGAATATAAGAAAGTCA A -3'
(16) Staphylocccus epidermidis HMG-CoA reductase (MevA) nucleotide sequence polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO: 16].
NH2- MKSLDKGFRH TRKDKLKKLVEYG LDDENYEILLNHPLINEEVANSLIE NVIGQGALPVGLLPRIIVDDKEYVVPMMVEEPSVVAAASYGAKLVNQSGG
FKTISSER MIGQIVFDDVEDTGTLANSIYQIESQIHQIADEAYPSIKAR
GGGYQRIEIDTFPNHRLLSLKVFVDT-αDAMGANMLITILEAITAHLKVKI
FNQNV SILSNHATASWQVQGEIDIEDLHRGERSGEEVAQRMERASVL
AQVDIHRAATHNKGV NGIHAWLATGNDTRGVEASAHAYASKDGHYRGI AT EYDRSR K VGTIEVP TLATVGGGTKVLPIAKASLNLLNVENAQEL
GQVVAAVGLAQNFSACRA VSEGIQQGHMSLQYKSLAIWGAKGEEIAQV
AEALKYESQANTAKAQEILMNIRKS -COOH
(17) Streptococcus pyogenes HMG-CoA reductase (MevA) nucleotide sequence polynucleotide sequence [SEQ ID NO: 17].
5 ' - ATGACAAAAACTAATCTTAACTGGAGCGGTTTTTCAAAGAAAACATTCGA
AGAACGCCTCCAACTTATCGAAAAATTTAAACTACTTAATGCTGAAAACT
TAAATCAACTCAAAACAGACGTTCTTTTGCCTATCCAAACAGCTAATCAA
ATGACTGAAAATGTCTTAGGACGATTGGCTTTGCCCTTTAGCATAGCTCC TGATTTTCTTGTCAACGGTTCAACTTATCAGATGCCTTTTGTCACGGAAG
AACCTTCTGTTGTTGCTGCAGCATCTTTCGCAGCAAAACTAATCAAACGC
TCAGGTGGTTTTAAAGCTCAAACCCTAAACCGACAAATGATTGGTCAAAT
TGTTCTTTACGATATCGACCAAATAGATAACGCTAAAGCCGCCATCCTTC
ATAAAACAAAAAAGCTAATTGCATTGGCAAATAAAGCTTATCCTTCCATT GTTAAAAGAGGTGGAGGCGCTAGAACCATTCATTTGGAAGAAAAAGGAGA
ATTTTTGATTTTCTATCTGACTGTTGATACCCAAGAAGCTATGGGAGCAA
ATATGGTCAATACTATGATGGAAGCTCTTGTTCCTGATTTAACAAGACTG
TCTAAGGGGCATTGTCTAATGGCGATTTTATCTAATTACGCAACAGAGTC GCTTGTTACTACTAGTTGTGAGATTCCCGTGCGCCTTTTAGATCGCGATA AAACAAAATCCCTACAGTTAGCTCAAAAAATAGAGCTAGCCAGCCGACTA GCTCAAGTAGATCCTTACCGGGCTACTACTCATAATAAAGGTATTTTTAA TGGTATTGATGCAGTGGTAATAGCCACAGGAAATGACTGGCGTGCTATTG AAGCAGGGGCCCATGCTTATGCCTCAAGAAATGGTAGCTATCAAGGACTT AGTCAGTGGCATTTTGACCAAGATAAACAAGTTCTGCTTGGCCAAATGAC CCTCCCTATGCCTATTGCTAGTAAGGGGGGATCTATCGGGCTTAACCCTA CTGTTTCTATCGCACATGATCTTCTTAATCAACCTGATGCCAAAACATTA GCCCAATTGATTGCATCTGTGGGGTTAGCTCAAAACTTTGCTGCACTAAA AGCTCTGACCTCATCTGGCATCCAAGCTGGTCACATGAAACTACATGCGA AATCATTAGCTCTTTTGGCGGGGGCAACCCAAGACGAAATTGCTCCTTTA GTTAATGCTTTACTAGCTGATAAACCAATAAATCTAGAAAAAGCACATTT TTACTTATCCCAGCTAAGACAGTCTTAG -3 '
(18) Streptococcus pyogenes HMG-CoA reductase (MevA) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO: 18].
NH2- MTKTN NWSGFSKKTFEERLQLIEKFKLLNAENLNQ KTDV PIQTANQ
MTENVLGRLA PFSIAPDFLVNGSTYQMPFVTEEPSWAAASFAAKLIKR
SGGFKAQT NRQMIGQIVLYDIDQIDNAKAAI HKTKKLIALANKAYPSI VKRGGGARTIHLEEKGEFLIFYLTVDTQEAMGANMVNTMMEALVPDLTRL
SKGHCLMAI SNYATES VTTSCEIPVRLLDRDKTKSLQLAQKIE ASR
AQVDPYRATTHNKGIFNGIDAVVIATGND RAIEAGAHAYASRNGSYQGL
SQWHFDQDKQV GQMTLPMPIASKGGSIG NPTVSIAHDLLNQPDAKT
AQLIASVG AQNFAALKALTSSGIQAGHMK HAKSLAL AGATQDEIAPL VNA LADKPINLEKAHFYLSQLRQS -COOH
(19) Enterococcus faecalis mevalonate kinase (MevKl) polynucleotide sequence [SEQ ID NO: 19].
5 ' - ATGAATATAAAAAAACAAGGCCTCGGTCAAGCGACGGGAAAAATCATTTT AATGGGGGAACACGCCGTTGTTTACGGCGAACCAGCAATCGCCTTTCCTT
TTCAAGCGACAGAAATCACAGCCGTCTTTACCCCGGCAAAAACTATGCAG
ATTGATTGTGCATATTTTACAGGATTGCTTGAAGACGTGCCCCAAGAGCT
AGCAAATATCAAGGAAGTTGTTCAGCAAACTTTACATTTTTTAAAGGAAG
ATACGTTTAAAGGCACTTTGACCTTAACAAGTACGATTCCCGCTGAACGA GGAATGGGCTCAAGCGCAGCAACCGCTGTGGCCATCGTTCGAAGCCTTTT
TGATTATTTTGATTACGCTTATACATATCAAGAATTGTTTGAGCTTGTTT
CCTTAAGTGAGAAAATTGCTCATGGCAATCCTAGTGGTATCGATGCCGCA
GCAACAAGCGGCGCTGATCCCTTATTTTTTACTAGAGGATTTCCGCCCAC
ACATTTCTCGATGAATTTATCTAATGCCTACTTAGTAGTAGCTGATACGG GAATTAAAGGTCAAACACGTGAAGCAGTGAAAGACATTGCGCAGCTAGCT
CAAAATAATCCCACAGCAATCGCTGAAACAATGAAACAATTAGGTTCTTT
TACTAAAGAAGCAAAGCAGGCGATTTTACAAGATGATAAACAAAAATTAG
GTCAGCTAATGACGTTAGCGCAAGAGCAACTCCAGCAATTAACCGTCAGC AACGATATGCTGGATCGACTAGTGGCTCTCTCTCTAGAACATGGCGCTCT AGGAGCAAAATTAACCGGCGGCGGTCGCGGTGGCTGTATGATTGCCTTAA CAGATAATAAAAAGACCGCACAAACCATTGCACAGACTTTAGAAGAAAAT GGAGCTGTTGCTACATGGATTCAATCATTAGAGGTGAAAAAGTAA -3 '
(20) Enterococcus faecalis mevalonate kinase (MevKl) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:20].
NH2- MNIKKQGLGQATGKIILMGEHAVVYGEPAIAFPFQATEITAVFTPAKTMQ IDCAYFTGL EDVPQELANIKEWQQT HFLKEDTFKGTLTLTSTIPAER GMGSSAATAVAIVRS FDYFDYAYTYQELFELVS SEKIAHGNPSGIDAA ATSGADPLFFTRGFPPTHFSMNLSNAYLWADTGIKGQTREAVKDIAQ A QNNPTAIAETMKQLGSFTKF-AKQAILQDDKQKLGQ MTLAQEQLQQLTVS ND LDRLVALS EHGALGAKLTGGGRGGC IALTDNKKTAQTIAQT EEN GAVAT IQS EVKK -COOH
(21) Enterococcus faecalis mevalonate kinase (MevKl) polynucleotide sequence [SEQ ID NO:21].
5 ' - ATGATTGAAGTTACTACGCCAGGAAAGTTATTTATTGCAGGAGAATATGC CGTTGTTGAACCTGGCCACCCTGCCATTATCGTTGCTGTGGATCAATTCG TAACTGTAACTGTCGAAGAAACAACAGATGAAGGCAGTATTCAATCTGCA CAATACAGCTCTTTACCTATTCGTTGGACACGCCGAAATGGTGAGCTCGT ATTAGATATTCGCGAAAATCCTTTTCATTATGTTCTAGCGGCGATTCATC TAACTGAAAAATATGCGCAAGAGCAAAACAAAGAATTGTCATTTTATCAT TTAAAAGTGACGAGTGAATTAGATAGTTCAAATGGACGAAAATATGGTCT TGGTTCAAGCGGTGCAGTAACCGTTGGAACTGTCAAAGCCTTGAATATTT TTTATGACTTAGGTTTGGAAAATGAGGAAATTTTCAAATTATCAGCATTA GCTCACTTAGCCGTTCAAGGAAATGGTTCTTGCGGAGATATCGCCGCCAG CTGTTACGGGGGCTGGATTGCCTTTTCAACCTTCGATCATGATTGGGTCA ATCAAAAAGTAACCACTGAAACATTAACTGATTTGTTAGCAATGGACTGG CCTGAATTAATGATTTTTCCGTTAAAAGTACCGAAACAACTACGTTTACT AATTGGTTGGACAGGTAGTCCTGCGTCCACTTCAGACTTAGTTGATCGAG TTCATCAATCAAAAGAAGAAAAACAAGCGGCTTATGAGCAGTTCTTAATG AAAAGTCGGCTTTGTGTCGAAACAATGATTAATGGCTTTAACACAGGAAA AATTTCTGTTATTCAAAAACAAATTACTAAAAATCGCCAATTGCTCGCCG AATTATCTTCACTGACTGGTGTGGTAATCGAAACAGAAGCCTTGAAAAAT CTTTGTGATTTGGCTGAATCTTATACAGGAGCTGCGAAATCTTCTGGCGC TGGCGGGGGCGATTGTGGGATTGTAATTTTCCGCCAAAAATCTGGGATTT TACCATTAATGACTGCTTGGGAAAAAGACGGAATTACCCCACTGCCACTT CACGTCTATACCTATGGTCAAAAGGAGTGTAAGGAGAAGCATGAATCGAA AAGATGA -3 ' (22) Enterococcus faecalis mevalonate kinase (MevKl) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:22].
NH2-MIEVTTPGK FIAGEYAWEPGHPAIIVAVDQFVTVTVEETTDEGSIQSA QYSS PIR TRRNGELVLDIRENPFHYVLAAIH TEKYAQEQNKELSFYH LKVTSELDSSNGRKYGLGSSGAVTVGTVKALNIFYD GLENEEIFKLSAL AH AVQGNGSCGDIAASCYGG IAFSTFDHDWVNQKVTTETLTDLLAMDW PEL IFPLKVPKQ RLLIG TGSPASTSD VDRVHQSKEEKQAAYEQFLM KSR CVETMINGFNTGKISVIQKQITKNRQLLAE SSLTGVVIETEALKN LCDLAESYTGAAKSSGAGGGDCGIVIFRQKSGI PLMTA EKDGITPLPL HVYTYGQKECKEKHESKR-COOH
(23) Streptococcus pyogenes mevalonate kinase (MevKl) polynucleotide sequence [SEQIDNO:23].
5 ' - ATGAACGAAAACATTGGATATGGTAAGGCACACAGTAAGATCATTTTGAT AGGTGAGCATGCTGTTGTGTATGGCTACCCAGCTATTGCTTTGCCTTTAA
CAGATATTGAGGTGGTTTGTCATATTTTTCCAGCTGATAAGCCATTGGTC
TTTGATTTTTATGATACTCTATCAACAGCCATTTATGCTGCCTTGGATTA
TTTGCAGCGACTACAAGAACCAATTGCTTATGAGATTGTTTCACAAGTGC
CACAAAAGCGTGGTATGGGGTCTTCGGCAGCCGTTTCTATTGCAGCTATT AGAGCCGTTTTTTCTTATTGTCAAGAACCCCTCTCGGATGATTTGTTGGA
AATTTTAGTCAACAAGGCAGAAATTATTGCCCACACCAATCCTAGTGGTT
TAGATGCCAAGACATGCCTTAGTGACCATGCCATTAAGTTTATCCGAAAC
ATTGGCTTTGAAACTATCGAAATCGCCTTAAATGGTTATCTTATCATTGC
AGATACAGGGATTCACGGTCATACACGTGAGGCCGTCAATAAGGTAGCAC AGTTTGAGGAAACGAATTTGCCCTATCTGGCTAAACTAGGAGCTTTGACA
CAAGCCCTTGAAAGAGCGATTAACCAAAAAAATAAGGTGGCTATCGGTCA
GCTCATGACACAAGCGCACTCTGCTTTAAAGGCCATTGGCGTTAGCATCA
GTAAAGCTGACCAACTTGTGGAGGCTGCCCTAAGAGCAGGTGCTTTAGGC
GCTAAGATGACAGGCGGTGGCTTGGGTGGCTGTATGATTGCCCTAGCAGA TACCAAAGACATGGCCGAAAAAATCAGTCACAAATTAAAAGAAGAAGGAG
CCGTAAACACGTGGATCCAAATGTTATAA -3 '
(24) Streptococcus pyogenes mevalonate kinase (MevKl) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:24]. NH2- MNENIGYGKAHSKIILIGEHAWYGYPAIALPLTDIEWCHIFPADKPLV
FDFYDTLSTAIYAALDYLQRLQEPIAYEIVSQVPQKRGMGSSAAVSIAAI
RAVFSYCQEPLSDDLLEILVNKAEIIAHTNPSGLDAKTC SDHAIKFIRN
IGFETIEIALNGYLIIADTGIHGHTREAVNKVAQFEETNLPYLAKLGALT
QALERAINQKNKVAIGQLMTQAHSA KAIGVSISKADQLVEAA RAGALG AKMTGGGLGGCMIALADTKDMAEKISHKLKEEGAVNTWIQML -COOH (25) Streptococcus pyogenes mevalonate kinase (MevKl) polynucleotide sequence [SEQ ID NO:25].
5 ' - ATGTCTAATTATTGTGTGCAAACAGGTGGGAAACTATACCTCACAGGCGA
ATATGCTATCTTAATACCAGGACAAAAAGCCTTAATTCACTTTATTCCAC TGATGATGACAGCAGAAATTAGCCCAGCAGCCCATATTCAATTAGCTTCA
GATATGTTTTCCCATAAAGCGGGCATGACACCCGATGCCTCTTATGCACT
GATTCAAGCAACGGTTAAAACCTTTGCTGATTATCTAGGACAGTCAATTG
ACCAACTGGAGCCATTTTCCCTAATCATAACAGGAAAAATGGAGCGCGAT
GGCAAAAAATTTGGCATTGGTTCAAGTGGTAGCGTCACCCTCTTAACCTT AAAGGCCTTATCGGCCTATTATCAGATCACTTTAACCCCAGAGTTACTCT
TTAAACTAGCGGCTTATACCTTGCTTAAGCAAGGAGATAATGGGTCTATG
GGGGATATTGCCTGTATCGCTTACCAGACTTTAGTCGCCTATACCTCCTT
TGACCGAGAACAGGTCAGTAACTGGCTGCAGACCATGCCCTTAAAAAAAC
TTCTCGTCAAAGATTGGGGTTACCATATCCAAGTCATTCAACCAGCCCTG CCTTGTGACTTTTTGGTTGGCTGGACTAAAATACCTGCTATTTC AGGCA
GATGATTCAACAAGTGACAGCGAGCATTACCCCAGCTTTCTTAAGAACAA
GTTACCAGCTAACGCAATCAGCTATGGTAGCTTTGCAAGAAGGTCATAAG
GAAGAACTCAAGAAAAGTTTAGCAGGAGCAAGTCATCTCCTAAAAGAGCT
TCATCCAGCTATCTACCATCCTAAGCTAGTAACCTTGGTAGCTGCTTGTC AGAAGCAAGATGCTGTTGCTAAATCTTCAGGTTCTGGTGGTGGAGATTGT
GGCATCGCGCTTGCCTTTAATCAGGATGCTAGAGATACCCTTATTTCCAA
ATGGCAAGAAGCTGATATCGCATTACTTTATCAAGAAAGGTGGGGAGAGA
ATGACTAA -3 '
(26) Streptococcus pyogenes mevalonate kinase (MevKl) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:26].
NH2- MSNYCVQTGGKLYLTGEYAI IPGQKALIHFIPLM TAEISPAAHIQLAS D FΞHKAGMTPDASYA IQATVKTFADYLGQSIDQ EPFS IITGKMERD GKKFGIGSSGSVTLLTLKALSAYYQIT TPELLFKLAAYTLLKQGDNGSM GDIACIAYQTLVAYTSFDREQVSN LQTMPLKKLLVKD GYHIQVIQPAL PCDFLVGWTKIPAISRQMIQQVTASITPAFLRTSYQLTQSAMVALQEGHK EELKKSLAGASH KELHPAIYHPKLVT VAACQKQDAVAKSSGSGGGDC GIALAFNQDARDTLISK QEADIA LYQERWGEND-COOH
(27) Staphylococcus epidermidis mevalonate kinase (MevKl) polynucleotide sequence [SEQ ID NO:27].
5 ' -
ATGACTAGACAAGGATACGGAGAATCTACTGGAAAGATTATTCTAATGGGTGAA CACGCAGTTACATTTGGTCAACCGGCAATCGCAATTCCATTTAATGCTGGAAAA ATTAAAGTCCTCATTGAAAGTTTAGATGAAGGTAATTATTCTTCTATCACAAGT GACGTATATGACGGAATGTTATACGATGCCCCCGAACATCTAAAGTCTATCATT AATCGCTTTGTTGAAAAAAGTGGAGTGAAAGAACCACTATCAGTAAAAATTCAA ACTAATTTGCCTCCATCAAGAGGTTTAGGTTCAAGTGCTGCAGTAGCAGTAGCG TTTGTACGCGCCAGTTATGATTTTATGGATCAACCTTTAGATGACAAAACATTG ATTAAAGAAGCAAATTGGGCGGAGCAAATCGCACATGGTAAGCCAAGCGGTATT GATACGCAGACGATTGTGTCAAATAAACCCGTCTGGTTTAAACAAGGGCAGGCC GAAACATTAAAATCACTAAAATTAAATGGTTATATGGTTGTCATTGATACTGGA GTAAAGGGTTCTACCAAACAAGCAGTAGAAGATGTTCATGTATTATGTGAATCT GATGAATATATGAAATATATAGAGCACATTGGTACACTTGTTCACAGTGCTAGC GAATCGATTGAACAGCATGATTTCCATCATTTGGCTGACATATTTAACGCATGT CAAGAAGACTTGAGACATTTAACAGTAAGTCACGATAAAATAGAAAAATTACTT CAAATTGGGAAAGAACATGGTGCCATTGCTGGTAAACTAACTGGTGGAGGAAGA GGTGGCAGCATGCTTCTTCTTGCGGAAAATTTAAAAACTGCAAAGACTATTGTT GCTGCTGTTGAAAAAGCTGGCGCAGCACATACATGGATTGAACATTTAGGAGGT TAA -3 '
(28) Staphylococcus epidermidis mevalonate kinase (MevKl) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:28].
NH2- MTRQGYGESTGKIIL GEHAVTFGQPAIAIPFNAGKIKV IES DEGNYS SITSDVYDGM YDAPEH KSIINRFVEKSGVKEP SVKIQTN PPSRGLG SSAAVAVAFVRASYDFMDQPLDDKT IKEANWAEQIAHGKPSGIDTQTIV SNKPVWFKQGQAETLKSLKLNGYMWIDTGVKGSTKQAVEDVHVLCESDE YMKYIEHIGTLVHSASESIEQHDFHHLADIFNACQED RHLTVSHDKIEK LQIGKEHGAIAGKLTGGGRGGSMLL AEN KTAKTIVAAVEKAGAAHTW IEHLGG -COOH
(29) Staphylococcus haemolyticus mevalonate kinase (MevKl) polynucleotide sequence [SEQ ID NO:29].
5 ' - ATGGTACAACGTGGCTATGGGGAGTCTAACGGCAAAATAATATTAATCGG
GGAGCATGCGGTAACATTTGGTGAACCTGCAATTGCGATTCCGTTTACTT
CAGGAAAAGTAAAAGTCTTAATCGAAAGTTTAGAAAAAGGTAATTACTCA
GCGATACAAAGTGATGTCTATGATGGACCACTTTATGATGCGCCAGAACA TTTGAAATCTTTAATTGGCCATTTCGTAGAGAATAAAAAGGTAGAAGAGC
CATTATTAATAAAAATTCAAGCAAATTTACCACCATCTAGAGGTTTAGGA
TCAAGTGCAGCCGTTGCTGTCGCTTTCATAAGAGCAAGCTATGATTATTT
AGGTTTACCACTAACTGATAAAGAATTATTAGAAAATGCAGACTGGGCAG
AACGTATAGCTCATGGTAAACCAAGTGGTATAGATACTAAGACTATCGTT ACGAATCAACCTGTTTGGTATCAAAAGGGCGAAGTTGAAATATTAAAGAC
CTTAGATTTAGATGGTTATATGGTAGTTATCGATACAGGTGTTAAAGGTT
CTACTAAACAAGCAGTCGAAGATGTGCATCAATTGTGTGATAATGATAAG
AATTATATGCAAGTTGTTAAACATATTGGTTCTTTAGTGTATTCAGCTAG
TGAAGCGATTGAGCATCATAGTTTTGATCAATTAGCTACAATCTTTAATC AATGTCAAGATGACTTAAGAACATTGACGGTGAGTCACGACAAAATAGAA
ATGTTTCTTCGCTTAGGAGAAGAGAATGGTTCAGTCGCTGGCAAATTAAC
AGGTGGCGGCCGTGGTGGTAGTATGCTTATCTTAGCTAAAGAATTGCAAA
CAGCTAAGAATATTGTCGCTGCAGTTGAAAAAGCTGGTGCACAACATACA TGGATTGAGAAGTTAGGAGGATAA -3 '
(30) Staphylococcus haemolyticus mevalonate kinase (MevKl) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:30]. NH2- MVQRGYGESNGKII IGEHAVTFGEPAIAIPFTSGKVKVLIESLEKGNYS AIQSDVYDGPLYDAPEHLKSLIGHFVENKKVEEPLLIKIQANLPPSRG G SSAAVAVAFIRASYDYLG PLTDKELLENADWAERIAHGKPSGIDTKTIV TNQPVWYQKGEVEI KT DLDGYMWIDTGVKGSTKQAVEDVHQ CDNDK NYMQWKHIGS VYSASEAIEHHSFDQLATIFNQCQDDLRTLTVSHDKIE MFLRLGEENGSVAGKLTGGGRGGSMLI AKE QTAKNIVAAVEKAGAQHT WIEKLGG -COOH
(31) Staphylococcus aureus mevalonate kinase (MevKl) polynucleotide sequence [SEQ IDNO:31]. 5 ' - ATGATTCAGGTCAAAGCACCCGG
AAAACTTTATATTGCTGGAGAATATGCTGTAACAGAACCAGGATATAAAT
CTGTACTTATTGCGTTAGATCGTTTTGTAACTGCTACTATTGAAGAAGCA
ACGCAATATAAAGGTACCATTCATTCAAAAGCATTACATCATAACCCAG
TTACATTTAGTAGAGATGAAGATAGTATTGTCATTTCAGATCCACATGCA GCAAAACAATTAAATTATGTGGTCACAGCTATTGAAATATTTGAACAATAC
GCAAAAAGTTGCGATATAGCGATGAAGCATTTTCATCTGACTATTGATAG
TAATTTAGATGATTCAAATGGTCATAAATATGGATTAGGTTCAAGTGCAG
CAGTACTTGTGTCAGTTATAAAAGTATTAAATGAATTTTATGATATGAAG
TTATCTAATTTATACATTTATAAACTAGCAGTGATTGCAAATATGAAGTT ACAAAGTTTAAGTTCATGCGGAGATATTGCTGTGAGTGTATATAGTGGAT
GGTTAGCGTATAGTACTTTTGATCATGAATGGGTTAAGCATCAAATTGAA
GATACTACGGTTGAAGAAGTTTTAATCAAAAACTGGCCTGGATTGCACAT
CGAACCATTACAAGCACCTGAAAATATGGAAGTACTTATCGGTTGGACTG
GCTCACCGGCGTCATCACCACACTTTGTTAGCGAAGTGAAACGTTTGAAA TCAGATCCTTCATTTTACGGTGACTTCTTAGAAGATTCACATCGTTGTGT
TGAAAAGCTTATTCATGCTTTTAAAACAAATAACATTAAAGGTGTGCAAA
AGATGGTGCGTCAGAATCGTACAATTATTCAACGTATGGATAAAGAAGCT
ACAGTTGATATAGAAACTGAAAAGCTAAAATATTTGTGTGATATTGCTGA
AAAGTATCACGGTGCATCTAAAACATCAGGCGCTGGTGGTGGAGACTGTG GTATTACAATTATCAA AAAGATGTAGATAAAGAAAAAATTTATGATGAA
TGGACAAAACATGGTATTAAACCATTAAAATTTAATATTTATCATGGGCA
ATAA -3 '
(32) Staphylococcus aureus mevalonate kinase (MevK2) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:32].
NH2 - MIQVKAPGK YIAGEYAVTEPGYKSV IALDRFVTATIEEATQYKGTIHS
KALHHNPVTFSRDEDSIVISDPHAAKQ NYWTAIEIFEQYAKSCDIAMK
HFHLTIDSN DDSNGHKYGLGSSAAVLVSVIKVLNEFYDMK ΞN YIYKL AVIANMKLQSLSSCGDIAVSVYSGW AYSTFDHE VKHQIEDTTVEEV I KNWPG HIEPLQAPEK-MEVLIGWTGSPASSPHFVSEVKR KSDPSFYGDF LEDSHRCVEK IHAFKTNNIKGVQKIWRQNRTIIQRMDKEATVDIETEKL KYLCDIAEKYHGASKTSGAGGGDCGITIINKDVDKEKIYDE TKHGIKP KFNIYHGQ -COOH
(33) Streptococcus pneumoniae mevalonate kinase (Mevk2) polynucleotide sequence [SEQ ID NO:33].
5 ' - ATGATTGCTGTTAAAACTTGCGGAAAACTCTATTGGGCAGGTGAATATGC TATTTTAGAGCCAGGGCAGTTAGCTTTGATAAAGGATATTCCCATC ATA TGAGGGCTGAGATTGCTTTTTCTGACAGCTACCGTATCTATTCAGATATG TTTGATTTCGCAGTGGACTTAAGGCCCAATCCTGACTACAGCTTGATTCA AGAAACGATTGCTTTGATGGGAGACTTCCTCGCTGTTCGCGGTCAGAATT TAAGACCTTTTTCCCTAAAAATCTGTGGCAAAATGGAACGAGAAGGGAAA AAGTTTGGTCTAGGTTCTAGTGGCAGCGTCGTTGTCTTGGTTGTCAAGGC TTTACTGGCTCTCTATAATCTTTCGGTTGATCAGAATCTCTTGTTCAAGC TGACTAGCGCTGTCTTGCTCAAGCGAGGAGACAATGGTTCCATGGGCGAC CTTGCCTGTATTGTGGCAGAGGATTTGGTTCTTTACCAGTCATTTGATCG CCAGAAGGCGGCTGCTTGGTTAGAAGAAGAAAACTTGGCGACAGTTCTGG AGCGTGATTGGGGATTTTTTATCTCACAAGTGAAACCAACTTTAGAATGT GATTTCTTAGTGGGATGGACCAAGGAAGTGGCTGTATCGAGTCACATGGT CCAGCAAATCAAGCAAAATATCAATCAAAATTTTTTAAGTTCCTCAAAAG AAACGGTGGTTTCTTTGGTCGAAGCCTTGGAGCAGGGGAAAGCCGAAAAA GTTATCGAGCAAGTAGAAGTAGCCAGCAAGCTTTTAGAAGGCTTGAGTAC AGATATTTACACGCCTTTGCTTAGACAGTTGAAAGAAGCCAGTCAAGATT TGCAGGCCGTTGCCAAGAGTAGTGGTGCTGGTGGTGGTGACTGTGGCATC GCCCTGAGTTTTGATGCGCAATCTTCTCGAAACactTtaAAAAATCGTTG GGCCGATCTGGGGATTGAgcTCttaTATCAAGAAAGGATAGGACATGACG AC AATCGTAA -3 '
(34) Streptococcus pneumoniae mevalonate kinase (Mevk.2) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO: 34].
NH2- MIAVKTCGK Y AGEYAILEPGQLA IKDIPIYMRAEIAFSDSYRIYSDM FDFAVDLRPNPDYS IQETIALMGDFLAVRGQN RPFSLKICGKMEREGK KFGLGSSGSWVLWKA LALYN SVDQN FKLTSAVLLKRGDNGSMGD LACIVAED V YQSFDRQKAAA LEEENLATVLERDWGFFISQVKPTLEC DFLVG TKEVAVSSHMVQQIKQNINQNFLSSSKETWSLVEA EQGKAEK VIEQVEVASKLLEG STDIYTPLLRQLKEASQDLQAVAKSSGAGGGDCGI ALSFDAQSSRNTLKNR ADLGIELLYQERIGHDDKS -COOH
(35) Enterococcus faecalis mevalonate diphosphate decarboxylase (MevD) polynucleotide sequence [SEQ ID NO:35].
5 ' - ATGCTTTCAGGAAAAGCACGAGCGCATACAAATATTGCTCTGATTAAATA TTGGGGAAAAGCCAATGAAGAATACATTTTACCAATGAATAGTAGTTTAT CATTAACATTAGATGCCTTTTACACAGAAACAACTGTGACATTTGATGCC CATTATTCAGAAGATGTATTTATTTTAAATGGTATCTTGCAAAACGAAAA ACAAACAAAAAAAGTCAAAGAATTTTTGAACCTTGTTCGTCAACAAGCCG ATTGTACTTGGTTTGCAAAAGTGGAAAGTCAAAATTTTGTGCCTACTGCA GCTGGTTTGGCTTCTTCAGCGAGTGGTCTAGCTGCTTTAGCAGGGGCCTG TAACGTAGCCTTAGGATTAAATCTTTCAGCAAAAGACTTATCACGTTTAG CGCGACGTGGTTCAGGTTCTGCTTGTCGTAGTATTTTTGGTGGTTTTGCT CAATGGAACAAAGGCCACTCTGATGAAACGTCGTTTGCTGAAAATATTCC AGCTAATAATTGGGAAAACGAATTGGCCATGCTCTTTATCTTAATTAATG ATGGCGAAAAAGATGTTTCCAGCCGTGATGGAATGAAACGAACAGTAGAA ACTTCTAGCTTTTATCAAGGTTGGTTGGACAATGTGGAAAAAGATTTATC CCAAGTTCATGAAGCA--TTA-AACAAAAGACTTCCCTCGTTTAGGAGAAA TCATTGAAGCCAATGGGTTAAGGATGCATGGAACCACCTTAGGCGCTGTC CCTCCATTTACTTACTGGTCCCCAGGCAGCTTACAAGCGATGGCTTTAGT TCGCCAAGCACGGGCCAAAGGAATTCCTTGCTACTTTACAATGGATGCAG GTCCGAATGTCAAGGTTTTAGTCGAAAAGAAAAACTTAGAAGCATTAAAA ACATTTTTAAGTGAACATTTTTCAAAAGAGCAGTTAGTCCCAGCTTTTGC TGGTCCCGGAATTGAATTGTTTGAAACGAAAGGAATGGATAAATAA-3 '
(36) Enterococcus faecalis mevalonate diphosphate decarboxylase (MevD) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO: 36].
NH2- MLSGKARAHTNIA IKYWGKANEEYILPMNSS S T DAFYTETTVTFDA HYSEDVFILNGI QNEKQTKKVKEFLNLVRQQADCT FAKVESQNFVPTA AGLASSASGLAAI-AGACNVALGLNLSAKD SRLARRGSGSACRSIFGGFA QWNKGHSDETSFAENIPANNWENE AMLFILINDGEKDVSSRDGMKRTVE TSSFYQGWLDNVEKDLSQVHEAIKTKDFPRLGEIIEANGLRMHGTTLGAV PPFTY SPGSLQAMA VRQARAKGIPCYFTMDAGPNVKVLVEKKN EALK TFLSEHFSKEQLVPAFAGPGIE FETKGMDK -COOH
(37) Streptococcus pyogenes mevalonate diphosphate decarboxylase (MevD) polynucleotide sequence [SEQ ID NO:37].
5.' -
GAGAATCAAGCTAAGATGATTCCTTCGACCTCTAGCATTTCTTTGACTTTGGAAAACATGTTCACC ACAACCAGCGTTTCCTTCTTACCAGATACTGCAACCAGTGATCAGTTTTACATTAACGGTGTCTTG CAAAATGACGAAGAACATACCAAAATTTCTACTATCATTGACCAATTTCGCCAACCTGGTCAGGCT TTTGTAAAGATGGAAACTCAAAATAATATGCCAACAGCTGCAGGTTTATCATCAAGTTCCAGTGGC TTATCAGCCTTGGTTAAAGCCTGTGATCAATTATTTGACACTCAGCTAGATCAGAAAGCTTTAGCT CAAAAGGCCAAGTTCGCCTCAGGATCATCTTCTCGTTCTTTTTTTGGCCCAGTTGCTGCTTGGGAC AAAGATAGTGGTGCTATTTACAAGGTTGAGACTGACTTGAAAATGGCCATGATTATGCTGGTCTTA AATGCTGCGAAAAAGCCAATTTCTAGCCGAGAGGGCATGAAGTTATGCCGCGATACCTCAACTACA TTTGATGAATGGGTAGAACAATCGGCAATCGATTACCAACATATGCTTACCTATCTCAAAACTAAT AATTTTGAGAAAGTTGGTCAGTTAACAGAAGCTAATGCCTTGGCCATGCATGCCACGACAAAGACA GCCAATCCTCCCTTTTCTTACCTAACAAAAGAGTCTTACCAGGCTATGGAGGCTGTGAAAGAACTG CGTCAAGAAGGTTTTGCTTGTTATTTTACCATGGACGCAGGTCCAAATGTGAAGGTCCTATGTTTA GAAAAAGACTTGGCTCAACTAGCAGAACGACTTGGCAAAAACTACCGTATTATCGTTTCAAAAACA AAGGATTTACCAGATGTCTAA -3 '
(38) Streptococcus pyogenes mevalonate diphosphate decarboxylase (MevD) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:38].
NH2- MDPNVITVTSYANIAIIKYWGKENQAKMIPSTSSISLTLENMFTTTSVSF LPDTATSDQFYINGVLQNDEEHTKISTIIDQFRQPGQAFVKMETQN MPT AAGLSSSSSGLSALVKACDQLFDTQLDQKALAQKAKFASGSSSRSFFGPV AA DKDSGAIYKVETD KMAMIMLV NAAKKPISSREGMKLCRDTSTTFD EWVE SAIDYQHMLTYLKTNNFEKVGQLTEANA AMHATTKTANPPFSY TKESYQAMEAVKE RQEGFACYFTMDAGPNVKVLCLEKDLAQLAERLGKN YRIIVSKTKDLPDV -COOH
(39) Staphylococcus epidermidis mevalonate pyrophosphate decarboxylase (MevD) polynucleotide sequence [SEQ ID NO:39].
5 ' - TTGGTGAAAAGTGGCAAAGCACGAGCACATACAAATATTGCGTTGATTAA GTATTGGGGGAAAGCTGATGAAACTTACATTATTCCTATGAATAATAGTT TATCAGTTACCTTAGATAGATTTTATACTGAAACAAAAGTGACATTTGAC CCTGATTTTACTGAAGATTGCCTTATTTTAAATGGTAATGAAGTGAATGC CAAAGAGAAAGAAAAGATTCAAAACTATATGAATATAGTGAGAGATTTGG CTGGAAATCGTTTGCATGCGCGAATTGAAAGTGAAAATTATGTGCCAACA GCAGCAGGACTTGCTTCTTCAGCGAGTGCTTACGCTGCTTTAGCTGCCGC TTGTAATGAAGCTTTGTCATTGAACTTATCAGATACAGACTTATCACGAT TAGCTCGACGTGGTTCAGGTTCTGCTTCTAGAAGTATTTTTGGTGGATTT GCCGAATGGGAAAAAGGGCATGATGATTTAACTTCATATGCACATGGTAT TAATTCCAATGGTTGGGAAAAAGATTTATCAATGATATTTGTAGTGATTA ACAATCAGTCAAAAAAAGTATCTAGTAGGTCAGGAATGTCACTAACAAGA GATACTTCTAGATTTTATCAATATTGGTTGGATCACGTTGATGAAGATTT AAATGAAGCAAAAGAGGCAGTCAAAAATCAAGATTTTCAACGCTTAGGAG AAGTCATTGAAGCAAATGGTTTACGTATGCATGCCACTAACTTAGGCGCT CAACCTCCTTTCACGTATTTAGTGCAAGAAAGCTACGATGCTATGGCGAT TGTGGAACAGTGTCGAAAAGCCAATTTACCTTGTTACTT ACAATGGACG CGGGTCCCAATGTAAAAGTTTTAGTAGAAAAGAAAAATAAACAAGCTGTG ATGGAACAATTTTTAAAAGTATTTGACGAATCGAAGATTATAGCAAGTGA TATCATTAGCTCTGGTGTTGAAATTATTAAGTAA-3 ' (40) Staphylococcus epidermidis mevalonate pyrophosphate decarboxylase (MevD) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:40].
NH2- I-WKSGKA-^HTNIA IKYWGKADETYIIP NNS SVTLDRFYTETKVTFD PDFTEDCLILNGNEVNAKEKEKIQNY-^-NIVRDLAGNRLHARIESENYVPT AAGLASSASAYAALAAACNEALSLNI-SDTDL-SRI-ARRGSGSASRSIFGGF AE EKGHDDLTSYAHGINSNGWEKD SMIFWINNQSKKVSSRSGMSLTR DTSRFYQYWLDHVDEDLNEAKEAVKNQDFQRLGEVIEANG RMHATNLGA QPPFTYLVQESYDAMAIVEQCRKANLPCYFTMDAGPNVKVLVEKKNKQAV MEQF KVFDESKIIASDIISSGVEIIK -COOH
(41) Staphylococcus haemolyticus mevalonate pyrophosphate decarboxylase (MevD) polynucleotide sequence [SEQ ID NO:41].
5 ' - TTGAAAAAGAGTGGTAAAGCACGCGCACATACGAATATTGCACTGATTAA ATATTGGGGTAAAGCCGATGAGGCATTAATCATACCAATGAATAATAGTT TGTCAGTTACACTAGACCGTTTTTACACTGAAACGCGTGTAACATTTGAT GAAACATTAACAGAAGATCAGTTAATTCTTAACGGGGAAGCTGTAAATGC TAAGGAAAGCGCTAAGATTCAACGTTATATGGAAATGATTCGTAAAGAAG CTGGGATTTCAGAACATGCGCTTATTGAAAGTGAGAATTTTGTTCCAACA GCTGCAGGTTTAGCTTCGTCAGCAAGTGCATATGCTGCATTAGCCGGTGC GTGTAATGAAGCTCTACAATTAGGTTTGTCTGATAAAGATCTTTCACGAT TAGCGCGTCGTGGGTCTGGTTCAGCATCTCGCAGTATTTATGGTGGATTT GCTGAATGGGAAAAAGGAAATGACGATGAAACTTCCTTTGCACACCGTGT TGAAGCGGATGGCTGGGAAAATGAATTGGCTATGGTTTTTGTTGTTATTA ATAACAAATCTAAAAAGGTATCCAGTCGTTCAGGCATGTCACTTACACGT GATACATCACGTTTTTATCAATATTGGTTAGATAACGTTGAACCAGATTT GAAAGAGACTAAAGAAGCCATTGCTCAAAAAGATTTCAAGCGTATGGGTG AAGTTATTGAAGCTAATGGTTTACGCATGCATGCAACTAATTTGGGAGCA CAACCTCCATTTACATATTTAGTACCAGAAAGTTATGATGCTATGCGCAT CGTTCATGAATGTAGAGAAGCGGGGTTACCTTGCTACTTTACAATGGACG CGGGTCCTAACGTTAAAGTATTGATTGAAAAGAAAAATCAACAAGCTATC GTAGATAAATTCTTACAAGAATTTGATCAATCACAAATCATCACAAGTGA CATTACCCAATCAGGAGTCGAAATAATTAAGTAA -3 '
(42) Staphylococcus haemolyticus mevalonate pyrophosphate decarboxylase (MevD) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID
NO:42].
'NH2- MKKSGKARAHTNIALIKYWGKADEA 11PMN SLSVTLDRFYTETRVTFD
ETLTEDQLILNGEAVNAKESAKIQRYMEMIRKEAGISEHALIESENFVPT AAGLASSASAYAALAGACNEALQLGLSDKDLSRLARRGSGSASRSIYGGF
AEWEKGNDDETSFAHRVEADG ENELAMVFVVI NKSKKVSSRSG SLTR
DTSRFYQYWLDNVEPDLKETKEAIAQKDFKRMGEVIEANGLR HATNLGA Q PPFTYLVPESYDAMRI VHECREAGLPC YFTMDAGPNVKV I EKKNQQAI VDKFLQEFDQSQIITSDITQSGVEIIK-COOH
(43) Streptococcus pneumoniae HMG-CoA synthase (PksG) polynucleotide sequence [SEQ ID NO.43].
5 ' -
ATGAATGATAAAACAGAGGTAAATATGACAATCGGTATTGATAAGATTGGTTTTGCGACCAGTCAA TATGTCTTGAAATTACAAGACTTAGCAGAAGCGAGGGGAATTGACCCTGAAAAATTAAGTAAAGGA CTCTTACTCAAGGAATTGAGTATTGCGCCCCTAACTGAGGACATCGTGACCTTGGCGGCCAGTGCT AGTGACTCTATTTTAACTGAGCAAGAAAGACAAGAAGTTGACATGGTCATTGTGGCTACCGAGTCA GGAATTGACCAGAGTAAGGCTGCGGCCGTCTTTGTGCATGGCTTGCTGGGCATCCAGCCCTTTGCT CGTAGTTTCGAGATTAAAGAAGCCTGCTACGGAGCGACTGCTGCCCTCCATTATGCCAAATTGCAG TGGAAAATTCTCCGGAGTCCAAGGTCTTGGTCATTGCCAGTGATATTGCCAAATACGGTATTGAAA CTCCAGGAGAACCAACTCAAGGTGCTGGAAGTGTAGCTATGTTGATTACACAAAATCCACGCATGA TGGCCTTTAATAATGACAATGTAGCTCAGACCCGTGACATCATGGATTTCTGGCGACCAAATTACT CGACAACTCCCTATGTAAATGGTGTCTATTCTACCCAACAATACTTGGATAGTTTGAAAACGACTT GGCTTGAATATCAAAAACGCTACCAGCTTACTTTGGATGATTTTGCGGCTGTTTGTTTCCACTTGC CTTATCCTAAATTAGCGCTAAAAGGCTTGAAAAAAATCATGGATAAGAACTTGCCTCAAGAGAAAA AAGACCTCTTGCAAAAGCATTTTGACCAGTCTATTCTCTACAGTCAAAAGGTGGGGAATATCTACA CAGGTTCACTTTTCCTTGGACTTTTGTCTCTCTTGGAAAATACAGATAGCTTGAAAGCTGGGGATA AAATCGCCCTTTATAGTTACGGAAGTGGAGCTGTGGCTGAGTTCTTCAGTGGTGAATTGGTTGAAG GATATGAAGCTTATTTGGATAAAGACCGTTTGAACAAGCTCAACCAACGAACTGCCCTATCCGTTG CAGACTATGAAAAGGTCTTTTTTGAGGAAGTAAACTTGGATGAAACTAACTCTGCCCAGTTTGCTG GCTATGAAAATCAAGATTTTGCCTTGGTTGAAATTCTCGACCACCAACGCCGTTATAGCAAGGTTG AAAAATAA -3 '
(44) Streptococcus pneumoniae HMG-CoA synthase (PksG) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:44].
NH2- M DKTEVNMTIGIDKIGFATSQYVLKLQDLAEARGIDPEKLSKGLLLKEL SIAPLTEDIVTLAASASDSILTEQERQEVDMVIVATESGIDQSKAAAVFV HGLLGIQPFARSFEIKEACYGATAALHYAKLHVENSPESKVLVIASDIAK YGIETPGEPTQGAGSVAMLITQNPRMMAFNNDNVAQTRDIMDFWRPNYST TPYVNGVYSTQQYLDSLKTTWLEYQKRYQLTLDDFAAVCFHLPYPKLALK GLKKIMDK LPQEKKDLLQKHFDQSILYSQKVGNIYTGSLFLGLLSLLEN TDSLKAGDKIALYSYGSGAVAEFFSGELVEGYEAYLDKDRLNKLNQRTAL
SVADYEKVFFEEVNLDETNSAQFAGYENQDFALVEILDHQRRYSKVEK-COOH
(45) Streptococcus pneumoniae HMG-CoA reductase (MevA) polynucleotide sequence [SEQIDNO-45]. 5 ' - ATGAAGATAAGTTGGAATGGATTTTCTAAAAAATCATACCAAGAGCGCCT CGAGCTGTTAAAAGCTCAGGCGCTCCTTAGTCCTGAGAGACAAGCTAGTC TGGAGAAGGATGAACAGATGAGCGTGACTGTGGCAGACCAGCTGAGTGAG AATGTAGTGGGAACTTTTTCTCTGCCTTATTCACTGGTTCCGGAGGTACT TGTCAACGGTCAGGGATACACCGTTCCCTATGTGACAGAAGAACCTTCTG TGGTTGCGGCGGCCAGCTATGCCAGCAAAATCATCAAGCGTGCAGGTGGT TTTACTGCACAAGTCCATCAGCGACAGATGATTGGGCAGGTAGCCCTTTA TCAAGTTGCTAATCCTAAACTAGCGCAAGAGAAGATTGCCAGCAAGAAAG CGGAGCTCTTGGAGCTTGCCAATCAAGCCTATCCTTCTATCGTTAAACGT GGAGGTGGGGCGCGTGATCTGCATGTCGAGCAGATAAAAGGCGAACCAGA CTTTCTCGTTGTTTATATTCATGTCGATACCCAGGAAGCCATGGGTGCCA ATATGCTCAACACCATGCTGGAAGCCTTGAAACCAGTCTTAGAAGAACTC AGTCAGGGACAGAGTCTCATGGGAATCCTGTCCAACTACGCGACCGATTC TCTGGTGACTGCAAGCTGTCGCATCGCCTTTCGCTACTTGAGCCGCCAAA AGGATCAAGGACGAGAGATTGCGGAGAAAATTGCGTTGGCTAGTCAGTTT GCGCAGGCTGATCCTTACCGAGCTGCTACTCATAATAAAGGAATTTTTAA TGGTATTGATGCGATTTTGATTGCCACTGGAAATGACTGGCGTGCCATCG AAGCTGGGGCCCATGCCTTTGCCAGTCGAGATGGACGCTATCAAGGTCTT AGCTGCTGGACGCTGGACCTTGAAAGAGAAGAATTGGTCGGTGAGATGAC CCTGCCCATGCCTGTAGCGACTAAGGGTGGCTCTATCGGCCTCAACCCAC GTGTAGCTCTCAGTCATGATCTACTAGGAAATCCTTCTGCCAGAGAATTA GCCCAGATTATCGTGTCCATCGGTCTTGCTCAAAATTTTGCAGCCCTCAA AGCCTTGGTAAGTACGGGCATCCAGCAAGGCCACATGAAACTACAGGCCA AATCCCTAGCTCTCCTAGCTGGGGCTAGTGAATCTGAAGTTGCTCCCCTA GTAGAGCGCCTCATCTCAGATAAAACCTTTAACCTAGAGACAGCCCAGCG CTATCTCGAAAATTTAAGATCATAA -3 '
(46) Streptococcus pneumoniae HMG-CoA reductase (MevA) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:46]. NH2- MKIS NGFSKKΞYQERLELLKAQALLSPERQASLEKDEQMSVTVADQLSE NWGTFSLPYSLVPEVLVNGQGYTVPYVTEEPSWAAASYASKIIKRAGG FTAQVHQRQMIGQVALYQVANPKLAQEKIASKKAELLELANQAYPSIVKR GGG RDLHVEQIKGEPDFLWYIHVDTQEAMGAN LNTMLEALKPVLEEL SQGQSLMGILSNYATDSLVTASCRIAFRYLSRQKDQGREIAEKIALASQF AQADPYRAATHNKGIFNGIDAILIATGND RAIEAGAHAFASRDGRYQGL SCWTLDLEREELVGE TLPMPVATKGGSIGLNPRVALSHDLLGNPSAREL AQIIVSIGLAQNFAALKA VS GIQQGHMKLQ KSLALLAGASESEVAPL VERLISDKTFNLETAQRYLENLRS-COOH
(47) Streptococcus pneumoniae mevalonate kinase (MevK) polynucleotide sequence [SEQ ID NO.47].
5 ' -ATGACAAAAAAAGTTGGTGTCGGTCAGGCACATAGTAAGATAATTTT AT
AGGGGAACATGCGGTCGTTTACGGTTATCCTGCCATTTCCCTGCCTCTTT
TGGAGGTGGAGGTGACCTGTAAGGTAGTTTCTGCAGAGAGTCCTTGGCGC CTTTATGAGGAGGATACCTTGTCCATGGCGGTTTATGCCTCACTGGAGTA TTTGGATATCACAGAAGCCTGCGTTCGTTGTGAGATTGACTCGGCTATCC CTGAGAAACGGGGGATGGGTTCGTCAGCGGCTATCAGCATAGCGGCCATT CGTGCGGTATTTGACTACTATCAGGCTGATCTGCCTCATGATGTACTAGA AATCTTGGTCAATCGAGCTGAGATGATTGCCCATATGAATCCTAGTGGTT TGGATGCTAAGACCTGTCTCAGTGACCAACCTATTCGCTTTATCAAGAAC GTAGGATTTACAGAACTTGAGATGGATTTATCCGCCTATTTGGTGATTGC CGATACGGGTGTTTATGGTCATACTCGTGAAGCCATCCAAGTGGTTCAAA ATAAGGGCAAGGATGCCCTACCGTTTTTGCATGCCTTGGGAGAATTAACC CAGCAAGCATAAGTTGCGATTTCACAAAAATATGCTGAAGGACTGGGACT AATCTTCAGTCAAGCTCATTTACATCTAAAAGAAATTGGAGTCAGTAGCC CTGAGGCAGACTTTTTGGTTGAAACGGCTCTTASCTATGGTGCTCTGGGT GCCAAGATGAGCGGTGGTGGGCTAGGAGGTTGTATCATAGCCTTGGTAAC CAATTTGACGCACGCACAAGAACTAGCAGAAAGATTAGAAGAGAAAGGAG CTGTTCAGACATGGATAGAGAGCCTGTAA -3 '
(48) Streptococcus pneumoniae mevalonate kinase (MevK) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:48].
NH2- MTKKVGVGQAHSKIILIGEHAWYGYPAISLPLLEVEVTCKWSAESP R LYEEDTLSMAVYASLEYLDITEACVRCEIDSAIPEKRG GSSAAISIAAI RAVFDYYQADLPHDVLEILVNRAEMIAHMNPSGLDAKTCLSDQPIRFIKN VGFTELEMDLSAYLVIADTGVYGHTREAIQWQNKGKDALPFLHALGELT QQAEVAISQKYAEGLGLIFSQAHLHLKEIGVSSPEADFLVETALSYGALG AKMSGGGLGGC11ALVTNLTHAQELAERLEEKGAVQTWIESL -COOH
(49) Streptococcus pneumoniae mevalonate decarboxylase (MevD) polynucleotide sequence [SEQ ID NO:49].
5 ' - ATGGATAGAGAGCCTGTAACAGTACGTTCCTACGCAAATATTGCTATTAT CAAATATTGGGGAAAGAAAAAAGAAAAAGAGATGGTGCCTGCTACTAGCA GTATTTCTCTAACTTTGGAAAATATGTATACAGAGACGACCTTGTCGCCT TTACCAGCCAATGTAACAGCTGACGAATTTTACATCAATGGTCAGCTACA AAATGAGGTCGAGCATGCCAAGATGAGTAAGATTATTGACCGTTATCGTC CAGCTGGTGAGGGCTTTGTCCGTATCGATACTCAAAACAATATGCCTACG GCAGCGGGCCTGTCCTCAAGTTCTAGTGGTTTGTCCGCCCTGGTCAAGGC TTGTAATGCTTATTTCAAGCTTGGATTGGATAGAAGTCAGTTGGCACAGG AAGCCAAATTTGCCTCAGGCTCTTCTTCTCGGAGTTTTTATGGACCACTA GGAGCCTGGGATAAGGATAGTGGAGAAATTTACCCTGTAGAGACAGACTT GAAACTAGCTATGATTATGTTGGTGCTAGAGGACAAGAAAAAACCAATCT CTAGCCGTGACGGGATGAAACTTTGTGTGGAAACCTCGACGACTTTTGAC GACTGGGTTCGTCAGTCTGAGAAGGACTATCAGGATATGCTGATTTATCT CAAGGAAAATGATTTTGCCAAGATTGGAGAATTAACGGAGAAAAATGCTC TGGCTATGCATGCTACGACAAAGACTGCTAGTCCAGCCTTTTCTTATCTG ACGGATGCCTCTTATGAGGCTATGGCCTTTGTTCGCCAGCTTCGTGAGAA AGGAGAGGCCTGCTACTTTACCATGGATGCTGGTCCCAATGTTAAGGTCT TCTGTCAGGAGAAAGACTTGGAGCATTTGTCAGAAATTTTCGGTCAGCGT TATCGCTTGATTGTGTCAAAAACAAAGGATTTGAGTCAAGATGATTGCTG TTAA-3 '
(50) Streptococcus pneumoniae mevalonate decarboxylase (MevD) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:50].
NH2- MDREPVTVRSYA IAIIKYWGKKKEKEMVPATSSISLTLEN YTETTLSP
LPANVTADEFYINGQLQNEVEHAKMSKIIDRYRPAGEGFVRIDTQNNMPT
AAGLSSSSSGLSALVKACNAYFKLGLDRSQLAQEAKFASGSSSRSFYGPL GA DKDSGEIYPVETDLKLAMIMLVLEDKKKPISSRDG KLCVETSTTFD D VRQSEKDYQDMLIYLKENDFAKIGELTEKNALAMHATTKTASPAFSYL TDASYEAMAFVRQLREKGEACYFTMDAGPNVKVFCQEKDLEHLSEIFGQR YRLIVSKTKDLSQDDCC -COOH
(51) Staphylococcus aureus HMG-CoA synthase (PksG) polynucleotide sequence [SEQ ID NO:51].
5 ' -ATGACAATAGGTATCGACAAAATAAACTTTTACGTTCCAAAATACTATGTAGAC ATGGCTAAATTAGCAGAAGCACGCCAAGTAGACCCAAACAAATTTTTAATTGGA ATTGGTCAAACTGAAATGGCTGTTAGTCCTGTAAACCAAGACATCGTTTCAATG GGCGCTAACGCTGCTAAGGACATTATAACAGACGAAGATAAAAAGAAAATTGGT ATGGTAATTGTGGCAACTGAATCAGCAGTTGATGCTGCTAAAGCAGCCGCTGT TCAAATTCACAACTTATTAGGTATTCAACCTTTTGCACGTTGCTTTGAAATGA AAGAAGCTTGTTATGCTGCAACACCAGCAATTCAATTAGCTAAAGATTATTTA GCAACTAGACCGAATGAAAAAG ATTAGTTATTGCTACAGATACAGCACGTTA TGGATTGAATTCAGGCGGCGAGCCAACACAAGGTGCTGGCGCAGTTGCGATGG TTATTGCACATAATCCAAGCATTTTGGCATTAAATGAAGATGCTGTTGCTTAC ACTGAAGACGTTTATGATTTCTGGCGTCCAACTGGACATAAATATCCATTAGT TGATGGTGCATTATCTAAAGATGCTTATATCCGCTCATTCCAACAAAGCTGGA ATGAATACGCAAAACGTCAAGGTAAGTCGCTAGCTGACTTCGCATCTCTATGC TTCCATGTTCCATTTACAAAAATGGGTAAAAAGGCATTAGAGTCAATCATTGA TAACGCTGATGAAACAACTCAAGAGCGTTTACGTTCAGGATATGAAGATGCTG TAGATTATAACCGTTATGTCGGTAATATTTATACTGGATCATTATATTTAAGC CTAATATCATTACTTGAAAATCGTGATTTACAAGCTGGTGAAACAATCGGTTT ATTCAGTTATGGCTCAGGTTCAGTTGTTGAATTTTATAGTGCGACATTAGTTG TAGGCTACAAAGATCATTTAGATCAAGCTGCACATAAAGCATTATTAAATAAC CGTACTGAAGTATCTGTTGATGCATATGAAACATTCTTCAAACGTTTTGATGA CGTTGAATTTGACGAAGAACAAGATGCTGTTCATGAAGATCGTCATATTTTCT ACTTATCAAATATTGAAAATAACGTTCGCGAATATCACAGACCAGAGTAA -3 '
(52) Staphylococcus aureus HMG-CoA synthase (PksG) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:52].
NH2- MTIGIDKINFYVPKYYVDMAKLAEARQVDPNKFLIGIG TE AVSPVNQD IVSMGANAAKDIITDEDKKKIGMVIVATESAVDAAKAAAVQIHNLLGIQP FARCFEMKEACYAATPAIQLAKDYLATRPNEKVLVIATDTARYGLNSGGE PTQGAGAVAMVIAHNPSILALNEDAVAYTEDVYDFWRPTGHKYPLVDGAL SKDAYIRSFQQSWNEYAKRQGKSLADFASLCFHVPFTKMGKKALESIIDN ADETTQERLRSGYEDAVDYNRYVGNIYTGSLYLSLISLLENRDLQAGETI GLFSYGSGSWEFYSATLWGYKDHLDQAAHKALL NRTEVSVDAYETFF KRFDDVEFDEEQDAVHEDRHIFYLSNIENNVREYHRPE -COOH (53) Staphylococcus aureus HMG-CoA reductase (MevA) polynucleotide sequence [SEQ ID NO:53].
5 ' - ATGCAAAGTTTAGATAAGAATTTCCGACATTTATCTCGTCAACAAAAGTT ACAACAATTGGTAGATAAGCAATGGTTATCAGAAGATCAATTCGACATTT TATTGAATCATCCATTAATTGATGAGGAAGTAGCAAATAGTTTAATTGAA AATGTCATCGCGCAAGGTGCATTACCCGTTGGATTATTACCGAATATCAT TGTGGACGATAAGGCATATGTTGTACCTATGATGGTGGAAGAGCCTTCAG TTGTCGCTGCAGCTAGTTATGGTGCAAAGCTAGTGAATCAGACTGGCGGA TTTAAAACGGTATCTTCTGAACGTATTATGATAGGTCAAATCGTCTTTGA TGGCGTTGACGATACTGAAAAATTATCAGCAGACATTAAAGCTTTAGAAA AGCAAATTCATAAAATTGCGGATGAGGCATATCCTTCTATTAAAGCGCGT GGTGGTGGTTACCAACGTATAGCTATTGATACATTTCCTGAGCAACAGTT ACTATCTTTAAAAGTATTTGTTGATACGAAAGATGCTATGGGCGCTAATA TGCTTAATACGATTTTAGAGGCCATAACTGCATTTTTAAAAAATGAATCT CCACAAAGCGACATTTTAATGAGTATTTTATCCAATCATGCAACAGCGTC CGTTGTTAAAGTTCAAGGCGAAATTGACGTTAAAGATTTAGCAAGGGGCG AGAGAACTGGAGAAGAGGTTGCCAAACGAATGGAACGTGCTTCTGTATTG GCACAAGTTGATATTCATCGTGCTGCAACACATAATAAAGGTGTTATGAA TGGCATACATGCCGTTGTTTTAGCAACAGGAAATGATACGCGTGGTGCAG AAGCAAGTGCGCATGCATACGCGAGTCGTGACGGACAGTATCGTGGTATT GCAACATGGAGATACGATCAAAAACGTCAACGTTTAATTGGTACAATAGA AGTGCCTATGACATTGGCAATCGTTGGCGGTGGTACAAAAGTATTACCAA TTGCTAAAGCTTCTTTAGAATTGCTAAATGTAGATTCAGCACAAGAATTA GGTCATGTAGTTGCTGCCGTTGGTTTAGCACAGAACTTTGCAGCATGTCG CGCGCTCGTTTCCGAAGGTATCCAGCAAGGCCATATGAGCTTGCAATATA AATCTTTAGCTATTGTTGTAGGTGCAAAAGGTGATGAAATTGCGCAAGTA GCTGAAGCATTGAAGCAAGAACCCCGTGCGAATACACAAGTAGCTGAACG CATTT ACAAGAAATTAGACAACAA AG -3 '
(54) Staphylococcus aureus HMG-CoA reductase (MevA) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:54].
NH2- MQSLDKNFRHLSRQQKLQQLVDKQWLSEDQFDILLNHPLIDEEVANSLIE
NVIAQGALPVGLLPNIIVDDKAYVVPMMVEEPΞVVAAASYGAKLV QTGG
FKTVSSERIMIGQIVFDGVDDTEKLSADIKALEKQIHKIADEAYPSIKAR GGGYQRIAIDTFPEQQLLSLKVFVDTKDAMGAMLNTILEAITAFLKNES PQSDILMSILSNHATASWKVQGEIDVKDLARGERTGEEVAKRMERASVL AQVDIHRAATHNKGVMNGIHAWLATGNDTRGAEASAHAYASRDGQYRGI ATWRYDQKRQRLIGTIEVPMTLAIVGGGTKVLPIAKASLELLNVDSAQEL GHWAAVGLAQNFAACRALVSEGIQQGHMSLQYKSLAIWGAKGDEIAQV AEALKQEPRANTQVAERILQEIRQQ -COOH (55) Staphylococcus aureus mevalonate kinase (MevK) polynucleotide sequence [SEQ ID NO:55].
5 ' -ATGACAAGAAAAGGATATGGGGAATCGACAGGTAAGATTATTTTAATAGGAGAACATG CTGTTACATTTGGAGAGCCTGCTATTGCAGTACCGTTTAACGCAGGTAAAATCAAAGT TTTAATAGAAGCCTTAGAGAGCGGGAACTATTCGTCTATTAAAAGCGATGTTTACGAT GGTATGTTATATGATGCGCCTGACCATCTTAAGTCTTTGGTGAACCGTTTTGTAGAAT TAAATAATATTACAGAGCCGCTAGCAGTAACGATCCAAACGAATTTACCACCATCACG TGGATTAGGATCGAGTGCAGCTGTCGCGGTTGCTTTTGTTCGTGCAAGTTATGATTTT TTAGGGAAATCATTAACGAAAGAAGAACTCATTGAAAAGGCTAATTGGGCAGAGCAAA TTGCACATGGTAAACCAAGTGGTATTGATACGCAAACGATTGTATCAGGCAAACCAGT TTGGTTCCAAAAAGGTCAAGCTGAAACATTGAAAACGCTAAGTTTAGACGGCTATATG GTTGTTATTGATACTGGTGTGAAAGGTTCAACAAGACAAGCGGTAGAAGATGTTCATA AACTTTGTGAGGATCCTCAGTACATGTCACATGTAAAACATATCGGTAAGTTAGTTTT ACGTGCGAGTGATGTGATTGAACATCATAACTTTGAAGCCCTAGCGGATATTTTTAAT GAATGTCATGCGGATTTAAAGGCGTTGACAGTTAGTCATGATAAAATAGAACAATTAA TGAAAATTGGTAAAGAAAATGGTGCGATTGCTGGAAAACTTACTGGTGCTGGTCGTGG TGGAAGTATGTTATTGCTTGCCAAAGATTTACCAACAGCGAAAAATATTGTGAAAGCT
GTAGAAAAAGCTGGTGCAGCACATACATGGATTGAGAATTTAGGAGGTTAA -3 '
(56) Staphylococcus aureus mevalonate kinase (MevK) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:56].
NH2- TRKGYGESTGKIILIGEHAVTFGEPAIAVPFNAGKIKVLIEALESGNYS ΞIKSDVYDGMLYDAPDHLKSLV RFVELN ITEPLAVTIQTNLPPSRGLG SSAAVAVAFVRASYDFLGKSLTKEELIEKAN AEQIAHGKPSGIDTQTIV SGKPV FQKGQAETLKTLSLDGYMWIDTGVKGSTRQAVEDVHKLCEDPQ YMSHVKHIGKLVLRASDVIEHHNFEALADIFNECHADLKALTVSHDKIEQ LMKIGKENGAIAGKLTGAGRGGS LLLAKDLPTAKNIVKAVEKAGAAHTW IENLGG -COOH
(57) Staphylococcus aureus mevalonate pyrophosphate decarboxylase (MevD) polynucleotide sequence [SEQ ID NO:57]. 5 ' -
ATGATTAAAAGTGGCAAAGCACGTGCACATACG_ATATTGCACTTATAAAATATTGGGGTAAAAAAGAT GAAGCACTAATCATTCCAATGAATAATAGCATATCTGTTACATTAGAAAAATTTTACACTGAAACGAAA GTCACTTTTAACGACCAGTTAACACAGGATCAATTTTGGTTGAATGGTGAAAAGGTTAGTGGCAAAGAA TTAGAGAAAATTTCAAAATATATGGATATTGTCAGAAATAGAGCTGGCATCGATTGGTATGCTGAAATT GAAAGCGACAATTTTGTACCAACAGCAGCAGGGTTGGCTTCATCAGCAAGCGCATATGCAGCTTTAGCA GCAGCTTGTAATCAAGCACTAGACTTGCAGCTGTCAGATAAGGATTTATCGAGATTGGCGCGAATCGGT TCGGGTTCTGCGTCGCGTAGTATTTATGGTGGATTTGCAGAATGGGAAAAAGGGTATAATGATGAGACG TCATATGCCGTTCCACTTGAATCGAATCATTTTGAAGATGACCTTGCCATGATATTTGTTGTGATTAAT CAACATTCTAAAAAGGTACCTAGTCGATATGGTATGTCGTTGACACGAAACACATCAAGGTTTTATCAA TATTGGTTAGATCATATTGATGAAGATTTAGCTGAAGCAAAAGCAGCGATTCAAGACAAAGATTTTAAA CGCCTTGGTGAAGTAATTGAAGAAAATGGTTTACGTATGCATGCCACGAATCTGGGATCAACACCGCCG TTCACTTATCTTGTGCAAGAAAGTTATGATGTCATGGCGCTCGTTCACGAATGCCGAGAAGCGGGATAT CCGTGTTATTTTACGATGGATGCGGGTCCTAATGTGAAAATACTTGTAGAAAAGAAAAACAAGCAACAG ATTATAGATAAATTATTAACACAGTTTGATAATAACCAAATTATTGATAGTGACATTATTGCCACAGGA ATTGAAATAATTGAGTAA -3 '
(58) Staphylococcus aureus mevalonate pyrophosphate decarboxylase (MevD) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID
NO:58].
NH2- IKSGKARAHTNIALIKYWGKKDEALIIPMNNSISVTLEKFYTETKVTFNDQLTQDQFWLNGEKVSGKE LEKISKYMDIVRNRAGID YAEIESDNFVPTAAGLASΞASAYAALAAACNQALDLQLSDKDLSRLARIG SGSASRSIYGGFAEWEKGY DETSYAVPLESNHFEDDLAMIFWINQHSKKVPSRYGMSLTRNTSRFYQ YWLDHIDEDLAEAKAAIQDKDFKRLGEVIEENGLRMHATNLGSTPPFTYLVQESYDVMALVHECREAGY PCYFTMDAGPNVKILVEKKNKQQIIDKLLTQFDNNQIIDSDIIATGIEIIE -COOH
(59) Entercoccus faecalis HMG-CoA reductase (MevA) polynucleotide sequence [SEQ ID NO:59].
5 ' - TTGAAAACAGTAGTTATTATTGATGCATTACGAACACCAATTGGAAAATA
TAAAGGCAGCTTAAGTCAAGTAAGTGCCGTAGACTTAGGAACACATGTTA CAACACAACTTTTAAAAAGACATTCCACTATTTCTGAAGAAATTGATCAA
GTAATCTTTGGAAATGTTTTACAAGCTGGAAATGGCCAAAATCCCGCACG
ACAAATAGCAATAAACAGCGGTTTATCTCATGAAATTCCCGCAATGACAG
TTAATGAGGTCTGCGGATCAGGAATGAAGGCCGTTATTTTGGCGAAACAA
TTGATTCAATTAGGAGAAGCGGAAGTTTTAATTGCTGGCGGGATTGAGAA TATGTCCCAAGCACCTAAATTACAACGATTTAATTACGAAACAGAAAGCT
ATGATGCGCCTTTTTCTAGTATGATGTACGATGGGTTAACGGATGCCTTT
AGTGGTCAAGCAATGGGCTTAACTGCTGAAAATGTGGCCGAAAAGTATCA
TGTAACTAGAGAAGAGCAAGATCAATTTTCTGTACATTCACAATTAAAAG
CAGCTCAAGCACAAGCAGAAGGGATATTCGCTGACGAAATAGCCCCATTA GAAGTATCAGGAACGCTTGTGGAGAAAGATGAAGGGATTCGCCCTAATTC
GAGCGTTGAGAAGCTAGGAACGCTTAAAACAGTTTTTAAAGAAGACGGTA
CTGTAACAGCAGGGAATGCATCAACCATTAATGATGGGGCTTCTGCTTTG
ATTATTGCTTCACAAGAATATGCCGAAGCACACGGTCTTCCTTATTTAGC
TATTATTCGAGACAGTGTGGAAGTCGGTATTGATCCAGCCTATATGGGAA TTTCGCCGATTAAAGCCATTCAAAAACTGTTAGCGCGCAATCAACTTACT
ACGGAAGAAATTGATCTGTATGAAATCAACGAAGCATTTGCAGCAACTTC
AATCGTGGTCCAAAGAGAACTGGCTTTACCAGAGGAAAAGGTCAACATTT
ATGGTGGCGGTATTTCATTAGGTCATGCGATTGGTGCCACAGGTGCTCGT
TTATTAACGAGTTTAAGTTATCAATTAAATCAAAAAGAAAAGAAATATGG AGTGGCTTCTTTATGTATCGGCGGTGGCTTAGGACTCGCTATGCTACTAG
AGAGACCTCAGCAAAAAAAAAACAGCCGATTTTATCAAATGAGTCCTGAG
GAACGCCTGGCTTCTCTTCTTAATGAAGGCCAGATTTCTGCTGATACAAA AAAAGAATTTGAAAATACGGCTTTATCTTCGCAGATTGCCAATCATATGA TTGAAAATCAAATCAGTGAAACAGAAGTGCCGATGGGCGTTGGCTTACAT TTAACAGTGGACGAAACTGATTATTTGGTACCAATGGCGACAGAAGAGCC CTCAGTGATTGCGGCTTTGAGTAATGGTGCAAAAATAGCACAAGGATTTA 5 AAACAGTGAATCAACAACGTTTAATGCGTGGACAAATCGTTTTTTACGAT GTTGCAGACGCCGAGTCATTGATTGATGAACTACAAGTAAGAGAAACGGA AATTTTTCAACAAGCAGAGTTAAGTTATCCATCTATCGTTAAACGCGGCG GCGGCTTAAGAGATTTGCAATATCGTGCTTTTGATGAATCATTTGTATCT GTCGACTTTTTAGTAGATGTTAAGGATGCAATGGGGGCAAATATCGTTAA 0 CGCTATGTTGGAAGGTGTGGCCGAGTTGTTCCGTGAATGGTTTGCGGAGC AAAAGATTTTATTCAGTATTTTAAGTAATTATGCCACGGAGTCGGTTGTT ACGATGAAAACGGCTATTCCAGTTTCACGTTTAAGTAAGGGGAGCAATGG CCGGGAAATTGCTGAAAAAATTGTTTTAGCTTCACGCTATGCTTCATTAG ATCCTTATCGGGCAGTCACGCATAACAAAGGGATCATGAATGGCATTGAA 5 GCTGTCGTTTTAGCTACAGGAAATGATACACGCGCTGTTAGCGCTTCTTG TCATGCTTTTGCGGTGAAGGAAGGTCGCTACCAAGGTTTGACTAGTTGGA CGCTGGATGGCGAACAACTAATTGGTGAAATTTCAGTTCCGCTTGCGTTA GCCACGGTTGGCGGTGCCACAAAAGTCTTACCTAAATCTCAAGCAGCTGC TGATTTGTTAGCAGTGACGGATGCAAAAGAACTAAGTCGAGTAGTAGCGG 0 CTGTTGGTTTGGCACAAAATTTAGCGGCGTTACGGGCCTTAGTCTCTGAA GGAATTCAAAAAGGACACATGGCTCTACAAGCACGTTCTTTAGCGATGAC GGTCGGAGCTACTGGTAAAGAAGTTGAGGCAGTCGCTCAACAATTAAAAC GTCAAAAAACGATGAACCAAGACCGAGCCTTGGCTATTTTAAATGATTTA AGAAAACAATAA -3 ' i5
(60) Enterococcus faecalis HMG-CoA reductase (MevA) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO: 60].
NH2- MKTWIIDALRTPIGKYKGSLSQVSAVDLGTHVTTQLLKRHSTISEEIDQ VIFGNVLQAGNGQNPARQIAINSGLSHEIPAMTVNEVCGSGMKAVILAKQ 0 LIQLGEAEVLIAGGIENMSQAPKLQRFNYETESYDAPFSSMMYDGLTDAF SGQA GLTAENVAEKYHVTREEQDQFSVHSQLKAAQAQAEGIFADEIAPL EVSGTLVEKDEGIRPNSSVEKLGTLKTVFKEDGTVTAGNASTINDGASAL IIASQEYAEAHGLPYLAIIRDSVEVGIDPAYMGISPIKAIQKLLAR QLT TEEIDLYEINEAFAATSIWQRELALPEEKVNIYGGGISLGHAIGATGAR 5 LLTSLSYQLNQKEKKYGVASLCIGGGLGLA LLERPQQKKNSRFYQMSPE ERLASLLNEGQISADTKKEFENTALSSQIANH IENQISETEVP GVGLH LTVDETDYLVPMATEEPSVIAALSNGAKIAQGFKTV QQRLMRGQIVFYD VADAESLIDELQVRETEIFQQAELSYPSIVKRGGGLRDLQYRAFDESFVS VDFLVDVKDA GANIVNA LEGVAELFREWFAEQKILFSILSNYATESW 0 TMKTAIPVSRLSKGSNGREIAEKIVLASRYASLDPYRAVTHNKGI NGIE AWLATGNDTRAVSASCHAFAVKEGRYQGLTS TLDGEQLIGEISVPLAL ATVGGATKVLPKSQAAADLLAVTDAKELSRWAAVGLAQNLAALRALVSE GIQKGHMALQARSLAMTVGATGKEVEAVAQQLKRQKTMNQDRALAILNDL RKQ -COOH
(61) Enterococcus faceium HMG-CoA reductase (MevA) polynucleotide sequence [SEQ ID NO:61]. 5 ' -
TTGAAAGAAGTCGTTATGATAGATGCTGCAAGAACGCCGATAGGAAAGTATCGCGGAAGTTTAAG
TCCATTTACTGCAGTTGAATTAGGCACACTTGTGACTAAAGGATTATTAG
ATAAAACAAAACTGA_A_AAGATAAAATCGATCAAGTAATATTCGGAAAT
GTCCTGCAAGCTGGTAATGGTCAAAATGTTGCCAGACAGATTGCTTTGAA CAGCGGTCTCCCTGTAGATGTCCCAGCAATGACGATCAATGAAGTTTGCG
GATCTGGTATGAAAGCAGTGATCTTAGCACGCCAGCTGATCCAATTAGGT
GAAGCAGAACTTGTGATAGCCGGCGGAACAGAGAGTATGTCTCAAGCACC
TATGCTGAAACCGTATCAGTCAGAAACAAATGAATATGGTGAACCAATTT
CCAGTATGGTCAACGACGGATTGACTGACGCATTTTCAAATGCACATATG GGATTAACCGCAGAGAAGGTTGCAACACAATTTTCTGTGAGCAGAGAAGA
ACAGGATCGCTATGCCTTGTCGTCCCAGTTGAAAGCAGCACATGCTGTCG
AAGCCGGTGTATTTTCTGAGGAGATCATCCCAGTCAAGATTTCTGATGAA
GACGTGTTATCTGAGGATGAAGCAGTTCGTGGAAATAGTACATTGGAAAA
ACTGGGCACGTTACGTACAGTATTCTCAGAAGAAGGAACTGTAACAGCAG GAAATGCTTCCCCGTTGAATGACGGTGCCTCTGTGGTGATCCTTGCATCC
AAAGAATACGCAGAAAATAATAATCTGCCTTATTTAGCAACCATCAAAGA
AGTAGCGGAGGTCGGTATTGACCCAAGTATCATGGGAATCGCTCCAATCA
AAGCCATTCAAAAATTGACAGATAGATCAGGAATGAATTTATCAACAATC
GATCTTTTTGAGATCAATGAAGCATTTGCAGCTTCTTCTATCGTAGTTAG CCAAGAACTGCAGTTAGATGAAGAAAAGGTCAATATATATGGAGGAGCAA
TCGCATTAGGCCATCCAATTGGTGCAAGCGGTGCACGTATCTTGACTACA
TTAGCTTACGGATTGCTTCGTGAACAGAAGAGATACGGTATTGCTTCATT
ATGTATTGGTGGAGGTTTAGGCTTGGCAGTCTTGTTAGAAGCGAATATGG
AGCAAACACATAAGGATGTGCAAAAAAAAAAGTTTTATCAGCTTACGCCA TCTGAACGGCGCAGTCAATTAATAGAAAAAAATGTATTGACACAAGAAAC
TGCGTTGATTTTTCAGGAACAAACACTTTCTGAAGAGCTCTCCGATCACA
TGATCGAAAACCAAGTGAGTGAAGTGGAAATCCCAATGGGGATCGCGCAG
AATTTTCAAATCAATGGCAAGAAAAAATGGATTCCGATGGCAACAGAGGA
ACCATCTGTCATTGCAGCTGCAAGTAATGGTGCAAAAATCTGTGGAAATA TCTGCGCAGAAACACCTCAGCGGCTGATGCGAGGGCAAATCGTTCTATCA
GGAAAATCGGAGTATCAAGCAGTGATCAATGCAGTTAATCATCGAAAAGA
AGAGCTGATTCTTTGTGCAAATGAAAGTTATCCTTCAATCGTGAAACGCG
GGGGCGGTGTTCAAGATATCTCTACTCGGGAATTCATGGGGAGTTTCCAT
GCATACTTATCTATTGATTTTTTAGTGGATGTAAAAGATGCAATGGGCGC TAACATGATCAACTCGATTCTTGAGAGTGTGGCAAACAAGTTACGGGAGT
GGTTCCCTGAAGAAGAGATTCTATTCAGTATTTTAAGTAATTTTGCTACA
GAATCATTGGCTTCTGCCTGTTGTGAAATCCCATTCGAACGCTTAGGGAG
AAACAAAGAAATCGGTGAAC_AATTGCCAAAAAAATCCAACAGGCAGGGG AATATGCGAAGCTTGACCCTTACCGTGCAGCAACGCACAACAAAGGGATC ATGAATGGTATAGAAGCTGTAGTGGCAGCTACAGGAAATGATACACGTGC GGTTAGCGCTTCGATTCACGCCTACGCGGCAAGAAATGGATTATACCAAG GATTAACAGACTGGCAGATCAAAGGGGATAAACTAGTTGGAAAACTAACG GTGCCTTTGGCTGTTGCCACAGTAGGCGGAGCTTCCAATATCCTGCCAAA AGCAAAAGCATCTTTAGCTATGTTAGATATTGATTCAGCCAAGGAACTAG CACAAGTAATTGCTGCAGTAGGGTTAGCTCAAAACCTGGCTGCTTTGCGT GCATTAGTTACAGAAGGAATCCAAAAAGGCCACATGGGACTTCAAGCTCG TTCATTAGCGATCTCAATTGGGGCTATTGGTGAGGAAATCGAGCAAGTTG CGAAAAAATTACGTGAAGCAGAAAAGATGAACCAGCAGACAGCTATACAA ATATTGGAAAAAATCCGGGAAAAATAA -3 '
(62) Enterococcus faceium HMG-CoA reductase (MevA) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO: 62]. NH2- MKEWMIDAARTPIGKYRGSLSPFTAVELGTLVTKGLLDKTKLKKDKIDQVIFGN VLQAGNGQNVARQIALNSGLPVDVPAMTINEVCGSGMKAVILARQLIQLG EAELVIAGGTESMSQAPMLKPYQSETNEYGEPISSMVNDGLTDAFSNAHM GLTAEKVATQFSVSREEQDRYALSSQLKAAHAVEAGVFSEEIIPVKISDE DVLSEDEAVRGNSTLEKLGTLRTVFSEEGTVTAGNASPLNDGASWIL S KEYAE NNLPYLATIKEVAEVGIDPSIMGIAPIKAIQKLTDRSGM LSTI DLFEINEAFAASSIWSQELQLDEEKV IYGGAIALGHPIGASGARILTT LAYGLLREQKRYGIASLCIGGGLGLAVLLEA MEQTHKDVQKKKFYQLTP SERRSQLIEKNVLTQETALIFQEQTLSEELSDHMIENQVSEVEIPMGIAQ NFQINGKKK IPMATEEPSVIAAASNGAKICGNICAETPQRLMRGQIVLS GKSEYQAVINAVNHRKEELILCA ESYPSIVKRGGGVQDISTREFMGSFH AYLSIDFLVDVKDAMGANMINSILESVANKLREWFPEEEILFSILSNFAT ESLASACCEIPFERLGRNKEIGEQIAKKIQQAGEYAKLDPYRAATHNKGI MNGIEAWAATGNDTRAVSASIHAYAARNGLYQGLTD QIKGDK VGKLT VPLAVATVGGASNILPKAKASLAMLDIDSAKELAQVIAAVGLAQNLAALR ALVTEGIQKGHMGLQARSLAISIGAIGEEIEQVAKKLREAEKM QQTAIQ ILEKIREK -COOH
(63) Entercoccus faecium mevalonate diphosphate decaφoxylase (MevD) polynucleotide sequence [SEQ ID NO:63]. 5 ' - ATGTTTAAAGGCAAAGCACGCGCATATACCAACATTGCTCTAATCAAATA TTGGGGTAAGAAAAATGAAGAACTCATCCTTCCAATGAACAACAGCCTTT CGTTAACATTGGATGCATTTTATACAGAGACAGAAGTCATCTTTTCTGAT AGCTATATGGTAGATGAATTTTATCTAGATGGCACCTTGCAAGACGAAAA AGC-z -CAAAAAAAGTCAGTCAGTTTCTTGACCTTTTTCGTAAAGAAGCCG GCCTCTCACTAAAAGCTTCAGTAATCAGTCAGAATTTCGTTCCTACCGCA GCTGGATTAGCCTCCTCTGCCAGCGGGCTAGCTGCTTTAGCAGGAGCTTG CAATACTGCTCTTAAGCTTGGATTAGACGATCTCTCTCTTTCAAGATTTG CTCGACGCGGGTCTGGTTCAGCTTGCCGAAGTATTTTCGGTGGTTTCGTC GAATGGGAAAAAGGCCATGACGACTTAAGTTCTTACGCTAAGCCAGTCCC TTCCGATTCTTTCGAAGACGATTTAGCAATGGTTTTCGTTTTGATCAACG ACCAGAAAAAAGAAGTGTCCAGCAGAAATGGGATGCGTCGGACAGTCGAA ACATCCAATTTTTATCAAGGCTGGTTAGATTCCGTTGAAGGGGATCTATA TCAATTGAAACAAGCAATCAAAACAAAAGATTTCCAACTTCTCGGAGAAA CGATGGAAAGAAACGGACTAAAAATGCATGGAACGACTTTAGCTGCCCAG CCTCCATTCACTTACTGGTCTCCTAACAGCTTAAAAGCGATGGATGCGGT GCGGCAATTGAGAAAGCAAGGCATTCCATGCTACTTTACGATGGATGCTG GCCCTAATGTCAAAGTTTTAGTGGAAAACAGCCATTTATCTGAGGTACAA GAAACATTTACCAAATTATTTAGCAAAGAACAAGTAATTACTGCCCATGC TGGTCCAGGAATTGCGATTATTGAATAA -3 '
(64) Entercoccus faecium mevalonate diphosphate decarboxylase (MevD) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:64]. NH2- MFKGKA-^YTNIALIKY GKKNEELILPMNNSLSLTLDAFYTETEVIFSD SYMVDEFYLDGTLQDEKATKKVSQFLDLFRKEAGLSLKASVISQNFVPTA AGLASSASGLAALAGACNTALKLGLDDLSLSRFARRGSGSACRSIFGGFV EWEKGHDDLSSYAKPVPSDSFEDDLAMVFVLINDQKKEVSSRNGMRRTVE TSNFYQGWLDSVEGDLYQLKQAIKTKDFQLLGETMER GLKMHGTTLAAQ PPFTY SPNSLKAMDAVRQLRKQGIPCYFTMDAGP VKVLVENSHLSEVQ ETFTKLFSKEQV--TAHAGPG--AI--E -COOH
(65) Enterococcus faecium phosphomevalonate kinase (MevKl) polynucleotide sequence [SEQ ID NO:65]. 5 ' - ATGATTGAAGTATCTGCACCAGGCAAACTCTATATTGCCGGAGAATATGCAGTTGTTGA AACAGGCCATCCAGCAGTTATCGCTGCAGTCGATCAATTCGTGACAGTCA CTGTAGAATCCGCACGAAAAGTCGGAAGTATCCAATCTGCACAATATAGT GGGATGCCTGTACGTTGGACAAGACGCAACGGAGAATTAGTTTTAGATAT TCGGGAAAATCCTTTTCATTATATCCTTGCTGCTATTCGCTTGACTGAAA AGTATGCACAAGAAAAAAACATTCTTTTATCCTTTTATGATCTGAAAGTA ACAAGTGAGTTAGACAGTTCAAATGGCCGGAAATATGGTTTGGGTTCTAG CGGTGCCGTGACCGTTGCAACGGTCAAAGCCTTGAATGTTTTTTACGCGT TGAATTTATCTCAGTTGGAGATTTTCAAGATTGCAGCACTAGCCAATTTA GCAGTTCAAGATAATGGTTCCTGCGGCGACATCGCTGCTAGCTGTTATGG TGGCTGGATCGCTTTCTCAACCTTCGACCATCCTTGGCTCCAAGAACAAG AAACTCAGCATTCTATCAGTGAGTTACTTGCCCTGGATTGGCCAGGTCTA TCCATTGAGCCATTGATTGCTCCTGAAGATTTACGTTTATTGATTGGTTG GACGGGTAGCCCTGCCTCTACTTCTGATTTGGTCGATCAAGTTCACCGTT CGAGAGAAGATAAAATGGTGGCTTATCAGCTTTTCTTAAAAAACAGTACA GAATGTGTCAATGAAATGATCAAAGGGTTTAAAGAAAATAATGTAACGTT GATTCAACAGATGATTCGAAAAAACCGACAATTACTGCATGATTTATCTG CAATCACTGGGGTCGTCATCGAAACGCCTGCTTTGAACAAATTGTGTAAT TTAGCTGAACAGTATGAAGGAGCCGCAAAATCTTCTGGTGCAGGTGGGGG CGATTGCGGAATCGTAATTGTTGACCAGAAATCTGGCATTCTTCCTTTAA TGAGTGCATGGGAAAAAGCAGAAATCACTCCACTGCCGTTACATGTCTAT AGCGATCAAAGAAAGGAAAACCGATGA -3 '
(66) Enterococcus faecium phosphomevalonate kinase (MevKl) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:66].
NH2- MIEVSAPGKLYIAGEYAWETGHPAVIAAVDQFVTVTVESARKVGSIQSA QYSGMPVR TRRNGELVLDIRENPFHYILAAIRLTEKYAQEKNILLSFYD LKVTSELDSSNGRKYGLGSSGAVTVATVKALNVFYALNLSQLEIFKIAAL ANLAVQDNGSCGDIAASCYGG IAFSTFDHPWLQEQETQHSISELLALDW PGLSIEPLIAPEDLRLLIGWTGSPASTSDLVDQVHRSREDKMVAYQLFLK NSTECVNE IKGFKENNVTLIQQMIRKNRQLLHDLSAITGWIETPALNK LCNLAEQYEGAAKSSGAGGGDCGIVIVDQKSGILPL SAWEKAEITPLPL HVYSDQRKENR -COOH
(67) Stapylococcus haemolyticus phosphomevalonate kinase (MevKl) polynucleotide sequence
[SEQ ID NO:67].
5 ' - ATGATTCAGGTGAAAGCACCAGGAAAGCTTTATGTAGCAGGTGAATATGC AGTGACTGAGCCAGGATATAAGTCTGTCTTAATTGCGGTCGATCGATTTG TTACAGCTTCAATTGAAGCTTCTAATGCAGTAACAAGTACGATTCATTCC AAGACATTACATTATGAACCTGTAACGTTTAATCGCAATGAAGATAAAAT TGATATCTCCGATGCTAATGCTGCTAGTCAATTAAAGTATGTTGTAACTG CAATTGAAGTTTTCGAACAATATGCGAGAAGTTGCAACGTCAAATTGAAG CATTTTCATTTAGAAATCGATAGTAATTTAGATGATGCTTCAGGTAATAA ATATGGGCTTGGTTCTAGTGCGGCAGTTTTAGTGTCAGTCGTCAAAGCAT TAAATGAGTTTTACGATATGCAATTATCTAACCTATATATTTATAAACTT GCAGTCATTTCTAATATGCGATTACAAAGTTTAAGCTCATGTGGTGATAT AGCTGTAAGTGTATACAGTGGCTGGCTAGCTTATAGTACTTTCGATCACG ATTGGGTCAAACAACAGATGGAAGAAACATCAGTTAATGAAGTATTAGAA AAAAATTGGCCGGGTCTTCATATTGAACCTTTACAGGCCCCAGAGAATAT GGAAGTCTTAATCGGTTGGACAGGTTCGCCTGCTTCATCACCTCATTTAG TCAGTGAAGTGAAGCGCTTAAAATCAGATCCTTCTTTTTATGGAAGATTC CTTGATCAATCTCATACATGTGTTGAAAATCTTATCTATGCGTTTAAAAC AGATAATATTAAAGGTGTTCAGAAAATGATTCGAC AAATCGTATGATTA TTCAACAAATGGATAATGAAGCGACAGTCGACATTGAAACCGAAAATTTA AAAATGTTATGTGATATTGGAGAACGTTATGGTGCTGCTGCCAAGACATC AGGTGCTGGCGGTGGTGATTGCGGAATCGCCATTATTGATAATCGCATTG ATAAAAATCGTATTTATAATGAATGGGCATCACATGGTATTAAACCGTTA AAATTTAAAATTTATCATGGACAATAA -3 ' (68) Staphylococcus haemolyticus phosphomevalonate kinase (MevK2) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:68].
NH2 -MIQVKAPGKLYVAGEYAVTEPGYKSVLIAVDRFVTASIEASNAVTSTIHS KTLHYEPVTFNR EDKIDISDA AASQLKYWTAIEVFEQYARSCNVKLK HFHLEIDSNLDDASGNKYGLGSSAAVLVSWKALNEFYDMQLSNLYIYKL AVISNMRLQSLSSCGDIAVSVYSGWLAYSTFDHDWVKQQ EETSVNEVLE KNWPGLHIEPLQAPEN EVLIGWTGSPASSPHLVSEVKRLKSDPSFYGRF LDQSHTCVENLIYAFKTDNIKGVQKMIRQNRMI IQQMDNEATVDIETENL -04LCDIGERYGAAAKTSGAGGGDCGIAI IDNRIDKNRIYNEWASHGIKPL KFKIYHGQ -COOH
(69) Staphylococcus epidermidis phosphomevalonate kinase (MevKl) polynucleotide sequence
[SEQ ID NO:69]. 5 ' -ATGATTCAGGTAAAAGCCCCCGGAAAACTTTATATTGCAGGCGAGTATGC AGTAACCGAACCAGGATATAAATCTATTCTTATTGCAGTAAATCGCTTTG TAACGGCGACAATTGAGGCGTCAAATAAAGTTGAAGGTAGTATTCATTCC AAAACATTACATTATGAACCAGTTAAATTTGACCGTAATGAAGATAGAat TGAAATCTCAGATGTTCAAGCTGCTAAGCAACTGAAATATGTTGTGACAG CTATAGAAGTGTTTGAACAGTATGTGCGCAGTTGCAATATGAATTTAAAG CACTTTCATTTAACCATTGATAGTAACTTAGCAGATAACTCTGGTCAGAA GTACGGATTAGGTTCAAGCGCCGCTGTTTTAGTATCTGTTGTTAAAGCTT TGAATGAATTCTATGGTTTGGAATTATCAAACCTTTATATTTATAAATTA GCTGTAATTGCAAATATGAAATTACAAAGTTTAAGTTCATGTGGTGATAT TGCGGTTAGTGTCTACAGTGGTTGGCTTGCATATAGTACGTTCGACCATG ACTGGGTGAAACAGCAAATGGAAGAAACATCGGTGAATGATGTTTTGGAA AAAAATTGGCCAGGCTTACATATCGAACCTTTACAAGCTCCCGAAAATAT GGAAGTCCTTATTGGATGGACTGGGTCCCCAGCTTCTTCTCCACACTTAG TGAGTGAAGTCAAACGTTTAAAATCAGATCCAAGTTTTTATGGTGATTTT TTAGATCAATCTCATGCTTGTGTAGAAAGTTTAATCCAAGCTTTTAAAAC TAATAATATCAAAGGTGTTCAAAAGATGATACGTATAAACAGACGTATTA TTCAATCTATGGATAACGAAGCATCAGTTGAAATTGAAACAGATAAGCTA AAAAAATTATGTGATGTCGGTGAAAAGCACGGTGGCGCTTCTAAAACTTC AGGTGCTGGTGGTGGCGATTGCGGCATTACTATTATCAATAAGGTAATTG ATAAAAATATTATTTATAACGAATGGCAAATGAATGATATCAAACCATTG AAATTTAAAATTTACCATGGACAATAA -3 '
(70) Staphylococcus epidermidis phosphomevalonate kinase (MevKl) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:70]. NH2-MIQVKAPGKLYIAGEYAVTEPGYKSILIAVNRFVTATIEASNKVEGSIHS KTLHYEPVKFDRNEDRIEISDVQAAKQLKYVVTAIEVFEQYVRSCNMNLK HFHL IDSNLADNSGQKYGLGSSAAVLVSWKALNEFYGLELSNLYIYKL AVIA MKLQSLSSCGDIAVSVYSGWLAYSTFDHDWVKQQMEETSV DVLE KNWPGLHIEPLQAPENMEVLIGWTGSPASSPHLVSEVKRLKSDPSFYGDF LDQSHACVESLIQAFKTNNIKGVQKMIRINRRIIQSMDNEASVEIETDKL KKLCDVGEKHGGASKTSGAGGGDCGITIINKVIDKNIIYNE QMNDIKPL KFKIYHGQ -COOH
(71) Enterococcus faecium mevalonate kinase (MevKl) polynucleotide sequence [SEQ ID NO:71].
5 ' -ATGGCAAACTATGGCCAAGGAGAATCAAGCGGAAAGATCATATTGATGGG
CGAGCACGCGGTTGTTTATGGAGAACCAGCGATTGCCTTTCCTTTCTATG CAACAAAAGTCACCGCATTCCTTGAAGAGCTGGATGCAATGGACGATCAA
CTGGTTTCTTCCTACTATTCAGGAAATTTAGCCGAAGCTCCTCATGCATT
AAAAAATATCAAAAAATTATTCATTCACTTAAAAAAACAGCATGACATCC
AAAAAAACTTGCAACTGACCATTGAAAGCACGATTCCTGCTGAACGTGGA
ATGGGATCAAGCGCTGCAGTCGCCACAGCAGTCACTCGTGCTTTTTATGA TTACTTAGCATTTCCTTTGTCTCGTGAAATACTATTAGAAAATGTCCAGC
TTTCGGAAAAAATCGCCCACGGTAATCCTAGTGGAATCGATGCAGCCGCT
ACTAGCAGCTTGCAGCCGATTTATTTTACAAAAGGGCATCCTTTCGACTA
CTTTTCTTTGAACATCGATGCTTTTTTGATTGTCGCTGATACAGGAATCA
AAGGACAAACAAGAGAAGCCGTCAAAGATGTCGCTCACCTCTTTGAAACC CAGCCTCATGAAACTGGACAAATGATCCAAAAATTAGGATACTTGACGAA
GCAAGCAAAACAAGCAATCATTGAAAATTCACCAGAAACGTTGGCACAGA
CAATGGATGAATCACAATCACTTCTGGAAAAGCTGACAATCAGCAATGAT
TTTCTTAATCTATTGATCCAAACAGCAAAAGATACCGGGGCATTGGGTGC
CAAATTAACTGGCGGTGGACGCGGTGGCTGTATGATTGCATTAGCACAAA CAAAAACAAAAGCCCAAGAAATCAGTCAAGCACTTGAAGATGCGGGTGCT
GCTGAAACTTGGATACAAGGATTAGGAGTACATACCTATGTTTAA-3 '
(72) Enterococcus faecium mevalonate kinase (MevKl) polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:72]. NH2-MA YGQGESSGKIILMGEHAVVYGEPAIAFPFYATKVTAFLEELDAMDDQ
LVSSYYSGNLAEAPHALKNIKKLFIHLKKQHDIQKNLQLTIESTIPAERG
MGSSAAVATAVTRAFYDYLAFPLSREILLENVQLSEKIAHGNPSGIDAAA
TSSLQPIYFTKGHPFDYFSLNIDAFLIVADTGIKGQTREAVKDVAHLFET
QPHETGQMIQKLGYLTKQAKQAIIENSPETLAQTMDESQSLLEKLTISND FLNLLIQTAKDTGALGAKLTGGGRGGCMI LAQTKTKAQEISQALEDAGA AETWIQGLGVHTYV-COOH
Deposited materials
A deposit comprising a Streptococcus pneumoniae 0100993 strain has been deposited with the National Collections of Industrial and Marine Bacteria Ltd. (herein "NCIMB"), 23 St. Machar Drive, Aberdeen AB2 1RY, Scotland on 11 April 1996 and assigned deposit number 40794. The deposit was described as Streptococcus pneumoniae 0100993 on deposit.
On 17 April 1996, a Streptococcus pneumoniae 0100993 DNA library in E. coli was similarly deposited with the NCIMB and assigned deposit number 40800. The Streptococcus pneumoniae strain deposit is referred to herein as "the deposited strain" or as "the DNA of the deposited strain."
The deposited strain comprises a full length mevalonate pathway gene. The sequence of the polynucleotides comprised in the deposited strain, as well as the amino acid sequence of any polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.
A deposit comprising a Staphylococcus aureus WCUH 29 strain has been deposited with the NCIMB), 23 St. Machar Drive, Aberdeen AB2 1RY, Scotland on 11 September 1995 and assigned NCIMB Deposit No. 40771, and referred to as Staphylococcus aureus WCUH29 on deposit. The Staphylococcus aureus strain deposit is referred to herein as "the deposited strain" or as "the DNA of the deposited strain."
The deposited strain comprises a full length mevalonate pathway gene. The sequence of the polynucleotides comprised in the deposited strain, as well as the amino acid sequence of any polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein. The deposit of the deposited strain has been made under the terms of the Budapest
Treaty on the Intemationai Recognition of the Deposit of Micro-organisms for Purposes of Patent Procedure. The deposited strain will be irrevocably and without restriction or condition released to the public upon the issuance of a patent. The deposited strain is provided merely as convenience to those of skill in the art and is not an admission that a deposit is required for enablement, such as that required under 35 U.S.C. §112. A license may be required to make, use or sell the deposited strain, and compounds derived therefrom, and no such license is hereby granted.
In one aspect of the invention there is provided an isolated nucleic acid molecule encoding a mature polypeptide expressible by the Streptococcus pneumoniae 0100993 strain, which polypeptide is comprised in the deposited strain. Further provided by the invention are mevalonate pathway gene polynucleotide sequences in the deposited strain, such as DNA and RNA, and amino acid sequences encoded thereby. Also provided by the invention are mevalonate pathway gene polypeptide and polynucleotide sequences isolated from the deposited strain.
In another aspect of the invention there is provided an isolated nucleic acid molecule encoding a mature polypeptide expressible by the Staphylococcus aureus WCUH 29 strain, which polypeptide is comprised in the deposited strain. Further provided by the invention are mevalonate pathway gene polynucleotide sequences in the deposited strain, such as DNA and RNA, and amino acid sequences encoded thereby. Also provided by the invention are mevalonate pathway gene polypeptide and polynucleotide sequences isolated from the deposited strain. Polypeptides
Mevalonate pathway gene polypeptides of the invention is substantially phylogenetically related to other proteins of the mevalonate pathway gene family. Figure 1 shows the phylogenetic analysis of 3 of the disclosed mevonlate pathway proteins. Phylogenetic trees are based on the neighbor-joining (NJ) method as implemented by the program NEIGHBOR of the PHYLIP 3.57c package (Felsenstein, J. 1993. Distributed by the author: http://evolution.genetics.washington. edu/phylip.html, Department of Genetics, University of Washington, Seattle.). The method used to create this phylogenetic tree is described in detail in Example 1.
In one aspect of the invention, there are provided polypeptides of mevalonate pathway genes referred to herein as "mevalonate pathway genes" and "mevalonate pathway gene polypeptides" as well as biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.
Among the particularly preferred embodiments of the invention are variants of mevalonate pathway gene polypeptides encoded by naturally occurring alleles of a mevalonate pathway gene.
The present invention further provides for an isolated polypeptide that: (a) comprises or consists of an amino acid sequence that has at least 95% identity, most preferably at least 97- 99% or exact identity, to that of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72 over the entire length of said amino acid sequence; (b) a polypeptide encoded by an isolated polynucleotide comprising or consisting of a polynucleotide sequence that has at least 95% identity, even more preferably at least 97-99% or exact identity to SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, and 71 over the entire length of said polynucleotide sequence; (c) a polypeptide encoded by an isolated polynucleotide comprising or consisting of a polynucleotide sequence encoding a polypeptide that has at least 95% identity, even more preferably at least 97-99% or exact identity, to the amino acid sequence of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72 over the entire length of said amino acid sequence.
The polypeptides of the invention include the polypeptides of Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72] (in particular a mature polypeptide) as well as polypeptides and fragments, particularly those that has a biological activity of a mevalonate pathway gene, and also those that have at least 95% identity to a polypeptide of Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72] and also include portions of such polypeptides with such portion of the polypeptide generally comprising at least 30 amino acids and more preferably at least 50 amino acids.
The invention also includes a polypeptide consisting of or comprising a polypeptide of the formula:
X-(R1)rn-(R2)-(R3)n-Y wherein, at the amino terminus, X is hydrogen, a metal or any other moiety described herein for modified polypeptides, and at the carboxyl terminus, Y is hydrogen, a metal or any other moiety described herein for modified polypeptides, R and R3 are any amino acid residue or modified amino acid residue, m is an integer between 1 and 1000 or zero, n is an integer between 1 and 1000 or zero, and R2 is an amino acid sequence of the invention, particularly an amino acid sequence selected from Table 1 or modified forms thereof. In the formula above, R2 is oriented so that its amino terminal amino acid residue is at the left, covalently bound to R\ and its carboxy terminal amino acid residue is at the right, covalently bound to R3. Any stretch of amino acid residues denoted by either Ri or R3, where m and/or n is greater than 1 , may be either a heteropolymer or a homopolymer, preferably a heteropolymer. Other preferred embodiments of the invention are provided where m is an integer between 1 and 50, 100 or 500, and n is an integer between 1 and 50, 100, or 500.
It is most preferred that a polypeptide of the invention is derived from a bacterium of the mevalonate pathway gene family, however, it may preferably be obtained from other organisms of the same taxonomic genus. A polypeptide of the invention may also be obtained, for example, from organisms of the same taxonomic family or order.
A fragment is a variant polypeptide having an amino acid sequence that is entirely the same as part but not all of any amino acid sequence of any polypeptide of the invention. As with mevalonate pathway gene polypeptides, fragments may be "free-standing," or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region in a single larger polypeptide.
Preferred fragments include, for example, truncation polypeptides having a portion of an amino acid sequence of Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72], or of variants thereof, such as a continuous series of residues that includes an amino- and/or carboxyl-terminal amino acid sequence. Degradation forms of the polypeptides of the invention produced by or in a host cell, particularly a bacterium of the mevalonate pathway gene family, are also preferred. Further preferred are fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta- sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. Further preferred fragments include an isolated polypeptide comprising an amino acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous amino acids from the amino acid sequence of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72, or an isolated polypeptide comprising an amino acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous amino acids truncated or deleted from such amino acid sequence.
Fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention. Polynucleotides It is an object of the invention to provide polynucleotides that encode mevalonate pathway gene polypeptides, particularly polynucleotides that encode a polypeptide herein designated a mevalonate pathway gene. In a particularly preferred embodiment of the invention the polynucleotide comprises a region encoding mevalonate pathway gene polypeptides comprising a sequence set out in Table 1 [SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, and 71] that includes a full length gene, or a variant thereof. As provided by the invention, a full-length gene from the mevalonate pathway gene family is essential to the growth and/or survival of an organism that possesses it, such as a bacteria from the mevalonate pathway gene family.
As a further aspect of the invention there are provided isolated nucleic acid molecules encoding and/or expressing mevalonate pathway gene polypeptides and polynucleotides, particularly mevalonate pathway gene polypeptides and polynucleotides, including, for example, unprocessed RNAs, ribozyme RNAs, mRNAs, cDNAs, genomic DNAs, B- and Z- DNAs. Further embodiments of the invention include biologically, diagnostically, prophylactically, clinically or therapeutically useful polynucleotides and polypeptides, and variants thereof, and compositions comprising the same. Another aspect of the invention relates to isolated polynucleotides, including at least one full length gene, that encodes a mevalonate pathway gene polypeptide having a deduced amino acid sequence of Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72] and polynucleotides closely related thereto and variants thereof. In another particularly preferred embodiment of the invention there is a mevalonate pathway gene polypeptide from a bacterium of the mevalonate pathway gene family comprising or consisting of an amino acid sequence of Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72], or a variant thereof. Using the information provided herein, such as a polynucleotide sequence set out in
Table 1 [SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71], a polynucleotide of the invention encoding mevalonate pathway gene polypeptide may be obtained using standard cloning and screening methods, such as those for cloning and sequencing chromosomal DNA fragments from bacteria using cells from a bacterium of the mevalonate pathway gene family as starting material, followed by obtaining a full length clone. For example, to obtain a polynucleotide sequence of the invention, such as a polynucleotide sequence given in Table 1 [SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71], typically a library of clones of chromosomal DNA from a bacteria of the mevalonate pathway gene family in E.coli or some other suitable host, is probed with a radiolabeled oligonucleotide, preferably a 17-mer or longer, derived from a partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using stringent hybridization conditions. By sequencing the individual clones thus identified by hybridization with sequencing primers designed from the original polypeptide or polynucleotide sequence it is then possible to extend the polynucleotide sequence in both directions to determine a full length gene sequence. Conveniently, such sequencing is performed, for example, using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook, et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). (see in particular Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70). Direct genomic DNA sequencing may also be performed to obtain a full length gene sequence. Illustrative of the invention, each polynucleotide set out in Table 1 [SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71] was discovered in a DNA library derived from bacteria of the mevalonate pathway gene family.
Moreover, each DNA sequence set out in Table 1 [SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, and 71] contains an open reading frame encoding a protein having about the number of amino acid residues set forth in Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66,
68, 70, and 72] with a deduced molecular weight that can be calculated using amino acid residue molecular weight values well known to those skilled in the art.
In a further aspect, the present invention provides for an isolated polynucleotide comprising or consisting of: (a) a polynucleotide sequence that has at least 95% identity, even more preferably at least 97-99% or exact identity to SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, and 71 over the entire length of SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19,
21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67,
69, and 71 ; (b) a polynucleotide sequence encoding a polypeptide that has at least 95% identity, even more preferably at least 97-99% or 100% exact, to the amino acid sequence of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72 over the entire length of said amino acid sequence.
A polynucleotide encoding a polypeptide of the present invention, including homologs and orthologs from species other than a bacterium of the mevalonate pathway gene family, may be obtained by a process that comprises the steps of screening an appropriate library under stringent hybridization conditions with a labeled or detectable probe consisting of or comprising the sequences of SEQ ID NOs: 1, 3, 5, 7, 9, 1 1 , 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, or a fragment thereof; and isolating a full-length gene and/or genomic clones comprising said polynucleotide sequence.
The invention provides a polynucleotide sequence identical over its entire length to a coding sequence (open reading frame) in Table 1 [SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71]. Also provided by the invention is a coding sequence for a mature polypeptide or a fragment thereof, by itself as well as a coding sequence for a mature polypeptide or a fragment in reading frame with another coding sequence, such as a sequence encoding a leader or secretory sequence, a pre-, or pro- or prepro-protein sequence. The polynucleotide of the invention may also comprise at least one non-coding sequence, including for example, but not limited to, at least one non-coding 5' and 3' sequence, such as the transcribed but non- translated sequences, termination signals (such as rho-dependent and rho-independent termination signals), ribosome binding sites, Kozak sequences, sequences that stabilize mRNA, introns, and poiyadenylation signals. The polynucleotide sequence may also comprise additional coding sequence encoding additional amino acids. For example, a marker sequence that facilitates purification of a fused polypeptide can be encoded. In certain embodiments of the invention, the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz, etal, Proc. Natl. Acad. Sci., USA 86: 821-824 (1989), or an HA peptide tag (Wilson, et al., Cell 37: 767 (1984)), both of that may be useful in purifying polypeptide sequence fused to them. Polynucleotides of the invention also include, but are not limited to, polynucleotides comprising a structural gene and its naturally associated sequences that control gene expression.
The invention also includes a polynucleotide consisting of or comprising a polynucleotide of the formula: X-(Rι)m-(R2)-(R3)n-Y wherein, at the 5' end of the molecule, X is hydrogen, a metal or a modified nucleotide residue, or together with Y defines a covalent bond, and at the 3' end of the molecule, Y is hydrogen, a metal, or a modified nucleotide residue, or together with X defines the covalent bond, each occurrence of Ri and R3 is independently any nucleic acid residue or modified nucleic acid residue, m is an integer between 1 and 3000 or zero , n is an integer between 1 and 3000 or zero, and R2 is a nucleic acid sequence or modified nucleic acid sequence of the invention, particularly a nucleic acid sequence selected from Table 1 or a modified nucleic acid sequence thereof. In the polynucleotide formula above, R2 is oriented so that its 5' end nucleic acid residue is at the left, bound to R] and its 3' end nucleic acid residue is at the right, bound to R3. Any stretch of nucleic acid residues denoted by either R and/or R2, where m and/or n is greater than 1 , may be either a heteropolymer or a homopolymer, preferably a heteropolymer. Where, in a preferred embodiment, X and Y together define a covalent bond, the polynucleotide of the above formula is a closed, circular polynucleotide, that can be a double-stranded polynucleotide wherein the formula shows a first strand to which the second strand is complementary. In another preferred embodiment m and/or n is an integer between 1 and 1000. Other preferred embodiments of the invention are provided where m is an integer between 1 and 50, 100 or 500, and n is an integer between 1 and 50, 100, or 500. It is most preferred that a polynucleotide of the invention is derived from a bacterium of the mevalonate pathway gene family, however, it may preferably be obtained from other organisms of the same taxonomic genus. A polynucleotide of the invention may also be obtained, for example, from organisms of the same taxonomic family or order.
The term "polynucleotide encoding a polypeptide" as used herein encompasses polynucleotides that include a sequence encoding a polypeptide of the invention, particularly a bacterial polypeptide and more particularly a polypeptide of a mevalonate pathway gene having an amino acid sequence set out in Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72]. The term also encompasses polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, polynucleotides interrupted by integrated phage, an integrated insertion sequence, an integrated vector sequence, an integrated transposon sequence, or due to RNA editing or genomic DNA reorganization) together with additional regions, that also may comprise coding and/or non- coding sequences.
The invention further relates to variants of the polynucleotides described herein that encode variants of a polypeptide having a deduced amino acid sequence of Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72]. Fragments of polynucleotides of the invention may be used, for example, to synthesize full-length polynucleotides of the invention. Further particularly preferred embodiments are polynucleotides encoding mevalonate pathway gene variants, that have the amino acid sequence of one of the mevalonate pathway gene polypeptides of Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72] in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, modified, deleted and/or added, in any combination. Especially preferred among these are silent substitutions, additions and deletions, that do not alter the properties and activities of a mevalonate pathway gene polypeptide.
Preferred isolated polynucleotide embodiments also include polynucleotide fragments, such as a polynucleotide comprising a nuclic acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous nucleic acids from the polynucleotide sequence of SEQ ID NOs:l , 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, or an polynucleotide comprising a nucleic acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous nucleic acids truncated or deleted from the 5' and/or 3' end of the polynucleotide sequence of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71. Further preferred embodiments of the invention are polynucleotides that are at least
95% or 97% identical over their entire length to a polynucleotide encoding mevalonate pathway gene polypeptide having an amino acid sequence set out in Table 1 [SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72], and polynucleotides that are complementary to such polynucleotides. Most highly preferred are polynucleotides that comprise a region that is at least 95% are especially preferred. Furthermore, those with at least 97% are highly preferred among those with at least 95%, and among these those with at least 98% and at least 99% are particularly highly preferred, with at least 99% being the more preferred. Preferred embodiments are polynucleotides encoding polypeptides that retain substantially the same biological function or activity as a mature polypeptide encoded by a DNA of Table 1 [SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71]. In accordance with certain preferred embodiments of this invention there are provided polynucleotides that hybridize, particularly under stringent conditions, to mevalonate pathway gene polynucleotide sequences, such as those polynucleotides in Table 1.
The invention further relates to polynucleotides that hybridize to the polynucleotide sequences provided herein. In this regard, the invention especially relates to polynucleotides that hybridize under stringent conditions to the polynucleotides described herein. As herein used, the terms "stringent conditions" and "stringent hybridization conditions" mean hybridization occurring only if there is at least 95% and preferably at least 97% identity between the sequences. A specific example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/ml of denatured, sheared salmon sperm DNA, followed by washing the hybridization support in 0.1 x SSC at about 65°C. Hybridization and wash conditions are well known and exemplified in Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL, Second Edition, Cold Spring Harbor, N.Y., (1989), particularly Chapter 11 therein. Solution hybridization may also be used with the polynucleotide sequences provided by the invention.
The invention also provides a polynucleotide consisting of or comprising a polynucleotide sequence obtained by screening an appropriate library comprising a complete gene for a polynucleotide sequence set forth in SEQ ID NOs:l , 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71 under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence set forth in SEQ ID NOs:l, 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, or a fragment thereof; and isolating said polynucleotide sequence. Fragments useful for obtaining such a polynucleotide include, for example, probes and primers fully described elsewhere herein.
It is preferred that polynucleotides of the invention encoding HMGCoA Reductase (MevA) be isolated from bacteria falling within the clade of Class II of phylogenetic tree depicted in Figure 1. It is also particularly preferred that that such bacteria are Gram- positive bacteria. It is more particularly preferred that such bacteria of the invention are bacteria of the genera Streptococcus, Staphylococcus, or Entercoccus. It is most particularly preferred that such bacteria of the invention are bacteria of the species Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Entercoccus faecalis, or Enterococcus faecium. The E. faecium and E. faecalis HMG-CoA reductases are two proteins joined together (acetyl-CoA acetyltransferase and HMG-CoA reductase) that form a single bi-functional protein.
It is also preferred that polynucleotides of the invention encoding HMGCoA Synthase (PksG) be isolated from bacteria falling within the clade of Class II of the phylogenetic tree depicted in Figure 2. It is also particularly preferred that that such bacteria are Gram-positive bacteria. It is more particularly preferred that such bacteria of the invention are bacteria of the genera Streptococcus, Staphylococcus, or Entercoccus. It is most particularly preferred that such bacteria of the invention are bacteria of the species Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus Carnosus, Enterococcus faecalis, or Enterococcus faecium. It is also preferred that polynucleotides of the invention encoding Mevalonate
Diphosphate Decarboxlyase (MevD) be isolated from bacteria falling within the clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 3. It is more particularly preferred that such bacteria of the invention are bacteria of the genera Streptococcus, Staphylococcus, or Entercoccus. It is most particularly preferred that such bacteria of the invention are bacteria of the species Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Enterococcus faecalis, or Enterococcus faecium.
It is also preferred that polynucleotides of the invention encoding Mevalonate Kinases (MevK), including Mevalonate Kinase (MevKl) and Phosophomevalonate Kinase (MevKl), be isolated from bacteria falling within a clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 4. It is more particularly preferred that such bacteria of the invention are bacteria of the genera Streptococcus, Staphylococcus, or Entercoccus. It is most particularly preferred that such bacteria of the invention are bacteria of the species Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Enterococcus faecalis, or Enterococcus faecium.
Further embodiments of the invention include, for example, polynucleotides of the invention encoding HMGCoA Reductase (MevA) falling within the clade defined by: node A of Figure 1 ; node B of Figure 1 ; node C of Figure 1 ; node C of Figure 1 ; node D of Figure 1 ; node E of Figure 1 ; and node F of Figure 1.
Still further embodiments of the invention include, for example, polynucleotides of the invention encoding HMGCoA Synthase (PksG) falling within the clade defined by: node A of Figure 2; node B of Figure 2; node C of Figure 2; node C of Figure 2; node D of Figure 2; node E of Figure 2; node F of Figure 2; and node G of Figure 2.
Other embodiments of the invention include, for example, polynucleotides of the invention encoding Mevalonate Diphosphate Decarboxlase (MevD) falling within: the clade defined by node A of Figure 3; node B of Figure 3; node C of Figure 3; node C of Figure 3; node D of Figure 3; and node E of Figure 3.
Further embodiments of the invention include, for example, polynucleotides of the invention encoding Mevalonate Kinase (MevK) falling within: the clade defined by node A of Figure 4; node B of Figure 4; node C of Figure 4; node C of Figure 4; node D of Figure 4; node E of Figure 4; node F of Figure 4; node G of Figure 4; node G of Figure 4; node H of Figure 4; node I of Figure 4; node J of Figure 4; node K of Figure 4; node L of Figure 4; node M of Figure 4; and node N of Figure 4.
Polynucleotides encoding any polypeptide defined by a cladisticl model set forth herein are also embodiments of the invention.
Polypeptides defined by a cladisticl model set forth herein are also embodiments of the invention.
For any clade provided in the invention, it is preferred that each is determined using the cladistical analyses disclosed herein, in Example 1.
As discussed elsewhere herein regarding polynucleotide assays of the invention, for instance, the polynucleotides of the invention, may be used as a hybridization probe for RNA, cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding a mevalonate pathway gene and to isolate cDNA and genomic clones of other genes that have a high identity, particularly high sequence identity, to a mevalonate pathway gene. Such probes generally will comprise at least 15 nucleotide residues or base pairs. Preferably, such probes will have at least 30 nucleotide residues or base pairs and may have at least 50 nucleotide residues or base pairs. Particularly preferred probes will have at least 20 nucleotide residues or base pairs and will have lee than 30 nucleotide residues or base pairs.
A coding region of a mevalonate pathway gene may be isolated by screening using a DNA sequence provided in Table 1 [SEQ ID NOs:l, 3, 5, 7, 9, 1 1, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71] to synthesize an oligonucleotide probe. A labeled oligonucleotide having a sequence complementary to that of a gene of the invention is then used to screen a library of cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to. There are several methods available and well known to those skilled in the art to obtain full-length DNAs, or extend short DNAs, for example those based on the method of Rapid Amplification of cDNA ends (RACE) (see, for example, Frohman, et ai, PNAS USA 85:8998-9002, 1988). Recent modifications of the technique, exemplified by the Marathon™ technology (Clontech Laboratories Inc.) for example, have significantly simplified the search for longer cDNAs. In the Marathon™ technology, cDNAs have been prepared from mRNA extracted from a chosen tissue and an 'adaptor' sequence ligated onto each end. Nucleic acid amplification (PCR) is then carried out to amplify the "missing" 5' end of the DNA using a combination of gene specific and adaptor specific oligonucleotide primers. The PCR reaction is then repeated using "nested" primers, that is, primers designed to anneal within the amplified product (typically an adaptor specific primer that anneals further 3' in the adaptor sequence and a gene specific primer that anneals further 5' in the selected gene sequence). The products of this reaction can then be analyzed by DNA sequencing and a full-length DNA constructed either by joining the product directly to the existing DNA to give a complete sequence, or carrying out a separate full-length PCR using the new sequence information for the design of the 5' primer. The polynucleotides and polypeptides of the invention may be employed, for example, as research reagents and materials for discovery of treatments of and diagnostics for diseases, particularly human diseases, as further discussed herein relating to polynucleotide assays.
The polynucleotides of the invention that are oligonucleotides derived from any polynucleotide or polypeptide sequence of Table 1 may be used in the processes herein as described, but preferably for PCR, to determine whether or not the polynucleotides identified herein in whole or in part are transcribed in bacteria in infected tissue. It is recognized that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.
The invention also provides polynucleotides that encode a polypeptide that is a mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to a mature polypeptide (when a mature form has more than one polypeptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to a mature form, may allow protein transport, may lengthen or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things. As generally is the case in vivo, the additional amino acids may be processed away from a mature protein by cellular enzymes.
For each and every polynucleotide of the invention there is provided a polynucleotide complementary to it. It is preferred that these complementary polynucleotides are fully complementary to each polynucleotide with which they are complementary.
A precursor protein, having a mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide. When prosequences are removed such inactive precursors generally are activated. Some or all of the prosequences may be removed before activation. Generally, such precursors are called proproteins.
As will be recognized, the entire polypeptide encoded by an open reading frame is often not required for activity. Accordingly, it has become routine in molecular biology to map the boundaries of the primary structure required for activity with N-terminal and C- terminal deletion experiments. These experiments utilize exonuclease digestion or convenient restriction sites to cleave coding nucleic acid sequence. For example, Promega (Madison, WI) sell an Erase-a-base™ system that uses Exonuclease III designed to facilitate analysis of the deletion products (protocol available at www.promega.com). The digested endpoints can be repaired (e.g., by ligation to synthetic linkers) to the extent necessary to preserve an open reading frame. In this way, for example, the nucleic acid of SEQ ID NO: 1 readily provides contiguous fragments of SEQ ID NO:2 sufficient to provide an activity, such as an enzymatic, binding or antibody-inducing activity. Nucleic acid sequences encoding such fragments of the polypeptide sequences of Table 1 and variants thereof as described herein are within the invention, as are polypeptides so encoded.
In sum, a polynucleotide of the invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein, or a preproprotein, that is a precursor to a proprotein, having a leader sequence and one or more prosequences, that generally are removed during processing steps that produce active and mature forms of the polypeptide.
Vectors, Host Cells, Expression Systems The invention also relates to vectors that comprise a polynucleotide or polynucleotides of the invention, host cells that are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the invention. Recombinant polypeptides of the present invention may be prepared by processes well known in those skilled in the art from genetically engineered host cells comprising expression systems. Accordingly, in a further aspect, the present invention relates to expression systems that comprise a polynucleotide or polynucleotides of the present invention, to host cells that are genetically engineered with such expression systems, and to the production of polypeptides of the invention by recombinant techniques.
For recombinant production of the polypeptides of the invention, host cells can be genetically engineered to incorporate expression systems or portions thereof or polynucleotides of the invention. Introduction of a polynucleotide into the host cell can be effected by methods described in many standard laboratory manuals, such as Davis, et al, BASIC METHODS IN MOLECULAR BIOLOGY, ( 1986) and Sambrook, et al. , MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), such as, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction and infection. Representative examples of appropriate hosts include, but are not limited to a (i) prokaryote, including but not limited to, a member of the genus Streptococcus, Staphylococcus, Bordetella, Corynebacterium, Mycobacterium, Neisseria, Haemophilus, Actinomycetes, Streptomycetes, Nocardia, Enterobacter, Yersinia, Fancisella, Pasturella, Moraxella, Acinetobacter, Erysipelothrix, Branhamella, Actinobacillus, Streptobacillus, Listeria, Calymmatobacterium, Brucella, Bacillus, Clostridium, Treponema, Escherichia, Salmonella, Kleibsiella, Vibrio, Proteus, Erwinia, Borrelia, Leptospira, Spirillum, Campylobacter, Shigella, Legionella, Pseudomonas, Aeromonas, Rickettsia, Chlamydia, Borrelia and Mycoplasma, and further including, but not limited to, a member of the species or group, Group A Streptococcus, Group B Streptococcus, Group C Streptococcus, Group D Streptococcus, Group G Streptococcus, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus faecalis, Streptococcus faecium, Streptococcus durans, Neisseria gonorrheae, Neisseria meningitidis, Staphylococcus aureus, Staphylococcus epidermidis, Corynebacterium diptheriae, Gardnerella vaginalis, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium ulcerans, Mycobacterium leprae, Actinomyctes israelii, Listeria monocytogenes, Bordetella pertusis, Bordatella parapertusis, Bordetella bronchiseptica, Escherichia coli, Shigella dysenteriae, Haemophilus influenzae, Haemophilus aegyptius, Haemophilus parainfluenzae, Haemophilus ducreyi, Bordetella, Salmonella typhi, Citrobacter freundii, Proteus mirabilis, Proteus vulgaris, Yersinia pestis, Kleibsiella pneumoniae, Serratia marcessens, Serratia liquefaciens, Vibrio cholera, Shigella dysenterii, Shigella flexneri, Pseudomonas aeruginosa, Franscisella tularensis, Brucella abortis, Bacillus anthracis, Bacillus cereus, Clostridium perfringens, Clostridium tetani, Clostridium botulinum, Treponema pallidum, Rickettsia rickettsii and Chlamydia trachomitis, (ii) an archaeon, including but not limited to Archaebacter, and (iii) a unicellular or filamentous eukaryote, including but not limited to, a protozoan, a fungus, a member of the genus Saccharomyces, Kluveromyces, or Candida, and a member of the species Saccharomyces ceriviseae, Kluveromyces lactis, or Candida albicans; insect cells such as cells of Drosophila S2 and Spodoptera Sf9; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, 293, CV-1 and Bowes melanoma cells; and plant cells, such as cells of a gymnosperm or angiosperm.
A great variety of expression systems can be used to produce the polypeptides of the invention. Such vectors include, among others, chromosomal-, episomal- and virus-derived vectors, for example, vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses, picornaviruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression system constructs may comprise control regions that regulate as well as engender expression.
Generally, any system or vector suitable to maintain, propagate or express polynucleotides and/or to express a polypeptide in a host may be used for expression in this regard. The appropriate DNA sequence may be inserted into the expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook, et al., MOLECULAR CLONING, A LABORATORY MANUAL, supra.
In recombinant expression systems in eukaryotes, for secretion of a translated protein into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals may be incorporated into the expressed polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.
Polypeptides of the invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.
Diagnostic, Prognostic, Serotyping and Mutation Assays
This invention is also related to the use of mevalonate pathway gene polynucleotides and polypeptides of the invention for use as diagnostic reagents. Detection of mevalonate pathway gene polynucleotides and/or polypeptides in a eukaryote, particularly a mammal, and especially a human, will provide a diagnostic method for diagnosis of disease, staging of disease or response of an infectious organism to drugs. Eukaryotes, particularly mammals, and especially humans, particularly those infected or suspected to be infected with an organism comprising the mevalonate pathway gene or protein, may be detected at the nucleic acid or amino acid level by a variety of well known techniques as well as by methods provided herein.
Polypeptides and polynucleotides for prognosis, diagnosis or other analysis may be obtained from a putatively infected and/or infected individual's bodily materials. Polynucleotides from any of these sources, particularly DNA or RNA, may be used directly for detection or may be amplified enzymatically by using PCR or any other amplification technique prior to analysis. RNA, particularly mRNA, cDNA and genomic DNA may also be used in the same ways. Using amplification, characterization of the species and strain of infectious or resident organism present in an individual, may be made by an analysis of the genotype of a selected polynucleotide of the organism. Deletions and insertions can be detected by a change in size of the amplified product in comparison to a genotype of a reference sequence selected from a related organism, preferably a different species of the same genus or a different strain of the same species. Point mutations can be identified by hybridizing amplified DNA to labeled mevalonate pathway gene polynucleotide sequences. Perfectly or significantly matched sequences can be distinguished from imperfectly or more significantly mismatched duplexes by DNase or RNase digestion, for DNA or RNA respectively, or by detecting differences in melting temperatures or renaturation kinetics. Polynucleotide sequence differences may also be detected by alterations in the electrophoretic mobility of polynucleotide fragments in gels as compared to a reference sequence. This may be carried out with or without denaturing agents. Polynucleotide differences may also be detected by direct DNA or RNA sequencing. See, e.g., Myers et al., Science, 230: 1242 (1985). Sequence changes at specific locations also may be revealed by nuclease protection assays, such as RNase, VI and SI protection assay or a chemical cleavage method. See, e.g., Cotton et al., Proc. Natl. Acad. Sci., USA, 85: 4397-4401 (1985). In another embodiment, an array of oligonucleotides probes comprising mevalonate pathway gene nucleotide sequence or fragments thereof can be constructed to conduct efficient screening of, for example, genetic mutations, serotype, taxonomic classification or identification. Array technology methods are well known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability (see, for example, Chee, et al., Science, 274: 610 (1996)).
Thus in another aspect, the present invention relates to a diagnostic kit that comprises: (a) a polynucleotide of the present invention, preferably the nucleotide sequence of SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67 69, or 71, or a fragment thereof ; (b) a nucleotide sequence complementary to that of (a); (c) a polypeptide of the present invention, preferably the polypeptide of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72, or a fragment thereof; or (d) an antibody to a polypeptide of the present invention, preferably to the polypeptide of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72. It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component. Such a kit will be of use in diagnosing a disease or susceptibility to a Disease, among others.
This invention also relates to the use of polynucleotides of the present invention as diagnostic reagents. Detection of a mutated form of a polynucleotide of the invention, preferably, SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, that is associated with a disease or pathogenicity will provide a diagnostic tool that can add to, or define, a diagnosis of a disease, a prognosis of a course of disease, a determination of a stage of disease, or a susceptibility to a disease, that results from under-expression, over-expression or altered expression of the polynucleotide. Organisms, particularly infectious organisms, carrying mutations in such polynucleotide may be detected at the polynucleotide level by a variety of techniques, such as those described elsewhere herein.
The differences in a polynucleotide and/or polypeptide sequence between organisms possessing a first phenotype and organisms possessing a different, second different phenotype can also be determined. If a mutation is observed in some or all organisms possessing the first phenotype but not in any organisms possessing the second phenotype, then the mutation is likely to be the causative agent of the first phenotype.
Cells from an organism carrying mutations or polymorphisms (allelic variations) in a polynucleotide and/or polypeptide of the invention may also be detected at the polynucleotide or polypeptide level by a variety of techniques, to allow for serotyping, for example. For example, RT-PCR can be used to detect mutations in the RNA. It is particularly preferred to use RT-PCR in conjunction with automated detection systems, such as, for example, GeneScan. RNA, cDNA or genomic DNA may also be used for the same purpose, PCR. As an example, PCR primers complementary to a polynucleotide encoding a mevalonate pathway gene polypeptide can be used to identify and analyze mutations. The invention further provides these primers with 1, 2, 3 or 4 nucleotides removed from the 5' and/or the 3' end. These primers may be used for, among other things, amplifying mevalonate gene pathway DNA and/or RNA isolated from a sample derived from an individual, such as a bodily material. The primers may be used to amplify a polynucleotide isolated from an infected individual, such that the polynucleotide may then be subject to various techniques for elucidation of the polynucleotide sequence. In this way, mutations in the polynucleotide sequence may be detected and used to diagnose and/or prognose the infection or its stage or course, or to serotype and/or classify the infectious agent. The invention further provides a process for diagnosing, disease, preferably bacterial infections, more preferably infections caused by a bacterium of the mevalonate pathway gene family, comprising determining from a sample derived from an individual, such as a bodily material, an increased level of expression of polynucleotide having a sequence of Table 1 [SEQ ID NOs: l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71]. Increased or decreased expression of a mevalonate pathway gene polynucleotide can be measured using any on of the methods well known in the art for the quantitation of polynucleotides, such as, for example, amplification, PCR, RT-PCR, RNase protection, Northern blotting, spectrometry and other hybridization methods.
In addition, a diagnostic assay in accordance with the invention for detecting over- expression of a mevalonate pathway gene polypeptide compared to normal control tissue samples may be used to detect the presence of an infection, for example. Assay techniques that can be used to determine levels of a mevalonate pathway gene polypeptide, in a sample derived from a host, such as a bodily material, are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis, antibody sandwich assays, antibody detection and ELISA assays. Antagonists and Agonists - Assays and Molecules Polypeptides and polynucleotides of the invention may also be used to assess the binding of small molecule substrates and ligands in, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures. These substrates and ligands may be natural substrates and ligands or may be structural or functional mimetics. See, e.g., Coligan et ai, Current Protocols in Immunology 1(2): Chapter 5 (1991).
Polypeptides and polynucleotides of the present invention are responsible for many biological functions, including many disease states, in particular the Diseases herein mentioned. It is therefore desirable to devise screening methods to identify compounds that agonize (e.g., stimulate) or that antagonize (e.g., inhibit) the function of the polypeptide or polynucleotide. Accordingly, in a further aspect, the present invention provides for a method of screening compounds to identify those that agonize or that antagonize the function of a polypeptide or polynucleotide of the invention, as well as related polypeptides and polynucleotides. In general, agonists or antagonists (e.g., inhibitors) may be employed for therapeutic and prophylactic purposes for such Diseases as herein mentioned. Compounds may be identified from a variety of sources, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures. Such agonists and antagonists so-identified may be natural or modified substrates, ligands, receptors, enzymes, etc., as the case may be, of mevalonate pathway gene polypeptides and polynucleotides; or may be structural or functional mimetics thereof (see Coligan, et al., Current Protocols in Immunology l(2):Chapter 5 (1991)).
The screening methods may simply measure the binding of a candidate compound to the polypeptide or polynucleotide, or to cells or membranes bearing the polypeptide or polynucleotide, or a fusion protein of the polypeptide by means of a label directly or indirectly associated with the candidate compound. Alternatively, the screening method may involve competition with a labeled competitor. Further, these screening methods may test whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide or polynucleotide, using detection systems appropriate to the cells comprising the polypeptide or polynucleotide. Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed. Constitutively active polypeptide and/or constitutively expressed polypeptides and polynucleotides may be employed in screening methods for inverse agonists, in the absence of an agonist or antagonist, by testing whether the candidate compound results in inhibition of activation of the polypeptide or polynucleotide, as the case may be. Further, the screening methods may simply comprise the steps of mixing a candidate compound with a solution comprising a polypeptide or polynucleotide of the present invention, to form a mixture, measuring mevalonate pathway gene polypeptide and/or polynucleotide activity in the mixture, and comparing the mevalonate pathway gene polypeptide and/or polynucleotide activity of the mixture to a standard. Fusion proteins, such as those made from Fc portion and mevalonate pathway gene polypeptide, as herein described, can also be used for high-throughput screening assays to identify antagonists of the polypeptide of the present invention, as well as of phylogenetically and and/or functionally related polypeptides (see Bennett, et ai, J Mol Recognition, 8:52-58 (1995); and Johanson, et al., J Biol Chem, 270(16):9459-9471 (1995)). The polynucleotides, polypeptides and antibodies that bind to and/or interact with a polypeptide of the present invention may also be used to configure screening methods for detecting the effect of added compounds on the production of mRNA and/or polypeptide in cells. For example, an ELISA assay may be constructed for measuring secreted or cell associated levels of polypeptide using monoclonal and polyclonal antibodies by standard methods known in the art. This can be used to discover agents that may inhibit or enhance the production of polypeptide (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues. The invention also provides a method of screening compounds to identify those that enhance (agonist) or block (antagonist) the action of a mevalonate pathway gene polypeptides or polynucleotides, particularly those compounds that are bacteristatic and/or bactericidal. The method of screening may involve high-throughput techniques. For example, to screen for agonists or antagonists, a synthetic reaction mix, a cellular compartment, such as a membrane, cell envelope or cell wall, or a preparation of any thereof, comprising a mevalonate pathway gene polypeptide and a labeled substrate or ligand of such polypeptide is incubated in the absence or the presence of a candidate molecule that may be a mevalonate pathway gene agonist or antagonist. The ability of the candidate molecule to agonize or antagonize the mevalonate pathway gene polypeptide is reflected in decreased binding of the labeled ligand or decreased production of product from such substrate. Molecules that bind gratuitously, i.e., without inducing the effects of a mevalonate pathway gene polypeptide are most likely to be good antagonists. Molecules that bind well and, as the case may be, increase the rate of product production from substrate, increase signal transduction, or increase chemical channel activity are agonists. Detection of the rate or level of, as the case may be, production of product from substrate, signal transduction, or chemical channel activity may be enhanced by using a reporter system. Reporter systems that may be useful in this regard include but are not limited to colorimetric, labeled substrate converted into product, a reporter gene that is responsive to changes in mevalonate pathway gene polynucleotide or polypeptide activity, and binding assays known in the art. Polypeptides of the invention may be used to identify membrane bound or soluble receptors, if any, for such polypeptide, through standard receptor binding techniques known in the art. These techniques include, but are not limited to, ligand binding and crosslinking assays in which the polypeptide is labeled with a radioactive isotope (for instance, 1 ->l), chemically modified (for instance, biotinylated), or fused to a peptide sequence suitable for detection or purification, and incubated with a source of the putative receptor (e.g., cells, cell membranes, cell supernatants, tissue extracts, bodily materials). Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. These screening methods may also be used to identify agonists and antagonists of the polypeptide that compete with the binding of the polypeptide to its receptor(s), if any. Standard methods for conducting such assays are well understood in the art.
The fluorescence polarization value for a fluorescently-tagged molecule depends on the rotational correlation time or tumbling rate. Protein complexes, such as formed by a mevalonate pathway gene polypeptide associating with another mevalonate pathway gene polypeptide or other polypeptide, labeled to comprise a fluorescently-labeled molecule will have higher polarization values than a fluorescently labeled monomeric protein. It is preferred that this method be used to characterize small molecules that disrupt polypeptide complexes. Fluorescence energy transfer may also be used characterize small molecules that interfere with the formation of mevalonate pathway gene polypeptide dimers, trimers, tetramers or higher order structures, or structures formed by a mevalonate pathway gene polypeptide bound to another polypeptide. A mevalonate pathway gene polypeptide can be labeled with both a donor and acceptor fluorophore. Upon mixing of the two labeled species and excitation of the donor fluorophore, fluorescence energy transfer can be detected by observing fluorescence of the acceptor. Compounds that block dimerization will inhibit fluorescence energy transfer.
Surface plasmon resonance can be used to monitor the effect of small molecules on a mevalonate pathway gene polypeptide self-association as well as an association of a mevalonate pathway gene polypeptide and another polypeptide or small molecule. A mevalonate pathway gene polypeptide can be coupled to a sensor chip at low site density such that covalently bound molecules will be monomeric. Solution protein can then passed over the mevalonate pathway gene polypeptide -coated surface and specific binding can be detected in real-time by monitoring the change in resonance angle caused by a change in local refractive index. This technique can be used to characterize the effect of small molecules on kinetic rates and equilibrium binding constants for mevalonate pathway gene polypeptide self-association as well as an association of a mevalonate pathway gene polypeptide and another polypeptide or small molecule.
A scintillation proximity assay may be used to characterize the interaction between an association of a mevalonate pathway gene polypeptide with another mevalonate pathway gene polypeptide or a different polypeptide. A mevalonate pathway gene polypeptide can be coupled to a scintillation-filled bead. Addition of radio-labeled mevalonate pathway gene polypeptide results in binding where the radioactive source molecule is in close proximity to the scintillation fluid. Thus, signal is emitted upon a mevalonate pathway gene polypeptide binding and compounds that prevent a mevalonate pathway gene polypeptide self-association or an association of a mevalonate pathway gene polypeptide and another polypeptide or small molecule will diminish signal. Other embodiments of the invention provide methods for identifying compounds that bind to or otherwise interact with and inhibit or activate an activity or expression of a polypeptide and/or polynucleotide of the invention comprising: contacting a polypeptide and/or polynucleotide of the invention with a compound to be screened under conditions to permit binding to or other interaction between the compound and the polypeptide and/or polynucleotide to assess the binding to or other interaction with the compound, such binding or interaction preferably being associated with a second component capable of providing a detectable signal in response to the binding or interaction of the polypeptide and/or polynucleotide with the compound; and determining whether the compound binds to or otherwise interacts with and activates or inhibits an activity or expression of the polypeptide and/or polynucleotide by detecting the presence or absence of a signal generated from the binding or interaction of the compound with the polypeptide and/or polynucleotide.
Another example of an assay for mevalonate pathway gene agonists is a competitive assay that combines a mevalonate pathway gene and a potential agonist with mevalonate pathway gene-binding molecules, recombinant mevalonate pathway gene binding molecules, natural substrates or ligands, or substrate or ligand mimetics, under appropriate conditions for a competitive inhibition assay. A mevalonate pathway gene can be labeled, such as by radioactivity or a colorimetric compound, such that the number of mevalonate pathway gene molecules bound to a binding molecule or converted to product can be determined accurately to assess the effectiveness of the potential antagonist. It will be readily appreciated by the skilled artisan that a polypeptide and/or polynucleotide of the present invention may also be used in a method for the structure- based design of an agonist or antagonist of the polypeptide and/or polynucleotide, by: (a) determining in the first instance the three-dimensional structure of the polypeptide and/or polynucleotide, or complexes thereof; (b) deducing the three-dimensional structure for the likely reactive site(s), binding site(s) or motif(s) of an agonist or antagonist; (c) synthesizing candidate compounds that are predicted to bind to or react with the deduced binding site(s), reactive site(s), and/or motif(s); and (d) testing whether the candidate compounds are indeed agonists or antagonists. It will be further appreciated that this will normally be an iterative process, and this iterative process may be performed using automated and computer-controlled steps.
In a further aspect, the present invention provides methods of treating abnormal conditions such as, for instance, a Disease, related to either an excess of, an under-expression of, an elevated activity of, or a decreased activity of a mevalonate pathway gene polypeptide and/or polynucleotide.
If the expression and/or activity of the polypeptide and/or polynucleotide is in excess, several approaches are available. One approach comprises administering to an individual in need thereof an inhibitor compound (antagonist) as herein described, optionally in combination with a pharmaceutically acceptable carrier, in an amount effective to inhibit the function and/or expression of the polypeptide and/or polynucleotide, such as, for example, by blocking the binding of ligands, substrates, receptors, enzymes, etc., or by inhibiting a second signal, and thereby alleviating the abnormal condition. In another approach, soluble forms of the polypeptides still capable of binding the ligand, substrate, enzymes, receptors, etc., in competition with endogenous polypeptide and/or polynucleotide may be administered. Typical examples of such competitors include fragments of a mevalonate pathway gene polypeptide and/or polypeptide.
In still another approach, expression of a gene encoding an endogenous mevalonate pathway gene polypeptide can be inhibited using expression blocking techniques. This blocking may be targeted against any step in gene expression, but is preferably targeted against transcription and/or translation. An examples of a known technique of this sort involve the use of antisense sequences, either internally generated or separately administered (see, for example, O'Connor, J. Neurochem. (1991) 56:560 in OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988)). Alternatively, oligonucleotides that form triple helices with the gene can be supplied (see, for example, Lee, et al., Nucleic Acids Res (1979) 6:3073; Cooney, et ai, Science (1988) 241:456; Dervan, et ai, Science (1991) 251 : 1360). These oligomers can be administered per se or the relevant oligomers can be expressed in vivo. Each of the polynucleotide sequences provided herein may be used in the discovery and development of antibacterial compounds. The encoded protein, upon expression, can be used as a target for the screening of antibacterial drugs. Additionally, the polynucleotide sequences encoding the amino terminal regions of the encoded protein or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the coding sequence of interest.
The invention also provides the use of the polypeptide, polynucleotide, agonist or antagonist of the invention to interfere with the initial physical interaction between a pathogen or pathogens and a eukaryotic, preferably mammalian, host responsible for sequelae of infection. In particular, the molecules of the invention may be used: in the prevention of adhesion of bacteria, in particular gram positive and/or gram negative bacteria, to eukaryotic, preferably mammalian, extracellular matrix proteins on in-dwelling devices or to extracellular matrix proteins in wounds; to block bacterial adhesion between eukaryotic, preferably mammalian, extracellular matrix proteins and bacterial mevalonate pathway gene proteins that mediate tissue damage and/or; to block the normal progression of pathogenesis in infections initiated other than by the implantation of in-dwelling devices or by other surgical techniques.
In accordance with yet another aspect of the invention, there are provided mevalonate pathway gene agonists and antagonists, preferably bacteristatic or bactericidal agonists and antagonists.
The antagonists and agonists of the invention may be employed, for instance, to prevent, inhibit and/or treat diseases.
Helicobacter pylori (herein "H. pylori") bacteria infect the stomachs of over one- third of the world's population causing stomach cancer, ulcers, and gastritis (International Agency for Research on Cancer (1994) Schistosomes, Liver Flukes and Helicobacter Pylori (International Agency for Research on Cancer, Lyon, France, http://www.uicc.ch/ecp/ecp 2904.htm). Moreover, the International Agency for Research on Cancer recently recognized a cause-and-effect relationship between H. pylori and gastric adenocarcinoma, classifying the bacterium as a Group I (definite) carcinogen. Preferred antimicrobial compounds of the invention (agonists and antagonists of mevalonate pathway gene polypeptides and/or polynucleotides) found using screens provided by the invention, or known in the art, particularly narrow-spectrum antibiotics, should be useful in the treatment of //, pylori infection. Such treatment should decrease the advent of H. pylori- induced cancers, such as gastrointestinal carcinoma. Such treatment should also prevent, inhibit and/or cure gastric ulcers and gastritis. GLOSSARY
The following definitions are provided to facilitate understanding of certain terms used frequently herein.
"Bodily material(s)" means any material derived from an individual or from an organism infecting, infesting or inhabiting an individual, including but not limited to, cells, tissues and waste, such as, bone, blood, serum, cerebrospinal fluid, semen, saliva, muscle, cartilage, organ tissue, skin, urine, stool or autopsy materials.
"Disease(s)" means any disease caused by or related to infection by a bacteria, including, for example, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema and endocarditis, and most particularly meningitis, such as, for example, infection of cerebrospinal fluid, disease, such as, infections of the upper respiratory tract (e.g., otitis media, bacterial tracheitis, acute epiglottitis, thyroiditis), lower respiratory (e.g., empyema, lung abscess), cardiac (e.g., infective endocarditis), gastrointestinal (e.g., secretory diarrhoea, splenic absces, retroperitoneal abscess), CNS (e.g., cerebral abscess), eye (e.g., blepharitis, conjunctivitis, keratitis, endophthalmitis, preseptal and orbital cellulitis, darcryocystitis), kidney and urinary tract (e.g., epididymitis, intrarenal and perinephric absces, toxic shock syndrome), skin (e.g., impetigo, folliculitis, cutaneous abscesses, cellulitis, wound infection, bacterial myositis) bone and joint (e.g., septic arthritis, osteomyelitis).
"Host cell(s)" is a cell that has been introduced (e.g., transformed or transfected) or is capable of introduction (e.g., transformation or transfection) by an exogenous polynucleotide sequence.
"Identity," as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as the case may be, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences. "Identity" can be readily calculated by known methods, including but not limited to those described in (Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; and Carillo, H., and Lipman, D., SIAM /. Applied Math., 48: 1073 (1988). Methods to determine identity are designed to give the largest match between the sequences tested. Moreover, methods to determine identity are codified in publicly available computer programs. Computer program methods to determine identity between two sequences include, but are not limited to, the GCG program package (Devereux, et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Altschul, et al., J. Molec. Biol. 215: 403-410 (1990). The BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et ai, NCBI NLM NIH Bethesda, MD 20894; Altschul, et al., J. Mol. Biol. 215: 403-410 (1990). The well known Smith Waterman algorithm may also be used to determine identity. Parameters for polypeptide sequence comparison include the following: Algorithm:
Needleman and Wunsch, J. Mol Biol. 48: 443-453 (1970)
Comparison matrix: BLOSSUM62 from Hentikoff and Hentikoff, Proc. Natl. Acad. Sci. USA, 89:10915-10919 (1992) Gap Penalty: 12 Gap Length Penalty: 4
A program useful with these parameters is publicly available as the "gap" program from Genetics Computer Group, Madison WI. The aforementioned parameters are the default parameters for peptide comparisons (along with no penalty for end gaps).
Parameters for polynucleotide comparison include the following: Algorithm: Needleman and Wunsch, J. Mol Biol. 48: 443-453 (1970) Comparison matrix: matches = +10, mismatch = 0 Gap Penalty: 50 Gap Length Penalty: 3 Available as: The "gap" program from Genetics Computer Group, Madison WI. These are the default parameters for nucleic acid comparisons.
A preferred meaning for "identity" for polynucleotides and polypeptides, as the case may be, are provided in (1) and (2) below.
(1) Polynucleotide embodiments further include an isolated polynucleotide comprising a polynucleotide sequence having at least a 95, 97 or 100% identity to the reference sequence of SEQ ID NOs: 1 , 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, wherein said polynucleotide sequence may be identical to the reference sequence of SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, or may include up to a certain integer number of nucleotide alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion, and wherein said alterations may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence, and wherein said number of nucleotide alterations is determined by multiplying the total number of nucleotides in SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, by the integer defining the percent identity divided by 100 and then subtracting that product from said total number of nucleotides in SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, or:
nn < xn (χ n • y)>
wherein nn is the number of nucleotide alterations, xn is the total number of nucleotides in SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, or 71, y is 0.95 for 95%, 0.97 for 97% or 1.00 for 100%, and • is the symbol for the multiplication operator, and wherein any non- integer product of xn and y is rounded down to the nearest integer prior to subtracting it from xn. Alterations of a polynucleotide sequence encoding a polypeptide of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72, may create nonsense, missense or frameshift mutations in this coding sequence and thereby alter the polypeptide encoded by the polynucleotide following such alterations.
(2) Polypeptide embodiments further include an isolated polypeptide comprising a polypeptide having at least a 95, 97 or 100% identity to a polypeptide reference sequence of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72, wherein said polypeptide sequence may be identical to a reference sequence of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72, or may include up to a certain integer number of amino acid alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion, and wherein said alterations may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between those terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence, and wherein said number of amino acid alterations is determined by multiplying the total number of amino acids in SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72, by the integer defining the percent identity divided by 100 and then subtracting that product from said total number of amino acids in SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72, or:
na < xa - (xa • y),
wherein na is the number of amino acid alterations, xa is the total number of amino acids in SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, or 72, y is 0.95 for 95%, 0.97 for 97% or 1.00 for 100%, and • is the symbol for the multiplication operator, and wherein any non- integer product of xa and y is rounded down to the nearest integer prior to subtracting it from xa.
"Individual(s)" means a multicellular eukaryote, including, but not limited to, a metazoan, a mammal, an ovid, a bovid, a simian, a primate, and a human.
"Isolated" means altered "by the hand of man" from its natural state, i.e., if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein. Moreover, a polynucleotide or polypeptide that is introduced into an organism by transformation, genetic manipulation or by any other recombinant method is "isolated" even if it is still present in said organism, which organism may be living or non-living.
'Organism(s)" means a (i) prokaryote, including but not limited to, a member of the genus Streptococcus, Staphylococcus, and further including, but not limited to, a member of the species or group, Group A Streptococcus, Group B Streptococcus, Group C Streptococcus, Group D Streptococcus, Group G Streptococcus, Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and Staphylococcus epidermidis.
"Polynucleotide(s)" generally refers to any polyribonucleotide or polydeoxyribonucleotide, that may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotide(s)" include, without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions or single-, double- and triple-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double- stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded regions, or a mixture of single- and double- stranded regions. In addition, "polynucleotide" as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. As used herein, the term "polynucleotide(s)" also includes DNAs or RNAs as described above that comprise one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotide(s)" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The term "polynucleotide(s)" as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including, for example, simple and complex cells. "Polynucleotide(s)" also embraces short polynucleotides often referred to as oligonucleotide(s).
"Polypeptide(s)" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds. "Polypeptide(s)" refers to both short chains, commonly referred to as peptides, oligopeptides and oligomers and to longer chains generally referred to as proteins. Polypeptides may comprise amino acids other than the 20 gene encoded amino acids. "Polypeptide(s)" include those modified either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature, and they are well known to those of skill in the art. It will be appreciated that the same type of modification may be present in the same or varying degree at several sites in a given polypeptide. Also, a given polypeptide may comprise many types of modifications. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains, and the amino or carboxyl termini. Modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins, such as arginylation, and ubiquitination. See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993) and Wold, F., Posttranslational Protein Modifications: Perspectives and Prospects, pgs. 1-12 in POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York (1983);
Seifter, et al., Meth. Enzymol. 182:626-646 (1990) and Rattan, et al., Ann. N.Y. Acad. Sci. 663: 48-62 (1992). Polypeptides may be branched or cyclic, with or without branching. Cyclic, branched and branched circular polypeptides may result from post-translational natural processes and may be made by entirely synthetic methods, as well. "Recombinant expression system(s)" refers to expression systems or portions thereof or polynucleotides of the invention introduced or transformed into a host cell or host cell lysate for the production of the polynucleotides and polypeptides of the invention.
"Variant(s)" as the term is used herein, is a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide respectively, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusion proteins and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. The present invention also includes include variants of each of the polypeptides of the invention, that is polypeptides that vary from the referents by conservative amino acid substitutions, whereby a residue is substituted by another with like characteristics. Typical such substitutions are among Ala, Val, Leu and Ile; among Ser and Thr; among the acidic residues Asp and Glu; among Asn and Gin; and among the basic residues Lys and Arg; or aromatic residues Phe and Tyr. Particularly preferred are variants in which several, 5-10, 1-5, 1-3, 1-2 or 1 amino acids are substituted, deleted, or added in any combination. A variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques, by direct synthesis, and by other recombinant methods known to skilled artisans.
EXAMPLES
The examples below are carried out using standard techniques, that are well known and routine to those of skill in the art, except where otherwise described in detail. The examples are illustrative, but do not limit the invention. Example 1 Phylogenetic Analysis of Mevalonate Pathway Enzymes Separate database searches and phylogenetic analyses were performed for the five enzymes of interest, 3-hydroxy-3-methylglutartyl coenzyme A (HMGCoA) reductase (MevA gene), HMGCoA synthase (PksG gene), mevalonate diphosophate decarboxylase (MevD gene) and mevlonate kinases (MevK gene), Mevalonate Kinases (MevK), including Mevalonate Kinase (MevKl) and Phosophomevalonate Kinase (MevKl). Homologous protein sequences were retrieved from public and proprietary genomic sequence databases using the software BLASTP and TBLASTN (Altschul, et al., Nucleic Acids Res. 25:3389-3402 (1997)). The proteins were initially aligned using the program CLUSTALW vl .7 (Thompson, et al., Nucleic Acids Research 22: 4673- 4680 (1994)) with the BLOSUM62 (Henikoff, et al., Genomics 19:97-107 (1992). (http://blocks.fhcrc.org/blocks)) similarity matrix, and gap opening and extension penalties of 10.0 and 0.05, respectively. The multiple sequence alignments were further refined manually using the program SEQLAB of the GCG v9.0 software package (Genetics Computer Group, Madison WI, USA). Phylogenetic trees were constructed by neighbor-joining (N-J) and maximum parsimony (MP) methods for each set of alignments. The N-J trees depticted in Figure 1-4 were based on pairwise distances between amino acid sequences using the programs NEIGHBOR and PROTDIST of the PHYLIP 3.57c package (Felsenstein, J., 1993, http://evolution.genetics. washington.edu/phylip.html, Department of Genetics, University of Washington, Seattle). The "Dayhoff program option was invoked in the latter program, which estimates the expected amino acid replacements per position (EAARP) using a replacement model based on the Dayhoff 120 matrix. The programs SEQBOOT and CONSENSE were used to estimate the confidence limits of branching points from 1000 bootstrap replications. MP analysis was done using the software package PAUP* (Swofford, D.L. 1999. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other
Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.). Given the large size of the dataset, it was not possible to exhaustively search for the total number of minimal length trees. Instead, the numbers and lengths of minimal trees were estimated from 100 replicate random heuristic searches, while confidence limits of branch points were estimated by 1000 bootstrap replications.
Both MP and N-J methods showed similar overall tree topologies for the respective four enzyme families. Each of the four phylogenetic analyses show strong statistical support in terms of bootstrap values and minimal length trees for clustering together enzymes from Gram-positive bacteria. The clusters of Gram-positive bacterial enzymes showed high levels of sequence identity (based on the length of the shorter sequence without gaps from the edited alignment) for each of the four enzymes, HMGCoA reductases (45-90%), HMGCoA synthases, (48-90%), mevalonate diphosophate decarboxylase (39-80%) and mevalonate kinase (32-78%). Thus, Gram-positive mevalonate pathway enzymes show higher levels of overall sequence similarity and cluster together as a single group or clade according to various phylogenetic methodologies. All publications and references, including but not limited to patents and patent applications, cited in this specification are herein incoφorated by reference in their entirety as if each individual publication or reference were specifically and individually indicated to be incoφorated by reference herein as being fully set forth. Any patent application to which this application claims priority is also incoφorated by reference herein in its entirety in the manner described above for publications and references.

Claims

What is claimed is:
1. An isolated mevalonate pathway gene polynucleotide, wherein said polynucleotide is derived from a bacterium comprised within the clade of Class II of the phylogenetic tree of Figure 1.
2. An isolated mevalonate pathway gene polynucleotide as claimed in Claim 1, wherein said bacterium is a genus selected from the group consisting of: Streptococcus, Staphylococcus, and Enterococcus.
3. An isolated mevalonate pathway gene polynucleotide as claimed in Claim 2, wherein said bacterium is a Gram-positive bacterium.
4. An isolated mevalonate pathway gene polynucleotide as claimed in Claim 3, wherein the bacterium is a species selected from the group consisting of: Streptococcus pyogenes, Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Enterococcus faecalis, and Enterococcus faecium.
5. An isolated mevalonate pathway gene polynucleotide as claimed in Claim 4, wherein said polynucleotide encodes an enzyme selected from the group consisting of: HMGCoA reductase, HMGCoA synthase, mevalonate diphosophate decarboxylase, and mevalonate kinase.
6. An isolated mevalonate pathway gene polypeptide encoded by the polynucleotide of Claim 1.
7. An isolated mevalonate pathway gene polypeptide encoded by the polynucleotide of Claim 2.
8. An isolated mevalonate pathway gene polypeptide encoded by the polynucleotide of Claim 3.
9. An isolated mevalonate pathway gene polypeptide encoded by the polynucleotide of Claim 4.
10. An isolated mevalonate pathway gene polypeptide encoded by the polynucleotide of Claim 5.
11. A mevalonate pathway gene family polynucleotide.
12. The polynucleotide of claim 11 wherein encoding a polypeptides involved in the production of isopentenyl pyrophosphate.
13. The polynucleotide of claim 12 wherein said polynucleotide is isolated from bacteria falling within a clade selected from the group consisting of: the clade of Class II of the phylogenetic tree depicted in Figure 1 comprising the genera Streptococcus, Staphylococcus, or Enterococcus; the clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 2 comprising the genera Streptococcus, Staphylococcus, or Enterococcus; the clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 3 comprising the genera Streptococcus, Staphylococcus, or Enterococcus; and a clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 4 comprising the genera Streptococcus, Staphylococcus, or Enterococcus.
14. The polynucleotide of claim 11 wherein said polynucleotide encodes a polypeptide selected from the group consisting of:
HMGCoA Reductase (MevA) isolated from bacteria falling the clade of Gram- positive bacteria of the phylogenetic tree depicted in Figure 2;
HMGCoA Synthase (PksG) isolated from bacteria falling within the clade of Class II of the phylogenetic tree depicted in Figure 2;
Mevalonate Diphosphate Decarboxlyase (MevD) isolated from bacteria falling within the clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 3; and
Mevalonate Kinases (MevK), including Mevalonate Kinase (MevKl) and Phosophomevalonate Kinase (MevK2), isolated from bacteria falling within a clade of Gram-positive bacteria of the phylogenetic tree depicted in Figure 4.
15. A polynucleotide encoding HMGCoA Reductase (MevA) isolated from bacteria selected from the group consisting of a Streptococcus, Staphylococcus, Enterococcus, Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Entercoccus faecalis, and Enterococcus faecium.
16. A polynucleotide encoding HMGCoA Synthase (PksG) isolated from bacteria selected from the group consisting of a Streptococcus, Staphylococcus, Enterococcus ,Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus carnosus, Enterococcus faecalis, and Enterococcus faecium.
17. A polynucleotide encoding Mevalonate Diphosphate Decarboxlyase (MevD) isolated from bacteria selected from the group consisting of a Streptococcus, Staphylococcus, Enterococcus, Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Enterococcus faecalis, and Enterococcus faecium.
18. A polynucloetide encoding Mevalonate Kinases (MevK), including Mevalonate Kinase (MevKl) and Phosophomevalonate Kinase (MevKl), isolated from bacteria selected from the group consisting of a Streptococcus, Staphylococcus, Enterococcus, Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Enterococus faecalis, and Enterococcus faecium.
19. A polynucleotides encoding a mevalonate pathway family polypeptide falling within the clade defined by a node selected from the group consisting of: node A of Figure 1 ; node B of Figure 1 ; node C of Figure 1 ; node C of Figure 1 ; node D of Figure 1 ; node E of Figure 1 ; and node F of Figure 1, node A of Figure 2; node B of Figure 2; node C of Figure 2; node C of Figure 2; node D of Figure 2; node E of Figure 2; node F of Figure 2; and node G of Figure 2, node A of Figure 3; node B of Figure 3; node C of Figure 3; node C of Figure 3; node D of Figure 3; and node E of Figure 3, node A of Figure 4; node B of Figure 4; node C of Figure 4; node C of Figure 4; node D of Figure 4; node E of Figure 4; node F of Figure 4; node G of Figure 4; node G of Figure 4; node H of Figure 4; node I of Figure 4; node J of Figure 4; node K of Figure 4; node L of Figure 4; node M of Figure 4; and node N of Figure 4.
20. A process for producing a polypeptide selected from the group consisting of:
(i) an isolated polypeptide comprising an amino acid sequence selected from the group having at least 95% identity to an amino acid sequence selected from the group consisting of: SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72;
(ii) an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72;
(iii) an isolated polypeptide that is an amino acid sequence selected from the group consisting of: SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72; and
(iv) a polypeptide that is encoded by a recombinant polynucleotide comprising a polynucleotide sequence selected from the group consisting of: SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, comprising the step of culturing a host cell under conditions sufficient for the production of the polypeptide.
21. A process for producing a host cell comprising an expression system or a membrane thereof expressing a polypeptide selected from the group consisting of:
(i) an isolated polypeptide comprising an amino acid sequence selected from the group having at least 95% identity to an amino acid sequence selected from the group consisting of: SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72;
(ii) an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72;
(iii) an isolated polypeptide that is an amino acid sequence selected from the group consisting of: SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72; and (iv) a polypeptide that is encoded by a recombinant polynucleotide comprising a polynucleotide sequence selected from the group consisting of: SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, and 71, said process comprising the step of transforming or transfecting a cell with an expression system comprising a polynucleotide capable of producing said polypeptide of (i), (ii), (iii) or (iv) when said expression system is present in a compatible host cell such the host cell, under appropriate culture conditions, produces said polypeptide of (i), (ii), (iii) or (iv).
22. A host cell or a membrane expressing a polypeptide selected from the group consisting of:
(i) an isolated polypeptide comprising an amino acid sequence selected from the group having at least 95% identity to an amino acid sequence selected from the group consisting of over the entire length of: SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72;
(ii) an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72;
(iii) an isolated polypeptide that is an amino acid sequence selected from the group consisting of: SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72; and
(iv) a polypeptide that is encoded by a recombinant polynucleotide comprising a polynucleotide sequence selected from the group consisting of: SEQ ID NOs:l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, and 71.
23. An antibody immunospecific for the polypeptide of claim 1.
24. A method for screening to identify compounds that agonize or that inhibit the function of the polypeptide of claim 1 that comprises a method selected from the group consisting of:
(a) measuring the binding of a candidate compound to the polypeptide (or to the cells or membranes bearing the polypeptide) or a fusion protein thereof by means of a label directly or indirectly associated with the candidate compound; (b) measuring the binding of a candidate compound to the polypeptide (or to the cells or membranes bearing the polypeptide) or a fusion protein thereof in the presence of a labeled competitor;
(c) testing whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide, using detection systems appropriate to the cells or cell membranes bearing the polypeptide;
(d) mixing a candidate compound with a solution comprising a polypeptide of claim 1, to form a mixture, measuring activity of the polypeptide in the mixture, and comparing the activity of the mixture to a standard; or
(e) detecting the effect of a candidate compound on the production of mRNA encoding said polypeptide and said polypeptide in cells, using for instance, an ELISA assay.
DRAWINGS P 1-4
NOT FURMSHED UPON FILING
SEQUENCE LISTING
<110> SMITHKLINE BEECHAM CORPORATION SMITHKLINE BEECHAM p. I.e.
<120> MEVALONATE PATHWAY GENES
<130> GM50062
<140> TO BE ASSIGNED <141> 2000-06-21
<150> US 60/140,519 <151> 1999-06-22
<150> US 60/146,682 <151> 1999-08-02
<160> 72
<170> FastSEQ for Windows Version 3.0
<210> 1
<211> 1167
<212> DNA
<213> Staphylococcus aureus
<400> 1 atgacaatag gtatcgacaa aataaacttt tacgttccaa aatactatgt agacatggct 60 aaattagcag aagcacgcca agtagaccca aacaaatttt taattggaat tggtcaaact 120 gaaatggctg ttagtcctgt aaaccaagac atcgtttcaa tgggcgctaa cgctgctaag 180 gacattataa cagacgaaga taaaaagaaa attggtatgg taattgtggc aactgaatca 240 gcagttgatg ctgctaaagc agccgctgtt caaattcaca acttattagg tattcaacct 300 tttgcacgtt gctttgaaat gaaagaagct tgttatgctg caacaccagc aattcaatta 360 gctaaagatt atttagcaac tagaccgaat gaaaaagtat tagttattgc tacagataca 420 gcacgttatg gattgaattc aggcggcgag ccaacacaag gtgctggcgc agttgcgatg 480 gttattgcac ataatccaag cattttggca ttaaatgaag atgctgttgc ttacactgaa 540 gacgtttatg atttctggcg tccaactgga cataaatatc cattagttga tggtgcatta 600 tctaaagatg cttatatccg ctcattccaa caaagctgga atgaatacgc aaaacgtcaa 660 ggtaagtcgc tagctgactt cgcatctcta tgcttccatg ttccatttac aaaaatgggt 720 aaaaaggcat tagagtcaat cattgataac gctgatgaaa caactcaaga gcgtttacgt 780 tcaggatatg aagatgctgt agattataac cgttatgtcg gtaatattta tactggatca 840 ttatatttaa gcctaatatc attacttgaa aatcgtgatt tacaagctgg tgaaacaatc 900 ggtttattca gttatggctc aggttcagtt gttgaatttt atagtgcgac attagttgta 960 ggctacaaag atcatttaga tcaagctgca cataaagcat tattaaataa ccgtactgaa 1020 gtatctgttg atgcatatga aacattcttc aaacgttttg atgacgttga atttgacgaa 1080 gaacaagatg ctgttcatga agatcgtcat attttctact tatcaaatat tgaaaataac 1140 gttcgcgaat atcacagacc agagtaa 1167
<210> 2
<211> 388
<212> PRT
<213> Staphylococcus aureus
<400> 2 Met Thr Ile Gly Ile Asp Lys Ile Asn Phe Tyr Val Pro Lys Tyr Tyr
1 5 10 15
Val Asp Met Ala Lys Leu Ala Glu Ala Arg Gin Val Asp Pro Asn Lys
20 25 30
Phe Leu Ile Gly Ile Gly Gin Thr Glu Met Ala Val Ser Pro Val Asn
35 40 45
Gin Asp Ile Val Ser Met Gly Ala Asn Ala Ala Lys Asp Ile Ile Thr
50 55 60
Asp Glu Asp Lys Lys Lys Ile Gly Met Val Ile Val Ala Thr Glu Ser 65 70 75 80
Ala Val Asp Ala Ala Lys Ala Ala Ala Val Gin Ile His Asn Leu Leu
85 90 95
Gly Ile Gin Pro Phe Ala Arg Cys Phe Glu Met Lys Glu Ala Cys Tyr
100 105 110
Ala Ala Thr Pro Ala Ile Gin Leu Ala Lys Asp Tyr Leu Ala Thr Arg
115 120 125
Pro Asn Glu Lys Val Leu Val Ile Ala Thr Asp Thr Ala Arg Tyr Gly
130 135 140
Leu Asn Ser Gly Gly Glu Pro Thr Gin Gly Ala Gly Ala Val Ala Met 145 150 155 160
Val Ile Ala His Asn Pro Ser Ile Leu Ala Leu Asn Glu Asp Ala Val 165 170 175
Ala Tyr Thr Glu Asp Val Tyr Asp Phe Trp Arg Pro Thr Gly His Lys
180 185 190
Tyr Pro Leu Val Asp Gly Ala Leu Ser Lys Asp Ala Tyr Ile Arg Ser
195 200 205
Phe Gin Gin Ser Trp Asn Glu Tyr Ala Lys Arg Gin Gly Lys Ser Leu
210 215 220
Ala Asp Phe Ala Ser Leu Cys Phe His Val Pro Phe Thr Lys Met Gly 225 230 235 240
Lys Lys Ala Leu Glu Ser Ile Ile Asp Asn Ala Asp Glu Thr Thr Gin
245 250 255
Glu Arg Leu Arg Ser Gly Tyr Glu Asp Ala Val Asp Tyr Asn Arg Tyr
260 265 270
Val Gly Asn Ile Tyr Thr Gly Ser Leu Tyr Leu Ser Leu Ile Ser Leu
275 280 285
Leu Glu Asn Arg Asp Leu Gin Ala Gly Glu Thr Ile Gly Leu Phe Ser
290 295 300
Tyr Gly Ser Gly Ser Val Val Glu Phe Tyr Ser Ala Thr Leu Val Val 305 310 315 320
Gly Tyr Lys Asp His Leu Asp Gin Ala Ala His Lys Ala Leu Leu Asn
325 330 335
Asn Arg Thr Glu Val Ser Val Asp Ala Tyr Glu Thr Phe Phe Lys Arg
340 345 350
Phe Asp Asp Val Glu Phe Asp Glu Glu Gin Asp Ala Val His Glu Asp
355 ' 360 365
Arg His Ile Phe Tyr Leu Ser Asn Ile Glu Asn Asn Val Arg Glu Tyr
370 375 380
His Arg Pro Glu 385
<210> 3
<211> 1176
<212> DNA
<213> Streptococcus pyogenes
<400> 3 atgacaattg gaattgataa gattggtttt gcaaccagtc aatatgtctt gaaattggaa 60 gatttagcgc ttgcacgcca agtggatcca gcaaaattta gtcaagggct actcattgaa 120 tcttttagtg tggcaccaat cactgaagac attattactt tagctgcttc tgcagcagat 180 caaatcttaa ccgacgaaga tcgagctaag attgatatgg ttattttggc aactgaatcg 240 agtactgatc agtcaaaggc atcagctatc tatgtacatc acttagttgg tatccagcct 300 tttgcacgtt cctttgaagt aaaacaagcc tgctatagcg caactgctgc tctagactat 360 gctaaactgc atgtggcttc taagccagat tctcgtgtcc ttgttattgc tagtgatatt 420 gctagatacg gtgtaggatc tcctggcgaa tcaactcaag gatctggtag tattgctctt 480 ttggtaactg ctgaccctcg tattcttgct ctaaatgaag ataatgtggc tcaaactagg 540 gatattatgg acttttggag gcctaactat agtttcacac cttatgttga tggtatttac 600 tctaccaagc aatatctcaa ttgcttagaa accacgtggc aagcttatca gaaaagagaa 660 aaccttcagt tatctgattt tgctgcagtt tgtttccata ttccatttcc caagttagcc 720 ctaaaaggtc taaataacat tatggataac acagtacctc ctgaacacag ggaaaaacta 780 atagaagcct ttcaagcttc tattacttat agcaaacaaa ttggaaatat ttatactggc 840 tcactttatc taggattgtt atctttactt gaaaatagta aagtattaca atctggagat 900 aaaattggtt tttttagcta tggttccggt gccgtaagtg aattttattc cggtcagtta 960 gttgctgggt acgataaaat gttaatgact aatcgacaag ctttactaga tcaacgaaca 1020 cgtctttccg tttctaaata cgaagacctt ttctacgaac aagtccaatt agatgataat 1080 ggtaatgcca attttgacat ttacttaact ggaaaatttg ctctaacagc catcaaggag 1140 catcaaagga tctatcatac caatgacaaa aactaa 1176
<210> 4
<211> 391
<212> PRT
<213> Streptococcus pyogenes
<400> 4 Met Thr Ile Gly Ile Asp Lys Ile Gly Phe Ala Thr Ser Gin Tyr Val
1 5 10 15
Leu Lys Leu Glu Asp Leu Ala Leu Ala Arg Gin Val Asp Pro Ala Lys
20 25 30
Phe Ser Gin Gly Leu Leu Ile Glu Ser Phe Ser Val Ala Pro Ile Thr
35 40 45
Glu Asp Ile Ile Thr Leu Ala Ala Ser Ala Ala Asp Gin Ile Leu Thr
50 55 60
Asp Glu Asp Arg Ala Lys Ile Asp Met Val Ile Leu Ala Thr Glu Ser 65 70 75 80
Ser Thr Asp Gin Ser Lys Ala Ser Ala Ile Tyr Val His His Leu Val
85 90 95
Gly Ile Gin Pro Phe Ala Arg Ser Phe Glu Val Lys Gin Ala Cys Tyr
100 105 110
Ser Ala Thr Ala Ala Leu Asp Tyr Ala Lys Leu His Val Ala Ser Lys 115 120 125
Pro Asp Ser Arg Val Leu Val Ile Ala Ser Asp Ile Ala Arg Tyr Gly
130 135 140
Val Gly Ser Pro Gly Glu Ser Thr Gin Gly Ser Gly Ser Ile Ala Leu 145 150 155 160
Leu Val Thr Ala Asp Pro Arg Ile Leu Ala Leu Asn Glu Asp Asn Val
165 170 175
Ala Gin Thr Arg Asp Ile Met Asp Phe Trp Arg Pro Asn Tyr Ser Phe
180 185 190
Thr Pro Tyr Val Asp Gly Ile Tyr Ser Thr Lys Gin Tyr Leu Asn Cys
195 200 205
Leu Glu Thr Thr Trp Gin Ala Tyr Gin Lys Arg Glu Asn Leu Gin Leu
210 215 220
Ser Asp Phe Ala Ala Val Cys Phe His Ile Pro Phe Pro Lys Leu Ala 225 230 235 240
Leu Lys Gly Leu Asn Asn Ile Met Asp Asn Thr Val Pro Pro Glu His
245 250 255
Arg Glu Lys Leu Ile Glu Ala Phe Gin Ala Ser Ile Thr Tyr Ser Lys
260 265 270
Gin Ile Gly Asn Ile Tyr Thr Gly Ser Leu Tyr Leu Gly Leu Leu Ser
275 280 285
Leu Leu Glu Asn Ser Lys Val Leu Gin Ser Gly Asp Lys Ile Gly Phe
290 295 300
Phe Ser Tyr Gly Ser Gly Ala Val Ser Glu Phe Tyr Ser Gly Gin Leu 305 310 315 320
Val Ala Gly Tyr Asp Lys Met Leu Met Thr Asn Arg Gin Ala Leu Leu
325 330 335
Asp Gin Arg Thr Arg Leu Ser Val Ser Lys Tyr Glu Asp Leu Phe Tyr
340 345 350
Glu Gin Val Gin Leu Asp Asp Asn Gly Asn Ala Asn Phe Asp Ile Tyr
355 360 365
Leu Thr Gly Lys Phe Ala Leu Thr Ala Ile Lys Glu His Gin Arg Ile
370 375 380
Tyr His Thr Asn Asp Lys Asn 385 390
<210> 5 <211> 1167 <212> DNA <213> Staphylococcus epidermidis
<400> 5 atgaatatag gtatagataa aataagtttc tatgtaccca aatattatgt agacatggct 60 aaacttgcag aagcgcgcca agtcgatcct aataaatttt taattggaat tggtcaaact 120 gaaatgactg tgagcccagt gaatcaagat atcgtatcta tgggagccaa tgctgctaaa 180 gatattataa cagaagaaga taaaaagaat attggtatgg ttatagtagc aactgagtct 240 gcgattgata atgccaaagc agcagccgtt caaattcacc atcttttagg tattcaaccc 300 tttgcaagat gctttgaaat gaaagaggct tgttatgcag caacacctgc aattcaactt 360 gccaaagatt atcttgctca acgccctaac gaaaaggttc ttgtcattgc tagtgacaca 420 gctcgttatg gtattcattc tggtggtgag cctactcaag gtgccggtgc agttgcaatg 480 atgatttcac. atgacccaag tattttaaaa cttaatgatg atgccgtagc atatactgaa 540 gacgtttatg atttctggcg tccaacgggt catcaatatc ccttagttgc tggtgcattg 600 tcgaaagatg cctatatcaa gtcattccaa gaaagttgga atgaatatgc acgtcgccat 660 aataaaacac tcgctgattt. cgcttcacta tgtttccatg taccattcac caaaatggga 720 caaaaagctt tagattctat tattaatcat gccgatgaaa ctacacaaga ccgtcttaac 780 tctagttacc aagatgcagt tgattataat cgttatgtcg gtaatattta cacagggtcc 840 ttatatttaa gtctcatctc tttattagaa acacgtgatt taaaaggcgg acaaacgatt 900 ggtctcttta gttatggttc tggttctgta ggcgagttct ttagtggaac attagtagat 960 ggattcaagg agcaattaga tgttgagcgc cacaaatctt tattaaataa tagaatagag 1020 gtttctgttg atgaatatga acatttcttc aaacgctttg accaattaga attgaatcat 1080 gaacttgaaa aatcaaatgc agatcgtgac attttctatt taaaatctat tgataacaat 1140 attcgtgaat atcatatagc agaataa 1167
<210> 6
<211> 388
<212> PRT
<213> Staphylococcus epidermidis
<400> 6 Met Asn Ile Gly Ile Asp Lys Ile Ser Phe Tyr Val Pro Lys Tyr Tyr
1 5 10 15
Val Asp Met Ala Lys Leu Ala Glu Ala Arg Gin Val Asp Pro Asn Lys
20 25 30
Phe Leu Ile Gly Ile Gly Gin Thr Glu Met Thr Val Ser Pro Val Asn
35 40 45
Gin Asp Ile Val Ser Met Gly Ala Asn Ala Ala Lys Asp Ile Ile Thr
50 55 60
Glu Glu Asp Lys Lys Asn Ile Gly Met Val Ile Val Ala Thr Glu Ser 65 70 75 80
Ala Ile Asp Asn Ala Lys Ala Ala Ala Val Gin Ile His His Leu Leu
85 90 95
Gly Ile Gin Pro Phe Ala Arg Cys Phe Glu Met Lys Glu Ala Cys Tyr
100 105 110
Ala Ala Thr Pro Ala Ile Gin Leu Ala Lys Asp Tyr Leu Ala Gin Arg
115 120 125
Pro Asn Glu Lys Val Leu Val Ile Ala Ser Asp Thr Ala Arg Tyr Gly
130 135 140
Ile His Ser Gly Gly Glu Pro Thr Gin Gly Ala Gly Ala Val Ala Met 145 150 155 160
Met Ile Ser His Asp Pro Ser Ile Leu Lys Leu Asn Asp Asp Ala Val
165 170 175
Ala Tyr Thr Glu Asp Val Tyr Asp Phe Trp Arg Pro Thr Gly His Gin
180 185 190
Tyr Pro Leu Val Ala Gly Ala Leu Ser Lys Asp Ala Tyr Ile Lys Ser
195 200 205
Phe Gin Glu Ser Trp Asn Glu Tyr Ala Arg Arg His Asn Lys Thr Leu
210 215 220
Ala Asp Phe Ala Ser Leu Cys Phe His Val Pro Phe Thr Lys Met Gly 225 230 235 240
Gin Lys Ala Leu Asp Ser Ile Ile Asn His Ala Asp Glu Thr Thr Gin
245 250 255
Asp Arg Leu Asn Ser Ser Tyr Gin Asp Ala Val Asp Tyr Asn Arg Tyr
260 265 270
Val Gly Asn Ile Tyr Thr Gly Ser Leu Tyr Leu Ser Leu Ile Ser Leu
275 280 285
Leu Glu Thr Arg Asp Leu Lys Gly Gly Gin Thr Ile Gly Leu Phe Ser
290 295 300
Tyr Gly Ser Gly Ser Val Gly Glu Phe Phe Ser Gly Thr Leu Val Asp 305 310 315 320
Gly Phe Lys Glu Gin Leu Asp Val Glu Arg His Lys Ser Leu Leu Asn
325 330 335
Asn Arg Ile Glu Val Ser Val Asp Glu Tyr Glu His Phe Phe Lys Arg
340 345 350
Phe Asp Gin Leu Glu Leu Asn His Glu Leu Glu Lys Ser Asn Ala Asp
355 360 365
Arg Asp Ile Phe Tyr Leu Lys Ser Ile Asp Asn Asn Ile Arg Glu Tyr 370 375 380 His Ile Ala Glu '385
<210> 7
<211> 1167
<212> DNA
<213> Staphylococcus haemolyticus
<400> 7 gtgagtatag gaatcgataa aattaacttt tacgtaccta aatactatgt agacatggct 60 aagcttgctg aagctcgcca agttgatcca aataaatttt taattgggat tggtcaaacc 120 caaatggcag tcagtccagt atcacaagat attgtatcta tgggggctaa tgctgctaaa 180 gatattataa cagatgatga taaaaaacat attggaatgg tcattgtagc aactgaatct 240 gcaatcgata atgccaaagc tgctgcagta caaattcaca atttactagg tgttcagcca 300 ttcgcacgct gcttcgaaat gaaagaagct tgctatgctg caacacctgc aatccaatta 360 gctaaagact acattgagaa acgacctaat gaaaaggtac ttgttatcgc aagtgataca 420 gctcgttacg gtattcaatc tggtggtgaa ccgacacaag gtgctggtgc cgtagctatg 480 ttgatttcaa ataatccaag tatcttagaa ttgaatgatg atgccgttgc atatactgaa 540 gatgtgtatg acttctggag accaactgga cataaatatc cattagttgc cggtgcgtta 600 tctaaagatg catatatcaa atcattccaa gaaagttgga acgaatatgc tcgacgtgaa 660 gataaaacat tatctgactt tgagtcatta tgtttccacg tacctttcac taaaatgggt 720 aaaaaagctt tagactcaat tatcaatgat gccgatgaaa cgacgcaaga acgtttaaca 780 tctggatatg aagatgcagt atattacaat cgctatgtag gtaatattta tactggctct 840 ttatatctaa gtttgatttc attattagag aatagatcac ttaaaggtgg tcaaactatt 900 ggattattta gctatggatc tggttctgta ggagaattct ttagtgctac gctagtcgaa 960 ggctatgaaa aacaattaga tattgaagga cataaagcct tattgaatga acgtcaagaa 1020 gtttcagttg aagactatga aagtttcttc aagcgattcg atgatttaga attcgatcac 1080 gctactgaac aaactgatga cgataagtct atttactact tagaaaatat tcaggacgat 1140 atacgtcaat atcatattcc taaataa 1167
<210> 8
<211> 388
<212> PRT
<213> Staphylococcus haemolyticus
<400> 8 Met Ser Ile Gly Ile Asp Lys Ile Asn Phe Tyr Val Pro Lys Tyr Tyr
1 5 10 15
Val Asp Met Ala Lys Leu Ala Glu Ala Arg Gin Val Asp Pro Asn Lys 20 25 30
Phe Leu Ile Gly Ile Gly Gin Thr Gin Met Ala Val Ser Pro Val Ser
35 40 45
Gin Asp Ile Val Ser Met Gly Ala Asn Ala Ala Lys Asp Ile Ile Thr
50 55 60
Asp Asp Asp Lys Lys His Ile Gly Met Val Ile Val Ala Thr Glu Ser 65 70 75 80
Ala Ile Asp Asn Ala Lys Ala Ala Ala Val Gin Ile His Asn Leu Leu
85 90 95
Gly Val Gin Pro Phe Ala Arg Cys Phe Glu Met Lys Glu Ala Cys Tyr
100 105 110
Ala Ala Thr Pro Ala Ile Gin Leu Ala Lys Asp Tyr Ile Glu Lys Arg
115 120 125
Pro Asn Glu Lys Val Leu Val Ile Ala Ser Asp Thr Ala Arg Tyr Gly
130 135 140
Ile Gin Ser Gly Gly Glu Pro Thr Gin Gly Ala Gly Ala Val Ala Met 145 150 155 160
Leu Ile Ser Asn Asn Pro Ser Ile Leu Glu Leu Asn Asp Asp Ala Val
165 ' 170 175
Ala Tyr Thr Glu Asp Val Tyr Asp Phe Trp Arg Pro Thr Gly His Lys
180 185 190
Tyr Pro Leu Val Ala Gly Ala Leu Ser Lys Asp Ala Tyr Ile Lys Ser
195 200 205
Phe Gin Glu Ser Trp Asn Glu Tyr Ala Arg Arg Glu Asp Lys Thr Leu
210 215 220
Ser Asp Phe Glu Ser Leu Cys Phe His Val Pro Phe Thr Lys Met Gly 225 230 235 240
Lys Lys Ala Leu Asp Ser Ile Ile Asn Asp Ala Asp Glu Thr Thr Gin
245 250 255
Glu Arg Leu Thr Ser Gly Tyr Glu Asp Ala Val Tyr Tyr Asn Arg Tyr
260 265 270
Val Gly Asn Ile Tyr Thr Gly Ser Leu Tyr Leu Ser Leu Ile Ser Leu
275 280 285
Leu Glu Asn Arg Ser Leu Lys Gly Gly Gin Thr Ile Gly Leu Phe Ser
290 295 300
Tyr Gly Ser Gly Ser Val Gly Glu Phe Phe Ser Ala Thr Leu Val Glu 305 310 315 320
Gly Tyr Glu Lys Gin Leu Asp Ile Glu Gly His Lys Ala Leu Leu Asn 325 330 335 Glu Arg Gin Glu Val Ser Val Glu Asp Tyr Glu Ser Phe Phe Lys Arg
340 345 350
Phe Asp Asp Leu Glu Phe Asp His Ala Thr Glu Gin Thr Asp Asp Asp
355 360 365
Lys Ser Ile Tyr Tyr Leu Glu Asn Ile Gin Asp Asp Ile Arg Gin Tyr
370 375 380
His Ile Pro Lys 385
<210> 9
<211> 1152
<212> DNA
<213> Enterococcus faecalis
<400> 9 atgacaattg ggattgataa aattagtttt tttgtgcccc cttattatat tgatatgacg 60 gcactggctg aagccagaaa tgtagaccct ggaaaatttc atattggtat tgggcaagac 120 caaatggcgg tgaacccaat cagccaagat attgtgacat ttgcagccaa tgccgcagaa 180 gcgatcttga ccaaagaaga taaagaggcc attgatatgg tgattgtcgg gactgagtcc 240 agtatcgatg agtcaaaagc ggccgcagtt gtcttacatc gtttaatggg gattcaacct 300 ttcgctcgct ctttcgaaat caaggaagct tgttacggag caacagcagg cttacagtta 360 gctaagaatc acgtagcctt acatccagat aaaaaagtct tggttgtagc agcagatatt 420 gcaaaatatg gattaaattc tggcggtgag cctacacaag gagctggggc ggttgcaatg 480 ttagttgcta gtgaaccgcg catcttggct ttaaaagagg ataatgtgat gctgacgcaa 540 gatatctatg acttttggcg tccaacaggc catccgtatc ctatggtcga tggtcctttg 600 tcaaacgaaa cctacatcca atcttttgcc caagtctggg atgaacataa aaaaagaacc 660 ggtcttgatt ttgcagatta tgatgcttta gcgttccata ttccttacac aaaaatgggc 720 aaaaaagcct tattagcaaa aatctccgac caaactgaag cagaacagga acgaatttta 780 gcccgttatg aagaaagcat catctatagt cgtcgcgtag gaaacttgta tacgggttca 840 ctttatctgg gactcatttc ccttttagaa aatgcaacga ctttaaccgc aggcaatcaa 900 attgggttat tcagttatgg ttctggtgct gtcgctgaat ttttcactgg tgaattagta 960 gctggttatc aaaatcattt acaaaaagaa actcatttag cactgctaga taatcggaca 1020 gaactttcta tcgctgaata tgaagccatg tttgcagaaa ctttagacac agatattgat 1080 caaacgttag aagatgaatt aaaatatagt atttctgcta ttaataatac cgttcgctct 1140 tatcgaaact aa 1152
<210> 10 <211> 383 <212> PRT
10 <213> Enterococcus faecalis
<400> 10 Met Thr Ile Gly Ile Asp Lys Ile Ser Phe Phe Val Pro Pro Tyr Tyr
1 5 10 15
Ile Asp Met Thr Ala Leu Ala Glu Ala Arg Asn Val Asp Pro Gly Lys
20 25 30
Phe His Ile Gly Ile Gly Gin Asp Gin Met Ala Val Asn Pro Ile Ser
35 40 45
Gin Asp Ile Val Thr Phe Ala Ala Asn Ala Ala Glu Ala Ile Leu Thr
50 55 60
Lys Glu Asp Lys Glu Ala Ile Asp Met Val Ile Val Gly Thr Glu Ser 65 70 75 80
Ser Ile Asp Glu Ser Lys Ala Ala Ala Val Val Leu His Arg Leu Met
85 90 95
Gly Ile Gin Pro Phe Ala Arg Ser Phe Glu Ile Lys Glu Ala Cys Tyr
100 105 110
Gly Ala Thr Ala Gly Leu Gin Leu Ala Lys Asn His Val Ala Leu His
115 120 125
Pro Asp Lys Lys Val Leu Val Val Ala Ala Asp Ile Ala Lys Tyr Gly
130 135 140
Leu Asn Ser Gly Gly Glu Pro Thr Gin Gly Ala Gly Ala Val Ala Met 145 150 155 160
Leu Val Ala Ser Glu Pro Arg Ile Leu Ala Leu Lys Glu Asp Asn Val
165 170 175
Met Leu Thr Gin Asp Ile Tyr Asp Phe Trp Arg Pro Thr Gly His Pro
180 185 190
Tyr Pro Met Val Asp Gly Pro Leu Ser Asn Glu Thr Tyr Ile Gin Ser
195 200 205
Phe Ala Gin Val Trp Asp Glu His Lys Lys Arg Thr Gly Leu Asp Phe
210 215 220
Ala Asp Tyr Asp Ala Leu Ala Phe His Ile Pro Tyr Thr Lys Met Gly 225 230 235 240
Lys Lys Ala Leu Leu Ala Lys Ile Ser Asp Gin Thr Glu Ala Glu Gin
245 250 255
Glu Arg Ile Leu Ala Arg Tyr Glu Glu Ser Ile Ile Tyr Ser Arg Arg
260 265 270
Val Gly Asn Leu Tyr Thr Gly Ser Leu Tyr Leu Gly Leu Ile Ser Leu 275 280 285
11 Leu Glu Asn Ala Thr Thr Leu Thr Ala Gly Asn Gin Ile Gly Leu Phe
290 295 300
Ser Tyr Gly Ser Gly Ala Val Ala Glu Phe Phe Thr Gly Glu Leu Val 305 310 315 320
Ala Gly Tyr Gin Asn His Leu Gin Lys Glu Thr His Leu Ala Leu Leu
325 330 335
Asp Asn Arg Thr Glu Leu Ser Ile Ala Glu Tyr Glu Ala Met Phe Ala
340 345 350
Glu Thr Leu Asp Thr Asp Ile Asp Gin Thr Leu Glu Asp Glu Leu Lys
355 360 365
Tyr Ser Ile Ser Ala Ile Asn Asn Thr Val Arg Ser Tyr Arg Asn 370 375 380
<210> 11
<211> 1155
<212> DNA
<213> Enterococcus faecium
<400> 11 atgaaaatag ggattgatcg tctttccttt tttattccta atttatattt agatatgaca 60 gagttggcag aaagccgtgg ggatgatcct gcaaaatacc atatagggat tggtcaagac 120 caaatggcag tcaatcgtgc aaatgaagac atcattacac taggagcaaa tgctgccagc 180 aaaatcgtaa cagaaaaaga ccgtgagcta atcgacatgg tcatcgtcgg aacagaatcc 240 gggattgatc attcaaaagc gagtgcggta attatccacc atttactgaa aatccaatct 300 tttgctcgtt cttttgaagt aaaagaggct tgctacggtg gcaccgcagc tttgcacatg 360 gcgaaagaat atgtcaaaaa tcatccagaa cgaaaagtac tagtcatagc aagtgatatt 420 gctcgttacg gcttggcaag cggtggtgaa gtgacgcaag gtgtcggtgc tgttgcgatg 480 atgatcactc aaaacccgcg tattttatcg attgaagacg acagcgtatt tctgacagaa 540 gatatctatg atttctggcg tccagattat agcgaatttc ctgttgttga tggtccttta 600 tctaattcta cgtatatcga atcattccaa aaagtttgga atcgacataa agaattgtcg 660 ggtcgaggac tcgaagatta tcaggcgatt gctttccata ttccgtatac taagatggga 720 aaaaaggcat tgcaaagcgt attagaccaa acagacgaag ataatcagga acgtcttatg 780 gctcgctatg aagaaagcat ccgttacagc cgacgaatcg gtaatcttta cactggttca 840 ttatacctgg ggctaacttc tctactggaa aattcgaaat cactacagcc aggagatcgc 900 atcggtctat tcagctacgg ctctggtgca gtaagtgaat tttttacagg ttatctggaa 960 gaaaactatc aagaatatct cttcgcacaa tctcatcaag agatgctaga ttctcgaaca 1020 cggatcactg ttgacgaata tgaaacgatt ttcagtgaga cgcttcctga acacggagaa 1080 tgtgcagaat atacttcaga tgtacctttt tcgattacaa agatcgaaaa tgatattcgt 1140 tactacaaaa tataa 1155
12 <210> 12
<211> 384
<212> PRT
<213> Enterococcus faecium
<400> 12 Met Lys Ile Gly Ile Asp Arg Leu Ser Phe Phe Ile Pro Asn Leu Tyr
1 5 10 15
Leu Asp Met Thr Glu Leu Ala Glu Ser Arg Gly Asp Asp Pro Ala Lys
20 25 30
Tyr His Ile Gly Ile Gly Gin Asp Gin Met Ala Val Asn Arg Ala Asn
35 40 45
Glu Asp Ile Ile Thr Leu Gly Ala Asn Ala Ala Ser Lys Ile Val Thr
50 55 60
Glu Lys Asp Arg Glu Leu Ile Asp Met Val Ile Val Gly Thr Glu Ser 65 70 75 80
Gly Ile Asp His Ser Lys Ala Ser Ala Val Ile Ile His His Leu Leu
85 90 95
Lys Ile Gin Ser Phe Ala Arg Ser Phe Glu Val Lys Glu Ala Cys Tyr
100 105 110
Gly Gly Thr Ala Ala Leu His Met Ala Lys Glu Tyr Val Lys Asn His
115 120 125
Pro Glu Arg Lys Val Leu Val Ile Ala Ser Asp Ile Ala Arg Tyr Gly
130 135 140
Leu Ala Ser Gly Gly Glu Val Thr Gin Gly Val Gly Ala Val Ala Met 145 150 155 160
Met Ile Thr Gin Asn Pro Arg Ile Leu Ser Ile Glu Asp Asp Ser Val
165 170 175
Phe Leu Thr Glu Asp Ile Tyr Asp Phe Trp Arg Pro Asp Tyr Ser Glu
180 185 190
Phe Pro Val Val Asp Gly Pro Leu Ser Asn Ser Thr Tyr Ile Glu Ser
195 200 205
Phe Gin Lys Val Trp Asn Arg His Lys Glu Leu Ser Gly Arg Gly Leu
210 215 220
Glu Asp Tyr Gin Ala Ile Ala Phe His Ile Pro Tyr Thr Lys Met Gly 225 230 235 240
Lys Lys Ala Leu Gin Ser Val Leu Asp Gin Thr Asp Glu Asp Asn Gin 245 250 255
13 Glu Arg Leu Met Ala Arg Tyr Glu Glu Ser Ile Arg Tyr Ser Arg Arg
260 265 270
Ile Gly Asn Leu Tyr Thr Gly Ser Leu Tyr Leu Gly Leu Thr Ser Leu
275 280 285
Leu Glu Asn Ser Lys Ser Leu Gin Pro Gly Asp Arg Ile Gly Leu Phe
290 295 300
Ser Tyr Gly Ser Gly Ala Val Ser Glu Phe Phe Thr Gly Tyr Leu Glu 305 310 315 320
Glu Asn Tyr Gin Glu Tyr Leu Phe Ala Gin Ser His Gin Glu Met Leu
325 330 335
Asp Ser Arg Thr Arg Ile Thr Val Asp Glu Tyr Glu Thr Ile Phe Ser
340 345 350
Glu Thr Leu Pro Glu His Gly Glu Cys Ala Glu Tyr Thr Ser Asp Val
355 360 365
Pro Phe Ser Ile Thr Lys Ile Glu Asn Asp Ile Arg Tyr Tyr Lys Ile 370 375 380
<210> 13
<211> 1278
<212> DNA
<213> Staphylococcus haemolyticus
<400> 13 atgaagagtt tagataagac atttcgacat ttatctcgtg aagataaatt aaaacaactt 60 gttgattatg gatggttaac tgatgaaagc tatgatgttt tactaaaaaa tccattaatt 120 aatgaagaag ttgcgaatag tttaattgag aatgtaattg gtcaaggtac attgcctgta 180 ggtttattac ctaaaatcat tgtcgatgat aaagaatatg ttgtaccgat gatggttgaa 240 gaaccttcag tagtagctgc tgcaagctat ggcgctaagt tagtcaacaa tacaggtggc 300 tttaaaacag ttaagagtga acgattaatg attggccaaa ttgtatttga tgatgttagt 360 gatacagatg ccttagcaca agccatatat gatttagagc cacaaattaa acagatcgca 420 gctgaagctt acccatcaat tatagaacgt ggtggtggtt acagacgtat tgaaattgat 480 acgttcccag agaatcaact attgtcttta aaagtatttg tagatactaa agatgcaatg 540 ggtgccaata tgcttaatac aatcttggaa gctataactg cacatatgaa gaatgagttt 600 ccaaatcgcg atgtgcttat gagcattttg tctaaccatg ccacagcctc agtagtacga 660 gttcaaggtg aaattgatat caaagattta aataaaggtg atcgttctgg tgaagaagta 720 gcacaacgca tggagcgtgc ttctgtacta gcacaagtcg atatacatcg tgctgcaaca 780 cacaataaag gtgttatgaa tggcattcac gccgtagtct tagcaactgg taatgatacg 840 cgcggagcag aagcaagtgc acatgcatat gccagtcgtg atggacaata tagaggtatt 900 gcgacttgga agtttgataa agaacgtggt cgcttagtcg gaacaataga agtaccgatg 960
14 acattagcga tcgtcggtgg cggtacgaaa gtattgccaa ttgcgaaagc atcacttgaa 1020 ttattgaatg ttcaatcagc acaagaatta ggtcaggttg ttgctgctgt tggattggca 1080 cagaactttt cagcatgtag agccttagtt tctgaaggta ttcaaaaagg tcacatgagt 1140 ttacaataca aatcattagc tatcgtagta ggtgctcaag gtgatgagat tgctcgtgtt 1200 gccgaagcat tgaaagctgc gcctaaagct aatactgcta cagctcaaca aattttaaaa 1260 i gatttacgac aacaataa 1278
<210> 14
<211> 425
<212> PRT
<213> Staphylococcus haemolyticus
<400> 14 Met Lys Ser Leu Asp Lys Thr Phe Arg His Leu Ser Arg Glu Asp Lys
1 5 10 15
Leu Lys Gin Leu Val Asp Tyr Gly Trp Leu Thr Asp Glu Ser Tyr Asp
20 25 30
Val Leu Leu Lys Asn Pro Leu Ile Asn Glu Glu Val Ala Asn Ser Leu
35 40 45
Ile Glu Asn Val Ile Gly Gin Gly Thr Leu Pro Val Gly Leu Leu Pro
50 55 60
Lys Ile Ile Val Asp Asp Lys Glu Tyr Val Val Pro Met Met Val Glu 65 70 75 80
Glu Pro Ser Val Val Ala Ala Ala Ser Tyr Gly Ala Lys Leu Val Asn
85 90 95
Asn Thr Gly Gly Phe Lys Thr Val Lys Ser Glu Arg Leu Met Ile Gly
100 105 110
Gin Ile Val Phe Asp Asp Val Ser Asp Thr Asp Ala Leu Ala Gin Ala
115 120 125
Ile Tyr Asp Leu Glu Pro Gin Ile Lys Gin Ile Ala Ala Glu Ala Tyr
130 135 140
Pro Ser Ile Ile Glu Arg Gly Gly Gly Tyr Arg Arg Ile Glu Ile Asp 145 150 155 160
Thr Phe Pro Glu Asn Gin Leu Leu Ser Leu Lys Val Phe Val Asp Thr
165 170 175
Lys Asp Ala Met Gly Ala Asn Met Leu Asn Thr Ile Leu Glu Ala Ile
180 185 190
Thr Ala His Met Lys Asn Glu Phe Pro Asn Arg Asp Val Leu Met Ser 195 200 205
15 Ile Leu Ser Asn His Ala Thr Ala Ser Val Val Arg Val Gin Gly Glu
210 215 220
Ile Asp Ile Lys Asp Leu Asn Lys Gly Asp Arg Ser Gly Glu Glu Val 225 230 235 240
Ala Gin Arg Met Glu Arg Ala Ser Val Leu Ala Gin Val Asp Ile His
245 250 255
Arg Ala Ala Thr His Asn Lys Gly Val Met Asn Gly Ile His Ala Val
260 265 270
Val Leu Ala Thr Gly Asn Asp Thr Arg Gly Ala Glu Ala Ser Ala His
275 280 285
Ala Tyr Ala Ser Arg Asp Gly Gin Tyr Arg Gly Ile Ala Thr Trp Lys
290 295 300
Phe Asp Lys Glu Arg Gly Arg Leu Val Gly Thr Ile Glu Val Pro Met 305 310 315 320
Thr Leu Ala Ile Val Gly Gly Gly Thr Lys Val Leu Pro Ile Ala Lys
325 330 335
Ala Ser Leu Glu Leu Leu Asn Val Gin Ser Ala. Gin Glu Leu Gly Gin
340 345 350
Val Val Ala Ala Val Gly Leu Ala Gin Asn Phe Ser Ala Cys Arg Ala
355 360 365
Leu Val Ser Glu Gly Ile Gin Lys Gly His Met Ser Leu Gin Tyr Lys
370 375 380
Ser Leu Ala Ile Val Val Gly Ala Gin Gly Asp Glu Ile Ala Arg Val 385 390 395 400
Ala Glu Ala Leu Lys Ala Ala Pro Lys Ala Asn Thr Ala Thr Ala Gin
405 410 415
Gin Ile Leu Lys Asp Leu Arg Gin Gin 420 425
<210> 15
<211> 1278
<212> DNA
<213> Staphylocccus epidermidis
<400> 15 atgaaaagtt tagataaagg atttagacat ttaacacgaa aagataaatt aaaaaaactt 60 gttgaatacg gttggctaga tgatgaaaac tatgaaatat tacttaatca tccgttaatt 120 aatgaggaag tcgcaaacag tttaattgaa aatgtcattg gtcaaggtgc actaccagta 180 gggttattac ctcgaattat agttgatgat aaagaatatg tagtacctat gatggtagag 240
16 gaaccttctg tcgtagcagc agcaagttat ggcgcaaaac tcgttaatca aagtggtgga 300 tttaagacaa tttcaagtga acgtctaatg attggacaaa ttgtctttga tgatgttgaa 360 gacacaggca cattagctaa ctcaatatat caaatagaat cacaaattca tcaaatcgct 420 gatgaagctt acccttctat taaagcaaga ggtggaggat atcaacgtat tgaaatagat 480 acattcccta atcatcgatt attatctttg aaggtttttg ttgatactaa agatgctatg 540 ggtgctaata tgttaattac aatattagaa gcaatcactg cacatctaaa agttaaaatt 600 ttcaatcaaa atgttttaat gagtatttta tctaatcatg cgacagcatc agtagtacag 660 gtacaagggg aaatagatat tgaagattta catagaggag agagaagtgg cgaagaggta 720 gcacaacgta tggaacgagc gtcagttctt gcacaagtag atatacatcg tgctgcaaca 780 cataacaaag gtgtgatgaa tggtatacac gctgtagtat tggctacagg caatgataca 840 agaggagttg aagcaagtgc tcatgcatat gcaagcaaag atggtcatta tagagggata 900 gctacttggg aatatgatcg ctcacgtaat aaattggttg gaactattga agttcctatg 960 actttagcga cagtaggtgg aggtacgaaa gttttaccta ttgctaaagc ctcattaaat 1020 ttgcttaatg ttgaaaatgc acaggaacta gggcaagttg ttgctgctgt tggattagca 1080 caaaatttct ctgcatgtag agcgctagtg tctgagggga tacaacaagg acatatgagt 1140 ttacaatata aatcattagc gattgttgta ggtgcaaaag gcgaagaaat tgcgcaagta 1200 gctgaagcgc tcaaatatga atcacaagct aatactgcca aagctcaaga aatcttgatg 1260 aatataagaa agtcataa 1278
<210> 16
<211> 425
<212> PRT
<213> Staphylocccus epidermidis
<400> 16 Met Lys Ser Leu Asp Lys Gly Phe Arg His Leu Thr Arg Lys Asp Lys
1 5 10 15
Leu Lys Lys Leu Val Glu Tyr Gly Trp Leu Asp Asp Glu Asn Tyr Glu
20 25 30
Ile Leu Leu Asn His Pro Leu Ile Asn Glu Glu Val Ala Asn Ser Leu
35 40 45
Ile Glu Asn Val Ile Gly Gin Gly Ala Leu Pro Val Gly Leu Leu Pro
50 55 60
Arg Ile Ile Val Asp Asp Lys Glu Tyr Val Val Pro Met Met Val Glu 65 70 75 80
Glu Pro Ser Val Val Ala Ala Ala Ser Tyr Gly Ala Lys Leu Val Asn
85 90 95
Gin Ser Gly Gly Phe Lys Thr Ile Ser Ser Glu Arg Leu Met Ile Gly 100 105 110
17 Gin Ile Val Phe Asp Asp Val Glu Asp Thr Gly Thr Leu Ala Asn Ser
115 120 125
Ile Tyr Gin Ile Glu Ser Gin Ile His Gin Ile Ala Asp Glu Ala Tyr
130 135 140
Pro Ser Ile Lys Ala Arg Gly Gly Gly Tyr Gin Arg Ile Glu Ile Asp 145 150 155 160
Thr Phe Pro Asn His Arg Leu Leu Ser Leu Lys Val Phe Val Asp Thr
165 170 175
Lys Asp Ala Met Gly Ala Asn Met Leu Ile Thr Ile Leu Glu Ala Ile
180 185 190
Thr Ala His Leu Lys Val Lys Ile Phe Asn Gin Asn Val Leu Met Ser
195 200 205
Ile Leu Ser Asn His Ala Thr Ala Ser Val Val Gin Val Gin Gly Glu
210 215 220
Ile Asp Ile Glu Asp Leu His Arg Gly Glu Arg Ser Gly Glu Glu Val 225 230 235 240
Ala Gin Arg Met Glu Arg Ala Ser Val Leu Ala Gin Val Asp Ile His
245 250 255
Arg Ala Ala Thr His Asn Lys Gly Val Met Asn Gly Ile His Ala Val
260 265 270
Val Leu Ala Thr Gly Asn Asp Thr Arg Gly Val Glu Ala Ser Ala His
275 280 285
Ala Tyr Ala Ser Lys Asp Gly His Tyr Arg Gly Ile Ala Thr Trp Glu
290 295 300
Tyr Asp Arg Ser Arg Asn Lys Leu Val Gly Thr Ile Glu Val Pro Met 305 310 315 320
Thr Leu Ala Thr Val Gly Gly Gly Thr Lys Val Leu Pro Ile Ala Lys
325 330 335
Ala Ser Leu Asn Leu Leu Asn Val Glu Asn Ala Gin Glu Leu Gly Gin
340 345 350
Val Val Ala Ala Val Gly Leu Ala Gin Asn Phe Ser Ala Cys Arg Ala
355 360 365
Leu Val Ser Glu Gly Ile Gin Gin Gly His Met Ser Leu Gin Tyr Lys
370 375 380
Ser Leu Ala Ile Val Val Gly Ala Lys Gly Glu Glu Ile Ala Gin Val 385 390 395 400
Ala Glu Ala Leu Lys Tyr Glu Ser Gin Ala Asn Thr Ala Lys Ala Gin
405 410 415
Glu Ile Leu Met Asn Ile Arg Lys Ser
18 420 425
<210> 17
<211> 1278
<212> DNA
<213> Streptococcus pyogenes
<400> 17 atgacaaaaa ctaatcttaa ctggagcggt ttttcaaaga aaacattcga agaacgcctc 60 caacttatcg aaaaatttaa actacttaat gctgaaaact taaatcaact caaaacagac 120 gttcttttgc ctatccaaac agctaatcaa atgactgaaa atgtcttagg acgattggct 180 ttgcccttta gcatagctcc tgattttctt gtcaacggtt caacttatca gatgcctttt 240 gtcacggaag aaccttctgt tgttgctgca gcatctttcg cagcaaaact aatcaaacgc 300 tcaggtggtt ttaaagctca aaccctaaac cgacaaatga ttggtcaaat tgttctttac 360 gatatcgacc aaatagataa cgctaaagcc gccatccttc ataaaacaaa aaagctaatt 420 gcattggcaa ataaagctta tccttccatt gttaaaagag gtggaggcgc tagaaccatt 480 catttggaag aaaaaggaga atttttgatt ttctatctga ctgttgatac ccaagaagct 540 atgggagcaa atatggtcaa tactatgatg gaagctcttg ttcctgattt aacaagactg 600 tctaaggggc attgtctaat ggcgatttta tctaattacg caacagagtc gcttgttact 660 actagttgtg agattcccgt gcgcctttta gatcgcgata aaacaaaatc cctacagtta 720 gctcaaaaaa tagagctagc cagccgacta gctcaagtag atccttaccg ggctactact 780 cataataaag gtatttttaa tggtattgat gcagtggtaa tagccacagg aaatgactgg 840 cgtgctattg aagcaggggc ccatgcttat gcctcaagaa atggtagcta tcaaggactt 900 agtcagtggc attttgacca agataaacaa gttctgcttg gccaaatgac cctccctatg 960 cctattgcta gtaagggggg atctatcggg cttaacccta ctgtttctat cgcacatgat 1020 cttcttaatc aacctgatgc caaaacatta gcccaattga ttgcatctgt ggggttagct 1080 caaaactttg ctgcactaaa agctctgacc tcatctggca tccaagctgg tcacatgaaa 1140 ctacatgcga aatcattagc tcttttggcg ggggcaaccc aagacgaaat tgctccttta 1200 gttaatgctt tactagctga taaaccaata aatctagaaa aagcacattt ttacttatcc 1260 cagctaagac agtcttag 1278
<210> 18
<211> 425
<212> PRT
<213> Streptococcus pyogenes
<400> 18 Met Thr Lys Thr Asn Leu Asn Trp Ser Gly Phe Ser Lys Lys Thr Phe 1 5 10 15
19 Glu Glu Arg Leu Gin Leu Ile Glu Lys Phe Lys Leu Leu Asn Ala Glu
20 25 30
Asn Leu Asn Gin Leu Lys Thr Asp Val Leu Leu Pro Ile Gin Thr Ala
35 40 45
Asn Gin Met Thr Glu Asn Val Leu Gly Arg Leu Ala Leu Pro Phe Ser
50 55 60
Ile Ala Pro Asp Phe Leu Val Asn Gly Ser Thr Tyr Gin Met Pro Phe 65 70 75 80
Val Thr Glu Glu Pro Ser Val Val Ala Ala Ala Ser Phe Ala Ala Lys
85 90 95
Leu Ile Lys Arg Ser Gly Gly Phe Lys Ala Gin Thr Leu Asn Arg Gin
100 105 110
Met Ile Gly Gin Ile Val Leu Tyr Asp Ile Asp Gin Ile Asp Asn Ala
115 120 125
Lys Ala Ala Ile Leu His Lys Thr Lys Lys Leu Ile Ala Leu Ala Asn
130 135 140
Lys Ala Tyr Pro Ser Ile Val Lys Arg Gly Gly Gly Ala Arg Thr Ile 145 150 155 160
His Leu Glu Glu Lys Gly Glu Phe Leu Ile Phe Tyr Leu Thr Val Asp
165 170 175
Thr Gin Glu Ala Met Gly Ala Asn Met Val Asn Thr Met Met Glu Ala
180 185 190
Leu Val Pro Asp Leu Thr Arg Leu Ser Lys Gly His Cys Leu Met Ala
195 200 205
Ile Leu Ser Asn Tyr Ala Thr Glu Ser Leu Val Thr Thr Ser Cys Glu
210 215 220
Ile Pro Val Arg Leu Leu Asp Arg Asp Lys Thr Lys Ser Leu Gin Leu 225 230 235 240
Ala Gin Lys Ile Glu Leu Ala Ser Arg Leu Ala Gin Val Asp Pro Tyr
245 250 255
Arg Ala Thr Thr His Asn Lys Gly Ile Phe Asn Gly Ile Asp Ala Val
260 265 270
Val Ile Ala Thr Gly Asn Asp Trp Arg Ala Ile Glu Ala Gly Ala His
275 280 285
Ala Tyr Ala Ser Arg Asn Gly Ser Tyr Gin Gly Leu Ser Gin Trp His
290 295 300
Phe Asp Gin Asp Lys Gin Val Leu Leu Gly Gin Met Thr Leu Pro Met 305 310 315 320
Pro Ile Ala Ser Lys Gly Gly Ser Ile Gly Leu Asn Pro Thr Val Ser
20 325 330 335
Ile Ala His Asp Leu Leu Asn Gin Pro Asp Ala Lys Thr Leu Ala Gin
340 345 350
Leu Ile Ala Ser Val Gly Leu Ala Gin Asn Phe Ala Ala Leu Lys Ala
355 360 365
Leu Thr Ser Ser Gly Ile Gin Ala Gly His Met Lys Leu His Ala Lys
370 375 380
Ser Leu Ala Leu Leu Ala Gly Ala Thr Gin Asp Glu Ile Ala Pro Leu 385 390 395 400
Val Asn Ala Leu Leu Ala Asp Lys Pro Ile Asn Leu Glu Lys Ala His
405 410 415
Phe Tyr Leu Ser Gin Leu Arg Gin Ser 420 425
<210> 19
<211> 945
<212> DNA
<213> Enterococcus faecalis
<400> 19 atgaatataa aaaaacaagg cctcggtcaa gcgacgggaa aaatcatttt aatgggggaa 60 cacgccgttg tttacggcga accagcaatc gcctttcctt ttcaagcgac agaaatcaca 120 gccgtcttta ccccggcaaa aactatgcag attgattgtg catattttac aggattgctt 180 gaagacgtgc cccaagagct agcaaatatc aaggaagttg ttcagcaaac tttacatttt 240 ttaaaggaag atacgtttaa aggcactttg accttaacaa gtacgattcc cgctgaacga 300 ggaatgggct caagcgcagc aaccgctgtg gccatcgttc gaagcctttt tgattatttt 360 gattacgctt atacatatca agaattgttt gagcttgttt ccttaagtga gaaaattgct 420 catggcaatc ctagtggtat cgatgccgca gcaacaagcg gcgctgatcc cttatttttt 480 actagaggat ttccgcccac acatttctcg atgaatttat ctaatgccta cttagtagta 540 gctgatacgg gaattaaagg tcaaacacgt gaagcagtga aagacattgc gcagctagct 600 caaaataatc ccacagcaat cgctgaaaca atgaaacaat taggttcttt tactaaagaa 660 gcaaagcagg cgattttaca agatgataaa caaaaattag gtcagctaat gacgttagcg 720 caagagcaac tccagcaatt aaccgtcagc aacgatatgc tggatcgact agtggctctc 780 tctctagaac atggcgctct aggagcaaaa ttaaccggcg gcggtcgcgg tggctgtatg 840 attgccttaa cagataataa aaagaccgca caaaccattg cacagacttt agaagaaaat 900 ggagctgttg ctacatggat tcaatcatta gaggtgaaaa agtaa 945
<210> 20 <211> 314
21 <212> PRT
<213> Enterococcus faecalis
<400> 20 Met Asn Ile Lys Lys Gin Gly Leu Gly Gin Ala Thr Gly Lys Ile Ile
1 5 10 15
Leu Met Gly Glu His Ala Val Val Tyr Gly Glu Pro Ala Ile Ala Phe
20 25 30
Pro Phe Gin Ala Thr Glu Ile Thr Ala Val Phe Thr Pro Ala Lys Thr
35 ' 40 45
Met Gin Ile Asp Cys Ala Tyr Phe Thr Gly Leu Leu Glu Asp Val Pro
50 55 60
Gin Glu Leu Ala Asn Ile Lys Glu Val Val Gin Gin Thr Leu His Phe 65 70 75 80
Leu Lys Glu Asp Thr Phe Lys Gly Thr Leu Thr Leu Thr Ser Thr Ile
85 90 95
Pro Ala Glu Arg Gly Met Gly Ser Ser Ala Ala Thr Ala Val Ala Ile
100 105 110
Val Arg Ser Leu Phe Asp Tyr Phe Asp Tyr Ala Tyr Thr Tyr Gin Glu
115 120 125
Leu Phe Glu Leu Val Ser Leu Ser Glu Lys Ile Ala His Gly Asn Pro
130 135 140
Ser Gly Ile Asp Ala Ala Ala Thr Ser Gly Ala Asp Pro Leu Phe Phe 145 150 155 160
Thr Arg Gly Phe Pro Pro Thr His Phe Ser Met Asn Leu Ser Asn Ala
165 170 175
Tyr Leu Val Val Ala Asp Thr Gly Ile Lys Gly Gin Thr Arg Glu Ala
180 185 190
Val Lys Asp Ile Ala Gin Leu Ala Gin Asn Asn Pro Thr Ala Ile Ala
195 200 205
Glu Thr Met Lys Gin Leu Gly Ser Phe Thr Lys Glu Ala Lys Gin Ala
210 215 220
Ile Leu Gin Asp Asp Lys Gin Lys Leu Gly Gin Leu Met Thr Leu Ala 225 230 235 240
Gin Glu Gin Leu Gin Gin Leu Thr Val Ser Asn Asp Met Leu Asp Arg
245 . 250 255
Leu Val Ala Leu Ser Leu Glu His Gly Ala Leu Gly Ala Lys Leu Thr
260 265 270
Gly Gly Gly Arg Gly Gly Cys Met Ile Ala Leu Thr Asp Asn Lys Lys
22 275 280 285
Thr Ala Gin Thr Ile Ala Gin Thr Leu Glu Glu Asn Gly Ala Val Ala
290 295 300
Thr Trp Ile Gin Ser Leu Glu Val Lys Lys 305 310
<210> 21
<211> 1107
<212> DNA
<213> Enterococcus faecalis
<400> 21 atgattgaag ttactacgcc aggaaagtta tttattgcag gagaatatgc cgttgttgaa 60 cctggccacc ctgccattat cgttgctgtg gatcaattcg taactgtaac tgtcgaagaa 120 acaacagatg aaggcagtat tcaatctgca caatacagct ctttacctat tcgttggaca 180 cgccgaaatg gtgagctcgt attagatatt cgcgaaaatc cttttcatta tgttctagcg 240 gcgattcatc taactgaaaa atatgcgcaa gagcaaaaca aagaattgtc attttatcat 300 ttaaaagtga cgagtgaatt agatagttca aatggacgaa aatatggtct tggttcaagc 360 ggtgcagtaa ccgttggaac tgtcaaagcc ttgaatattt tttatgactt aggtttggaa 420 aatgaggaaa ttttcaaatt atcagcatta gctcacttag ccgttcaagg aaatggttct 480 tgcggagata tcgccgccag ctgttacggg ggctggattg ccttttcaac cttcgatcat 540 gattgggtca atcaaaaagt aaccactgaa acattaactg atttgttagc aatggactgg 600 cctgaattaa tgatttttcc gttaaaagta ccgaaacaac tacgtttact aattggttgg 660 acaggtagtc ctgcgtccac ttcagactta gttgatcgag ttcatcaatc aaaagaagaa 720 aaacaagcgg cttatgagca gttcttaatg aaaagtcggc tttgtgtcga aacaatgatt 780 aatggcttta acacaggaaa aatttctgtt attcaaaaac aaattactaa aaatcgccaa 840 ttgctcgccg aattatcttc actgactggt gtggtaatcg aaacagaagc cttgaaaaat 900 ctttgtgatt tggctgaatc ttatacagga gctgcgaaat cttctggcgc tggcgggggc 960 gattgtggga ttgtaatttt ccgccaaaaa tctgggattt taccattaat gactgcttgg 1020 gaaaaagacg gaattacccc actgccactt cacgtctata cctatggtca aaaggagtgt 1080 aaggagaagc atgaatcgaa aagatga 1107
<210> 22
<211> 368
<212> PRT
<213> Enterococcus faecalis
<400> 22 Met Ile Glu Val Thr Thr Pro Gly Lys Leu Phe Ile Ala Gly Glu Tyr
23 Ala Val Val Glu Pro Gly His Pro Ala Ile Ile Val Ala Val Asp Gin
20 25 30
Phe Val Thr Val Thr Val Glu Glu Thr Thr Asp Glu Gly Ser Ile Gin
35 40 45
Ser Ala Gin Tyr Ser Ser Leu Pro Ile Arg Trp Thr Arg Arg Asn Gly
50 55 60
Glu Leu Val Leu Asp Ile Arg Glu Asn Pro Phe His Tyr Val Leu Ala 65 70 75 80
Ala Ile His Leu Thr Glu Lys Tyr Ala Gin Glu Gin Asn Lys Glu Leu
85 90 95
Ser Phe Tyr His Leu Lys Val Thr Ser Glu Leu Asp Ser Ser Asn Gly
100 105 110
Arg Lys Tyr Gly Leu Gly Ser Ser Gly Ala Val Thr Val Gly Thr Val
115 120 125
Lys Ala Leu Asn Ile Phe Tyr Asp Leu Gly Leu Glu Asn Glu Glu Ile
130 135 140
Phe Lys Leu Ser Ala Leu Ala His Leu Ala Val Gin Gly Asn Gly Ser 145 150 155 160
Cys Gly Asp Ile Ala Ala Ser Cys Tyr Gly Gly Trp Ile Ala Phe Ser
165 170 175
Thr Phe Asp His Asp Trp Val Asn Gin Lys Val Thr Thr Glu Thr Leu
180 185 190
Thr Asp Leu Leu Ala Met Asp Trp Pro Glu Leu Met Ile Phe Pro Leu
195 200 205
Lys Val Pro Lys Gin Leu Arg Leu Leu Ile Gly Trp Thr Gly Ser Pro
210 215 220
Ala Ser Thr Ser Asp Leu Val Asp Arg Val His Gin Ser Lys Glu Glu 225 230 235 240
Lys Gin Ala Ala Tyr Glu Gin Phe Leu Met Lys Ser Arg Leu Cys Val
245 250 255
Glu Thr Met Ile Asn Gly Phe Asn Thr Gly Lys Ile Ser Val Ile Gin
260 265 270
Lys Gin Ile Thr Lys Asn Arg Gin Leu Leu Ala Glu Leu Ser Ser Leu
275 280 285
Thr Gly Val Val Ile Glu Thr Glu Ala Leu Lys Asn Leu Cys Asp Leu
290 295 300
Ala Glu Ser Tyr Thr Gly Ala Ala Lys Ser Ser Gly Ala Gly Gly Gly 305 310 315 320
24 Asp Cys Gly Ile Val Ile Phe Arg Gin Lys Ser Gly Ile Leu Pro Leu
325 330 335
Met Thr Ala Trp Glu Lys Asp Gly Ile Thr Pro Leu Pro Leu His Val
340 345 350
Tyr Thr Tyr Gly Gin Lys Glu Cys Lys Glu Lys His Glu Ser Lys Arg 355 360 365
<210> 23
<211> 879
<212> DNA
<213> Streptococcus pyogenes
<400> 23 atgaacgaaa acattggata tggtaaggca cacagtaaga tcattttgat aggtgagcat 60 gctgttgtgt atggctaccc agctattgct ttgcctttaa cagatattga ggtggtttgt 120 catatttttc cagctgataa gccattggtc tttgattttt atgatactct atcaacagcc 180 atttatgctg ccttggatta tttgcagcga ctacaagaac caattgctta tgagattgtt 240 tcacaagtgc cacaaaagcg tggtatgggg tcttcggcag ccgtttctat tgcagctatt 300 agagccgttt tttcttattg tcaagaaccc ctctcggatg atttgttgga aattttagtc 360 aacaaggcag aaattattgc ccacaccaat cctagtggtt tagatgccaa gacatgcctt 420 agtgaccatg ccattaagtt tatccgaaac attggctttg aaactatcga aatcgcctta 480 aatggttatc ttatcattgc agatacaggg attcacggtc atacacgtga ggccgtcaat 540 aaggtagcac agtttgagga aacgaatttg ccctatctgg ctaaactagg agctttgaca 600 caagcccttg aaagagcgat taaccaaaaa aataaggtgg ctatcggtca gctcatgaca 660 caagcgcact ctgctttaaa ggccattggc gttagcatca gtaaagctga ccaacttgtg 720 gaggctgccc taagagcagg tgctttaggc gctaagatga caggcggtgg cttgggtggc 780 tgtatgattg ccctagcaga taccaaagac atggccgaaa aaatcagtca caaattaaaa 840 gaagaaggag ccgtaaacac gtggatccaa atgttataa 879
<210> 24
<211> 292
<212> PRT
<213> Streptococcus pyogenes
<400> 24 Met Asn Glu Asn Ile Gly Tyr Gly Lys Ala His Ser Lys Ile Ile Leu
1 5 10 15
Ile Gly Glu His Ala Val Val Tyr Gly Tyr Pro Ala Ile Ala Leu Pro 20 25 30
25 Leu Thr Asp Ile Glu Val Val Cys His Ile Phe Pro Ala Asp Lys Pro
35 40 45
Leu Val Phe Asp Phe Tyr Asp Thr Leu Ser Thr Ala Ile Tyr Ala Ala
50 55 60
Leu Asp Tyr Leu Gin Arg Leu Gin Glu Pro Ile Ala Tyr Glu Ile Val 65 70 75 80
Ser Gin Val Pro Gin Lys Arg Gly Met Gly Ser Ser Ala Ala Val Ser
85 90 95
Ile Ala Ala Ile Arg Ala Val Phe Ser Tyr Cys Gin Glu Pro Leu Ser
100 105 110
Asp Asp Leu Leu Glu Ile Leu Val Asn Lys Ala Glu Ile Ile Ala His
115 120 125
Thr Asn Pro Ser Gly Leu Asp Ala Lys Thr Cys Leu Ser Asp His Ala
130 135 140
Ile Lys Phe Ile Arg Asn Ile Gly Phe Glu Thr Ile Glu Ile Ala Leu 145 150 155 160
Asn Gly Tyr Leu Ile Ile Ala Asp Thr Gly Ile His Gly His Thr Arg
165 170 175
Glu Ala Val Asn Lys Val Ala Gin Phe Glu Glu Thr Asn Leu Pro Tyr
180 185 190
Leu Ala Lys Leu Gly Ala Leu Thr Gin Ala Leu Glu Arg Ala Ile Asn
195 200 205
Gin Lys Asn Lys Val Ala Ile Gly Gin Leu Met Thr Gin Ala His Ser
210 215 220
Ala Leu Lys Ala Ile Gly Val Ser Ile Ser Lys Ala Asp Gin Leu Val 225 230 235 240
Glu Ala Ala Leu Arg Ala Gly Ala Leu Gly Ala Lys Met Thr Gly Gly
245 250 255
Gly Leu Gly Gly Cys Met Ile Ala Leu Ala Asp Thr Lys Asp Met Ala
260 265 270
Glu Lys Ile Ser His Lys Leu Lys Glu Glu Gly Ala Val Asn Thr Trp
275 280 285
Ile Gin Met Leu 290
<210> 25
<211> 1008
<212> DNA
<213> Streptococcus pyogenes
26 <400> 25 atgtctaatt attgtgtgca aacaggtggg aaactatacc tcacaggcga atatgctatc 60 ttaataccag gacaaaaagc cttaattcac tttattccac tgatgatgac agcagaaatt 120 agcccagcag cccatattca attagcttca gatatgtttt cccataaagc gggcatgaca 180 cccgatgcct cttatgcact gattcaagca acggttaaaa cctttgctga ttatctagga 240 cagtcaattg accaactgga gccattttcc ctaatcataa caggaaaaat ggagcgcgat 300 ggcaaaaaat ttggcattgg ttcaagtggt agcgtcaccc tcttaacctt aaaggcctta 360 tcggcctatt atcagatcac tttaacccca gagttactct ttaaactagc ggcttatacc 420 ttgcttaagc aaggagataa tgggtctatg ggggatattg cctgtatcgc ttaccagact 480 ttagtcgcct atacctcctt tgaccgagaa caggtcagta actggctgca gaccatgccc 540 ttaaaaaaac ttctcgtcaa agattggggt taccatatcc aagtcattca accagccctg 600 ccttgtgact ttttggttgg ctggactaaa atacctgcta tttcaaggca gatgattcaa 660 caagtgacag cgagcattac cccagctttc ttaagaacaa gttaccagct aacgcaatca 720 gctatggtag ctttgcaaga aggtcataag gaagaactca agaaaagttt agcaggagca 780 agtcatctcc taaaagagct tcatccagct atctaccatc ctaagctagt aaccttggta 840 gctgcttgtc agaagcaaga tgctgttgct aaatcttcag gttctggtgg tggagattgt 900 ggcatcgcgc ttgcctttaa tcaggatgct agagataccc ttatttccaa atggcaagaa 960 gctgatatcg cattacttta tcaagaaagg tggggagaga atgactaa 1008
<210> 26
<211> 335
<212> PRT
<213> Streptococcus pyogenes
<400> 26 Met Ser Asn Tyr Cys Val Gin Thr Gly Gly Lys Leu Tyr Leu Thr Gly
1 5 10 15
Glu Tyr Ala Ile Leu Ile Pro Gly Gin Lys Ala Leu Ile His Phe Ile
20 25 ' 30
Pro Leu Met Met Thr Ala Glu Ile Ser Pro Ala Ala His Ile Gin Leu
35 40 45
Ala Ser Asp Met Phe Ser His Lys Ala Gly Met Thr Pro Asp Ala Ser
50 55 60
Tyr Ala Leu Ile Gin Ala Thr Val Lys Thr Phe Ala Asp Tyr Leu Gly 65 70 75 80
Gin Ser Ile Asp Gin Leu Glu Pro Phe Ser Leu Ile Ile Thr Gly Lys
85 90 95
Met Glu Arg Asp Gly Lys Lys Phe Gly Ile Gly Ser Ser Gly Ser Val
27 100 105 110
Thr Leu Leu Thr Leu Lys Ala Leu Ser Ala Tyr Tyr Gin Ile Thr Leu
115 120 125
Thr Pro Glu Leu Leu Phe Lys Leu Ala Ala Tyr Thr Leu Leu Lys Gin
130 135 140
Gly Asp Asn Gly Ser Met Gly Asp Ile Ala Cys Ile Ala Tyr Gin Thr 145 150 155 160
Leu Val Ala Tyr Thr Ser Phe Asp Arg Glu Gin Val Ser Asn Trp Leu
165 170 175
Gin Thr Met Pro Leu Lys Lys Leu Leu Val Lys Asp Trp Gly Tyr His
180 185 190
Ile Gin Val Ile Gin Pro Ala Leu Pro Cys Asp Phe Leu Val Gly Trp
195 200 205
Thr Lys Ile Pro Ala Ile Ser Arg Gin Met Ile Gin Gin Val Thr Ala
210 215 220
Ser Ile Thr Pro Ala Phe Leu Arg Thr Ser Tyr Gin Leu Thr Gin Ser 225 230 235 240
Ala Met Val Ala Leu Gin Glu Gly His Lys Glu Glu Leu Lys Lys Ser
245 250 255
Leu Ala Gly Ala Ser His Leu Leu Lys Glu Leu His Pro Ala Ile Tyr
260 265 270
His Pro Lys Leu Val Thr Leu Val Ala Ala Cys Gin Lys Gin Asp Ala
275 280 285
Val Ala Lys Ser Ser Gly Ser Gly Gly Gly Asp Cys Gly Ile Ala Leu
290 295 300
Ala Phe Asn Gin Asp Ala Arg Asp Thr Leu Ile Ser Lys Trp Gin Glu 305 310 315 320
Ala Asp Ile Ala Leu Leu Tyr Gin Glu Arg Trp Gly Glu Asn Asp 325 330 335
<210> 27
<211> 921
<212> DNA
<213> Staphylococcus epidermidis
<400> 27 atgactagac aaggatacgg agaatctact ggaaagatta ttctaatggg tgaacacgca 60 gttacatttg gtcaaccggc aatcgcaatt ccatttaatg ctggaaaaat taaagtcctc 120 attgaaagtt tagatgaagg taattattct tctatcacaa gtgacgtata tgacggaatg 180
28 ttatacgatg cccccgaaca tctaaagtct atcattaatc gctttgttga aaaaagtgga 240 gtgaaagaac cactatcagt aaaaattcaa actaatttgc ctccatcaag aggtttaggt 300 tcaagtgctg cagtagcagt agcgtttgta cgcgccagtt atgattttat ggatcaacct 360 ttagatgaca aaacattgat taaagaagca aattgggcgg agcaaatcgc acatggtaag 420 ccaagcggta ttgatacgca gacgattgtg tcaaataaac ccgtctggtt taaacaaggg 480 caggccgaaa cattaaaatc actaaaatta aatggttata tggttgtcat tgatactgga 540 gtaaagggtt ctaccaaaca agcagtagaa gatgttcatg tattatgtga atctgatgaa 600 tatatgaaat atatagagca cattggtaca cttgttcaca gtgctagcga atcgattgaa 660 cagcatgatt tccatcattt ggctgacata tttaacgcat gtcaagaaga cttgagacat 720 ttaacagtaa gtcacgataa aatagaaaaa ttacttcaaa ttgggaaaga acatggtgcc 780 attgctggta aactaactgg tggaggaaga ggtggcagca tgcttcttct tgcggaaaat 840 ttaaaaactg caaagactat tgttgctgct gttgaaaaag ctggcgcagc acatacatgg 900 attgaacatt taggaggtta a 921
<210> 28
<211> 306
<212> PRT
<213> Staphylococcus epidermidis
<400> 28 Met Thr Arg Gin Gly Tyr Gly Glu Ser Thr Gly Lys Ile Ile Leu Met
1 5 10 15
Gly Glu His Ala Val Thr Phe Gly Gin Pro Ala Ile Ala Ile Pro Phe
20 25 30
Asn Ala Gly Lys Ile Lys Val Leu Ile Glu Ser Leu Asp Glu Gly Asn
35 40 45
Tyr Ser Ser Ile Thr Ser Asp Val Tyr Asp Gly Met Leu Tyr Asp Ala
50 55 60
Pro Glu His Leu Lys Ser Ile Ile Asn Arg Phe Val Glu Lys Ser Gly 65 70 75 80
Val Lys Glu Pro Leu Ser Val Lys Ile Gin Thr Asn Leu Pro Pro Ser
85 90 95
Arg Gly Leu Gly Ser Ser Ala Ala Val Ala Val Ala Phe Val Arg Ala
100 105 110
Ser Tyr Asp Phe Met Asp Gin Pro Leu Asp Asp Lys Thr Leu Ile Lys
115 120 125
Glu Ala Asn Trp Ala Glu Gin Ile Ala His Gly Lys Pro Ser Gly Ile
130 135 140
Asp Thr Gin Thr Ile Val Ser Asn Lys Pro Val Trp Phe Lys Gin Gly
29 145 150 155 160
Gin Ala Glu Thr Leu Lys Ser Leu Lys Leu Asn Gly Tyr Met Val Val
165 170 175
Ile Asp Thr Gly Val Lys Gly Ser Thr Lys Gin Ala Val Glu Asp Val
180 185 190
His Val Leu Cys Glu Ser Asp Glu Tyr Met Lys Tyr Ile Glu His Ile
195 200 205
Gly Thr Leu Val His Ser Ala Ser Glu Ser Ile Glu Gin His Asp Phe
210 215 220
His His Leu Ala Asp Ile Phe Asn Ala Cys Gin Glu Asp Leu Arg His 225 230 235 240
Leu Thr Val Ser His Asp Lys Ile Glu Lys Leu Leu Gin Ile Gly Lys
245 250 255
Glu His Gly Ala Ile Ala Gly Lys Leu Thr Gly Gly Gly Arg Gly Gly
260 265 270
Ser Met Leu Leu Leu Ala Glu Asn Leu Lys Thr Ala Lys Thr Ile Val
275 280 285
Ala Ala Val Glu Lys Ala Gly Ala Ala His Thr Trp Ile Glu His Leu
290 295 300
Gly Gly 305
<210> 29
<211> 924
<212> DNA
<213> Staphylococcus haemolyticus
<400> 29 atggtacaac gtggctatgg ggagtctaac ggcaaaataa tattaatcgg ggagcatgcg 60 gtaacatttg gtgaacctgc aattgcgatt ccgtttactt caggaaaagt aaaagtctta 120 atcgaaagtt tagaaaaagg taattactca gcgatacaaa gtgatgtcta tgatggacca 180 ctttatgatg cgccagaaca tttgaaatct ttaattggcc atttcgtaga gaataaaaag 240 gtagaagagc cattattaat aaaaattcaa gcaaatttac caccatctag aggtttagga 300 tcaagtgcag ccgttgctgt cgctttcata agagcaagct atgattattt aggtttacca 360 ctaactgata aagaattatt agaaaatgca gactgggcag aacgtatagc tcatggtaaa 420 ccaagtggta tagatactaa gactatcgtt acgaatcaac ctgtttggta tcaaaagggc 480 gaagttgaaa tattaaagac cttagattta gatggttata tggtagttat cgatacaggt 540 gttaaaggtt ctactaaaca agcagtcgaa gatgtgcatc aattgtgtga taatgataag 600 aattatatgc aagttgttaa acatattggt tctttagtgt attcagctag tgaagcgatt 660
30 gagcatcata gttttgatca attagctaca atctttaatc aatgtcaaga tgacttaaga 720 acattgacgg tgagtcacga caaaatagaa atgtttcttc gcttaggaga agagaatggt 780 tcagtcgctg gcaaattaac aggtggcggc cgtggtggta gtatgcttat cttagctaaa 840 gaattgcaaa cagctaagaa tattgtcgct gcagttgaaa aagctggtgc acaacataca 900 tggattgaga agttaggagg ataa 924
<210> 30
<211> 307
<212> PRT
<213> Staphylococcus haemolyticus
<400> 30 Met Val Gin Arg Gly Tyr Gly Glu Ser Asn Gly Lys Ile Ile Leu Ile
1 5 10 15
Gly Glu His Ala Val Thr Phe Gly Glu Pro Ala Ile Ala Ile Pro Phe
20 25 30
Thr Ser Gly Lys Val Lys Val Leu Ile Glu Ser Leu Glu Lys Gly Asn
35 40 45
Tyr Ser Ala Ile Gin Ser Asp Val Tyr Asp Gly Pro Leu Tyr Asp Ala
50 55 60
Pro Glu His Leu Lys Ser Leu Ile Gly His Phe Val Glu Asn Lys Lys 65 70 75 80
Val Glu Glu Pro Leu Leu Ile Lys Ile Gin Ala Asn Leu Pro Pro Ser
85 90 95
Arg Gly Leu Gly Ser Ser Ala Ala Val Ala Val Ala Phe Ile Arg Ala
100 105 110
Ser Tyr Asp Tyr Leu Gly Leu Pro Leu Thr Asp Lys Glu Leu Leu Glu
115 120 125
Asn Ala Asp Trp Ala Glu Arg Ile Ala His Gly Lys Pro Ser Gly Ile
130 135 140
Asp Thr Lys Thr Ile Val Thr Asn Gin Pro Val Trp Tyr Gin Lys Gly 145 150 155 160
Glu Val Glu Ile Leu Lys Thr Leu Asp Leu Asp Gly Tyr Met Val Val
165 170 175
Ile Asp Thr Gly Val Lys Gly Ser Thr Lys Gin Ala Val Glu Asp Val
180 185 190
His Gin Leu Cys Asp Asn Asp Lys Asn Tyr Met Gin Val Val Lys His
195 200 205
Ile Gly Ser Leu Val Tyr Ser Ala Ser Glu Ala Ile Glu His His Ser
31 210 215 220
Phe Asp Gin Leu Ala Thr Ile Phe Asn Gin Cys Gin Asp Asp Leu Arg 225 230 235 240
Thr Leu Thr Val Ser His Asp Lys Ile Glu Met Phe Leu Arg Leu Gly
245 250 255
Glu Glu Asn Gly Ser Val Ala Gly Lys Leu Thr Gly Gly Gly Arg Gly
260 265 270
Gly Ser Met Leu Ile Leu Ala Lys Glu Leu Gin Thr Ala Lys Asn Ile
275 280 285
Val Ala Ala Val Glu Lys Ala Gly Ala Gin His Thr Trp Ile Glu Lys
290 295 300
Leu Gly Gly 305
<210> 31
<211> 1077
<212> DNA
<213> Staphylococcus aureus
<400> 31 atgattcagg tcaaagcacc cggaaaactt tatattgctg gagaatatgc tgtaacagaa 60 ccaggatata aatctgtact tattgcgtta gatcgttttg taactgctac tattgaagaa 120 gcaacgcaat ataaaggtac cattcattca aaagcattac atcataaccc agttacattt 180 agtagagatg aagatagtat tgtcatttca gatccacatg cagcaaaaca attaaattat 240 gtggtcacag ctattgaaat atttgaacaa tacgcaaaaa gttgcgatat agcgatgaag 300 cattttcatc tgactattga tagtaattta gatgattcaa atggtcataa atatggatta 360 ggttcaagtg cagcagtact tgtgtcagtt ataaaagtat taaatgaatt ttatgatatg 420 aagttatcta atttatacat ttataaacta gcagtgattg caaatatgaa gttacaaagt 480 ttaagttcat gcggagatat tgctgtgagt gtatatagtg gatggttagc gtatagtact 540 tttgatcatg aatgggttaa gcatcaaatt gaagatacta cggttgaaga agttttaatc 600 aaaaactggc ctggattgca catcgaacca ttacaagcac ctgaaaatat ggaagtactt 660 atcggttgga ctggctcacc ggcgtcatca ccacactttg ttagcgaagt gaaacgtttg 720 aaatcagatc cttcatttta cggtgacttc ttagaagatt cacatcgttg tgttgaaaag 780 cttattcatg cttttaaaac aaataacatt aaaggtgtgc aaaagatggt gcgtcagaat 840 cgtacaatta ttcaacgtat ggataaagaa gctacagttg atatagaaac tgaaaagcta 900 aaatatttgt gtgatattgc tgaaaagtat cacggtgcat ctaaaacatc aggcgctggt 960 ggtggagact gtggtattac aattatcaat aaagatgtag ataaagaaaa aatttatgat 1020 gaatggacaa aacatggtat taaaccatta aaatttaata tttatcatgg gcaataa 1077
32 <210> 32
<211> 358
<212> PRT
<213> Staphylococcus aureus
<400> 32 Met Ile Gin Val Lys Ala Pro Gly Lys Leu Tyr Ile Ala Gly Glu Tyr
1 5 10 15
Ala Val Thr Glu Pro Gly Tyr Lys Ser Val Leu Ile Ala Leu Asp Arg
20 25 30
Phe Val Thr Ala Thr Ile Glu Glu Ala Thr Gin Tyr Lys Gly Thr Ile
35 40 45
His Ser Lys Ala Leu His His Asn Pro Val Thr Phe Ser Arg Asp Glu
50 55 60
Asp Ser Ile Val Ile Ser Asp Pro His Ala Ala Lys Gin Leu Asn Tyr 65 70 75 80
Val Val Thr Ala Ile Glu Ile Phe Glu Gin Tyr Ala Lys Ser Cys Asp
85 90 95
Ile Ala Met Lys His Phe His Leu Thr Ile Asp Ser Asn Leu Asp Asp
100 105 110
Ser Asn Gly His Lys Tyr Gly Leu Gly Ser Ser Ala Ala Val Leu Val
115 120 125
Ser Val Ile Lys Val Leu Asn Glu Phe Tyr Asp Met Lys Leu Ser Asn
130 135 140
Leu Tyr Ile Tyr Lys Leu Ala Val Ile Ala Asn Met Lys Leu Gin Ser 145 150 155 160
Leu Ser Ser Cys Gly Asp Ile Ala Val Ser Val Tyr Ser Gly Trp Leu
165 170 175
Ala Tyr Ser Thr Phe Asp His Glu Trp Val Lys His Gin Ile Glu Asp
180 185 190
Thr Thr Val Glu Glu Val Leu Ile Lys Asn Trp Pro Gly Leu His Ile
195 200 205
Glu Pro Leu Gin Ala Pro Glu Asn Met Glu Val Leu Ile Gly Trp Thr
210 215 220
Gly Ser Pro Ala Ser Ser Pro His Phe Val Ser Glu Val Lys Arg Leu 225 230 235 240
Lys Ser Asp Pro Ser Phe Tyr Gly Asp Phe Leu Glu Asp Ser His Arg
245 250 255
Cys Val Glu Lys Leu Ile His Ala Phe Lys Thr Asn Asn Ile Lys Gly
33 260 265 270
Val Gin Lys Met Val Arg Gin Asn Arg Thr Ile Ile Gin Arg Met Asp
275 280 285
Lys Glu Ala Thr Val Asp Ile Glu Thr Glu Lys Leu Lys Tyr Leu Cys
290 295 300
Asp Ile Ala Glu Lys Tyr His Gly Ala Ser Lys Thr Ser Gly Ala Gly 305 310 315 320
Gly Gly Asp Cys Gly Ile Thr Ile Ile Asn Lys Asp Val Asp Lys Glu
325 330 335
Lys Ile Tyr Asp Glu Trp Thr Lys His Gly Ile Lys Pro Leu Lys Phe
340 345 350
Asn Ile Tyr His Gly Gin 355
<210> 33
<211> 1011
<212> DNA
<213> Streptococcus pneumoniae
<400> 33 atgattgctg ttaaaacttg cggaaaactc tattgggcag gtgaatatgc tattttagag 60 ccagggcagt tagctttgat aaaggatatt cccatctata tgagggctga gattgctttt 120 tctgacagct accgtatcta ttcagatatg tttgatttcg cagtggactt aaggcccaat 180 cctgactaca gcttgattca agaaacgatt gctttgatgg gagacttcct cgctgttcgc 240 ggtcagaatt taagaccttt ttccctaaaa atctgtggca aaatggaacg agaagggaaa 300 aagtttggtc taggttctag tggcagcgtc gttgtcttgg ttgtcaaggc tttactggct 360 ctctataatc tttcggttga tcagaatctc ttgttcaagc tgactagcgc tgtcttgctc 420 aagcgaggag acaatggttc catgggcgac cttgcctgta ttgtggcaga ggatttggtt 480 ctttaccagt catttgatcg ccagaaggcg gctgcttggt tagaagaaga aaacttggcg 540 acagttctgg agcgtgattg gggatttttt atctcacaag tgaaaccaac tttagaatgt 600 gatttcttag tgggatggac caaggaagtg gctgtatcga gtcacatggt ccagcaaatc 660 aagcaaaata tcaatcaaaa ttttttaagt tcctcaaaag aaacggtggt ttctttggtc 720 gaagccttgg agcaggggaa agccgaaaaa gttatcgagc aagtagaagt agccagcaag 780 cttttagaag gcttgagtac agatatttac acgcctttgc ttagacagtt gaaagaagcc 840 agtcaagatt tgcaggccgt tgccaagagt agtggtgctg gtggtggtga ctgtggcatc 900 gccctgagtt ttgatgcgca atcttctcga aacactttaa aaaatcgttg ggccgatctg 960 gggattgagc tcttatatca agaaaggata ggacatgacg acaaatcgta a 1011
<210> 34
34 <211> 336 <212> PRT <213> Streptococcus pneumoniae
<400> 34 Met Ile Ala Val Lys Thr Cys Gly Lys Leu Tyr Trp Ala Gly Glu Tyr
1 5 10 15
Ala Ile Leu Glu Pro Gly Gin Leu Ala Leu Ile Lys Asp Ile Pro Ile
20 25 30
Tyr Met Arg Ala Glu Ile Ala Phe Ser Asp Ser Tyr Arg Ile Tyr Ser
35 40 45
Asp Met Phe Asp Phe Ala Val Asp Leu Arg Pro Asn Pro Asp Tyr Ser
50 55 60
Leu Ile Gin Glu Thr Ile Ala Leu Met Gly Asp Phe Leu Ala Val Arg 65 70 75 80
Gly Gin Asn Leu Arg Pro Phe Ser Leu Lys Ile Cys Gly Lys Met Glu
85 90 95
Arg Glu Gly Lys Lys Phe Gly Leu Gly Ser Ser Gly Ser Val Val Val
100 105 110
Leu Val Val Lys Ala Leu Leu Ala Leu Tyr Asn Leu Ser Val Asp Gin
115 120 125
Asn Leu Leu Phe Lys Leu Thr Ser Ala Val Leu Leu Lys Arg Gly Asp
130 135 140
Asn Gly Ser Met Gly Asp Leu Ala Cys Ile Val Ala Glu Asp Leu Val 145 150 155 160
Leu Tyr Gin Ser Phe Asp Arg Gin Lys Ala Ala Ala Trp Leu Glu Glu
165 170 175
Glu Asn Leu Ala Thr Val Leu Glu Arg Asp Trp Gly Phe Phe Ile Ser
180 ' 185 190
Gin Val Lys Pro Thr Leu Glu Cys Asp Phe Leu Val Gly Trp Thr Lys
195 200 205
Glu Val Ala Val Ser Ser His Met Val Gin Gin Ile Lys Gin Asn Ile
210 215 220
Asn Gin Asn Phe Leu Ser Ser Ser Lys Glu Thr Val Val Ser Leu Val 225 230 235 240
Glu Ala Leu Glu Gin Gly Lys Ala Glu Lys Val Ile Glu Gin Val Glu
245 250 255
Val Ala Ser Lys Leu Leu Glu Gly Leu Ser Thr Asp Ile Tyr Thr Pro 260 265 270
35 Leu Leu Arg Gin Leu Lys Glu Ala Ser Gin Asp Leu Gin Ala Val Ala
275 280 285
Lys Ser Ser Gly Ala Gly Gly Gly Asp Cys Gly Ile Ala Leu Ser Phe
290 295 300
Asp Ala Gin Ser Ser Arg Asn Thr Leu Lys Asn Arg Trp Ala Asp Leu 305 310 315 320
Gly Ile Glu Leu Leu Tyr Gin Glu Arg Ile Gly His Asp Asp Lys Ser 325 330 335
<210> 35
<211> 996
<212> DNA
<213> Enterococcus faecalis
<400> 35 atgctttcag gaaaagcacg agcgcataca aatattgctc tgattaaata ttggggaaaa 60 gccaatgaag aatacatttt accaatgaat agtagtttat cattaacatt agatgccttt 120 tacacagaaa caactgtgac atttgatgcc cattattcag aagatgtatt tattttaaat 180 ggtatcttgc aaaacgaaaa acaaacaaaa aaagtcaaag aatttttgaa ccttgttcgt 240 caacaagccg attgtacttg gtttgcaaaa gtggaaagtc aaaattttgt gcctactgca 300 gctggtttgg cttcttcagc gagtggtcta gctgctttag caggggcctg taacgtagcc 360 ttaggattaa atctttcagc aaaagactta tcacgtttag cgcgacgtgg ttcaggttct 420 gcttgtcgta gtatttttgg tggttttgct caatggaaca aaggccactc tgatgaaacg 480 tcgtttgctg aaaatattcc agctaataat tgggaaaacg aattggccat gctctttatc 540 ttaattaatg atggcgaaaa agatgtttcc agccgtgatg gaatgaaacg aacagtagaa 600 acttctagct tttatcaagg ttggttggac aatgtggaaa aagatttatc ccaagttcat 660 gaagcaatta aaacaaaaga cttccctcgt ttaggagaaa tcattgaagc caatgggtta 720 aggatgcatg gaaccacctt aggcgctgtc cctccattta cttactggtc cccaggcagc 780 ttacaagcga tggctttagt tcgccaagca cgggccaaag gaattccttg ctactttaca 840 atggatgcag gtccgaatgt caaggtttta gtcgaaaaga aaaacttaga agcattaaaa 900 acatttttaa gtgaacattt ttcaaaagag cagttagtcc cagcttttgc tggtcccgga 960 attgaattgt ttgaaacgaa aggaatggat aaataa 996
<210> 36
<211> 331
<212> PRT
<213> Enterococcus faecalis
<400> 36
36 Met Leu Ser Gly Lys Ala Arg Ala His Thr Asn Ile Ala Leu Ile Lys
1 5 10 15
Tyr Trp Gly Lys Ala Asn Glu Glu Tyr Ile Leu Pro Met Asn Ser Ser
20 25 30
Leu Ser Leu Thr Leu Asp Ala Phe Tyr Thr Glu Thr Thr Val Thr Phe
35 40 45
Asp Ala His Tyr Ser Glu Asp Val Phe Ile Leu Asn Gly Ile Leu Gin
50 55 60
Asn Glu Lys Gin Thr Lys Lys Val Lys Glu Phe Leu Asn Leu Val Arg 65 70 75 80
Gin Gin Ala Asp Cys Thr Trp Phe Ala Lys Val Glu Ser Gin Asn Phe
85 90 95
Val Pro Thr Ala Ala Gly Leu Ala Ser Ser Ala Ser Gly Leu Ala Ala
100 105 110
Leu Ala Gly Ala Cys Asn Val Ala Leu Gly Leu Asn Leu Ser Ala Lys
115 120 125
Asp Leu Ser Arg Leu Ala Arg Arg Gly Ser Gly Ser Ala Cys Arg Ser
130 135 140
Ile Phe Gly Gly Phe Ala Gin Trp Asn Lys Gly His Ser Asp Glu Thr 145 150 155 160
Ser Phe Ala Glu Asn Ile Pro Ala Asn Asn Trp Glu Asn Glu Leu Ala
165 170 175
Met Leu Phe Ile Leu Ile Asn Asp Gly Glu Lys Asp Val Ser Ser Arg
180 185 190
Asp Gly Met Lys Arg Thr Val Glu Thr Ser Ser Phe Tyr Gin Gly Trp
195 200 205
Leu Asp Asn Val Glu Lys Asp Leu Ser Gin Val His Glu Ala Ile Lys
210 215 220
Thr Lys Asp Phe Pro Arg Leu Gly Glu Ile Ile Glu Ala Asn Gly Leu 225 230 235 240
Arg Met His Gly Thr Thr Leu Gly Ala Val Pro Pro Phe Thr Tyr Trp
245 ' 250 255
Ser Pro Gly Ser Leu Gin Ala Met Ala Leu Val Arg Gin Ala Arg Ala
260 265 270
Lys Gly Ile Pro Cys Tyr Phe Thr Met Asp Ala Gly Pro Asn Val Lys
275 280 285
Val Leu Val Glu Lys Lys Asn Leu Glu Ala Leu Lys Thr Phe Leu Ser
290 295 300
Glu His Phe Ser Lys Glu Gin Leu Val Pro Ala Phe Ala Gly Pro Gly
37 305 310 315 320
Ile Glu Leu Phe Glu Thr Lys Gly Met Asp Lys 325 330
<210> 37
<211> 879
<212> DNA
<213> Streptococcus pyogenes
<400> 37 gagaatcaag ctaagatgat tccttcgacc tctagcattt ctttgacttt ggaaaacatg 60 ttcaccacaa ccagcgtttc cttcttacca gatactgcaa ccagtgatca gttttacatt 120 aacggtgtct tgcaaaatga cgaagaacat accaaaattt ctactatcat tgaccaattt 180 cgccaacctg gtcaggcttt tgtaaagatg gaaactcaaa ataatatgcc aacagctgca 240 ggtttatcat caagttccag tggcttatca gccttggtta aagcctgtga tcaattattt 300 gacactcagc tagatcagaa agctttagct caaaaggcca agttcgcctc aggatcatct 360 tctcgttctt tttttggccc agttgctgct tgggacaaag atagtggtgc tatttacaag 420 gttgagactg acttgaaaat ggccatgatt atgctggtct taaatgctgc gaaaaagcca 480 atttctagcc gagagggcat gaagttatgc cgcgatacct caactacatt tgatgaatgg 540 gtagaacaat cggcaatcga ttaccaacat atgcttacct atctcaaaac taataatttt 600 gagaaagttg gtcagttaac agaagctaat gccttggcca tgcatgccac gacaaagaca 660 gccaatcctc ccttttctta cctaacaaaa gagtcttacc aggctatgga ggctgtgaaa 720 gaactgcgtc aagaaggttt tgcttgttat tttaccatgg acgcaggtcc aaatgtgaag 780 gtcctatgtt tagaaaaaga cttggctcaa ctagcagaac gacttggcaa aaactaccgt 840 attatcgttt caaaaacaaa ggatttacca gatgtctaa 879
<210> 38
<211> 314
<212> PRT
<213> Streptococcus pyogenes
<400> 38 Met Asp Pro Asn Val Ile Thr Val Thr Ser Tyr Ala Asn Ile Ala Ile
1 5 10 15
Ile Lys Tyr Trp Gly Lys Glu Asn Gin Ala Lys Met Ile Pro Ser Thr
20 25 30
Ser Ser Ile Ser Leu Thr Leu Glu Asn Met Phe Thr Thr Thr Ser Val
35 40 45
Ser Phe Leu Pro Asp Thr Ala Thr Ser Asp Gin Phe Tyr Ile Asn Gly
38 50 55 60
Val Leu Gin Asn Asp Glu Glu His Thr Lys Ile Ser Thr Ile Ile Asp 65 70 75 80
Gin Phe Arg Gin Pro Gly Gin Ala Phe Val Lys Met Glu Thr Gin Asn
85 90 95
Asn Met Pro Thr Ala Ala Gly Leu Ser Ser Ser Ser Ser Gly Leu Ser
100 105 110
Ala Leu Val Lys Ala Cys Asp Gin Leu Phe Asp Thr Gin Leu Asp Gin
115 120 125
Lys Ala Leu Ala Gin Lys Ala Lys Phe Ala Ser Gly Ser Ser Ser Arg
130 135 140
Ser Phe Phe Gly Pro Val Ala Ala Trp Asp Lys Asp Ser Gly Ala Ile 145 150 155 160
Tyr Lys Val Glu Thr Asp Leu Lys Met Ala Met Ile Met Leu Val Leu
165 170 175
Asn Ala Ala Lys Lys Pro Ile Ser Ser Arg Glu Gly Met Lys Leu Cys
180 185 190
Arg Asp Thr Ser Thr Thr Phe Asp Glu Trp Val Glu Gin Ser Ala Ile
195 200 205
Asp Tyr Gin His Met Leu Thr Tyr Leu Lys Thr Asn Asn Phe Glu Lys
210 215 220
Val Gly Gin Leu Thr Glu Ala Asn Ala Leu Ala Met His Ala Thr Thr 225 230 235 240
Lys Thr Ala Asn Pro Pro Phe Ser Tyr Leu Thr Lys Glu Ser Tyr Gin
245 250 255
Ala Met Glu Ala Val Lys Glu Leu Arg Gin Glu Gly Phe Ala Cys Tyr
260 265 270
Phe Thr Met Asp Ala Gly Pro Asn Val Lys Val Leu Cys Leu Glu Lys
275 280 285
Asp Leu Ala Gin Leu Ala Glu Arg Leu Gly Lys Asn Tyr Arg Ile Ile
290 295 300
Val Ser Lys Thr Lys Asp Leu Pro Asp Val 305 310
<210> 39
<211> 984
<212> DNA
<213> Staphylococcus epidermidis
39 <400> 39 ttggtgaaaa gtggcaaagc acgagcacat acaaatattg cgttgattaa gtattggggg 60 aaagctgatg aaacttacat tattcctatg aataatagtt tatcagttac cttagataga 120 ttttatactg aaacaaaagt gacatttgac cctgatttta ctgaagattg ccttatttta 180 aatggtaatg aagtgaatgc caaagagaaa gaaaagattc aaaactatat gaatatagtg 240 agagatttgg ctggaaatcg tttgcatgcg cgaattgaaa gtgaaaatta tgtgccaaca 300 gcagcaggac ttgcttcttc agcgagtgct tacgctgctt tagctgccgc ttgtaatgaa 360 gctttgtcat tgaacttatc agatacagac ttatcacgat tagctcgacg tggttcaggt 420 tctgcttcta gaagtatttt tggtggattt gccgaatggg aaaaagggca tgatgattta 480 acttcatatg cacatggtat taattccaat ggttgggaaa aagatttatc aatgatattt 540 gtagtgatta acaatcagtc aaaaaaagta tctagtaggt caggaatgtc actaacaaga 600 gatacttcta gattttatca atattggttg gatcacgttg atgaagattt aaatgaagca 660 aaagaggcag tcaaaaatca agattttcaa cgcttaggag aagtcattga agcaaatggt 720 ttacgtatgc atgccactaa cttaggcgct caacctcctt tcacgtattt agtgcaagaa 780 agctacgatg ctatggcgat tgtggaacag tgtcgaaaag ccaatttacc ttgttacttt 840 acaatggacg cgggtcccaa tgtaaaagtt ttagtagaaa agaaaaataa acaagctgtg 900 atggaacaat ttttaaaagt atttgacgaa tcgaagatta tagcaagtga tatcattagc 960 tctggtgttg aaattattaa gtaa 984
<210> 40
<211> 327
<212> PRT
<213> Staphylococcus epidermidis
<400> 40 Met Val Lys Ser Gly Lys Ala Arg Ala His Thr Asn Ile Ala Leu Ile
1 5 10 15
Lys Tyr Trp Gly Lys Ala Asp Glu Thr Tyr Ile Ile Pro Met Asn Asn
20 25 30
Ser Leu Ser Val Thr Leu Asp Arg Phe Tyr Thr Glu Thr Lys Val Thr
35 40 45
Phe Asp Pro Asp Phe Thr Glu Asp Cys Leu Ile Leu Asn Gly Asn Glu
50 55 60
Val Asn Ala Lys Glu Lys Glu Lys Ile Gin Asn Tyr Met Asn Ile Val 65 70 75 80
Arg Asp Leu Ala Gly Asn Arg Leu His Ala Arg Ile Glu Ser Glu Asn
85 90 95
Tyr Val Pro Thr Ala Ala Gly Leu Ala Ser Ser Ala Ser Ala Tyr Ala 100 105 110
40 Ala Leu Ala Ala Ala Cys Asn Glu Ala Leu Ser Leu Asn Leu Ser Asp
115 120 125
Thr Asp Leu Ser Arg Leu Ala Arg Arg Gly Ser Gly Ser Ala Ser Arg
130 135 140
Ser Ile Phe Gly Gly Phe Ala Glu Trp Glu Lys Gly His Asp Asp Leu 145 150 155 160
Thr Ser Tyr Ala His Gly Ile Asn Ser Asn Gly Trp Glu Lys Asp Leu
165 170 175
Ser Met Ile Phe Val Val Ile Asn Asn Gin Ser Lys Lys Val Ser Ser
180 185 190
Arg Ser Gly Met Ser Leu Thr Arg Asp Thr Ser Arg Phe Tyr Gin Tyr
195 200 205
Trp Leu Asp His Val Asp Glu Asp Leu Asn Glu Ala Lys Glu Ala Val
210 215 220
Lys Asn Gin Asp Phe Gin Arg Leu Gly Glu Val Ile Glu Ala Asn Gly 225 230 235 240
Leu Arg Met His Ala Thr Asn Leu Gly Ala Gin Pro Pro Phe Thr Tyr
245 250 255
Leu Val Gin Glu Ser Tyr Asp Ala Met Ala Ile Val Glu Gin Cys Arg
260 265 270
Lys Ala Asn Leu Pro Cys Tyr Phe Thr Met Asp Ala Gly Pro Asn Val
275 280 285
Lys Val Leu Val Glu Lys Lys Asn Lys Gin Ala Val Met Glu Gin Phe
290 295 300
Leu Lys Val Phe Asp Glu Ser Lys Ile Ile Ala Ser Asp Ile Ile Ser 305 310 315 320
Ser Gly Val Glu Ile Ile Lys 325
<210> 41
<211> 984
<212> DNA
<213> Staphylococcus haemolyticus
<400> 41 ttgaaaaaga gtggtaaagc acgcgcacat acgaatattg cactgattaa atattggggt 60 aaagccgatg aggcattaat cataccaatg aataatagtt tgtcagttac actagaccgt 120 ttttacactg aaacgcgtgt aacatttgat gaaacattaa cagaagatca gttaattctt 180 aacggggaag ctgtaaatgc taaggaaagc gctaagattc aacgttatat ggaaatgatt 240
41 cgtaaagaag ctgggatttc agaacatgcg cttattgaaa gtgagaattt tgttccaaca 300 gctgcaggtt tagcttcgtc agcaagtgca tatgctgcat tagccggtgc gtgtaatgaa 360 gctctacaat taggtttgtc tgataaagat ctttcacgat tagcgcgtcg tgggtctggt 420 tcagcatctc gcagtattta tggtggattt gctgaatggg aaaaaggaaa tgacgatgaa 480 acttcctttg cacaccgtgt tgaagcggat ggctgggaaa atgaattggc tatggttttt 540 gttgttatta ataacaaatc taaaaaggta tccagtcgtt caggcatgtc acttacacgt 600 gatacatcac gtttttatca atattggtta gataacgttg aaccagattt gaaagagact 660 aaagaagcca ttgctcaaaa agatttcaag cgtatgggtg aagttattga agctaatggt 720 ttacgcatgc atgcaactaa tttgggagca caacctccat ttacatattt agtaccagaa 780 agttatgatg ctatgcgcat cgttcatgaa tgtagagaag cggggttacc ttgctacttt 840 acaatggacg cgggtcctaa cgttaaagta ttgattgaaa agaaaaatca acaagctatc 900 gtagataaat tcttacaaga atttgatcaa tcacaaatca tcacaagtga cattacccaa 960 tcaggagtcg aaataattaa gtaa 984
<210> 42
<211> 327
<212> PRT
<213> Staphylococcus haemolyticus
<400> 42 Met Lys Lys Ser Gly Lys Ala Arg Ala His Thr Asn Ile Ala Leu Ile
1 5 10 15
Lys Tyr Trp Gly Lys Ala Asp Glu Ala Leu Ile Ile Pro Met Asn Asn
20 25 30
Ser Leu Ser Val Thr Leu Asp Arg Phe Tyr Thr Glu Thr Arg Val Thr
35 40 45
Phe Asp Glu Thr Leu Thr Glu Asp Gin Leu Ile Leu Asn Gly Glu Ala
50 55 60
Val Asn Ala Lys Glu Ser Ala Lys Ile Gin Arg Tyr Met Glu Met Ile 65 70 75 80
Arg Lys Glu Ala Gly Ile Ser Glu His Ala Leu Ile Glu Ser Glu Asn
85 90 95
Phe Val Pro Thr Ala Ala Gly Leu Ala Ser Ser Ala Ser Ala Tyr Ala
100 105 110
Ala Leu Ala Gly Ala Cys Asn Glu Ala Leu Gin Leu Gly Leu Ser Asp
115 120 125
Lys Asp Leu Ser Arg Leu Ala Arg Arg Gly Ser Gly Ser Ala Ser Arg
130 135 140
Ser Ile Tyr Gly Gly Phe Ala Glu Trp Glu Lys Gly Asn Asp Asp Glu
42 145 150 155 160
Thr Ser Phe Ala His Arg Val Glu Ala Asp Gly Trp Glu Asn Glu Leu
165 170 175
Ala Met Val Phe Val Val Ile Asn Asn Lys Ser Lys Lys Val Ser Ser
180 185 190
Arg Ser Gly Met Ser Leu Thr Arg Asp Thr Ser Arg Phe Tyr Gin Tyr
195 200 205
Trp Leu Asp Asn Val Glu Pro Asp Leu Lys Glu Thr Lys Glu Ala Ile
210 215 220
Ala Gin Lys Asp Phe Lys Arg Met Gly Glu Val Ile Glu Ala Asn Gly 225 230 235 240
Leu Arg Met His Ala Thr Asn Leu Gly Ala Gin Pro Pro Phe Thr Tyr
245 250 255
Leu Val Pro Glu Ser Tyr Asp Ala Met Arg Ile Val His Glu Cys Arg
260 265 270
Glu Ala Gly Leu Pro Cys Tyr Phe Thr Met Asp Ala Gly Pro Asn Val
275 280 285
Lys Val Leu Ile Glu Lys Lys Asn Gin Gin Ala Ile Val Asp Lys Phe
290 295 300
Leu Gin Glu Phe Asp Gin Ser Gin Ile Ile Thr Ser Asp Ile Thr Gin 305 310 315 320
Ser Gly Val Glu Ile Ile Lys 325
<210> 43
<211> 1196
<212> DNA
<213> Streptococcus pneumoniae
<400> 43 atgaatgata aaacagaggt aaatatgaca atcggtattg ataagattgg ttttgcgacc 60 agtcaatatg tcttgaaatt acaagactta gcagaagcga ggggaattga ccctgaaaaa 120 ttaagtaaag gactcttact caaggaattg agtattgcgc ccctaactga ggacatcgtg 180 accttggcgg ccagtgctag tgactctatt ttaactgagc aagaaagaca agaagttgac 240 atggtcattg tggctaccga gtcaggaatt gaccagagta aggctgcggc cgtctttgtg 300 catggcttgc tgggcatcca gccctttgct cgtagtttcg agattaaaga agcctgctac 360 ggagcgactg ctgccctcca ttatgccaaa ttgcagtgga aaattctccg gagtccaagg 420 tcttggtcat tgccagtgat attgccaaat acggtattga aactccagga gaaccaactc 480 aaggtgctgg aagtgtagct atgttgatta cacaaaatcc acgcatgatg gcctttaata 540
43 atgacaatgt agctcagacc cgtgacatca tggatttctg gcgaccaaat tactcgacaa 600 ctccctatgt aaatggtgtc tattctaccc aacaatactt ggatagtttg aaaacgactt 660 ggcttgaata tcaaaaacgc taccagctta ctttggatga ttttgcggct gtttgtttcc 720 acttgcctta tcctaaatta gcgctaaaag gcttgaaaaa aatcatggat aagaacttgc 780 ctcaagagaa aaaagacctc ttgcaaaagc attttgacca gtctattctc tacagtcaaa 840 aggtggggaa tatctacaca ggttcacttt tccttggact tttgtctctc ttggaaaata 900 cagatagctt gaaagctggg gataaaatcg ccctttatag ttacggaagt ggagctgtgg 960 ctgagttctt cagtggtgaa ttggttgaag gatatgaagc ttatttggat aaagaccgtt 1020 tgaacaagct caaccaacga actgccctat ccgttgcaga ctatgaaaag gtcttttttg 1080 aggaagtaaa cttggatgaa actaactctg cccagtttgc tggctatgaa aatcaagatt 1140 ttgccttggt tgaaattctc gaccaccaac gccgttatag caaggttgaa aaataa 1196
<210> 44
<211> 398
<212> PRT
<213> Streptococcus pneumoniae
<400> 44 Met Asn Asp Lys Thr Glu Val Asn Met Thr Ile Gly Ile Asp Lys Ile
1 5 10 15
Gly Phe Ala Thr Ser Gin Tyr Val Leu Lys Leu Gin Asp Leu Ala Glu
20 25 30
Ala Arg Gly Ile Asp Pro Glu Lys Leu Ser Lys Gly Leu Leu Leu Lys
35 40 45
Glu Leu Ser Ile Ala Pro Leu Thr Glu Asp Ile Val Thr Leu Ala Ala
50 55 60
Ser Ala Ser Asp Ser Ile Leu Thr Glu Gin Glu Arg Gin Glu Val Asp 65 70 75 80
Met Val Ile Val Ala Thr Glu Ser Gly Ile Asp Gin Ser Lys Ala Ala
85 90 95
Ala Val Phe Val His Gly Leu Leu Gly Ile Gin Pro Phe Ala Arg Ser
100 105 110
Phe Glu Ile Lys Glu Ala Cys Tyr Gly Ala Thr Ala Ala Leu His Tyr
115 120 125
Ala Lys Leu His Val Glu Asn Ser Pro Glu Ser Lys Val Leu Val Ile
130 135 140
Ala Ser Asp Ile Ala Lys Tyr Gly Ile Glu Thr Pro Gly Glu Pro Thr 145 150 155 160
Gin Gly Ala Gly Ser Val Ala Met Leu Ile Thr Gin Asn Pro Arg Met
44 165 170 175
Met Ala Phe Asn Asn Asp Asn Val Ala Gin Thr Arg Asp Ile Met Asp
180 185 190
Phe Trp Arg Pro Asn Tyr Ser Thr Thr Pro Tyr Val Asn Gly Val Tyr
195 200 205
Ser Thr Gin Gin Tyr Leu Asp Ser Leu Lys Thr Thr Trp Leu Glu Tyr
210 215 220
Gin Lys Arg Tyr Gin Leu Thr Leu Asp Asp Phe Ala Ala Val Cys Phe 225 230 235 240
His Leu Pro Tyr Pro Lys Leu Ala Leu Lys Gly Leu Lys Lys Ile Met
245 250 255
Asp Lys Asn Leu Pro Gin Glu Lys Lys Asp Leu Leu Gin Lys His Phe
260 265 270
Asp Gin Ser Ile Leu Tyr Ser Gin Lys Val Gly Asn Ile Tyr Thr Gly
275 280 285
Ser Leu Phe Leu Gly Leu Leu Ser Leu Leu Glu Asn Thr Asp Ser Leu
290 295 300
Lys Ala Gly Asp Lys Ile Ala Leu Tyr Ser Tyr Gly Ser Gly Ala Val 305 310 315 320
Ala Glu Phe Phe Ser Gly Glu Leu Val Glu Gly Tyr Glu Ala Tyr Leu
325 330 335
Asp Lys Asp Arg Leu Asn Lys Leu Asn Gin Arg Thr Ala Leu Ser Val
340 345 350
Ala Asp Tyr Glu Lys Val Phe Phe Glu Glu Val Asn Leu Asp Glu Thr
355 360 365
Asn Ser Ala Gin Phe Ala Gly Tyr Glu Asn Gin Asp Phe Ala Leu Val
370 375 380
Glu Ile Leu Asp His Gin Arg Arg Tyr Ser Lys Val Glu Lys 385 390 395
<210> 45
<211> 1275
<212> DNA
<213> Streptococcus pneumoniae
<400> 45 atgaagataa gttggaatgg attttctaaa aaatcatacc aagagcgcct cgagctgtta 60 aaagctcagg cgctccttag tcctgagaga caagctagtc tggagaagga tgaacagatg 120 agcgtgactg tggcagacca gctgagtgag aatgtagtgg gaactttttc tctgccttat 180
45 tcactggttc cggaggtact tgtcaacggt cagggataca ccgttcccta tgtgacagaa 240 gaaccttctg tggttgcggc ggccagctat gccagcaaaa tcatcaagcg tgcaggtggt 300 tttactgcac aagtccatca gcgacagatg attgggcagg tagcccttta tcaagttgct 360 aatcctaaac tagcgcaaga gaagattgcc agcaagaaag cggagctctt ggagcttgcc 420 aatcaagcct atccttctat cgttaaacgt ggaggtgggg cgcgtgatct gcatgtcgag 480 cagataaaag gcgaaccaga ctttctcgtt gtttatattc atgtcgatac ccaggaagcc 540 atgggtgcca atatgctcaa caccatgctg gaagccttga aaccagtctt agaagaactc 600 agtcagggac agagtctcat gggaatcctg tccaactacg cgaccgattc tctggtgact 660 gcaagctgtc gcatcgcctt tcgctacttg agccgccaaa aggatcaagg acgagagatt 720 gcggagaaaa ttgcgttggc tagtcagttt gcgcaggctg atccttaccg agctgctact 780 cataataaag gaatttttaa tggtattgat gcgattttga ttgccactgg aaatgactgg 840 cgtgccatcg aagctggggc ccatgccttt gccagtcgag atggacgcta tcaaggtctt 900 agctgctgga cgctggacct tgaaagagaa gaattggtcg gtgagatgac cctgcccatg 960 cctgtagcga ctaagggtgg ctctatcggc ctcaacccac gtgtagctct cagtcatgat 1020 ctactaggaa atccttctgc cagagaatta gcccagatta tcgtgtccat cggtcttgct 1080 caaaattttg cagccctcaa agccttggta agtacgggca tccagcaagg ccacatgaaa 1140 ctacaggcca aatccctagc tctcctagct ggggctagtg aatctgaagt tgctccccta 1200 gtagagcgcc tcatctcaga taaaaccttt aacctagaga cagcccagcg ctatctcgaa 1260 aatttaagat cataa 1275
<210> 46
<211> 424
<212> PRT
<213> Streptococcus pneumoniae
<400> 46 Met Lys Ile Ser Trp Asn Gly Phe Ser Lys Lys Ser Tyr Gin Glu Arg
1 5 10 15
Leu Glu Leu Leu Lys Ala Gin Ala Leu Leu Ser Pro Glu Arg Gin Ala
20 25 30
Ser Leu Glu Lys Asp Glu Gin Met Ser Val Thr Val Ala Asp Gin Leu
35 40 45
Ser Glu Asn Val Val Gly Thr Phe Ser Leu Pro Tyr Ser Leu Val Pro
50 55 60
Glu Val Leu Val Asn Gly Gin Gly Tyr Thr Val Pro Tyr Val Thr Glu 65 70 75 80
Glu Pro Ser Val Val Ala Ala Ala Ser Tyr Ala Ser Lys Ile Ile Lys
85 90 95
Arg Ala Gly Gly Phe Thr Ala Gin Val His Gin Arg Gin Met Ile Gly
46 100 105 110
Gin Val Ala Leu Tyr Gin Val Ala Asn Pro Lys Leu Ala Gin Glu Lys
115 120 125
Ile Ala Ser Lys Lys Ala Glu Leu Leu Glu Leu Ala Asn Gin Ala Tyr
130 135 140
Pro Ser Ile Val Lys Arg Gly Gly Gly Ala Arg Asp Leu His Val Glu 145 150 155 160
Gin Ile Lys Gly Glu Pro Asp Phe Leu Val Val Tyr Ile His Val Asp
165 170 175
Thr Gin Glu Ala Met Gly Ala Asn Met Leu Asn Thr Met Leu Glu Ala
180 185 190
Leu Lys Pro Val Leu Glu Glu Leu Ser Gin Gly Gin Ser Leu Met Gly
195 200 205
Ile Leu Ser Asn Tyr Ala Thr Asp Ser Leu Val Thr Ala Ser Cys Arg
210 215 220
Ile Ala Phe Arg Tyr Leu Ser Arg Gin Lys Asp Gin Gly Arg Glu Ile 225 230 235 240
Ala Glu Lys Ile Ala Leu Ala Ser Gin Phe Ala Gin Ala Asp Pro Tyr
245 250 255
Arg Ala Ala Thr His Asn Lys Gly Ile Phe Asn Gly Ile Asp Ala Ile
260 265 270
Leu Ile Ala Thr Gly Asn Asp Trp Arg Ala Ile Glu Ala Gly Ala His
275 280 285
Ala Phe Ala Ser Arg Asp Gly Arg Tyr Gin Gly Leu Ser Cys Trp Thr
290 295 300
Leu Asp Leu Glu Arg Glu Glu Leu Val Gly Glu Met Thr Leu Pro Met 305 310 315 320
Pro Val Ala Thr Lys Gly Gly Ser Ile Gly Leu Asn Pro Arg Val Ala
325 330 335
Leu Ser His Asp Leu Leu Gly Asn Pro Ser Ala Arg Glu Leu Ala Gin
340 345 350
Ile Ile Val Ser Ile Gly Leu Ala Gin Asn Phe Ala Ala Leu Lys Ala
355 360 365
Leu Val Ser Thr Gly Ile Gin Gin Gly His Met Lys Leu Gin Ala Lys
370 375 380
Ser Leu Ala Leu Leu Ala Gly Ala Ser Glu Ser Glu Val Ala Pro Leu 385 390 395 400
Val Glu Arg Leu Ile Ser Asp Lys Thr Phe Asn Leu Glu Thr Ala Gin 405 410 415
47 Arg Tyr Leu Glu Asn Leu Arg Ser 420
<210> 47
<211> 879
<212> DNA
<213> Streptococcus pneumoniae
<400> 47 atgacaaaaa aagttggtgt cggtcaggca catagtaaga taattttaat aggggaacat 60 gcggtcgttt acggttatcc tgccatttcc ctgcctcttt tggaggtgga ggtgacctgt 120 aaggtagttt ctgcagagag tccttggcgc ctttatgagg aggatacctt gtccatggcg 180 gtttatgcct cactggagta tttggatatc acagaagcct gcgttcgttg tgagattgac 240 tcggctatcc ctgagaaacg ggggatgggt tcgtcagcgg ctatcagcat agcggccatt 300 cgtgcggtat ttgactacta tcaggctgat ctgcctcatg atgtactaga aatcttggtc 360 aatcgagctg agatgattgc ccatatgaat cctagtggtt tggatgctaa gacctgtctc 420 agtgaccaac ctattcgctt tatcaagaac gtaggattta cagaacttga gatggattta 480 tccgcctatt tggtgattgc cgatacgggt gtttatggtc atactcgtga agccatccaa 540 gtggttcaaa ataagggcaa ggatgcccta ccgtttttgc atgccttggg agaattaacc 600 cagcaagcat aagttgcgat ttcacaaaaa tatgctgaag gactgggact aatcttcagt 660 caagctcatt tacatctaaa agaaattgga gtcagtagcc ctgaggcaga ctttttggtt 720 gaaacggctc ttasctatgg tgctctgggt gccaagatga gcggtggtgg gctaggaggt 780 tgtatcatag ccttggtaac caatttgacg cacgcacaag aactagcaga aagattagaa 840 gagaaaggag ctgttcagac atggatagag agcctgtaa 879
<210> 48
<211> 292
<212> PRT
<213> Streptococcus pneumoniae
<400> 48 Met Thr Lys Lys Val Gly Val Gly Gin Ala His Ser Lys Ile Ile Leu
1 5 10 15
Ile Gly Glu His Ala Val Val Tyr Gly Tyr Pro Ala Ile Ser Leu Pro
20 25 30
Leu Leu Glu Val Glu Val Thr Cys Lys Val Val Ser Ala Glu Ser Pro
35 40 45
Trp Arg Leu Tyr Glu Glu Asp Thr Leu Ser Met Ala Val Tyr Ala Ser 50 55 60
48 Leu Glu Tyr Leu Asp Ile Thr Glu Ala Cys Val Arg Cys Glu Ile Asp 65 70 75 80
Ser Ala Ile Pro Glu Lys Arg Gly Met Gly Ser Ser Ala Ala Ile Ser
85 90 95
Ile Ala Ala Ile Arg Ala Val Phe Asp Tyr Tyr Gin Ala Asp Leu Pro
100 105 110
His Asp Val Leu Glu Ile Leu Val Asn Arg Ala Glu Met Ile Ala His
115 120 125
Met Asn Pro Ser Gly Leu Asp Ala Lys Thr Cys Leu Ser Asp Gin Pro
130 135 140
Ile Arg Phe Ile Lys Asn Val Gly Phe Thr Glu Leu Glu Met Asp Leu 145 150 155 160
Ser Ala Tyr Leu Val Ile Ala Asp Thr Gly Val Tyr Gly His Thr Arg
165 170 175
Glu Ala Ile Gin Val Val Gin Asn Lys Gly Lys Asp Ala Leu Pro Phe
180 185 190
Leu His Ala Leu Gly Glu Leu Thr Gin Gin Ala Glu Val Ala Ile Ser
195 200 205
Gin Lys Tyr Ala Glu Gly Leu Gly Leu Ile Phe Ser Gin Ala His Leu
210 215 220
His Leu Lys Glu Ile Gly Val Ser Ser Pro Glu Ala Asp Phe Leu Val 225 230 235 240
Glu Thr Ala Leu Ser Tyr Gly Ala Leu Gly Ala Lys Met Ser Gly Gly
245 250 255
Gly Leu Gly Gly Cys Ile Ile Ala Leu Val Thr Asn Leu Thr His Ala
260 265 270
Gin Glu Leu Ala Glu Arg Leu Glu Glu Lys Gly Ala Val Gin Thr Trp
275 280 285
Ile Glu Ser Leu 290
<210> 49
<211> 954
<212> DNA
<213> Streptococcus pneumoniae
<400> 49 atggatagag agcctgtaac agtacgttcc tacgcaaata ttgctattat caaatattgg 60 ggaaagaaaa aagaaaaaga gatggtgcct gctactagca gtatttctct aactttggaa 120
49 aatatgtata cagagacgac cttgtcgcct ttaccagcca atgtaacagc tgacgaattt 180 tacatcaatg gtcagctaca aaatgaggtc gagcatgcca agatgagtaa gattattgac 240 cgttatcgtc cagctggtga gggctttgtc cgtatcgata ctcaaaacaa tatgcctacg 300 gcagcgggcc tgtcctcaag ttctagtggt ttgtccgccc tggtcaaggc ttgtaatgct 360 tatttcaagc ttggattgga tagaagtcag ttggcacagg aagccaaatt tgcctcaggc 420 tcttcttctc ggagttttta tggaccacta ggagcctggg ataaggatag tggagaaatt 480 taccctgtag agacagactt gaaactagct atgattatgt tggtgctaga ggacaagaaa 540 aaaccaatct ctagccgtga cgggatgaaa ctttgtgtgg aaacctcgac gacttttgac 600 gactgggttc gtcagtctga gaaggactat caggatatgc tgatttatct caaggaaaat 660 gattttgcca agattggaga attaacggag aaaaatgctc tggctatgca tgctacgaca 720 aagactgcta gtccagcctt ttcttatctg acggatgcct cttatgaggc tatggccttt 780 gttcgccagc ttcgtgagaa aggagaggcc tgctacttta ccatggatgc tggtcccaat 840 gttaaggtct tctgtcagga gaaagacttg gagcatttgt cagaaatttt cggtcagcgt 900 tatcgcttga ttgtgtcaaa aacaaaggat ttgagtcaag atgattgctg ttaa 954
<210> 50
<211> 317
<212> PRT
<213> Streptococcus pneumoniae
<400> 50 Met Asp Arg Glu Pro Val Thr Val Arg Ser Tyr Ala Asn Ile Ala Ile
1 5 . 10 15
Ile Lys Tyr Trp Gly Lys Lys Lys Glu Lys Glu Met Val Pro Ala Thr
20 25 30
Ser Ser Ile Ser Leu Thr Leu Glu Asn Met Tyr Thr Glu Thr Thr Leu
35 40 45
Ser Pro Leu Pro Ala Asn Val Thr Ala Asp Glu Phe Tyr Ile Asn Gly
50 55 60
Gin Leu Gin Asn Glu Val Glu His Ala Lys Met Ser Lys Ile Ile Asp 65 70 75 80
Arg Tyr Arg Pro Ala Gly Glu Gly Phe Val Arg Ile Asp Thr Gin Asn
85 90 95
Asn Met Pro Thr Ala Ala Gly Leu Ser Ser Ser Ser Ser Gly Leu Ser
100 105 110
Ala Leu Val Lys Ala Cys Asn Ala Tyr Phe Lys Leu Gly Leu Asp Arg
115 120 125
Ser Gin Leu Ala Gin Glu Ala Lys Phe Ala Ser Gly Ser Ser Ser Arg 130 135 140
50 Ser Phe Tyr Gly Pro Leu Gly Ala Trp Asp Lys Asp Ser Gly Glu Ile 145 150 155 160
Tyr Pro Val Glu Thr Asp Leu Lys Leu Ala Met Ile Met Leu Val Leu
165 170 175
Glu Asp Lys Lys Lys Pro Ile Ser Ser Arg Asp Gly Met Lys Leu Cys
180 185 190
Val Glu Thr Ser Thr Thr Phe Asp Asp Trp Val Arg Gin Ser Glu Lys
195 200 205
Asp Tyr Gin Asp Met Leu Ile Tyr Leu Lys Glu Asn Asp Phe Ala Lys
210 215 220
Ile Gly Glu Leu Thr Glu Lys Asn Ala Leu Ala Met His Ala Thr Thr 225 230 235 240
Lys Thr Ala Ser Pro Ala Phe Ser Tyr Leu Thr Asp Ala Ser Tyr Glu
245 250 255
Ala Met Ala Phe Val Arg Gin Leu Arg Glu Lys Gly Glu Ala Cys Tyr
260 265 270
Phe Thr Met Asp Ala Gly Pro Asn Val Lys Val Phe Cys Gin Glu Lys
275 280 285
Asp Leu Glu His Leu Ser Glu Ile Phe Gly Gin Arg Tyr Arg Leu Ile
290 295 300
Val Ser Lys Thr Lys Asp Leu Ser Gin Asp Asp Cys Cys 305 310 315
<210> 51
<211> 1167
<212> DNA
<213> Staphylococcus aureus
<400> 51 atgacaatag gtatcgacaa aataaacttt tacgttccaa aatactatgt agacatggct 60 aaattagcag aagcacgcca agtagaccca aacaaatttt taattggaat tggtcaaact 120 gaaatggctg ttagtcctgt aaaccaagac atcgtttcaa tgggcgctaa cgctgctaag 180 gacattataa cagacgaaga taaaaagaaa attggtatgg taattgtggc aactgaatca 240 gcagttgatg ctgctaaagc agccgctgtt caaattcaca acttattagg tattcaacct 300 tttgcacgtt gctttgaaat gaaagaagct tgttatgctg caacaccagc aattcaatta 360 gctaaagatt atttagcaac tagaccgaat gaaaaagtat tagttattgc tacagataca 420 gcacgttatg gattgaattc aggcggcgag ccaacacaag gtgctggcgc agttgcgatg 480 gttattgcac ataatccaag cattttggca ttaaatgaag atgctgttgc ttacactgaa 540 gacgtttatg atttctggcg tccaactgga cataaatatc cattagttga tggtgcatta 600
51 tctaaagatg cttatatccg ctcattccaa caaagctgga atgaatacgc aaaacgtcaa 660 ggtaagtcgc tagctgactt cgcatctcta tgcttccatg ttccatttac aaaaatgggt 720 aaaaaggcat tagagtcaat cattgataac gctgatgaaa caactcaaga gcgtttacgt 780 tcaggatatg aagatgctgt agattataac cgttatgtcg gtaatattta tactggatca 840 ttatatttaa gcctaatatc attacttgaa aatcgtgatt tacaagctgg tgaaacaatc 900 ggtttattca gttatggctc aggttcagtt gttgaatttt atagtgcgac attagttgta 960 ggctacaaag atcatttaga tcaagctgca cataaagcat tattaaataa ccgtactgaa 1020 gtatctgttg atgcatatga aacattcttc aaacgttttg atgacgttga atttgacgaa 1080 gaacaagatg ctgttcatga agatcgtcat attttctact tatcaaatat tgaaaataac 1140 gttcgcgaat atcacagacc agagtaa 1167
<210> 52
<211> 388
<212> PRT
<213> Staphylococcus aureus
<400> 52 Met Thr Ile Gly Ile Asp Lys Ile Asn Phe Tyr Val Pro Lys Tyr Tyr
1 5 10 15
Val Asp Met Ala Lys Leu Ala Glu Ala Arg Gin Val Asp Pro Asn Lys
20 25 30
Phe Leu Ile Gly Ile Gly Gin Thr Glu Met Ala Val Ser Pro Val Asn
35 40 45
Gin Asp Ile Val Ser Met Gly Ala Asn Ala Ala Lys Asp Ile Ile Thr
50 55 60
Asp Glu Asp Lys Lys Lys Ile Gly Met Val Ile Val Ala Thr Glu Ser 65 70 75 80
Ala Val Asp Ala Ala Lys Ala Ala Ala Val Gin Ile His Asn Leu Leu
85 90 95
Gly Ile Gin Pro Phe Ala Arg Cys Phe Glu Met Lys Glu Ala Cys Tyr
100 105 110
Ala Ala Thr Pro Ala Ile Gin Leu Ala Lys Asp Tyr Leu Ala Thr Arg
115 120 125
Pro Asn Glu Lys Val Leu Val Ile Ala Thr Asp Thr Ala Arg Tyr Gly
130 135 140
Leu Asn Ser Gly Gly Glu Pro Thr Gin Gly Ala Gly Ala Val Ala Met 145 150 155 160
Val Ile Ala His Asn Pro Ser Ile Leu Ala Leu Asn Glu Asp Ala Val 165 170 175
52 Ala Tyr Thr Glu Asp Val Tyr Asp Phe Trp Arg Pro Thr Gly His Lys
180 185 190
Tyr Pro Leu Val Asp Gly Ala Leu Ser Lys Asp Ala Tyr Ile Arg Ser
195 200 205
Phe Gin Gin Ser Trp Asn Glu Tyr Ala Lys Arg Gin Gly Lys Ser Leu
210 215 220
Ala Asp Phe Ala Ser Leu Cys Phe His Val Pro Phe Thr Lys Met Gly 225 230 235 240
Lys Lys Ala Leu Glu Ser Ile Ile Asp Asn Ala Asp Glu Thr Thr Gin
245 250 255
Glu Arg Leu Arg Ser Gly Tyr Glu Asp Ala Val Asp Tyr Asn Arg Tyr
260 265 270
Val Gly Asn Ile Tyr Thr Gly Ser Leu Tyr Leu Ser Leu Ile Ser Leu
275 280 285
Leu Glu Asn Arg Asp Leu Gin Ala Gly Glu Thr Ile Gly Leu Phe Ser
290 295 300
Tyr Gly Ser Gly Ser Val Val Glu Phe Tyr Ser Ala Thr Leu Val Val 305 310 315 320
Gly Tyr Lys Asp His Leu Asp Gin Ala Ala His Lys Ala Leu Leu Asn
325 330 335
Asn Arg Thr Glu Val Ser Val Asp Ala Tyr Glu Thr Phe Phe Lys Arg
340 345 350
Phe Asp Asp Val Glu Phe Asp Glu Glu Gin Asp Ala Val His Glu Asp
355 360 365
Arg His Ile Phe Tyr Leu Ser Asn Ile Glu Asn Asn Val Arg Glu Tyr
370 375 380
His Arg Pro Glu 385
<210> 53
<211> 1278
<212> DNA
<213> Staphylococcus aureus
<400> 53 atgcaaagtt tagataagaa tttccgacat ttatctcgtc aacaaaagtt acaacaattg 60 gtagataagc aatggttatc agaagatcaa ttcgacattt tattgaatca tccattaatt 120 gatgaggaag tagcaaatag tttaattgaa aatgtcatcg cgcaaggtgc attacccgtt 180 ggattattac cgaatatcat tgtggacgat aaggcatatg ttgtacctat gatggtggaa 240
53 gagccttcag ttgtcgctgc agctagttat ggtgcaaagc tagtgaatca gactggcgga 300 tttaaaacgg tatcttctga acgtattatg ataggtcaaa tcgtctttga tggcgttgac 360 gatactgaaa aattatcagc agacattaaa gctttagaaa agcaaattca taaaattgcg 420 gatgaggcat atccttctat taaagcgcgt ggtggtggtt accaacgtat agctattgat 480 acatttcctg agcaacagtt actatcttta aaagtatttg ttgatacgaa agatgctatg 540 ggcgctaata tgcttaatac gattttagag gccataactg catttttaaa aaatgaatct 600 ccacaaagcg acattttaat gagtatttta tccaatcatg caacagcgtc cgttgttaaa 660 gttcaaggcg aaattgacgt taaagattta gcaaggggcg agagaactgg agaagaggtt 720 gccaaacgaa tggaacgtgc ttctgtattg gcacaagttg atattcatcg tgctgcaaca 780 cataataaag gtgttatgaa tggcatacat gccgttgttt tagcaacagg aaatgatacg 840 cgtggtgcag aagcaagtgc gcatgcatac gcgagtcgtg acggacagta tcgtggtatt 900 gcaacatgga gatacgatca aaaacgtcaa cgtttaattg gtacaataga agtgcctatg 960 acattggcaa tcgttggcgg tggtacaaaa gtattaccaa ttgctaaagc ttctttagaa 1020 ttgctaaatg tagattcagc acaagaatta ggtcatgtag ttgctgccgt tggtttagca 1080 cagaactttg cagcatgtcg cgcgctcgtt tccgaaggta tccagcaagg ccatatgagc 1140 ttgcaatata aatctttagc tattgttgta ggtgcaaaag gtgatgaaat tgcgcaagta 1200 gctgaagcat tgaagcaaga accccgtgcg aatacacaag tagctgaacg cattttacaa 1260 gaaattagac aacaatag 1278
<210> 54
<211> 425
<212> PRT
<213> Staphylococcus aureus
<400> 54 Met Gin Ser Leu Asp Lys Asn Phe Arg His Leu Ser Arg Gin Gin Lys
1 5 10 15
Leu Gin Gin Leu Val Asp Lys Gin Trp Leu Ser Glu Asp Gin Phe Asp
20 25 30
Ile Leu Leu Asn His Pro Leu Ile Asp Glu Glu Val Ala Asn Ser Leu
35 40 45
Ile Glu Asn Val Ile Ala Gin Gly Ala Leu Pro Val Gly Leu Leu Pro
50 55 60
Asn Ile Ile Val Asp Asp Lys Ala Tyr Val Val Pro Met Met Val Glu 65 70 75 80
Glu Pro Ser Val Val Ala Ala Ala Ser Tyr Gly Ala Lys Leu Val Asn
85 90 95
Gin Thr Gly Gly Phe Lys Thr Val Ser Ser Glu Arg Ile Met Ile Gly 100 105 110
54 Gin Ile Val Phe Asp Gly Val Asp Asp Thr Glu Lys Leu Ser Ala Asp
115 120 125
Ile Lys Ala Leu Glu Lys Gin Ile His Lys Ile Ala Asp Glu Ala Tyr
130 135 140
Pro Ser Ile Lys Ala Arg Gly Gly Gly Tyr Gin Arg Ile Ala Ile Asp 145 150 155 160
Thr Phe Pro Glu Gin Gin Leu Leu Ser Leu Lys Val Phe Val Asp Thr
165 170 175
Lys Asp Ala Met Gly Ala Asn Met Leu Asn Thr Ile Leu Glu Ala Ile
180 185 190
Thr Ala Phe Leu Lys Asn Glu Ser Pro Gin Ser Asp Ile Leu Met Ser
195 200 205
Ile Leu Ser Asn His Ala Thr Ala Ser Val Val Lys Val Gin Gly Glu
210 215 220
Ile Asp Val Lys Asp Leu Ala Arg Gly Glu Arg Thr Gly Glu Glu Val 225 230 235 240
Ala Lys Arg Met Glu Arg Ala Ser Val Leu Ala Gin Val Asp Ile His
245 250 255
Arg Ala Ala Thr His Asn Lys Gly Val Met Asn Gly Ile His Ala Val
260 265 270
Val Leu Ala Thr Gly Asn Asp Thr Arg Gly Ala Glu Ala Ser Ala His
275 280 285
Ala Tyr Ala Ser Arg Asp Gly Gin Tyr Arg Gly Ile Ala Thr Trp Arg
290 295 300
Tyr Asp Gin Lys Arg Gin Arg Leu Ile Gly Thr Ile Glu Val Pro Met 305 310 315 320
Thr Leu Ala Ile Val Gly Gly Gly Thr Lys Val Leu Pro Ile Ala Lys
325 330 335
Ala Ser Leu Glu Leu Leu Asn Val Asp Ser Ala Gin Glu Leu Gly His
340 345 350
Val Val Ala Ala Val Gly Leu Ala Gin Asn Phe Ala Ala Cys Arg Ala
355 360 365
Leu Val Ser Glu Gly Ile Gin Gin Gly His Met Ser Leu Gin Tyr Lys
370 375 380
Ser Leu Ala Ile Val Val Gly Ala Lys Gly Asp Glu Ile Ala Gin Val 385 390 395 400
Ala Glu Ala Leu Lys Gin Glu Pro Arg Ala Asn Thr Gin Val Ala Glu
405 410 415
Arg Ile Leu Gin Glu Ile Arg Gin Gin
55 420 425
<210> 55
<211> 921
<212> DNA
<213> Staphylococcus aureus
<400> 55 atgacaagaa aaggatatgg ggaatcgaca ggtaagatta ttttaatagg agaacatgct 60 gttacatttg gagagcctgc tattgcagta ccgtttaacg caggtaaaat caaagtttta 120 atagaagcct tagagagcgg gaactattcg tctattaaaa gcgatgttta cgatggtatg 180 ttatatgatg cgcctgacca tcttaagtct ttggtgaacc gttttgtaga attaaataat 240 attacagagc cgctagcagt aacgatccaa acgaatttac caccatcacg tggattagga 300 tcgagtgcag ctgtcgcggt tgcttttgtt cgtgcaagtt atgatttttt agggaaatca 360 ttaacgaaag aagaactcat tgaaaaggct aattgggcag agcaaattgc acatggtaaa 420 ccaagtggta ttgatacgca aacgattgta tcaggcaaac cagtttggtt ccaaaaaggt 480 caagctgaaa cattgaaaac gctaagttta gacggctata tggttgttat tgatactggt 540 gtgaaaggtt caacaagaca agcggtagaa gatgttcata aactttgtga ggatcctcag 600 tacatgtcac atgtaaaaca tatcggtaag ttagttttac gtgcgagtga tgtgattgaa 660 catcataact ttgaagccct agcggatatt tttaatgaat gtcatgcgga tttaaaggcg 720 ttgacagtta gtcatgataa aatagaacaa ttaatgaaaa ttggtaaaga aaatggtgcg 780 attgctggaa aacttactgg tgctggtcgt ggtggaagta tgttattgct tgccaaagat 840 ttaccaacag cgaaaaatat tgtgaaagct gtagaaaaag ctggtgcagc acatacatgg 900 attgagaatt taggaggtta a 921
<210> 56
<211> 306
<212> PRT
<213> Staphylococcus aureus
<400> 56 Met Thr Arg Lys Gly Tyr Gly Glu Ser Thr Gly Lys Ile Ile Leu Ile
1 5 10 15
Gly Glu His Ala Val Thr Phe Gly Glu Pro Ala Ile Ala Val Pro Phe
20 25 30
Asn Ala Gly Lys Ile Lys Val Leu Ile Glu Ala Leu Glu Ser Gly Asn
35 40 45
Tyr Ser Ser Ile Lys Ser Asp Val Tyr Asp Gly Met Leu Tyr Asp Ala 50 55 60
56 Pro Asp His Leu Lys Ser Leu Val Asn Arg Phe Val Glu Leu Asn Asn 65 70 75 80
Ile Thr Glu Pro Leu Ala Val Thr Ile Gin Thr Asn Leu Pro Pro Ser
85 90 95
Arg Gly Leu Gly Ser Ser Ala Ala Val Ala Val Ala Phe Val Arg Ala
100 105 110
Ser Tyr Asp Phe Leu Gly Lys Ser Leu Thr Lys Glu Glu Leu Ile Glu
115 120 125
Lys Ala Asn Trp Ala Glu Gin Ile Ala His Gly Lys Pro Ser Gly Ile
130 135 140
Asp Thr Gin Thr Ile Val Ser Gly Lys Pro Val Trp Phe Gin Lys Gly 145 150 155 160
Gin Ala Glu Thr Leu Lys Thr Leu Ser Leu Asp Gly Tyr Met Val Val
165 170 175
Ile Asp Thr Gly Val Lys Gly Ser Thr Arg Gin Ala Val Glu Asp Val
180 185 190
His Lys Leu Cys Glu Asp Pro Gin Tyr Met Ser His Val Lys His Ile
195 200 205
Gly Lys Leu Val Leu Arg Ala Ser Asp Val Ile Glu His His Asn Phe
210 215 220
Glu Ala Leu Ala Asp Ile Phe Asn Glu Cys His Ala Asp Leu Lys Ala 225 230 235 240
Leu Thr Val Ser His Asp Lys Ile Glu Gin Leu Met Lys Ile Gly Lys
245 250 255
Glu Asn Gly Ala Ile Ala Gly Lys Leu Thr Gly Ala Gly Arg Gly Gly
260 265 270
Ser Met Leu Leu Leu Ala Lys Asp Leu Pro Thr Ala Lys Asn Ile Val
275 280 285
Lys Ala Val Glu Lys Ala Gly Ala Ala His Thr Trp Ile Glu Asn Leu
290 295 300
Gly Gly 305
<210> 57
<211> 984
<212> DNA
<213> Staphylococcus aureus
<400> 57
57 atgattaaaa gtggcaaagc acgtgcacat acgaatattg cacttataaa atattggggt 60 aaaaaagatg aagcactaat cattccaatg aataatagca tatctgttac attagaaaaa 120 ttttacactg aaacgaaagt cacttttaac gaccagttaa cacaggatca attttggttg 180 aatggtgaaa aggttagtgg caaagaatta gagaaaattt caaaatatat ggatattgtc 240 agaaatagag ctggcatcga ttggtatgct gaaattgaaa gcgacaattt tgtaccaaca 300 gcagcagggt tggcttcatc agcaagcgca tatgcagctt tagcagcagc ttgtaatcaa 360 gcactagact tgcagctgtc agataaggat ttatcgagat tggcgcgaat cggttcgggt 420 tctgcgtcgc gtagtattta tggtggattt gcagaatggg aaaaagggta taatgatgag 480 acgtcatatg ccgttccact tgaatcgaat cattttgaag atgaccttgc catgatattt 540 gttgtgatta atcaacattc taaaaaggta cctagtcgat atggtatgtc gttgacacga 600 aacacatcaa ggttttatca atattggtta gatcatattg atgaagattt agctgaagca 660 aaagcagcga ttcaagacaa agattttaaa cgccttggtg aagtaattga agaaaatggt 720 ttacgtatgc atgccacgaa tctgggatca acaccgccgt tcacttatct tgtgcaagaa 780 agttatgatg tcatggcgct cgttcacgaa tgccgagaag cgggatatcc gtgttatttt 840 acgatggatg cgggtcctaa tgtgaaaata cttgtagaaa agaaaaacaa gcaacagatt 900 atagataaat tattaacaca gtttgataat aaccaaatta ttgatagtga cattattgcc 960 acaggaattg aaataattga gtaa 984
<210> 58
<211> 327
<212> PRT
<213> Staphylococcus aureus
<400> 58 Met Ile Lys Ser Gly Lys Ala Arg Ala His Thr Asn Ile Ala Leu Ile
1 5 10 15
Lys Tyr Trp Gly Lys Lys Asp Glu Ala Leu Ile Ile Pro Met Asn Asn
20 25 30
Ser Ile Ser Val Thr Leu Glu Lys Phe Tyr Thr Glu Thr Lys Val Thr
35 40 45
Phe Asn Asp Gin Leu Thr Gin Asp Gin Phe Trp Leu Asn Gly Glu Lys
50 55 60
Val Ser Gly Lys Glu Leu Glu Lys Ile Ser Lys Tyr Met Asp Ile Val 65 70 75 80
Arg Asn Arg Ala Gly Ile Asp Trp Tyr Ala Glu Ile Glu Ser Asp Asn
85 90 95
Phe Val Pro Thr Ala Ala Gly Leu Ala Ser Ser Ala Ser Ala Tyr Ala
100 105 110
Ala Leu Ala Ala Ala Cys Asn Gin Ala Leu Asp Leu Gin Leu Ser Asp
58 115 120 125
Lys Asp Leu Ser Arg Leu Ala Arg Ile Gly Ser Gly Ser Ala Ser Arg
130 135 140
Ser Ile Tyr Gly Gly Phe Ala Glu Trp Glu Lys Gly Tyr Asn Asp Glu 145 150 155 160
Thr Ser Tyr Ala Val Pro Leu Glu Ser Asn His Phe Glu Asp Asp Leu
165 170 175
Ala Met Ile Phe Val Val Ile Asn Gin His Ser Lys Lys Val Pro Ser
180 185 190
Arg Tyr Gly Met Ser Leu Thr Arg Asn Thr Ser Arg Phe Tyr Gin Tyr
195 200 205
Trp Leu Asp His Ile Asp Glu Asp Leu Ala Glu Ala Lys Ala Ala Ile
210 215 220
Gin Asp Lys Asp Phe Lys Arg Leu Gly Glu Val Ile Glu Glu Asn Gly 225 230 235 240
Leu Arg Met His Ala Thr Asn Leu Gly Ser Thr Pro Pro Phe Thr Tyr
245 250 255
Leu Val Gin Glu Ser Tyr Asp Val Met Ala Leu Val His Glu Cys Arg
260 265 270
Glu Ala Gly Tyr Pro Cys Tyr Phe Thr Met Asp Ala Gly Pro Asn Val
275 280 285
Lys Ile Leu Val Glu Lys Lys Asn Lys Gin Gin Ile Ile Asp Lys Leu
290 295 300
Leu Thr Gin Phe Asp Asn Asn Gin Ile Ile Asp Ser Asp Ile Ile Ala 305 310 315 320
Thr Gly Ile Glu Ile Ile Glu 325
<210> 59
<211> 2412
<212> DNA
<213> Entercoccus faecalis
<400> 59 ttgaaaacag tagttattat tgatgcatta cgaacaccaa ttggaaaata taaaggcagc 60 ttaagtcaag taagtgccgt agacttagga acacatgtta caacacaact tttaaaaaga 120 cattccacta tttctgaaga aattgatcaa gtaatctttg gaaatgtttt acaagctgga 180 aatggccaaa atcccgcacg acaaatagca ataaacagcg gtttatctca tgaaattccc 240 gcaatgacag ttaatgaggt ctgcggatca ggaatgaagg ccgttatttt ggcgaaacaa 300
59 ttgattcaat taggagaagc ggaagtttta attgctggcg ggattgagaa tatgtcccaa 360 gcacctaaat tacaacgatt taattacgaa acagaaagct atgatgcgcc tttttctagt 420 atgatgtacg atgggttaac ggatgccttt agtggtcaag caatgggctt aactgctgaa 480 aatgtggccg aaaagtatca tgtaactaga gaagagcaag atcaattttc tgtacattca 540 caattaaaag cagctcaagc acaagcagaa gggatattcg ctgacgaaat agccccatta 600 gaagtatcag gaacgcttgt ggagaaagat gaagggattc gccctaattc gagcgttgag 660 aagctaggaa cgcttaaaac agtttttaaa gaagacggta ctgtaacagc agggaatgca 720 tcaaccatta atgatggggc ttctgctttg attattgctt cacaagaata tgccgaagca 780 cacggtcttc cttatttagc tattattcga gacagtgtgg aagtcggtat tgatccagcc 840 tatatgggaa tttcgccgat taaagccatt caaaaactgt tagcgcgcaa tcaacttact 900 acggaagaaa ttgatctgta tgaaatcaac gaagcatttg cagcaacttc aatcgtggtc 960 caaagagaac tggctttacc agaggaaaag gtcaacattt atggtggcgg tatttcatta 1020 ggtcatgcga ttggtgccac aggtgctcgt ttattaacga gtttaagtta tcaattaaat 1080 caaaaagaaa agaaatatgg agtggcttct ttatgtatcg gcggtggctt aggactcgct 1140 atgctactag agagacctca gcaaaaaaaa aacagccgat tttatcaaat gagtcctgag 1200 gaacgcctgg cttctcttct taatgaaggc cagatttctg ctgatacaaa aaaagaattt 1260 gaaaatacgg ctttatcttc gcagattgcc aatcatatga ttgaaaatca aatcagtgaa 1320 acagaagtgc cgatgggcgt tggcttacat ttaacagtgg acgaaactga ttatttggta 1380 ccaatggcga cagaagagcc ctcagtgatt gcggctttga gtaatggtgc aaaaatagca 1440 caaggattta aaacagtgaa tcaacaacgt ttaatgcgtg gacaaatcgt tttttacgat 1500 gttgcagacg ccgagtcatt gattgatgaa ctacaagtaa gagaaacgga aatttttcaa 1560 caagcagagt taagttatcc atctatcgtt aaacgcggcg gcggcttaag agatttgcaa 1620 tatcgtgctt ttgatgaatc atttgtatct gtcgactttt tagtagatgt taaggatgca 1680 atgggggcaa atatcgttaa cgctatgttg gaaggtgtgg ccgagttgtt ccgtgaatgg 1740 tttgcggagc aaaagatttt attcagtatt ttaagtaatt atgccacgga gtcggttgtt 1800 acgatgaaaa cggctattcc agtttcacgt ttaagtaagg ggagcaatgg ccgggaaatt 1860 gctgaaaaaa ttgttttagc ttcacgctat gcttcattag atccttatcg ggcagtcacg 1920 cataacaaag ggatcatgaa tggcattgaa gctgtcgttt tagctacagg aaatgataca 1980 cgcgctgtta gcgcttcttg tcatgctttt gcggtgaagg aaggtcgcta ccaaggtttg 2040 actagttgga cgctggatgg cgaacaacta attggtgaaa tttcagttcc gcttgcgtta 2100 gccacggttg gcggtgccac aaaagtctta cctaaatctc aagcagctgc tgatttgtta 2160 gcagtgacgg atgcaaaaga actaagtcga gtagtagcgg ctgttggttt ggcacaaaat 2220 ttagcggcgt tacgggcctt agtctctgaa ggaattcaaa aaggacacat ggctctacaa 2280 gcacgttctt tagcgatgac ggtcggagct actggtaaag aagttgaggc agtcgctcaa 2340 caattaaaac gtcaaaaaac gatgaaccaa gaccgagcct tggctatttt aaatgattta 2400 agaaaacaat aa 2412
<210> 60 <211> 803
60 <212> PRT
<213> Enterococcus faecalis
<400> 60 Met Lys Thr Val Val Ile Ile Asp Ala Leu Arg Thr Pro Ile Gly Lys
1 5 10 15
Tyr Lys Gly Ser Leu Ser Gin Val Ser Ala Val Asp Leu Gly Thr His
20 25 30
Val Thr Thr Gin Leu Leu Lys Arg His Ser Thr Ile Ser Glu Glu Ile
35 40 45
Asp Gin Val Ile Phe Gly Asn Val Leu Gin Ala Gly Asn Gly Gin Asn
50 55 60
Pro Ala Arg Gin Ile Ala Ile Asn Ser Gly Leu Ser His Glu Ile Pro 65 70 75 80
Ala Met Thr Val Asn Glu Val Cys Gly Ser Gly Met Lys Ala Val Ile
85 90 95
Leu Ala Lys Gin Leu Ile Gin Leu Gly Glu Ala Glu Val Leu Ile Ala
100 105 110
Gly Gly Ile Glu Asn Met Ser Gin Ala Pro Lys Leu Gin Arg Phe Asn
115 120 125
Tyr Glu Thr Glu Ser Tyr Asp Ala Pro Phe Ser Ser Met Met Tyr Asp
130 135 140
Gly Leu Thr Asp Ala Phe Ser Gly Gin Ala Met Gly Leu Thr Ala Glu 145 150 155 160
Asn Val Ala Glu Lys Tyr His Val Thr Arg Glu Glu Gin Asp Gin Phe
165 170 175
Ser Val His Ser Gin Leu Lys Ala Ala Gin Ala Gin Ala Glu Gly Ile
180 185 190
Phe Ala Asp Glu Ile Ala Pro Leu Glu Val Ser Gly Thr Leu Val Glu
195 200 205
Lys Asp Glu Gly Ile Arg Pro Asn Ser Ser Val Glu Lys Leu Gly Thr
210 215 220
Leu Lys Thr Val Phe Lys Glu Asp Gly Thr Val Thr Ala Gly Asn Ala 225 230 235 240
Ser Thr Ile Asn Asp Gly Ala Ser Ala Leu Ile Ile Ala Ser Gin Glu
245 250 255
Tyr Ala Glu Ala His Gly Leu Pro Tyr Leu Ala Ile Ile Arg Asp Ser
260 265 270
Val Glu Val Gly Ile Asp Pro Ala Tyr Met Gly Ile Ser Pro Ile Lys
61 275 280 285
Ala Ile Gin Lys Leu Leu Ala Arg Asn Gin Leu Thr Thr Glu Glu Ile
290 295 300
Asp Leu Tyr Glu Ile Asn Glu Ala Phe Ala Ala Thr Ser Ile Val Val 305 ' 310 315 320
Gin Arg Glu Leu Ala Leu Pro Glu Glu Lys Val Asn Ile Tyr Gly Gly
325 330 335
Gly Ile Ser Leu Gly His Ala Ile Gly Ala Thr Gly Ala Arg Leu Leu
340 345 350
Thr Ser Leu Ser Tyr Gin Leu Asn Gin Lys Glu Lys Lys Tyr Gly Val
355 360 365
Ala Ser Leu Cys Ile Gly Gly Gly Leu Gly Leu Ala Met Leu Leu Glu
370 375 380
Arg Pro Gin Gin Lys Lys Asn Ser Arg Phe Tyr Gin Met Ser Pro Glu 385 390 395 400
Glu Arg Leu Ala Ser Leu Leu Asn Glu Gly Gin Ile Ser Ala Asp Thr
405 410 415
Lys Lys Glu Phe Glu Asn Thr Ala Leu Ser Ser Gin Ile Ala Asn His
420 425 430
Met Ile Glu Asn Gin Ile Ser Glu Thr Glu Val Pro Met Gly Val Gly
435 440 445
Leu His Leu Thr Val Asp Glu Thr Asp Tyr Leu Val Pro Met Ala Thr
450 455 460
Glu Glu Pro Ser Val Ile Ala Ala Leu Ser Asn Gly Ala Lys Ile Ala 465 470 475 480
Gin Gly Phe Lys Thr Val Asn Gin Gin Arg Leu Met Arg Gly Gin Ile
485 490 495
Val Phe Tyr Asp Val Ala Asp Ala Glu Ser Leu Ile Asp Glu Leu Gin
500 505 510
Val Arg Glu Thr Glu Ile Phe Gin Gin Ala Glu Leu Ser Tyr Pro Ser
515 520 525
Ile Val Lys Arg Gly Gly Gly Leu Arg Asp Leu Gin Tyr Arg Ala Phe
530 535 540
Asp Glu Ser Phe Val Ser Val Asp Phe Leu Val Asp Val Lys Asp Ala 545 550 555 560
Met Gly Ala Asn Ile Val Asn Ala Met Leu Glu Gly Val Ala Glu Leu
565 570 575
Phe Arg Glu Trp Phe Ala Glu Gin Lys Ile Leu Phe Ser Ile Leu Ser 580 585 590
62 Asn Tyr Ala Thr Glu Ser Val Val Thr Met Lys Thr Ala Ile Pro Val
595 600 605
Ser Arg Leu Ser Lys Gly Ser Asn Gly Arg Glu Ile Ala Glu Lys Ile
610 615 620
Val Leu Ala Ser Arg Tyr Ala Ser Leu Asp Pro Tyr Arg Ala Val Thr 625 630 635 640
His Asn Lys Gly Ile Met Asn Gly Ile Glu Ala Val Val Leu Ala Thr
645 650 655
Gly Asn Asp Thr Arg Ala Val Ser Ala Ser Cys His Ala Phe Ala Val
660 665 670
Lys Glu Gly Arg Tyr Gin Gly Leu Thr Ser Trp Thr Leu Asp Gly Glu
675 680 685
Gin Leu Ile Gly Glu Ile Ser Val Pro Leu Ala Leu Ala Thr Val Gly
690 695 700
Gly Ala Thr Lys Val Leu Pro Lys Ser Gin Ala Ala Ala Asp Leu Leu 705 710 715 720
Ala Val Thr Asp Ala Lys Glu Leu Ser Arg Val Val Ala Ala Val Gly
725 730 735
Leu Ala Gin Asn Leu Ala Ala Leu Arg Ala Leu Val Ser Glu Gly Ile
740 745 750
Gin Lys Gly His Met Ala Leu Gin Ala Arg Ser Leu Ala Met Thr Val
755 760 765
Gly Ala Thr Gly Lys Glu Val Glu Ala Val Ala Gin Gin Leu Lys Arg
770 775 780
Gin Lys Thr Met Asn Gin Asp Arg Ala Leu Ala Ile Leu Asn Asp Leu 785 790 795 800
Arg Lys Gin
<210> 61
<211> 2442
<212> DNA
<213> Enterococcus faceium
<400> 61 ttgaaagaag tcgttatgat agatgctgca agaacgccga taggaaagta tcgcggaagt 60 ttaagtccat ttactgcagt tgaattaggc acacttgtga ctaaaggatt attagataaa 120 acaaaactga aaaaagataa aatcgatcaa gtaatattcg gaaatgtcct gcaagctggt 180 aatggtcaaa atgttgccag acagattgct ttgaacagcg gtctccctgt agatgtccca 240
63 gcaatgacga tcaatgaagt ttgcggatct ggtatgaaag cagtgatctt agcacgccag 300 ctgatccaat taggtgaagc agaacttgtg atagccggcg gaacagagag tatgtctcaa 360 gcacctatgc tgaaaccgta tcagtcagaa acaaatgaat atggtgaacc aatttccagt 420 atggtcaacg acggattgac tgacgcattt tcaaatgcac atatgggatt aaccgcagag 480 aaggttgcaa cacaattttc tgtgagcaga gaagaacagg atcgctatgc cttgtcgtcc 540 cagttgaaag cagcacatgc tgtcgaagcc ggtgtatttt ctgaggagat catcccagtc 600 aagatttctg atgaagacgt gttatctgag gatgaagcag ttcgtggaaa tagtacattg 660 gaaaaactgg gcacgttacg tacagtattc tcagaagaag gaactgtaac agcaggaaat 720 gcttccccgt tgaatgacgg tgcctctgtg gtgatccttg catccaaaga atacgcagaa 780 aataataatc tgccttattt agcaaccatc aaagaagtag cggaggtcgg tattgaccca 840 agtatcatgg gaatcgctcc aatcaaagcc attcaaaaat tgacagatag atcaggaatg 900 aatttatcaa caatcgatct ttttgagatc aatgaagcat ttgcagcttc ttctatcgta 960 gttagccaag aactgcagtt agatgaagaa aaggtcaata tatatggagg agcaatcgca 1020 ttaggccatc caattggtgc aagcggtgca cgtatcttga ctacattagc ttacggattg 1080 cttcgtgaac agaagagata cggtattgct tcattatgta ttggtggagg tttaggcttg 1140 gcagtcttgt tagaagcgaa tatggagcaa acacataagg atgtgcaaaa aaaaaagttt 1200 tatcagctta cgccatctga acggcgcagt caattaatag aaaaaaatgt attgacacaa 1260 gaaactgcgt tgatttttca ggaacaaaca ctttctgaag agctctccga tcacatgatc 1320 gaaaaccaag tgagtgaagt ggaaatccca atggggatcg cgcagaattt tcaaatcaat 1380 ggcaagaaaa aatggattcc gatggcaaca gaggaaccat ctgtcattgc agctgcaagt 1440 aatggtgcaa aaatctgtgg aaatatctgc gcagaaacac ctcagcggct gatgcgaggg 1500 caaatcgttc tatcaggaaa atcggagtat caagcagtga tcaatgcagt taatcatcga 1560 aaagaagagc tgattctttg tgcaaatgaa agttatcctt caatcgtgaa acgcgggggc 1620 ggtgttcaag atatctctac tcgggaattc atggggagtt tccatgcata cttatctatt 1680 gattttttag tggatgtaaa agatgcaatg ggcgctaaca tgatcaactc gattcttgag 1740 agtgtggcaa acaagttacg ggagtggttc cctgaagaag agattctatt cagtatttta 1800 agtaattttg ctacagaatc attggcttct gcctgttgtg aaatcccatt cgaacgctta 1860 gggagaaaca aagaaatcgg tgaacaaatt gccaaaaaaa tccaacaggc aggggaatat 1920 gcgaagcttg acccttaccg tgcagcaacg cacaacaaag ggatcatgaa tggtatagaa 1980 gctgtagtgg cagctacagg aaatgataca cgtgcggtta gcgcttcgat tcacgcctac 2040 gcggcaagaa atggattata ccaaggatta acagactggc agatcaaagg ggataaacta 2100 gttggaaaac taacggtgcc tttggctgtt gccacagtag gcggagcttc caatatcctg 2160 ccaaaagcaa aagcatcttt agctatgtta gatattgatt cagccaagga actagcacaa 2220 gtaattgctg cagtagggtt agctcaaaac ctggctgctt tgcgtgcatt agttacagaa 2280 ggaatccaaa aaggccacat gggacttcaa gctcgttcat tagcgatctc aattggggct 2340 attggtgagg aaatcgagca agttgcgaaa aaattacgtg aagcagaaaa gatgaaccag 2400 cagacagcta tacaaatatt ggaaaaaatc cgggaaaaat aa 2442
<210> 62
64 <211> 813 <212> PRT <213> Enterococcus faceium
<400> 62 Met Lys Glu Val Val Met Ile Asp Ala Ala Arg Thr Pro Ile Gly Lys
1 5 10 15
Tyr Arg Gly Ser Leu Ser Pro Phe Thr Ala Val Glu Leu Gly Thr Leu
20 25 30
Val Thr Lys Gly Leu Leu Asp Lys Thr Lys Leu Lys Lys Asp Lys Ile
35 40 45
Asp Gin Val Ile Phe Gly Asn Val Leu Gin Ala Gly Asn Gly Gin Asn
50 55 60
Val Ala Arg Gin Ile Ala Leu Asn Ser Gly Leu Pro Val Asp Val Pro 65 70 75 80
Ala Met Thr Ile Asn Glu Val Cys Gly Ser Gly Met Lys Ala Val Ile
85 90 95
Leu Ala Arg Gin Leu Ile Gin Leu Gly Glu Ala Glu Leu Val Ile Ala
100 105 110
Gly Gly Thr Glu Ser Met Ser Gin Ala Pro Met Leu Lys Pro Tyr Gin
115 120 125
Ser Glu Thr Asn Glu Tyr Gly Glu Pro Ile Ser Ser Met Val Asn Asp
130 135 140
Gly Leu Thr Asp Ala Phe Ser Asn Ala His Met Gly Leu Thr Ala Glu 145 150 155 160
Lys Val Ala Thr Gin Phe Ser Val Ser Arg 'Glu Glu Gin Asp Arg Tyr
165 170 175
Ala Leu Ser Ser Gin Leu Lys Ala Ala His Ala Val Glu Ala Gly Val
180 185 190
Phe Ser Glu Glu Ile Ile Pro Val Lys Ile Ser Asp Glu Asp Val Leu
195 200 205
Ser Glu Asp Glu Ala Val Arg Gly Asn Ser Thr Leu Glu Lys Leu Gly
210 215 220
Thr Leu Arg Thr Val Phe Ser Glu Glu Gly Thr Val Thr Ala Gly Asn 225 230 235 240
Ala Ser Pro Leu Asn Asp Gly Ala Ser Val Val Ile Leu Ala Ser Lys
245 250 255
Glu Tyr Ala Glu Asn Asn Asn Leu Pro Tyr Leu Ala Thr Ile Lys Glu 260 265 270
65 Val Ala Glu Val Gly Ile Asp Pro Ser Ile Met Gly Ile Ala Pro Ile
275 280 285
Lys Ala Ile Gin Lys Leu Thr Asp Arg Ser Gly Met Asn Leu Ser Thr
290 295 300
Ile Asp Leu Phe Glu Ile Asn Glu Ala Phe Ala Ala Ser Ser Ile Val 305 310 315 320
Val Ser Gin Glu Leu Gin Leu Asp Glu Glu Lys Val Asn Ile Tyr Gly
325 330 335
Gly Ala Ile Ala Leu Gly His Pro Ile Gly Ala Ser Gly Ala Arg Ile
340 345 350
Leu Thr Thr Leu Ala Tyr Gly Leu Leu Arg Glu Gin Lys Arg Tyr Gly
355 360 365
Ile Ala Ser Leu Cys Ile Gly Gly Gly Leu Gly Leu Ala Val Leu Leu
370 375 380
Glu Ala Asn Met Glu Gin Thr His Lys Asp Val Gin Lys Lys Lys Phe 385 390 395 400
Tyr Gin Leu Thr Pro Ser Glu Arg Arg Ser Gin Leu Ile Glu Lys Asn
405 410 415
Val Leu Thr Gin Glu Thr Ala Leu Ile Phe Gin Glu Gin Thr Leu Ser
420 425 430
Glu Glu Leu Ser Asp His Met Ile Glu Asn Gin Val Ser Glu Val Glu
435 440 445
Ile Pro Met Gly Ile Ala Gin Asn Phe Gin Ile Asn Gly Lys Lys Lys
450 455 460
Trp Ile Pro Met Ala Thr Glu Glu Pro Ser Val Ile Ala Ala Ala Ser 465 470 475 480
Asn Gly Ala Lys Ile Cys Gly Asn Ile Cys Ala Glu Thr Pro Gin Arg
485 490 495
Leu Met Arg Gly Gin Ile Val Leu Ser Gly Lys Ser Glu Tyr Gin Ala
500 505 510
Val Ile Asn Ala Val Asn His Arg Lys Glu Glu Leu Ile Leu Cys Ala
515 520 525
Asn Glu Ser Tyr Pro Ser Ile Val Lys Arg Gly Gly Gly Val Gin Asp
530 535 540
Ile Ser Thr Arg Glu Phe Met Gly Ser Phe His Ala Tyr Leu Ser Ile 545 550 555 560
Asp Phe Leu Val Asp Val Lys Asp Ala Met Gly Ala Asn Met Ile Asn
565 570 575
Ser Ile Leu Glu Ser Val Ala Asn Lys Leu Arg Glu Trp Phe Pro Glu
66 580 585 590
Glu Glu Ile Leu Phe Ser Ile Leu Ser Asn Phe Ala Thr Glu Ser Leu
595 600 605
Ala Ser Ala Cys Cys Glu Ile Pro Phe Glu Arg Leu Gly Arg Asn Lys
610 615 620
Glu Ile Gly Glu Gin Ile Ala Lys Lys Ile Gin Gin Ala Gly Glu Tyr 625 630 635 640
Ala Lys Leu Asp Pro Tyr Arg Ala Ala Thr His Asn Lys Gly Ile Met
645 650 655
Asn Gly Ile Glu Ala Val Val Ala Ala Thr Gly Asn Asp Thr Arg Ala
660 665 670
Val Ser Ala Ser Ile His Ala Tyr Ala Ala Arg Asn Gly Leu Tyr Gin
675 680 685
Gly Leu Thr Asp Trp Gin Ile Lys Gly Asp Lys Leu Val Gly Lys Leu
690 695 700
Thr Val Pro Leu Ala Val Ala Thr Val Gly Gly Ala Ser Asn Ile Leu 705 710 715 720
Pro Lys Ala Lys Ala Ser Leu Ala Met Leu Asp Ile Asp Ser Ala Lys
725 730 735
Glu Leu Ala Gin Val Ile Ala Ala Val Gly Leu Ala Gin Asn Leu Ala
740 745 750
Ala Leu Arg Ala Leu Val Thr Glu Gly Ile Gin Lys Gly His Met Gly
755 760 765
Leu Gin Ala Arg Ser Leu Ala Ile Ser Ile Gly Ala Ile Gly Glu Glu
770 775 780
Ile Glu Gin Val Ala Lys Lys Leu Arg Glu Ala Glu Lys Met Asn Gin 785 790 795 800
Gin Thr Ala Ile Gin Ile Leu Glu Lys Ile Arg Glu Lys 805 810
<210> 63
<211> 978
<212> DNA
<213> Entercoccus faecium
<400> 63 atgtttaaag gcaaagcacg cgcatatacc aacattgctc taatcaaata ttggggtaag 60 aaaaatgaag aactcatcct tccaatgaac aacagccttt cgttaacatt ggatgcattt 120 tatacagaga cagaagtcat cttttctgat agctatatgg tagatgaatt ttatctagat 180
67 ggcaccttgc aagacgaaaa agcaacaaaa aaagtcagtc agtttcttga cctttttcgt 240 aaagaagccg gcctctcact aaaagcttca gtaatcagtc agaatttcgt tcctaccgca 300 gctggattag cctcctctgc cagcgggcta gctgctttag caggagcttg caatactgct 360 cttaagcttg gattagacga tctctctctt tcaagatttg ctcgacgcgg gtctggttca 420 gcttgccgaa gtattttcgg tggtttcgtc gaatgggaaa aaggccatga cgacttaagt 480 tcttacgcta agccagtccc ttccgattct ttcgaagacg atttagcaat ggttttcgtt 540 ttgatcaacg accagaaaaa agaagtgtcc agcagaaatg ggatgcgtcg gacagtcgaa 600 acatccaatt tttatcaagg ctggttagat tccgttgaag gggatctata tcaattgaaa 660 caagcaatca aaacaaaaga tttccaactt ctcggagaaa cgatggaaag aaacggacta 720 aaaatgcatg gaacgacttt agctgcccag cctccattca cttactggtc tcctaacagc 780 ttaaaagcga tggatgcggt gcggcaattg agaaagcaag gcattccatg ctactttacg 840 atggatgctg gccctaatgt caaagtttta gtggaaaaca gccatttatc tgaggtacaa 900 gaaacattta ccaaattatt tagcaaagaa caagtaatta ctgcccatgc tggtccagga 960 attgcgatta ttgaataa 978
<210> 64
<211> 325
<212> PRT
<213> Entercoccus faecium
<400> 64 Met Phe Lys Gly Lys Ala Arg Ala Tyr Thr Asn Ile Ala Leu Ile Lys
1 5 10 15
Tyr Trp Gly Lys Lys Asn Glu Glu Leu Ile Leu Pro Met Asn Asn Ser
20 25 30
Leu Ser Leu Thr Leu Asp Ala Phe Tyr Thr Glu Thr Glu Val Ile Phe
35 40 45
Ser Asp Ser Tyr Met Val Asp Glu Phe Tyr Leu Asp Gly Thr Leu Gin
50 55 60
Asp Glu Lys Ala Thr Lys Lys Val Ser Gin Phe Leu Asp Leu Phe Arg 65 70 75 80
Lys Glu Ala Gly Leu Ser Leu Lys Ala Ser Val Ile Ser Gin Asn Phe
85 90 95
Val Pro Thr Ala Ala Gly Leu Ala Ser Ser Ala Ser Gly Leu Ala Ala
100 105 110
Leu Ala Gly Ala Cys Asn Thr Ala Leu Lys Leu Gly Leu Asp Asp Leu
115 120 125
Ser Leu Ser Arg Phe Ala Arg Arg Gly Ser Gly Ser Ala Cys Arg Ser 130 135 140
68 Ile Phe Gly Gly Phe Val Glu Trp Glu Lys Gly His Asp Asp Leu Ser 145 150 155 160
Ser Tyr Ala Lys Pro Val Pro Ser Asp Ser Phe Glu Asp Asp Leu Ala
165 170 175
Met Val Phe Val Leu Ile Asn Asp Gin Lys Lys Glu Val Ser Ser Arg
180 185 190
Asn Gly Met Arg Arg Thr Val Glu Thr Ser Asn Phe Tyr Gin Gly Trp
195 200 205
Leu Asp Ser Val Glu Gly Asp Leu Tyr Gin Leu Lys Gin Ala Ile Lys
210 215 220
Thr Lys Asp Phe Gin Leu Leu Gly Glu Thr Met Glu Arg Asn Gly Leu 225 230 235 240
Lys Met His Gly Thr Thr Leu Ala Ala Gin Pro Pro Phe Thr Tyr Trp
245 250 255
Ser Pro Asn Ser Leu Lys Ala Met Asp Ala Val Arg Gin Leu Arg Lys
260 265 270
Gin Gly Ile Pro Cys Tyr Phe Thr Met Asp Ala Gly Pro Asn Val Lys
275 280 285
Val Leu Val Glu Asn Ser His Leu Ser Glu Val Gin Glu Thr Phe Thr
290 295 300
Lys Leu Phe Ser Lys Glu Gin Val Ile Thr Ala His Ala Gly Pro Gly 305 310 315 320
Ile Ala Ile Ile Glu 325
<210> 65
<211> 1086
<212> DNA
<213> Enterococcus faecium
<400> 65 atgattgaag tatctgcacc aggcaaactc tatattgccg gagaatatgc agttgttgaa 60 acaggccatc cagcagttat cgctgcagtc gatcaattcg tgacagtcac tgtagaatcc 120 gcacgaaaag tcggaagtat ccaatctgca caatatagtg ggatgcctgt acgttggaca 180 agacgcaacg gagaattagt tttagatatt cgggaaaatc cttttcatta tatccttgct 240 gctattcgct tgactgaaaa gtatgcacaa gaaaaaaaca ttcttttatc cttttatgat 300 ctgaaagtaa caagtgagtt agacagttca aatggccgga aatatggttt gggttctagc 360 ggtgccgtga ccgttgcaac ggtcaaagcc ttgaatgttt tttacgcgtt gaatttatct 420 cagttggaga ttttcaagat tgcagcacta gccaatttag cagttcaaga taatggttcc 480
69 tgcggcgaca tcgctgctag ctgttatggt ggctggatcg ctttctcaac cttcgaccat 540 ccttggctcc aagaacaaga aactcagcat tctatcagtg agttacttgc cctggattgg 600 ccaggtctat ccattgagcc attgattgct cctgaagatt tacgtttatt gattggttgg 660 acgggtagcc ctgcctctac ttctgatttg gtcgatcaag ttcaccgttc gagagaagat 720 aaaatggtgg cttatcagct tttcttaaaa aacagtacag aatgtgtcaa tgaaatgatc 780 aaagggttta aagaaaataa tgtaacgttg attcaacaga tgattcgaaa aaaccgacaa 840 ttactgcatg atttatctgc aatcactggg gtcgtcatcg aaacgcctgc tttgaacaaa 900 ttgtgtaatt tagctgaaca gtatgaagga gccgcaaaat cttctggtgc aggtgggggc 960 gattgcggaa tcgtaattgt tgaccagaaa tctggcattc ttcctttaat gagtgcatgg 1020 gaaaaagcag aaatcactcc actgccgtta catgtctata gcgatcaaag aaaggaaaac 1080 cgatga 1086
<210> 66
<211> 361
<212> PRT
<213> Enterococcus faecium
<400> 66 Met Ile Glu Val Ser Ala Pro Gly Lys Leu Tyr Ile Ala Gly Glu Tyr
1 5 10 15
Ala Val Val Glu Thr Gly His Pro Ala Val Ile Ala Ala Val Asp Gin
20 25 30
Phe Val Thr Val Thr Val Glu Ser Ala Arg Lys Val Gly Ser Ile Gin
35 40 45
Ser Ala Gin Tyr Ser Gly Met Pro Val Arg Trp Thr Arg Arg Asn Gly
50 55 60
Glu Leu Val Leu Asp Ile Arg Glu Asn Pro Phe His Tyr Ile Leu Ala 65 70 75 80
Ala Ile Arg Leu Thr Glu Lys Tyr Ala Gin Glu Lys Asn Ile Leu Leu
85 90 95
Ser Phe Tyr Asp Leu Lys Val Thr Ser Glu Leu Asp Ser Ser Asn Gly
100 105 110
Arg Lys Tyr Gly Leu Gly Ser Ser Gly Ala Val Thr Val Ala Thr Val
115 120 125
Lys Ala Leu Asn Val Phe Tyr Ala Leu Asn Leu Ser Gin Leu Glu Ile
130 135 140
Phe Lys Ile Ala Ala Leu Ala Asn Leu Ala Val Gin Asp Asn Gly Ser 145 150 155 160
Cys Gly Asp Ile Ala Ala Ser Cys Tyr Gly Gly Trp Ile Ala Phe Ser
70 165 170 175
Thr Phe Asp His Pro Trp Leu Gin Glu Gin Glu Thr Gin His Ser Ile
180 185 190
Ser Glu Leu Leu Ala Leu Asp Trp Pro Gly Leu Ser Ile Glu Pro Leu
195 200 205
Ile Ala Pro Glu Asp Leu Arg Leu Leu Ile Gly Trp Thr Gly Ser Pro
210 215 220
Ala Ser Thr Ser Asp Leu Val Asp Gin Val His Arg Ser Arg Glu Asp 225 230 235 240
Lys Met Val Ala Tyr Gin Leu Phe Leu Lys Asn Ser Thr Glu Cys Val
245 250 255
Asn Glu Met Ile Lys Gly Phe Lys Glu Asn Asn Val Thr Leu Ile Gin
260 265 270
Gin Met Ile Arg Lys Asn Arg Gin Leu Leu His Asp Leu Ser Ala Ile
275 280 285
Thr Gly Val Val Ile Glu Thr Pro Ala Leu Asn Lys Leu Cys Asn Leu
290 295 300
Ala Glu Gin Tyr Glu Gly Ala Ala Lys Ser Ser Gly Ala Gly Gly Gly 305 310 315 320
Asp Cys Gly Ile Val Ile Val Asp Gin Lys Ser Gly Ile Leu Pro Leu
325 330 335
Met Ser Ala Trp Glu Lys Ala Glu Ile Thr Pro Leu Pro Leu His Val
340 345 350
Tyr Ser Asp Gin Arg Lys Glu Asn Arg 355 360
<210> 67
<211> 1077
<212> DNA
<213> Stapylococcus haemolyticus
<400> 67 atgattcagg tgaaagcacc aggaaagctt tatgtagcag gtgaatatgc agtgactgag 60 ccaggatata agtctgtctt aattgcggtc gatcgatttg ttacagcttc aattgaagct 120 tctaatgcag taacaagtac gattcattcc aagacattac attatgaacc tgtaacgttt 180 aatcgcaatg aagataaaat tgatatctcc gatgctaatg ctgctagtca attaaagtat 240 gttgtaactg caattgaagt tttcgaacaa tatgcgagaa gttgcaacgt caaattgaag 300 cattttcatt tagaaatcga tagtaattta gatgatgctt caggtaataa atatgggctt 360 ggttctagtg cggcagtttt agtgtcagtc gtcaaagcat taaatgagtt ttacgatatg 420
71 caattatcta acctatatat ttataaactt gcagtcattt ctaatatgcg attacaaagt 480 ttaagctcat gtggtgatat agctgtaagt gtatacagtg gctggctagc ttatagtact 540 ttcgatcacg attgggtcaa acaacagatg gaagaaacat cagttaatga agtattagaa 600 aaaaattggc cgggtcttca tattgaacct ttacaggccc cagagaatat ggaagtctta 660 atcggttgga caggttcgcc tgcttcatca cctcatttag tcagtgaagt gaagcgctta 720 aaatcagatc cttcttttta tggaagattc cttgatcaat ctcatacatg tgttgaaaat 780 cttatctatg cgtttaaaac agataatatt aaaggtgttc agaaaatgat tcgacaaaat 840 cgtatgatta ttcaacaaat ggataatgaa gcgacagtcg acattgaaac cgaaaattta 900 aaaatgttat gtgatattgg agaacgttat ggtgctgctg ccaagacatc aggtgctggc 960 ggtggtgatt gcggaatcgc cattattgat aatcgcattg ataaaaatcg tatttataat 1020 gaatgggcat cacatggtat taaaccgtta aaatttaaaa tttatcatgg acaataa 1077
<210> 68
<211> 358
<212> PRT
<213> Staphylococcus haemolyticus
<400> 68 Met Ile Gin Val Lys Ala Pro Gly Lys Leu Tyr Val Ala Gly Glu Tyr
1 5 10 15
Ala Val Thr Glu Pro Gly Tyr Lys Ser Val Leu Ile Ala Val Asp Arg
20 25 30
Phe Val Thr Ala Ser Ile Glu Ala Ser Asn Ala Val Thr Ser Thr Ile
35 40 45
His Ser Lys Thr Leu His Tyr Glu Pro Val Thr Phe Asn Arg Asn Glu
50 55 60
Asp Lys Ile Asp Ile Ser Asp Ala Asn Ala Ala Ser Gin Leu Lys Tyr 65 70 75 80
Val Val Thr Ala Ile Glu Val Phe Glu Gin Tyr Ala Arg Ser Cys Asn
85 90 95
Val Lys Leu Lys His Phe His Leu Glu Ile Asp Ser Asn Leu Asp Asp
100 105 110
Ala Ser Gly Asn Lys Tyr Gly Leu Gly Ser Ser Ala Ala Val Leu Val
115 120 125
Ser Val Val Lys Ala Leu Asn Glu Phe Tyr Asp Met Gin Leu Ser Asn
130 135 140
Leu Tyr Ile Tyr Lys Leu Ala Val Ile Ser Asn Met Arg Leu Gin Ser 145 150 155 160
Leu Ser Ser Cys Gly Asp Ile Ala Val Ser Val Tyr Ser Gly Trp Leu
72 165 170 175
Ala Tyr Ser Thr Phe Asp His Asp Trp Val Lys Gin Gin Met Glu Glu
180 185 190
Thr Ser Val Asn Glu Val Leu Glu Lys Asn Trp Pro Gly Leu His Ile
195 200 205
Glu Pro Leu Gin Ala Pro Glu Asn Met Glu Val Leu Ile Gly Trp Thr
210 215 220
Gly Ser Pro Ala Ser Ser Pro His Leu Val Ser Glu Val Lys Arg Leu 225 230 235 240
Lys Ser Asp Pro Ser Phe Tyr Gly Arg Phe Leu Asp Gin Ser His Thr
245 250 255
Cys Val Glu Asn Leu Ile Tyr Ala Phe Lys Thr Asp Asn Ile Lys Gly
260 265 270
Val Gin Lys Met Ile Arg Gin Asn Arg Met Ile Ile Gin Gin Met Asp
275 280 285
Asn Glu Ala Thr Val Asp Ile Glu Thr Glu Asn Leu Lys Met Leu Cys
290 295 300
Asp Ile Gly Glu Arg Tyr Gly Ala Ala Ala Lys Thr Ser Gly Ala Gly 305 310 315 320
Gly Gly Asp Cys Gly Ile Ala Ile lie Asp Asn Arg Ile Asp Lys Asn
325 330 335
Arg Ile Tyr Asn Glu Trp Ala Ser His Gly Ile Lys Pro Leu Lys Phe
340 345 350
Lys Ile Tyr His Gly Gin 355
<210> 69
<211> 1077
<212> DNA
<213> Staphylococcus epidermidis
<400> 69 atgattcagg taaaagcccc cggaaaactt tatattgcag gcgagtatgc agtaaccgaa 60 ccaggatata aatctattct tattgcagta aatcgctttg taacggcgac aattgaggcg 120 tcaaataaag ttgaaggtag tattcattcc aaaacattac attatgaacc agttaaattt 180 gaccgtaatg aagatagaat tgaaatctca gatgttcaag ctgctaagca actgaaatat 240 gttgtgacag ctatagaagt gtttgaacag tatgtgcgca gttgcaatat gaatttaaag 300 cactttcatt taaccattga tagtaactta gcagataact ctggtcagaa gtacggatta 360 ggttcaagcg ccgctgtttt agtatctgtt gttaaagctt tgaatgaatt ctatggtttg 420
73 gaattatcaa acctttatat ttataaatta gctgtaattg caaatatgaa attacaaagt 480 ttaagttcat gtggtgatat tgcggttagt gtctacagtg gttggcttgc atatagtacg 540 ttcgaccatg actgggtgaa acagcaaatg gaagaaacat cggtgaatga tgttttggaa 600 aaaaattggc caggcttaca tatcgaacct ttacaagctc ccgaaaatat ggaagtcctt 660 attggatgga ctgggtcccc agcttcttct ccacacttag tgagtgaagt caaacgttta 720 aaatcagatc caagttttta tggtgatttt ttagatcaat ctcatgcttg tgtagaaagt 780 ttaatccaag cttttaaaac taataatatc aaaggtgttc aaaagatgat acgtataaac 840 agacgtatta ttcaatctat ggataacgaa gcatcagttg aaattgaaac agataagcta 900 aaaaaattat gtgatgtcgg tgaaaagcac ggtggcgctt ctaaaacttc aggtgctggt 960 ggtggcgatt gcggcattac tattatcaat aaggtaattg ataaaaatat tatttataac 1020 gaatggcaaa tgaatgatat caaaccattg aaatttaaaa tttaccatgg acaataa 1077
<210> 70
<211> 358
<212> PRT
<213> Staphylococcus epidermidis
<400> 70 Met Ile Gin Val Lys Ala Pro Gly Lys Leu Tyr Ile Ala Gly Glu Tyr
1 5 10 15
Ala Val Thr Glu Pro Gly Tyr Lys Ser Ile Leu Ile Ala Val Asn Arg
20 25 30
Phe Val Thr Ala Thr Ile Glu Ala Ser Asn Lys Val Glu Gly Ser Ile
35 40 45
His Ser Lys Thr Leu His Tyr Glu Pro Val Lys Phe Asp Arg Asn Glu
50 55 60
Asp Arg Ile Glu Ile Ser Asp Val Gin Ala Ala Lys Gin Leu Lys Tyr 65 70 75 80
Val Val Thr Ala Ile Glu Val Phe Glu Gin Tyr Val Arg Ser Cys Asn
85 90 95
Met Asn Leu Lys His Phe His Leu Thr Ile Asp Ser Asn Leu Ala Asp
100 105 110
Asn Ser Gly Gin Lys Tyr Gly Leu Gly Ser Ser Ala Ala Val Leu Val
115 120 125
Ser Val Val Lys Ala Leu Asn Glu Phe Tyr Gly Leu Glu Leu Ser Asn
130 135 140
Leu Tyr Ile Tyr Lys Leu Ala Val Ile Ala Asn Met Lys Leu Gin Ser 145 150 155 160
Leu Ser Ser Cys Gly Asp Ile Ala Val Ser Val Tyr Ser Gly Trp Leu
74 165 170 175
Ala Tyr Ser Thr Phe Asp His Asp Trp Val Lys Gin Gin Met Glu Glu
180 185 190
Thr Ser Val Asn Asp Val Leu Glu Lys Asn Trp Pro Gly Leu His Ile
195 200 205
Glu Pro Leu Gin Ala Pro Glu Asn Met Glu Val Leu Ile Gly Trp Thr
210 215 220
Gly Ser Pro Ala Ser Ser Pro His Leu Val Ser Glu Val Lys Arg Leu 225 230 235 240
Lys Ser Asp Pro Ser Phe Tyr Gly Asp Phe Leu Asp Gin Ser His Ala
245 250 ' 255
Cys Val Glu Ser Leu Ile Gin Ala Phe Lys Thr Asn Asn Ile Lys Gly
260 265 270
Val Gin Lys Met Ile Arg Ile Asn Arg Arg Ile Ile Gin Ser Met Asp
275 280 285
Asn Glu Ala Ser Val Glu Ile Glu Thr Asp Lys Leu Lys Lys Leu Cys
290 295 300
Asp Val Gly Glu Lys His Gly Gly Ala Ser Lys Thr Ser Gly Ala Gly 305 310 315 320
Gly Gly Asp Cys Gly Ile Thr Ile Ile Asn Lys Val Ile Asp Lys Asn
325 330 335
Ile Ile Tyr Asn Glu Trp Gin Met Asn Asp Ile Lys Pro Leu Lys Phe
340 345 350
Lys Ile Tyr His Gly Gin 355
<210> 71
<211> 945
<212> DNA
<213> Enterococcus faecium
<400> 71 atggcaaact atggccaagg agaatcaagc ggaaagatca tattgatggg cgagcacgcg 60 gttgtttatg gagaaccagc gattgccttt cctttctatg caacaaaagt caccgcattc 120 cttgaagagc tggatgcaat ggacgatcaa ctggtttctt cctactattc aggaaattta 180 gccgaagctc ctcatgcatt aaaaaatatc aaaaaattat tcattcactt aaaaaaacag 240 catgacatcc aaaaaaactt gcaactgacc attgaaagca cgattcctgc tgaacgtgga 300 atgggatcaa gcgctgcagt cgccacagca gtcactcgtg ctttttatga ttacttagca 360 tttcctttgt ctcgtgaaat actattagaa aatgtccagc tttcggaaaa aatcgcccac 420
75 ggtaatccta gtggaatcga tgcagccgct actagcagct tgcagccgat ttattttaca 480 aaagggcatc ctttcgacta cttttctttg aacatcgatg cttttttgat tgtcgctgat 540 acaggaatca aaggacaaac aagagaagcc gtcaaagatg tcgctcacct ctttgaaacc 600 cagcctcatg aaactggaca aatgatccaa aaattaggat acttgacgaa gcaagcaaaa 660 caagcaatca ttgaaaattc accagaaacg ttggcacaga caatggatga atcacaatca 720 cttctggaaa agctgacaat cagcaatgat tttcttaatc tattgatcca aacagcaaaa 780 gataccgggg cattgggtgc caaattaact ggcggtggac gcggtggctg tatgattgca 840 ttagcacaaa caaaaacaaa agcccaagaa atcagtcaag cacttgaaga tgcgggtgct 900 gctgaaactt ggatacaagg attaggagta catacctatg tttaa 945
<210> 72
<211> 314
<212> PRT
<213> Enterococcus faecium
<400> 72 Met Ala Asn Tyr Gly Gin Gly Glu Ser Ser Gly Lys Ile Ile Leu Met
1 5 10 15
Gly Glu His Ala Val Val Tyr Gly Glu Pro Ala Ile Ala Phe Pro Phe
20 25 30
Tyr Ala Thr Lys Val Thr Ala Phe Leu Glu Glu Leu Asp Ala Met Asp
35 40 45
Asp Gin Leu Val Ser Ser Tyr Tyr Ser Gly Asn Leu Ala Glu Ala Pro
50 55 60
His Ala Leu Lys Asn Ile Lys Lys Leu Phe Ile His Leu Lys Lys Gin 65 70 75 80
His Asp Ile Gin Lys Asn Leu Gin Leu Thr Ile Glu Ser Thr Ile Pro
85 90 95
Ala Glu Arg Gly Met Gly Ser Ser Ala Ala Val Ala Thr Ala Val Thr
100 105 110
Arg Ala Phe Tyr Asp Tyr Leu Ala Phe Pro Leu Ser Arg Glu Ile Leu
115 120 125
Leu Glu Asn Val Gin Leu Ser Glu Lys Ile Ala His Gly Asn Pro Ser
130 135 140
Gly Ile Asp Ala Ala Ala Thr Ser Ser Leu Gin Pro Ile Tyr Phe Thr 145 150 155 160
Lys Gly His Pro Phe Asp Tyr Phe Ser Leu Asn Ile Asp Ala Phe Leu
165 170 175
Ile Val Ala Asp Thr Gly Ile Lys Gly Gin Thr Arg Glu Ala Val Lys
76 180 185 190
Asp Val Ala His Leu Phe Glu Thr Gin Pro' His Glu Thr Gly Gin Met
195 200 205
Ile Gin Lys Leu Gly Tyr Leu Thr Lys Gin Ala Lys Gin Ala Ile Ile
210 215 220
Glu Asn Ser Pro Glu Thr Leu Ala Gin Thr Met Asp Glu Ser Gin Ser 225 230 235 240
Leu Leu Glu Lys Leu Thr Ile Ser Asn Asp Phe Leu Asn Leu Leu Ile
245 250 255
Gin Thr Ala Lys Asp Thr Gly Ala Leu Gly Ala Lys Leu Thr Gly Gly
260 265 270
Gly Arg Gly Gly Cys Met Ile Ala Leu Ala Gin Thr Lys Thr Lys Ala
275 280 285
Gin Glu Ile Ser Gin Ala Leu Glu Asp Ala Gly Ala Ala Glu Thr Trp
290 295 300
Ile Gin Gly Leu Gly Val His Thr Tyr Val 305 310
77
PCT/US2000/017262 1999-06-22 2000-06-22 Mevalonate pathway genes WO2000078935A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14051999P 1999-06-22 1999-06-22
US60/140,519 1999-06-22
US14668299P 1999-08-02 1999-08-02
US60/146,682 1999-08-02

Publications (2)

Publication Number Publication Date
WO2000078935A1 true WO2000078935A1 (en) 2000-12-28
WO2000078935A9 WO2000078935A9 (en) 2002-06-06

Family

ID=26838253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/017262 WO2000078935A1 (en) 1999-06-22 2000-06-22 Mevalonate pathway genes

Country Status (1)

Country Link
WO (1) WO2000078935A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070038A1 (en) * 2003-02-05 2004-08-19 Basf Aktiengesellschaft Mevalonate kinase as a target for fungicides
US7851199B2 (en) 2005-03-18 2010-12-14 Microbia, Inc. Production of carotenoids in oleaginous yeast and fungi
WO2012149469A1 (en) * 2011-04-29 2012-11-01 Danisco Us Inc. Production of mevalonate, isoprene, and isoprenoids using genes encoding polypeptides having thiolase, hmg-coa synthase and hmg-coa reductase enzymatic activities
WO2012149491A3 (en) * 2011-04-29 2012-12-27 Danisco Us Inc. Recombinant microorganisms for enhanced production of mevalonate, isoprene, and isoprenoids
US8691555B2 (en) 2006-09-28 2014-04-08 Dsm Ip Assests B.V. Production of carotenoids in oleaginous yeast and fungi
WO2014066892A1 (en) * 2012-10-26 2014-05-01 Coelho Pedro S De novo metabolic pathways for isoprene biosynthesis
US10662415B2 (en) 2017-12-07 2020-05-26 Zymergen Inc. Engineered biosynthetic pathways for production of (6E)-8-hydroxygeraniol by fermentation
US10696991B2 (en) 2017-12-21 2020-06-30 Zymergen Inc. Nepetalactol oxidoreductases, nepetalactol synthases, and microbes capable of producing nepetalactone

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322699A (en) * 1991-02-04 1994-06-21 The Rockefeller University Leukocyte-derived CR3 modulator, integrin modulating factor-1 (IMF-1)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322699A (en) * 1991-02-04 1994-06-21 The Rockefeller University Leukocyte-derived CR3 modulator, integrin modulating factor-1 (IMF-1)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070038A1 (en) * 2003-02-05 2004-08-19 Basf Aktiengesellschaft Mevalonate kinase as a target for fungicides
US7851199B2 (en) 2005-03-18 2010-12-14 Microbia, Inc. Production of carotenoids in oleaginous yeast and fungi
US9909130B2 (en) 2005-03-18 2018-03-06 Dsm Ip Assets B.V. Production of carotenoids in oleaginous yeast and fungi
US8691555B2 (en) 2006-09-28 2014-04-08 Dsm Ip Assests B.V. Production of carotenoids in oleaginous yeast and fungi
US9297031B2 (en) 2006-09-28 2016-03-29 Dsm Ip Assets B.V. Production of carotenoids in oleaginous yeast and fungi
CN103764814B (en) * 2011-04-29 2016-11-16 丹尼斯科美国公司 The gene encoding the polypeptide with thiolase, HMG-COA synthase and HMG-COA reductase enzymatic activity is utilized to produce mevalonic acid, isoprene and isoprenoid
WO2012149469A1 (en) * 2011-04-29 2012-11-01 Danisco Us Inc. Production of mevalonate, isoprene, and isoprenoids using genes encoding polypeptides having thiolase, hmg-coa synthase and hmg-coa reductase enzymatic activities
US8889383B2 (en) 2011-04-29 2014-11-18 Danisco Us Inc. Production of mevalonate, isoprene, and isoprenoids using genes encoding polypeptides having thiolase, HMG-CoA synthase and HMG-CoA reductase enzymatic activities
US9121038B2 (en) 2011-04-29 2015-09-01 The Goodyear Tire & Rubber Company Recombinant microorganisms for enhanced production of mevalonate, isoprene, and isoprenoids
CN103764814A (en) * 2011-04-29 2014-04-30 丹尼斯科美国公司 Production of mevalonate, isoprene, and isoprenoids using genes encoding polypeptides having thiolase, HMG-COA synthase and HMG-COA reductase enzymatic activities
WO2012149491A3 (en) * 2011-04-29 2012-12-27 Danisco Us Inc. Recombinant microorganisms for enhanced production of mevalonate, isoprene, and isoprenoids
US9752162B2 (en) 2011-04-29 2017-09-05 Danisco Us Inc. Production of mevalonate, isoprene, and isoprenoids using genes encoding polypeptides having thiolase, HMG-CoA synthase and HMG-CoA reductase enzymatic activities
US10975394B2 (en) 2011-04-29 2021-04-13 Danisco Us Inc. Recombinant microorganisms for enhanced production of mevalonate, isoprene, and isoprenoids
US10138498B2 (en) 2011-04-29 2018-11-27 Danisco Us Inc. Recombinant microorganisms for enhanced production of mevalonate, isoprene, and isoprenoids
US10364443B2 (en) 2011-04-29 2019-07-30 Danisco Us Inc. Production of mevalonate, isoprene, and isoprenoids using genes encoding polypeptides having thiolase, HMG-CoA synthase and HMG-CoA reductase enzymatic activities
WO2014066892A1 (en) * 2012-10-26 2014-05-01 Coelho Pedro S De novo metabolic pathways for isoprene biosynthesis
US10662415B2 (en) 2017-12-07 2020-05-26 Zymergen Inc. Engineered biosynthetic pathways for production of (6E)-8-hydroxygeraniol by fermentation
US10696991B2 (en) 2017-12-21 2020-06-30 Zymergen Inc. Nepetalactol oxidoreductases, nepetalactol synthases, and microbes capable of producing nepetalactone
US11193150B2 (en) 2017-12-21 2021-12-07 Zymergen Inc. Nepetalactol oxidoreductases, nepetalactol synthases, and microbes capable of producing nepetalactone

Also Published As

Publication number Publication date
WO2000078935A9 (en) 2002-06-06

Similar Documents

Publication Publication Date Title
US6268177B1 (en) Isolated nucleic acid encoding nucleotide pyrophosphorylase
WO2000078935A1 (en) Mevalonate pathway genes
US6306633B1 (en) Polynucleotides encoding mevalonate kinase from Streptococcus pneumoniae
US6451556B1 (en) EF-Tu
US6287810B1 (en) Polynucleotides encoding an undercaprenyl diphosphate synthase of staphylococcus aureus
US6270762B1 (en) tdk
US6448038B1 (en) BirA from staphylococcus aureus
US20020102700A1 (en) metK
US20020115075A1 (en) nadE
US6197546B1 (en) PcrA Helicase of Staphylococcus aureus
US6238885B1 (en) Histidine kinase
US6352840B1 (en) pskG
US6406889B1 (en) 509hk
US6194174B1 (en) Histidine kinase, 636 HK, of staphylococcus aureus
US6346395B1 (en) Nucleic acids encoding Streptococcus pneumoniae FabG
US6280990B1 (en) dnaE
US6326167B1 (en) TktA from Streptococcus pneumoniae
US20030082614A1 (en) Map
US7056697B2 (en) FabK variant
US6346396B1 (en) MurA
US20020091237A1 (en) nusB
US20010023064A1 (en) yfjO
US20020115191A1 (en) KdtB
WO2001023403A1 (en) ypga CLADE GENES
US20020048788A1 (en) FtsA

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: C2

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

COP Corrected version of pamphlet

Free format text: PAGES 1/4-4/4, DRAWINGS, ADDED

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP