WO2000075182A1 - Crystal of ribosomal recycling factor (rrf) protein and application thereof on the basis of three-dimensional structural data obtained from the crystal - Google Patents

Crystal of ribosomal recycling factor (rrf) protein and application thereof on the basis of three-dimensional structural data obtained from the crystal Download PDF

Info

Publication number
WO2000075182A1
WO2000075182A1 PCT/JP2000/003639 JP0003639W WO0075182A1 WO 2000075182 A1 WO2000075182 A1 WO 2000075182A1 JP 0003639 W JP0003639 W JP 0003639W WO 0075182 A1 WO0075182 A1 WO 0075182A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrf
protein
crystal
sat
amino acid
Prior art date
Application number
PCT/JP2000/003639
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Kaji
Anders Liljas
Original Assignee
Akira Kaji
Anders Liljas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akira Kaji, Anders Liljas filed Critical Akira Kaji
Publication of WO2000075182A1 publication Critical patent/WO2000075182A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi

Definitions

  • the present invention relates to a crystal of a ribosome recycling factor (RRF).
  • RRF ribosome recycling factor
  • the present invention also relates to a three-dimensional structure of RRF protein obtained by X-ray diffraction of the crystal.
  • the present invention relates to techniques for determining the structure of RRF mutants, homologs, and the like, and for developing next-generation antibacterial agents, antifungal agents, and herbicides by applying the structural information and mechanism of action of RRF proteins.
  • Protein biosynthesis is an essential function of all cell life activities and consists of four stages: “start”, “extension”, “termination”, and “ribosome recycling”.
  • the final step in protein biosynthesis (the fourth step) is to release the messenger—termination RNA, transfer RNA, and ribosome termination complexes, respectively, to reuse the ribosomes for the next “start” step. It ends by dissociation.
  • Escherichia coli which is a prokaryotic organism
  • this “reuse” of ribosomes is based on ribosome recycling factor (RRF) and elongation factor G (EFG) or release factor 3 (Release factory). It is known to be catalyzed by tor3).
  • RRF ribosome recycling factor
  • EGF elongation factor G
  • Release factory release factor 3
  • HIV protease is crystallized and its three-dimensional structure is known. This structure and the three-dimensional structure of the active site Based on the amino acid sequence, a compound with the highest affinity for this site was selected from compounds known from computers and its inhibitory activity was measured. By forming a co-crystal of the target protein with the active one and measuring the three-dimensional structure, it is possible to predict the compound that binds more, and this is synthesized and its inhibitory activity is measured. Then, a co-crystal of this substance and the target protein is formed again, and an extremely effective substance can be obtained by repeating the above process.
  • the present inventors have determined several gene sequences for E. coli, not only for prokaryotes, but also for eukaryotes (Japanese Unexamined Patent Publication No. 3-20079). 7, PCT / JP98 / 00734, Japanese Patent Application No. 10-150493). Therefore, the secondary structure can be estimated from the amino acid sequence obtained therefrom.
  • the current state of the art it has not been possible to identify the actual three-dimensional structure from this secondary structure.
  • each amino acid residue interacts and, in some cases, undergoes various modifications to form its steric structure. Therefore, if the three-dimensional structure of a protein is known, it is possible to create a substance that can serve as a ligand. In order to create a useful antibiotic in this sense, determination of the three-dimensional structure by crystallization is extremely important. Will have significant significance.
  • an object of the present invention is to elucidate the three-dimensional structure of RRF and to contribute to the development of various antibacterial agents, antifungal agents and herbicides.
  • FIG. 1 is a photograph showing an XRRF protein crystal.
  • FIG. 2 is a photograph showing an X-ray diffraction image of an XRRF protein crystal.
  • FIG. 3 is a photograph of an RRF drawn with a ribbon. As shown in the figure, it consists of two domains, one consisting of three helical forces, and the second domain is a complex of ⁇ _sheet and coil helix.
  • FIG. 4 is a photograph of an RRF space filling model.
  • FIG. 5 is a schematic explanatory view showing a hypothesis about the mechanism of action of RRF.
  • FIG. 6 is a graph showing that various inhibitors inhibit release of transfer RNA from the termination complex. Error bars indicate standard deviation.
  • FIG. 7 Lineweaver—Burkf showing inhibition of liposome release in the presence of various concentrations of transferred RNII. This is a graph by lot.
  • FIG. 8 shows that RRF was transferred to ribosomes in the presence of paromomycin. It is a graph which shows that binding is inhibited. Error bars indicate standard deviation.
  • ribosome 1 ... ribosome, 2 ... transferred RNA, 3 ... messenger RNA, 4 ..- RRF, 5-EFG, 6 ... termination complex.
  • the present inventors have succeeded in obtaining RRF crystals and identifying the three-dimensional structure for the first time while conducting research on RRF, and as a result of further research, completed the present invention Reached.
  • the present invention relates to a crystal of R RF protein, its production method and three-dimensional structure.
  • a method for designing a compound capable of binding to the active site or an auxiliary binding site of an RRF protein, wherein the chemical entity is evaluated by computer based on the structural coordinates obtained from the RRF protein crystal relates to the method.
  • the present invention also relates to the above method, wherein the RRF protein crystal is any one of a crystal of the RRF protein itself, a crystal of an RRF protein mutant, a crystal of an RRF protein homolog, and a crystal of a co-complex of the RRF protein.
  • the present invention also relates to the above method, wherein the RRF protein crystal is a bipyramid system.
  • the present invention relates to a method in which the RRF protein crystal is a space group. 4,2,2, or have a space group P4 3 2, 2, 2, relates to the aforementioned method.
  • the present invention also relates to the above method, wherein the RRF protein crystal has a size of 0.3X0.3X0.5 mm.
  • the present invention relates to the aforementioned method, wherein the RRF protein crystal is characterized by the structural coordinates according to Table 7.
  • the present invention also relates to the above method, wherein the RRF protein crystal is derived from Thermotoga Martinima.
  • the present invention also relates to the above method, wherein the RRF protein crystal is orthorhombic. Furthermore, the present invention relates to the above method, wherein the RRF protein crystal has a space group P2, 2, 2. Further, the present invention relates to the above method, wherein the RRF protein crystal has a size of 30 3050 ⁇ 250 ⁇ 1.
  • the present invention also relates to the above method, wherein the RRF protein crystal is derived from bacterium X.
  • the present invention relates to the above method, wherein the RRF protein crystal is crystallized by a droplet vapor diffusion method.
  • the present invention also relates to the present invention, wherein the RRF protein crystal is a heavy atom derivative, and the crystal is any one of a crystal of the RRF protein itself, a crystal of the RRF protein mutant, a crystal of the RRF protein homolog, and a crystal of a co-complex of the RRF protein.
  • the method relates to the method.
  • the present invention also relates to the above method, wherein the heavy atom derivative is formed by reaction with a compound selected from the group consisting of thimerosal, gold thiomalate, peranyl acetate, and lead chloride.
  • the present invention relates to the above method, wherein the RRF protein crystal is a heavy atom derivative of platinum or mercury.
  • the present invention also relates to the above method, wherein the RRF protein is a monomer.
  • the present invention relates to the above method, characterized by amino acid displacement according to Table 5 or Table 6 of RRF protein strength.
  • the present invention relates to the above method, wherein the compound characterized by a chemical entity binding to an active site or an auxiliary binding site is an inhibitor of RRF protein.
  • the present invention relates to the method, wherein the inhibitor is a competitive, non-competitive or uncompetitive inhibitor of RRF.
  • the present invention also relates to the above method, comprising determining the orientation of the ligand at the active or auxiliary binding site of the RRF protein.
  • the present invention relates to the above method, wherein the structural coordinates are the structural coordinates of the RRF protein according to Table 7.
  • the present invention also relates to the above-mentioned method, wherein the RRF protein is a pocket near the C-terminus located at a bent portion separating two domains of the RRF protein. Furthermore, the present invention relates to the above method, wherein the compound inhibits binding of RRF protein to ribosome or inhibits behavior of RRF protein on liposome.
  • the present invention also relates to an RRF protein inhibitor obtained by the method.
  • the present invention also relates to an activity of inhibiting the binding of RRF protein to ribosome or an activity of inhibiting the behavior of RRF protein on ribosome.
  • the present invention relates to a method for searching for a compound that can inhibit the activity of an RRF protein based on the above.
  • the present invention relates to an RRF protein inhibitor obtained by the above method.
  • the present invention also relates to a method for determining the three-dimensional structure of the RRF protein, including elucidating the crystal form of the mutant, homolog or co-complex of the RRF protein by molecular replacement.
  • the invention also relates to orthorhombic RRF protein crystals.
  • the present invention also relates to the RRF protein crystal having a space group 1 ⁇ 2,2,2. Further, the present invention relates to the RRF protein crystal having a size of 30 ⁇ 50 ⁇ 250 ⁇ m.
  • the present invention also relates to the RRF protein crystal, wherein the RRF is derived from bacterium X.
  • the present invention also relates to a bipyramid-based RRF protein crystal.
  • the present invention relates to a space group?
  • the present invention relates to the RRF protein crystal having 4, 2, 2, or a space group of 4 3 2,2.
  • the present invention also relates to the RRF protein crystal having a size of 0.3X0.3X0.5mm.
  • the present invention also relates to the aforementioned RRF protein crystals, characterized by the amino acid changes according to Table 5 or Table 6.
  • the present invention is characterized in that the RRF tank is characterized by structural coordinates according to Table 7. Related to Park crystal.
  • the present invention also relates to the RRF protein crystal, which is derived from Thermotoga Multima.
  • the present invention also relates to the RRF protein crystal, which has been crystallized by a droplet vapor diffusion method.
  • the present invention relates to the RRF protein crystal, which is any one of a crystal of RRF protein itself, a crystal of an RRF protein mutant, a crystal of an RRF protein homologue, and a crystal of a co-complex of the RRF protein.
  • the present invention also relates to the RRF protein, wherein the amino acid at the active site is selected from the group consisting of Arg110, Arg129 and Arg132 of SEQ ID NO: 1.
  • the invention also provides that the one or more amino acids in the active site or the auxiliary active site are one or more amino acids selected from the group consisting of naturally occurring amino acids, unnatural amino acids, selenocystine and selenomethionine.
  • the RRF protein has been replaced by:
  • the present invention relates to the RRF protein, wherein the hydrophilic amino acid and the hydrophobic amino acid in the active site or the auxiliary active site are substituted.
  • the present invention also relates to the RRF protein, wherein at least one cysteine amino acid is substituted with an amino acid selected from the group consisting of selenocystine or selenomethionine.
  • the present invention also relates to the aforementioned RRF protein, wherein at least one methionine amino acid is substituted by an amino acid selected from the group consisting of selenocystine or selenomethionine.
  • the present invention relates to the RRF protein, which is in a crystalline form.
  • the present invention also relates to the RRF protein having a specific activity higher or lower than that of the wild-type enzyme.
  • the present invention also relates to the RRF protein having an altered substrate specificity.
  • the invention further relates to the use of said RRF protein for measuring the binding interaction between a compound and the RRF protein.
  • the present invention provides a method for treating at least 1 The RRF protein of any of the preceding claims, wherein one or more amino acid residues have been substituted, resulting in a change in one or more charge units of surface charge.
  • RRF is an ideal target of antibacterial agents
  • the three-dimensional structure of RRF disclosed by the present invention is extremely important in industry because it is directly linked to the development of antibacterial agents and the like.
  • the primary structure of RRF of many pathogens is very similar (for example, the RRF of Pseudomonas aeruginosa has 60% homology with that of Escherichia coli)
  • the three-dimensional structure of the RRF according to the present invention is These data make it very easy to understand the three-dimensional structure of the RRF of other pathogens.
  • the present invention is applied to the development of a next-generation antibiotic, an antifungal agent and a disinfectant by inhibiting RRF, and particularly to the development of an antibacterial agent by rational derag design. It is extremely useful as an indicator.
  • RRF protein means an RRF protein that has enzymatic activity under normal conditions.
  • Naturally occurring amino acid means the L-isomer of a naturally occurring amino acid.
  • Naturally occurring amino acids include glycine, alanine, valin, leucine, isoleucine, serine, methionine, threonine, fenylalanine, tyrosine, tryptophan, cystine, proline, histidine, and aspanolaginate.
  • the amino acids in the present specification are in the form of chow.
  • Unnatural amino acid refers to an amino acid that is not found in nature in a protein.
  • unnatural amino acids used herein include racemic mixtures of selenocystine and selenomethionine.
  • non-natural amino acids there are nor-mouth isine, para-nitrophenylalanine, homophenylalanine, nora-funoleolophenylalanine, and 3-amino-2-benzylpropionic acid. And D or L-form of homoarginine and D-phenylalanine.
  • “Positively charged amino acid” includes any naturally occurring or unnatural amino acid having a positively charged side chain under normal physiological conditions.
  • Examples of positively charged natural amino acids include arginine, lysine and histidine.
  • Negatively charged amino acid includes any naturally occurring or unnatural amino acid having a negatively charged side chain under normal physiological conditions.
  • negatively charged natural amino acids include aspartic acid and glutamic acid.
  • hydrophobic amino acid is meant any amino acid having an uncharged, non-polar side chain that is relatively insoluble in water.
  • hydrophobic amino acids are alanine, leucine, isoleucine, valin, proline, phenylalanine
  • Hydrophilic amino acid means any amino acid having an uncharged polar side chain that is relatively soluble in water.
  • hydrophilic amino acids are serine, threonine, tyrosine, asparagine, glutamine and cysteine.
  • Variant refers to an RRF polypeptide characterized by at least one amino acid substitution in the RRF sequence of wild-type E. coli (ie, a polypeptide that exhibits the biological activity of wild-type RRF).
  • variants can be obtained, for example, by expression of cDNA for RRF mutated in its coding sequence by oligonucleotide-specific induction.
  • RRF mutants can be obtained by general biosynthetic methods according to Noren, CJ, etc. (Science, 224, pl82-188 (1989)) by site-specific incorporation of unnatural amino acids into RRF proteins. be able to.
  • Selenocystin or selenomethionine is incorporated into wild-type or mutant RRF by expression of a cDNA encoding the RRF in an auxotrophic E. coli strain.
  • the wild-type or mutant RRF cDNA does not contain the power of natural cysteine or natural methionine (or both) and is grown on a growth medium enriched for selenocystine or selenomethionine (or both). Can be expressed in different hosts.
  • selenomethionine can be incorporated into wild-type or mutant RRF by the method of inhibiting methionine metabolism (J. B. by Van Dyne GD, 229 ppl05 (1993)).
  • change in surface charge is meant a change in one or more charge units of a variant polypeptide at physiological pH compared to wild-type RRF. This can preferably be obtained by mutation of at least one or more wild-type RRFs into amino acids containing side chains having a different charge from the wild-type side chain at physiological pH in the amino acid. The change in surface charge is determined by measuring the isoelectric point of the polypeptide with the substituted amino acid and comparing this with the isoelectric point of the wild-type RRF molecule.
  • “Change in substrate specificity” refers to a change in the substrate of a mutant RRF as compared to a wild-type RRF.
  • Substrate specificity is determined by separating ribosomes, tRNAs, and EF-G from pathogenic bacteria and determining whether they can serve as substrates for RRF and RRF variants of E. coli.
  • Kermic form refers to the state of the enzyme in free or unbound form or the state of the enzyme bound to a chemical entity at either its active site or ancillary active site.
  • a “competitive” inhibitor is one that inhibits RRF activity by binding to the same kinetic form of the RRF as the substrate of the RRF binds, and thus directly competes with the active site of the RRF.
  • “Uncompetitive” inhibitors are inhibitors that inhibit RRF by binding to a different kinetic form of RRF than the substrate binds to.
  • a “non-competitive” inhibitor is an inhibitor that binds to either the free or substrate-bound form of RRF.
  • homolog is meant a protein having at least 30% homology of the amino acid sequence with RRF or any functional domain of RRF.
  • co-complex is meant a RRF or a variant or homologue of an RRF covalently or non-covalently linked to a chemical entity or compound.
  • “/ 3-sheet” refers to the conformation of a polypeptide chain that extends into an expanded zigzag conformation. All parallel polypeptide chains extend in the same direction. Polypeptide chains extending antiparallel extend in the opposite direction to the parallel lines.
  • the substrate binding site is the site where the ribosome and its complex bind, and the site where degradation of the substrate occurs.
  • the active site is at least near amino acid residues 110, 129 and 132 using SEQ ID NO: 1. It is.
  • “Structural coordinates” refers to mathematical coordinates obtained from mathematical expressions relating to the pattern obtained by diffraction of an X-ray monochromatic beam by atoms (dispersion centers) of RRF molecules in a crystalline form. The variance data is used to calculate an electron density map of the repeating unit of the crystal, and the electron density map is used to establish the position of each atom within the unit cell of the crystal.
  • Heavy atom derivative refers to a chemically modified form of an RRF protein crystal.
  • heavy metal atom salts or organometallic compounds eg, lead chloride, gold thiomaleate, thyromesal or peranil acetate
  • the position (s) of the bound heavy metal atom (s) can be determined by X-ray diffraction analysis of the immersed crystal. This information is then used to create the phase information used to construct the three-dimensional structure of the enzyme. It will be appreciated by those skilled in the art that the set of structural coordinates determined by X-ray crystallography has a standard error.
  • a "unit cell” is a basic parallelepiped shaped block.
  • the total volume of the crystal can be constructed by repeated regular stacking of such blocks.
  • Space group refers to the arrangement of target elements of a crystal.
  • “Molecular substitution” means that the structural coordinates (for example, the structural coordinates in Table 7) of another unknown crystal are known in the unit cell of the unknown crystal so as to be optimal for explaining the observed diffraction pattern of the unknown crystal. It refers to a method that includes the step of orienting and positioning a molecule to create a tentative model of an RRF crystal whose structural coordinates are not known. Then the phase is calculated from this model and combined with the observed amplitude, An approximate Fourier composition of a structure whose coordinates are not known is obtained. It can then be applied to the purified material to finally obtain the exact unknown crystal structure.
  • the structural coordinates of the RRF it is possible to determine the structural coordinates of a mutant, homolog, co-complex or different crystal structure of the RRF by using molecular replacement. Crystallization and structural analysis were performed using RRF derived from X bacterium and RRF derived from Thermotoga Mitima, but the same can be performed for other RRFs. In crystallization, not only the RRF protein itself, but also RRF protein mutants, RRF protein homologs, and RRF protein co-complexes can be crystallized and their structures analyzed.
  • Pocket refers to a dent on the surface of the RRF protein, which binds to a substrate or the like in the expression of RRF activity, in addition to a binding pocket present in the binding site of the RRF protein or an auxiliary binding site. Include other pockets that are not involved in
  • the present invention provides, for the first time, a crystal of RRF of X bacterium and Thermotoga Maritima RRF and a structure of the RRF determined from the crystal.
  • Table 7 shows the structural coordinates of the RRF.
  • the crystal backing indicates that the RRF is monomeric.
  • Figure 3 shows a ribbon drawing of the Thermotoga Maritima RRF.
  • Helixes A, B, D, E, and F indicate a helix present from the N-terminus to the C-terminus.
  • ⁇ -sheets 1, 2, 3, 4, 5, and 6 are / 3-sheet numbers that exist from the ⁇ ⁇ ⁇ end to the C end.
  • the RRF is composed of two domains, one is composed of three helices, and the second domain is a complex of ⁇ -sheet coil and helix.
  • the active site spans the E and F helices in the figure, and maintains the three-dimensional structure of the domain containing helices B, C, D, / 3-sheets 1, 2, 3, 4, and 5 to maintain activity. Is important.
  • Figure 4 shows the space filling model of the Thermotoga Maritima RRF, where N and C are Shows the N-terminal and C-terminal, respectively. Gray indicates carbon, red indicates oxygen, purple indicates N atom, numbers indicate amino acid sequence number, and 1 is N-terminal.
  • the active site portion contains at least the amino acid residues Arg110, Arg129, and Arg132 of SEQ ID NO: 1.
  • the present invention enables, for the first time, the use of molecular design techniques to design, select and synthesize chemical entities and compounds with respect to RRF.
  • Chemical entities and compounds include inhibitory compounds that can bind to all or a portion of the active or auxiliary binding site of the RRF.
  • the structural coordinates of the RRF are used to design compounds that bind to the enzyme and to modify the physical properties (eg, solubility) of the compound in various ways. You.
  • the present invention allows for the design of compounds that act as competitive inhibitors of RRF by binding to all or a portion of the active site of the RRF.
  • the present invention also allows for the design of compounds that act as uncompetitive inhibitors of RRF.
  • inhibitors can bind to all or a portion of the auxiliary binding site of the RRF already bound to the substrate, and are more potent and more potent than competitive inhibitors, which only bind to the RRF active site. Can be non-specific. Similarly, non-competitive inhibitors that bind to and inhibit RRF, whether or not bound to another chemical entity, can be designed using the structure coordinates obtained according to the present invention.
  • a second design approach is to identify RRF crystals with molecules of various chemical entities in order to determine the optimal site for interaction between a candidate RRF inhibitor and RRF. For example, high-resolution X-ray diffraction data collected from solvent-saturated crystals allows the location of each type of solvent molecule to be determined. Small molecules that bind tightly to these sites can then be designed and synthesized, and tested for inhibitor activity (Travis, J., Science, 262, pl374 (1993)).
  • the present invention also provides for the reaction of a substrate or other compound that binds to the RRF with the RRF. It is useful in the design of improved analogs of RF inhibitors or in the design of new classes of inhibitors based on reaction intermediates of RRF and RRF inhibitor co-complexes. This provides a novel tool for designing RRF inhibitors with both high specificity and high stability.
  • Another approach enabled and facilitated by the present invention is the computer screening of chemical entities or compounds that can be wholly or partially bound to the RRF.
  • the properties of the fit of such an entity or compound to the binding site can be determined either by shape complementarity or by estimated interaction energies (Meng, EC et al. J. Comp. Chem. , 13, 505-524 (1992)).
  • the structural coordinates of the RRF, or portions thereof, as provided by the present invention will analyze the structure of other crystalline forms of the RRF Especially important for.
  • the structural coordinates of the RRF, or a portion thereof may be the structure of the RRF variant, the structure of the RRF co-complex, or the crystalline form of any other protein having an amino acid sequence that is significantly homologous to any functional domain of the RRF. Can also be used to analyze the structure.
  • the unknown crystal structure may be a crystal form of another form of RRF, an RRF variant or RRF co-complex or any other protein having an amino acid sequence that is significantly homologous to any functional domain of RRF.
  • RRF the structural coordinates of the RRF of the present invention as provided in Table 7. This method provides an accurate structural morphology for an unknown crystal more quickly and efficiently than trying to determine such information from scratch.
  • the RRF variant can be crystallized in a co-complex with a known RRF inhibitor.
  • the crystal structure of such complexes can then be solved by molecular replacement and compared to the crystal structure of wild-type RRF.
  • potential sites for modification within the various binding sites of the enzyme can be identified.
  • a means to determine the most effective binding interactions (eg, increased hydrophobic interactions) between the RRF and the chemical entity or compound I will provide a.
  • the structural coordinates of the RRF provided herein also facilitate the identification of related proteins, enzymes or M that are similar in function, structure, or both, to the RRF. Active sites such as serial similar protein, can more accurately estimate the binding sites and the like, a new antimicrobial agent, that connected to herbicides or antifungal agents.
  • Non-covalent intermolecular interactions that are important for the binding of RRF to its substrate include hydrogen bonding, van der Waals forces, and hydrophobic interactions.
  • the compound must be able to assume a conformation that allows it to bind to the RRF. Certain portions of the compound are not directly involved in binding to this RRF, but those portions can still affect the entire conformation of the molecule. This also has a significant effect on efficacy.
  • the prerequisites for such a conformation include the chemical entity or the entire three-dimensional structure and orientation of the compound for all or some of the binding sites (eg, the active or auxiliary binding site of the RRF), or the RRF. Examples include the spacing between functional groups of a compound that contains some chemical entity that interacts directly.
  • the potential inhibitory or binding effect of a chemical compound on RRF can be analyzed before it is actually synthesized, and using computer modeling techniques. Can be used for testing. If the theoretical structure of a given compound indicates that there is insufficient interaction and binding between that compound and RRF, the synthesis and testing of that compound can be avoided. However, if computer modeling suggests a strong interaction, the molecule is synthesized, and the method of Hirashima and Kaji (Bi ochemi stry, ⁇ , 4037, (1972)) or using oligonucleotides and in vivo Can be tested for its ability to inhibit by screening in Japan (Japanese Patent Application No. 10-158643). By this method, synthesis of ineffective compounds can be avoided.
  • Inhibitory compounds of RRF or other binding compounds of RRF can be evaluated computationally and chemical entities or fragments screened for their ability to bind to individual binding pockets or other regions of RRF. It can be designed by means of cleaning and a series of selected steps.
  • a chemical entity or fragment may be referred to as an RRF, more specifically, an individual binding pocket of a binding site or an auxiliary binding site of an RRF, or another pocket that is not involved in binding to a substrate or the like in expressing RRF activity.
  • RRF chemical entity or fragment
  • One of several ways to screen for their ability to combine with can be used. This process can be started by visual examination of active sites, for example, during computer screening based on the RRF coordinates in Table 7. For example, as shown in the drawing by the ribbon in Fig. 3, the RRF with an “L” shape has a pocket near the C-terminal located at the “L” bend that separates the two domains. However, compounds that bind to this pocket can be potential candidates for RRF inhibitory compounds.
  • the above-mentioned pockets can be easily observed by creating a space filling model using software such as Rasmol based on the RRF coordinates shown in Table 7. This pocket is located between the two domains of RRF, suggesting that it may be involved in the activity of RRF through regulation of the angle between the domains.
  • the selected fragments or chemical entities can then be located in various orientations or can be linked to individual binding pockets of the RRF. Coupling can be accomplished using software such as Quanta and Sybyl, and then using standard molecular mechanics force fields (eg, CHARMM, AMBER). Perform energy minimization and molecular dynamics.
  • Specialized computer programs can assist in the process of selecting fragments or chemical entities. Examples of these programs include:
  • uRID uoodiora, P. j., A omputat lonal Procedure for Determining tnerget ically Favorable Binding Sites on Biologically Important Mac romolecules ", J. Med. Chem., 28, pp. 849-857 (1985)) Is available from Oxford University, oxford, UK MCSS (Miranker, A and M, Karplus, "Functionality Map of Binding Sites: A Multiple Copy Simultaneous Search Method., Proteins-Structure, Function and Genetics, 11, pp. 29-34 (1991)), which is available from Molecular Simulations, Burlington, MA. AUT0D0CK (Goodsell, DS and ⁇ J.
  • CAVEAT Bartlett, PA et al, "CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologiccal ly Active Molecules", Molle cular Recognition in Chemical and Biological Problems ", Royal Chem. So, 78, pp. 182-196 (1989)), which is the University of Carifornia,
  • MACCS 3D (3D Database systems such as MDL Information Systems, San Diego, CA; this area is described in Martin, Y. C., "3D Database Searching in Drug Design", J. Med. Chem., 35, pp. 2 145-2154 (1992) H00K (available from Molecular Simulations, Burlington, MA).
  • the inhibitory compound or other RRF-binding compound may have an active site (or, if necessary, known) from the RRF. (Including some portions of the inhibitors).
  • LUDI Bohm, HJ, "The Computer Program LUDI: A New Method for the de novo Design of Enzyme Inhibitors", J. Comp, Aid, Molec, Design, 6 pp. 61-78 (1992), which is Biosym Technologies, Available from San Diego, CA LEGEND (Nishibata, Y. and A. Itai, Tetrahedron, 47, p. 8985 (1991), available from Molecular Simulations, Burlington, MA. LeapFrog ( Tripos Associates, St. Louis, MO Power, etc. Available Ht.
  • the effectiveness with which the compound can bind to the RRF can be tested by computer evaluation and optimized.
  • a compound designed or selected to function as an RRF inhibitor depending on the active site when binding to a natural substrate Capacity that does not overlap with the capacity occupied should preferably be considered.
  • An effective RRF inhibitor should preferably show a relatively small difference in the energy between its bound and free states (ie, small binding strain forces. Therefore, the most effective RRF inhibitors
  • the RRF inhibitor should be designed with a binding strain of no more than about 10 kcal / mol, preferably no more than about 7 kcal / mol. In their conformation, they can interact with the enzyme, in which case the strain force of the bond is between the energy of the free compound and the average energy of the conformation observed when the inhibitor binds to the enzyme. Makes a difference.
  • Compounds designed or selected to bind to RRF, in their bound state, are preferably optimized by the computer to have no repulsive electrostatic interaction with the target enzyme.
  • Such non-complementary (eg, electrostatic) interactions repel, charge-charge, dipole-dipole, and charge-dipole interactions.
  • the sum of all electrostatic interactions between the inhibitor and the enzyme when the inhibitor binds to RRF makes a neutral or favorable contribution to the enthalpy of binding.
  • Certain computer software is available in the art to evaluate compound strain forces and electrostatic interactions. Examples of programs designed for such uses include Gaussian 92C, MJ Frisch, Gaussian, Inc., Pittsburgh, PA 1992; AMBER, version 4.0 PA Kollman, University of California, San Francisco, 1994; QUANTA / CHARMM Molecular Simulat ions, Inc, San Diego, CA 1994 and the like. These programs can be executed using a general-purpose computer such as Silicon Graphics IRIS 4d / 35 or IBM RISC / 6000 Model550. Other hardware and software are known to those skilled in the art.
  • substitutions are then made on some of the atoms or side chains of the compound to improve or modify its binding properties.
  • the first substitution is conservative. That is, the substituent has approximately the same size, shape, hydrophobicity, and charge as the original group. In the field Compounds known to alter the conformation should be avoided.
  • the chemical compounds so substituted are then analyzed for potency compatible with the RRF in a manner similar to the computational methods described above.
  • the present invention also allows for variants of RRF and elucidation of their crystal structure. More specifically, the present invention allows the identification of the desired site for mutation by the location of the active site, auxiliary binding site and interface of the RRF based on the crystal structure of the RRF.
  • the mutation can be directed to a particular site or combination of only the wild-type RRF site, ie, the active site or the auxiliary binding site.
  • a location on the interface site is selected for mutagenesis.
  • only positions on or near the enzyme surface can be replaced, resulting in a change in the surface charge of one or more charged units as compared to the wild-type enzyme.
  • the amino acid residues of the RRF can be selected based on their hydrophilic or hydrophobic characteristics.
  • Such variants are characterized by any of several different properties as compared to the wild-type RRF.
  • a variant may have a change in the surface charge of one or more charged units, or may have increased stability to subunit dissociation.
  • such a mutant may have an altered substrate specificity as compared to the wild-type RRF, or may have a higher or lower specific activity than the wild-type RRF.
  • the RRF variants prepared according to the present invention can be prepared by a number of methods.
  • a wild-type RRF sequence can be mutated using the present invention at the site identified as desirable for mutation by oligonucleotide-directed mutagenesis or other conventional techniques (eg, deletion, etc.).
  • variants of RRF can be created by site-specific substitution of a particular amino acid with a non-naturally occurring amino acid.
  • RRF variants can be made by replacing amino acid residues, ie, specific cysteine or methionine residues, with selenocysteine or selenomethionine.
  • Mutations can be introduced into the DNA sequence encoding the RRF using synthetic oligonucleotides. These oligonucleotides contain nucleotide sequences flanking the desired mutation site. Mutations can be made in the full length DNA sequence of the RRF, or the RRF or the RRF sequence of other organisms, shortened or lengthened (deleted or added).
  • mutated RRF DNA sequences produced by the methods described above or alternative methods known in the art can be expressed using expression vectors.
  • expression vectors typically include an element that enables autonomous replication in the host cell independent of the host genome, and one or more phenotypic markers for selection purposes.
  • the expression vector also encodes a promoter, an operator, a ribosome binding site, a translation initiation signal, and, optionally, a libresor gene and a termination signal, before or after the insert of the DNA sequence surrounding the desired RRF variant coding sequence. Contains regulatory sequences.
  • a nucleotide coding for a signal sequence can be inserted before the RRF mutant code sequence.
  • the desired DNA sequence must be operably linked to the regulatory sequences. That is, a DNA sequence encoding the RRF variant and maintaining an appropriate reading frame that allows expression of this sequence under the control of a regulatory sequence and production of the desired product encoded by the RRF sequence. Must have an appropriate start signal before the.
  • a wide variety of well-known and available expression vectors are all useful for expressing the mutated RRF coding sequences of the present invention. These include, for example, various known derivatives of SV40, known bacterial plasmids (eg, plasmids from E. coli including colEl, pCR1, pBR322, pMB9 and derivatives thereof).
  • Plasmids of wider host range eg, RP4, phage DNA (eg, derivatives of many phage (eg, NM989) and other DNA phages (eg, M13 and filamentous single-stranded DNA phage)
  • 2 Yeast plasmids such as ⁇ plasmid or their derivatives and plasmids and It should consist of segments of chromosomal, non-chromosomal and synthetic DNA sequences, such as vectors obtained from combinations of phage DNAs (eg, phage DNA or plasmids modified to utilize other expression control sequences). Includes turtles. In a preferred embodiment of the present invention, we utilize the E. coli vector.
  • any of a wide variety of expression control sequences that control expression when operably linked to a DNA sequence may be used in these vectors to express a mutated DNA sequence according to the present invention.
  • useful expression control sequences include, for example, the early and late promoters of SV40 for animal cells, the lac, trp, TAC or TRC systems, and the ⁇ phage regulatory region of the fd coat protein.
  • Major operator region and promoter region all for E.
  • a wide variety of host species are also useful for producing mutant RRFs according to the present invention.
  • these hosts include bacteria such as E. coli, Bacillus and Streptomyces, fungi such as yeast, animal cells such as CH0 cells and COS-1 cells, plant cells, and transgenics.
  • bacteria such as E. coli, Bacillus and Streptomyces, fungi such as yeast, animal cells such as CH0 cells and COS-1 cells, plant cells, and transgenics.
  • Host cells In a preferred embodiment, the host cell is E. coli.
  • the host must be compatible with the selected vector, have the toxicity of the modified RRF to the host, have the ability to secrete mature products, have the ability to properly fold the protein, have the fermentation requirements, have the ease of purifying the modified RRF from the host, Should be selected based on safety considerations.
  • one of skill in the art can select various vector / expression control Z host combinations that can produce useful amounts of mutant RRF.
  • Mutant RRF produced in these systems can be purified by a variety of conventional processes and strategies, including those used to purify wild-type RRF and strategies.
  • the mutant can be tested for any of several properties of interest.
  • mutants can be screened for changes in charge at physiological pH. This is determined by measuring the isoelectric point of the mutant RRF compared to the isoelectric point (pi) of the wild-type parent. The isoelectric point is determined by gel electrophoresis according to the method of Wellner, D. Analyt. Chem. 43. P 597 (1971). Variants with altered surface charge are RRF polypeptides having a substituted amino acid located on the surface of the enzyme and an altered pi, as provided by the structural information of the present invention.
  • variants can be screened for higher or lower specific activity compared to wild-type RRF. Mutants are measured for activity using the method of Hirashima and Kaji and Atsushi (supra) using oligonucleotides. Mutants can be tested for changes in RRF substrate specificity by measuring the RRF response as described above.
  • a further object of the present invention includes variants with increased stability.
  • RRF variants with increased stability include those that do not show loss of enzyme activity.
  • Example 1 Crystallization of RRF protein of fungus X by the hanging drop vapor ditt'usion technique
  • the glass container with which the RRF protein solution comes into contact is used after its surface is subjected to a hydrophobic treatment.
  • XRRF crystals were obtained by dialysis against a buffer solution of Tris hydrochloride 100 mM ⁇ 8.5 sulfate 150 mM to 200 mM, polyethylene dalicol 28% to 36%. The crystals grew to a size of 30X50X250 im in one to three weeks. Figure 1 shows the results.
  • Example 2 Three-dimensional structure of RRF by X-ray diffraction analysis
  • a multiple isomorphous replacement procedure was used as a means for determining the three-dimensional structure of the RRF. This is the standard method necessary to obtain diffusion data from isotopic protein crystals due to heavy atoms. From the position of the heavy atom, the difference between the unsubstituted isotope and the isotope was calculated on a Patterson map. The data of the initial protein phase necessary for the calculation of the electron density map for the creation of the protein model was calculated using several types of derivatives.
  • This asymmetric unit belonging to 2 contains 2 to 4 molecules, with 0.5, 0.33, and 0.5 translations between each molecule. Data were obtained for two derivatives, the platinum derivative diffracted to 4.OA and the mercury derivative to 3.8A.
  • the RRF cDNA of Thermotoga Maritima was cloned into an expression vector (PET1650) and expressed in E. coli by adding IPTG.
  • PTT1650 expression vector
  • high levels of Thermotog a Maritima RRF accumulated in host cells.
  • the cells were mechanically disrupted and purified by a modification of the method of Hirashima and Kaji (Biochemistry, ⁇ , 4037, (1972)) to obtain Thermotoga Maritima RRF.
  • RRF crystals were grown by vapor diffusion.
  • the position of the selenium atom in the RRF was determined by using the shelx program (sheldrick, GM Acta Cryst. A46 P467 (1998)), and using the normalized structure factor. Heavy atom (selenium) parameters were refined using MIphase (CCP4). When I asked the electron density map in both the space group 1 ⁇ 4,2,2 and ⁇ 4 3 2,2, space group correct, it has become clear that it is ⁇ 42,2. Average merit values ranged from 0.66 0.6 to 4.OA. Table 2 shows the crystal data of Thermotoga Maritima RRF. Table 2 Data collection
  • ⁇ 1> is the average intensity of centrally symmetric reflection.
  • Table 3 shows the results of the statistical processing of the Thermotoga Maritima RRF crystal data.
  • RRF variants were generated to deduce the location of the active site in the RRF molecule. Mutagenesis was introduced using an error-prone PCR method (Janosi et al EMBO J. 17 1141 (1998)).
  • Plasmid having frr (gene encoding RRF) having a lethal mutation was isolated as follows. The pMIX described in EMBO J. 17 1141 (1998) by Janosi et al. Was used. Briefly, pMIX caused various genetic mutations in frr and introduced them into chloramphenicol-resistant plasmid. In this example, E. coli LJ4 (recA_) was used as a host. Escherichia coli is kept alive by the wild-type frr on pPEN (1560) (Janosi et al. EMBO JU 1141 (1998)) because this fungus is inactivated by frr on the chromosome due to frameshifting. . pPEN (1560) has a kanamycin resistance factor and sucrose ill sucrose sensitivity gene 's'.
  • the E. coli was transformed with pMIX and selected for chloramphenicol resistance as a marker. Since frr is indispensable to bacteria, bacteria having a lethal mutation in pMIX cannot survive without pPEN1560. Therefore, bacteria having both pMIX and PPEN1560 plasmids were searched. By the way, both pMIX and PPEN1560 plasmids do not coexist because they are usually incompatible, but coexist when required (need for antibiotic marker and frr) as described above. To select such Escherichia coli, the transformant is spread on a plate containing CM and sucrose, and then replica-plated on a plate containing CM and KM. To go.
  • bacteria that have lethal frr in pPEN1560 and pMIX can be selected. Since this bacterium has pPEN1560, it cannot grow on plates containing sucrose. Each plasmid was purified from the 153 transformants thus obtained, and used to transform Escherichia coli DH5 (having wild type frr). Since this bacterium has a wild-type frr as described above, it does not require pPEN1560 (kanamycin resistance). Therefore, by selecting Escherichia coli DH5a which is sensitive to kuram ramphenicol and kanamycin, Escherichia coli having lethal mutation and having pMIX can be selected.
  • Plasmid was isolated from the Escherichia coli thus obtained, and a Kpnl-Hindlll fragment (0.9 kb, frr) was taken out and subjected to DNA sequencing by a conventional method. Table 5 shows the results.
  • LJ4 was used as a host for this purpose. This host can be present at 27 ° C due to the plasmid pKH6 with frrl4 as frr on the chromosome does not function as described above.
  • This Escherichia coli is naturally temperature-sensitive because it lives by frr14 (encoding a temperature-sensitive RRF). Which grow the E. coli 42 ° C at a rate of the growing 4.2x 10- 6 Letting and 2 7 ° C the natural reversion rate was obtained. Among these Escherichia coli, those that became temperature-sensitive again when plasmid was replaced with one having tsfrr (pKH6) were selected, and the DNA sequence of the frr portion was determined by a conventional method. In all of the obtained frr, the genetic mutation of frr, Val 117 Asp, was reverted to wild-type palin, but some of them showed mutations at amino acid positions other than position 117. These mutations had no effect on frr function. This mutation is shown in Table 6.
  • RRF a mutation that restores the temperature sensitivity of a gene
  • NA —, W1-wild cattle type
  • tS temperature sensitivity
  • tr temperature tolerance
  • RRF4 binds to the aminoacyl site (A site) of the termination complex 6 (a) consisting of transfer RNAs 2a and 2b, messenger RNA 3 and ribosome 1.
  • EFF5 with GTP is bound to RRF4.
  • Transfer RNAs 2a and 2b are bound to the peptidyl site (P site) and the release site (exit site) (E site) of ribosome 1, respectively (b).
  • EFG5 ribosome-dependent GTP hydrolysis and translocation of the RRF4 bound to the A site to the P site is triggered by EFG5.
  • Aminoglycosides such as streptomycin, paromomycin, and gentamicin are known to inhibit the binding of translocated RNA to the A site by binding to the A site of the ribosome (Moazed, D. & Noller, HF Nature 327, 389-394 (1987); Fourmy, D., Yoshizawa, S. & Puglisi, JDJ Mol. Biol. 277, 333-345 (1988)); Yoshizawa, S., Fourmy, D. & Puglisi, JD EMBO J.17, 64 37-6448 (1988)). Therefore, according to the model in FIG.
  • the aminoglycosides should also inhibit the binding of RRF to the A site, and if such binding is inhibited, the dissociation process of the termination complex by RRF will be inhibited. Should be. Therefore, whether or not the dissociation process of the termination complex is inhibited in the presence of the above aminodaricosides was examined using the amount of transfer RNA released from liposomes and the amount of liposome released from messenger RNA as indicators. Was.
  • the released transfer RNA was separated from the termination complex by centrifugation at 330 G for 40 minutes using Microcon 100 (trade name, manufactured by Millipore).
  • Knocker J tris-CI 10 mM, pH 7.6, magnesium sulfate 10 mM, ammonium chloride 50 mM, DTT 0.5 mM was added to the above Microcon 100.
  • the filter was washed once by pouring 550 ⁇ l and centrifuging.
  • the combined washing solution and filtrate were centrifuged twice at 1,500 G for 15 minutes using Microc o ⁇ 30 (Mil 1 ipore, trade name) to obtain 1 It was concentrated to 41.
  • the concentrated transfer RNA was added to 30 ⁇ l of buffer solution (Tris_C 150 mM, pH 7.8, magnesium acetate 10 mM, 3_mercaptoethanol 6 mM, ATP 3 mM, phosphoenoenoside).
  • Monorubic acid 5 mM, pyruvate kinase 1 38 ⁇ g, aminosyltransferred RNA synthase 33.3 ⁇ g (Momose, K. & Kaji, A. Arch. Biochem. Biophys. Ill. 245-252 (1965))), a mixture of 14 C-amino acids (Amersham, 52 mCi / mg carbon atom) dissolved in 0.15 Ci And aminoacylated.
  • the radioactivity insoluble in cold trichloroacetic acid (4 ° C) obtained in this way corresponds to 14 C-aminoacyl-transferred RNA, and its amount is determined by a known amount of transfer RNA labeled by the same method. Was calculated based on the radioactivity.
  • As aminoglycosides those manufactured by Sigma were used.
  • the termination complex was obtained from a natural polysome of E. coli treated with puromycin (Hirashima, A. & Kaji, AJ Biol. Chem. 248, 7580-7587 (1973)).
  • each ribosome in the isolated polysome is in a stage after the completion of translocation and generally carries two molecules of transfer RNA (Remme, J., Margus, T., Villems, R. & Nierhaus, KH Eur. J. Biochem. 183, 28 g 284 (1989); Stark, H. et al. Cell 88, 19-28 (1977)).
  • Fig. 6 shows the results.
  • the positive control is the value when RRF, EFG and GTP were added without adding the aminoglycosides
  • the negative control was the aminoglycosides, RRF, £ ⁇ and 0 Are the values when none of the above was added.
  • aminoglycosides streptomycin, paromomycin or gentamicin were added to give 100, 5 and 5 ⁇ 5, respectively. Next, 15 to 30 in buffer J. /. The above buffer solution was incubated on 5 ml of sucrose with a density gradient, and the mixture was incubated at 4 ° C, 75 minutes, 4 ° C using Beckman SW 50.1. Centrifuge. Absorbance at 254 nm
  • Table 7 shows the results.
  • the values in Table 7 are the percentages of the concentration of 70S liposome released in the presence of aminoglycosides and the concentration of free 70S ribosome without aminoglycosides (control). It is expressed in the context. In the control, about 42% of all ribosomes (almost 90% of polysomes) were converted to monosomes by RRF. Table 7 By RRF and EF-G in the presence of various inhibitors
  • Thiostrepton and biomycin are both EFG inhibitors and are known to inhibit the translocation of transfer RNA (Pestka, S.B. iochem. Biophys. Res. Comraun. 40, 667-674 (1970); Rodnina, MV, Savel sbergh, A., Katunin, VI & Wintermeyer, W. Nature 385, 37-41 (1997); Rodn ina, MV et al. Pro Natl. Acad. Sci. USA 96, 9586-9590 (1999)).
  • transfer RNA Pestka, S.B. iochem. Biophys. Res. Comraun. 40, 667-674 (1970); Rodnina, MV, Savel sbergh, A., Katunin, VI & Wintermeyer, W. Nature 385, 37-41 (1997); Rodn ina, MV et al. Pro Natl. Acad. Sci. USA 96, 9586-9590 (1999)).
  • RNA from the P and E sites that should occur, and thus the dissociation process of the termination complex by RRF should also be inhibited. Therefore, whether or not the dissociation process of the termination complex is inhibited in the presence of thiostrepton or biomycin is determined by measuring the amount of transfer RNA released from liposomes and the amount of liposomes released from messenger RNA. I investigated.
  • RNA from ribosomes Release of RNA was examined in the same manner as in Example 4, except that thiostrepton (Sigma) or biomycin (ICN) was added instead of amidglycosides.
  • Thiostrepton and biomycin were added at 100 ⁇ M and 200 / X M, respectively.
  • Figure 6 shows the results.
  • the release of ribosomes from messenger RNA can be achieved by adding DMSO to the reaction mixture at the point where thiostrepton or biomycin is added instead of amide glycosides and when thiostrepton is added. Except for the addition, it was examined in the same manner as in Example 4. Thiostrepton and biomycin were added at 20 ⁇ M and 50 ⁇ M, respectively. Table 7 shows the results.
  • FIG. 6 shows that in the presence of thiostrepton or biomycin, the release of metastatic RNA was inhibited to a value equivalent to that of the negative control.
  • Table 7 shows that the release of ribosome is completely inhibited in the presence of thiostrepton or biomycin.
  • GMP PCP and fusidic acid are both EFG inhibitors and are terminated by immobilizing EFG on liposomes after translocation of transfer RNA It is known to inhibit the dissociation of RNA, while allowing translocation of transfer RNA only once (Inoue-Yokosawa, N., Ishikawa, C. & Kaziro, YJ Biol. Chem. 249, 4321-4323 (1974); Rodnina, MV, Savelsberg, A., Katunin, VI & Wintermeyer, W. Nature 385, 37-41 (1997); Bodley, J. W., Zieve, FJ, Lin, L.
  • GMP PCP and fusidic acid allow translocation of the RRF bound to the A site to the P site, so that GMP PCP and fusidic acid are released from the P site and E site that accompany the translocation. Transfer RNA release should not be inhibited.
  • GMP PCP and fusidic acid should inhibit the dissociation of the ribosome from messenger RNA because they inhibit the dissociation of the termination complex. Therefore, it was examined whether or not the release of transfer RNA from ribosomes and the release of liposomes from messenger RNA were inhibited in the presence of GMP PCP or fusidic acid.
  • Transfer from ribosome RNA is released by adding GMP PCP (manufactured by Sigma) or fusidic acid (manufactured by ICN) instead of amidoglycosides and without GTP when GMP PCP is added.
  • GMP PCP manufactured by Sigma
  • fusidic acid manufactured by ICN
  • ribosomes from messenger RNA also depends on the fact that GMP PCP or fusidic acid was added instead of amide glycosides, and that when GMP PCP was added, experiments were performed in the absence of GTP. Except for this, the procedure was the same as in Example 4. GMP PCP or fusidic acid was added so as to be 3700 ⁇ M and 200 ⁇ M, respectively. Table 7 shows the results.
  • RRF may exhibit termination complex dissociation activity by exhibiting behavior similar to that of transfer RNA.Furthermore, the release of transfer RNA and ribosome release are separately inhibited. The fact that can be done supports the model shown in FIG. 5, in which the dissociation of the termination complex proceeds stepwise by EFG and RRF.
  • Example 4 strongly suggested that the expression of RRF activity required RRF to bind to the A site of the ribosome. Therefore, if excess transfer RNA is present, RRF and transfer RNA will compete and bind to the A site of the liposome, which should inhibit dissociation of the termination complex. To confirm this point, the inhibition of dissociation of the termination complex in the presence of various concentrations of transfer RNA was examined.
  • Polysome (0. 5 ⁇ 1 A 26. Units) a, 0 to 1 000 pmo various amount between le RRF, EFG, transfer of various amounts between GTP and 0 ⁇ 1 0 nmo 1 e Incubated in the presence of RNA. Then, after performing sucrose density gradient centrifugation (density gradient: 15 to 30%), the amount of free ribosome was measured by measuring the absorbance at 254 nm. Lineweavwe—Burk created based on the measurement results. Figure 7 shows a graph based on the lot. The vertical axis is the reciprocal of the percentage of free ribosome in the presence of various amounts of transfer RNA relative to the amount of free ribosome in the absence of transfer RNA.
  • Example 4 Based on the results of and example 7, in order to directly verify the paromomycin used in Example 4. inhibit the binding of liposomes RRF, was first subjected to the following experiments, 35 of less than 1 pmo 1 e S-labeled histidine tag RRF to (35 S- H is -RR F) , in the presence of Paromo Maishishin of 1 0 pmo 1 e washed ribosomes and various concentrations of buffer (g squirrel - CI 5 0mM, p H 7 6. Incubated at 30 ° C for 10 minutes in 10 mM magnesium acetate, 30 mM potassium chloride, 1 mM DTT).
  • buffer g squirrel - CI 5 0mM, p H 7 6.
  • 35 S—His—RRF was prepared by purifying His—RRF expressed in vitro in the presence of 35 S-labeled methionine using Ni 2+ beads.
  • Fig. 8 shows the results.
  • the RRF binding ratio is a value calculated by assuming that the amount of RRF bound to ribosomes in the absence of paromomycin is 100%.
  • FIG. 8 shows that the binding rate of RRF decreases depending on the concentration of paromomycin. Therefore, paromomycin is thought to inhibit the activity of RRF by inhibiting the binding of RRF to ribosomes.
  • Atom type residue ## XYZ OCC B Atom 1 CB VA then 2 10.355 24.444 73.500 1.00 50.36 Atom 2 CGI VA then 2 11.185 25.300 72.669 1.00 50.36 Atom 3 CG2 VA 2 9.102 25.267 74.125 1.00 50.36 Atom 4 C VAL 2 8.502 23.777 72.304 1.00 83,11 atoms 50 VA then 2 8.267 24.906 71.890 1.00 83.11 atoms 6 N VA then 2. 10.415 23.206 71.242 1.00 83.11 ⁇

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

A method for designing a compound capable of binding to the active site or the accessory binding site of RRF protein which comprises evaluating with a computer the chemical body of RRF protein on the basis of the structural coordinate obtained from RRF protein crystals; and a method for searching a compound capable of inhibiting the activity of RRF protein on the basis of the activity of inhibiting the binding of RRF protein to ribosome or an activity of inhibiting the behavior of RRF protein on ribosome. These methods are useful in clarifying the three-dimensional structure and function mechanism of RRF, thereby contributing to the development of various bactericides, fungicides, herbicides, etc.

Description

明 細 書 リボソームリサイクリング因子 (RRF) タンパクの結晶 及び該結晶から得られる三次元構造情報に基づく応用 Description Crystal of ribosome recycling factor (RRF) protein and application based on three-dimensional structural information obtained from the crystal
[技術分野] [Technical field]
本発明は、 リボソームリサイク リング因子 (Ribosome recycling factor, 以下 RRF)の結晶に関する。 また本発明は、 該結晶の X線回折により得られる RRFタンパクの立体構造に関する。 さらに本発明は、 RRFタンパクの構造情報 及び作用機作を応用した、 RRF変異体、 ホモログ等の構造決定、 そして次世代 抗菌剤、 抗カビ剤、 除草剤を開発する技術に関する。  The present invention relates to a crystal of a ribosome recycling factor (RRF). The present invention also relates to a three-dimensional structure of RRF protein obtained by X-ray diffraction of the crystal. Furthermore, the present invention relates to techniques for determining the structure of RRF mutants, homologs, and the like, and for developing next-generation antibacterial agents, antifungal agents, and herbicides by applying the structural information and mechanism of action of RRF proteins.
[背景技術] [Background technology]
蛋白質生合成は、 すべての細胞の生命活動において必要不可欠な機能であ り、 「開始」 、 「伸展」 、 「終結」 及び 「リボソームリサイク リ ング」 の四 段階から成り立つている。 蛋白質生合成における最終的なステップ (第 4ステ ップ) は、 次の 「開始」 段階へリボソームを再利用する為に、 メ ッセンジャ — RNA、 転移 RNA、 リボソームからなる終結複合体を各々遊離、 解離させるこ とにより終了する。 原核生物である大腸菌においては、 このリボソームの 「 再利用」 はリボソームリサイク リング因子 (Ribosome recycling factor, 以下 RRF)とェロンゲ一シヨン因子 G (elongation factor G, 以下 EFG) 又は 解離因子 3(Release f ac tor3)により触媒されることが分かっている。 このリ ボソ一ム 「再利用」 の過程は Janosi博士らによる総説 (1996 Adv. Biophys. Protein biosynthesis is an essential function of all cell life activities and consists of four stages: “start”, “extension”, “termination”, and “ribosome recycling”. The final step in protein biosynthesis (the fourth step) is to release the messenger—termination RNA, transfer RNA, and ribosome termination complexes, respectively, to reuse the ribosomes for the next “start” step. It ends by dissociation. In Escherichia coli, which is a prokaryotic organism, this “reuse” of ribosomes is based on ribosome recycling factor (RRF) and elongation factor G (EFG) or release factor 3 (Release factory). It is known to be catalyzed by tor3). The process of “reuse” of this ribosome is reviewed by Dr Janosi et al. (1996 Adv. Biophys.
32: 121-201) 及び梶らの総説(Biochem, Biophys, Res Communs.250 1-4、 蛋白質 核酸 酵素、 44卷 7号 83-84 ( 1999) )において紹介されている。 32: 121-201) and a review by Kaji et al. (Biochem, Biophys, Res Communs. 250 1-4, Protein Nucleic Acid Enzyme, Vol. 44, No. 7, 83-84 (1999)).
真核生物において蛋白質翻訳終結複合体の解離は RRFではない他の因子によ り触媒される可能性が示唆されており、 真核生物の mRNAはモノ シス トロニッ クで原核生物のそれはポリシス ト口ニックである (Kozak 1987, Mol. Cell. It has been suggested that the dissociation of the protein translation termination complex in eukaryotes may be catalyzed by other factors other than RRF, with eukaryotic mRNA being monocistronic and prokaryotic being polycistronic. Nick (Kozak 1987, Mol. Cell.
Biol. 7:3438-3445; Dasら 1984, Nucleic Acids Res. 12: 4757-4768; Sc honerら 1986 Proc. Natl. Acad. Sci. U. S.A. 83:8506-8510; SprengelBiol. 7: 3438-3445; Das et al. 1984, Nucleic Acids Res. 12: 4757-4768; Schoner et al. 1986 Proc. Natl. Acad. Sci. U.S.A. 83: 8506-8510; Sprengel
1985 Nucleic Acids Res. 13:893-909) こと力、ら、 真核生物においてリボ ソームの mRNAよりの解離が阻害されても下流のシス トロンを影響することは ない。 このよ うに真核生物における蛋白質生合成の最終段階にあたる蛋白質 翻訳終結複合体の解離という第 4段階が原核生物のものと異なると考えられ るので、 特に新しい型の抗生物質のタ一ゲッ トとして期待されている。 1985 Nucleic Acids Res. 13: 893-909) Inhibition of dissociation of somal mRNA from mRNA does not affect downstream cistrons. Since the fourth step of dissociation of the protein translation termination complex, which is the final step of protein biosynthesis in eukaryotes, is thought to be different from that of prokaryotes, it is particularly a target for new types of antibiotics. Expected.
一方、 現在では数多くの抗菌剤が開発されており、 この中には非常に高い 殺菌作用を示すものも存在している。 しかし、 このよ うにして得られた抗菌 剤には、 その作用部位が不明なままのものが数多く存在する。 これまでは、 これらの活性を示す抗菌剤をランダムスク リ一二ングの材料と して用い、 構 造活性関係を樹立しつつさらなる効用のあるものを開発していく方法が中心 であったが、 これには莫大な時間と労力を要する。  On the other hand, many antibacterial agents have been developed at present, and some of them have very high bactericidal action. However, there are many antibacterial agents obtained in this way whose sites of action remain unknown. Until now, the main method was to use antibacterial agents exhibiting these activities as materials for random screening, and to develop those with even greater utility while establishing a structural activity relationship. This takes a lot of time and effort.
そこで近年、 この問題を排除し能率良く阻害剤の発見が行われることを目 的と してデータベース化が図られている。 それを基本にしてラショナルドラ グデザイン法が検討され開発されつつある。 この例と して、 最近上市.された 抗 HI V剤であるプロテア一ゼの阻害剤が挙げられる。 HI Vのプロテア一ゼは結 晶化され、 その立体構造が知られている。 この構造と活性部位の三次元構造 アミノ酸配列を基にしてコンピュータ一より既知の化合物からこの部位に最 も親和性の高いものを選び、 その阻害活性が測定されている。 活性の出たも のと標的蛋白の共結晶を作り、 三次元構造の測定を行うことにより さらによ りょく結合する化合物を予測できるので、 これを合成しその阻害活性が測定 されている。 そして再びこの物質と標的蛋白との共結晶を作り、 上記の過程 を繰り返すことにより極めて有効な物質を得ることができる。  Therefore, in recent years, a database has been created for the purpose of eliminating this problem and efficiently finding inhibitors. Based on this, a rational drag design method is being studied and developed. An example of this is an inhibitor of the recently marketed anti-HIV drug proteases. HIV protease is crystallized and its three-dimensional structure is known. This structure and the three-dimensional structure of the active site Based on the amino acid sequence, a compound with the highest affinity for this site was selected from compounds known from computers and its inhibitory activity was measured. By forming a co-crystal of the target protein with the active one and measuring the three-dimensional structure, it is possible to predict the compound that binds more, and this is synthesized and its inhibitory activity is measured. Then, a co-crystal of this substance and the target protein is formed again, and an extremely effective substance can be obtained by repeating the above process.
ところで、 上記のような従来の抗生物質への耐性獲得菌株が数多く報告さ れてきており、 細菌の発育を直接的に制限し得る部位を標的とする、 新たな 抗生物質の開発が早急に必要とされている。 そこで本発明者らは前記 RRFが抗 菌剤の新たなタ一ゲッ トとなり得ることに着目し鋭意研究を進めてきたが、 この着想が近年脚光を浴びつつある。  By the way, there have been many reports of strains that have acquired resistance to conventional antibiotics as described above, and it is urgently necessary to develop new antibiotics that target sites that can directly limit the growth of bacteria. It has been. Accordingly, the present inventors have focused on the fact that the RRF can be a new target of antibacterial agents, and have conducted intensive research, but this idea has recently been spotlighted.
[発明の開示] [Disclosure of the Invention]
RRFに関して、 本発明者らはこれまでに大腸菌を始め、 原核生物のみに留ま らず真核生物に関するものまで数種の遺伝子配列を決定した(特開平 3— 20079 7、 PCT/JP98/00734, 特願平 10— 150493) 。 従って、 そこから得られるアミ ノ酸配列によりその二次構造までが推定可能ではある。 しかしながら、 現在 の技術水準においては、 この二次構造から実際の立体構造を同定するまでに は至っていない。 実際のタンパクにおいては各ァミノ酸残基が相互的に作用 しており、 また場合によってはさまざまな修飾を受けてその立体構造を形成 している。 従ってタンパクの立体構造が分れば、 そのリガンドとなり うる物 質を創製することが可能であり、 この意味で有用な抗生物質を創製するため には、 結晶化による三次元構造の決定がきわめて重大な意義を有することと なる。 Regarding RRF, the present inventors have determined several gene sequences for E. coli, not only for prokaryotes, but also for eukaryotes (Japanese Unexamined Patent Publication No. 3-20079). 7, PCT / JP98 / 00734, Japanese Patent Application No. 10-150493). Therefore, the secondary structure can be estimated from the amino acid sequence obtained therefrom. However, in the current state of the art, it has not been possible to identify the actual three-dimensional structure from this secondary structure. In the actual protein, each amino acid residue interacts and, in some cases, undergoes various modifications to form its steric structure. Therefore, if the three-dimensional structure of a protein is known, it is possible to create a substance that can serve as a ligand. In order to create a useful antibiotic in this sense, determination of the three-dimensional structure by crystallization is extremely important. Will have significant significance.
従って本発明の課題は、 RRFの立体構造を解明し、 種々の抗菌剤、 抗カビ剤 及び除草剤の開発に寄与することにある。  Accordingly, an object of the present invention is to elucidate the three-dimensional structure of RRF and to contribute to the development of various antibacterial agents, antifungal agents and herbicides.
[図面の簡単な説明]  [Brief description of drawings]
[図 1]は、 XRRFタンパク結晶を示す写真図である。  FIG. 1 is a photograph showing an XRRF protein crystal.
[図 2]は、 XRRFタンパク結晶の X線回折像を示す写真図である。  FIG. 2 is a photograph showing an X-ray diffraction image of an XRRF protein crystal.
回折像の詳細 : xfl to 1200 of 1200, yf 1 to 1200 of 1200 Details of diffraction image: xfl to 1200 of 1200, yf 1 to 1200 of 1200
回折像の方向 : xf to the right, yf up Diffraction direction: xf to the right, yf up
データのファイル順 : - xf + yf Data file order:-xf + yf
最大ピクセル値: 65535 Maximum pixel value: 65535
スケールの限界:最小 =1、 最大 =1200、 黒は回折強度の高い価を示す。 Scale limits: min = 1, max = 1200, black indicates high diffraction intensity.
[図 3]は、 RRFのリボンによる描画の写真図である。 図に示されるように 2ド メインからなり、 1つは 3つのへリ ックス力、らなり、 2つめの ドメインは、 β _ シート、 コイルへリ ックスの複合体である。  [FIG. 3] is a photograph of an RRF drawn with a ribbon. As shown in the figure, it consists of two domains, one consisting of three helical forces, and the second domain is a complex of β_sheet and coil helix.
[図 4]は、 RRFの空間充填モデルの写真図である。  FIG. 4 is a photograph of an RRF space filling model.
[図 5]は、 RR Fの作用機作についての仮説を示す模式説明図である。  FIG. 5 is a schematic explanatory view showing a hypothesis about the mechanism of action of RRF.
[図 6]は、 各種阻害剤により、 終結複合体からの転移 RNAの遊離が阻害さ れることを示すグラフである。 エラーバーは標準偏差を示す。  FIG. 6 is a graph showing that various inhibitors inhibit release of transfer RNA from the termination complex. Error bars indicate standard deviation.
[図 7 ]は、 各種濃度の転移 RN Αの存在下におけるリポソームの遊離阻害 を示す L i n e w e a v e r— B u r k フ。ロッ トによるグラフである。  [FIG. 7] Lineweaver—Burkf showing inhibition of liposome release in the presence of various concentrations of transferred RNII. This is a graph by lot.
[図 8]は、 パロモマイシシンの存在下において、 リボソームへの RR Fの 結合が阻害されることを示すグラフである。 エラーバーは標準偏差を示す。 [Fig. 8] shows that RRF was transferred to ribosomes in the presence of paromomycin. It is a graph which shows that binding is inhibited. Error bars indicate standard deviation.
[符号の説明] [Explanation of symbols]
1…リボソーム、 2 ···転移 RNA、 3…メ ッセンジャー R NA、 4..-RR F、 5—E FG、 6…終結複合体。  1 ... ribosome, 2 ... transferred RNA, 3 ... messenger RNA, 4 ..- RRF, 5-EFG, 6 ... termination complex.
本発明者らは上記の現状を踏まえ、 RRFに関し研究を進める中で、 RRFの結 晶を得てその立体構造を同定することに初めて成功し、 さらに研究を進めた 結果、 本発明を完成するに至った。  Based on the above situation, the present inventors have succeeded in obtaining RRF crystals and identifying the three-dimensional structure for the first time while conducting research on RRF, and as a result of further research, completed the present invention Reached.
即ち本発明は、 R R Fタンパクの結晶及びその製法と立体構造に関する。  That is, the present invention relates to a crystal of R RF protein, its production method and three-dimensional structure.
より具体的には、 RRFタンパクの活性部位又は補助的結合部位と結合し得る 化合物を設計する方法であって、 RRFタンパク結晶から得られる構造座標に基 づき、 その化学的実体をコンピューター評価してなる、 前記方法に関する。 また本発明は、 RRFタンパク結晶が、 RRFタンパク自体の結晶、 RRFタンパク 変異体の結晶、 RRFタンパクホモ口グの結晶及び RRFタンパクの共複合体の結 晶のいずれかである、 前記方法に関する。  More specifically, a method for designing a compound capable of binding to the active site or an auxiliary binding site of an RRF protein, wherein the chemical entity is evaluated by computer based on the structural coordinates obtained from the RRF protein crystal. The method relates to the method. The present invention also relates to the above method, wherein the RRF protein crystal is any one of a crystal of the RRF protein itself, a crystal of an RRF protein mutant, a crystal of an RRF protein homolog, and a crystal of a co-complex of the RRF protein.
本発明はまた、 RRFタンパク結晶が、 bipyramid系である、 前記方法に関す る。  The present invention also relates to the above method, wherein the RRF protein crystal is a bipyramid system.
さらに本発明は、 RRFタンパク結晶が、 空間群?4,2,2,又は空間群 P432,2を有 する、 前記方法に関する。 Furthermore, the present invention relates to a method in which the RRF protein crystal is a space group. 4,2,2, or have a space group P4 3 2, 2, relates to the aforementioned method.
また本発明は、 RRFタンパク結晶が、 0.3X0.3X0.5mmの大きさを有する、 前記方法に関する。  The present invention also relates to the above method, wherein the RRF protein crystal has a size of 0.3X0.3X0.5 mm.
本発明はまた、 RRFタンパク結晶が、 a=b=47.3A、 c=297.6 Aの大きさの各 単位格子を有する、 前記方法に関する。  The present invention also relates to the above method, wherein the RRF protein crystal has a unit cell having a size of a = b = 47.3 A and c = 297.6 A.
さらに本発明は、 RRFタンパク結晶が、 表 7による構造座標により特徴づけ られる、 前記方法に関する。  Furthermore, the present invention relates to the aforementioned method, wherein the RRF protein crystal is characterized by the structural coordinates according to Table 7.
また本発明は、 RRFタンパク結晶が、 Thermotoga Mar i t ima由来のものであ る、 前記方法に関する。  The present invention also relates to the above method, wherein the RRF protein crystal is derived from Thermotoga Martinima.
本発明はまた RRFタンパク結晶が、 斜方晶系である、 前記方法に関する。 さらに本発明は、 RRFタンパク結晶が、 空間群 P2, 2,2を有する、 前記方法に 関する。 また本発明は、 RRFタンパク結晶が、 30 Χ 50 Χ 250 Ι Π1の大きさを有する、 前 記方法に関する。 The present invention also relates to the above method, wherein the RRF protein crystal is orthorhombic. Furthermore, the present invention relates to the above method, wherein the RRF protein crystal has a space group P2, 2, 2. Further, the present invention relates to the above method, wherein the RRF protein crystal has a size of 30 3050Χ250Ι1.
本発明はまた、 RRFタンパク結晶が、 菌 X由来のものである、 前記方法に関 する。  The present invention also relates to the above method, wherein the RRF protein crystal is derived from bacterium X.
さらに本発明は、 RRFタンパク結晶が、 滴状蒸気拡散法により結晶化されて いる、 前記方法に関する。  Further, the present invention relates to the above method, wherein the RRF protein crystal is crystallized by a droplet vapor diffusion method.
また本発明は、 RRFタンパク結晶が重原子誘導体であって、 該結晶が RRFタ ンパク自体の結晶、 RRFタンパク変異体の結晶、 RRFタンパクホモログの結晶 及び RRFタンパクの共複合体の結晶のいずれかである、 前記方法に関する。 本発明はまた、 重原子誘導体が、 チロメサール、 チオリンゴ酸金、 酢酸ゥ ラニル及び塩化鉛からなる群より選択される化合物との反応により形成され ている、 前記方法に関する。  The present invention also relates to the present invention, wherein the RRF protein crystal is a heavy atom derivative, and the crystal is any one of a crystal of the RRF protein itself, a crystal of the RRF protein mutant, a crystal of the RRF protein homolog, and a crystal of a co-complex of the RRF protein. The method relates to the method. The present invention also relates to the above method, wherein the heavy atom derivative is formed by reaction with a compound selected from the group consisting of thimerosal, gold thiomalate, peranyl acetate, and lead chloride.
さらに本発明は、 RRFタンパク結晶が、 白金又は水銀による重原子誘導体で ある、 前記方法に関する。  Further, the present invention relates to the above method, wherein the RRF protein crystal is a heavy atom derivative of platinum or mercury.
本発明はまた、 RRFタンパクがモノマーである、 前記方法に関する。  The present invention also relates to the above method, wherein the RRF protein is a monomer.
また本発明は、 RRFタンパク力 表 5又は表 6によるアミノ酸変位により特徴 づけられる、 前記方法に関する。  Further, the present invention relates to the above method, characterized by amino acid displacement according to Table 5 or Table 6 of RRF protein strength.
さらに本発明は、 活性部位又は補助的結合部位に結合する化学的実体によ り特徴づけられる化合物が、 RRFタンパクの阻害物質であることを特徴とする 、 前記方法に関する。  Furthermore, the present invention relates to the above method, wherein the compound characterized by a chemical entity binding to an active site or an auxiliary binding site is an inhibitor of RRF protein.
また本発明は、 前記阻害物質が RRFの競合的、 非競合的又は不競合的阻害物 質であることを特徴とする、 前記方法に関する。  In addition, the present invention relates to the method, wherein the inhibitor is a competitive, non-competitive or uncompetitive inhibitor of RRF.
本発明はまた、 RRFタンパクの活性部位又は補助的結合部位におけるリガン ドの配向を決定することを含む、 前記方法に関する。  The present invention also relates to the above method, comprising determining the orientation of the ligand at the active or auxiliary binding site of the RRF protein.
さらに本発明は、 構造座標が表 7による、 RRFタンパクの構造座標であるこ とを特徴とする、 前記方法に関する。  Furthermore, the present invention relates to the above method, wherein the structural coordinates are the structural coordinates of the RRF protein according to Table 7.
また本発明は、 R R Fタンパクのポケッ ト力 R R Fタンパクの二つのド メインを隔てる折れ曲がり部分に位置する C末端近傍のボケッ トである前記 方法に関する。 さらに、 本発明は、 上記化合物が、 RR Fタンパクのリボソームへの結合 を阻害し、 又は RR Fタンパクのリポソーム上での挙動を阻害する前記方法 に関する。 The present invention also relates to the above-mentioned method, wherein the RRF protein is a pocket near the C-terminus located at a bent portion separating two domains of the RRF protein. Furthermore, the present invention relates to the above method, wherein the compound inhibits binding of RRF protein to ribosome or inhibits behavior of RRF protein on liposome.
本発明はまた、 前記方法により得られる、 RRFタンパクの阻害物質に関する また、 本発明は、 R R Fタンパクのリボソームへの結合を阻害する活性又 は RR Fタンパクのリボソーム上での挙動を阻害する活性に基づいて、 RRFタ ンパクの活性を阻害し得る化合物を探索する方法に関する。  The present invention also relates to an RRF protein inhibitor obtained by the method.The present invention also relates to an activity of inhibiting the binding of RRF protein to ribosome or an activity of inhibiting the behavior of RRF protein on ribosome. The present invention relates to a method for searching for a compound that can inhibit the activity of an RRF protein based on the above.
さらに、 本発明は、 上記の方法により得られる、 RRFタンパクの阻害物質に 関する。  Furthermore, the present invention relates to an RRF protein inhibitor obtained by the above method.
また本発明は、 RRFタンパクの変異体、 ホモログ又は共複合体の結晶形態を 分子置換により解明することを含む、 RRFタンパクの 3次元構造を決定する方 法に関する。  The present invention also relates to a method for determining the three-dimensional structure of the RRF protein, including elucidating the crystal form of the mutant, homolog or co-complex of the RRF protein by molecular replacement.
本発明はまた、 斜方晶系の RRFタンパク結晶に関する。  The invention also relates to orthorhombic RRF protein crystals.
また本発明は、 空間群 1^2,2,2を有する、 前記 RRFタンパク結晶に関する。 さらに本発明は、 30Χ50Χ250μ mの大きさを有する、 前記 RRFタンパク結晶 に関する。  The present invention also relates to the RRF protein crystal having a space group 1 ^ 2,2,2. Further, the present invention relates to the RRF protein crystal having a size of 30Χ50Χ250 μm.
本発明はまた、 RRFが菌 X由来のものである、 前記 RRFタンパク結晶に関する また本発明は、 bipyramid系である、 RRFタンパク結晶に関する。  The present invention also relates to the RRF protein crystal, wherein the RRF is derived from bacterium X. The present invention also relates to a bipyramid-based RRF protein crystal.
さらに本発明は、 空間群?4,2,2,又は空間群 Ρ432,2を有する、 前記 RRFタンパ ク結晶に関する。 Furthermore, the present invention relates to a space group? The present invention relates to the RRF protein crystal having 4, 2, 2, or a space group of 4 3 2,2.
本発明はまた、 0.3X0.3X0.5mmの大きさを有する、 前記 RRFタンパク結晶 に関する。  The present invention also relates to the RRF protein crystal having a size of 0.3X0.3X0.5mm.
また本発明は、 a=b=47.3A、 c=297.6Aの大きさの各単位格子を有する、 前 記 RRFタンパク結晶に関する。  The present invention also relates to the aforementioned RRF protein crystal, which has each unit cell of a = b = 47.3A and c = 297.6A.
本発明はまた、 表 5又は表 6によるアミノ酸変位により特徴づけられる、 前 記 RRFタンパク結晶に関する。  The present invention also relates to the aforementioned RRF protein crystals, characterized by the amino acid changes according to Table 5 or Table 6.
さらに本発明は、 表 7による構造座標により特徴づけられる、 前記 RRFタン パク結晶に関する。 Further, the present invention is characterized in that the RRF tank is characterized by structural coordinates according to Table 7. Related to Park crystal.
また本発明は、 Thermotoga Mar i t i ma由来のものである、 前記 RRFタンパク 結晶に関する。  The present invention also relates to the RRF protein crystal, which is derived from Thermotoga Multima.
本発明はまた、 滴状蒸気拡散法により結晶化された、 前記 RRFタンパク結晶 に関する。  The present invention also relates to the RRF protein crystal, which has been crystallized by a droplet vapor diffusion method.
さらに本発明は、 結晶力 ^ RRFタンパク自体の結晶、 RRFタンパク変異体の結 晶、 RRFタンパクホモ口グの結晶及び RRFタンパクの共複合体の結晶のいずれ かである、 前記 RRFタンパク結晶に関する。  Further, the present invention relates to the RRF protein crystal, which is any one of a crystal of RRF protein itself, a crystal of an RRF protein mutant, a crystal of an RRF protein homologue, and a crystal of a co-complex of the RRF protein.
また本発明は、 活性部位のアミノ酸が、 配列番号 1の Arg 1 10、 Arg 129及び Arg 132からなる群から選択される、 RRFタンパクに関する。  The present invention also relates to the RRF protein, wherein the amino acid at the active site is selected from the group consisting of Arg110, Arg129 and Arg132 of SEQ ID NO: 1.
本発明はまた、 活性部位又は補助的活性部位中の 1つ以上のアミノ酸が、 天 然に存在するアミノ酸、 非天然アミノ酸、 セレノシスティン及びセレノメチ ォニンからなる群から選択される 1つ以上のァミノ酸により置換されている、 前記 RRFタンパクに関する。  The invention also provides that the one or more amino acids in the active site or the auxiliary active site are one or more amino acids selected from the group consisting of naturally occurring amino acids, unnatural amino acids, selenocystine and selenomethionine. The RRF protein has been replaced by:
さらに本発明は、 活性部位又は補助的活性部位中の親水性ァミノ酸及び疎 水性ァミノ酸が置換されている、 前記 RRFタンパクに関する。  Further, the present invention relates to the RRF protein, wherein the hydrophilic amino acid and the hydrophobic amino acid in the active site or the auxiliary active site are substituted.
また本発明は、 少なく とも 1つのシスティンアミノ酸が、 セレノシスティン 又はセレノメチォニンからなる群から選択されるァミノ酸により置換されて いる、 前記 RRFタンパクに関する。  The present invention also relates to the RRF protein, wherein at least one cysteine amino acid is substituted with an amino acid selected from the group consisting of selenocystine or selenomethionine.
本発明はまた、 少なく とも 1つのメチォニンアミノ酸が、 セレノシスティン 又はセレノメチォニンからなる群から選択されるアミノ酸により置換されて いる、 前記 RRFタンパクに関する。  The present invention also relates to the aforementioned RRF protein, wherein at least one methionine amino acid is substituted by an amino acid selected from the group consisting of selenocystine or selenomethionine.
さらに本発明は、 結晶形態である、 前記 RRFタンパクに関する。  Furthermore, the present invention relates to the RRF protein, which is in a crystalline form.
本発明はまた、 野生型酵素より高いか、 又は低い比活性を有する、 前記 RRF タンパクに関する。  The present invention also relates to the RRF protein having a specific activity higher or lower than that of the wild-type enzyme.
また本発明は、 変化した基質特異性を有する、 前記 RRFタンパクに関する。 さらに本発明は、 化合物と RRFタンパクとの結合相互作用を測定するための 、 前記 RRFタンパクの使用に関する。  The present invention also relates to the RRF protein having an altered substrate specificity. The invention further relates to the use of said RRF protein for measuring the binding interaction between a compound and the RRF protein.
さらに本発明は、 RRFタンパクの表面上、 表面又はその近傍の少なく とも 1 個のァミノ酸残基が置換されており、 表面荷電の 1以上の荷電単位の変化が生 じている、 前記 RRFタンパクに関する。 In addition, the present invention provides a method for treating at least 1 The RRF protein of any of the preceding claims, wherein one or more amino acid residues have been substituted, resulting in a change in one or more charge units of surface charge.
RRFが理想的な抗菌剤の標的であることが推定される現在、 本発明により解 明された RRFの三次元構造は、 抗菌剤などの開発に直結しているので、 産業上 極めて重要である。 しかも多くの病原菌の RRFの一次構造が酷似していること が知られていることから(例えば緑膿菌の RRFは大腸菌のそれと 60%の相同性を 有する) 、 本発明による RRFの三次元構造のデータにより、 他の病原菌の RRF の三次元構造についてもその解明が極めて容易になる。 従って、 種特異性の 抗菌剤を開発するためにも、 本発明は、 RRF阻害による次世代抗生物質、 抗カ ビ剤及び除菌剤開発に、 特にラショナルドラグデザィンにより抗菌剤を開発 する際の一つの指標と して極めて有用である。  At present, it is presumed that RRF is an ideal target of antibacterial agents, and the three-dimensional structure of RRF disclosed by the present invention is extremely important in industry because it is directly linked to the development of antibacterial agents and the like. . Furthermore, since it is known that the primary structure of RRF of many pathogens is very similar (for example, the RRF of Pseudomonas aeruginosa has 60% homology with that of Escherichia coli), the three-dimensional structure of the RRF according to the present invention is These data make it very easy to understand the three-dimensional structure of the RRF of other pathogens. Therefore, in order to develop a species-specific antibacterial agent, the present invention is applied to the development of a next-generation antibiotic, an antifungal agent and a disinfectant by inhibiting RRF, and particularly to the development of an antibacterial agent by rational derag design. It is extremely useful as an indicator.
本明細書中で使用される用語を以下のように定義する ;  The terms used herein are defined as follows:
「RRFタンパク」 とは、 通常の状態で酵素活性を有する RRFタンパク質を意 味する。  “RRF protein” means an RRF protein that has enzymatic activity under normal conditions.
「天然に存在するアミノ酸」 とは、 天然に存在するアミノ酸の L -異性体を 意味する。 天然に存在するアミノ酸は、 グリ シン、 ァラニン、 バリ ン、 ロイ シン、 イ ソロイシン、 セリ ン、 メチォニン、 ト レォニン、 フエ二ルァラニン 、 チロシン、 ト リプ トファン、 システィン、 プロ リ ン、 ヒスチジン、 ァスノ ラギン酸、 ァスパラギン、 グルタ ミン酸、 グルタ ミン、 y -カルボキシグルタ ミン酸、 アルギニン、 オル二チン及びリ ジンである。 特に断りがない限り、 本明細書中のァミノ酸はし体である。 “Naturally occurring amino acid” means the L-isomer of a naturally occurring amino acid. Naturally occurring amino acids include glycine, alanine, valin, leucine, isoleucine, serine, methionine, threonine, fenylalanine, tyrosine, tryptophan, cystine, proline, histidine, and aspanolaginate. Asparagine, glutamic acid, glutamine, y -carboxyglutamic acid, arginine, orditin and lysine. Unless otherwise specified, the amino acids in the present specification are in the form of chow.
「非天然アミノ酸」 とは、 タンパク質中で天然には見出されないアミノ酸 を意味する。 本明細書で使用される非天然アミノ酸の例と して、 セレノシス ティン及びセレノ メチォニンのラセミ混合物が挙げられる。 さらに非天然ァ ミ ノ酸と して、 ノル-口イシン、 パラ -ニ トロフエ二ルァラニン、 ホモフエ二 ルァラニン、 ノ ラ -フノレオロフェニルァラニン、 3 -ァミ ノ- 2 -べンジルプロ ピ オン酸、 ホモアルギニンの D又は L体及び D-フエ二ルァラニンが挙げられる。  “Unnatural amino acid” refers to an amino acid that is not found in nature in a protein. Examples of unnatural amino acids used herein include racemic mixtures of selenocystine and selenomethionine. Further, as non-natural amino acids, there are nor-mouth isine, para-nitrophenylalanine, homophenylalanine, nora-funoleolophenylalanine, and 3-amino-2-benzylpropionic acid. And D or L-form of homoarginine and D-phenylalanine.
「正に荷電したアミノ酸」 とは、 正常な生理学的条件下で正に帯電した側 鎖を有する任意の天然に存在するァミノ酸又は非天然ァミノ酸を包含する。 正に荷電した天然アミノ酸の例としては、 アルギニン、 リジン及びヒスチジ ンが挙げられる。 “Positively charged amino acid” includes any naturally occurring or unnatural amino acid having a positively charged side chain under normal physiological conditions. Examples of positively charged natural amino acids include arginine, lysine and histidine.
「負に荷電したアミノ酸」 とは、 正常な生理学的条件下で負に帯電した側 鎖を有する任意の天然に存在するァミノ酸又は非天然ァミノ酸を包含する。 負に荷電した天然ァミノ酸の例と しては、 ァスパラギン酸及びグルタミン酸 が挙げられる。  "Negatively charged amino acid" includes any naturally occurring or unnatural amino acid having a negatively charged side chain under normal physiological conditions. Examples of negatively charged natural amino acids include aspartic acid and glutamic acid.
「疎水性アミノ酸」 とは、 比較的水に不溶性である非荷電の非極性側鎖を 有する任意のァミノ酸を意味する。 天然に存在する疎水性ァミノ酸の例は、 ァラニン、 ロイシン、 イ ソロイシン、 バリ ン、 プロ リ ン、 フエ二ルァラニン By "hydrophobic amino acid" is meant any amino acid having an uncharged, non-polar side chain that is relatively insoluble in water. Examples of naturally occurring hydrophobic amino acids are alanine, leucine, isoleucine, valin, proline, phenylalanine
、 トリプトファン及びメチォニンである。 , Tryptophan and methionine.
「親水性アミノ酸」 とは、 比較的水に可溶性である非荷電の極性側鎖を有 する任意のアミノ酸を意味する。 天然に存在する親水性アミノ酸の例は、 セ リ ン、 トレォニン、 チロシン、 ァスパラギン、 グルタ ミン及びシスティンで ある。  "Hydrophilic amino acid" means any amino acid having an uncharged polar side chain that is relatively soluble in water. Examples of naturally occurring hydrophilic amino acids are serine, threonine, tyrosine, asparagine, glutamine and cysteine.
「変異体」 とは、 野生型 E. Col iの RRF配列の少なく とも 1つのアミノ酸の置 換により特徴づけられる RRFポリべプチド(即ち、 野生型 RRFの生物学的活性を 示すポリペプチド)をいう。 このような変異体は、 例えばオリゴヌクレオチド 特異的誘発によりそのコード配列中で変異した RRFの cDNAの発現により得るこ とができる。 また RRF変異体は、 非天然アミノ酸の RRFタンパクへの部位特異 的取り込みにより、 Noren, C. J.等(Sc i ence, 224, p l82- 188 ( 1989) )によ る一般的な生合成方法により得ることができる。  "Variant" refers to an RRF polypeptide characterized by at least one amino acid substitution in the RRF sequence of wild-type E. coli (ie, a polypeptide that exhibits the biological activity of wild-type RRF). Say. Such variants can be obtained, for example, by expression of cDNA for RRF mutated in its coding sequence by oligonucleotide-specific induction. In addition, RRF mutants can be obtained by general biosynthetic methods according to Noren, CJ, etc. (Science, 224, pl82-188 (1989)) by site-specific incorporation of unnatural amino acids into RRF proteins. be able to.
セレノシスティン又はセレノメチォニンは、 栄養要求性 E. Co l i株における RRFをコードする cDNAの発現により、 野生型又は変異型 RRF中に取り込まれる 。 この方法において、 野生型又は変異型 RRF cDNAは、 天然システィン又は天 然メチォニンのいずれ力、(又は両方)を含有せず、 セレノシスティン又はセレ ノメチォニン(又は両方)が富化されている増殖培地上の宿主中で発現させる ことができる。 さらにセレノメチォニンは、 野生型又は変異型 RRF中にメチォ ニン代謝阻害法(Van Dyne G. D.等による J. . B, 229 ppl05 ( 1993) )により 取り込むことができる。 「表面荷電の変化」 とは、 野生型 RRFと比較した生理学的 pHでの変異体ポリ ペプチドの 1つ以上の荷電単位の変化を意味する。 これは、 好ましくは少なく とも 1つ以上の野生型 RRFのァミノ酸における生理学的 pHでの野生型側鎖と異 なる荷電を有する側鎖を含むァミノ酸への変異により得ることができる。 表 面荷電の変化は、 置換されたァミノ酸を有するポリぺプチドの等電点を測定 し、 これを野生型 RRF分子の等電点と比較することにより決定される。 Selenocystin or selenomethionine is incorporated into wild-type or mutant RRF by expression of a cDNA encoding the RRF in an auxotrophic E. coli strain. In this method, the wild-type or mutant RRF cDNA does not contain the power of natural cysteine or natural methionine (or both) and is grown on a growth medium enriched for selenocystine or selenomethionine (or both). Can be expressed in different hosts. In addition, selenomethionine can be incorporated into wild-type or mutant RRF by the method of inhibiting methionine metabolism (J. B. by Van Dyne GD, 229 ppl05 (1993)). By "change in surface charge" is meant a change in one or more charge units of a variant polypeptide at physiological pH compared to wild-type RRF. This can preferably be obtained by mutation of at least one or more wild-type RRFs into amino acids containing side chains having a different charge from the wild-type side chain at physiological pH in the amino acid. The change in surface charge is determined by measuring the isoelectric point of the polypeptide with the substituted amino acid and comparing this with the isoelectric point of the wild-type RRF molecule.
「基質特異性の変化」 とは、 野生型 RRFと比較した変異型 RRFの基質の変化 をいう。 基質特異性(種特異性)は、 リボゾーム、 t RNA、 EF-Gを病原菌から分 離し、 それらが E. Co l iの RRF及び RRF変異種の基質となり得るかにより決定す る。  “Change in substrate specificity” refers to a change in the substrate of a mutant RRF as compared to a wild-type RRF. Substrate specificity (species specificity) is determined by separating ribosomes, tRNAs, and EF-G from pathogenic bacteria and determining whether they can serve as substrates for RRF and RRF variants of E. coli.
「キネティ ック形態」 とは、 遊離形態又は非結合形態の酵素の状態あるい はその活性部位又は補助的活性部位のいずれかで化学的実体と結合した酵素 の状態をいう。  "Kinetic form" refers to the state of the enzyme in free or unbound form or the state of the enzyme bound to a chemical entity at either its active site or ancillary active site.
「競合」 インヒ ビターは、 RRFの基質が結合するのと同じ RRFのキネティ ッ ク形態に結合すること、 従って RRFの活性部位と直接競合することにより、 RR F活性を阻害するインヒ ビターである。  A “competitive” inhibitor is one that inhibits RRF activity by binding to the same kinetic form of the RRF as the substrate of the RRF binds, and thus directly competes with the active site of the RRF.
「不競合」 インヒ ビタ一は、 基質が結合するのと異なる RRFのキネティック 形態に結合することにより RRFを阻害するインヒビターである。  "Uncompetitive" inhibitors are inhibitors that inhibit RRF by binding to a different kinetic form of RRF than the substrate binds to.
「非競合」 インヒビタ一は、 RRFの遊離形態又は基質結合形態のいずれかに 結合するインヒビタ一である。  A “non-competitive” inhibitor is an inhibitor that binds to either the free or substrate-bound form of RRF.
「ホモログ」 とは、 RRF又は RRFの任意の機能ドメインと少なく とも 30 %の ァミノ酸配列の相同性を有するタンパク質を意味する。  By "homolog" is meant a protein having at least 30% homology of the amino acid sequence with RRF or any functional domain of RRF.
「共複合体」 とは、 化学的実体又は化合物と共有結合又は非共有結合した R RF又は RRFの変異体又はホモ口グを意味する。  By "co-complex" is meant a RRF or a variant or homologue of an RRF covalently or non-covalently linked to a chemical entity or compound.
「/3 -シート」 とは、 拡大ジグザグコンホメーシヨンにのびるボリペプチド 鎖のコンホメーションをいう。 平行にのびるポリぺプチドポリぺプチド鎖部 分は全て同じ方向にのびる。 逆平行にのびるポリペプチド鎖は、 平行線とは 反対方向にのびる。  “/ 3-sheet” refers to the conformation of a polypeptide chain that extends into an expanded zigzag conformation. All parallel polypeptide chains extend in the same direction. Polypeptide chains extending antiparallel extend in the opposite direction to the parallel lines.
「活性部位」 又は 「活性部位部分」 とは、 RRF内の以下の任意の部位又は全 ての部位をいう。 基質結合部位は、 リボゾーム及びその複合体が結合する部 位及び基質の分解がおこる部位であり、 活性部位は、 配列番号 1を用いて、 少 なく ともアミノ酸残基 1 10、 129、 132の近辺である。 “Active site” or “active site portion” means any or all of the following sites in the RRF: All parts. The substrate binding site is the site where the ribosome and its complex bind, and the site where degradation of the substrate occurs. The active site is at least near amino acid residues 110, 129 and 132 using SEQ ID NO: 1. It is.
「構造座標」 とは、 結晶形態における RRF分子の原子(分散中心)による X線 単色ビームの回折で得られるパターンに関する数式から得られる数学的座標 をいう。 分散データは、 結晶の反復単位の電子密度地図を計算するために使 用され、 電子密度地図は、 結晶の単位格子内のそれぞれの原子の位置を確立 するために使用される。  “Structural coordinates” refers to mathematical coordinates obtained from mathematical expressions relating to the pattern obtained by diffraction of an X-ray monochromatic beam by atoms (dispersion centers) of RRF molecules in a crystalline form. The variance data is used to calculate an electron density map of the repeating unit of the crystal, and the electron density map is used to establish the position of each atom within the unit cell of the crystal.
「重原子誘導体」 とは、 RRFタンパク結晶の化学的に修飾された形態をいう 。 その作製には実際には、 結晶を通って拡散することができ、 そしてタンパ ク質の表面に結合することができる重金属原子塩又は有機金属化合物(例えば 塩化鉛、 チオマレイン酸金、 チロメサール又は酢酸ゥラニル)を含有する溶液 中に浸される。 結合した重金属原子(単数又は複数)の位置(単数又は複数)は 、 浸漬した結晶の X線回折分析により決定することができる。 次にこの情報を 用いて、 酵素の 3次元構造を構築するために使用される位相情報が作成される 。 X線結晶学により決定された構造座標のセッ トは、 標準誤差を有することが 当業者に理解されよう。 本発明の目的のために、 表 7に列挙した構造座標に重 ね合わせた場合に、 0. 75 A未満のタンパク質骨格原子(N、 Cひ、 C及び 0)の二 乗平均平方根偏差を有する RRF又は RRFホモログ又は RRF変異体の構造座標の任 意のセッ トは同一であると考えられるべきである。  "Heavy atom derivative" refers to a chemically modified form of an RRF protein crystal. In its fabrication, in practice, heavy metal atom salts or organometallic compounds (eg, lead chloride, gold thiomaleate, thyromesal or peranil acetate) that can diffuse through crystals and bind to the surface of the protein ). The position (s) of the bound heavy metal atom (s) can be determined by X-ray diffraction analysis of the immersed crystal. This information is then used to create the phase information used to construct the three-dimensional structure of the enzyme. It will be appreciated by those skilled in the art that the set of structural coordinates determined by X-ray crystallography has a standard error. For the purposes of the present invention, they have a root mean square deviation of less than 0.75 A of protein backbone atoms (N, C, C and 0) when superimposed on the structural coordinates listed in Table 7. Any set of structural coordinates of an RRF or RRF homolog or RRF variant should be considered identical.
「単位格子」 とは、 基本的な平行 6面体形のブロックをいう。 結晶の全容積 は、 このようなプロックの規則的な積み重ねの反復により構築することがで さる。  A "unit cell" is a basic parallelepiped shaped block. The total volume of the crystal can be constructed by repeated regular stacking of such blocks.
「空間群」 とは、 結晶の対象要素の配置をいう。  “Space group” refers to the arrangement of target elements of a crystal.
「分子置換」 とは、 観察された未知結晶の回折パターンを説明するのに最 適なように、 未知結晶の単位格子内で、 その構造座標(例えば表 7の構造座標) が他の公知である分子を方向付けし、 位置付けすることにより、 構造座標が 知られていなレ、RRF結晶の仮のモデルを作成する工程を含む方法をいう。 次い で、 位相がこのモデルよ り算定され、 そして観察された振り幅と合成して、 その座標が知られていない構造の近似フーリ工合成を得る。 次いで精製物質 に適用して、 最終的に正確な未知結晶の構造を得ることができる。 本発明に よる RRFの構造座標を用いて、 分子置換を使用することにより RRFの変異体、 ホモログ、 共複合体又は異なる結晶構造の構造座標を決定することができる 本発明の実施例においては、 X菌由来 RRF及び Thermotoga Mari tima由来 RRF を用いて結晶化し、 構造解析を行ったが、 その他の RRFについても同様に実施 することができる。 また結晶化に際しては RRFタンパク自体のみならず、 RRF タンパク変異体、 RRFタンパクホモログ、 RRFタンパク共複合体を結晶化し、 それぞれ構造解析することも可能である。 “Molecular substitution” means that the structural coordinates (for example, the structural coordinates in Table 7) of another unknown crystal are known in the unit cell of the unknown crystal so as to be optimal for explaining the observed diffraction pattern of the unknown crystal. It refers to a method that includes the step of orienting and positioning a molecule to create a tentative model of an RRF crystal whose structural coordinates are not known. Then the phase is calculated from this model and combined with the observed amplitude, An approximate Fourier composition of a structure whose coordinates are not known is obtained. It can then be applied to the purified material to finally obtain the exact unknown crystal structure. Using the structural coordinates of the RRF according to the present invention, it is possible to determine the structural coordinates of a mutant, homolog, co-complex or different crystal structure of the RRF by using molecular replacement. Crystallization and structural analysis were performed using RRF derived from X bacterium and RRF derived from Thermotoga Mitima, but the same can be performed for other RRFs. In crystallization, not only the RRF protein itself, but also RRF protein mutants, RRF protein homologs, and RRF protein co-complexes can be crystallized and their structures analyzed.
「ポケッ ト」 とは、 R R Fタンパク表面に存在する窪みをいい、 RRFタンパ クの結合部位若しくは補助的結合部位に存在する結合ポケッ 卜の他、 RR F の活性の発現に際し、 基質等との結合に関与しない他のポケッ トをも包含す る。  "Pocket" refers to a dent on the surface of the RRF protein, which binds to a substrate or the like in the expression of RRF activity, in addition to a binding pocket present in the binding site of the RRF protein or an auxiliary binding site. Include other pockets that are not involved in
本発明は、 X菌の RRF及び Thermotoga Maritima RRFの結晶及びそれから決 定される RRFの構造を初めて提供する。 一方 Thermotoga Maritima RRFの結晶 は硫安溶液から形成された。 結晶は bipyramid型の空間群 P432,2を有する。 こ の結晶の単位格子は a = b = 47.3A、 c = 297.6Aを有する。 The present invention provides, for the first time, a crystal of RRF of X bacterium and Thermotoga Maritima RRF and a structure of the RRF determined from the crystal. On the other hand, the crystals of Thermotoga Maritima RRF were formed from ammonium sulfate solution. Crystals have a space group P4 3 2, 2 of the bipyramid type. The unit cell of this crystal has a = b = 47.3A and c = 297.6A.
RRFの構造座標を表 7に示す。 結晶バッキングは、 RRFがモノマ一であることを 示している。  Table 7 shows the structural coordinates of the RRF. The crystal backing indicates that the RRF is monomeric.
図 3は、 Thermotoga Maritima RRFのリボンによる描画を示す。 ヘリ ックス A、 B、 D、 E、 Fは N末端より C末端に向けて存在するへリ ックスを示す。 β- シート 1、 2、 3、 4、 5、 6は Ν末端から C末端にかけて存在する /3-シートの番号 である。 図に示されるように RRFは、 2ドメインからなり、 1つは 3つのへリ ツ クスからなり、 2つめの ドメィンは β -シ一 トコイル、 へリ ツクスの複合体で ある。 そして活性部位は図の E、 Fヘリ ックスにまたがり、 又活性の維持にへ リ ックス B、 C、 D、 /3 -シート 1、 2、 3、 4、 5を含むドメインの 3次元構造の保 持が重要である。  Figure 3 shows a ribbon drawing of the Thermotoga Maritima RRF. Helixes A, B, D, E, and F indicate a helix present from the N-terminus to the C-terminus. β-sheets 1, 2, 3, 4, 5, and 6 are / 3-sheet numbers that exist from the か け て end to the C end. As shown in the figure, the RRF is composed of two domains, one is composed of three helices, and the second domain is a complex of β-sheet coil and helix. The active site spans the E and F helices in the figure, and maintains the three-dimensional structure of the domain containing helices B, C, D, / 3-sheets 1, 2, 3, 4, and 5 to maintain activity. Is important.
図 4は、 Thermotoga Maritima RRFの空間充填モデルを表し、 N及び Cはそれ ぞれ N末端、 C末端を示す。 灰色は炭素、 赤は酸素、 紫は N原子を表し、 数字は アミノ酸配列の番号を示し、 1は N末端である。 Figure 4 shows the space filling model of the Thermotoga Maritima RRF, where N and C are Shows the N-terminal and C-terminal, respectively. Gray indicates carbon, red indicates oxygen, purple indicates N atom, numbers indicate amino acid sequence number, and 1 is N-terminal.
このよ うに本発明者らにより解明された RRFの 3次元構造に関する情報に基 づき、 酵素の活性部位及び補助的結合部位の同定が初めて可能になった。 そ して活性部位部分は、 後述する RRF遺伝変異の結果と併せて、 少なく とも配列 番号 1のアミノ酸残基 Arg 1 10, Arg 129, Arg 132を含む可能性が大きいこと がわ力、つた。  Thus, based on the information on the three-dimensional structure of RRF elucidated by the present inventors, it has become possible for the first time to identify the active site and the auxiliary binding site of the enzyme. In addition to the results of the RRF genetic mutation described below, it is highly likely that the active site portion contains at least the amino acid residues Arg110, Arg129, and Arg132 of SEQ ID NO: 1.
本発明は、 化学的実体及び化合物を設計、 選択及び合成する分子設計技術 の使用を RRFに関して初めて可能にする。 化学的実体及び化合物には、 RRFの 活性部位又は補助的結合部位の全て又は一部分に結合することができる阻害 性化合物を含む。 本発明により可能なアプローチの際に、 酵素に結合する化 合物を設計し、 そして種々の方法において、 化合物の物理的特性(例えば可溶 性)を改変するために RRFの構造座標が使用される。 例えば本発明は、 RRFの活 性部位の全て又は一部分に結合することにより、 RRFの競合阻害剤として作用 する化合物の設計を可能にする。 本発明はまた、 RRFの不競合阻害剤として作 用する化合物の設計を可能にする。 これらの阻害剤は、 基質にすでに結合し た RRFの補助的結合部位の全て又は一部分に結合することができ、 そして RRF 活性部位に対してのみ結合する競合阻害剤より も強力であり、 かつより非特 異的であることができる。 同様に RRFに結合して阻害する非競合阻害剤は、 別 の化学的実体に結合していてもいなくても、 本発明により得られた構造座標 を用いて設計することができる。  The present invention enables, for the first time, the use of molecular design techniques to design, select and synthesize chemical entities and compounds with respect to RRF. Chemical entities and compounds include inhibitory compounds that can bind to all or a portion of the active or auxiliary binding site of the RRF. In a possible approach according to the present invention, the structural coordinates of the RRF are used to design compounds that bind to the enzyme and to modify the physical properties (eg, solubility) of the compound in various ways. You. For example, the present invention allows for the design of compounds that act as competitive inhibitors of RRF by binding to all or a portion of the active site of the RRF. The present invention also allows for the design of compounds that act as uncompetitive inhibitors of RRF. These inhibitors can bind to all or a portion of the auxiliary binding site of the RRF already bound to the substrate, and are more potent and more potent than competitive inhibitors, which only bind to the RRF active site. Can be non-specific. Similarly, non-competitive inhibitors that bind to and inhibit RRF, whether or not bound to another chemical entity, can be designed using the structure coordinates obtained according to the present invention.
第二の設計アプローチは、 RRF阻害剤候補と RRFとの間の相互作用のための 最適部位を決定するために、 RRF結晶を種々の化学的実体からなる分子で確認 することである。 例えば溶媒で飽和された結晶から回収された高分解能の X線 回折データは、 各型の溶媒分子の位置の決定を可能にする。 次いで、 これら の部位に強く結合する小さな分子を設計、 合成することができ、 そして阻害 剤活性について試験することができる(Trav i s , J. , Sc i ence , 262, p l 374 ( 1993) )。  A second design approach is to identify RRF crystals with molecules of various chemical entities in order to determine the optimal site for interaction between a candidate RRF inhibitor and RRF. For example, high-resolution X-ray diffraction data collected from solvent-saturated crystals allows the location of each type of solvent molecule to be determined. Small molecules that bind tightly to these sites can then be designed and synthesized, and tested for inhibitor activity (Travis, J., Science, 262, pl374 (1993)).
本発明はまた基質又は RRFに結合する他の化合物の RRFとの反応において、 R RFィンヒビターの改良アナ口グの設計又は RRF及び RRFィンヒビタ一共複合体 の反応中間体に基づく新規なクラスのインヒ ビターの設計に有用である。 こ れは、 高い特異性及び高い安定性の両方を有する RRFィンヒビターを設計する ための新規な手段を提供する。 The present invention also provides for the reaction of a substrate or other compound that binds to the RRF with the RRF. It is useful in the design of improved analogs of RF inhibitors or in the design of new classes of inhibitors based on reaction intermediates of RRF and RRF inhibitor co-complexes. This provides a novel tool for designing RRF inhibitors with both high specificity and high stability.
本発明により可能となり、 容易となる別のアプローチとしては、 RRFに全体 的に又は部分的に結合し得る化学的実体又は化合物について、 コンピュータ でスク リーニングすることである。 このスク リーニングにおいて、 結合部位 に対するこのような実体又は化合物の適合の特性は、 形状相補性又は見積も られた相互作用エネルギーのいずれかによつて判断され得る(Meng, E. C. e t a l J. Comp. Chem, 13, 505-524 ( 1992) )。  Another approach enabled and facilitated by the present invention is the computer screening of chemical entities or compounds that can be wholly or partially bound to the RRF. In this screening, the properties of the fit of such an entity or compound to the binding site can be determined either by shape complementarity or by estimated interaction energies (Meng, EC et al. J. Comp. Chem. , 13, 505-524 (1992)).
RRFが 1つより多くの結晶形態で結晶化することができる場合、 本発明によ り提供されるような RRFの構造座標又はその一部は、 RRFの他の結晶形態の構 造を解析するために特に重要である。 RRFの構造座標又はその一部は、 RRF変 異体の構造、 RRF共複合体の構造、 又は RRFの任意の機能ドメインに有意に相 同なァミノ酸配列を有する任意の他のタンパク質の結晶形態の構造を解析す るために使用することもできる。  If the RRF can crystallize in more than one crystalline form, the structural coordinates of the RRF, or portions thereof, as provided by the present invention will analyze the structure of other crystalline forms of the RRF Especially important for. The structural coordinates of the RRF, or a portion thereof, may be the structure of the RRF variant, the structure of the RRF co-complex, or the crystalline form of any other protein having an amino acid sequence that is significantly homologous to any functional domain of the RRF. Can also be used to analyze the structure.
この目的に使用することができる方法の 1つに、 分子置換がある。 この方法 では、 未知の結晶構造が RRFの別の形態、 RRF変異体又は RRF共複合体又は RRF の任意の機能ドメインに有意に相同なァミノ酸配列を有する任意の他のタン パク質の結晶形態であるかどうかを表 7に提供するような本発明の R R Fの構造 座標を用いて決定することができる。 この方法は、 未知の結晶についての正 確な構造形態をこのような情報を最初から決定しよう とするより も、 より迅 速かつ効率よく提供する。  One method that can be used for this purpose is molecular replacement. In this method, the unknown crystal structure may be a crystal form of another form of RRF, an RRF variant or RRF co-complex or any other protein having an amino acid sequence that is significantly homologous to any functional domain of RRF. Can be determined using the structural coordinates of the RRF of the present invention as provided in Table 7. This method provides an accurate structural morphology for an unknown crystal more quickly and efficiently than trying to determine such information from scratch.
さらに本発明によると、 RRF変異体は、 公知の RRF阻害剤との共複合体で結 晶化することができる。 次いでこのような複合体の一連の結晶構造は、 分子 置換によって解析することができ、 そして野生型 RRFの結晶構造と比較するこ とができる。 従って、 酵素の種々の結合部位内の改変するのに有力な部位を 同定することができる。 この情報により、 RRFと化学的実体又は化合物との間 の最も有効な結合相互作用(例えば増加した疎水性相互作用)を決定する手段 を提供する。 Further according to the invention, the RRF variant can be crystallized in a co-complex with a known RRF inhibitor. The crystal structure of such complexes can then be solved by molecular replacement and compared to the crystal structure of wild-type RRF. Thus, potential sites for modification within the various binding sites of the enzyme can be identified. With this information, a means to determine the most effective binding interactions (eg, increased hydrophobic interactions) between the RRF and the chemical entity or compound I will provide a.
上記の全ての複合体は、 公知の X線回折技術を用いて研究することができ、 そしてコンピューターソフ トウェア(例えば X-P0LAR、 Yale University, 199 2, Molecular Simulation, Incにより配布)を用いて 2〜3A分解能 X線データ を対照に約 0.20以下の R値に精密化することができる(例えば Blundel & John son, Protein Crystallography, Academic Press (1976)、 Methods in En zymology, Volll4, 115、 H. W. Wycoff et al, Academic Press (1985)。 従 つてこの情報は、 RRF阻害剤を最適化するために使用することができ、 さらに 重要なことに、 新規な RRF阻害剤を設計し、 そして合成するために使用するこ とができる。 本発明で提供される RRFの構造座標は又、 機能、 構造、 あるいは その両方において RRFに類似の関連タンパク質、 酵素又は M の同定を容易に する。 これにより、 R R F自体及び上記類似タンパク質等の活性部位、 結合 部位等をより的確に推定でき、 新たな抗菌剤、 除草剤又は抗カビ剤につなが る。  All of the above complexes can be studied using known X-ray diffraction techniques, and can be performed using computer software (eg, X-P0LAR, distributed by Yale University, 1992, Molecular Simulation, Inc). 33A resolution X-ray data can be refined to an R value of about 0.20 or less relative to a control (eg, Blundel & John Son, Protein Crystallography, Academic Press (1976), Methods in Enzymology, Vol. 4, 115, HW Wycoff et. al, Academic Press (1985) This information can therefore be used to optimize RRF inhibitors, and more importantly, to design and synthesize new RRF inhibitors. The structural coordinates of the RRF provided herein also facilitate the identification of related proteins, enzymes or M that are similar in function, structure, or both, to the RRF. Active sites such as serial similar protein, can more accurately estimate the binding sites and the like, a new antimicrobial agent, that connected to herbicides or antifungal agents.
本発明の RRFに結合又は阻害する化合物の設計には、 一般に、 2つの要素を 考慮する必要がある。 第一に、 化合物は物理的に、 構造的に RRFに結合するこ とができなくてはならない。 RRFのその基質との結合に重要な非共有結合分子 間相互作用には、 水素結合、 ファンデルワールス力及び疎水性相互作用が挙 げられる。  In designing a compound that binds to or inhibits the RRF of the present invention, two factors generally need to be considered. First, the compound must be able to physically and structurally bind to the RRF. Non-covalent intermolecular interactions that are important for the binding of RRF to its substrate include hydrogen bonding, van der Waals forces, and hydrophobic interactions.
第二に、 化合物は RRFとの結合を可能にするコンホメーションを想定するこ とができなくてはならない。 化合物の特定の部分は、 この RRFとの結合に直接 的には関与しないが、 それらの部分はそれでも分子のコンホメーション全体 にわたつて影響し得る。 このことはまた有効性に顕著な影響を及ぼす。 この ようなコンホメーションの必要条件としては、 全ての又は一部の結合部位(例 えば RRFの活性部位又は補助的結合部位)に関する化学的実体あるいは化合物 の三次元構造及び配向全体、 又は RRFと直接相互作用するいく らかの化学的実 体を含む化合物の官能基間の間隔が挙げられる。  Second, the compound must be able to assume a conformation that allows it to bind to the RRF. Certain portions of the compound are not directly involved in binding to this RRF, but those portions can still affect the entire conformation of the molecule. This also has a significant effect on efficacy. The prerequisites for such a conformation include the chemical entity or the entire three-dimensional structure and orientation of the compound for all or some of the binding sites (eg, the active or auxiliary binding site of the RRF), or the RRF. Examples include the spacing between functional groups of a compound that contains some chemical entity that interacts directly.
RRFに対する化学化合物の潜在的阻害効果又は結合効果は、 それが実際に合 成される前に分析することができ、 そしてコンピュータモデリング技術を使 用して、 試験することができる。 所定の化合物の理論的構造が、 その化合物 と RRFとの間に不十分な相互作用及び結合があることを示唆する場合、 その化 合物の合成及び試験は回避できる。 しかし、 コンピュータモデリングが強い 相互作用を示唆する場合には、 その分子を合成し、 そして平島と梶の方法(B i ochemi stry, Π , 4037, ( 1972) )又はオリゴヌク レオチ ドを用いる方法及び インビボでのスクリ一二ング(特願平 10- 158643)により阻害する能力について 試験することができる。 この方法により効果のない化合物の合成を回避する ことができる。 The potential inhibitory or binding effect of a chemical compound on RRF can be analyzed before it is actually synthesized, and using computer modeling techniques. Can be used for testing. If the theoretical structure of a given compound indicates that there is insufficient interaction and binding between that compound and RRF, the synthesis and testing of that compound can be avoided. However, if computer modeling suggests a strong interaction, the molecule is synthesized, and the method of Hirashima and Kaji (Bi ochemi stry, Π, 4037, (1972)) or using oligonucleotides and in vivo Can be tested for its ability to inhibit by screening in Japan (Japanese Patent Application No. 10-158643). By this method, synthesis of ineffective compounds can be avoided.
RRFの阻害性化合物又は RRFの他の結合化合物は、 コンピュータで評価する 二とができ、 そして化学的実体又はフラグメントが、 RRFの個々の結合ポケッ ト又は他の領域と結合するそれらの能力についてスク リ一ニング及び選択さ れる一連の工程の手段により設計することができる。  Inhibitory compounds of RRF or other binding compounds of RRF can be evaluated computationally and chemical entities or fragments screened for their ability to bind to individual binding pockets or other regions of RRF. It can be designed by means of cleaning and a series of selected steps.
化学的実体又はフラグメン卜を RRF、 より詳細には RRFの結合部位若しくは 補助的結合部位の個々の結合ポケッ ト又は、 R R Fの活性の発現に際し、 基 質等との結合に関与しない他のポケッ トと結合するそれらの能力についてス クリ一二ングするいくつかの方法の 1つを使用することができる。 このプロセ スは、 例えば表 7の RRF座標に基づく コンピュータスク リーニングの際に、 活 性部位の視覚的検討により開始することができる。 例えば、 図 3のリボンに よる描画に示すように 「L」 字型の形状を有する R R Fは、 二つの ドメイン を隔てる 「L」 字の折れ曲がり部分に位置する C末端近傍にポケッ トを有す るが、 このポケッ 卜に結合する化合物は RRFの阻害性化合物の有力な候補とな り得る。 上記のポケッ トは、 表 7に示す R R F座標に基づいて Rasmo l等のソ フ 卜ウェアを使用して空間充填モデルを作成すれば容易に観察することがで きる。 このポケッ トは、 R R Fの二つのドメインの間に位置することから、 上記ドメインの間の角度の調節を介して R R Fの活性に関与する可能性が示 唆される。 次いで選択されたフラグメン ト又は化学的実体は、 種々の配向で 位置づけられることができ、 又は RRFの個々の結合ポケッ トに連結することが できる。 連結は Quanta及び Syby lのようなソフ トウェアを使用して達成するこ とができ、 その後標準的な分子機構力場(例えば CHARMM, AMBER)を用いて、 ェ ネルギ一の最小化及び分子動力学を行う。 A chemical entity or fragment may be referred to as an RRF, more specifically, an individual binding pocket of a binding site or an auxiliary binding site of an RRF, or another pocket that is not involved in binding to a substrate or the like in expressing RRF activity. One of several ways to screen for their ability to combine with can be used. This process can be started by visual examination of active sites, for example, during computer screening based on the RRF coordinates in Table 7. For example, as shown in the drawing by the ribbon in Fig. 3, the RRF with an “L” shape has a pocket near the C-terminal located at the “L” bend that separates the two domains. However, compounds that bind to this pocket can be potential candidates for RRF inhibitory compounds. The above-mentioned pockets can be easily observed by creating a space filling model using software such as Rasmol based on the RRF coordinates shown in Table 7. This pocket is located between the two domains of RRF, suggesting that it may be involved in the activity of RRF through regulation of the angle between the domains. The selected fragments or chemical entities can then be located in various orientations or can be linked to individual binding pockets of the RRF. Coupling can be accomplished using software such as Quanta and Sybyl, and then using standard molecular mechanics force fields (eg, CHARMM, AMBER). Perform energy minimization and molecular dynamics.
専門化されたコンピュータプログラムは、 フラグメ ント又は化学的実体を 選択するプロセスを補助することができる。 これらのプログラムの例には以 下が挙げられる :  Specialized computer programs can assist in the process of selecting fragments or chemical entities. Examples of these programs include:
uRID (uoodiora, P. j . , A し omputat lonal Procedure for Determining t nerget ical ly Favorable Binding Sites on Biologically Important Mac romolecules", J. Med. Chem. , 28, pp. 849-857 (1985))、 これは Oxford University, oxford, UKより利用可能である。 MCSS (Miranker, A及び M, Ka rplus, "Functional ity Map of Binding Sites: A Multiple Copy Simula taneous Search Method. , Proteins - Structure, Function and Genetic s, 11, pp. 29-34 (1991))、 これは Molecular Simulations, Burlington, MAから入手可能である。 AUT0D0CK(Goodsell, D. S. 及び Α· J. Olsen, "Au tomated Docking of of Substrates to Proteins by Simulated Anneal in g", Proteins: Structure, Function and Genetics, 8, pp. 195 - 202 (19 90))、 これは Scripps Research Institute, La Jol la, CA力 ら入手可能で あ 。 D0CK(Kuntz, I. D. et al, A Geometric Approach to Macromolecu le-Ligand Interactions", J. Mol. Biol. , 161, pp. 269 - 288 (1982))、 これは University of Carifornia, San Francisco, CA力、ら利用口]"肯 であ 一度、 適切な化学的実体又はフラグメン トが選択されると、 化学的実体又 はフラグメン トは、 単一の化合物又は阻害剤に組み立てることができる。 組 み立ては RRFの構造座標に関してコンピュータースク リ一ン上に示される三次 元画像でのフラグメン トの相互関係の視覚的検討により行うことができる。 次いで Quanta又は Sybylのようなソフ トウェアを用いて、 マニュアルによるモ デル構築を行う。 uRID (uoodiora, P. j., A omputat lonal Procedure for Determining tnerget ically Favorable Binding Sites on Biologically Important Mac romolecules ", J. Med. Chem., 28, pp. 849-857 (1985)) Is available from Oxford University, oxford, UK MCSS (Miranker, A and M, Karplus, "Functionality Map of Binding Sites: A Multiple Copy Simultaneous Search Method., Proteins-Structure, Function and Genetics, 11, pp. 29-34 (1991)), which is available from Molecular Simulations, Burlington, MA. AUT0D0CK (Goodsell, DS and ΑJ. Olsen, "Au tomated Docking of of Substrates to Proteins by Simulated Anneal in g", Proteins: Structure, Function and Genetics, 8, pp. 195-202 (1990)) Is available from the Scripps Research Institute, La Jol la, CA. D0CK (Kuntz, ID et al, A Geometric Approach to Macromolecu le-Ligand Interactions ", J. Mol. Biol., 161, pp. 269-288 (1982)), which is the University of Carifornia, San Francisco, CA force, Once the appropriate chemical entity or fragment has been selected, the chemical entity or fragment can be assembled into a single compound or inhibitor. Assembling can be done by visual examination of the interrelationship of the fragments in the 3D image shown on the computer screen with respect to the structural coordinates of the RRF. Next, model building is performed manually using software such as Quanta or Sybyl.
個々の化学的実体又はフラグメントを接触させる場合に、 当業者を補助す ることができる有用なプログラムの例には以下が挙げられる :  Examples of useful programs that can assist one skilled in the art in contacting individual chemical entities or fragments include:
CAVEAT (Bartlett, P. A. et al, "CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologiccal ly Active Molecules", Mol e cular Recognition in Chemical and Biological Problems", Royal Chem . So , 78, pp. 182-196 (1989))、 これは the University of Carifornia,CAVEAT (Bartlett, PA et al, "CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologiccal ly Active Molecules", Molle cular Recognition in Chemical and Biological Problems ", Royal Chem. So, 78, pp. 182-196 (1989)), which is the University of Carifornia,
Berkeley, CA力 ら入手可肯 である。 MACCS— 3D(MDL Information Systems, San Diego, CAのような 3D Database systems 、 この領域は、 Martin, Y. C . , "3D Database Searching in Drug Design", J. Med. Chem. , 35, pp. 2 145-2154 (1992)に概説される。 H00K(Molecular Simulations, Burlington , MAから入手可能である)。 Available from Berkeley, CA. MACCS—3D (3D Database systems such as MDL Information Systems, San Diego, CA; this area is described in Martin, Y. C., "3D Database Searching in Drug Design", J. Med. Chem., 35, pp. 2 145-2154 (1992) H00K (available from Molecular Simulations, Burlington, MA).
上記のように一度に 1つのフラグメン ト又化学的実体から段階様式で RRF阻 害剤を構築するかわりに阻害化合物又は他の RRF結合化合物は、 RRFからの活 性部位(又は必要に応じて公知の阻害剤のいくつかの部分を含む)を用いて全 体的に、 又は新しく設計することができる。 これらの方法には以下が挙げら れる :  Instead of constructing an RRF inhibitor in a stepwise fashion from one fragment or chemical entity at a time, as described above, the inhibitory compound or other RRF-binding compound may have an active site (or, if necessary, known) from the RRF. (Including some portions of the inhibitors). These methods include:
LUDI (Bohm, H. J. , "The Computer Program LUDI: A New Method for the de novo Design of Enzyme Inhibitors", J. Comp, Aid, Molec, Design, 6 pp. 61-78 (1992)、 これは Biosym Technologies, San Diego, CAより入 手可能である。 LEGEND(Nishibata, Y.及び A. Itai, Tetrahedron, 47, p. 8985 (1991)、 これは Molecular Simulations, Burlington, MAより入手可 能である。 LeapFrog (Tripos Associates, St. Louis, MO力、ら利用可 Htであ る。  LUDI (Bohm, HJ, "The Computer Program LUDI: A New Method for the de novo Design of Enzyme Inhibitors", J. Comp, Aid, Molec, Design, 6 pp. 61-78 (1992), which is Biosym Technologies, Available from San Diego, CA LEGEND (Nishibata, Y. and A. Itai, Tetrahedron, 47, p. 8985 (1991), available from Molecular Simulations, Burlington, MA. LeapFrog ( Tripos Associates, St. Louis, MO Power, etc. Available Ht.
他の分子モデリングを本発明において使用することができる。 例えば Cohen , N. C. によ oMolecular Modeling Software and Methods for Medicin al Chemistry, J. Med. Chem., 33, p883 - 894 (1990)を参照されたレヽ。 又 N avia, M. A. 及び M. A. Murcko, The Use of Structural Information in Drug Design, Current Opinions in Structural Biology, 2, p. 202-210 (1992)も参照されたい。  Other molecular modeling can be used in the present invention. See, for example, Cohen, NC, oMolecular Modeling Software and Methods for Medicinal Chemistry, J. Med. Chem., 33, p883-894 (1990). See also, Navia, M.A. and M.A. Murcko, The Use of Structural Information in Drug Design, Current Opinions in Structural Biology, 2, p. 202-210 (1992).
一度、 化合物が上記の方法により、 設計又は選択されると化合物が RRFに結 合することが可能な有効性は、 コンピュータ評価により試験することができ 、 そして最適化することができる。 例えば RRF阻害剤として機能するように設 計又は選択された化合物は、 天然の基質に結合する場合に、 活性部位により 占有される容量に重複しない容量を、 好ましくは検討すべきである。 有効な R RF阻害剤は、 好ましくはその結合状態と遊離状態との間のエネルギー(即ち、 小さな結合のひずみ力において、 比較的小さな相違を示すべきである。 従つ て最も有効な RRF阻害剤は、 約 10kcal/molを超えない、 好ましくは約 7kcal/m olを超えない結合のひずみ力を伴って設計されるべきである。 RRF阻害剤は、 全体にわたる結合エネルギーが類似の 1より多いコンホメーションで、 酵素と 相互作用し得る。 それらの場合、 結合のひずみ力は、 遊離化合物のエネルギ —と阻害剤が酵素に結合する場合に観察されるコンホメーショ ンの平均エネ ルギ一との間の相違になる。 Once a compound has been designed or selected by the methods described above, the effectiveness with which the compound can bind to the RRF can be tested by computer evaluation and optimized. For example, a compound designed or selected to function as an RRF inhibitor, depending on the active site when binding to a natural substrate Capacity that does not overlap with the capacity occupied should preferably be considered. An effective RRF inhibitor should preferably show a relatively small difference in the energy between its bound and free states (ie, small binding strain forces. Therefore, the most effective RRF inhibitors The RRF inhibitor should be designed with a binding strain of no more than about 10 kcal / mol, preferably no more than about 7 kcal / mol. In their conformation, they can interact with the enzyme, in which case the strain force of the bond is between the energy of the free compound and the average energy of the conformation observed when the inhibitor binds to the enzyme. Makes a difference.
RRFに結合するように設計又は選択された化合物は、 その結合状態において 、 好ましくは標的酵素との反発する静電相互作用を有さないようにコンビュ ータにより最適化される。 このような非相補的(例えば静電気)相互作用と し て反発する、 荷電-荷電相互作用、 双極子-双極子相互作用及び荷電-双極子相 互作用が挙げられる。 具体的には、 阻害剤が RRFに結合した場合の阻害剤と酵 素との間の全ての静電気相互作用を総合すると、 結合のェンタルピーに対し て中立的又は好適な貢献がなされる。  Compounds designed or selected to bind to RRF, in their bound state, are preferably optimized by the computer to have no repulsive electrostatic interaction with the target enzyme. Such non-complementary (eg, electrostatic) interactions repel, charge-charge, dipole-dipole, and charge-dipole interactions. Specifically, the sum of all electrostatic interactions between the inhibitor and the enzyme when the inhibitor binds to RRF makes a neutral or favorable contribution to the enthalpy of binding.
化合物のひずみ力及び静電相互作用を評価する特定のコンピュータソフ ト ウェアが、 当該分野で利用可能である。 このような用途のために設計された プログラムの例として、 Gaussian 92 C, M. J. Frisch, Gaussian, Inc., P ittsburgh, PA 1992; AMBER, version 4.0 P. A. Kollman, University o f California, San Francisco, 1994; QUANTA/CHARMM Molecular Simulat ions, Inc, San Diego, CA 1994等が挙げられる。 これらのプログラムは、 S ilicon Graphics IRIS 4d/35又は IBM RISC/6000 Model550等の汎用コンビ ュ一タを用いて実行することができる。 他のハ一ドウエア及びソフ トウェア は、 当業者に公知である。  Certain computer software is available in the art to evaluate compound strain forces and electrostatic interactions. Examples of programs designed for such uses include Gaussian 92C, MJ Frisch, Gaussian, Inc., Pittsburgh, PA 1992; AMBER, version 4.0 PA Kollman, University of California, San Francisco, 1994; QUANTA / CHARMM Molecular Simulat ions, Inc, San Diego, CA 1994 and the like. These programs can be executed using a general-purpose computer such as Silicon Graphics IRIS 4d / 35 or IBM RISC / 6000 Model550. Other hardware and software are known to those skilled in the art.
一度、 RRF結合化合物が上記のように最適に選択又は設計されると、 次にそ の結合特性を改善又は改変するためにその化合物の原子又は側鎖のいくつか について、 置換が行われる。 一般に、 最初の置換は保存的である。 即ち置換 基は元の基とほぼ同じ大きさ、 形状、 疎水性及び荷電を有する。 当該分野で コンホメ一シヨンを変えることが公知である化合物はさけるべきである。 こ のよ うに置換された化学的化合物は、 次いで上記のコンピュータによる方法 と同様にして RRFに適合する効力について分析される。 Once the RRF binding compound has been optimally selected or designed as described above, substitutions are then made on some of the atoms or side chains of the compound to improve or modify its binding properties. Generally, the first substitution is conservative. That is, the substituent has approximately the same size, shape, hydrophobicity, and charge as the original group. In the field Compounds known to alter the conformation should be avoided. The chemical compounds so substituted are then analyzed for potency compatible with the RRF in a manner similar to the computational methods described above.
本発明はまた、 RRFの変異体を可能にし、 そしてそれらの結晶構造の解明を 可能にする。 より詳細には、 本発明により、 RRFの結晶構造に基づく RRFの活 性部位、 補助的結合部位及び界面の位置により、 変異のための所望の部位の 同定が可能となる。  The present invention also allows for variants of RRF and elucidation of their crystal structure. More specifically, the present invention allows the identification of the desired site for mutation by the location of the active site, auxiliary binding site and interface of the RRF based on the crystal structure of the RRF.
例えば変異は、 野生型の RRFの部位、 即ち活性部位又は補助的結合部位のみ のうち、 特定の部位又は組み合わせを指向することができる。 あるいは変異 誘発のために、 界面部位上の位置が選択される。 同様に、 酵素表面上又は近 傍の位置のみが置換され、 野生型酵素と比較して 1以上の荷電単位の表面荷電 の変化を生じさせることができる。 あるいは RRFのアミノ酸残基は、 その親水 性又は疎水性の特徴に基づいて選択され得る。  For example, the mutation can be directed to a particular site or combination of only the wild-type RRF site, ie, the active site or the auxiliary binding site. Alternatively, a location on the interface site is selected for mutagenesis. Similarly, only positions on or near the enzyme surface can be replaced, resulting in a change in the surface charge of one or more charged units as compared to the wild-type enzyme. Alternatively, the amino acid residues of the RRF can be selected based on their hydrophilic or hydrophobic characteristics.
このような変異体は、 野生型 RRFと比較したいくつかの異なる特性のいずれ かにより特徴づけられる。 例えばこのような変異体は、 1以上の荷電単位の表 面荷電の変化を有し得るか、 又はサブュニッ ト解離に対する安定性の増加を 有し得る。 あるいはこのような変異体は、 野生型 RRFと比較して基質特異性の 変化を有し得るか、 あるいは野生型 RRFよりも高いか、 又は低い比活性を有し 得る。  Such variants are characterized by any of several different properties as compared to the wild-type RRF. For example, such a variant may have a change in the surface charge of one or more charged units, or may have increased stability to subunit dissociation. Alternatively, such a mutant may have an altered substrate specificity as compared to the wild-type RRF, or may have a higher or lower specific activity than the wild-type RRF.
本発明により調製される RRF変異体は、 多くの方法により調製することがで きる。 例えば野生型 RRF配列は、 本発明を利用して、 変異に望ましいと同定さ れた部位において、 オリゴヌク レオチド特異的変異誘発又は他の従来の技術( 例えば欠失等)手段により変異させることができる。 あるいは RRFの変異体は 、 特定のァミノ酸の天然に存在しないァミノ酸での部位特異的置換により作 成することができる。 さらに RRF変異体は、 アミノ酸残基、 即ち特定のシステ イン又はメチォニン残基のセレノシスティン又はセレノメチォニンとの置換 により作製することができる。 これは天然メチォニン又はシスティンのいず れカ、(あるいは両方)を含まないが、 セレノメチォニン又はセレノシスティン( あるいは両方)を富化した増殖培地上で野生型ポリぺプチド又は変異体ポリぺ プチドのいずれかを発現することができる宿主生物を増殖させることにより 達成される。 The RRF variants prepared according to the present invention can be prepared by a number of methods. For example, a wild-type RRF sequence can be mutated using the present invention at the site identified as desirable for mutation by oligonucleotide-directed mutagenesis or other conventional techniques (eg, deletion, etc.). . Alternatively, variants of RRF can be created by site-specific substitution of a particular amino acid with a non-naturally occurring amino acid. In addition, RRF variants can be made by replacing amino acid residues, ie, specific cysteine or methionine residues, with selenocysteine or selenomethionine. It does not contain either native methionine or cysteine (or both), but does contain wild-type or mutant polypeptides on growth media enriched for selenomethionine or selenocystin (or both). This is achieved by growing a host organism capable of expressing any of the peptides.
変異は、 合成オリ ゴヌク レオチ ドを用いて、 R RFをコードする DNA配列中に 導入することができる。 これらのオリ ゴヌク レオチドは、 所望の変異部位に 隣接するヌク レオチド配列を含む。 変異は、 RR Fの完全長 DNA配列、 他の生物 の RRF又は RRF配列を短く したり、 長く (欠失又は付加)したものの配列中に作 製することができる。  Mutations can be introduced into the DNA sequence encoding the RRF using synthetic oligonucleotides. These oligonucleotides contain nucleotide sequences flanking the desired mutation site. Mutations can be made in the full length DNA sequence of the RRF, or the RRF or the RRF sequence of other organisms, shortened or lengthened (deleted or added).
本発明に従って、 上記の方法又は当該分野で公知の代替方法により作製さ れる変異 RRF DNA配列は、 発現ベクターを用いて発現させることができる。 当 該分野で周知のように、 発現ベクターは典型的には宿主ゲノムから独立した 宿主細胞中での自己複製を可能にするエレメン ト、 及び選択目的のための 1つ 以上の表現型マーカーを含む。 発現ベクターはまた、 所望の RRF変異体コード 配列を囲む DNA配列のインサートの前又は後に、 プロモーター、 オペレーター 、 リボソーム結合部位、 翻訳開始シグナル及び必要に応じてリブレッサ一遺 伝子ならびに終止シグナルをコードする調節配列を含む。 いくつかの実施態 様において、 産生された変異体の分泌が求められる場合、 シグナル配列をコ 一ドするヌク レオチドを RRF変異体コ一ド配列の前に挿入することができる。 調節配列の制御下での発現のためには、 所望の DNA配列を調節配列に作動可能 に連結させなければならない。 即ち、 RRF変異体をコー ドし、 かつ調節配列の 制御下のこの配列の発現及びこの RRF配列によりコードされる所望の産物の産 生を可能にする適切なリ一ディングフレームを維持する DNA配列の前に適切な 開始シグナルを有さねばならない。  In accordance with the present invention, mutated RRF DNA sequences produced by the methods described above or alternative methods known in the art can be expressed using expression vectors. As is well known in the art, expression vectors typically include an element that enables autonomous replication in the host cell independent of the host genome, and one or more phenotypic markers for selection purposes. . The expression vector also encodes a promoter, an operator, a ribosome binding site, a translation initiation signal, and, optionally, a libresor gene and a termination signal, before or after the insert of the DNA sequence surrounding the desired RRF variant coding sequence. Contains regulatory sequences. In some embodiments, if secretion of the produced mutant is desired, a nucleotide coding for a signal sequence can be inserted before the RRF mutant code sequence. For expression under the control of regulatory sequences, the desired DNA sequence must be operably linked to the regulatory sequences. That is, a DNA sequence encoding the RRF variant and maintaining an appropriate reading frame that allows expression of this sequence under the control of a regulatory sequence and production of the desired product encoded by the RRF sequence. Must have an appropriate start signal before the.
広範な周知の利用可能な発現べクターが、 いずれも本発明の変異した RRFコ 一ド配列を発現するのに有用である。 これらは例えば S V 40の種々の公知の誘 導体、 公知の細菌プラスミ ド(例えば c o l E l、 pC R l、 pBR 322、 pMB 9及びそれ らの誘導体を包含する E . C o l i由来のプラスミ ド)、 より広い宿主域のプラス ミ ド(例えば RP4、 ファージ DNA (例えば多くのえファージの誘導体(例えば NM98 9 )及び他の DNAファージ(例えば M 1 3及び繊維状 1本鎖 DNAファージ))、 2 μプラ スミ ド又はそれらの誘導体のような酵母プラスミ ドならびにプラスミ ド及び ファージ DNAの組み合わせから得られるベクター(例えばファージ DNA又は他の 発現コントロール配列を利用するために改変されているプラスミ ド)のような 染色体 DNA配列、 非染色体 DNA配列及び合成 DNA配列のセグメントからなるべク ターを包含する。 本発明の好適な実施態様において、 本発明者らは E. Col iベ クタ一を利用している。 A wide variety of well-known and available expression vectors are all useful for expressing the mutated RRF coding sequences of the present invention. These include, for example, various known derivatives of SV40, known bacterial plasmids (eg, plasmids from E. coli including colEl, pCR1, pBR322, pMB9 and derivatives thereof). Plasmids of wider host range (eg, RP4, phage DNA (eg, derivatives of many phage (eg, NM989) and other DNA phages (eg, M13 and filamentous single-stranded DNA phage)), 2 Yeast plasmids such as μplasmid or their derivatives and plasmids and It should consist of segments of chromosomal, non-chromosomal and synthetic DNA sequences, such as vectors obtained from combinations of phage DNAs (eg, phage DNA or plasmids modified to utilize other expression control sequences). Includes turtles. In a preferred embodiment of the present invention, we utilize the E. coli vector.
さらに、 DNA配列に作動的に連結した場合、 その発現を制御する、 任意の広 範な発現調節配列が、 本発明による変異した DNA配列を発現するためにこれら のベクター中で使用される。 このような有用な発現調節配列と して、 例えば 動物細胞用 SV40の初期プロモータ一及び後期プロモーター、 l ac系、 trp系、 T AC系又は TRC系、 fdコ一トタンパク質の λファージ調節領域の主要なオペレー タ一領域及びプロモーター領域(全て E. Col i用)、 3-ホスホグリセレートキナ —ゼ又は他の糖分解酵素のプロモーター、 酸†生ホスファターゼのプロモータ 一(例えば Pho5)、 酵母用酵母ひ -交配因子のプロモータ一及び原核生物細胞又 は真核生物細胞あるいはウィルスの遺伝子発現を制御することが公知である 他の配列及びこれらの組み合わせが挙げられる。 本発明の好適な実施態様に おいて、 本発明者らは、 E. Col i発現を利用する。  In addition, any of a wide variety of expression control sequences that control expression when operably linked to a DNA sequence may be used in these vectors to express a mutated DNA sequence according to the present invention. Such useful expression control sequences include, for example, the early and late promoters of SV40 for animal cells, the lac, trp, TAC or TRC systems, and the λ phage regulatory region of the fd coat protein. Major operator region and promoter region (all for E. coli), 3-phosphoglycerate kinase or other glycolytic enzyme promoter, acid-producing phosphatase promoter (eg Pho5), yeast for yeast The promoter of the mating factor and other sequences known to regulate gene expression in prokaryotic or eukaryotic cells or viruses and combinations thereof. In a preferred embodiment of the present invention, we utilize E. coli expression.
広範な種の宿主が又、 本発明による変異 RRFの産生に有用である。 これらの 宿主として、 例えば E. Co l i , Bac i l l us及び St reptomyc esのような細菌、 酵 母のような真菌、 CH0細胞及び COS- 1細胞のような動物細胞、 植物細胞及び卜 ランスジエニック宿主細胞が挙げられる。 好適な実施態様において、 宿主細 胞は E. Col iである。  A wide variety of host species are also useful for producing mutant RRFs according to the present invention. Examples of these hosts include bacteria such as E. coli, Bacillus and Streptomyces, fungi such as yeast, animal cells such as CH0 cells and COS-1 cells, plant cells, and transgenics. Host cells. In a preferred embodiment, the host cell is E. coli.
全ての発現ベクター及び発現系が、 本発明の変異 DNA配列を発現し、 そして 改変 RRF又は RRF変異体を産生するのに、 同じ様式で機能するとは限らないこ とを理解すべきである。 全ての宿主が同一の発現系を用いて等しく良好に機 能するわけではない。 しかし、 当業者は、 実験を行うことなく、 そして本発 明の範囲を逸脱することなく、 これらのベクタ一、 発現調節配列及び宿主か ら選択することができる。 例えば、 ベクターの選択の際に重要な考慮事項は 、 所定の宿主におけるベクターの複製能力である。 ベクターのコピ一数、 コ ピー数の制御能力及び抗生物質マーカ一のような、 ベクタ一によりコードさ れる他のタンパク質の発現も又考慮しなくてはならない。 It is to be understood that not all expression vectors and systems will function in the same manner to express the mutant DNA sequences of the present invention and to produce modified RRFs or RRF variants. Not all hosts work equally well with the same expression system. However, one of skill in the art can select from these vectors, expression control sequences and hosts without undue experimentation and without departing from the scope of the present invention. For example, an important consideration in selecting a vector is the ability of the vector to replicate in a given host. Encoded by the vector, such as the number of copies of the vector, the ability to control the number of copies, and the antibiotic marker. The expression of other proteins that must be considered must also be considered.
発現調節配列の選択の際、 種々の要因も考慮に入れるべきである。 これら は、 例えば系の相対的強度、 その制御能力、 本発明の改変 RRFをコードする DN A配列の適合性、 特に潜在的二次構造に関する適合性である。  Various factors should be taken into account when selecting an expression control sequence. These are, for example, the relative strength of the system, its ability to control, the suitability of the DNA sequences encoding the modified RRFs of the invention, especially with respect to potential secondary structure.
宿主は、 選択されたベクターとの適合性、 宿主に対する改変 RRFの毒性、 成 熟産物を分泌する能力、 タンパク質を適切に折り畳む能力、 発酵要求性、 宿 主からの改変 RRFの精製の容易さ及び安全性の考察により選択されるべきであ る。 これらのパラメータ内で、 当業者は有用な量の変異 RRFを産生することが できる、 種々のべクター/発現調節系 Z宿主の組み合わせを選択することが できる。  The host must be compatible with the selected vector, have the toxicity of the modified RRF to the host, have the ability to secrete mature products, have the ability to properly fold the protein, have the fermentation requirements, have the ease of purifying the modified RRF from the host, Should be selected based on safety considerations. Within these parameters, one of skill in the art can select various vector / expression control Z host combinations that can produce useful amounts of mutant RRF.
これらの系で産生される変異 RRFは、 野生型 RRFを精製するために使用され る工程及びス トラテジーを包含する種々の従来の工程及びス トラテジ一によ り精製することができる。  Mutant RRF produced in these systems can be purified by a variety of conventional processes and strategies, including those used to purify wild-type RRF and strategies.
一度、 RRF変異が所望の位置(即ち、 活性部位又は補助的結合部位)で作製さ れると、 変異体を目的のいくつかの特性いずれかについて試験することがで さる。  Once the RRF mutation has been made at the desired location (ie, active site or auxiliary binding site), the mutant can be tested for any of several properties of interest.
例えば変異体は、 生理学的 pHにおける荷電の変化についてスク リーニング することができる。 これは野生型親の等電点(p i )と比較した変異 RRFの等電点 を測定することにより決定される。 等電点は、 We l l ner, D. Ana l yt . Chem. 43. P597 ( 1971 )の方法によるゲル電気泳動により測定される。 表面荷電が変 化した変異体は、 本発明の構造情報により提供されるように、 酵素の表面に 位置する置換アミノ酸及び変化した piを有する RRFポリべプチドである。 For example, mutants can be screened for changes in charge at physiological pH. This is determined by measuring the isoelectric point of the mutant RRF compared to the isoelectric point (pi) of the wild-type parent. The isoelectric point is determined by gel electrophoresis according to the method of Wellner, D. Analyt. Chem. 43. P 597 (1971). Variants with altered surface charge are RRF polypeptides having a substituted amino acid located on the surface of the enzyme and an altered pi, as provided by the structural information of the present invention.
さらに変異体は、 野生型 RRFと比較して高いか、 又は低い比活性についてス ク リーニングすることができる。 変異体は、 平島及び梶の方法及びオリゴヌ クレオチドを用いるアツセィ(前出)を用いて活性測定される。 変異体は上記 のように RRF反応を測定することにより、 RRF基質特異性の変化を試験するこ とができる。  In addition, variants can be screened for higher or lower specific activity compared to wild-type RRF. Mutants are measured for activity using the method of Hirashima and Kaji and Atsushi (supra) using oligonucleotides. Mutants can be tested for changes in RRF substrate specificity by measuring the RRF response as described above.
さらに本発明の目的は、 安定性の上昇した変異体を包含する。 安定性が上 昇した RRF変異体は、 酵素活性の喪失を示さないものも含む。 以下、 実施例により本発明をより詳細に示す。 以下に示す実施例はあくま でその詳細な解説を目的とするものであり、 他の方法を制限するものではな レ、。 A further object of the present invention includes variants with increased stability. RRF variants with increased stability include those that do not show loss of enzyme activity. Hereinafter, the present invention will be described in more detail with reference to Examples. The examples shown below are for the purpose of detailed explanation only and do not limit other methods.
[実施例]  [Example]
例 1.滴状蒸 おム散法 (hanging drop vapour ditt'usion technique) による 菌 Xの RRFタンパクの結晶化 Example 1: Crystallization of RRF protein of fungus X by the hanging drop vapor ditt'usion technique
菌 Xの RRFタンパク 4mg/mlから 8mg/ml、 トリス塩酸 50mM pH8.5、 硫酸塩 70 -lOOmM, ポリエチレンダリコール 14%から 18%を含む 5 μ 1の溶液を液滴化し 、 液滴より も高い濃度の結晶化試薬を含有する液だまりで平衡化した。 平衡 化は揮発性媒体(水又は有機溶媒)の拡散により、 液滴の蒸気圧が液だまりの 蒸気圧に等しくなるまで行った。 平衡化が水交換(液滴から液だまりへ) によ りおきると、 液滴の容量は変化する。 その結果、 液滴中の全ての媒体の濃度 は変化する。 水より も高い蒸気圧を有する媒体には、 液だまりから液滴への 変換が生起する。 本例において RRFタンパク溶液が接触するガラス容器は、 そ の表面を疎水化処理して用いられる。 トリス塩酸 100mM ρΗ8.5硫酸塩 150mM から 200mM、 ポリエチレンダリコール 28%から 36%の緩衝液へ透析して XRRF結 晶を得た。 結晶は、 1から 3週間で 30X50X250 i mの大きさに成長した。 そ の結果を図 1 に示す。  A 5 μl solution containing 4 mg / ml to 8 mg / ml of RRF protein of bacteria X, 50 mM Tris-HCl pH 8.5, sulfate 70-100 mM, polyethylene dalicol 14% to 18% Equilibration was performed in a pool containing a high concentration of crystallization reagent. Equilibration was performed by diffusion of a volatile medium (water or organic solvent) until the vapor pressure of the droplet was equal to the vapor pressure of the pool. If equilibrium is due to water exchange (drops to pools), the volume of the drops will change. As a result, the concentration of all media in the droplet changes. A medium with a higher vapor pressure than water will undergo a conversion from pool to droplets. In this example, the glass container with which the RRF protein solution comes into contact is used after its surface is subjected to a hydrophobic treatment. XRRF crystals were obtained by dialysis against a buffer solution of Tris hydrochloride 100 mM ρΗ8.5 sulfate 150 mM to 200 mM, polyethylene dalicol 28% to 36%. The crystals grew to a size of 30X50X250 im in one to three weeks. Figure 1 shows the results.
例 2. X線回折解析による RRFの三次元構造 Example 2. Three-dimensional structure of RRF by X-ray diffraction analysis
RRF三次元構造決定の手段として、 複合同位体置換法 (multiple isomorph ous replacement procedure) を用レヽた。 これは、 重原子による同位 タン パク結晶からの拡散データを得るのに必要な標準的な方法である。 重原子の 位置より、 未置換のものと同位体との差をパッターソン ·マップへ計算した 。 タンパクモデル作成にあたり電子密集度図の計算に必要な初期タンパク相 のデータは、 数種の誘導体を用いて計算された。  As a means for determining the three-dimensional structure of the RRF, a multiple isomorphous replacement procedure was used. This is the standard method necessary to obtain diffusion data from isotopic protein crystals due to heavy atoms. From the position of the heavy atom, the difference between the unsubstituted isotope and the isotope was calculated on a Patterson map. The data of the initial protein phase necessary for the calculation of the electron density map for the creation of the protein model was calculated using several types of derivatives.
この凍結結晶の X線回折のデータは、 MaxII synchrotron (Sweden, Lund) により BL71へ集めた。  X-ray diffraction data of this frozen crystal was collected on BL71 by MaxII synchrotron (Sweden, Lund).
そのネイティブな結晶は 2.6 Aの解像度で回折した。 1.5以上のモザィシテ ィの問題の為に、 現在までの所 2.9Aの解像度までを用いた。 この典型的な回 折像を図 2に示す。 The native crystal diffracted at 2.6 A resolution. Up to 2.9A resolution so far has been used for mosaicity issues of 1.5 and above. This typical times Figure 2 shows the folded image.
このネイティブデータ解析は終了しており、 Rsymが 1.0である。 この統計デ 一タを表 1に示す。  This native data analysis has been completed and Rsym is 1.0. Table 1 shows the statistical data.
この結晶は、 a=98.5A、 b=106.7A、 c=66.7Aを有し、 ?2 に属している この非対称のユニッ トは 2から 4分子を含んでおり、 各分子間には 0.5、 0. 33、 0.5のトランスレーションが存在する。 2つの誘導体のデータが得られ、 プラチナの誘導体は 4. OAに回折し、 水銀の誘導体は 3.8Aに回折した。  This crystal has a = 98.5A, b = 106.7A, c = 66.7A, and? This asymmetric unit belonging to 2 contains 2 to 4 molecules, with 0.5, 0.33, and 0.5 translations between each molecule. Data were obtained for two derivatives, the platinum derivative diffracted to 4.OA and the mercury derivative to 3.8A.
ネィティブデータの統計学的検討 Statistical examination of native data
回折強度の要約と R—因子をシェルの大きさ(解像度)により示した表 Table summarizing diffraction intensity and R-factors by shell size (resolution)
Rの値(一次関数として) =3D SUM ( ABS(I - <1>)) / SUM (I)  R value (as a linear function) = 3D SUM (ABS (I-<1>)) / SUM (I)
Rの値(二次関数として) =3D SUM ( (I - 〈I>) ** 2) I SUM (I ** 2) カイ自乗 =3D SUM ( (I ― <I>) ** 2) I (エラー ** 2 * N / (N - 1) ) ) 全ての和の計算には二度以上測定した値についてのみ行った。 R value (as a quadratic function) = 3D SUM ((I-<I>) ** 2) I SUM (I ** 2) Chi-square = 3D SUM ((I-<I>) ** 2) I (Error ** 2 * N / (N-1))) All sums were calculated only for values measured more than once.
シェルの下限及び上限 回折強度の 平均の 正常の一次乗数の 二次乗数の オングス卜ローム 平均 誤差 stat.値 カイ自乗 _値 R-因子 R-因子 下限 上限 Shell lower and upper limits Diffraction intensity average first order multiplier second order multiplier Angstrom average error stat. Value Chi-square _ value R-factor R-factor Lower limit
30.0 7.12 814.6 36.6 18.5 0. 709 0.033 0.032 30.0 7.12 814.6 36.6 18.5 0.709 0.033 0.032
7.12 5.67 227.1 16.7 13.5 1. 012 0.084 0.0727.12 5.67 227.1 16.7 13.5 1.012 0.084 0.072
5.67 4.95 266.0 19.0 15.3 0.983 0.083 0.0755.67 4.95 266.0 19.0 15.3 0.983 0.083 0.075
4.95 4.50 417.3 25.3 18.4 1. 052 0.070 0.0644.95 4.50 417.3 25.3 18.4 1.052 0.070 0.064
4.50 4.18 394.0 25.5 19.6 1. 239 0.087 0.0864.50 4.18 394.0 25.5 19.6 1.239 0.087 0.086
4.18 3.93 330.4 24.4 19.7 1. 064 0.093 0.0884.18 3.93 330.4 24.4 19.7 1. 064 0.093 0.088
3.93 3.74 296.1 24.6 20.9 1. 286 0.125 0.2193.93 3.74 296.1 24.6 20.9 1.286 0.125 0.219
3.74 3.58 283.8 25.5 22.0 1. 275 0.142 0.2213.74 3.58 283.8 25.5 22.0 1.275 0.142 0.221
3.58 3.44 207.5 23.2 21.2 1. 314 0.170 0.1923.58 3.44 207.5 23.2 21.2 1.314 0.170 0.192
3.44 3.32 173.2 22.5 21.1 1. 278 0.193 0.2983.44 3.32 173.2 22.5 21.1 1.278 0.193 0.298
3.32 3.22 151.8 22.1 20.9 1. 414 0.222 0.2313.32 3.22 151.8 22.1 20.9 1.414 0.222 0.231
3.22 3.12 130. Ί 21.7 20.8 1. 560 0.265 0.2803.22 3.12 130.Ί 21.7 20.8 1.560 0.265 0.280
3.12 3.04 108.3 20.6 19.9 1. 552 0.306 0.3073.12 3.04 108.3 20.6 19.9 1.552 0.306 0.307
3.04 2.97 92.2 19.9 19.2 1. 655 0.334 0.3153.04 2.97 92.2 19.9 19.2 1.655 0.334 0.315
2.97 2.90 74.9 19.2 18.7 1. .632 0.411 0.416 全ての反射 268.4 23.2 19.3 1. 259 0.119 0.102 2.97 2.90 74.9 19.2 18.7 1. .632 0.411 0.416 All reflections 268.4 23.2 19.3 1.259 0.119 0.102
例 3. Thermotoga Maritimaの RRFの結晶構造 Example 3. Crystal structure of Thermotoga Maritima RRF
Thermotoga Maritimaの RRF cDNAを発現ベクター(PET1650)にクローンィ匕し 、 IPTG添加により E. Coliで発現させた。 結果として宿主細胞中に Thermotog a Maritima RRFが高レベルで蓄積した。 細胞を機械的に破壊し、 平島と梶の 方法(Biochemistry, Π, 4037, (1972) )を改変した方法で精製し、 Thermoto ga Maritima RRFを得た。 RRFの結晶を蒸気拡散により成長させた。 5- ΙΟμ Ι の RRF溶液を同量の reservoir液(00, 1M 酢酸ナトリ ウム、 (pH5.5)2.0M 硫 安、 5mM DTT、 10%グリセロール)と混合し、 600 μ 1の上記 reservoir液と 25 °Cで平衡化し、 24時間この液をス トリークして、 結晶形成を促進すると、 結 晶が 15時間後には見られる。 そして 3日後には、 0.3X0.3X0.5mmの bipyrami d型の結晶に成長した。  The RRF cDNA of Thermotoga Maritima was cloned into an expression vector (PET1650) and expressed in E. coli by adding IPTG. As a result, high levels of Thermotog a Maritima RRF accumulated in host cells. The cells were mechanically disrupted and purified by a modification of the method of Hirashima and Kaji (Biochemistry, Π, 4037, (1972)) to obtain Thermotoga Maritima RRF. RRF crystals were grown by vapor diffusion. Mix 5-ΙΟμΙ RRF solution with the same volume of reservoir (00, 1M sodium acetate, (pH 5.5) 2.0M ammonium sulfate, 5mM DTT, 10% glycerol) and mix with 600μ1 of the above reservoir. Equilibrate at 25 ° C and streak this solution for 24 hours to promote crystal formation, and crystals are seen after 15 hours. Three days later, it grew into a 0.3 × 0.3 × 0.5 mm bipyramid type crystal.
当業者にとって、 上述の結晶化条件を適宜改変することが可能である。  For those skilled in the art, the above-mentioned crystallization conditions can be appropriately modified.
全ての X線データセッ ト(2.55 A分解能)をビームライン BL711において、 MAX IIシンクロ トロンを用いて Mar345ィメージプレートディテクタ一に集めた。 データのマージ、 スケール、 インデックス化及び積分は、 VDS及び Xscale(Kab sch, W. J. Appl. Crystallography 26 795 (1993) )のプログラムを用レヽて 打った。 MADデ一タ (mul t i ware length anomalous dispersior data)は、 波 長 0.9184〜0.978及び 0· 9788Aにおいて、 ビームライン BM14 ESRFにて行レヽ 、 Mar345イメージプレートディテクターを用いて集めた。 このデータを Mosfl m(Lesl ie, A. G. W. in Crystal lographic computing Oxford Uni v Press (1990))を用いて処理し、 スケール、 マージは Scala(CCP4)中にて行った。 セレニウム原子の RRF中における位置は、 shelxプログラム(sheldrick, G. M. Acta Cryst. A46 P467 (1998))を用い、 normal i zeされた構造因子を用 いた。 重原子(セレニウム)パラメータ一は、 MIphase(CCP4)を用いて精密化し た。 電子密度地図を空間群 1^4,2,2及び Ρ432,2の両方で求めてみたところ、 正し い空間群は、 Ρ42,2であることが明らかとなった。 平均メ リ ッ ト値は、 0.66Α 〜4. OAの分解能を示した。 表 2は Thermotoga Maritima RRFの結晶データを 示す。 表 2 データコレクシヨン All X-ray data sets (2.55 A resolution) were collected at the beamline BL711 on a Mar345 image plate detector using a MAX II synchrotron. Merging, scaling, indexing and integration of the data were performed using the VDS and Xscale (Kabsch, WJ Appl. Crystallography 26795 (1993)) programs. MAD data (multiware length anomalous dispersior data) was collected using a Mar345 image plate detector at a beamline of BM14 ESRF at wavelengths of 0.9184-0.978 and 0.9788A. This data was processed using Mosflm (Leslie, AGW in Crystallographic computing Oxford Univ. Press (1990)), and scaling and merging were performed in Scala (CCP4). The position of the selenium atom in the RRF was determined by using the shelx program (sheldrick, GM Acta Cryst. A46 P467 (1998)), and using the normalized structure factor. Heavy atom (selenium) parameters were refined using MIphase (CCP4). When I asked the electron density map in both the space group 1 ^ 4,2,2 and Ρ4 3 2,2, space group correct, it has become clear that it is Ρ42,2. Average merit values ranged from 0.66 0.6 to 4.OA. Table 2 shows the crystal data of Thermotoga Maritima RRF. Table 2 Data collection
最高分解能シェル2.65 - 2.55 Aに関する値 Maximum resolution shell 2 65 -. 2.55 A for the value
分解能 30-2.55  Resolution 30-2.55
全測定回数 79947 (7119)  Total number of measurements 79947 (7119)
特異的反射屈折 11927 (1261)  Specific catadioptric refraction 11927 (1261)
平均反復数 6.7 (5.6)  Average number of iterations 6.7 (5.6)
R„a (%) 0.049 (0.156) R „ a (%) 0.049 (0.156)
データの完成度 (%) 99.8 (99.1)  Data completion (%) 99.8 (99.1)
I/sigma(I) 26.4 (8.9)  I / sigma (I) 26.4 (8.9)
Rmerge = (∑|I-<I>| /∑I ) 式中、 Iは観察された強度であり、 Rmerge = (∑ | I- <I> | / ∑I) where I is the observed intensity,
<1>は中心対称性反射の平均強度である。  <1> is the average intensity of centrally symmetric reflection.
力ッコ内は maximam resolutionの場合の値を示す。 溶媒平滑化(solvent flattering)及び位相拡張(CCD4_col laborat ive con put iry project ff4, A suite of program r or protein crystallography Daiesburg Laboratory, Warrington, WA4 4. AD UK (1979)により、 マップ を改良し、 完全なポリペプチド鎖を ト レースすることに成功した。 モデル構 築プログラム(jones, A. T et al Acta. Cryst. A47 PP110 ( 1991 ) )位置の 精密化((CNS)Branger A. T et al Acta Cryst D54 p905 (1998))及び位申目 の積分(phase combination)を繰り返し、 全ての側鎖をモデルに導入するこ とができた。 rigid body及び位置の(positional)精密化を行い、 さらに擬似 アニーリ ング(simulated annea 1 i ng)を行った。 このモデルを結晶データ(Na tive Data)と照合してモデルの位相のみを用いて最終モデルに到達した。 本発明による RRFのモデルは、 全ての X及び Y軸の観察されたデータに対して R因子(25.3%)を有する。 理想結合長及び結合角からの二乗平均平方根は偏差 は 0.01 A及び 2. OAである。 The values in the brackets indicate the values for maximam resolution. Solvent flattering and phase expansion (CCD4_col laborative put iry project ff4, A suite of programr or protein crystallography Daiesburg Laboratory, Warrington, WA4 4. successful polypeptide chains to trace. model building program (j ones, A. T et al Acta. Cryst. A47 PP110 (1991)) refinement position ((CNS) Branger A. T et al Acta Cryst D54 p905 (1998)) and the phase combination of the titles were repeated, and all the side chains were able to be introduced into the model. This model was compared with crystallographic data (native data) to reach the final model using only the model phase.The RRF model according to the present invention R factor for observed data on X and Y axes Root mean square from. The ideal bond lengths and bond angles with 25.3%) of deviation of 0.01 A and 2. OA.
表 3は、 Thermotoga Maritima RRF結晶データの統計学的処理結果を示す。 表 3 Table 3 shows the results of the statistical processing of the Thermotoga Maritima RRF crystal data. Table 3
データコレクション Data collection
データセッ ト(波長 A) ビーク (0.9786) インフレクシヨン(0.9788) リモート(ϋ.9184) 分解能 (A) 2.9 2.9 2.9 完成度(%) 99 98 98 Data set (wavelength A) Beak (0.9786) Inflection (0.9788) Remote (ϋ.9184) Resolution (A) 2.9 2.9 2.9 Completeness (%) 99 98 98
Rsym (%) 7.0 7.0 7.2  Rsym (%) 7.0 7.0 7.2
Cullis R-centric 0.67 0.56  Cullis R-centric 0.67 0.56
Cullis R-anomalous 0.60 0.77 0.78 Cullis R-anomalous 0.60 0.77 0.78
表 4は、 Thermotoga Maritima RRFの Phasingを示す c 分解能 表 4 Table 4, c resolution table 4 showing the Phasing of Thermotoga Maritima RRF
Figure imgf000032_0001
Figure imgf000032_0001
2. RRFの活性部位の推定 2. Estimation of the active site of RRF
RRF分子中の活性部位の位置を推定するために、 一連の RRF変異体を生成し た。 変異誘発を誤りの多い PCR法を用いて、 変異を導入した(Janosi et al E MBO J. 17 1141 (1998))。  A series of RRF variants were generated to deduce the location of the active site in the RRF molecule. Mutagenesis was introduced using an error-prone PCR method (Janosi et al EMBO J. 17 1141 (1998)).
致死遺伝子変異を有する frr (RRFをコードする遺伝子)を持つプラスミ ドの 分離は次のようにして行った。 Janosi等による EMBO J. 17 1141 (1998)に記 載されている pMIXを用いた。 簡単に説明すると pMIXは、 frrに様々な遺伝変異 を起こさせ、 それをクロラムフエニコ一ル耐性のプラスミ ドに導入させたも のである。 この実施例では、 大腸菌の LJ4(recA_)を宿主と して用いた。 この 菌はクロモゾーム上の frrがフレームシフ 卜のために不活性化されているため 、 大腸菌は pPEN(1560) (Janosiら EMBO J U 1141 ( 1998) )上にある野生型 f r rにより生命を保っている。 pPEN(1560)は、 カナマイシン耐性因子及びショ糖 ill敏退 fe卞 (sucrose sensitivity gene) ' s'む。  Plasmid having frr (gene encoding RRF) having a lethal mutation was isolated as follows. The pMIX described in EMBO J. 17 1141 (1998) by Janosi et al. Was used. Briefly, pMIX caused various genetic mutations in frr and introduced them into chloramphenicol-resistant plasmid. In this example, E. coli LJ4 (recA_) was used as a host. Escherichia coli is kept alive by the wild-type frr on pPEN (1560) (Janosi et al. EMBO JU 1141 (1998)) because this fungus is inactivated by frr on the chromosome due to frameshifting. . pPEN (1560) has a kanamycin resistance factor and sucrose ill sucrose sensitivity gene 's'.
この大腸菌を pMIXで トランスフォームし、 クロラムフエ二コール耐性をマ —カーとして選別した。 frrは細菌にとって不可欠であるので、 pMIXの中に致 死変異のある frrを持った菌は、 上記 pPEN1560を持たないと生きて行けない。 従って pMIXと PPEN1560の両方のプラスミ ドを有する菌を探した。 因みに pMIX と PPEN1560の両プラスミ ドは、 通常は incompatibleなので共棲しないが、 上 記のように必要に迫られれば(抗生物質マ一カー及び frrの必要性)共棲する。 このような大腸菌を選択するために、 トランスフォーマン 卜を CM及びショ 糖を含むプレート上にまき、 さらに CMと KMを含むプレー卜にレプリカフレイ ティングする。 後者に生育し、 前者に生育しない菌を選択すると pPEN1560と p MIX中の lethal frrを持っている菌を選べる。 この菌は pPEN1560を有するか らショ糖を含むプレー卜には生えない。 かく して得られた 153個のトランスフ オーマン卜からそれぞれのプラスミ ドを純化し、 それを用いて大腸菌 DH5ひ (w ild type frrを有する)をトランスフォームした。 この菌は上述のごとく野生 型の frrを有するので pPEN1560(カナマイシン耐性)を必要としない。 従ってク 口ラムフエ二コール、 カナマイシン感受性の大腸菌 DH5aを選べば、 lethal m utationを持ち、 pMIXを有する大腸菌を選択することができる。 The E. coli was transformed with pMIX and selected for chloramphenicol resistance as a marker. Since frr is indispensable to bacteria, bacteria having a lethal mutation in pMIX cannot survive without pPEN1560. Therefore, bacteria having both pMIX and PPEN1560 plasmids were searched. By the way, both pMIX and PPEN1560 plasmids do not coexist because they are usually incompatible, but coexist when required (need for antibiotic marker and frr) as described above. To select such Escherichia coli, the transformant is spread on a plate containing CM and sucrose, and then replica-plated on a plate containing CM and KM. To go. If bacteria that grow on the latter and do not grow on the former are selected, bacteria that have lethal frr in pPEN1560 and pMIX can be selected. Since this bacterium has pPEN1560, it cannot grow on plates containing sucrose. Each plasmid was purified from the 153 transformants thus obtained, and used to transform Escherichia coli DH5 (having wild type frr). Since this bacterium has a wild-type frr as described above, it does not require pPEN1560 (kanamycin resistance). Therefore, by selecting Escherichia coli DH5a which is sensitive to kuram ramphenicol and kanamycin, Escherichia coli having lethal mutation and having pMIX can be selected.
かく して得られた大腸菌からプラスミ ドを単離し、 Kpnl-Hindlllフラグメ ント(0.9kb, frr)を取り出して常法による DNA配列決定を行った。 その結果を 表 5に示す。 Plasmid was isolated from the Escherichia coli thus obtained, and a Kpnl-Hindlll fragment (0.9 kb, frr) was taken out and subjected to DNA sequencing by a conventional method. Table 5 shows the results.
表 5 Table 5
RRFを不活化する遗伝変異  Gene mutations that inactivate RRF
分離 ヌクレオキ ^¾ RRFのブライマリ一配列中の変異  Mutation in the primary sequence of the isolated nucleoki ^ ¾ RRF
し "こ  "Ko"
株数  Number of shares
1アミノ酸変化 frrl46 T(152)C Leui51)Pro  1 amino acid change frrl46 T (152) C Leui51) Pro
frrieO T(161)C  frrieO T (161) C
T(19 )C Leu(65)Pro T (19) C Leu (65) Pro
Figure imgf000034_0001
T(99)C T(i 4)C Leu(65)Pro Ser(3;3)サイレン卜
Figure imgf000034_0001
T (99) CT (i 4) C Leu (65) Pro Ser (3; 3) Silent
/rrlOe ! C(123)T G(329)A Arg(llO)His Val(41)サイレン ト frrll9 C(-91)A C(385)T AiH(l29)CyS プロモーターをさむ/ rrlOe! C (123) TG (329) Osamu the A Arg (llO) His Val ( 41) Silent frrll9 C (-91) AC (385 ) T AiH (l29) Cy S promoter
Aクラス frrlld ] C(394)G Ax¾(t32)Gly A class frrlld] C (394) G Ax¾ (t32) Gly
frrl32 1 C(394)T Arg(l32)Cys  frrl32 1 C (394) T Arg (l32) Cys
frrlli 1 G(395)A Arg(l32)His  frrlli 1 G (395) A Arg (l32) His
frrI38 1 G(395)A Arg(132)Gln  frrI38 1 G (395) A Arg (132) Gln
frrl24 T(524)C Leu(l75)Pro  frrl24 T (524) C Leu (l75) Pro
frrl49 C(447)T T(524)C Lcu(l75)rro Ser(l49〕サイレント frrl49 C (447) T T (524) C Lcu (l75) rro Ser (l49) Silent
2アミノ酸変化 frrl65 G(28)A A(490)C Glu(IO)Lys Thr(l64)Pro 2 amino acid changes frrl65 G (28) A A (490) C Glu (IO) Lys Thr (l64) Pro
frr/13 1 G(28)C G(162)A A(490)C Glu(10)Lys Thi;i64)Pro Leu<154)サイレント frr / 13 1 G (28) C G (162) A A (490) C Glu (10) Lys Thi; i64) Pro Leu <154) Silent
Bクラス frrll2 1 T(38)C T(512)C Met(13)Thr Ile(171)Thr - frrll6 T(107)A C(317)A Leu(36)G Thr(106)Lys - frrll ] Α(269)ϋ G(329)A Asn(90)Ser Arg(UO)His -B class frrll2 1 T (38) CT (512) C Met (13) Thr Ile (171) Thr-frrll6 T (107) AC (317) A Leu (36) G Thr (106) Lys-frrll] Α (269 ) ϋ G (329) A Asn (90) Ser Arg (UO) His-
3アミノ酸変化 frrl 1 T(14)C A(103)G T(194)AI!e(5)Thr Ser(35)Gly Lcu(65)Glu 3 amino acid changes frrl 1 T (14) CA (103) GT (194) AI! E (5) Thr Ser (35) Gly Lcu (65) Glu
Cクラス frr l 1 G(88)A T(97)C C(394)TGly(30)Scr Scr(33)Pro Arg(132)Cys -  C class frr l 1 G (88) A T (97) C C (394) TGly (30) Scr Scr (33) Pro Arg (132) Cys-
C末端が短く frrl27 ] G(52)T T(4I6)C Glu(18)stop (17 AA long RRF) +mutation bevond stop なったもの frrlU A(76)T Lys(26)slop (25 AA long RRF) Short C-terminal frrl27] G (52) TT (4I6) C Glu (18) stop (17 AA long RRF) + mutation bevond stop frrlU A (76) T Lys (26) slop (25 AA long RRF)
fir 158 C(135)G T r(45)stop (44 ΛΛ long RRF)  fir 158 C (135) G T r (45) stop (44 ΛΛ long RRF)
frrl25 C(157)T Gln(53)slop (52 AA long RRF)  frrl25 C (157) T Gln (53) slop (52 AA long RRF)
frrl62 T(24)C C(157)T Gln(53)s(op (52 AA long RRF) Asp(8)サイ レント  frrl62 T (24) C C (157) T Gln (53) s (op (52 AA long RRF) Asp (8) Silent
Dクラス frrNO A(196)T T(206)C G(309)Tl,ys(66)stop (65 AA long RRF) +2 mutations beyond stop frrllO C(218)A Ser(73)stop (72 ΛΛ long RRF)  D class frrNO A (196) TT (206) CG (309) Tl, ys (66) stop (65 AA long RRF) +2 mutations beyond stop frrllO C (218) A Ser (73) stop (72 ΛΛ long RRF)
firm CHS) A C(218)A Ser(73)stop (72 AA long RRF) SD-開始スべ一サーを含む frrW8 G(364)T A(540)G GIu(122)stop (121 AA long RRF) firm CHS) AC (218) A Ser (73) stop (72 AA long RRF) SD-Including starter frrW8 G (364) TA (540) G GIu (122) stop (121 AA long RRF)
表 5の続き Table 5 continued
frrin 1 A(430)T Lys(144)stop (143 AA long RRF)  frrin 1 A (430) T Lys (144) stop (143 AA long RRF)
frrl36 1 T(336)C A(430)T Lys(]44)stop (143 A A long RRF) Asp(112)サイレント  frrl36 1 T (336) C A (430) T Lys (] 44) stop (143 A A long RRF) Asp (112) Silent
frrl59 I Τ(-46χ: A(508)T Lys(170)stop (169 AA long RRF) +プロモーター及び SD間の変異 frr!42 3 G(514)T Glu(172)stop (171 AA long RRF)  frrl59 I Τ (-46χ: A (508) T Lys (170) stop (169 AA long RRF) + mutation between promoter and SD frr! 42 3 G (514) T Glu (172) stop (171 AA long RRF)
c末 is力feく frrllS 2 A(103)G C(157)T Ser(35)Gly Glu(S3)stop (52 AA long RRF) c-end isr force frrllS 2 A (103) G C (157) T Ser (35) Gly Glu (S3) stop (52 AA long RRF)
なったもの及び frr!51 1 (All)G G(364)T Asp(4)Gly Glu(122)stop (121 AA long RRF) Nara and frr! 51 1 (All) G G (364) T Asp (4) Gly Glu (122) stop (121 AA long RRF)
1ァミノ酸変化 frrNO 1 A(61)G C(367)T Lys(21)GIu Glu(123)stop (122 AA long RRF)  1 Amino acid change frrNO 1 A (61) G C (367) T Lys (21) GIu Glu (123) stop (122 AA long RRF)
frrl66 1 A(61)G G(I62)A C(367)TLys(2 l)Glu Gln(123)stop (122 ΛΑ long R F) Leu(l 54)サイ レント  frrl66 1 A (61) G G (I62) A C (367) TLys (2 l) Glu Gln (123) stop (122 ΛΑ long R F) Leu (l 54) Silent
Eクラス frrl21 1 A(445)G C(469)T Ser 149)Gly Gln(157)stop (156 AA long RRF)  E class frrl21 1 A (445) G C (469) T Ser 149) Gly Gln (157) stop (156 AA long RRF)
firl52 I C(467)T C(469)T Scr(156)Phe Gln(157)stop (156 A A long RRF)  firl52 I C (467) T C (469) T Scr (156) Phe Gln (157) stop (156 A A long RRF)
frrl39 1 C(467)T C(469)T C(555)TSer(156)Phe GIn(157)stop (156 AA long RRF) mutation beyond stop  frrl39 1 C (467) TC (469) TC (555) TSer (156) Phe GIn (157) stop (156 AA long RRF) mutation beyond stop
フレームシフ 卜 frrm I T(5)del Stop at nt 50-52 (16 AA long RRF) Ser(3) to (Cys(16) changed により C末端が frrWl 1 G(40)del Stop at nt 50-52 (16 AA long RRF) Asp(14) to Cys( 16) changed 短くなつたもの fr 69 ] A(70)del Stop at nt 170-172 (56 AA long RRF) Ile(24) to Ser(56) changed Frame shift frrm IT (5) del Stop at nt 50-52 (16 AA long RRF) Ser (3) to (Cys (16) changed, C-terminal is frrWl 1 G (40) del Stop at nt 50-52 ( 16 AA long RRF) Asp (14) to Cys (16) changed Shortened fr 69] A (70) del Stop at nt 170-172 (56 AA long RRF) Ile (24) to Ser (56) changed
frrl 1 A(79)del Stop at nt 170-172 (56 AA long RRF) lle(27)to Ser(56) changed frr 1 C(75)del Stop at nt 170-172 (56 AA long RRF) Ser(25) to Ser(56) changed frrl26 1 C(101)del A(419)T Stop at nt 170-172 (56 AA long RRF) Ser(35) to Ser(56) changed  frrl 1 A (79) del Stop at nt 170-172 (56 AA long RRF) lle (27) to Ser (56) changed frr 1 C (75) del Stop at nt 170-172 (56 AA long RRF) Ser ( 25) to Ser (56) changed frrl26 1 C (101) del A (419) T Stop at nt 170-172 (56 AA long RRF) Ser (35) to Ser (56) changed
+mutation beyond stop  + mutation beyond stop
Fクラス frrW5 1 T(170)del A(359)TT(492X:Stop at nt 176-178 (58 AA long RRF) Val(57) to Thr(58) changed  F class frrW5 1 T (170) del A (359) TT (492X: Stop at nt 176-178 (58 AA long RRF) Val (57) to Thr (58) changed
2 mutations beyond stop frrl4つ 1 CG(82-83)del Stop at nt 210-212 (69 AA long RRF) Arg(28) to Val(69) changed frrl53 1 AT(I 9-200)C Stop at nt 266-268 (88 AA long RRF) Ile(67) to Gly(88) changed frrWl 1 A(333)del Slop at nt 338-340 (112 AA long RRF) Asp(l 12) changed 2 mutations beyond stop frrl 4 1 CG (82-83) del Stop at nt 210-212 (69 AA long RRF) Arg (28) to Val (69) changed frrl53 1 AT (I 9-200) C Stop at nt 266 -268 (88 AA long RRF) Ile (67) to Gly (88) changed frrWl 1 A (333) del Slop at nt 338-340 (112 AA long RRF) Asp (l 12) changed
03 1 C(362)del Stop at nt 16-418 (138 AA long RRF) Ala(121)to Lys( 138) changed frri 1 A(346)fcl A(363)GA(50 l)GSlop at nt 416-418 (138 AA long RRF) Ile(ll6) toLys(138) changed m ation in shifted sequence 03 1 C (362) del Stop at nt 16-418 (138 AA long RRF) Ala (121) to Lys (138) changed frri 1 A (346) fcl A (363) GA (50 l) GSlop at nt 416- 418 (138 AA long RRF) Ile (ll6) toLys (138) changed mation in shifted sequence
+mutation beyond stop frrl 1 A(389)del Stop at nt416- l8 (138 AA long RRF) Asn(I30) to Lys(138) changed fr"i5 1 A(511)dcl Stop at nt 545-547 (181 ΑΑΙοηκ RRF) IIe(168) toOlu(181) changed ヌクレオチド変異及びアミノ酸変異:変異部位は野生型ヌクレオチド又はァ ノ酸の位置番号により示した。 アミノ酸は 3文字表記で示した。 略号: AA=アミノ酸、 dd=欠失 + mutation beyond stop frrl 1 A (389) del Stop at nt416- l8 (138 AA long RRF) Asn (I30) to Lys (138) changed fr "i5 1 A (511) dcl Stop at nt 545-547 (181 ΑΑΙοηκ RRF) IIe (168) toOlu (181) changed Nucleotide and amino acid mutations: Mutation sites are indicated by the position numbers of wild-type nucleotides or anoic acids Amino acids are indicated by three letters Abbreviations: AA = amino acid, dd = Deletion
この表に示すように 61個の株が得られ、 これは 53個の異なったゲノタイプ を有した。 かく して分離された致死遺伝子を有するプラスミ ドは、 frrとして 機能しないことを温度感受性 RRFを有する LJ4(Janosiら EMBO J 17 1141 (199 8))を用いて確認した。 得られた全てのプラスミ ドは LJ4の生育を 42°Cで支持 できなかった。 As shown in this table, 61 strains were obtained, which had 53 different genotypes. It was confirmed that the thus isolated plasmid having the lethal gene did not function as frr using LJ4 having a temperature-sensitive RRF (Janosi et al., EMBO J 17 1141 (1998)). None of the resulting plasmids could support LJ4 growth at 42 ° C.
次に frrの構造遺伝子のうち、 frrの機能に影響を与えないァミ ノ酸変異の 分離法を記述する。 この目的のために宿主として LJ4を用いた。 この宿主は、 前述のごとく クロモゾーム上の frrは機能しないので、 frrl4を有するプラス ミ ド pKH6により 27°Cで存在し得る。  Next, we describe a method for isolating amino acid mutations that do not affect the function of frr among the structural genes of frr. LJ4 was used as a host for this purpose. This host can be present at 27 ° C due to the plasmid pKH6 with frrl4 as frr on the chromosome does not function as described above.
この大腸菌は、 frr 14 (温度感受性の RRFをコードする)により存命している ので当然温度感受性である。 この大腸菌を自然の reversion rateにまかせて 2 7°Cで生育すると 4.2X 10— 6の割合で 42°Cに生育するものが得られた。 この大腸 菌のうち、 プラスミ ドを tsfrr(pKH6)を有するものに置き換えると再び温度感 受性になるものを選び、 常法により frr部分の DNA配列を決定した。 得られた 全ての frrでは、 frrの遺伝変異 Val 117 Aspは、 野生型のパリンに戻ってい たがそのうち数種は、 117位以外のアミノ酸部位に変異が見られた。 これらの 変異は frrの機能に全く影響が見られなかった。 この変異を表 6に示す。 This Escherichia coli is naturally temperature-sensitive because it lives by frr14 (encoding a temperature-sensitive RRF). Which grow the E. coli 42 ° C at a rate of the growing 4.2x 10- 6 Letting and 2 7 ° C the natural reversion rate was obtained. Among these Escherichia coli, those that became temperature-sensitive again when plasmid was replaced with one having tsfrr (pKH6) were selected, and the DNA sequence of the frr portion was determined by a conventional method. In all of the obtained frr, the genetic mutation of frr, Val 117 Asp, was reverted to wild-type palin, but some of them showed mutations at amino acid positions other than position 117. These mutations had no effect on frr function. This mutation is shown in Table 6.
表 6 Table 6
RRF遗伝子の温度感受性をもとに戻す遗伝変異  RRF: a mutation that restores the temperature sensitivity of a gene
Allele 表現型質 分離 ヌクレオチドの位置 アミノ酸基の位置 記  Allele phenotypic segregation Nucleotide position Amino acid position description
Figure imgf000037_0001
Figure imgf000037_0001
アミノ酸は 3文字表記とした。 略号: NA=—、 W1-野牛型、 tS=温度感受性、 tr=温度耐性 Amino acids are expressed in three letters. Abbreviations: NA = —, W1-wild cattle type, tS = temperature sensitivity, tr = temperature tolerance
3. RRFの作用機作の推定 3. Estimation of RRF action mechanism
図 2に示す R R Fのリボンによる描画、 図 3に示す空間充填モデル等から RR Fが転移 RN Aに類似した形状及びサイズを有することが判明した (Sel mer, M., Al-Karadaghi , S. , Hirokawa, G., Kaji, A. &Lil jas, A. Science 286, 2 349-2352 (1999) )。 従って、 R R Fは転移 R N Aと類似の挙動を示すことに より、 蛋白質翻訳終結複合体解離活性を発現する可能性が示唆される。 具体 的には、 RRFの作用機作に関し、 図 5に示すモデルが示唆される。  From the drawing of the RRF with the ribbon shown in Fig. 2 and the space-filling model shown in Fig. 3, it was found that the RRF had a shape and size similar to the transition RNA (Sel mer, M., Al-Karadaghi, S. , Hirokawa, G., Kaji, A. & Lil jas, A. Science 286, 2 349-2352 (1999)). Therefore, RRF behaves similarly to translocated RNA, suggesting the possibility of expressing the protein translation termination complex dissociation activity. Specifically, the model shown in Fig. 5 is suggested for the mechanism of action of RRF.
まず、 転移 RNA 2 a、 2 b、 メ ッセンジャー RNA 3及びリボソーム 1 からなる終結複合体 6 ( a ) のアミノアシル部位 (A部位) に RR F 4が結 合する。 RR F 4には、 G T Pを伴った E F G 5が結合している。 又、 リボ ソーム 1のぺプチジル部位 (P部位) 及び放出部位 (exit site) (E部位) には、 それぞれ転移 RNA 2 a、 2 bが結合している (b) 。 次に、 リボソ —ム依存的な G T Pの加水分解及び A部位に結合した R R F 4の P部位への トランスロケーションが、 E F G 5によって引き起こされる。 同時に、 E部 位に結合していた転移 R N A 2 bの遊離及び P部位に結合していた転移 RN A 2 aの E部位への移動を経た遊離が起こり、 結局、 2分子の転移 RN Aが 放出される ( c) 。 最後に、 RR F 4及び E F G 5のリボソーム 1からの遊 離に続き、 リボソーム 1がメ ッセンジャー RN A 3から放出されて、 終結複 合体 6の解離が終了する (d) 。  First, RRF4 binds to the aminoacyl site (A site) of the termination complex 6 (a) consisting of transfer RNAs 2a and 2b, messenger RNA 3 and ribosome 1. EFF5 with GTP is bound to RRF4. Transfer RNAs 2a and 2b are bound to the peptidyl site (P site) and the release site (exit site) (E site) of ribosome 1, respectively (b). Next, ribosome-dependent GTP hydrolysis and translocation of the RRF4 bound to the A site to the P site is triggered by EFG5. At the same time, the release of the transfer RNA 2b bound to the E site and the release of the transfer RNA 2a bound to the P site via the transfer to the E site occur, resulting in the transfer of two molecules of transfer RNA. Released (c). Finally, following the release of RRF4 and EFG5 from ribosome 1, ribosome 1 is released from messenger RNA3, and the dissociation of termination complex 6 is terminated (d).
このモデルによる仮説を検証すべく以下の実験を行った。  The following experiment was conducted to verify the hypothesis based on this model.
例 4. アミノグリコシド類による R R F活性の阻害 Example 4. Inhibition of RRF activity by aminoglycosides
ス トレプトマイシン、 パロモマイシン、 ゲンタマイシン等のアミ ノ グリ コ シド類は、 リボソームの A部位に結合することにより、 転移 RN Aの A部位 への結合を阻害することが知られている (Moazed, D. &Noller, H. F. Nature 3 27, 389-394 (1987) ; Fourmy, D., Yoshizawa, S. &Puglisi, J. D. J. Mol. Biol.2 77, 333 - 345 (1988)); Yoshizawa, S., Fourmy, D. &Puglisi, J. D. EMBO J.17, 64 37-6448 (1988))。 従って、 図 5のモデルに従えば、 上記のアミノグリコシド 類は R R Fの A部位への結合をも阻害するはずであり、 かかる結合が阻害さ れれば、 R R Fによる終結複合体の解離プロセスも阻害されるはずである。 そこで、 上記のァミノダリコシド類の存在下において終結複合体の解離プロ セスが阻害されるか否かを、 リポソームから遊離する転移 R N Aの量及びメ ッセンジャー RNAから遊離するリポソ一ムの量を指標として調べた。 Aminoglycosides such as streptomycin, paromomycin, and gentamicin are known to inhibit the binding of translocated RNA to the A site by binding to the A site of the ribosome (Moazed, D. & Noller, HF Nature 327, 389-394 (1987); Fourmy, D., Yoshizawa, S. & Puglisi, JDJ Mol. Biol. 277, 333-345 (1988)); Yoshizawa, S., Fourmy, D. & Puglisi, JD EMBO J.17, 64 37-6448 (1988)). Therefore, according to the model in FIG. 5, the aminoglycosides should also inhibit the binding of RRF to the A site, and if such binding is inhibited, the dissociation process of the termination complex by RRF will be inhibited. Should be. Therefore, whether or not the dissociation process of the termination complex is inhibited in the presence of the above aminodaricosides was examined using the amount of transfer RNA released from liposomes and the amount of liposome released from messenger RNA as indicators. Was.
リポソームからの脱ァシル化転移 R N Aの遊離は以下の方法にて調べた。 テトラサイクリンで処理した E . c o l i Q 1 3株から得たポリ ソ一ム (H irashima, A. &Kaji, A. J. Mol. Biol.65, 43-58(1972)) ( 0. 6〜 ; 1 . 8 A 26。ユニッ ト) を、 2 7 5 μ Mのピュー口マイシン、 0. 2 n m o l eの R R F、 0. 2 n m o l eの E F G (Kaziro, Y. , Inoue - Yokosawa, N. &Kawakita, M . Ε· coli. J. Biochem.72, 853- 863 (1972)) 及び 0. 3 7 mMの G T Pの存在 下、 5 5 0 μ 1 のノくッ ファー R ( ト リ ス一 C I 1 0 mM、 p H 7. 4、 硫 酸マグネシウム 8. 2 mM、 塩化アンモニゥム 8 0 mM、 ジチォスライ トール (D T T) 0. 1 4 mM) 中において、 3 0 °Cで 1 5分間インキュ ベートした。 次に、 アミノグリ コシド類と して、 ス ト レプトマイシン、 パロ モマイシン又はゲンタマイシンを、 それぞれ 2 0 0 /z M、 1 0 0 ^ M, 1 0 Ο /i Mとなるように添力 Bした。 次いで、 M i c r o c o n 1 0 0 (M i l 1 i p o r e社製、 商標名) を用いて、 3 3 0 Gで 4 0分間遠心することに より、 遊離した転移 R NAを終結複合体と分離した。 次に、 上記の M i c r o c o n 1 0 0にノくッファー J ( ト リ ス一 C I 1 0 mM, p H 7. 6、 硫酸マグネシウム 1 0 mM、 塩化アンモニゥム 5 0 mM、 D T T 0. 5 mM) を 5 5 0 μ 1 注ぎ、 遠心することにより、 フィルターを一回洗浄し た。 この洗浄液を濾液と合わせたものを、 M i c r o c ο η 3 0 (M i l 1 i p o r e社製、 商標名) を用いて、 1 4 0 0 0 Gで 1 5分間、 2回遠心 することにより、 1 4 1 に濃縮した。 次いで、 濃縮した転移 R N Aを、 3 0 μ 1 の緩衝液 (トリス _ C 1 5 0 mM、 p H 7. 8、 酢酸マグネシゥム 1 0 mM、 3 _メルカプトエタノール 6 mM、 AT P 3 mM、 ホスフ ォエノ一ルビルビン酸 5 mM、 ピルべー トキナーゼ 1 3 8 μ g、 ァミ ノ ァシル転移 R NA合成酵素 3 3. 3 μ g (Momose, K. &Ka ji, A. Arch. Bioch em. Biophys. Ill, 245-252 (1965)) ) に溶解した14 C—アミノ酸混合物 (Am e r s h a m社製、 炭素原子 l m g当たり 5 2 m C i ) 、 0. 1 5 C i に てアミノアシル化した。 このようにして得られた冷ト リ クロ口酢酸 (4°C) に不溶の放射活性は14 C一アミノアシル転移 RNAに相当し、 その量を、 同 一の方法で標識した既知量の転移 R N Aの放射活性に基づいて算出した。 尚 、 アミノグリ コシド類は、 S i g m a社製のものを用いた。 又、 終結複合体 は、 ピューロマイシンで処理した E. c o l iの天然ポリ ソームから得た (H irashima, A. &Kaji, A. J. Biol. Chem.248, 7580-7587 (1973)) 。 単離したポリ ソ一ム中の各リボソームはトランスロケーション終了後の段階にあり、 概ね 2分子の転移 R N Aを担持していることが分かっている (Remme, J. , Margus, T., Villems, R. &Nierhaus, K. H. Eur. J. Biochem.183, 28ト 284(1989); Stark , H. et al. Cell 88, 19-28(1977)) 。 Release of desacylated transfer RNA from the liposome was examined by the following method. Polysaccharide obtained from tetracycline-treated E. coli Q13 strain (Hirashima, A. & Kaji, AJ Mol. Biol. 65, 43-58 (1972)) (0.6-; 1.8 A) 26. Units) were replaced with 275 μM pure mouth mycin, 0.2 nmole RRF, 0.2 nmole EFG (Kaziro, Y., Inoue-Yokosawa, N. & Kawakita, M. coli. J. Biochem. 72, 853-863 (1972)), and in the presence of 0.37 mM GTP, 550 μl of Buffer R (Tris-CI 10 mM, pH 7. 4. Incubate for 15 minutes at 30 ° C in 8.2 mM magnesium sulfate, 80 mM ammonium chloride and 0.14 mM dithiothritol (DTT). Next, as aminoglycosides, streptomycin, paromomycin or gentamicin were added with an assisting force B of 200 / zM, 100 ^ M and 100% / iM, respectively. Subsequently, the released transfer RNA was separated from the termination complex by centrifugation at 330 G for 40 minutes using Microcon 100 (trade name, manufactured by Millipore). Next, Knocker J (tris-CI 10 mM, pH 7.6, magnesium sulfate 10 mM, ammonium chloride 50 mM, DTT 0.5 mM) was added to the above Microcon 100. The filter was washed once by pouring 550 μl and centrifuging. The combined washing solution and filtrate were centrifuged twice at 1,500 G for 15 minutes using Microc o η30 (Mil 1 ipore, trade name) to obtain 1 It was concentrated to 41. Then, the concentrated transfer RNA was added to 30 μl of buffer solution (Tris_C 150 mM, pH 7.8, magnesium acetate 10 mM, 3_mercaptoethanol 6 mM, ATP 3 mM, phosphoenoenoside). Monorubic acid 5 mM, pyruvate kinase 1 38 μg, aminosyltransferred RNA synthase 33.3 μg (Momose, K. & Kaji, A. Arch. Biochem. Biophys. Ill. 245-252 (1965))), a mixture of 14 C-amino acids (Amersham, 52 mCi / mg carbon atom) dissolved in 0.15 Ci And aminoacylated. The radioactivity insoluble in cold trichloroacetic acid (4 ° C) obtained in this way corresponds to 14 C-aminoacyl-transferred RNA, and its amount is determined by a known amount of transfer RNA labeled by the same method. Was calculated based on the radioactivity. As aminoglycosides, those manufactured by Sigma were used. The termination complex was obtained from a natural polysome of E. coli treated with puromycin (Hirashima, A. & Kaji, AJ Biol. Chem. 248, 7580-7587 (1973)). It is known that each ribosome in the isolated polysome is in a stage after the completion of translocation and generally carries two molecules of transfer RNA (Remme, J., Margus, T., Villems, R. & Nierhaus, KH Eur. J. Biochem. 183, 28 g 284 (1989); Stark, H. et al. Cell 88, 19-28 (1977)).
結果を図 6に示す。 図 6中、 ポジティブコン トロールは、 アミノグリ コシ ド類を添加せずに、 RR F、 E F G及び G T Pを添加した場合の値であり、 ネガティブコントロールは、 アミノグリコシド類、 RR F、 £ 〇及び0丁 Pのいずれをも添加しなかった場合の値である。  Fig. 6 shows the results. In FIG. 6, the positive control is the value when RRF, EFG and GTP were added without adding the aminoglycosides, and the negative control was the aminoglycosides, RRF, £ 〇 and 0 Are the values when none of the above was added.
メッセンジャー RN Aからのリボソ一ムの遊離は以下の方法にて調べた。 前記のポリ ソ一ム (0. 5〜0. 8 A2 e。ユニッ ト) を、 2 7 5 μΜのピ ユーロマイシン、 1 n m ο 1 eの精製 R R F (Hirashima, A. &Kaji, A. Bioche mistry 11, 4037-4044(1972) ) 、 1 nm o 1 eの E F G 32、 0. 3 7 mMの G T P及びァミノグリ コシド類の存在下、 2 7 0 1 のバッファー R中にお いて、 3 0。Cで 1 5分間インキュベートした。 アミノグリコシド類は、 ス ト レプトマイシン、 パロモマイシン又はゲンタマイシンを、 それぞれ 1 0 0〃 Μ、 5 μΜ、 5 μ Μとなるように添加した。 次いで、 バッファ一 J中の、 1 5〜 3 0。/。の密度勾配を設けたショ糖 5 m l の上に、 インキュベートした上 記の緩衝液を積層し、 B e c k m a n S W 5 0. 1を用い、 4 000 0 r p m、 7 5分間、 4 °Cの条件で遠心した。 2 5 4 n mでの吸光度を I S C ORelease of ribosomes from messenger RNA was examined by the following method. The poly Seo one arm (0. 5~0. 8 A 2 e . Units), and 2 7 5 pin Euro puromycin of μΜ, 1 nm ο 1 e purification RRF (Hirashima, A. & Kaji, A. Bioche mistry 11, 4037-4044 (1972)) , 1 nm o 1 e of EFG 32, the presence of GTP and Aminoguri Koshido such 0. 3 7 mM, and have contact during 2 7 0 1 buffer R, 3 0. Incubated at C for 15 minutes. As for aminoglycosides, streptomycin, paromomycin or gentamicin were added to give 100, 5 and 5 μ 5, respectively. Next, 15 to 30 in buffer J. /. The above buffer solution was incubated on 5 ml of sucrose with a density gradient, and the mixture was incubated at 4 ° C, 75 minutes, 4 ° C using Beckman SW 50.1. Centrifuge. Absorbance at 254 nm
UA— 6ディテクタ一にてモニタ一し、 遊離の 7 0 S リボソ一ムの濃度を 測定した。 結果を表 7に示す。 尚、 表 7中の値は、 アミノグリ コシド類の存 在下で遊離した 7 0 S リポソ一ムの濃度を、 アミノグリコシド類を加えなか つた場合 (コン トロール) の遊離の 70 S リボソームの濃度に対するパーセ ンテ一ジで表したものである。 又、 コントロールにおいては、 全リボソーム (ポリ ソームのほぼ 9 0 %を占める。 ) の約 4 2 %が R R Fによってモノ ソ ームに変換されていた。 表 7 各種阻害剤存在下における、 RRFと EF-Gによる、 Monitoring was performed with a UA-6 detector to measure the concentration of free 70 S ribosome. Table 7 shows the results. The values in Table 7 are the percentages of the concentration of 70S liposome released in the presence of aminoglycosides and the concentration of free 70S ribosome without aminoglycosides (control). It is expressed in the context. In the control, about 42% of all ribosomes (almost 90% of polysomes) were converted to monosomes by RRF. Table 7 By RRF and EF-G in the presence of various inhibitors
mRNAからのリボソームの遊離  Release of ribosome from mRNA
RRFによる、 mRNA力 らの 阻害剤 濃 度 Inhibitor concentration based on RRF
リボソームの遊離  Ribosome release
(コントロールに対する%) ン 卜口一ル 100*  (% Of control) 100%
ノ ロモマイシン 5 μΜ 16.5  Noromomycin 5 μΜ 16.5
ゲンタマイシン 5 μΜ 0  Gentamicin 5 μΜ 0
ストレプトマイシン 100 μΜ 9.9  Streptomycin 100 μΜ 9.9
チォストレプトン 20 μΜ 0  Thiostrepton 20 μΜ 0
バイォマイシン 50 μΜ 0  Biomycin 50 μΜ 0
フシジン酸 200 μΜ 0  Fusidic acid 200 μΜ 0
GMPPCP 370 μΜ* 0  GMPPCP 370 μΜ * 0
図 6より、 アミノグリコシド類の存在下では、 転移 R N Αの遊離がネガテ イブコン ト ロールと同等以下の値に阻害されることがわかる。 又、 表 7よりFrom FIG. 6, it can be seen that in the presence of aminoglycosides, the release of transferred RNΑ is inhibited to a value equal to or lower than that of the negative control. Also, from Table 7
、 アミノグリ コシド類の存在下では、 リボソームの遊離も阻害されることが わかる。 これらの結果より、 R R Fの活性の発現には R R Fがリボソームの A部位に結合することが必要であることが強く示唆され、 従って、 R R Fの A部位への結合を阻害する物質は R R F阻害剤の有力な候補となり得ると考 えられる。 However, it can be seen that release of ribosomes is also inhibited in the presence of aminoglycosides. These results strongly suggest that RRF needs to bind to the A site of the ribosome for the expression of RRF activity. It is thought that it can be a strong candidate.
例 5. チォス トレプトン及びバイオマイシンによる R R F活性の阻害 Example 5. Inhibition of RRF activity by thiostrepton and biomycin
チォス ト レプ トン及びバイオマイシンは、 共に E F G阻害剤であり、 転移 R N Aのトランスロケーショ ンを阻害することが知られている (Pestka, S. B iochem. Biophys. Res. Comraun. 40, 667-674 (1970); Rodnina, M. V. , Savel sbergh, A., Katunin, V. I. &Wintermeyer, W. Nature 385, 37-41 (1997); Rodn ina, M. V. et al. Pro Natl. Acad. Sci. USA 96, 9586-9590(1999))。 従 つて、 図 5のモデルに従えば、 チォス トレプトン及びバイオマイシンは、 A 部位に結合した R R Fの P部位へのトランス口ケーションをも阻害するはず であり、 そうであればトランス口ケーションに伴って起こるはずの P部位及 び E部位からの転移 RN Aの遊離、 ひいては RR Fによる終結複合体の解離 プロセスも阻害されるはずである。 そこで、 チォス トレプトン又はバイオマ イシンの存在下において終結複合体の解離プロセスが阻害されるか否かを、 リポソ一ムから遊離する転移 R N Aの量及びメ ッセンジャー R N Aから遊離 するリポソ一ムの量を指標として調べた。 Thiostrepton and biomycin are both EFG inhibitors and are known to inhibit the translocation of transfer RNA (Pestka, S.B. iochem. Biophys. Res. Comraun. 40, 667-674 (1970); Rodnina, MV, Savel sbergh, A., Katunin, VI & Wintermeyer, W. Nature 385, 37-41 (1997); Rodn ina, MV et al. Pro Natl. Acad. Sci. USA 96, 9586-9590 (1999)). Thus, according to the model of Figure 5, thiostrepton and biomycin should also inhibit the translocation of the RRF bound to the A site to the P site, and if so, with the translocation. The transfer of RNA from the P and E sites that should occur, and thus the dissociation process of the termination complex by RRF, should also be inhibited. Therefore, whether or not the dissociation process of the termination complex is inhibited in the presence of thiostrepton or biomycin is determined by measuring the amount of transfer RNA released from liposomes and the amount of liposomes released from messenger RNA. I investigated.
リボソームからの転移 RN Aの遊離は、 アミ ドグリコシド類の代わりにチ ォス トレプトン (S i g m a社製) 又はバイォマイシン ( I C N社製) を添 加した点を除いては例 4と同じ方法にて調べた。 チォス トレプトン及びバイ ォマイ シンは、 それぞれ 1 00 μΜ、 200 /X Μとなるように添加した。 結 果を図 6に示す。  Transfer of RNA from ribosomes Release of RNA was examined in the same manner as in Example 4, except that thiostrepton (Sigma) or biomycin (ICN) was added instead of amidglycosides. Was. Thiostrepton and biomycin were added at 100 μM and 200 / X M, respectively. Figure 6 shows the results.
又、 メッセンジャー RNAからのリボソームの遊離は、 アミ ドグリコシド 類の代わりにチォス トレプトン又はバイォマイシンを添加した点及びチォス トレプトンを添加した場合には、 反応混合物に 0. 0 6%になるように DM S Oを添加した点を除いては例 4と同じ方法にて調べた。 チォス トレプ トン 及びバイオマイシンは、 それぞれ 2 0 μΜ、 5 0 μ Μとなるように添加した 。 結果を表 7に示す。  Also, the release of ribosomes from messenger RNA can be achieved by adding DMSO to the reaction mixture at the point where thiostrepton or biomycin is added instead of amide glycosides and when thiostrepton is added. Except for the addition, it was examined in the same manner as in Example 4. Thiostrepton and biomycin were added at 20 μM and 50 μM, respectively. Table 7 shows the results.
図 6より、 チォス ト レプ トン又はバイオマイシンの存在下では、 転移 RN Αの遊離がネガティブコントロールと同等の値に阻害されることがわかる。 又、 表 7より、 チォス トレプトン又はバイオマイシンの存在下では、 リボソ —ムの遊離が完全に阻害されることがわかる。 これらの結果より、 RR Fの 活性の発現には A部位に結合した R R Fの P部位への トランス口ケーション が必要であることが強く示唆され、 従って、 R R Fのトランスロケーショ ン を阻害する物質は RR F阻害剤の有力な候補となり得ると考えられる。 例 6. GMP P C P及びフシジン酸による終結複合体解離の阻害 — GMP P C P及びフシジン酸は、 共に E F G阻害剤であり、 転移 RNAの トランスロケーショ ン後に E F Gをリポソ一ムに固定することにより終結複 合体の解離を阻害する一方、 転移 R N Aの トランスロケーショ ンが起こるの を 1回だけ許容することが知られている (Inoue- Yokosawa, N., Ishikawa, C. & Kaziro, Y. J. Biol. Chem. 249, 4321-4323 (1974); Rodnina, M. V. , Savelsber gh, A., Katunin, V. I. &Wintermeyer, W. Nature 385,37-41 (1997) ; Bodley, J . W., Zieve, F. J., Lin, L. &Zieve, S. T. J. Biol. Chem. 245, 5656-5661 (1970) ; Kuriki, Y., Inoue, N. &Kaziro, Y. Biochim. Biophys. Acta. 224, 487 - 497 (1970))。 従って、 図 5のモデルに従えば、 GMP P C P及びフシジン酸は、 A部位に結合した R R Fの P部位へのトランス口ケーションを許容するため 、 トランスロケーショ ンに伴って起こる P部位及び E部位からの転移 R N A の遊離は阻害しないはずである。 一方、 GMP P C P及びフシジン酸は終結 複合体の解離を阻害するため、 メ ッセンジャー RNAからのリボソ一ムの遊 離は阻害するはずである。 そこで、 GMP P C P又はフシジン酸の存在下に おいて、 リボソ一ムからの転移 R N Aの遊離及びメ ッセンジャー R N Aから のリポソームの遊離が阻害されるか否かを調べた。 FIG. 6 shows that in the presence of thiostrepton or biomycin, the release of metastatic RNA was inhibited to a value equivalent to that of the negative control. In addition, Table 7 shows that the release of ribosome is completely inhibited in the presence of thiostrepton or biomycin. These results strongly suggest that the expression of RRF activity requires translocation of the RRF bound to the A site to the P site, and therefore, substances that inhibit RRF translocation are RR It is thought that it can be a strong candidate for F inhibitors. Example 6. Inhibition of termination complex dissociation by GMP PCP and fusidic acid — GMP PCP and fusidic acid are both EFG inhibitors and are terminated by immobilizing EFG on liposomes after translocation of transfer RNA It is known to inhibit the dissociation of RNA, while allowing translocation of transfer RNA only once (Inoue-Yokosawa, N., Ishikawa, C. & Kaziro, YJ Biol. Chem. 249, 4321-4323 (1974); Rodnina, MV, Savelsberg, A., Katunin, VI & Wintermeyer, W. Nature 385, 37-41 (1997); Bodley, J. W., Zieve, FJ, Lin, L. & Zieve. Chem. 245, 5656-5661 (1970); Kuriki, Y., Inoue, N. & Kaziro, Y. Biochim. Biophys. Acta. 224, 487-497 (1970)). Therefore, according to the model in FIG. 5, GMP PCP and fusidic acid allow translocation of the RRF bound to the A site to the P site, so that GMP PCP and fusidic acid are released from the P site and E site that accompany the translocation. Transfer RNA release should not be inhibited. On the other hand, GMP PCP and fusidic acid should inhibit the dissociation of the ribosome from messenger RNA because they inhibit the dissociation of the termination complex. Therefore, it was examined whether or not the release of transfer RNA from ribosomes and the release of liposomes from messenger RNA were inhibited in the presence of GMP PCP or fusidic acid.
リボソームからの転移 RN Aの遊離は、 アミ ドグリ コシド類の代わりに G MP P C P (S i g m a社製) 又はフシジン酸 ( I C N社製) を添加した点 及び GMP P C Pを添加した場合には G T P非存在下で実験を行った点を除 いては例 4と同じ方法にて調べた。 GMP P C P又はフシジン酸は、 それぞ れ 3 7 0 μ M、 200 μ Mとなるように添加した。 結果を図 6に示す。  Transfer from ribosome RNA is released by adding GMP PCP (manufactured by Sigma) or fusidic acid (manufactured by ICN) instead of amidoglycosides and without GTP when GMP PCP is added. The procedure was as in Example 4, except that the experiment was performed below. GMP PCP or fusidic acid was added so as to be 37 μM and 200 μM, respectively. Fig. 6 shows the results.
又、 メ ッセンジャー RNAからのリボソ一ムの遊離も、 アミ ドグリ コシド 類の代わりに GMP P C P又はフシジン酸を添加した点及び GMP P C Pを 添加した場合には G T P非存在下で実験を行った点を除いては例 4と同じ方 法にて調べた。 GMP P C P又はフシジン酸は、 それぞれ 3 7 0 μΜ、 2 0 0 μ Μとなるように添加した。 結果を表 7に示す。  The release of ribosomes from messenger RNA also depends on the fact that GMP PCP or fusidic acid was added instead of amide glycosides, and that when GMP PCP was added, experiments were performed in the absence of GTP. Except for this, the procedure was the same as in Example 4. GMP PCP or fusidic acid was added so as to be 3700 μM and 200 μM, respectively. Table 7 shows the results.
図 6より、 GMP P C Ρ又はフシジン酸を添加しても、 転移 RNAの遊離 はポジティブコントロールと同等の値であり、 転移 R Ν Αの遊離が阻害され ないことがわかる。 一方、 表 7より、 GMP P C P又はフシジン酸はリボソ ームの遊離を完全に阻害することがわかる (Igarashi, K., Ishitsuka, H. &Kaj i, A. Biochem. Biophys. Res. Commun. 37, 499-504(1969); Hirashima, A. &Ka ji, A. J. Mol. Biol. 65,43-58 (1972) ; Ogawa, K. &Ka j i, A. Eur. J. Biochem. 58, 411-419(1975); Karimi, R., Pavlov, M. Y., Buckingham, R. H. &Ehrenberg, M. Molecular Cell 3,601-609(1999)) 。 According to Fig. 6, the release of transfer RNA was equivalent to that of the positive control even when GMP PCΡ or fusidic acid was added, and the release of transfer R R 阻 害 was inhibited. It turns out there is no. On the other hand, Table 7 shows that GMP PCP or fusidic acid completely inhibits ribosome release (Igarashi, K., Ishitsuka, H. & Kaji, A. Biochem. Biophys. Res. Commun. 37, 499-504 (1969); Hirashima, A. & Kaji, AJ Mol. Biol. 65, 43-58 (1972); Ogawa, K. & Kaji, A. Eur. J. Biochem. 58, 411-419 (1975) ); Karimi, R., Pavlov, MY, Buckingham, RH & Ehrenberg, M. Molecular Cell 3, 601-609 (1999)).
これらの結果より、 RR Fは転移 RNAと類似の挙動を示すことにより終 結複合体解離活性を発現する可能性がより強く示唆され、 さらに、 転移 RN Aの遊離と リボソームの遊離が別個に阻害され得る事実は、 終結複合体の解 離が、 E F Gと RR Fとによって段階的に進行するという図 5に示すモデル を支持するものである。  These results strongly suggest that RRF may exhibit termination complex dissociation activity by exhibiting behavior similar to that of transfer RNA.Furthermore, the release of transfer RNA and ribosome release are separately inhibited. The fact that can be done supports the model shown in FIG. 5, in which the dissociation of the termination complex proceeds stepwise by EFG and RRF.
例 7. 過剰の脱ァシル転移 R N Aの存在による R R F活性の阻害 Example 7. Inhibition of RRF activity due to excess desacyl transfer RNA
例 4. により、 RR Fの活性の発現には RR Fがリボソームの A部位に結合 することが必要であることが強く示唆された。 従って、 過剰の転移 RNAが 存在すれば、 RR Fと転移 RN Aとが競合してリポソ一ムの A部位に結合す るため、 結果として終結複合体の解離が阻害されるはずである。 この点を確 認すべく、 各種濃度の転移 RN Aの存在下における終結複合体の解離の阻害 を調べた。  Example 4 strongly suggested that the expression of RRF activity required RRF to bind to the A site of the ribosome. Therefore, if excess transfer RNA is present, RRF and transfer RNA will compete and bind to the A site of the liposome, which should inhibit dissociation of the termination complex. To confirm this point, the inhibition of dissociation of the termination complex in the presence of various concentrations of transfer RNA was examined.
ポリ ソーム (0. 5〜 1 A26。ユニッ ト) を、 0〜 1 000 pmo l eの 間の各種の量の R R F、 E F G、 G T P及び 0〜 1 0 n m o 1 eの間の各種 の量の転移 R N Aの存在下でインキュベートした。 次いで、 ショ糖密度勾配 遠心 (密度勾配: 1 5〜 3 0%) を行った後、 2 54 n mでの吸光度を測定 することにより、 遊離のリボソームの量を測定した。 測定結果に基づいて作 成した L i n e w e a v w e— B u r k フ。ロッ トによるグラフを図 7に示 す。 縦軸は、 転移 RN A非存在下における遊離のリボソーム量に対する、 各 種の量の転移 RN A存在下における遊離のリボソ一ム量のパーセンテージの 逆数である。 Polysome (0. 5~ 1 A 26. Units) a, 0 to 1 000 pmo various amount between le RRF, EFG, transfer of various amounts between GTP and 0~ 1 0 nmo 1 e Incubated in the presence of RNA. Then, after performing sucrose density gradient centrifugation (density gradient: 15 to 30%), the amount of free ribosome was measured by measuring the absorbance at 254 nm. Lineweavwe—Burk created based on the measurement results. Figure 7 shows a graph based on the lot. The vertical axis is the reciprocal of the percentage of free ribosome in the presence of various amounts of transfer RNA relative to the amount of free ribosome in the absence of transfer RNA.
図 7のグラフにおいて、 転移 RNAの量に関わらず縦軸切片は一定であり 、 かつ転移 R N Aの量の増大に伴い Kmが大きくなることから、 転移 RNAは RRFの活性を競合的に阻害することがわかる。 In the graph of FIG. 7, the vertical axis intercept regardless of the amount of transfer RNA is constant, and K m with the increase in the amount of transfer RNA from the larger, transfer RNA is It can be seen that RRF activity is competitively inhibited.
【 009 1】  [009 1]
例 8. パロモマイシンによる R R Fのリボソームへの結合の阻害 Example 8. Inhibition of RRF binding to ribosome by paromomycin
例 4. 及び例 7の結果を踏まえ、 例 4. で用いたパロモマイシンが R R Fの リポソームへの結合を阻害することを直接確認すべく、 以下の実験を行った まず、 1 p m o 1 e未満の 35 S標識ヒスチジンタグ RRF (35 S— H i s -RR F) を、 1 0 p m o 1 eの洗浄したリボソーム及び各種濃度のパロモ マイシシンの存在下で、 緩衝液 ( ト リス— C I 5 0mM、 p H 7. 6、 酢 酸マグネシウム 1 0mM、 塩化カリ ウム 3 0mM、 DTT 1 mM) 中 において 30°Cで 1 0分間インキュベートした。 微量濃縮により遊離の35 S — H i s— RR Fを除去した後、 リボソーム結合35 S _H i s _RRFの量 を放射活性により測定した。 尚、 35S— H i s— RR Fは、 35 S標識メチォ ニン存在下、 i n v i t r oで発現させた H i s— R R Fを、 N i 2+ビ一 ズを用いて精製することにより調製した。 結果を図 8に示す。 RR Fの結合 率は、 パロモマイシシン非存在下においてリボソームに結合した RR Fの量 を 1 00%として算出した値である。 Example 4. Based on the results of and example 7, in order to directly verify the paromomycin used in Example 4. inhibit the binding of liposomes RRF, was first subjected to the following experiments, 35 of less than 1 pmo 1 e S-labeled histidine tag RRF to (35 S- H is -RR F) , in the presence of Paromo Maishishin of 1 0 pmo 1 e washed ribosomes and various concentrations of buffer (g squirrel - CI 5 0mM, p H 7 6. Incubated at 30 ° C for 10 minutes in 10 mM magnesium acetate, 30 mM potassium chloride, 1 mM DTT). After removing free 35 S-His-RRF by microconcentration, the amount of ribosome-bound 35 S-His-RRF was measured by radioactivity. In addition, 35 S—His—RRF was prepared by purifying His—RRF expressed in vitro in the presence of 35 S-labeled methionine using Ni 2+ beads. Fig. 8 shows the results. The RRF binding ratio is a value calculated by assuming that the amount of RRF bound to ribosomes in the absence of paromomycin is 100%.
図 8より、 RR Fの結合率は、 パロモマイシシンの濃度に依存して減少す ることがわかる。 従って、 パロモマイシシンは、 RR Fのリボソームへの結 合を阻害することにより、 RR Fの活性を阻害すると考えられる。  FIG. 8 shows that the binding rate of RRF decreases depending on the concentration of paromomycin. Therefore, paromomycin is thought to inhibit the activity of RRF by inhibiting the binding of RRF to ribosomes.
表 8 Table 8
RRFの構造座標  RRF structure coordinates
原子タイプ 残基 ## X Y Z OCC B 原子 1 CB VAし 2 10.355 24.444 73.500 1.00 50.36 原子 2 CGI VAし 2 11.185 25.300 72.669 1.00 50.36 原子 3 CG2 VAし 2 9.102 25.267 74.125 1.00 50.36 原子 4 C VAL 2 8.502 23.777 72.304 1.00 83, 11 原子 5 0 VAし 2 8.267 24.906 71.890 1.00 83.11 原子 6 N VAし 2 10.415 23.206 71.242 1.00 83.11 〇Λν Atom type residue ## XYZ OCC B Atom 1 CB VA then 2 10.355 24.444 73.500 1.00 50.36 Atom 2 CGI VA then 2 11.185 25.300 72.669 1.00 50.36 Atom 3 CG2 VA 2 9.102 25.267 74.125 1.00 50.36 Atom 4 C VAL 2 8.502 23.777 72.304 1.00 83,11 atoms 50 VA then 2 8.267 24.906 71.890 1.00 83.11 atoms 6 N VA then 2. 10.415 23.206 71.242 1.00 83.11 〇Λν
CM 1 —l CM CM ( ) D O co LO LO LO LO LO LO O CO 00 00CM 1 —l CM CM () D O co LO LO LO LO LO LO O CO 00 00
CO co C J LO LO LO LO LO LO LO LO LO LO 00 00 O CM ο·· <X) CD CO O C O CT) CO co C J LO LO LO LO LO LO LO LO LO LO 00 00 O CM ο <X) CD CO O C O CT)
oo o- CD to co c o co O CO O O  oo o- CD to co c o co O CO O O
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o  o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
LO 00 co o o CM CD co 00 o CM CM CO 00 CM CM oLO 00 co o o CM CD co 00 o CM CM CO 00 CM CM o
M σ¾ T) co CO e 00 O CM 00 o O co D i LO CM M t£) c D CD 00 CD CM 00 O 00 CO D CD e o o O CO LO LO LO CD CM CO CNJ co co  M σ¾ T) co CO e 00 O CM 00 o O co D i LO CM M t £) c D CD 00 CD CM 00 O 00 CO D CD e o o O CO LO LO LO CD CM CO CNJ co co
CD  CD
C 1 CO o o D CO 00 O o O LO 00 CO C 1 CO o o D CO 00 O o O LO 00 CO
00 o LO o 00 L CD CM 0000 o LO o 00 L CD CM 00
CNJ σ¾ LO 00 00 00 00 CM -t CO 00 00 σι o O O CM CO CO CO CM —4 e CM 00CNJ σ¾ LO 00 00 00 00 CM -t CO 00 00 σι o O O CM CO CO CO CM —4 e CM 00
CM CM CO CM CM CO
Figure imgf000046_0001
CNJ CM
CM CM CO CM CM CO
Figure imgf000046_0001
CNJ CM
, ~ 1 00 CO LO CNJ ^I t o O 00 00 LO LO LO o co CM , ~ 100 CO LO CNJ ^ I t O O 00 00 LO LO LO o co CM
00 O m O o 00 LO O C\J 00 CO CO 00 00 o 00 00 o CM o 100 O m O o 00 LO O C \ J 00 CO CO 00 00 o 00 00 o CM o 1
00 LO CO co o O 00 σ σ¾ CO o LO 00 CM o LO oo 00 00 LO CO co o O 00 σ σ¾ CO o LO 00 CM o LO oo 00
C LO LO D LTD LO CO CO O CM ,— ' —t o o o o LO D C LO LO D LTD LO CO CO O CM , — '—toooo LO D
1 1 1 1
CM CO CO CO CO CO O CO CO LO LO m LO LO LO LO LO LO LO o o o o ω ω CM CO CO CO CO CO O CO CO LO LO m LO LO LO LO LO LO LO o o o o ω ω
CO 00 CO 00 CO CO an n: X X rr  CO 00 CO 00 CO CO an n: X X rr
> < a. a, C On c a. a. 1 ~~ 1  > <a. a, C On c a. a. 1 ~~ 1
t  t
l—i  l—i
リ o o o  O o o o
00 o CM co LO to 00 o CM O LO 00 o co in  00 o CM co LO to 00 o CM O LO 00 o co in
CM CM CM M CM CM CM O O CO O CO CO 屮 屮 屮 屮 屮 屮 屮 屮 屮 屮 r 屮 屮 r 屮 屮 rf 屮 rf rf 屮 屮 屮 屮 m 1¾ CM CM CM M CM CM CM OO CO O CO CO Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble B 1 m
00 00 00 00 00  00 00 00 00 00
¾ 00 00  ¾ 00 00
00 00  00 00
co co o o 蚝 o o ο o o o o o O o o o o o o o o o o o o o o o o ο o o o o o o o o o o o o o o o o o o o o ◦ ◦ o o o o o
Figure imgf000047_0001
o¾ o 00 o 00 00 00 00
co co oo 蚝 oo ο ooooo O oooooooooooooooo ο oooooooooooooooooooo ◦ ◦ ooooo
Figure imgf000047_0001
o¾ o 00 o 00 00 00 00
00 00  00 00
00 o ο o o 00  00 o ο o o 00
oo σ> o 00 σ o  oo σ> o 00 σ o
o n t>- o t - σ¾ oo 00 σ¾ d e c 00 00 σ¾ 00 00 00 to to o σ> 00 σ¾ 00 00 o  o n t>-o t-σ¾ oo 00 σ¾ de c 00 00 σ¾ 00 00 00 to to o σ> 00 σ¾ 00 00 o
ο 00 o o o- 00 00  ο 00 o o o- 00 00
σ  σ
00 ! ■· 00 00 00 00 e o ¾  00! ■ 00 00 00 00 e o ¾
t - 00 00 00 00 oo 00 00 00  t-00 00 00 00 oo 00 00 00
3 Three
00 00 00 00 00  00 00 00 00 00
—1 > - ^ > - - >^ - - —1>-^>--> ^--
< < < <<<<<
CO CO
o o 2: O o o o  o o 2: O o o o
¾屮 00 O  Sub 00 O
 Subordinate
Figure imgf000047_0002
¾屮
Figure imgf000047_0002
Subbed
屮¾ Subordinate
¾屮 ¾屮 9 Subbed subbed 9
06 •εε 00 'ΐ 08 ·6Ζ 6L •Οΐ LZ Ί ετ 丄 VD S6 士^ 06 • εε 00 'ΐ 08 · 6Ζ 6L • Οΐ LZ Ί ετ 丄 VD S6 士 ^
06 ■εε 00 •I 90Ζ ■08 SO ■ζι 089 •9 ετ im N Z6 士^06 ■ εε 00 • I 90Ζ ■ 08 SO ■ ζι 089 • 9 ετ im N Z6
LZ ·6ε 00 "ΐ οζζ •28 fZ 'ΐΐ ζη •9 ζι SAT 0 16 士^LZ · 6ε 00 "ΐ οζζ • 28 fZ 'ΐΐ ζη • 9 ζι SAT 0 16 ^^
LZ ·6ε 00 •ΐ •18 89ΐ ■ζι O l •9 ζι SAT 3 06 士^LZ · 6ε 00 • ΐ • 18 89ΐ ■ ζι O l • 9 ζι SAT 3 06 ^^
18 ■6S 00 "ΐ LLI •18 \Z •91 8SI •0 - ζι SAT ZN 68 士^18 ■ 6S 00 "ΐ LLI • 18 \ Z • 91 8SI • 0-ζι SAT ZN 68 ^^
18 "62 00 "ΐ 9 S •18 S6T •91 662 •ΐ ζ\ SAT 33 88 -h18 "62 00" ΐ 9 S • 18 S6T • 91 662 • ΐ ζ \ SAT 33 88 -h
18 •6S 00 ■ΐ 966 •08 S86 ' ΐ SZO 'τ ζ\ SAT 03 Z8 士^18 • 6S 00 ■ ΐ 966 • 08 S86 'ΐ SZO' τ ζ \ SAT 03 Z8 ^^
18 ·6ε 00 •ΐ 69S ·ΐ8 868 ' ΐ •ε ζ\ SAT 03 98 士^18 · 6ε 00 • ΐ 69S · ΐ8 868 'ΐ • ε ζ \ SAT 03 98 ^^
18 ·6ε 00 •ΐ ε ΐ ·ΐ8 ZC9 •ει ζι SAT 93 98 士^18 · 6ε 00 • ΐ ε ΐ · ΐ8 ZC9 • ει ζι SAT 93 98 ^^
LZ •6S 00 •ΐ 99Ζ ·ΐ8 81S '9 ζι SAT VO 8 士^LZ • 6S 00 • ΐ 99Ζ · ΐ8 81S '9 ζι SAT VO 8 ^^
LZ "6C 00 'ΐ S9S ·ΐ8 8 9 •Η 6^ε •9 ζ\ SAT N £8 士^LZ "6C 00 'ΐ S9S · ΐ8 8 9 • Η 6 ^ ε • 9 ζ \ SAT N £ 8 ^^
88 "CG 00 'ΐ Z6L ·Ζ8 6ΐΐ · ΐ 686 •L n mo 0 ZS 士^88 "CG 00 'ΐ Z6L · Ζ8 6ΐΐ · ΐ 686 • L n mo 0 ZS
88 •εε 00 •ΐ 6Ζ6 ·ΐ8 098 '^ι 62S •L π mo D 18 士^ ετ "Ζ9 00 ΐ 686 ·ΐ8 89S OS Οΐ •6 n mo 230 08 士^ ει 'Z9 00 •ΐ 962 •28 Lfl '02 696 •9 n mo IHO 6L 士^ ετ "Ζ9 00 •ΐ 992 •28 C8 ·6ΐ 99ΐ •8 π mo CD 8Z 士^ ετ "Ζ9 00 •ΐ 8S •28 L££ "81 sog ·8 π mo 03 LL 士^ ει 'Z9 00 •ΐ 6Ζ8 •18 ess ΊΙ 109 • L π mo ao 9Z 士^88 • εε 00 • ΐ 6Ζ6 · ΐ8 098 '^ ι 62S • L π mo D 18 ^^ ετ “Ζ9 00 ΐ 686 · ΐ8 89S OS Οΐ • 6 n mo 230 08 ^^ ει' Z9 00 • ΐ 962 • 28 Lfl '02 696 • 9 n mo IHO 6L ^^ ετ ”Ζ9 00 • ΐ 992 • 28 C8 · 6ΐ 99ΐ • 8 π mo CD 8Z ^^ ετ“ Ζ9 00 • ΐ 8S • 28 L ££ “81 sog · 8 π mo 03 LL ^^ ει 'Z9 00 • ΐ 6Ζ8 • 18 ess ΊΙ 109 • L π mo ao 9Z ^^
88 'εε 00 •ΐ •18 9 0 ·9ΐ οτε •8 Π mo VO sz 士^88 'εε 00 • ΐ • 18 9 0 · 9ΐ οτε • 8 Π mo VO sz ^^
88 00 •ΐ 966 'ら L ·9ΐ •8 Ιΐ mo \l 士^88 00 • ΐ 966 'ra L · 9ΐ • 8 Ιΐ mo \ l 士 ^
ZL 00 •ΐ 6S6 ·6Ζ εζο •Η 80S •6 Οΐ SAT 0 ZL 士^ZL 00 • ΐ 6S6 · 6Ζ εζο • Η 80S • 6 Οΐ SAT 0 ZL ^^
ZL •ζε 00 •ΐ 8SS '6Ζ ISO '9ΐ εο ■6 Οΐ SAT D ZL 士^ ΐΐ •19 00 •ΐ 69S - ι LOZ ·8ΐ ζζζ •εΐ Οΐ SAT ZN XL - ΐΐ •19 00 •ΐ 8Ζ9 020 " ΐ fL ΐ 01 SAT HD 01 士^ ΐΐ ·ΐ9 00 •I Ζ\ "9 OIL ·9ΐ \L\ 'Ζ\ 01 SAT ao 69 士^ ΐΐ •19 00 'ΐ ιζζ ·9 628 •SI 066 •Οΐ Οΐ SAT 03 89 士^ZL • ζε 00 • ΐ 8SS '6Ζ ISO' 9ΐ εο ■ 6 Οΐ SAT D ZL ^^ ΐΐ • 19 00 • ΐ 69S-ι LOZ · 8ΐ ζζζ • εΐ Οΐ SAT ZN XL-ΐΐ • 19 00 • ΐ 8Ζ9 020 " ΐ fL ΐ 01 SAT HD 01 ^^ ΐΐ · ΐ9 00 • I Ζ \ "9 OIL · 9ΐ \ L \ 'Ζ \ 01 SAT ao 69 ^^ ΐΐ • 19 00' ΐ ιζζ · 9 628 • SI 066 • Οΐ Οΐ SAT 03 89 ^^
ΤΤ ·ΐ9 00 ■ΐ • επ ·9ΐ LLZ •Οΐ Οΐ SAT 93 Z9 士^ΤΤ · ΐ9 00 ■ ΐ • επ · 9ΐ LLZ • Οΐ Οΐ SAT 93 Z9 ^
ZL -ζε 00 'Τ 0 8 ' Ζ Z8l "9ΐ •6 Οΐ SAT VD 99 士^ ζι • ε 00 •ΐ 82 ' Ζ 069 '9ΐ ZLS •L Οΐ SAT N 99 士^ €9£0/00<If/XD«I ΐΐ "92 00•ΐ 66 8 εο9 Ί ετο■9 9ΐ HH1 93 ZZl 士^ s •εε 00 •ΐ 8 ·ε8 Ρ61 • L 8CZ •9 9ΐ HH1 V3 IZl 士^ s ■εε 00 •ΐ S96 ·ε8 991 •6 9ΖΖ •L 9ΐ 皿 N oz\ 士^ZL -ζε 00 'Τ 0 8' Ζ Z8l "9ΐ • 6 Οΐ SAT VD 99 ^^ ζι • ε 00 • ΐ 82 Ζ 69 069 '9ΐ ZLS • L Οΐ SAT N 99 ^^ € 9 £ 0/00 <If / XD «I ΐΐ "92 00 • ΐ 66 8 εο9 Ί ετο ■ 9 9ΐ HH1 93 ZZl ^ s • εε00 • ΐ 8 · ε8 Ρ61 • L 8CZ • 9 9ΐ HH1 V3 IZl 士 ^ s • 6 9ΖΖ • L 9ΐ Plate N oz \ ^
00 ·8ε 00 •ΐ 286 '98 928 •8 Ζ6\ •8 9ΐ OHV 0 6Π 士^00 · 8ε 00 • ΐ 286 '98 928 • 8 Ζ6 \ • 8 9ΐ OHV 0 6Π ^^
00 ■8ε 00 •I 8ΐ0 '98 99 •6 ΖΖ6 • L ST OHV 3 8Π 士^00 ■ 8ε 00 • I 8ΐ0 '98 99 • 6 ΖΖ6 • L ST OHV 3 8Π
LZ •88 00 ■ΐ ζιζ •88 9ε^ ' ΐ 099 •ε SI OMV zm III 士^LZ • 88 00 ■ ΐ ζιζ • 88 9ε ^ 'ΐ 099 • ε SI OMV zm III ^^
LZ •88 00 ,ΐ •88 £91 'Ζ\ 989 •ε SI oav \M 9Π 士^LZ • 88 00, ΐ • 88 £ 91 'Ζ \ 989 • ε SI oav \ M 9Π ^^
LZ •88 00 •ΐ 29ΐ •88 •ει ΟΖΖ - SI OHV ID sn 士LZ • 88 00 • ΐ 29ΐ • 88 • ει ΟΖΖ-SI OHV ID sn
LZ •88 00 •ΐ Z0L · 8 ιετ 'ετ 89 •S SI OHV 3N Ηΐ 士^LZ • 88 00 • ΐ Z0L · 8 ιετ 'ετ 89 • S SI OHV 3N 士士 ^
LZ ·88 00 •ΐ 96 'Ζ8 S88 •ΐΐ Ζ6ΐ •9 3ΐ OMV QD εΐΐ 士^LZ88 00 • ΐ 96 'Ζ8 S88 • ΐΐ Ζ6ΐ • 9 3ΐ OMV QD εΐΐ 士 ^
LZ •88 00 •ΐ SI8 •98 ΖΖ ■2ΐ 99^ ' L 3ΐ OMV 03 zu 士^LZ • 88 00 • ΐ SI8 • 98 ΖΖ ■ 2ΐ 99 ^ 'L 3ΐ OMV 03 zu ^^
LZ •88 00 'ΐ 06ε 'S8 LZ6 •π πε ' L 9ΐ OMV 83 ΐΐΐ 士^LZ • 88 00 'ΐ 06ε' S8 LZ6 • π πε 'L 9ΐ OMV 83 士士 ^
00 ■8ε 00 •ΐ 6Ζ6 266 •Οΐ 9 •8 91 OHV VD on 士^00 ■ 8ε 00 • ΐ 6Ζ6 266 • Οΐ 9 • 8 91 OHV VD on ^^
00 ■8ε 00 'ΐ Ϊ89 •S8 89S 'π Π6 •8 9ΐ oav N 60ΐ 士^00 ■ 8ε 00 'ΐ Ϊ89 • S8 89S' π Π6 • 8 9ΐ oav N 60ΐ ^^
Z£ ·9ε 00 •ΐ 8 ε 6 •6 9C9 'Οΐ SAT 0 80ΐ 士^Z £ · 9ε 00 • ΐ 8 ε 6 • 6 9C9 'Οΐ SAT 0 80ΐ ^^
Z '9Z 00 ■ΐ 90S ·ε8 86Ζ 'Οΐ 800 •Οΐ Η SAT 3 Οΐ 士^Z '9Z 00 ■ ΐ 90S · ε8 86Ζ' Οΐ 800 • Οΐ Η SAT 3 ^ 士 ^
•S9 00 •ΐ 60ΐ •S8 S 9 • 9Zf •Η ν\ SAT ZN 901 士^ f '39 00 •I 8Ε8 •S8 •ει Ζ\Ζ •^ΐ ΐ SAT 3D SOI 士^• S9 00 • ΐ 60ΐ • S8 S 9 • 9Zf • Η ν \ SAT ZN 901 ^^ f '39 00 • I 8Ε8 • S8 • ει Ζ \ Ζ • ^ ΐ ΐ SAT 3D SOI ^^
"S9 00 •ΐ 609 "S8 899 •ει 9 L •Ζΐ VI S入 Ί αο 0ΐ 士^"S9 00 • ΐ 609" S8 899 • ει 9 L • Ζΐ VI S Ί αο 0ΐ 士 ^
^ '99 00 •ΐ 09S '28 OOS 'Ζ\ ZS ΐ Η SAT 03 εοτ 士^^ '99 00 • ΐ 09S '28 OOS 'Ζ \ ZS ΐ SAT SAT 03 εοτ ^^
"S9 00 •I ZS6 •18 Ζ6 ίΟΖ •Π \ SAT QD 201 士¾"S900 • I ZS6 • 18 Ζ6 ίΟΖ • Π \ SAT QD 201
ZZ ·9ε 00 •ΐ 628 •18 OLZ 'π f •01 ΐ SAT V3 ΐθΐ 士^ZZ 9ε 00 • ΐ 628 • 18 OLZ 'π f • 01 ΐ SAT V3 ΐθΐ ^^
ZZ ·9ε 00 •ΐ 00 '18 89 'Π 99Ζ •6 Η SAT N 001 士^ZZ9ε 00 • ΐ 00 '18 89 'Π 99Ζ • 6 Η SAT N 001
06 •εε 00 'ΐ 816 •08 6QZ •6 Ϊ9Ζ •8 ετ 丄ヨ W 0 66 士^06 • εε 00 'ΐ 816 • 08 6QZ • 6 Ϊ9Ζ • 8 ετ 丄 YO W 0 66 ^^
06 ■εε 00 •ΐ 0^9 •08 SS •Οΐ 809 •8 ετ im 3 86 士^ 8 •82 00 •ΐ LZ8 ' 08Z •Οΐ τεε "9 ει im 33 6 士^ S '83 00 ■ΐ 999 •gz ZZ9 Όΐ S96 •9 ετ 丄ョ w as 96 士^ S ■82 00 •ΐ ζ 'ΖΖ 886 •Οΐ SLV •9 ει 丄 3W 96 士^ fS '82 00 •ΐ L0Z "8Ζ Z 2 •Οΐ IS9 'L ετ IHW 93 f6 士^ e9£0/00df/X3«I I8ISZ./00 OAV 8 06 ■ εε 00 • ΐ 0 ^ 9 • 08 SS • Οΐ 809 • 8 ετ im 386 k ^ 8 • 82 00 • ΐ LZ8 '08Z • Οΐ τεε "9 ει im 33 6 k ^ S '83 00 ■ ΐ 999 • gz ZZ9 Όΐ S96 • 9 ετ wwas 96 ^^ S ■ 82 00 • ΐ ζ 'ΖΖ 886 • Οΐ SLV • 9 ει 丄 3W 96 ^^ fS '82 00 • ΐ L0Z “8Ζ Z 2 • Οΐ IS9 'L ετ IHW 93 f6 k ^ e9 £ 0 / 00df / X3 «I I8ISZ./00 OAV 8
90 '8Z 00 'ΐ £88 'Ζ8 S80 ' ε 9 '8 6ΐ S入 Ί 3 士^ 90 '8Z 00' ΐ £ 88 'Ζ8 S80' ε 9 '8 6ΐ S Ί 3
Ζζ • 00 ■ΐ Off ■06 LIZ •8 •ε 61 SA1 ZN ogi ά-ΜΖζ • 00 ■ ΐ Off ■ 06 LIZ • 8 • ε 61 SA1 ZN ogi ά-Μ
Z • 00 •ΐ Ρ08 •68 Zl •8 οοζ 6ΐ SAT 33 6H 士^Z • 00 • ΐ Ρ08 • 68 Zl • 8 οοζ 6ΐ SAT 33 6H ^
Z9 'LL 00 'ΐ PfO •68 IS! ' 660 •S 6ΐ SAT QD 8 士^Z9 'LL 00' ΐ PfO • 68 IS! '660 • S 6ΐ SAT QD 8 ^^
Z •1Λ 00 •ΐ 109 •88 102 "Ζ ZSS •9 61 S人 1 03 士^Z • 1Λ 00 • ΐ 109 • 88 102 "Ζ ZSS • 9 61 S 1 103
00 •ΐ £96 78 006 •S 9Ζ6 •9 6ΐ SAT 03 9 I 士^00 • ΐ £ 96 78 006 • S 9Ζ6 • 9 6ΐ SAT 03 9 I
90 •82 00 'ΐ 6fl •88 S99 ■S ZS '8 61 SAT V3 士^90 • 82 00 'ΐ 6fl • 88 S99 ■ S ZS' 8 61 SAT V3 ^
90 'SZ 00 •ΐ 6ίΖ 'Ζ8 οζε •9 6Ζ •6 6ΐ SAT N 士^ f 00 •ΐ Ζ8Ζ •88 Ζ89 •S 061 'ΐΐ 8ΐ mo 0 士^90 'SZ 00 • ΐ 6ίΖ' Ζ8 οζε • 9 6Ζ • 6 6ΐ SAT N ^^ f 00
'2 00 •ΐ LZf 'Z8 οζε •9 ΐ9 •οι 8ΐ mo 3 士^'2 00 • ΐ LZf' Z8 οζε • 9 ΐ9 • οι 8ΐ mo 3 ^^
96 "69 00 •ΐ 9 •98 •ΐΐ S81 · ΐ 81 mo 230 m 士^96 "69 00 • ΐ 9 • 98 • ΐΐ S81 · ΐ 81 mo 230 m
96 '69 00 •ΐ 6 6 •98 \ον ■ΐΐ 6 0 'Ζ\ 8ΐ mo 130 0 ΐ 士^96 '69 00 • ΐ 6 6 • 98 \ ον ■ ΐΐ 6 0 'Ζ \ 8ΐ mo 130 0 士士 ^
96 -6S 00 'ΐ 869 •98 •01 9L0 Έΐ 8ΐ mo ( 6εΐ 士^96 -6S 00 'ΐ 869 • 98 • 01 9L0 Έΐ 8ΐ mo (6εΐ ^^
96 '6S 00 •ΐ 0S9 •98 ζζ •6 S6 ■ζι 81 mo 03 8ει 士^96 '6S 00 • ΐ 0S9 • 98 ζζ • 6 S6 ■ ζι 81 mo 03 8ει 士 ^
96 •6S 00 •ΐ 066 •98 199 •8 Ζ09 •Ιΐ 8ΐ mo 9D ζετ 士^96 • 6S 00 • ΐ 066 • 98 199 • 8 Ζ09 • Ιΐ 8ΐ mo 9D ζετ
'ZZ 00 'ΐ '98 LZZ Ί 6 •II 8ΐ mo VD 9ει 士^ f 00 •ΐ 9ST -S8 892 ' 208 •Οΐ 8ΐ mo N ετ 士^'ZZ 00' ΐ '98 LZZ Ί 6 • II 8ΐ mo VD 9ει 士 ^ f 00 • ΐ 9ST -S8 892 '208 • Οΐ 8ΐ mo N ετ
H •εε 00 •ΐ 6LL 8 Οΐ '9 \9Ζ 'ΐΐ ΐ Π3Ί 0 士^H • εε 00 • ΐ 6LL 8 Οΐ '9 \ 9Ζ' ΐΐ ΐ Π3Ί 0 ^^
•εε 00 •I 06S ' 8 III •9 £SL 'Οΐ ΐ Π3Ί 3 εει 士^• εε 00 • I 06S '8 III • 9 £ SL' Οΐ ΐ Π3Ί 3 εει ^
'ί^ε 00 'ΐ L9S •08 ZL •9 τοε •ει Ι nm ZQD 士^ fl 00 'ΐ 980 •18 9 136 'Ιΐ ΐ nm IQ3 \η 士^ I 00 ■I Z l 'ΐ8 Ζ96 ■g βεε ■ζι ΐ 031 03 οετ 士^'ί ^ ε 00' ΐ L9S • 08 ZL • 9 τοε • ει Ι nm ZQD ^^ fl 00 'ΐ 980 • 18 9 136' Ιΐ ΐ nm IQ3 \ η ^^ I 00 ■ IZ l 'ΐ8 Ζ96 ■ g βεε ■ ζι ΐ 031 03 οετ 士 ^
' ε 00 •ΐ 066 •18 8 •9 ΐθΐ •ΐΐ ΐ nm 93 6Ζ\ 士^'ε 00 • ΐ 066 • 18 8 • 9 ΐθΐ • ΐΐ ΐ nm 93 6Ζ \
•εε 00 •ΐ 6ΐ0 ·£8 692 ■9 6ΐΐ •Οΐ ΐ V3 士^• εε 00 • ΐ 6ΐ0 · £ 8 692 ■ 9 6ΐΐ • Οΐ ΐ V3
•εε 00 ■ΐ 90 ·£8 ζοι ' L ΖΖ6 •8 ι N
Figure imgf000050_0001
士^ S 00 'ΐ OL Π6 '9 996 "Ζ 91 皿 0 9Ζ\ 士^ t'S •εε 00 •ΐ 206 ·£8 8 "9 \Ζ6 •L 9ΐ 皿 3 ΖΙ 士:
• εε 00 ■ ΐ 90 · £ 8 ζοι 'L ΖΖ6 • 8 ι N
Figure imgf000050_0001
^^ S 00 'ΐ OL Π6' 9 996 "Ζ 91 dishes 0 9Ζ \ ^^ t'S • εε 00 • ΐ 206 · £ 8 8" 9 \ Ζ6 • L 9ΐ dishes 3 士
Π 00 ' 'ΐ 8 I "28 ΐΐ "9 668 "S 9ΐ 皿
Figure imgf000050_0002
士^
Π 00 '' ΐ 8 I "28 ΐΐ" 9 668 "S 9ΐ plate
Figure imgf000050_0002
Chief ^
Π '92 00 ' 'ΐ 299 '28 91Ζ •8 9 9ΐ 皿 TOO 士^ £9e0/00df/X3d Z81SZ./00 O 6f Π '92 00 '' ΐ 299 '28 91Ζ • 8 9 9ΐ Plate TOO technician ^ £ 9e0 / 00df / X3d Z81SZ./00 O 6f
00 •ΐ CG9 •68 ΖΖ •0 - SZ8 Ί £Ζ ΓΠΟ 93 081 士^ 00 • ΐ CG9 • 68 ΖΖ • 0-SZ8 Ί £ Ζ ΓΠΟ 93 081 ^^
CM 00 •ΐ •06 Ζ \ •0_ ^60 •6 ΖΖ mo V3 6ZT 士^CM 00 • ΐ • 06 Ζ \ • 0_ ^ 60 • 6 ΖΖ mo V3 6ZT ^^
00 •ΐ ζοζ •06 Οΐ •ΐ 刚 "6 £Ζ mo N 8 Ϊ 士^ se "8ε 00 •ΐ 9 8 ·ΐ6 869 •0 9SS 'ΐΐ ΖΖ dSV 0 III 士^ ss ·8ε 00 •ΐ 666 ■06
Figure imgf000051_0001
士^
00 • ΐ ζοζ • 06 Οΐ • ΐ 刚 "6 £ Ζ mo N 8 Ϊ 士 ^ se" 8ε 00 • ΐ 9 8 · ΐ6 869 • 0 9SS 'ΐΐ ΖΖ dSV 0 III ^^ ss · 8ε 00 • ΐ 666 ■ 06
Figure imgf000051_0001
Chief ^
18 '8S 00 'ΐ οζζ •S6 91 ' %L ■6 ΖΖ dSV ZQO 911 士^18 '8S 00' ΐ οζζS6 91 '% L66 dSV ZQO 911
18 "82 00 'ΐ 990 •S6 18Ζ ' 196 ■ΐΐ ΖΖ dSV ιαο VLl 士^18 "82 00 'ΐ 990 • S6 18Ζ' 196 ■ ΐΐ ΖΖ dSV ιαο VLll ^
18 ·8ε 00 •I 199 'Ζ6 02Ζ S28 •Οΐ ΖΖ dSV 03 εζτ 士^ ΐ8 ·8ε 00 •ΐ 880 •16 9 6 •ε 90Ζ •Οΐ ΖΖ dSV 83 ZL\ 士^18 · 8ε 00 • I 199 'Ζ6 02Ζ S28 • Οΐ ΖΖ dSV 03 εζτ ^^ ΐ 8 · 8ε 00 • ΐ 880 • 16 9 6 • ε 90Ζ • Οΐ ΖΖ dSV 83 ZL \ ^^
9Ζ '8£ 00 ■I ε^9 '06 9SZ •τ 093 'Π ΖΖ dSV VD III 士^ ss '8ε 00 "ΐ 902 •68 IZS 9 l •Π ΖΖ dSV N Ο ΐ 士^ εο "ss 00 •ΐ ^9ΐ •68 SZZ •ΐ ιζζ 'GI ιζ mo 0 691 士^ εο "ss 00 'ΐ 8ZS •88 9S0 'ζ 829 'ΖΙ \Ζ mo 3 89ΐ 士^9Ζ '8 £ 00 ■ I ε ^ 9 '06 9SZ • τ 093' Π ΖΖ dSV VD III ^^ ss' 8ε 00 "ΐ 902 • 68 IZS 9 l • Π ΖΖ dSV N Ο 士 ^^ εε“ ss 00 • ΐ ^ 9ΐ • 68 SZZ • ΐ ιζζ 'GI ιζ mo 0 691 ^^ εο "ss 00' ΐ 8ZS • 88 9S0 'ζ 829' ΖΙ \ Ζ mo 3 89ΐ ^^
Ζ9 ·οε 00 •ΐ SI8 ·ε8 998 6ΖΖ ' \ \ζ mo ΖΞΟ Ζ9ΐ 士^Ζ9 · οε 00 • ΐ SI8 · ε8 998 6ΖΖ '\ \ ζ mo ΖΞΟ Ζ9ΐ 士 ^
Ζ 'οε 00 •ΐ 9£L 'S8 9SZ 90 • \ζ mo 130 99ΐ 士^Ζ 'οε 00 • ΐ 9 £ L' S8 9SZ 90 • \ ζ mo 130 99ΐ ^^
Ζ9 ·οε 00 •ΐ 806 ' 8 828 8^9 ·Η \ζ mo ao S9I 士^Ζ9 · οε 00 • ΐ 806 '8 828 8 ^ 9 · Η \ ζ mo ao S9I ^^
Ζ9 'οε 00 •ΐ LZZ •S8 Ζΐ9 •ε C08 •εΐ ιζ mo 03 9ΐ 士 1ίΖ9 'οε 00 • ΐ LZZ • S8 Ζΐ9 • ε C08 • εΐ ιζ mo 03 9ΐ ί 1ί
Ζ9 "οε 00 •ΐ ZZL •98 ZCS •ε 6ZL ιζ mo 93 S91 士^ εο ' Ζ 00 •ΐ SZO ' 8 0S2 SOL ιζ mo VD Ζ91 士^ εο "9ε 00 •ΐ S8S •98 829 'τ Ζ6ζ 'ΐΐ ιζ mo N ΐ9ΐ 士^Ζ9 "οε00 ζ ιζ mo N ΐ9ΐ 士 ^
68 'LZ 00 •ΐ \Ζ 'Ζ8 εβ •0 90 •Οΐ οζ 311 0 09ΐ 士^68 'LZ 00 • ΐ \ Ζ' Ζ8 εβ • 0 90 • Οΐ οζ 311 0 09ΐ ^^
68 - ε 00 •ΐ 66Ζ •98 198 •I 6 2 •Οΐ οζ mi 3 69ΐ 士^ εε ·εε 00 'ΐ ZSL ' 8 S98 •ΐ 88 •9 οζ ΗΊΙ 103 891 士^ εε 'ζζ 00 'ΐ ΐΠ 8 ZL •ζ 999 'L οζ H1I IDD ZST 士^ εε 'εε 00 ■ΐ 8^2 ■Ρ8 ι •0 L f •6 οζ ΗΊΙ ZOO 99ΐ 士^ εε ·εε 00 •ΐ LOL ' 8 Oil 'Ζ 620 ■6 οζ H1I QD 991 士^68-ε 00 • ΐ 66Ζ • 98 198 • I 6 2 • Οΐ οζ mi 3 69ΐ ^^ εε · εε 00 'ΐ ZSL' 8 S98 • ΐ 88 • 9 οζ ΗΊΙ 103 891 ^^ εε 'ζζ 00' ΐ ΐΠ 8 ZL • ζ 999 'L οζ H1I IDD ZST ^^ εε' εε 00 ■ ΐ 8 ^ 2 ■ Ρ8 ι • 0 L f • 6 οζ ΗΊΙ ZOO 99ΐ ^^ εε · εε 00 • ΐ LOL '8 Oil' Ζ 620 ■ 6 οζ H1I QD 991 ^^
68 " C 00 ■ΐ 9£Ζ •98 £ £ z 9ΐΟ •6 οζ mi V3 l 士^68 "C 00 ■ ΐ 9 £ Ζ • 98 £ £ z 9ΐΟ • 6 οζ mi V3 l
68 " ε 00 •ΐ 809 •98 ZZL •ε Ζ6Ζ •8 οζ 311 N £91 士^68 "ε 00 • ΐ 809 • 98 ZZL • ε Ζ6Ζ • 8 οζ 311 N £ 91 ^^
SO ·8Ζ 00 •ΐ SI8 •88 LZ •ε 6Ζί •8 6ΐ SAT 0 Ζ 1 士^ £9e0/00df/XD<I Z8IS/./00 OAV 原子 181 CG GLU 23 6. 846 0. 839 89. 933 1. 00 47. 44 原子 182 CD GLU 23 5. 624 0. 775 89. 039 1. 00 47. 44 原子 183 0E 1 GLU 23 4. 619 1. 425 89. 368 1. 00 47. 44 原子 184 0E2 GLU 23 5. 654 0. 085 88. 005 1. 00 47. 44 原子 185 C GLU 23 10. 008 - 1. 349 90. 338 1. 00 原子 186 0 GLU 23 10. 007 -2. 283 91. 142 1. 00 原子 187 N LEU 24 10. 796 - 1. 327 89. 266 1. 00 38. 04 原子 188 CA LEU 24 1 1. 716 - 2. 423 88. 98 1 1. 00 38. 04 原子 189 CB LEU 24 12. 360 - 2. 229 87. 614 1. 00 26. 06 原子 190 CG LEU 24 1 1. 366 -2. 262 86. 456 1. 00 26. 06 原子 191 CD 1 LEU 24 12. 097 - 1. 999 85. 165 1. 00 26. 06 原子 192 CD2 LEU 24 10. 657 - 3. 604 86. 415 1. , 00 原子 193 C LEU 24 12. 805 - 2. 520 90. 039 1. 00 原子 194 0 LEU 24 13. 360 -3. 586 90. 288 1. 00 38. 04 原子 195 N - ARG 25 13. 097 - 1. 393 90. 666 1. 00 38. 24 原子 196 CA ARG 25 14. 1 17 - 1. 324 91. 690 1. 00 38. 24 原子 197 CB ARG 25 14. 552 0. 128 91. 846 1. 00 原子 198 CG ARG 25 15. 401 0. 400 93. 059 1. 00 32. 3 o5 o 原子 199 CD ARG 25 15. 612 1 . 890 93. 266 1. 00 原子 200 NE ARG 25 15. 485 2. 205 94. 680 1. 00 32. 35 原子 201 CZ ARG 25 14. 386 2. 692 95. 246 1. 00 原子 202 NH 1 ARG 25 13. 310 2. 945 94. 516 1. 00 原子 203 NH2 ARG 25 14. 352 2. 872 96. 557 1. 00 原子 204 C ARG 25 13. 648 - 1. 884 93. 036 1. 00 38. 24 原子 205 0 ARG 25 14. 452 - 2· 427 93. 795 1. 00 38. 24 原子 206 N し YS 26 12. 352 - 1. 762 93. 323 1. 00 37. 23 原子 207 CA LYS 26 1 1. 792 - 2. 239 94. 590 1. 00 37. 23 原子 208 CB し YS 26 10. 685 - 1. 287 95. 047 1. 00 39. 64 原子 209 CG LYS 26 1 1. 150 0. 165 95. 1 16 1. 00 39, 64 CO O LO LO O O O O LO LO LO LO LO LO LO LO SO · 8Ζ 00 • ΐ SI8 • 88 LZ • ε 6Ζί • 8 6ΐ SAT 0 Ζ 1 person ^ £ 9e0 / 00df / XD <I Z8IS /./ 00 OAV Atom 181 CG GLU 23 6.846 0.839 89.933 1.00 47.44 Atom 182 CD GLU 23 5.624 0.775 89.039 1.00 47.44 Atom 183 0E 1 GLU 23 4.619 1 425 89.368 1.00 47.44 atoms 184 0E2 GLU 23 5.654 0.085 88.005 1.00 47.44 atoms 185 C GLU 23 10.008-1.349 90.338 1.00 atoms 186 0 GLU 23 10.007 -2. 283 91.142 1.00 atom 187 N LEU 24 10.796-1.327 89.266 1.00 38.04 atom 188 CA LEU 24 1 1.716-2. 423 88.98 1 1.00 38.04 atom 189 CB LEU 24 12.360-2.229 87.614 1.00 26.06 atom 190 CG LEU 24 1 1.366 -2.262 86.456 1. 00 26.06 atom 191 CD 1 LEU 24 12.097-1.999 85.165 1.00 26.06 atom 192 CD2 LEU 24 10.657-3.604 86.415 1., 00 atom 193 C LEU 24 12.805-2.520 90.039 1.00 atom 1940 LEU 24 13.360 -3.586 90.288 1.00 38.04 atom 195 N-ARG 25 13.097-1.393 90.666 1.00 38.24 atoms 196 CA ARG 25 14.1 17-1.324 91.690 1.00 38.24 atoms 197 CB ARG 25 14.552 0.128 91.846 1.00 atoms 198 CG ARG 25 15. 401 0. 400 93.0 59 1.00 32.3 o5 o atom 199 CD ARG 25 15.612 1 .890 93.266 1.00 atom 200 NE ARG 25 15.485 2.205 94.680 1.00 32.35 atom 201 CZ ARG 25 14. 386 2.692 95.246 1.00 atom 202 NH1 ARG 25 13.310 2.945 94.516 1.00 atom 203 NH2 ARG 25 14.352 2.872 96.557 1.00 atom 204 C ARG 25 13.648-1.884 93.036 1.00 38.24 atoms 205 0 ARG 25 14.452-2 427 93.795 1.00 38.24 atoms 206 N then YS 26 12.352- 1.762 93.323 1.00 37.23 atoms 207 CA LYS 26 1 1.792-2.239 94.590 1.00 37.23 atoms 208 CB and YS 26 10.685-1.287 95.047 1.00 39.64 atoms 209 CG LYS 26 1 1.150 0.165 95.1 16 1.00 39, 64 CO O LO LO OOOO LO LO LO LO LO LO LO LO LO
to CO CO CM CM o O o o n o o o o O o o D  to CO CO CM CM o O o o n o o o o O o o D
t^- O O CO CO 00 00 LO LO LO t ^-O O CO CO 00 00 LO LO LO
CO CO CO CO CO CO co CO CO O O O CO CO O CO CO O CO O O CO O CO CO o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o CO CO CO CO CO CO co CO CO O O O CO CO O CO CO O CO O O CO O CO CO o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
C σ> CM 00 00 LO co o M co M LO D CM σιC σ> CM 00 00 LO co o M co M LO D CM σι
LO σ¾ CM CM o co CD co CO co OD CO CO 00 n CO LO oo o LO LO CO o LO σ co o 00 LO LO CM O CM CO o LO σ¾ CM CM o co CD co CO co OD CO CO 00 n CO LO oo o LO LO CO o LO σ coo 00 LO LO CM O CM CO o
LO LO LO LO CO co o O CO LO LO LO D I— CO CO CM  LO LO LO LO CO co o O CO LO LO LO D I— CO CO CM
00 00 n σ¾ CT) D 00 00 n σ¾ CT) D
I - 00 D LO CM o LO O o O LO CNI CO c LO LO LO CM o Nl CO O o 00 C ] o co CM O LO C o CM CM CM CM LO CO LO CO 00 00 O CD to LO LOI-00 D LO CM o LO O o O LO CNI CO c LO LO LO CM o Nl CO O o 00 C] o co CM O LO Co o CM CM CM CM LO CO LO CO 00 00 O CD to LO LO
* O LO < ) CO ! ) 00 o N] CO σ·ί  * O LO <) CO!) 00 o N] CO σ
j 1 1 j 1 1 1 1 1 1 1 1 1 1 1 1  j 1 1 j 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 τ· o  1 1 1 1 1 τo
1  1
CO LO o 01 D O CO LO LO LO I - CO C  CO LO o 01 D O CO LO LO LO I-CO C
o LO LO t - CM 00 σ o LO CO LO 00 o > 00 D co σ¾ t 00 o 00 M 00 O σ¾ in LO 00 00 O σ> 00 CM O Csl m CO LO ~ C 1 LO D 00 00 ry- 00 oo oo J J  o LO LO t-CM 00 σ o LO CO LO 00 o> 00 D co σ¾ t 00 o 00 M 00 O σ¾ in LO 00 00 O σ> 00 CM O Csl m CO LO ~ C 1 LO D 00 00 ry- 00 oo oo JJ
CM CO M CO CM CM CM CM CNI CM Csl CM CM M CNI CM CO Csl C O CO m CO i→ E— h- a:  CM CO M CO CM CM CM CM CNI CM Csl CM CM M CNI CM CO Csl C O CO m CO i → E— h- a:
> - ^ - > - ω :  >-^->-ω:
, , , X  ,,, X
, i 1 <ζ <ζ : m X:  , i 1 <ζ <ζ: m X:
< <ζ ^―. o -< CQ Q N X:  <<ζ ^ ―. o-<CQ Q N X:
o o ^ o O  o o ^ o O
CO CO
COCO
M 屮 屮
Figure imgf000053_0001
M block
Figure imgf000053_0001
S9 S9
6Z 'ΐε 00 •ΐ Zf ·00ΐ Z96 •ε - Ζ £ ' ΐ OHd N L9Z o 士^ O  6Z 'ΐε 00 • ΐ Zf · 00ΐ Z96 • ε-Ζ £' ΐ OHd N L9Z o ^^ O
S8 - 00ze 00 •ΐ 9 •66 681 •S - 889 •SI εε H3S 0 992 士^ S8-00ze 00 • ΐ 9 • 66 681 • S-889 • SI εε H3S 0 992 ^^
C8 ■LZ 00 •ΐ 929 •66 \6 'ト 981 ·9ΐ εε HHS D 992 士^C8 ■ LZ 00 • ΐ 929 • 66 \ 6 'G 981 · 9ΐ εε HHS D 992 ^^
91 'Ζ 00 •ΐ 696 •96 600 'ト 9L "Ζΐ εε HHS 00 士^91 'Ζ 00 • ΐ 696 • 96 600' G 9L "Ζΐ εε HHS 00 ^^
91 'Ζ 00 "ΐ Z • 6 Z6£ •G- S8S ' ΐ εε H3S 93 C92 士^91 'Ζ 00 "ΐ Z • 6 Z6 £ • G-S8S' ΐ εε H3S 93 C92 ^^
S8 "ZC 00 'ΐ 90Ζ •86 SS9 S9 ' Ϊ εε MHS VD Z9Z 士^S8 "ZC 00 'ΐ 90Ζ • 86 SS9 S9' Ϊ εε MHS VD Z9Z ^^
C8 • ε 00 •I 186 •86 ZSO 'ί- fZL ' ΐ e M3S N 19Z 士^C8 • ε 00 • I 186 • 86 ZSO 'ί- fZL' ΐ e M3S N 19Z
"82 00 •ΐ 28^ •86 98S • I- S06 ·6ΐ ζζ OMd 0 092 士^"82 00 • ΐ 28 ^ • 86 98S • I-S06 · 6ΐ OM OMd 0 092 ^^
•8S 00 •ΐ £98 •86 εεβ •z- £ZS •81 ζζ OHd 3 6S2 士^• 8S 00 • ΐ £ 98 • 86 εεβ • z- £ ZS • 81 ζζ OHd 3 6S2 ^
00 •ΐ S9Z •66 9ΐΐ 'Οΐ - S08 '02 Ζ£ OHd 03 80S 士 ¾00 • ΐ S9Z • 66 9ΐΐ 'Οΐ-S08 '02 Ζ £ OHd 03 80S ¾
OS ■8S 00 •ΐ ΐβε •ΟΟΐ OZL •6_ 2TS "6ΐ Ζ£ OHd 93 L Z 士^OS ■ 8S 00 • ΐ ΐβε • ΟΟΐ OZL • 6_ 2TS "6ΐ Ζ £ OHd 93 L Z Z ^
ZZ •8C 00 •ΐ 06ΐ •66 80S ■6 - S99 •81 ζζ OMd V3 9 Z 士^ οε ·8ε 00 •ΐ £89 •86 Z 6 •Οΐ- εεε '02 OMd ( SS2 士^ zz ·8ε 00 •ΐ ιζι •86 9Ζΐ •Οΐ - Ζ9\ ·6ΐ OMd N ^SS 士^ZZ • 8C 00 • ΐ 06ΐ • 66 80S ■ 6-S99 • 81 OMOMd V3 9 Z Z ^ οε · 8ε 00 • ΐ £ 89 • 86 Z 6 • Οΐ- εεε '02 OMd (SS2 士 ^ zz · 8ε 00 • ΐ ιζι • 86 9Ζΐ • Οΐ-Ζ9 \ · 6ΐ OMd N ^ SS 士 ^
8S - 00 ■ΐ •96 09ε •6- 69 "Ζΐ ιε S入 Ί 0 SS2 士^8S-00 ■ ΐ • 96 09ε • 6-69 "Ζΐ ιε S input Ί 0 SS2 ^^
8S ' 00 •ΐ 9Ζ8 •96 8ετ •Οΐ - S99 ·8ΐ τε SAT 3 Z Z 士^ ΐ '96 00 •ΐ L£Z "S6 Τΐ2 ·9- '02 τε SAT ZN 1 Z 士^ ΐ •96 00 "Τ Iff • 6 961 •9 - ζιζ ·6ΐ TC SAT 33 0 Z 士^ I •96 00 'ΐ 6VZ ' 6 60C •8 - 09S ·6ΐ IC SAT 03 6fZ 士^ ΐ •96 00 •ΐ 69ΐ "96 C88 ·8_ •02 τε SAT 03 8 Z 士^ ΐ •96 00 •ΐ 99ΐ "S6 £U "Οΐ- ε9 '02 τε SAT ao L Z 士^8S '00 • ΐ 9Ζ8 • 96 8ετ • Οΐ-S99 · 8ΐ τε SAT 3 ZZ ^^ '96 00 • ΐ L £ Z "S6 Τΐ2 · 9- '02 τε SAT ZN 1 Z ^ • 96 00" Τ Iff • 6 961 • 9-ζιζ · 6ΐ TC SAT 33 0 Z ^ I • 96 00 'ΐ 6VZ' 6 60C • 8-09S · 6ΐ IC SAT 03 6fZ ^ 96 96 • ΐ 69ΐ "96 C88 · 8_ • 02 τε SAT 03 8 Z ^ ΐ • 96 00 • ΐ 99ΐ "S6 £ U" Οΐ- ε9 '02 τε SAT ao LZ ^^
8ε ' 00 •ΐ 698 •S6 S60 •ΐΐ - 9LZ •61 τε SAT V3 9 Z 士8ε '00 • ΐ 698 • S6 S60 • ΐΐ-9LZ • 61 τε SAT V3 9 Z
8ε 00 •ΐ 98 • 6 169 •ITLZZ "81 τε S入 Ί N fZ 士^8ε 00 • ΐ 98 • 6 169 • ITLZZ "81 τε S input Ί N fZ ^^
90 ·6ε 00 •ΐ 68 "S6 9 'Sト 60 ·8ΐ οε ΑΊΟ 0 fZ 士^90 · 6ε 00 • ΐ 68 "S6 9 'S G 60 · 8ΐ οε ΑΊΟ 0 fZ
90 ·6ε 00 •ΐ 196 '^6 8ΐ8 ト ZS · οε A10 3 £fZ 士^ so ·6ε 00 •ΐ 0Ζ8 •S6 LSZ •ει- LIS •91 οε A10 VD ZfZ 士^ so '6ε 00 •ΐ £ZZ "C6 882 no •91 οε ΑΊΟ N \ Z 士^90 · 6ε 00 • ΐ 196 '^ 6 8ΐ8 G ZS · οε A10 3 £ fZ ^^ so · 6ε 00 • ΐ 0Ζ8 • S6 LSZ • ει-LIS • 91 οε A10 VD ZfZ ^^ so' 6ε 00 • ΐ £ ZZ "C6 882 no • 91 οε ΑΊΟ N \ Z
06 ·8ε 00 ■ΐ f9l '96 6SZ •π- ISO 6Ζ HHI 0 OfZ 士^06 · 8ε 00 ■ ΐ f9l '96 6SZ • π- ISO 6Ζ HHI 0 OfZ ^^
06 ·8ε 00 •ΐ Z 6 "S6 8Ζ9 •π— 8ΐ "ST 6Ζ MHI D 6£Z 士^ £9£0/00df/I3d Z8ISZ./00 OAV ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾06 8ε 00 • ΐ Z 6 "S6 8Ζ9 • π- 8ΐ" ST 6Ζ MHI D 6 £ Z ^^ £ 9 £ 0 / 00df / I3d Z8ISZ./00 OAV ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾
4 4 t4 4 t
Figure imgf000055_0001
o o to : O o o o o o o o o
Figure imgf000055_0001
oo to: O oooooooo
o σ > σ O > ca σ o σ> σ O> ca σ
「 「 「 「 「 「 「 「 > > -a "" "" "" ">> -A
r- 「 m rn m m m m r- t— 「 「 「 「 「 「 「 「 「 a a r- "mrnmmmmmr-t—" "" "" "" "a a
c: : : c: cr rn m m m m m > > > > > 〇 〇 o 〇 〇 O cn cn  c::: c: cr rn m m m m m>>>>> 〇 〇 o 〇 〇 O cn cn
t t
t O o o ( -" 1 cn cn ai co o o n oo t o t cn oo o o o
Figure imgf000055_0002
t O oo (-" 1 cn cn ai co oon oo tot cn oo ooo
Figure imgf000055_0002
O O OO O O
O OO O
Figure imgf000055_0003
Figure imgf000055_0003
s s
S enZ 'IS 00 •ΐ ose Οΐ 99S 'I 296 •ΐ \ SAT CD Z£ 士^ S enZ 'IS 00 • ΐ ose Οΐ 99S' I 296 • ΐ \ SAT CD Z £ 士 ^
00 •ΐ 996 Οΐ 9Ζ6 ■0 68ΐ •ε \ SAT 03 ZZ 士^00 • ΐ 996 Οΐ 9Ζ6 ■ 0 68ΐ • ε \ SAT 03 ZZ 士 ^
00 •ΐ 902 '90ΐ 9 •0 6L 'τ \ SAT eo ZZZ 士^00 • ΐ 902 '90 ΐ 9 • 0 6L 'τ \ SAT eo ZZZ ^^
00 'ΐ ZZL "90ΐ L6L "0- LLS •ε S人 Ί VD ZZ£ 士^00 'ΐ ZZL "90ΐ L6L" 0- LLS • ε S people Ί VD ZZ £ ^^
00 •ΐ S89 ■fo\ SO •ΐ - 90S ' SAT N IZ£ 士^00 • ΐ S89 ■ fo \ SO • ΐ-90S 'SAT N IZ £ 士 ^
86 '6S 00 •ΐ S9T •SOI L9f -τ- 06 •9 017 H1I 0 OZZ 士^86 '6S 00 • ΐ S9T • SOI L9f -τ- 06 • 9 017 H1I 0 OZZ
86 "6S 00 •ΐ L\ ' 01 696 'ΐ- 169 "9 Of mi 3 6\2 -t 9 '9S 00 •ΐ 010 •SOI 819 •s- 9Π •9 Of 311 IQ3 8ΐε 士^ 9 ·9£ 00 •ΐ ^69 'SOT Ζ 6 ■f- 1^82 'Ζ 0 311 103 LIZ 士^ 9 '9S 00 •ΐ 026 998 'ト S6I •9 311 SOD 9ΐε 士^ 9 ·9ε 00 ■ΐ •εοΐ zeo 'ト LS •9 Of 311 93 sie 士^86 "6S 00 • ΐ L \ '01 696' ΐ- 169" 9 Of mi 3 6 \ 2 -t 9 '9S 00 • ΐ 010 • SOI 819 • s- 9Π • 9 Of 311 IQ3 8ΐε ^^ 9 · 9 £ 00 • ΐ ^ 69 'SOT Ζ 6 ■ f- 1 ^ 82' Ζ 0 311 103 LIZ ^^ 9 '9S 00 • ΐ 026 998 ト S6I • 9 311 SOD 9ΐε ^^ 9 · 9ε 00 ■ ΐ • εοΐ zeo 'T LS • 9 Of 311 93 sie ^^
86 '6S 00 •ΐ ζζζ ΈΟΙ 626 - Η6 •S O mi VD Ηε 士^86 '6S 00 • ΐ ζζζ ΈΟΙ 626-Η6 • S O mi VD Ηε ^^
86 '6δ 00 •ΐ 6LZ "20ΐ οει •1- 6IS •9 Οί' mi N ετε 士^ 6 'Z 00 •ΐ LSI "ΐθΐ 098 •ΐ- S89 - 6ε mo 0 士^ 6 ·ε 00 •ΐ 682 'ΐΟΙ Zf •ι- 88Ζ •s mo 3 πε 士^86 '6δ 00 • ΐ 6LZ "20ΐ οει • 1-6IS • 9 Οί' mi N ετεε ^ 6 'Z 00 • ΐ LSI“ ΐθΐ 098 • ΐ- S89-6ε mo 0 ^ 6 · ε 00 • ΐ 682 'ΐΟΙ Zf • ι- 88Ζ • s mo 3 πε 士 ^
69 ·ΐ8 00 •ΐ SZ\ •86 LZO •τ LLL •s mo 2H0 οτε 士69 · ΐ800 • ΐ SZ \ • 86 LZO • τ LLL • s mo 2H0 οτε 士
69 ·ΐ8 00 'ΐ SOS 'Z6 98S '0 Ζ Ζ ' mo 130 60S 士69 ΐ8 00 'ΐ SOS' Z6 98S '0 Ζ Ζ' mo 130 60S
69 ·ΐ8 00 •ΐ 208 · 6 ZL •0 0217 •s mo CD 80S 士^69 · ΐ800 • ΐ208 · 6 ZL • 0 0217 • s mo CD 80S
69 ·ΐ8 00 •ΐ ILL " 6 6ΖΖ •0 - 9 •9 6ε mo 03 οε 士^69 · ΐ800 • ΐ ILL "6 6ΖΖ • 0-9 • 9 6ε mo 03 οε 士 ^
69 ·ΐ8 00 •ΐ 9 8 ■86 16Ζ •ΐ - •9 rno 93 9οε 士^ 6 'Ϋ, 00 'ΐ 6 Z •ΟΟΐ LSL ·ο_ eos •9 6ε mo VD sos -h69 · ΐ800 • ΐ 9 8 ■ 86 16Ζ • ΐ-• 9 rno 93 9οε ^^ 6 'Ϋ, 00' ΐ 6 Z • ΟΟΐ LSL · ο_ eos • 9 6ε mo VD sos -h
00 •ΐ 8 •001 VL •0 - Ί mo N 士^00 • ΐ 8 • 001 VL • 0-Ί mo N 士 ^
6Ζ "SC 00 •ΐ 880 •ΐθΐ 60 •ΐ 868 •L mo 0 εοε 士^6Ζ "SC 00 • ΐ 880 • ΐθΐ 60 • ΐ 868 • L mo 0 εοε 士 ^
00 ■ΐ 188 •001 9L£ •0 Ζ •8 mo 3 ζοζ 士^00 ■ ΐ 188 • 001 9L £ • 0 Ζ • 8 mo 3 ζοζ 士 ^
ΖΟ 'SC 00 •ΐ 刚 ·66 SOO εοτ •Η 8Ζ mo 2H0 τοε 士^ΖΟ 'SC 00 • ΐ 刚 · 66 SOO εοτ • Η 8Ζ mo 2H0 τοε 士 ^
ΖΟ '9Ζ 00 ■ΐ 0 •86 SOZ 86ΐ ΐ 8ε mo ΪΗΟ οοε 士^ΖΟ '9Ζ 00 ■ ΐ 0 • 86 SOZ 86ΐ ΐ 8ε mo ΪΗΟ οοε 士 ^
ΖΟ 'SS 00 •ΐ 8ΐΐ •66 ΠΤ 'ζ 698 8ε mo CD 662 士^ΖΟ 'SS 00 • ΐ 8ΐΐ • 66 ΠΤ' ζ 698 8ε mo CD 662 ^^
ΖΟ ' £ 00 •ΐ 16Ζ •ΟΟΐ OS •ΐ 921 ■ζ\ 8ε mo 03 862 士^ΖΟ '£ 00 • ΐ 16Ζ • ΟΟΐ OS • ΐ 921 ■ ζ \ 8ε mo 03 862 ^^
ΖΟ 'SC 00 ■ΐ 886 •66 LfO •ΐ LZL •Οΐ 8ε mo ao L6Z 士^ £9e0/00df/XDcI S 00 OAV 9S ΖΟ 'SC 00 ■ ΐ 886 • 66 LfO • ΐ LZL • Οΐ 8ε mo ao L6Z ^^ £ 9e0 / 00df / XDcI S 00 OAV 9S
6Z ·82 00 ■ΐ 8S6 'Ζΐΐ •ε ΖΖ9 Ί Ml HO Z 士^ 6Z · 82 00 ■ ΐ 8S6 'Ζΐΐ • ε ΖΖ9 Ί Ml HO Z ^^
6Z ' Z 00 •ΐ 188 ■9ΐΐ C68 'Ζ 69Ζ •9 HA1 ZD ess 士^ O C 6Z 'Z 00 • ΐ 188 ■ 9ΐΐ C68' Ζ 69Ζ • 9 HA1 ZD ess ^^ O C
6Z '82 00 •ΐ 8£ί ·9ΐΐ 669 •ΐ 180 •9 ML 233 士^ 6Z '82 00 • ΐ 8 £ ί · 9ΐΐ 669 • ΐ 180 • 9 ML 233 ^
6Z '82 00 •ΐ 0S9 ·9ΐΐ SS 'ΐ ΖΖ •s ML ZQd 士^6Z '82 00 • ΐ 0S9 · 9ΐΐ SS 'ΐ ΖΖ • s ML ZQd ^^
6Z '8Z 00 Ί 196 '9ΐΐ 026 •ε Π9 •9 Ml 133 OSS 士^6Z '8Z 00 Ί 196' 9ΐΐ 026 • ε Π9 • 9 Ml 133 OSS ^^
6Z '82 00 •ΐ S88 •Ηΐ 9 •ε 99 •g HA1 ιαο 士^6Z '82 00 • ΐ S88 • Ηΐ 9 • ε 99 • g HA1 ιαο 士 ^
6Z •8Z 00 •ΐ L0L ΐΐ •τ 8S0 •g HA1 03 士^6Z • 8Z 00 • ΐ L0L ΐΐ • τ 8S0 • g HA1 03 ^^
6Z •8S 00 'ΐ fZ •επ 69S ιει HA1 03 L Z 士^6Z • 8S 00 'ΐ fZ • επ 69S ιει HA1 03 L Z 士 ^
00 •I 806 •επ ΐΐΐ 'ζ ε 9 τ ML VD 士^ 6 ' 8 00 'ΐ 6ZL ιι 989 •ΐ LZ6 •ΐ HAI N 士^00 • I 806 • επ ΐΐΐ 'ζ ε 9 τ ML VDD ^ 6' 8 00 'ΐ 6ZL ιι 989 • ΐ LZ6 • ΐ HAIN N 士
8Z 'Ζ 00 •I ι •επ ίΖΟ •ο - S88 •0 ε dSV 0 z 士^8Z 'Ζ 00 • I ι • επ ίΖΟ • ο-S88 • 0 ε dSV 0 z
SZ 'Ζ 00 "ΐ ·2ΐΐ 0S9 ■0 660 •ΐ dSV 3 士^SZ 'Ζ 00 "ΐ · 2ΐΐ 0S9 ■ 0 660 • ΐ dSV 3rd person ^
ZZ "29 00 ■ΐ 86S •επ '0 •τ- dSV ZQO Zf£ 士^ZZ "29 00 ■ ΐ 86S • επ '0 • τ- dSV ZQO Zf £ 士 ^
ZZ 9 00 •ΐ Ζ6Ζ •ΐπ 0 6 •ΐ 9S0 'Ζ- £ dSV iao 士^ZZ 9 00 • ΐ Ζ6Ζ • ΐπ 0 6 • ΐ 9S0 'Ζ- £ dSV iao ^
ZZ 'Ζ9 00 •ΐ 6^8 •0 206 •ΐ - Zf dSV 03 O 士ZZ 'Ζ9 00 • ΐ 6 ^ 8 • 0 206 • ΐ-Zf dSV 03 O
ZZ 9 00 'ΐ ΪΖ9 •ΐΐΐ 68ΐ 'Ο- 900 'ΐ- £ dSV 83 6εε 士^ZZ 9 00 'ΐ ΪΖ9 • ΐΐΐ 68ΐ' Ο- 900 'ΐ- £ dSV 83 6εε
82 -z 00 •I fZf 'in 6Ζ£ •0 9 •0 £f dSV V3 see 士^82 -z 00 • I fZf 'in 6Ζ £ • 0 9 • 0 £ f dSV V3 see ^^
82 00 "ΐ ZL 'οπ 9L9 •ο - SIZ •ΐ dSV N ζεε 士^82 00 "ΐ ZL 'οπ 9L9 • ο-SIZ • ΐ dSV N ζεε ^^
18 '9C 00 'ΐ 9Ζ6 '601 9ZS •0 89 z ΊΥΛ 0 士^18 '9C 00' ΐ 9Ζ6 '601 9ZS0 89 z ΊΥΛ 0 ^^
18 ·9ε 00 ■ΐ 90 "Οΐΐ οεε •ο - ετε 1VA 3 see 士^ S ■ ζ 00 •I ISO •Οΐΐ 6 ε •ε - 8Ζ9 z 1VA 203 士^18 · 9ε 00 ■ ΐ 90 "Οΐΐ οεε • ο-ετε 1VA 3 see ^^ S ■ ζ 00 • I ISO • Οΐΐ 6 ε • ε-8Ζ9 z 1VA 203 ^^
19 · ε 00 •ΐ ^ 9 •πι ιι •ΐ - Z 1VA TOD εεε 士^19 · ε 00 • ΐ ^ 9 • πι ιι • ΐ-Z 1VA TOD εεε ^^
L • 00 'ΐ 66ΐ •οπ 9S8 •ΐ - iss Zf 1VA eo 士^L • 00 'ΐ 66ΐ • οπ 9S8 • ΐ-iss Zf 1VA eo ^^
18 ·9ε 00 •ΐ LLZ ·60ΐ Off •ΐ - 660 •ε Zf 1VA V3 ιεε 士^18 · 9ε 00 • ΐ LLZ · 60ΐ Off • ΐ-660 • ε Zf 1VA V3 ιεε 士 ^
18 ·9ε 00 ■I V0\ ·80ΐ 206 •0 - Zf 1VA N οεε 士^18 · 9ε 00 ■ I V0 \ · 80ΐ 206 • 0-Zf 1VA N οεε ^^
91 'Ζ 00 •ΐ 198 ·90ΐ Ζ9 "2- szz •τ If SAT 0 63ε 士^91 'Ζ 00 • ΐ 198 · 90ΐ Ζ9 "2- szz • τ If SAT 0 63ε ^
91 '2 00 •ΐ S6 •901 SS9 •ΐ - 9 ε •ε SAT 3 82ε 士^ gz •IS 00 •ΐ OZ "20ΐ Off •ε 6 I •ε SAT ZN LZZ 士^91 '2 00 • ΐ S6 • 901 SS9 • ΐ-9ε • ε SAT 3 82εε ^ gz • IS 00 • ΐ OZ "20ΐ Off • ε 6 I • ε SAT ZN LZZZ ^
•IS 00 •ΐ ZZO •ΖΟΐ OSS '2 SAT 9ΖΖ 士^ £9£0/00<If/XDd Z81SZ./00 OAV co co o o o o σ^, • IS 00 • ΐZZO • ΖΟΐ OSS '2 SAT 9ΖΖ ^^ 9 £ 0/00 <If / XDd Z81SZ./00 OAV co co oooo σ ^,
00  00
c  c
ο 、 ' ο, '
ο o o o o o o o o o o o o o o o o o o o o o o o o o o o o
Figure imgf000058_0001
ο ooooooooooooooooooooo ooooooo
Figure imgf000058_0001
00 00 σί o o o 00 00 00 o o o o 00 00 σί o o o 00 00 00 o o o o
00 o o 00 σ¾ o σ¾ t - co 00 o o o o 00 o 00 o o 00 σ¾ o σ¾ t-co 00 o o o o 00 o
c CO σι o 00 CM c CO σι o 00 CM
^ co 卜' 00
Figure imgf000058_0002
^ co u '00
Figure imgf000058_0002
o o o o o o o o o o  o o o o o o o o o o o
1 1 1 1 1 1 1 1
Figure imgf000058_0003
1 1 1 1 1 1 1 1
Figure imgf000058_0003
- - -J O o o O ---J O o o O
> - > - > - -' -' >^ - > - > - -' > - > - > - < <C O >->->--'-'> ^->->--'>->->-<<CO
E— ' E— ' E—■ E ~ 1 E— · - - > - * Q E— 'E—' E— ■ E ~ 1 E— ·-->-* Q
CQ Q N n: < CQ CQ Q N n: <CQ
O o o o O o o o
r— 00 > o 00 o 00 o 00 r— 00> o 00 o 00 o 00
LO LO t LO Ό CD to CD CD D Γ— 00 00 00 00LO LO t LO Ό CD to CD CD D Γ— 00 00 00 00
CO CO CO CO 屮 屮 屮 屮 r 屮 rf 屮 rf 屮 rf 屮 屮 rf rf 屮 屮 rf rf 屮 屮 CO CO CO CO Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bab
9ΐ 00•ΐ εεο · 0ΐ 808•ΐ 19Ζ•ΐΐ Ζ2 NSV ιαο Z\ 士^9ΐ 00 • ΐ εεο · 0ΐ 808 • ΐ 19Ζ • ΐΐ Ζ2 NSV ιαο Z \ 士 ^
9ΐ •S 00 •ΐ 士^9ΐ • S 00 • ΐ ΐ ^
9ΐ 00 'ΐ
Figure imgf000059_0001
•SOI ΐβε •ΐ Ζ NSV 93 Οΐ 士^
9ΐ 00 'ΐ
Figure imgf000059_0001
• SOI ΐβε • ΐ Ζ NSV 93 士士 ^
Ζ 00 •ΐ 0Ζ9 ·90ΐ ζ\ "I 'Ζ\ Ζ NSV V3 60 士^Ζ 00 • ΐ 0Ζ9 · 90ΐ ζ \ "I 'Ζ \ Ζ NSV V3 60 ^^
ΖΖ 00 •ΐ S8S •901 •0 •Π Ζ NSV N ■ 士^ΖΖ 00 • ΐ S8S • 901 • 0 • Π Ζ NSV N ■ ^^
69 • 00 •ΐ ΖΙ8 •801 ■0 8SI 'ΐΐ 19 1ΥΛ 0 士^69 • 00 • ΐ • 8 • 801 ■ 0 8SI 'ΐΐ 19 1ΥΛ 0 ^^
69 • 00 'ΐ 989 " Οΐ 8εΐ •0 \L "01 19 1VA 3 90 士^69 • 00 'ΐ 989 "Οΐ 8εΐ • 0 \ L" 01 19 1VA 3 90 ^^
61 •9S 00 •ΐ Z " Οΐ εζζ - •8 19 1VA 203 SO 士^61 • 9S 00 • ΐ Z “Οΐ εζζ-• 8 19 1VA 203 SO
6ί •9S 00 ■I 900 ·80ΐ Ζ9 ■ζ- ΖΖ9 •Οΐ 19 1VA 103 士^6ί • 9S 00 ■ I 900 · 80ΐ Ζ9 ■ ζ- ΖΖ9 • Οΐ 19 1VA 103 ^
6L ·9ε 00 •I ζζι ' Οΐ 900 ' - 9ZS •6 19 1VA 93 εο 士^6L · 9ε 00 • I 'ι' Οΐ 900 '-9ZS • 6 19 1VA 93 εο ^^
69 00 ■ΐ Π9 ' Οΐ 6GS •0 - •6 IS 1VA VD 士^69 00 ■ ΐ Π9 'Οΐ 6GS • 0-• 6 IS 1VA VD
69 00 •ΐ εο9 ·90ΐ 9Ζ0 •0 •8 IS 1VA N 10 士^69 00 • ΐ εο9 · 90ΐ 9Ζ0 • 0 • 8 IS 1VA N 10
Ζ\ "6C 00 Ί 'ΖΟΐ ΐΐΐ 'Ζ ST9 •8 02 OMd 0 00, 士^Ζ \ "6C 00 Ί 'ΖΟΐ ΐΐΐ' ΐΐΐ ST9 • 8 02 OMd 0 00, ^^
Ζ\ •6S 00 •ΐ 60Ζ ■901 6^ε •ΐ 1^0 •8 OS OHd 3 66ε 士^ εε •82 00 •ΐ fZ9 ' Οΐ 866 "C ·9 OS OM 03 86ε 士^ εε '82 00 •ΐ 969 ' Οΐ 169 S69 OS OHd ao 6ε 士^ ζ\ '6ε 00 •ΐ 8U •SOT εεδ •ΐ 666 •9 OS OMd V3 96ε 士^ εε ■8Z 00 ■ΐ 90S •SOI 8ΐ8 •ε 0S9 •S OS OHd CD 96ε 士^
Figure imgf000059_0002
980 •9 OS OHd N 6ε 士^ £ 00 •ΐ Ζ98 "ΖΟΐ 801 •ΐ 199 •S 6 HHI 0 士^
Ζ \ • 6S 00 • ΐ 60Ζ ■ 901 6 ^ ε • ΐ 1 ^ 0 • 8 OS OHd 3 66ε ^^ εε • 82 00 • ΐ fZ9 'Οΐ 866 "C · 9 OS OM 03 86ε ^^ εε '82 00 • ΐ969 'Οΐ169 S69 OS OHd ao 6εo ^ ζ \' 6ε 00 • ΐ8U • SOT εεδ • ΐ666 • 9 OS OMd V3 96ε3 ^ 8ε ^^ εε8Z00 ■ ΐ90S • SOI 8ΐ8 OS OHd CD 96ε
Figure imgf000059_0002
980 • 9 OS OHd N 6ε ^^ 00 • ΐ Ζ98 "ΖΟΐ 801 • ΐ 199 • S 6 HHI 0 ^
00 ■ΐ S8^ "ΖΟΐ ILZ •ζ 'S 6f mi 3 士^00 ■ ΐ S8 ^ "ΖΟΐ ILZ • ζ 'S 6f mi 3 ^^
"92 00 •ΐ L '60ΐ ζιζ ' SZS •9 6^ 服 203 ΐβε 士^ fZ "92 00 •ΐ 89£ •οπ LZZ - 060 'Ρ 6 MH1 100 06C 士^"92 00 • ΐ L '60 ΐ ζιζ 'SZS • 9 6 ^ Clothes 203 ΐβε ^^ fZ" 92 00 • ΐ 89 £ • οπ LZZ-060' Ρ 6 MH1 100 06C ^^
\z "92 00 •ΐ ZZ9 ·60ΐ 9LV '£ 0 •S 6^ HH丄 93 68ε 士^ zz 00 •ΐ LOZ •801 ΖΖΖ "C 96^ 6^ MHI V3 88ε 士^ zz 00 •ΐ 9τε ·80ΐ 9S8 'Ζ 960 τ 6 HHI N 士^ 2 •0, 00 •ΐ LZZ "ΖΟΐ ΟΟΖ - OZf 'τ 8^ OHd 0 98ε 士^ Z '0 00 "ΐ 6 8 ' Οΐ S99 •ε 99ΐ 'τ 8 OHd 3 S8S 士^\ z "92 00 • ΐ ZZ9 · 60ΐ 9LV '£ 0 • S 6 ^ HH 丄 93 68ε ^^ zz 00 • ΐ LOZ • 801 ΖΖΖ“ C 96 ^ 6 ^ MHI V3 88ε ^^ zz 00 • ΐ 9τε · 80ΐ 9S8 'Ζ 960 τ 6 HHI N ^^ 2 • 0, 00 • ΐ LZZ "ΖΟΐ ΟΟΖ-OZf' τ 8 ^ OHd 0 98ε ^^ Z '0 00" ΐ 6 8' Οΐ S99 • ε 99ΐ 'τ 8 OHd 3 S8S Engineer ^
00 • 00 •ΐ £62 'ΖΟΐ 826 •ε L£f •ΐ一 8 OHd 03 Ψ8Ζ 士^ £9£0/00df/IDd Z8TSZ./00 OAV 89 00 • 00 • ΐ £ 62 'ΖΟΐ 826 • ε L £ f • ΐ8 OHd 03 Ψ8Ζ ^ ^ £ 9 £ 0 / 00df / IDd Z8TSZ./00 OAV 89
LI ' 00 'ΐ 9ZL •χπ LZO 'ΐ- 66ε ·6ΐ 99 HH1 TOO Iff 士^ LI '00' ΐ 9ZL • χπ LZO 'ΐ- 66ε 6ΐ 99 HH1 TOO Iff 士 ^
LI ' 00 •ΐ 9 6 ΌΐΤ Ζ9ΐ •0 \9Ζ '61 9S HH1 93 o 士^LI '00 • ΐ 9 6 ΌΐΤ Ζ9ΐ • 0 \ 9Ζ '61 9S HH1 93 o
OZ "ze 00 •ΐ 80 •οπ SZO ■0 66 'Ζΐ 9S 腿 V3 士^OZ "ze 00 • ΐ 80 • οπ SZO ■ 0 66 'Ζΐ 9S Thigh V3
OZ -ζε 00 •ΐ Ζ68 •Οΐΐ Ζ0 •ο- 86Ζ '9ΐ 95 HH1 N SZ 士^OZ -ζε 00 • ΐ Ζ68 • Οΐΐ Ζ0 • ο-86Ζ '9ΐ 95 HH1 N SZ 士 ^
CO •92 00 •I ΖΖ\ •601 890 •ΐ 36^ "ST SS V1V 0 LZ 士^ εο "92 00 'ΐ &L •οπ Ό 8S9 "9ΐ SS V1V 3 9 士^CO • 92 00 • I ΖΖ \ • 601 890 • ΐ 36 ^ "ST SS V1V 0 LZ person ^ εο" 92 00 'ΐ & L • οπ Ό8S9 "9ΐ SS V1V 3 9 person ^
69 '92 00 •ΐ •in Ζ •ΐ- 8S0 •Η SS V1V ao set^ 士^ εο '92 00 •I ΐ •in SIZ '0 18^ 99 V1V VD 士^ O '9Ζ 00 •ΐ 88ΐ •Πΐ 160 ■ΐ ΐ ί) 'ετ 93 V1V N 士^ z •SS 00 'ΐ •Πΐ 099 •0 929 ·2ΐ Π31 0 士^ z ' Ζ 00 •I ηι 'ΖΙΙ ΖΖΖ •ΐ LZf 'ΖΙ nm ΐε 士^69 '92 00 • ΐ • in Ζ • ΐ-8S0 • Η SS V1V ao set ^ 士 ^ εο '92 00 • I ΐ • in SIZ '0 18 ^ 99 V1V VD ^^ O' 9Ζ 00 • ΐ 88ΐ • Πΐ 160 ■ ΐ ΐ ί) 'ετ 93 V1V N ^ z • SS 00' ΐ • Πΐ 099 • 0 929 · 2ΐ Π31 0 ^^ z 'Ζ 00 • I ηι' ΖΙΙ ΖΖΖ • ΐ LZf 'ΖΙ nm ΐε
96 ΊΖ 00 'ΐ ZOL 'ΖΙΙ V6Z •ε 99S •8 Π3Ί ZQ3 οε 士^96 ΊΖ 00 'ΐ ZOL' ΖΙΙ V6Z • ε 99S • 8 Π3Ί ZQ3 οε ^^
96 ' Ζ 00 •ΐ ΐθΐ 'ΖΙΙ οει •ΐ Z9V ' L IQD 6Z 士^96 'Ζ 00 • ΐ ΐθΐ' ΖΙΙ οει • ΐ Z9V 'L IQD 6Z ^^
96 ■LZ 00 •ΐ 6S8 •ΐΐΐ 0S0 ■ζ ZS9 '8 S nm 03 8Zf 士^96 ■ LZ 00 • ΐ 6S8 • ΐΐΐ 0S0 ■ ζ ZS9 '8 S nm 03 8Zf ^
96 ■LZ 00 •ΐ ζζι ΖΖ 'ΐ 6f6 •6 93 LZf 士^ Z '9£ 00 'ΐ "ΐΐΐ επ •ζ 0£Ζ •ΐΐ f VD 9Zf 士^ Z •SS 00 •ΐ f f Όΐΐ 699 'Ζ ΟΖΖ 'ΐΐ S nm N Z 士^96 ■ LZ 00 • ΐ ζζι ΖΖ 'ΐ 6f6 • 6 93 LZf ^^ Z' 9 £ 00 'ΐ "ΐΐΐ επ • ζ 0 £ Ζ • ΐΐ f VD 9Zf ^^ Z • SS 00 • ΐ ff 699 699' Ζ ΟΖΖ 'ΐΐ S nm New Zealander ^
OS ■ 00 Ί Ζ£6 •Οΐΐ S 61L 'Ιΐ es N10 0 Z 士^OS ■ 00 Ί 6 £ 6 • Οΐΐ S 61L 'Ιΐ es N10 0 Z ^^
OS ■\v 00 •ΐ 8ΐΐ ■Οΐΐ £28 •ε 99V •ΐΐ SS ΝΊΟ 3 ZZ 士^OS ■ \ v 00 • ΐ 8ΐΐ ■ Οΐΐ £ 28 • ε 99V • ΐΐ SS ΝΊΟ 3 ZZ ^
ZZ ε 00 •ΐ E9S '90ΐ 02ε •9 199 •8 S9 N10 23N zz 士^ZZ ε 00 • ΐ E9S '90 ΐ 02ε • 9 199 • 8 S9 N10 23N zz
ZZ "2C 00 •ΐ 1S9 "ΖΟΐ 9 •9 οεο •8 S9 ΝΊΟ 130 \z 士^ZZ "2C 00 • ΐ 1S9" ΖΟΐ 9 • 9 οεο • 8 S9 ΝΊΟ 130 \ z ^
ZZ 00 •ΐ V99 •901 ζ '9 818 •8 es N10 03 OZ 士^ZZ 00 • ΐ V99 • 901 ζ '9 818 • 8 es N10 03 OZ
ZZ ■zz 00 ■ΐ £0 'ΖΟΐ 6S9 "S ε9ΐ •Οΐ ss ΝΊΟ 03 6lf 士^ZZ ■ zz 00 ■ ΐ £ 0 'ΖΟΐ 6S9 "S ε9ΐ • Οΐ ss ΝΊΟ 03 6lf ^^
ZZ 00 •ΐ 90S ·80ΐ ΐ 8 ' 60ΐ •Οΐ £9 ΝΊΟ 33 S\ 士^ZZ 00 • ΐ 90S · 80ΐ ΐ 8 '60ΐ • Οΐ £ 9 ΝΊΟ 33 S
09 00 Ί SC9 ·80ΐ οζι ■f S "ΐΐ S9 N10 V3 Ll 士^09 00 Ί SC9 · 80ΐ οζι ■ f S "ΐΐ S9 N10 V3 Ll ^^
09 ' 00 •ΐ 898 ' Οΐ C88 ■ζ ΖΖ2 •Π £9 ΝΊΟ N 9lf 士^09 '00 • ΐ 898' Οΐ C88 ■ ζ ΖΖ2 • Π £ 9 ΝΊΟ N 9lf
ZZ ·ε 00 •ΐ 89 "ΖΟΙ εοο f l τι ZS NSV 0 S 士^ZZ ε 00 • ΐ 89 "ΖΟΙ εοο f l τι ZS NSV 0 S ^^
ZZ -z 00 •ΐ 89^ "ΖΟΐ ■ζ 869 τι Z9 NSV 3 l 士^ZZ -z 00 • ΐ 89 ^ "ΖΟΐ ■ ζ 869 τι Z9 NSV 3 l
91 •s 00 •ΐ ZLl Οΐ L •ε LfL NSV ZQH £l 士^e9eo/oodf/x3d l8ISZ,/00 OA 6S 91 • s 00 • ΐ ZLl Οΐ L • ε LfL NSV ZQH £ l £ ^ e9eo / oodf / x3d l8ISZ, / 00 OA 6S
S9 •09 00 'ΐ 6LZ 'ΖΟΐ 6SZ •ΐΐ- 009 'ZZ 09 HHS 00 OL 士^ S9 • 09 00 'ΐ 6LZ' ΖΟΐ 6SZ • ΐΐ-009 'ZZ 09 HHS 00 OL ^^
S9 •09 00 'ΐ Ζ16 "ΖΟΐ 6SS "Οΐ- ΟΐΟ 'ZZ 09 H3S eo 6 士^S9 • 09 00 'ΐ Ζ16 "ΖΟΐ 6SS" Οΐ- ΟΐΟ' ZZ 09 H3S eo 6men ^
00 •09 00 •ΐ 刚 'L01 16S •6 - 988 " 2 09 HHS V3 89 士^00 • 09 00 • ΐ 刚 'L01 16S • 6-988 "2 09 HHS V3 89 ^^
00 •09 00 Ί '901 Z9L •8 - 60ΐ 09 H3S N L9 士^ εε •Z9 00 'ΐ ΐ9ε '90ΐ 969 Ί- 9C6 -fz 6S 311 0 99 士^ εε 'Z9 00 "ΐ "901 8Ζ8 •ζ - 8ΐΖ 6S 311 3 99V 士^ ss ' 00 •ΐ
Figure imgf000061_0001
•ΟΟΐ ΐ ΐ •9 - Z 'ZZ 6S 311 ιαο 9 士^
00 • 09 00 Ί '901 Z9L • 8-60 ΐ 09 H3S N L9 ^ ^ εε -8ΐΖ 6S 311 3 99V ^^ ss '00 • ΐ
Figure imgf000061_0001
• ΟΟΐ ΐ ΐ • 9-Z 'ZZ 6S 311 ιαο 9 ^^
' 00 •ΐ '20ΐ £Ζ6 •S - 9\ ■zz 6S 311 103 士^ ss ' 00 ■ΐ 80S 'ΖΟΙ 0Ζ '8 - S6S 69 311 203 Z9V 士^ ss ' 00 'ΐ zoo ■εοι 088 •9- f 'ZZ 69 311 83 19 士 ¾ εε -sg 00 'ΐ ' 01 9C0 ' L- 608 'ZZ 6S 311 V3 09^ 士 cc 00 •ΐ LVO •SOI 6ΐΖ "9- 969 'ZZ 6S ΗΊΙ N 6 士^ εε •8S 00 •ΐ Ζ 6 •SOI Zfl •9 - 169 '02 89 MHS 0 S f 士^ εε •8S 00 •I SSZ •SOI S 'S - 619 -\z 83 H3S 3 L f 士^'00 • ΐ '20 ΐ £ Ζ6 • S-9 \ ■ zz 6S 311 103 ^^ ss '00 ■ ΐ 80S 'ΖΟΙ 0Ζ' 8-S6S 69 311 203 Z9V ^^ ss '00 'ΐ zoo ■ εοι 088 • 9 -f 'ZZ 69 311 83 19 ¾ εε -sg 00' ΐ '01 9C0' L- 608 'ZZ 6S 311 V3 09 ^ cc cc 00 • ΐ LVO • SOI 6ΐΖ "9-969' ZZ 6S ΗΊΙ N 6 ^ εε • 8S 00 • ΐ Ζ 6 • SOI Zfl • 9-169 '02 89 MHS 0 S f ^^ εε • 8S 00 • I SSZ • SOI S 'S-619-\ z 83 H3S 3 L f
19 00 •ΐ 019 ·80ΐ 0Ζ οετ 89 H3S 00 99^ 士^19 00 • ΐ 019 · 80ΐ 0Ζ οετ 89 H3S 00 99 ^
19 •^s 00 •ΐ 96ε 'ΖΟΐ 9LL ■ε - 609 'ZZ 8S MHS eo f 士^ εε •8S 00 •ΐ L8Z ·90ΐ 6 •ε - 9 ' 89 H3S V3 士 es '8S 00 'I 028 •901 899 'ε - 8^2 •OS 83 H3S N es^ 士¾19 • ^ s 00 • ΐ 96ε 'ΖΟΐ 9LL ■ ε-609' ZZ 8S MHS eof f ^ εε • 8S 00 • ΐ L8Z · 90ΐ 6 • ε-9 '89 H3S V3 es' 8S 00' I 028 • 901 899 'ε-8 ^ 2 • OS 83 H3S Nes ^
LZ S 00 Ί 668 "901 929 •I- VZ\ '02 ZS 311 0 士^LZ S 00 Ί 668 "901 929I-VZ \ '02 ZS 311 0
LZ "CS 00 •ΐ 6Z9 ·90ΐ ΙΖ - Z 9 •61 Ζ9 3Ή 3 士^LZ "CS 00 • ΐ 6Z9 · 90ΐ ΙΖ-Z 9 • 61 Ζ9 3Ή 3 ^^
'LZ 00 •ΐ 0ΐ8 "SOI ζεο - 399 •H 9 311 iao 0 士^ f 00 •ΐ 68 ·90ΐ ΐθΐ 'Z- 828 "91 ZS H1I TOO β 士^'LZ 00 • ΐ 0ΐ8 "SOI ζεο-399 • H 9 311 iao 0 ^^ f 00 • ΐ 68 · 90ΐ ΐθΐ' Z-828" 91 ZS H1I TOO β 士 ^
'ΐε 00 •ΐ οεε •goi Ζ19 ■ε - STZ Ί\ ZS 311 203 s 士 ¾'ΐε 00 • ΐ οεε • goi Ζ19 ■ ε-STZ Ί \ ZS 311 203 s ¾
•LZ 00 •ΐ TCI '90ΐ \Ζ£ ■ζ- S6I ' ΐ Ζ9 ΗΊΙ 93 i 士^• LZ 00 • ΐ TCI '90 ΐ \ Ζ £ ■ ζ- S6I 'ΐ Ζ9 ΗΊΙ 93 i
LZ 00 •ΐ ζ -ΖΟΐ 9S •2 - 892 •81 Ζ9 311 V3 9n 士^LZ 00 • ΐ ζ -ΖΟΐ 9S • 2-892 • 81 Ζ9 311 V3 9n
LZ "CS 00 •ΐ ΐΟ ·80ΐ 091 •ΐ- nz ■8ΐ Ζ9 311 N 士^LZ "CS 00 • ΐ ΐΟ · 80ΐ 091 • ΐ- nz ■ 8ΐ Ζ9 311 N
03 'L 00 'ΐ 068 ·60ΐ ειε 'Z- Άΐ 9S ΗΗ丄 0 士^03 'L 00' ΐ 068 · 60ΐ ειε 'Z- Άΐ 9S ΗΗ 丄 0 ^^
02 • ε 00 •ΐ LIZ '60ΐ •ΐ - 600 •81 9S 腿 3 ε 士^02 • ε 00 • ΐ LIZ '60 ΐ • ΐ-600 • 81 9S Thigh 3ε
LI ' 00 •ΐ 6 8 •ΐΐΐ Z9S •ΐ LL\ ·6ΐ 99 HH1 Z 3 士^ e9£0/00df/I3d Z8IS./00 OAV 09 LI '00 • ΐ 6 8 • ΐΐΐ Z9S • ΐ LL \ 6ΐ 99 HH1 Z 3 ^ e9 £ 0 / 00df / I3d Z8IS./00 OAV 09
18 '9Ζ 00 •ΐ £61 "96 6 0 '81- 299 S9 0HV ZM 66^ 士^ 18 '9Ζ 00 • ΐ £ 61 "96 6 0 '81-299 S9 0HV ZM 66 ^^^
18 •9 00 •ΐ 86, •96 SOC ' I- 0HV ΪΗΝ 86 士^18 • 900 • 86, • 96 SOC 'I-0HV ΪΗΝ86 ^^
18 "9Ζ 00 "ΐ Z L •96 0^9 'Ζΐ- 268 ΊΖ S9 0HV Z3 6^ 士^18 "9Ζ 00" ΐ Z L • 96 0 ^ 9 'Ζΐ- 268 ΊΖ S9 0HV Z3 6 ^
18 ·9Ζ 00 'ΐ 0S6 "Ζ6 Z • ι- 60^ 'ΖΖ S9 0HV 3N 9617 士^18 9 Ζ 00 'ΐ 0S6 "Ζ6 Z • ι-60 ^' ΖΖ S9 0HV 3N 9617 ^^
18 '9 00 -ΐ 0S0 •66 299 '9ΐ- 9^9 '\Ζ £9 oav CD S6^ 士^18 '9 00 -ΐ 0S0 • 66 299' 9ΐ- 9 ^ 9 '\ Ζ £ 9 oav CD S6 ^ ^
18 •9丄 00 •I 910 •001 0^6 ■SI- 909 'ΖΖ S9 03 6 士^18 • 9 丄 00 • I 910 • 001 0 ^ 6 ■ SI-909 'ΖΖ S9 03 6 士 ^
18 "9Ζ 00 •ΐ 820 "ΐθΐ fl£ •SI- Ζ62 ΊΖ 29 oav 93 S6 士^18 "9Ζ 00 • ΐ 820" ΐθΐ fl £ • SI- Ζ62 ΊΖ 29 oav 93 S6 ^^
00 'ΐ 'ΐθΐ 88L •ει- 169 ΊΖ S9 OHV V3 Z6 士^00 'ΐ' ΐθΐ 88L • ει- 169 ΊΖ S9 OHV V3 Z6 ^^
Η ρ 00 •ΐ 16^ 'ΙΟΐ SC •ει- ο VL 29 N 16 士^ o Ρ ρ 00 • ΐ 16 ^ 'ΙΟΐ SC • ει-ο VL 29 N 16 ^^ o
68 •19 00 •ΐ OSS •66 8 -ζι- 9 ο Ζ9 mo 0 06 士^ 68 • 19 00 • ΐ OSS • 66 8 -ζι- 9 ο Ζ9 mo 0 06 士 ^
68 •19 00 'ΐ ΖΖ9 •ΟΟΐ ■ζι- 8 'ΖΖ Ζ9 mo D 68 士^68 • 19 00 'ΐ ΖΖ9 • ΟΟΐ ■ ζι- 8' ΖΖ Ζ9 mo D 68 ^^
C9 •09 00 ΐ \Ζ2 'ΖΟΙ \Z Z£ '6Ζ Ζ9 mo S30 88 士^ ε9 •09 00 ΐ 88ΐ ■εοι 9 •LZ Ζ9 mo 130 L8 士^C9 • 09 00 ΐ \ Ζ2 'ΖΟΙ \ Z Z £' 6Ζ Ζ9 mo S30 88 ^^ ε9 • 09 00 ΐ 88ΐ ■ εοι 9 • LZ Ζ9 mo 130 L8 ^
•09 00 •ΐ 90S "20ΐ 9 ■21- SLZ '82 29 mo 03 9Sf 士^ ε9 •09 00 ■ΐ SS ΌΟΙ ο^ε •zi- 0丄 'LZ Ζ9 。 03 士• 09 00 • ΐ 90S "20ΐ 9 ■ 21- SLZ '82 29 mo 03 9Sf ^^ ε9 • 09 00 ■ ΐ SS ΌΟΙο ^ ε • zi-0 丄 'LZ Ζ9 .03 士
C9 '09 00 •ΐ ZL •001 9Π ■ει- 9Zf '9Ζ Ζ9 mo 93 士^C9 '09 00 • ΐ ZL • 001 9Π ■ ει-9Zf '9Ζ Ζ9 mo 93 ^^
68 ·ΐ9 00 •ΐ ΟΟΐ •ΐθΐ Ζ9Ζ
Figure imgf000062_0001
L Z Ζ9 mo VD 士^
68 ΐ9 00 • ΐ ΟΟΐ • ΐθΐ Ζ9Ζ
Figure imgf000062_0001
LZ Ζ9 mo VD ^^
68 •19 00 •ΐ 29S 'ΖΟΐ •21 - 0 f Ζ9 mo N ZSf 士^ οε "Ζ8 00 •ΐ 9ίΖ "C01 soc •ΐΐ- 009 Ζ 19 mo 0 \8 士^ οε 'Ζ8 00 'ϊ \L •εοι 196 •ΐΐ- 19 mo 3 08 士^ οε •88 00 ΐ HS Of ·9ΐ- 286 'fZ 19 mo C30 6Lf 士 οε •88 00 ΐ ΖΟΖ Οΐ Lf9 ■SI - Z8Z 19 mo 130 8lf 士^ οε •88 00 Ί 96ΐ Οΐ 69S '9ΐ- Z 19 m 03 ll 士^ οε •88 00 •ΐ 090 "SOT 00 ' I- ZZ6 19 03 9Lf 士^ οε '88 00 'ΐ 8ΐ 'SOT VOL 'Π - 611 19 mo 93 L 士^ οε ' 8 00 •ΐ 298 Οΐ IZ ■ζι- ZOl 19 mo V3 l\ 士^ οε 'Ζ8 00 "ΐ ZZL •SOI SSf 'ΐΐ- £Z - ζ 19 N ZL 士^68 • 19 00 • ΐ 29S 'ΖΟΐ • 21-0 f Ζ9 mo N ZSf ^^ οε "Ζ8 00 • ΐ 9ίΖ" C01 soc • ΐΐ- 009 Ζ 19 mo 0 \ 8 ^^ οε' Ζ8 00 'ϊ \ L • εοι 196 • ΐΐ- 19 mo 308 ^^ οε • 88 00 ΐ HS Of · 9ΐ- 286 'fZ 19 mo C30 6Lf εε • 88 00 ΐ ΖΟΖ Οΐ Lf9 ■ SI-Z8Z 19 mo 130 8lf ^^ οε • 88 00 Ί 96 ΐ Οΐ 69S '9ΐ- Z 19 m 03 ll ^^ οε • 88 00 mo 93 L ^^ οε '800 • ΐ 298 Οΐ IZ ■ ζι- ZOl 19 mo V3 l \ ^^ οε' Ζ8 00 "ΐ ZZL • SOI SSf 'ΐΐ- £ Z-ζ 19 N ZL ^^
00 •09 00 ■ΐ 9ΖΙ ·90ΐ 681 'Οΐ - 0S6 09 Has 0 ZL 士^00 • 09 00 ■ ΐ 9ΖΙ · 90ΐ 681 'Οΐ-0S6 09 Has 0 ZL ^^
00 •09 00 ■ΐ Ζ9Ζ ·90ΐ SZf •οι- 8ZZ ' 09 H3S 3 \L 士^ £9e0/00df/X3d Z81SI/00 O ¾屮 00 • 09 00 ■ ΐ Ζ9Ζ · 90ΐ SZf • οι-8ZZ '09 H3S 3 \ L ^^ £ 9e0 / 00df / X3d Z81SI / 00 O Subbed
¾屮  Subbed
r (\3 t t o o o o o o o o o o r (\ 3 t t o o o o o o o o o o o
00 ¾屮 ^ CO O CO —J an CO o <X) 00 ( i Cn oo o o ¾屮 2 o O 2: o O n D n o n o O o00 sub ^ CO O CO —J an CO o <X) 00 (i Cn oo o o sub 2 o O 2: o On D n o no o O o
O σ σ >  O σ σ>
Γ t i>o  Γ t i> o
1 「 「 「 ¾屮: - -< - 「 「 「 「 「 「 「 「 ^-3 > > 1 "" ": ::--<-" "" "" "" "^ -3>>
「 「 > > > > > > m m m m m m rn rc a: n: "">>>>>> M m m m m m rn rc a: n:
rn m m 「 「 「 「 「 「 「 c: c c a a  rn m m "" "" "" c: c c a a a
¾屮  Subbed
( i D ¾屮 n (i D sub n
Figure imgf000063_0001
Figure imgf000063_0001
¾屮  Subbed
¾屮 L C C D H O 00 00 00 00  Public L C C D H O 00 00 00 00
00 • ) Oi ¾屮 CD C 00 l> [N3 cn 00 o CO CD - 1 cn ' [NO f C ,  00 •) Oi sub CD C 00 l> [N3 cn 00 o CO CD-1 cn '[NO f C,
00 o o 00 4^ 00 o OI n o O CO CD 4^ o OI  00 o o 00 4 ^ 00 o OI n o O CO CD 4 ^ o OI
¾屮 1 1  Subbed 1 1
t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Ί 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Ί 1
l r n r n t CO O l r n r n t CO O
CO ΟΊ cn 4^ ¾屮 cn oCO ΟΊ cn 4 ^ sub cn o
CO CO 00 o cn
Figure imgf000063_0002
CO CO 00 o cn
Figure imgf000063_0002
o o o o o o o o o o O o o O o o o o o o o o o o O o o o o o o o o o o o o o O o o O o o o o o o o o o o O o o o o
C CD 00 00 o CO r t cn cn CO t t an 00 cn n t to CD tsD to oo 00 to CO O CT) cn an  C CD 00 00 o CO r t cn cn CO t t an 00 cn n t to CD tsD to oo 00 to CO O CT) cn an
00 t o o n O cn 00 D - ] O cn 00 o  00 t o o n O cn 00 D-] O cn 00 o
-J ^ 00 ^ oo CO 00 cyi 00 CO CO t> cn CD ai 00 o o O o o O o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 钿屮 o o o o o o o o o o o o o t r to CO O O oo O oo oo oo O CO O o oo  -J ^ 00 ^ oo CO 00 cyi 00 CO CO t> cn CD ai 00 o o O o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o t r to CO O O oo O oooooo
ΪΝ3 [\3 t (NO CD CO to o o t < 5 O ΪΝ3 [\ 3 t (NO CD CO to o o t <5 O
00 00 00 cn 00 00 -J CO 00 o O ΟΊ CO CO 00 00 00 cn 00 00 -J CO 00 o O ΟΊ CO CO
ai ^ ^ cn CD O cn an 4^ ^  ai ^ ^ cn CD O cn an 4 ^ ^
¾屮 Subbed
¾屮  Subbed
¾屮  Subbed
¾屮  Subbed
¾屮  Subbed
钿屮  Subbed
¾屮  Subbed
¾屮  Subbed
¾屮  Subbed
¾屮 4 4Subbed 4 4
Figure imgf000064_0001
Figure imgf000064_0001
Mountain
o o o o : n o O σ rn σ > ca > o m σ o o o o: n o O σ rn σ> ca> o m σ
「 「 「 「 「 「 「 「 「  "" "" "" "" "
i—— i——
T5 o o O o o o o 00 -n T5 o o O o o o o 00 -n
--a a^> σ> --a a ^> σ>
o o o o  o o o o
o o o o o o
o o
o o O o n o  o o O o no
o σ  o σ
o o o o o o o o o o o o o o o o O o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oooooooooooooooo ooooooo ooooooooooooooooooooooo ooooooooooooooooo
C9 C9
8Z 'ΐ 00 •ΐ 016 ■ 11 L8f •ε - 069 "Z 1VA vo 98S 士^ 8Z 'ΐ 00 • ΐ 016 ■ 11 L8f • ε-069 "Z 1VA vo 98S ^^
8 ' 00 •ΐ Ζ9£ 'Ζΐΐ £69 •ε- 168 Ί L 1VA N 98S 士^8 '00 • ΐ Ζ9 £' Ζΐΐ £ 69 • ε-168 Ί L 1VA N 98S
S '9G 00 •ΐ 0SZ • π 9 L - - 900 •9 11 H3S 0 1^89 士^S '9G 00 • ΐ 0SZ • π 9 L--900 • 9 11 H3S 0 1 ^ 89 ^^
8 ·9ε 00 •ΐ esi '8ΐΐ 903 ' - οεο Ί Zl H3S 3 C8S 士^8 9ε 00 • ΐ esi '8ΐΐ 903'-οεο Ί Zl H3S 3 C8S ^^
19 00 •ΐ ·6ΐΙ 0 •2 - 88Ζ •9 L HHS 00 C8S 士^19 00 • ΐ · 6ΐΙ 0 • 2-88Ζ • 9 L HHS 00 C8S ^^
IS '6 00 •ΐ εο ■QZI 92S •ε - 10 •9 ZL H3S 8D I8S 士¾IS '6 00 • ΐ εο ■ QZI 92S • ε-10 • 9 ZL H3S 8D I8S
8 ·9ε 00 •ΐ 129 ·6ΐΐ ζιζ 'ト 06ε "Z ZL aas V3 089 士^8 · 9ε 00 • ΐ 129 · 6ΐΐ ζιζ 'G 06ε "Z ZL aas V3 089 ^^
8 00 •ΐ Ϊ8 ·6ΐΐ 6ΐΖ •ε - 6SZ ■8 εζ H3S N 6ZS 士^8 00 • ΐ Ϊ8 · 6ΐΐ 6ΐΖ • ε-6SZ ■ 8 εζ H3S N 6ZS ^^
Lf ■ζ 00 •ΐ 8 ΐ '6ΐΙ 069 's - 009 •6 ZL SAT 0 8Z9 士^ l 00 •ΐ 91S ·6ΐΐ 0S9 ML "6 ZL SAT 3 ZS 士^Lf ■ ζ 00 • ΐ 8 ΐ '6ΐΙ 069' s-009 • 6 ZL SAT 0 8Z9 士 ^ l 00 • ΐ 91S · 6ΐΐ 0S9 ML "6 ZL SAT 3 ZS 士 ^
Z\ 00 •ΐ LZ9 ·6ΐΙ 891 'ト ■91 ZL S入 Ί ZN 9Z9 士^ ίZ \ 00 • ΐ LZ9 · 6ΐΙ 891 'G ■ 91 ZL S Ί ZN 9Z9 ^^ ί
£\ ■\ 00 •ΐ 018 ·8Π Ζ ■ - ο 'SI ZL S入 Ί 33 S S 士^£ \ ■ \ 00 • ΐ 018 · 8Π Ζ ■-ο 'SI ZL S Ί 33 S S ^^
£\ '\\ 00 •I 00S '6ΐΐ 6Ζ0 •S - 'CI ZL SAT ( 士^£ \ '\\ 00 • I 00S' 6ΐΐ 6Ζ0 • S-'CI ZL SAT (^^
SI ·\\ 00 •ΐ III •021 L 'ト •ει ZL S人 Ί 03 ZS 士^ ει 00 •I 1 % Ό2Ι 0S9 'ト 206 'ΐΐ ZL SAT eo ZL 士^SI \\ 00 • ΐ III • 021 L 't • ει ZL S person Ί 03 ZS person ^ ει 00 • I 1% Ό2Ι 0S9' to 206 'ΐΐ ZL SAT eo ZL person ^
L 'ZV 00 •ΐ 199 '6ΐΐ 066 •ε - 06ΐ •ΐΐ ZL SAT V3 IZ9 士^L 'ZV 00 • ΐ 199' 6ΐΐ 066 • ε-06ΐ • ΐΐ ZL SAT V3 IZ9 ^^
L ■ζ 00 ■ΐ \ ι ·6ΐΐ ess •Ζ - T9G 'ΐΐ ZL SAT N 0Z9 士^L ■ ζ 00 ■ ΐ \ ι · 6ΐΐ ess • Ζ-T9G 'ΐΐ ZL SAT N 0Z9 士 ^
Z9 ·8ε 00 •ΐ ZL6 ' Π Zfl •2 - ζεο •Οΐ \L dSV 0 699 士^Z9 · 8ε 00 • ΐ ZL6 'Π Zfl • 2-ζεο • Οΐ \ L dSV 0 699 ^^
Z9 •82 00 'ΐ 698 ·8ΐΐ L •ΐ- S8 •Οΐ IL dSV 3 899 士^Z9 • 82 00 'ΐ 698 · 8ΐΐ L • ΐ- S8 • Οΐ IL dSV 3 899 ^^
S6 00 'ΐ '6ΐΐ L\ •ΐ L •L \L dSV ZQO i99 士^S6 00 'ΐ' 6ΐΐ L \ ΐΐ L • L \ L dSV ZQO i99 ^^
96 •εε 00 "ΐ 980 "02ΐ I L •0 - 09 •8 \L dSV ιαο 99S 士^96 • εε 00 "ΐ 980" 02ΐ I L • 0-09 • 8 \ L dSV ιαο 99S 士 ^
S6 'SC 00 •ΐ 9ε ·6ΐΐ zzz •0 99 •8 \L dSV 03 99S 士^S6 'SC 00 • ΐ 9ε · 6ΐΐ zzz • 0 99 • 8 \ L dSV 03 99S
S6 •εε 00 •I 89 '8ΐΐ 089 •0 Ζ68 '6 \L dSV 83 9 士^S6 • εε 00 • I 89 '8ΐΐ 089 • 0 Ζ68' 6 \ L dSV 83 9 ^^
29 ■8ε 00 "ΐ 9S0 '6ΐΐ Z2Z •0 - L60 •Π \L dSV V3 C99 士^29 ■ 8ε 00 "ΐ 9S0 '6ΐΐ Z2Z • 0-L60 • Π \ L dSV V3 C99
Z9 ■8ε 00 •I ί^βΐ ■8ΐΐ 810 ■0 632 ΐ \L dSV N Z9 士^Z9 ■ 8ε 00 • I ί ^ βΐ ■ 8ΐΐ 810 ■ 0 632 ΐ \ L dSV N Z9
\Z 00 ■ΐ εΐ6 ·6ΐΐ no •0 069 •ει OL dHI 0 199 士^
Figure imgf000065_0001
•εΐ OZ dHl D 09S 士^
\ Z 00 ■ ΐ εΐ6 · 6ΐΐ no • 0 069 • ει OL dHI 0 199 ^^
Figure imgf000065_0001
• εΐ OZ dHl D 09S 士 ^
81 00 •ΐ εοο -9ΐΐ Z8S 9LZ "Ιΐ OL dHl ZWd 6S9 -81 00 • ΐ εοο -9ΐΐ Z8S 9LZ "Ιΐ OL dHl ZWd 6S9-
81 00 6Ζ£ ·9ΐΐ L\ •π OZ dHl GZO 89S 士^ £9£0/00df/X3<I 〇 81 00 6Ζ £ 9ΐΐ L \ ππ OZ dHl GZO 89S ^^ 9 £ 0 / 00df / X3 <I 〇
、― > ,->
o o o LO o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o
Figure imgf000066_0001
ooo LO ooooooooo O ooooooooooooooooooooo ooooooo O ooooooooooooooooooo
Figure imgf000066_0001
o o o ■X) o o o o o o  o o o ■ X) o o o o o o
o o o r— o o  o o o r— o o
c o-* oo σ> o o o  c o- * oo σ> o o o
oo en co <s\ (Si o o  oo en co <s \ (Si o o
o O o o o  o O o o o
o  o
o-
Figure imgf000066_0002
o-
Figure imgf000066_0002
O Q O < Q Q < o o 乙 o o o o o (Ji o  O Q O <Q Q <o o Otsu o o o o o (Ji o
σ¾ c > σι o o o o o o o o o o 屮 rf 屮 屮 rf 屮 屮 屮 rf 屮 屮 rf 屮 rf 屮 十 rf rf 屮 屮 屮 t m m σ¾ c> σι oooooooooo sssssssssssssssssssssssssssss
原子 616 CB ILE 78 8.501 -6.146 110.753 1.00 31.39 原子 617 CG2 Iし E 78 9. 240 -6. 525 109. 478 1. 00 31. 39 原子 618 CG1 E 78 8. 773 - 4. 691 111. 153 1. 00 31. 39 原子 619 CD1 E 78 10. 212 -4. 413 111. 518 1. 00 31. 39 原子 620 C Iし E 78 6. 779 -7. 774 110. 031 1. 00 38. 16 原子 621 0 ILE 78 6. 590 - 7. 985 108. 833 1. 00 38. 16 原子 622 N Gし U 79 6. 802 - 8. 737 110. 942 1. 00 34. 51 原子 623 CA GLU 79 6. 618 -10. 136 110. 599 1. 00 34. 51 原子 624 CB GLU 79 6. 802 -10. 982 111. 857 1. 00 43. 51 原子 625 CG GLU 79 6. 587 -12. 471 111. 665 1. 00 43. 51 原子 626 CD GLU 79 6. 869 -13. 261 112. 931 1. 00 43. 51 原子 627 0E1 Gし U 79 6. 782 -14. 505 112. 889 1 00 43. 51 原子 628 0E2 GLU 79 7. 178 - 12. 642 113. 972 1 00 43. 51 原子 629 C GLU 79 5. 243 -10. 387 109. 987 1. 00 34. 51 原子 630 0 GLU 79 5. 115 -11. 058 108. 961 1. 00 34. 51 原子 631 N LYS 80 4. 215 -9. 846 110. 625 1. 00 41. 03 原子 632 CA し YS 80 2. 845 -9. 994 110. 153 1. 00 41. 03 原子 633 CB LYS 80 1. 905 - 9. 247 111. 090 1. 00 63. 82 原子 634 CG LYS 80 0. 758 -10. 055 111. 630 1. 00 63. 82 原子 635 CD LYS 80 1. 056 -10. 548 113. 035 1. 00 63. 82 原子 636 CE し YS 80 - 0. 230 -10. 873 113. 785 1. 00 63. 82 原子 637 NZ し YS 80 0. 064 -11. 206 115. 204 1. 00 63. 82 原子 638 C し YS 80 2. 695 - 9. 401 108. 753 1. 00 41. 03 原子 639 0 し YS 80 2. 128 -10. 022 107. 847 1. 00 41. 03 原子 640 N Aし A 81 3. 198 - 8. 177 108. 601 1. 00 39. 91 原子 641 CA ALA 81 3. 131 -7. 437 107. 351 1. 00 39. 91 原子 642 CB ALA 81 3. 738 - 6. 065 107. 535 1. 00 28. 92 原子 643 C ALA 81 3. 831 - 8. 161 106. 216 1. 00 39. 91 原子 644 0 Aし A 81 3. 358 -8. 145 105. 077 1. 00 39. 91 ; Atom 616 CB ILE 78 8.501 -6.146 110.753 1.00 31.39 Atom 617 CG2 I E 78 9.240 -6.525 109.478 1.00 31.39 Atom 618 CG1 E 78 8.773-4.691 111.153 1 00 31.39 atom 619 CD1 E 78 10.212 -4.413 111.518 1.00 31.39 atom 620 CI then E 78 6.779 -7.774 110.031 1.00 38.16 atom 621 0 ILE 78 6.590-7.985 108.833 1.00 38.16 atoms 622 NG and U 79 6.802-8.737 110.942 1.00 34.51 atoms 623 CA GLU 79 6.618- 10.136 110.599 1.00 34.51 atom 624 CB GLU 79 6.802 -10.982 111.857 1.00 43.51 atom 625 CG GLU 79 6.587 -12.471 111.665 1. 00 43.51 atom 626 CD GLU 79 6.869 -13.261 112.931 1.00 43.51 atom 627 0E1 G then U 79 6.782 -14.505 112.889 1 00 43.51 atom 628 0E2 GLU 79 7.178-12.642 113.972 1 00 43.51 atoms 629 C GLU 79 5.243 -10. 387 109. 987 1.00 34.51 atoms 630 0 GLU 79 5.115 -11.058 108.961 1.00 34.51 atoms 631 N LYS 80 4.215 -9.846 110.625 1.00 41.03 atoms 632 CA and YS 80 2.845 -9.994 110.153 1.00 41 . 03 Atom 633 CB LYS 80 1.905-9.247 111. 090 1.00 63.82 Atom 634 CG LYS 80 0.758 -10. 055 111.630 1.00 63.82 Atom 635 CD LYS 80 1.056 -10.548 113.035 1.00 63.82 atom 636 CE and YS 80-0.230 -10.873 113.785 1.00 63.82 atom 637 NZ and YS 80 0.064 -11.206 115 204 1.00 63.82 atom 638 C and YS 80 2.695-9.401 108.753 1.00 41.03 atom 639 0 and YS 80 2.128 -10.022 107.847 1.00 41 03 atom 640 NA and A 81 3.198-8.177 108.601 1.00 39.91 atom 641 CA ALA 81 3.131 -7.437 107.351 1.00 39.91 atom 642 CB ALA 81 3. 738-6.065 107.535 1.00 28.92 atoms 643 C ALA 81 3.831-8.161 106.216 1.00 39.91 atoms 644 0 A then A 81 3.358 -8. 145 105. 077 1.00 39. 91 ;
¾ ¾  ¾ ¾
ASP 600 44, j, 屮 [, 屮 4 4j j, 屮 4 lj * 屮、 4、 44 4j、 4 I、 屮 屮 屮 屮 屮 屮 屮 屮 屮
Figure imgf000068_0001
ASP 600 44, j, bur [, bur 4 4j j, bur 4 lj * bur, 4, 444 j, 4 I, bur bur
Figure imgf000068_0001
ο o o o o  ο o o o o
> > O > o CD CD > >> O> o CD CD>
Figure imgf000068_0002
Figure imgf000068_0002
00 00 00 00 CO 00 CO CO 00 00 00 00 00 00 00 CO 00 00 00 CO 00 00 CO οο CO 00 00 n n Oi cn ^ ^ ^ c CO O 0J CO t C O C t 00 00 00 00 CO 00 CO CO 00 00 00 00 00 00 00 CO 00 00 00 CO 00 00 CO οCO 00 00 n n Oi cn ^ ^ ^ c CO O 0J CO t C O C t
1
Figure imgf000068_0003
1
Figure imgf000068_0003
i 1 1 1  i 1 1 1
1 1 1 1 1 o o D 00 O o o oo o oo 00 O ■ ) 00 1 1 1 1 1 o o D 00 O o o oo o oo 00 O ■) 00
00 c ^ o cn o O 00 00 Ul 00 c ^ o cn o O 00 00 Ul
00 o o CO co o 00 o cn 00 cn ^ ^ 00 00 o 00 o o CO co o 00 o cn 00 cn ^ ^ 00 00 o
O o o o o o O o O O o o o o o o o o o O o O o o o o o OO o o o o o O o O O o o o o o o o o o O O O o o o o o o O
00 o o t— * CO t\D D -J n O ai cn n O) 00 o o t— * CO t \ D D -J n O ai cn n O)
00 00 O O o oo o O o o o -J O O Ol O Ul t 00 O o cn O 00 00 σι 00 o Ol ^ Ol  00 00 O O o oo o O o o o -J O O Ol O Ul t 00 O o cn O 00 00 σι 00 o Ol ^ Ol
00 o > D o CD cn cn t CO cn O o σ> o o o o o O o o O O o o o o o o o o o o O o o o O O o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o cn cn CO C CO CO CO 00 CO o CO CO CO CO o 00 o> D o CD cn cn t CO cn O o σ> o o o o o O o o O O o o o o o o o o o o O o o o O O o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o cn cn CO C CO CO CO 00 CO o CO CO CO CO o
Ul cn -4 -J co CO o CO 4^ Ul cn -4 -J co CO o CO 4 ^
o O Cn cn O o cn oo o co CO oo OJ OJ co CO 00 00 00 00 o o o o IN0 C t to cn n cn cn cn m cn cn o O Cn cn O o cn oo o co CO oo OJ OJ co CO 00 00 00 00 oooo IN0 C t to cn n cn cn cn m cn cn
Z9 Z9
6ε 00 ■I 289 '90ΐ "Ζΐ- GZ6 •6 06 NSV 83 ΖΟί 士^ 6ε 00 ■ I 289 '90 ΐ "Ζΐ- GZ6 • 6 06 NSV 83 士士 ^
91 ■zz 00 •I 98S ■901 \ιι •6 06 NSV V3 ΐΟΖ 士^ L ■Z£ 00 •ΐ LZ ■ οι 89C "9ΐ- S8I •01 06 NSV N 00 士^91 ■ zz 00 • I 98S ■ 901 \ ιι • 6 06 NSV V3 士 ^^ L ■ Z £ 00 • ΐ LZ ■ οι 89C "9ΐ-S8I • 01 06 NSV N 00 ^^
09 '98 00 •ΐ Ζら L "CO! 9 981 •8 68 Π3Ί 0 669 士^09 '98 00 • ΐPala L “CO! 9 981 • 8 68 Π3Ί 0 669 ^^
09 •9S 00 •ΐ ιι •εοΐ OZL ■Η- •6 68 Π3Ί 3 869 士^09 • 9S 00 • ΐ ιι • εοΐ OZL ■ Η- • 6 68 Π3Ί 3 869 ^
00 'I 00 ' 'ΐ 'ΟΟΐ ιζζ ■ει - 6SS 'Ζ\ 68 Ω31 zao 69 士^00 'I 00' 'ΐ' ΟΟΐ ιζζ ■ ει-6SS 'Ζ \ 68 Ω31 zao 69 ^^
00 ' 00 ' Ί ζιζ 'ΐΟΙ 966 ■Οΐ - "Π 68 ΠΗΊ 969 士^00 '00' Ί ζιζ 'ΐΟΙ 966 ■ Οΐ-"Π 68 ΠΗΊ 969 ^^
00 00 •ΐ εεο 'ΐθΐ ζ Ι- •Π 68 ΠΗΊ 03 S69 士^00 00 • ΐ εεο 'ΐθΐ ζ Ι- • Π 68 ΠΗΊ 03 S69 ^^
00 士^00 warrior ^
09 •
Figure imgf000069_0001
92 00 •ΐ εοε 'Η- Ζ06 ■6 68 nm V3 £69 士^
09 •
Figure imgf000069_0001
92 00 • ΐ εοε 'Η- Ζ06 ■ 6 68 nm V3 £ 69 ^^
09 '9S 00 ■ΐ 8ει 'ΐθΐ 6ΐε •Η- 8 8 •8 68 Π3Ί N Ζ69 士^09 '9S 00 ■ ΐ 8ει' ΐθΐ 6ΐε • Η- 8 8 • 8 68 Π3Ί N Ζ69 ^^
LI ■6ε 00 •ΐ Ot' •66 εεζ "9ΐ- S06 •6 88 入 ID 0 169 士^LI ■ 6ε 00 • ΐ Ot '• 66 εεζ "9ΐ-S06 • 6 88 Enter ID 0 169 ^^
LL ■6ε 00 'ΐ 8Ζ0 •ΟΟΐ 9^0 "3ΐ- fZ6 •8 88 Π。 3 069 士^LL ■ 6ε 00 'ΐ 8Ζ0 • ΟΟΐ 9 ^ 0 "3ΐ- fZ6 • 8 88 Π. 3 069 ^^
11 "62 00 •ΐ 60 ΐ ■66 TS6 •Η- ZZL "Ζ 88 人 1。 V3 689 士^11 "62 00 • ΐ 60 ΐ ■ 66 TS6 • Η-ZZL“ Ζ 88 people1. V3 689 ^^
LL ·6ε 00 •ΐ 9 ΐ •66 88S •ει- ΖΖΖ ' L 88 ΑΊΟ N 889 士 ¾ zo 00 'ΐ 96 ·Ζ6 Ζ18 'Ζ\- Ζ96 ·8 Ζ8 Π3Ί 0 89 士^ zo •0, 00 •ΐ 96S •86 Ζ\9 'Ζ\- Z6 'L Ζ8 Π3Ί 3 989 士^ v\ 00 •ΐ SI8 '86 8 ε ■8 - 9 f •8 Ζ8 Ω31 ZQ3 S89 士^ u 00 •I Ηε •ΐθΐ Ζ1 •8- 6 S •8 8 nai IQ3 89 士^LL · 6ε 00 • ΐ 9 ΐ • 66 88S • ει- ΖΖΖ 'L 88 ΑΊΟ N 889 ¾ zo 00' ΐ 96 · Ζ6 Ζ18 'Ζ \-Ζ96 · 8 Ζ8 Π3Ί 0 89 ^^ zo • 0, 00 • ΐ 96S • 86 Ζ \ 9 'Ζ \-Z6' L Ζ8 Π3Ί 3 989 ^^ v \ 00 • ΐ SI8 '86 8 ε ■ 8-9 f • 8 Ζ8 Ω31 ZQ3 S89 ^^ u 00 • I Ηε • ΐθΐ Ζ1 • 8- 6 S • 8 8 nai IQ3 89 ^^
H τ 00 •ΐ •001 6ΐ0 •6- 98 'L 8 03 S89 士^H τ 00 • ΐ • 001 6ΐ0 • 6-98 'L 8 03 S89 ^^
00 •ΐ •66 82S •01- 990 •8 8 ΠΗΊ 83 ZS9 士^00 • ΐ • 66 82S • 01-990 • 8 8 ΠΗΊ 83 ZS9 士 ^
ZO 00 ■ΐ \\ι '86 ι ζ 'ΐΐ- 89S 'L Ζ8 Π3Ί V3 189 士^ZO 00 ■ ΐ \\ ι '86 ι ζ 'ΐΐ- 89S' L Ζ8 Π3Ί V3 189 ^^
ZO 00 •ΐ 688 •86
Figure imgf000069_0002
•ΐΐ- 916 •S Ζ8 Π31 N 089 士^
ZO 00 • ΐ 688 • 86
Figure imgf000069_0002
• ΐΐ-916 • S Ζ8 Π31 N 089 ^^
01 'SS 00 'ΐ \Ζ6 •96 9ετ 'ΖΙ- Z6f •g 98 dSV 0 6Ζ9 士^01 'SS 00' ΐ \ Ζ6 • 96 9ετ 'ΖΙ- Z6f • g 98 dSV 0 6Ζ9 ^^
01 ■ss 00 •ΐ 996 ■16 C6S •π- G60 "9 98 dSV 3 8Ζ9 士^01 ■ ss 00 • ΐ 996 ■ 16 C6S • π-G60 "9 98 dSV 3 8Ζ9 ^^
19 ■99 00 •ΐ ηζ '56 89^ •6 - Lf9 'Ζ 98 dSV ZQO LL9 士^19 ■ 99 00 • ΐ ηζ '56 89 ^ • 6-Lf9 'Ζ 98 dSV ZQO LL9 ^^
19 '99 00 'I 8 •96 6ΐΐ •6 - 801 · 98 dSV ταο 9Ζ9 士^19 '99 00 'I 8 • 96 6ΐΐ • 6-80198 dSV ταο 9Ζ9 ^^
19 •99 00 ■ΐ Ζ6Ζ •96 ΙΖ8 •6- ΖΖΖ •ε 98 dSV 03 9Ζ9 士^19 • 99 00 ■ ΐ Ζ6Ζ • 96 ΙΖ8 • 6-ΖΖΖ • ε 98 dSV 03 9Ζ9 ^^
19 -99 00 •ΐ εΐβ •96 69ΐ •ΐΐ— 998 •τ 98 dSV 93 9 士^ e9£0/00df/IDd Z8ISZ./00 OAV. 89 19 -99 00 • ΐ εΐβ • 96 69ΐ • ΐΐ— 998 • τ 98 dSV 93 9 ^^ e9 £ 0 / 00df / IDd Z8ISZ./00 OAV. 89
98 ' 00 •ΐ S66 'SH ll 'ετ- 991 •Η 6 dSV N τεζ 士^ 98 '00 • ΐ S66' SH ll 'ετ- 991 • Η 6 dSV N τεζ ^^
98 00 'ΐ \Ζ£ ■9ΐΐ 069 • - 8S9 'Ζ\ £6 NSV 0 ocz 士^98 00 'ΐ \ Ζ £ ■ 9ΐΐ 069 •-8S9' Ζ \ £ 6 NSV 0 ocz ^^
98 -ζε 00 Ί 899 "9ΐΐ 09 •ει- SIO ■ει Ζ6 NSV 3 ら ZL 士^ ιζ •92 00 •ΐ 6S0 ·9ΐΐ ΐ •π - 9Z •6 £6 NSV 環 SZL -t ιε '92 00 Ί 28^ ·9Π on 'π- LZ9 •ΐΐ Ζ6 NSV ταο LZL 士^98 -ζε 00 Ί 899 "9ΐΐ 09 • ει- SIO ■ ει Ζ6 NSV 3 et ZL ^^ 92ζ 28 ^ · 9Π on 'π- LZ9 • ΐΐ Ζ6 NSV ταο LZL 士 ^
IC '9Ζ 00 938 ■sn 8 •π- 099 •Οΐ S6 SV 03 9ZL 士^ τε '9Ζ 00 ■I 刚 L 6 •ΖΪ- 8ΐ8 •Οΐ S6 NSV 93 ZL 士: iIC '9Ζ 00 938 ■ sn 8 • π-099 • Οΐ S6 SV03 9ZL ^ τε' 9Ζ 00 ■ I 刚 L 6 • ΖΪ- 8ΐ8 • Οΐ S6 NSV 93 ZL: i
98 ' C 00 'ΐ I • ΐ ZZ '2ΐ- LZ •Ζΐ S6 NSV V3 Zl 士98 'C 00' ΐ I • ΐ ZZ '2ΐ- LZ • Ζΐ S6 NSV V3 Zl
98 'LZ 00 •I L Z •επ 601 •^ΐ- 162 'Ζ\ S6 NSV N ZZL 士^98 'LZ 00 • I L Z • επ 601 • ^ ΐ- 162' Ζ \ S6 NSV N ZZL ^^
·6ε 00 'ΐ L\Z ·2Π OOZ 'CT- ΐΐ Ζ6 311 0 ZZL 士^· 6ε 00 'ΐ L \ Z · 2Π OOZ' CT- ΐΐ 36 311 0 ZZL ^^
■6ε 00 'ΐ £ZZ '2Π 910 •Η- 661 •π Ζ6 311 3 IZL 士^■ 6ε 00 'ΐ £ ZZ' 2Π 910 • Η- 661 • π Ζ6 311 3 IZL
ZL •OS 00 •I 668 ·80ΐ 829 ·9ΐ - OZL "3ΐ Ζ6 H1I ταο OZL 士^ZL • OS 00 • I 668 · 80ΐ 829 · 9ΐ-OZL "3ΐ Ζ6 H1I ταο OZL ^^
ZL •οε 00 ■I 0 '60ΐ 932 ■9ΐ - •Η Ζ6 3TI 103 6 士^ZL • οε 00 ■ I 0 '60 ΐ 932 ■ 9ΐ-• Η 36 3TI 103 6 ^^
ZL •οε 00 ,ΐ 'ΐΐΐ 8ΐε ·9ΐ- •SI Ζ6 311 zoo 8U 士^ZL • οε 00, ΐ 'ΐΐΐ 8ΐε · 9ΐ- • SI Ζ6 311 zoo 8U 士 ^
ZL •OS 00 •ΐ 9εζ •Οΐΐ 'ST- Ζ6 H1I 93 L\L 士^ZL • OS 00 • ΐ 9εζ • Οΐΐ 'ST- Ζ6 H1I 93 L \ L ^^
·6ε 00 •ΐ 9ST •III 886 ΐ- 090 •εΐ Ζ6 311 V3 9ΪΖ 士^ \ '6C 00 •ΐ 660 ■Οΐΐ fZZ • - 90 Ζ6 311 N SIZ 士^ z ■gs 00 •I •οπ 829 •SI- LL9 •Οΐ 16 OMd 0 \L 士^ z 00 •ΐ ΙΖ9 •601 ΐ- Ζ\Ζ •ΐΐ 16 OHd ZIL 士^ zz ■9Z 00 'ΐ 668 ·80ΐ •ει- 6εε •8 16 OHd 03 Z\L 士^ zz 00 'ΐ 880 ·60ΐ 0Z9 "21- A6S "6 16 OHd 93 UL 士^· 6ε 00 • ΐ 9ST • III 886 ΐ-090 • εΐ Ζ6 311 V3 9ΪΖ ^^ \ '6C 00 • ΐ 660 ■ Οΐΐ fZZ • -90 Ζ6 311 N SIZ ^^ z ■ gs 00 • I • οπ 829 • SI -LL9 • Οΐ 16 OMd 0 \ L ^ 00 • 00 ΙΖ9 • 601 ΐ- Ζ \ Ζ • ΐΐ 16 OHd ZIL 士 ^ zz ■ 9Z 00 'ΐ 668 · 80ΐ • ει-6εε • 8 16 OHd 03 Z \ L person ^ zz 00 'ΐ 880 · 60ΐ 0Z9 "21-A6S" 616 OHd 93 UL person ^
•gc 00 •ΐ ε S ·80ΐ 0Z9 •ει- Ζ99 •01 16 OMd VO OIL 士^• gc 00 • ΐ ε S · 80ΐ 0Z9 • ει- Ζ99 • 01 16 OMd VO OIL ^^
'92 00 "ΐ 17Ϊ "ΖΟΐ ZIO 209 •8 16 OHd Qd 60 士^ z -9C 00 •ΐ " Οΐ οεε · ΐ - •6 16 OHd N 80Z 士 L 'ZG 00 'ΐ ιεζ ·90ΐ •SI- 08 •ΐΐ 06 NSV 0 OZ 士^ L ■zz 00 •ΐ 199 "901 lf\ "SI- Ε69 •Οΐ 06 NSV 3 90 士^'92 00 "ΐ 17Ϊ" ΖΟΐ ZIO 209 • 8 16 OHd Qd 60 ^^ z -9C 00 • ΐ "Οΐοεε · ΐ-• 6 16 OHd N 80Z L L 'ZG 00' ΐ ιεζ · 90ΐ • SI-08 • ΐΐ06 NSV 0 OZ ^ L ■ zz 00 • ΐ199 “901 lf \” SI-Ε69 • Οΐ 06 NSV 3 90 ^
6S " ε 00 •ΐ 0Ζ9 •εοΐ ΪΖ9 ·8ΐ- 9 1 •6 06 NSV 90Z 士^6S "ε 00 • ΐ 0Ζ9 • εοΐ ΪΖ9 · 8ΐ- 9 1 • 6 06 NSV 90Z ^^
6S -ζε 00 •I εΐ8 0ΐ 9ΖΪ ·8ΐ - Ζ06 Ί 06 NSV ιαο 0 士^6S -ζε 00 • I εΐ8 0ΐ 9ΖΪ · 8ΐ-Ζ06 Ί 06 NSV ιαο 0 士 ^
6S •ζε 00 •ΐ 289 ' Οΐ Οΐ ·8ΐ— SZl •6 06 NSV 03 εο 士^ £9£0/00df/lDd Z8XSZ./00 OAV 19•8£ 00•I ζζζ "ΐΐΐ 80•6 - 9S6 ·2ΐ 86 eo 09 士^6S • ζε 00 • ΐ 289 'Οΐ Οΐ · 8ΐ— SZl • 6 06 NSV 03 εο 士 ^ £ 9 £ 0 / 00df / lDd Z8XSZ./00 OAV 19 • 8 £ 00 • I ζζζ "ΐΐΐ 80 • 6-9S6 2ΐ 86 eo 09 ^^
Zf 'LZ 00 "ΐ 'ΐΐΐ ZLL '6 - O Z • 86 mi V3 6 L 士^Zf 'LZ 00 "ΐ' ΐΐΐ ZLL '6-O Z • 86 mi V3 6 L
£ •IX 00 •ΐ ·2ΐΐ 826 •8 - seo •SI 86 311 N 89Z 士^£ • IX 00 • ΐ · 2ΐΐ 826 • 8-seo • SI 86 311 N 89Z
00 ' 00 •ΐ ' Π 6LZ •Οΐ- e • Ζ6 1VA 0 L2L 士^00 '00 • ΐ' Π 6LZ • Οΐ- e • Ζ6 1VA 0 L2L ^^
00 • 00 "ΐ •εΐΐ 9LZ "6- ZZZ •SI 6 1VA 3 99Z 士^00 • 00 "ΐ • εΐΐ 9LZ" 6-ZZZ • SI 6 1VA 3 99Z
S8 •9S 00 •ΐ •ετι Ζ6ΐ 'し - Z 8 - ΐ 6 1VA 203 S9Z 士^S8 • 9S 00 • ΐ • ετι Ζ6ΐ 'Sh-Z 8-ΐ 6 1VA 203 S9Z 士 ^
98 •9£ 00 'ΐ 90S •επ 069 •6 - 828 " I 6 1VA 100 L 士^98 • 9 £ 00 'ΐ 90S • επ 069 • 6-828 ”I 61VA 100 L
S8 •9S 00 'ΐ Ζ Ζ •Ηΐ 06£ •8- 199 'Ζΐ Ζ6 1VA QD Z L 士^S8 • 9S 00 'ΐ Ζ Ζ • Ηΐ 06 £ • 8- 199' Ζΐ Ζ6 1VA QD Z L
00 00 •ΐ 6SZ •HI OfZ •8 - SOI '9ΐ Ζ6 1VA V3 Z L 士^00 00 • ΐ 6SZ • HI OfZ • 8-SOI '9ΐ Ζ6 1VA V3 Z L ^^
00 - 00 'ΐ 8S1 ·9Ιΐ 9ΐΖ •8- 6 0 •91 Ζ6 1VA 19L 士^00-00 'ΐ 8S1 9Ιΐ 9ΐΖ • 8-6 0 • 91 Ζ6 1VA 19L
9S '6V 00 •ΐ Ϊ06 '9ΐΐ 6Ζ9 '9 - 68 •SI 96 NSV 0 09Z 士^9S '6V 00 • ΐ Ϊ06' 9ΐΐ 6Ζ9 '9-68SI 96 NSV 0 09Z
9E •6 00 •ΐ 9Ιΐ "Ζΐΐ 61^8 68Z •SI 96 NSV D 士^9E • 6 00 • ΐ 9Ιΐ "Ζΐΐ 61 ^ 8 68Z • SI 96 NSV D
•ot 00 'ΐ ζζζ ·6Π 88S ■9 - 989 " ΐ 96 NSV za 士^• ot 00 'ΐ ζζζ · 6Π 88S ■ 9-989 "ΐ 96 NSV za ^
Of •0, 00 'ΐ 66ε ■8Π 0Ζ9 Ί- 69S ·6ΐ 96 NSV ταο 士^Of • 0, 00 'ΐ 66ε ■ 8Π 0Ζ9 Ί- 69S · 6ΐ 96 NSV ταο 士 ^
Of •01/ 00 •ΐ 808 ·8ΐΐ ΖΖ 'Z- 802 ·8ΐ 96 MSV 03 士^Of • 01/00 • ΐ 808 · 8ΐΐ ΖΖ 'Z-802 · 8ΐ 96 MSV 03 ^
Of •0 00 •ΐ 098 '8ΐΤ \9ί •8 - 962 •Π 96 NSV 93 士:^Of • 0 00 • ΐ 098 '8ΐΤ \ 9ί • 8-962 • Π 96 NSV 93: ^
9£ •6 00 •ΐ S29 ·8ΐΐ on ·8_ ns '5ΐ 96 MSV VD 士^9 £ • 6 00 • ΐ S29 · 8ΐΐ on · 8_ ns' 5ΐ 96 MSV VD ^
9Z 00 'ΐ 69S ·8ΐΐ 909 •6 - 800 •SI 96 NSV N 士^9Z 00 'ΐ 69S · 8ΐΐ 909 • 6-800 • SI 96 NSV N
·8ε 00 •ΐ C62 "021 988 •8 - 99 •ει 96 ΑΊΟ 0 Z L 士^· 8ε 00 • ΐ C62 "021 988 • 8-99 • ει 96 ΑΊΟ 0 Z L
9 ·8ε 00 •ΐ 19V ·6ΐΐ •6 - 920 •^ΐ 96 ΑΊΟ 3 \ L 士^9 · 8ε 00 • ΐ 19V · 6ΐΐ • 6-920 • ^ ΐ 96 ΑΊΟ 3 \ L
S '8ε 00 •ΐ T8S ·6ΐΙ ιεο 'ΐΐ - •ει 96 ΑΊΟ V3 OH 士^S '8ε 00 • ΐ T8S · 6ΐΙ ιεο' ΐΐ-• ει 96 ΑΊΟ V3 OH ^^
•8S 00 'ΐ 982 ■8ΐΐ Η6 ■ΐΐ- 68S ■ει S6 ΑΊΟ N 6SZ 士^• 8S 00 'ΐ 982 ■ 8ΐΐ Η6 ■ ΐΐ-68S ■ ει S6 ΑΊΟ N 6SZ
98 00 •ΐ 6SC ·6ΐΐ 069 'Ζ\- 9l •SI t6 dSV 0 8GZ 士^98 00 • ΐ 6SC · 6ΐΐ 069 'Ζ \ -9l • SI t6 dSV 0 8GZ
98 •ε 00 ■ΐ 99S ·8ΐΐ 969 'ΖΙ- 199 •Η fr6 dSV 3 LZL 士^98 • ε 00 ■ ΐ 99S · 8ΐΐ 969 'ΖΙ- 199 • Η fr6 dSV 3 LZL ^^
16 •81 00 •ΐ εο9 ·9ΐΐ SOS 'ΐΐ- ZZ ·9ΐ 6 dSV ZQO ZL 士^16 • 81 00 • ΐ εο9 · 9ΐΐ SOS 'ΐΐ- ZZ · 9ΐ 6 dSV ZQO ZL 士 ^
16 •8 00 •ΐ ·9ΐΐ Ζ91 ΐ- 9ZZ •81 6 dSV iao SS 士^16 • 8 00 • ΐ · 9ΐΐ Ζ91 ΐ-9ZZ • 81 6 dSV iao SS ^^
16 '8 00 •ΐ Ζ9 '9ΐΐ LZ 'Ζΐ- ZOO 'Ζΐ 6 dSV 03 ZL 士^16 '8 00 • ΐ Ζ9' 9ΐΐ LZ 'Ζΐ- ZOO' Ζΐ 6 dSV 03 ZL ^
16 '8 00 •ΐ 998 ·9ΐΐ L 9 •εΐ- 6Z ·9ΐ 6 dSV 93 l 士^16 '8 00 • ΐ 998 · 9ΐΐ L 9 • εΐ-6Z · 9ΐ 6 dSV 93 l
98 'ε 00 •ΐ Ζ9ΐ Ίΐΐ εΐ9 926 •Η ^6 dSV V3 ZZL 士^ £9εθ/00<ΙΓ/Χ3<Ι Z8IS ./00 OAS. oz 98 'ε 00 • ΐ Ζ9ΐ Ίΐΐεΐ9 926 • Η ^ 6 dSV V3 ZZL engineer ^ £ 9εθ / 00 <ΙΓ / Χ3 <Ι Z8IS ./00 OAS. oz
08 00 •ΐ 888 "SOI Ζ60 ·9ΐ - Ζ98 ΊΙ ΙΟΐ 1VA ZOO 68L 士^ 08 00 • ΐ 888 "SOI Ζ60 · 9ΐ-Ζ98 ΙΟΐ ΙΟΐ 1VA ZOO 68L
08 'Z 00 •ΐ \Ζ9 •εοΐ 206 '9ΐ- Z9 ·8ΐ ΐθΐ ΉΛ TOO 88 士^08 'Z 00 • ΐ \ Ζ9 • εοΐ 206' 9ΐ- Z9 · 8ΐ ΐθΐ ΉΛ TOO 88 ^^
08 00 •ΐ OLf · 0ΐ ILZ •91 - LLZ ' ΐ 101 ΉΛ ao Z8Z 士^08 00 • ΐ OLf · 0ΐ ILZ • 91-LLZ 'ΐ 101 ΉΛ ao Z8Z ^^
LZ 00 •ΐ 88 •εοι Π6 •Η - 686 ·9ΐ ΐθΐ ΉΛ vo 98 士^LZ 00 • ΐ 88 • εοι Π6 • Η-686 · 9ΐ ΐθΐ ΉΛ vo 98 ^^
IZ 00 •ΐ ZL · 0ΐ 8fZ • - 900 "91 ΐθΐ Ί¥Λ N 98 士^IZ 00 • ΐ ZL · 0ΐ 8fZ •-900 "91 ΐθΐ Ί ¥ Λ N 98 ^^
08 00 •ΐ ί Ζ •^οι ΖΖ '2ΐ- 628 •91 ΟΟΐ ΠΗΊ 0 士^08 00 • ΐ ί Ζ • ^ οι ΖΖ '2ΐ- 628 • 91 ΟΟΐ ΠΗΊ 0 ^^
08 00 •ΐ 628 •^οι 826 ■ζι- no ■9ΐ 001 ΠΗΊ D C8 士^08 00 • ΐ 628 • ^ οι 826 ■ ζι- no ■ 9ΐ 001 ΠΗΊ DC 8
S9 ε 00 •ΐ 9S9 'ίΌΐ Z6 •6- 'Ζ\ ΟΟΐ ΠΞΊ ZQ3 Z8L 士^S9 ε 00 • ΐ 9S9 'ίΌΐ Z6 • 6-' Ζ \ ΟΟΐ ΠΞΊ ZQ3 Z8L ^
S9 00 'ΐ 8Ζΐ ·90ΐ LZ •ΐΐ - 9ΐ 'ΖΙ ΟΟΐ ΠΞΊ IQD \SL -S9 00 'ΐ 8Ζΐ · 90ΐ LZΐΐΐΐ-9ΐ' ΖΙ ΟΟΐ ΠΞΊ IQD \ SL-
S9 • 00 ■ΐ 886 Οΐ 6 'Οΐ - 068 'Ζ\ ΟΟΐ Π3Ί 03 08Z 士^S9 • 00 ■ ΐ 886 Οΐ 6 'Οΐ-068' Ζ \ Π Π3Ί 03 08Z ^^
G9 • 00 •ΐ ΐΤ "90ΐ ZVO •Ιΐ- 66S •Η 001 Π3Ί 93 6LL 士 siG9 • 00 • ΐ ΐΤ “90ΐ ZVO • Ιΐ-66S • Η 001 Π3Ί 93 6LL
08 •εε 00 •ΐ
Figure imgf000072_0001
"SOT οε '2ΐ- SZ6 •Η ΟΟΐ Π31 V3 8 Z 士^
08 • εε 00 • ΐ
Figure imgf000072_0001
"SOT οε '2ΐ- SZ6 • Η ΟΟΐ Π31 V3 8 Z ^
08 •εε 00 •ΐ '90ΐ Ζ96 •ΐΐ - 6ZL '3ΐ 001 Π3Ί N ILL 士^08 • εε 00 • ΐ '90 ΐ Ζ96 • ΐΐ-6ZL '3ΐ 001 Π3Ί N ILL ^^
Z9 'οε 00 'ΐ S8C •801 608 ■ζι- Z Z •Η 66 OHV 0 9LL 士^Z9 'οε 00' ΐ S8C • 801 608 ■ ζι-Z Z • Η 66 OHV 0 9LL
Z9 •οε 00 •ΐ 1ST ·80ΐ ffZ 'ΖΙ- οε "ST 66 oav 3 9LL 士^Z9 • οε 00 • ΐ 1ST · 80ΐ ffZ 'ΖΙ- οε "ST 66 oav 3 9LL ^^
Z9 •OS 00 ■ΐ LO Ίΐΐ ILZ ' ΐ- 296 •81 66 OHV ZM ll 士^Z9 • OS 00 ■ ΐ LO Ίΐΐ ILZ 'ΐ-296 • 81 66 OHV ZM ll
Z9 •OS 00 'ΐ 6LV ·60ΐ C9C •91- "OS 66 DUV THN ZLL 士^Z9 • OS 00 'ΐ 6LV · 60ΐ C9C • 91- "OS 66 DUV THN ZLL ^^
29 ■OS 00 •ΐ o •Οΐΐ Z\Z ·9ΐ- £ ·6ΐ 66 OHV 20 ZLL 士^29 ■ OS 00 • ΐ o • Οΐΐ Z \ Z · 9ΐ- £ · 6ΐ 66 OHV 20 ZLL
Z9 •OS 00 •ΐ ILL "ΟΠ εοο ■SI - 966 •81 66 OMV 3N ILL 士^Z9 • OS 00 • ΐ ILL "ΟΠ εοο ■ SI-966 • 81 66 OMV 3N ILL ^^
Z9 OS 00 •ΐ Ζ91 •Οΐΐ S9L •ει- ·6ΐ 66 OHV ( OLL 士^Z9 OS 00 • ΐ Ζ91 • Οΐΐ S9L • ει- · 6ΐ 66 OHV (OLL ^^
Z9 •OS 00 'ΐ 8Ζ •Οΐΐ ε 9 'ΖΙ- 6Z •81 66 DUV 03 691 士^Z9 OS 00 'ΐ 8Ζ • Οΐΐ ε 9' ΖΙ-6Z • 81 66 DUV 03 691 ^^
Z9 •OS 00 •ΐ 9Ζ •601 'ει - ζετ "Ζΐ 66 OHV 83 89 士^Z9OS 00 • ΐ 9Ζ • 601 'ει-ζετ "Ζΐ 66 OHV 83 89 ^^
Z •οε 00 •ΐ Ζ9Ζ ·60ΐ ΖΖ •π- ζζζ ·9ΐ 66 oav VD L9L 士^Z • οε 00 • ΐ Ζ9Ζ · 60ΐ ΖΖ • π- ζζζ · 9ΐ 66 oav VD L9L ^^
Z •OS 00 •ΐ 0 •Οΐΐ S9S 'π- 8S "SI 66 OHV N 99 士^Z • OS 00 • ΐ 0 • Οΐΐ S9S 'π-8S "SI 66 OHV N 99 ^^
" C 00 •ΐ LL9 ·60ΐ 92Ζ •6 - ΟίΖ '3ΐ 86 ΗΊΙ 0 99 士^"C 00 • ΐ LL9 · 60ΐ 92Ζ • 6-ΟίΖ '3ΐ 86 ΗΊΙ 0 99 ^^
£ • 2 00 •ΐ 919 •Οΐΐ 901 'Οΐ- 9εο '9ΐ 86 311 3 9 士^£ • 200 • ΐ 919 • Οΐΐ 901 'Οΐ-9εο' 9ΐ 86 311 3 9 ^
19 '8C 00 •ΐ Ζ86 •ΐΐΐ 016 •8 - ,01 86 ΞΊΙ ιαο S9Z 士^19 '8C 00 • ΐ Ζ86 • ΐΐΐ 016 • 8-, 01 86 ΞΊΙιαο S9Z 士 ^
19 ■8ε 00 •ΐ OZ 'Ζΐΐ \SZ ·6_ S88 •ΐΐ 86 ΗΊΙ TOO Z9L 士^19 ■ 8ε 00 • ΐ OZ 'Ζΐΐ \ SZ · 6_ S88 • ΐΐ 86 ΗΊΙ TOO Z9L
19 •8S 00 •ΐ ζιο •Οΐΐ 6S9 ·6_ 6ε "21 86 311 zoo Ϊ9Ζ 士^ε9εο/οο<ΐί7ェ:)《I Z81S/./00 OAV XL 19 • 8S 00 • ΐ ζιο • Οΐΐ 6S9 · 6_ 6ε "21 86 311 zoo Ϊ9Ζ ^^ ε9εο / οο <ΐί7 ェ :) 《I Z81S /./ 00 OAV XL
96 00 •ΐ 8ΖΖ •S6 628 ■8ΐ - 96ΐ ·9ΐ 901 oad VD 818 士^ 96 00 • ΐ 8ΖΖ • S6 628 ■ 8ΐ-96ΐ · 9ΐ 901 oad VD 818 ^^
9ΐ •τε 00 •ΐ s "S6 06f "Ζΐ- \Ζ ·8ΐ SOI OHd Q3 LIS 士^9ΐ • τε 00 • ΐ s "S6 06f" Ζΐ- \ Ζ · 8ΐ SOI OHd Q3 LIS ^^
96 00 •ΐ S06 "G6 Ζί •81- < "Ζΐ 901 OHd N 918 士^96 00 • ΐ S06 "G6 Ζί • 81- <" Ζΐ 901 OHd N 918 ^^
16 ' 00 'ΐ 680 "S6 SZS •02 - G66 ·9ΐ ΐ7θΐ H3S 0 SI8 士^16 '00' ΐ 680 "S6 SZS • 02-G66 9ΐ ΐ7θΐ H3S 0 SI8 ^^
16 00 •ΐ 028 '^6 C99 '6ΐ- 6LL "Ζΐ ^01 aas 3 士^16 00 • ΐ 028 '^ 6 C99' 6ΐ-6LL "Ζΐ ^ 01 aas 3rd person ^
Ζ8 'ΐ 00 'ΐ 6SS "96 663 "02- ιζζ ■\ζ ^Οΐ HHS 00 CI8 士^Ζ8 'ΐ 00' ΐ 6SS "96 663" 02-ιζζ ■ \ ζ ^ Οΐ HHS 00 CI8 ^^
LS ' 00 'ΐ 991 "S6 ZLL "ΟΖ- εん 6 '61 Οΐ H3S 93 ΖΪ8 士^LS '00' ΐ 991 "S6 ZLL" ΟΖ-ε 6 '61 Οΐ H3S 93 ΖΪ8 ^^
16 -ζ 00 •ΐ Z •S6 9SS ·6ΐ - 6ΐΐ '6ΐ Οΐ MHS V3 Π8 士^16 -ζ 00 • ΐ Z • S6 9SS6ΐ-6ΐΐ '6ΐ Οΐ MHS V3 Π8 ^^
16 ■ζ 00 'ΐ 8S6 ■96 9ΐ9 •61- εε8 ·8ΐ ^Οΐ H3S N 0ΐ8 士^16 ■ ζ 00 'ΐ 8S6 ■ 96 9ΐ9 • 61- εε8 · 8ΐ ^ Οΐ H3S N 0ΐ8 ^^
16 00 ■ΐ 68Ζ •96 208 • ΐ- 6 C "Ζΐ εοΐ OHd 0 608 士^16 00 ■ ΐ 68Ζ • 96 208 • ΐ-6 C "Ζΐ εοΐ OHd 0 608 ^^
16 00 'ΐ ZL 'Z6 0S9 '8ΐ- 196 "Ζΐ εοι OHd 3 808 士^16 00 'ΐ ZL' Z6 0S9 '8ΐ- 196 "Ζΐ εοι OHd 3 808 ^^
CS ·9ε 00 Ί 88 •001 \ΖΖ ·6ΐ- 006 "91 εοτ OHd 03 08 士^ εε ·9ε 00 'Τ ετε •66 Π8 ·6ΐ- 999 '91 εοτ OHd 93 908 士^CS 99ε 00 Ί 88 • 001 \ ΖΖ ΐ6ΐ-006 "91 εοτ OHd 03 08 ^^ εε 99ε 00 'Τ ετε • 66 Π8 ΐ6ΐ- 999 '91 εοτ OHd 93 908 ^^
16 00 •I S86 •86 βε ·8ΐ- ΟΐΖ "Ζΐ εοτ OHd VD 908 士^ εε '9 00 •ΐ ΐθΐ •ΟΟΐ 69 ' ΐ- L8L •SI εοτ OM Qd 士^16 00 • I S86 • 86 βε · 8ΐ- ΟΐΖ "Ζΐ εοτ OHd VD 908 ^^ εε '9 00 • ΐ ΐθΐ • ΟΟΐ 69' ΐ- L8L • SI εοτ OM Qd ^^
16 "SS 00 •ΐ s '66 60S ΆΙ- ΖΖ\ •Π εοτ OHd N S08 士^16 "SS 00 • ΐ s '66 60S ΆΙ- ΖΖ \ • Π εοτ OHd N S08 ^^
29
Figure imgf000073_0001
3Hd 0 208 士^
29
Figure imgf000073_0001
3Hd 0 208 ^^
29 'Z 00 •ΐ Ϊ8Ρ •66 ΟΖΖ '91- 8SZ • ΐ ζοι 3Hd 3 108 士^29 'Z 00 • ΐ Ϊ8Ρ • 66 ΟΖΖ '91 -8SZ • ΐ ζοι 3Hd 3 108 ^^
19 '9S 00 •ΐ sss •ΟΟΐ 08Ζ ■Οΐ-
Figure imgf000073_0002
HHd ZD 008 士^
19 '9S 00 • ΐ sss • ΟΟΐ 08Ζ ■ Οΐ-
Figure imgf000073_0002
HHd ZD 008 ^^
19 •ge 00 •ΐ fSZ '66 £6L •Οΐ- 982 "SI ζοι HHd 233 66Ζ 士^19 • ge 00 • ΐ fSZ '66 £ 6L • Οΐ- 982 "SI ζοι HHd 233 66Ζ ^^
19 00 'ΐ LZ •ΐθΐ 926 •Οΐ - S9C "91 201 HHd T33 86Ζ 士^19 00 'ΐ LZ • ΐθΐ 926 • Οΐ-S9C "91 201 HHd T33 86Ζ ^^
19 00 •ΐ 688 •86 9S6 'ΐΐ- 9C6 '9ΐ
Figure imgf000073_0003
HHd ZQD L6L 士^
19 00 • ΐ 688 • 86 9S6 'ΐΐ- 9C6' 9ΐ
Figure imgf000073_0003
HHd ZQD L6L ^^
19 00 Ί 9^0 'ΤΟΐ 680 '21- 210 ' ΐ ζοι 3Hd 103 96 士^19 00 Ί 9 ^ 0 'ΤΟΐ 680 '21-210' ΐ ζοι 3Hd 103 96 ^^
19 00 •ΐ ssz •66 Η9 'Ζ\- Ζ08 ·9ΐ ζοι HHd 03 S6 士^19 00 • ΐ ssz • 66 Η9 'Ζ \-Ζ08 · 9ΐ ζοι HHd 03 S6 ^^
19 00 •ΐ •66 0L8 ■π- OS •Π
Figure imgf000073_0004
HHd 93 6 士^
19 00 • ΐ • 66 0L8 ■ π-OS • Π
Figure imgf000073_0004
HHd 93 6men ^
Ζ9 00 •ΐ 160 •ΟΟΐ
Figure imgf000073_0005
HHd V3 26Ζ 士^
Ζ9 00 • ΐ 160 • ΟΟΐ
Figure imgf000073_0005
HHd V3 26Ζ 士 ^
29 00 'ΐ 90S •ΐθΐ 886 •Η - 96S "Ζΐ ζοι HHd N Ζ6Ζ 士^29 00 'ΐ 90S • ΐθΐ 886 • Η-96S "Ζΐ ζοι HHd N Ζ6Ζ 士 ^
LZ 'O 00 'ΐ 8fZ 'ΖΟΙ 96Ζ •SI- 882 "9ΐ ΐθΐ 1VA 0 Ϊ6Ζ 士^LZ 'O 00' ΐ 8fZ 'ΖΟΙ 96Ζ SI-882 "9ΐ ΐθΐ 1VA 0 Ϊ6Ζ ^^
LZ 00 •ΐ L9f •ΖΟΐ 80 "SI- ΐ8 ·9ΐ ΐθΐ 1VA 3 06Ζ 士^ £9E0/00«If/X3«I i8ISZ./00 OAV ZL LZ 00 • ΐ L9f • ΖΟΐ 80 "SI- ΐ8 · 9ΐ ΐθΐ 1VA 3 06Ζ ^^ £ 9E0 / 00« If / X3 «I i8ISZ./00 OAV ZL
8 'Z 00 •ΐ 6Zf '06 S8 ' ΐ- 6 •Οΐ 60ΐ V3 Lf8 士^ 8 'ZV 00 •I 808 •68 εζι •61- 896 •Οΐ 60ΐ N 9fS 士^ 0 "S9 00 •ΐ 9Ζ ■88 ZZS •8ト •6 80ΐ mo 0 f8 士^ 8 'Z 00 • ΐ 6Zf '06 S8' ΐ-6 • Οΐ 60ΐ V3 Lf8 ^^ 8 'ZV 00 • I 808 • 68 εζι • 61- 896 • Οΐ 60ΐ N 9fS ^^ 0 "S9 00 • ΐ 9Ζ ■ 88 ZZS • 8 to • 6 80ΐ mo 0 f8 士 ^
170 Έ9 00 •ΐ 168 •88 ·6ΐ- LLO •Οΐ 80ΐ mo 3 8 士^ L 6 00 'ΐ 98Ζ •88 - ζ- 992 •L 80ΐ mo 230 Z S 士^170 Έ9 00 • ΐ 168 • 88 · 6ΐ- LLO • Οΐ 80ΐ mo3 8 ^^ L 600 ΐ 98 Ζ • 88-ζ- 992 • L 80ΐ mo 230 Z S ^^
0ί •S6 00 ■ΐ TOO •06 8ΐ 'ΖΖ- 9S9 •9 80ΐ mo 130 Z S 士^0ί • S6 00 ■ ΐ TOO • 06 8ΐ 'ΖΖ-9S9 • 9 80ΐ mo 130 Z S ^^
OZ •S6 00 •ι ΖΖ6 •88 62ε ■ζζ- Ζ • 80ΐ mo CD 8 士^ L "C6 00 'ΐ 6se •88 6 ΐ 'ΖΖ- \Ζ0 •8 80ΐ mo 03 0 8 士^OZ • S6 00 • ι ΖΖ6 • 88 62ε ■ ζζ- Ζ • 80ΐ mo CD 8 ^^ L "C6 00 'ΐ 6se • 88 6 ΐ' ΖΖ- \ Ζ0 • 8 80ΐ mo 03 0 8 ^
OZ "S6 00 •ΐ ZZO •68 936 Ί2- LLZ •6 80ΐ mo 93 688 士^ 0 "S9 00 ■ΐ L6Z •88 0 6 ■0S - Ζ9Ζ Όΐ 80ΐ mo VD 8£S 士^ O 9 00 •I so •88 πε •IS - £99 •ΐΐ 80ΐ 。 N LZS 士^ ετ •19 00 •ΐ \ι •98 ιζζ '02- 99ΐ '2ΐ L01 0 9ZS 士^ z\ •19 00 ■ΐ ίS ' 8 096 'ΟΖ- ST9 Οΐ 皿 3 SS8 士^OZ "S6 00 • ΐ ZZO • 68 936 Ί2- LLZ • 6 80ΐ mo 93 688 ^^ 0” S9 00 ■ ΐ L6Z • 88 0 6 ■ 0S-Ζ9Ζ Όΐ 80ΐ mo VD 8 £ S ^^ O 900 • I so • 88 πε • IS-£ 99 • ΐΐ 80ΐ. N LZS ^^ ετ • 19 00 • ΐ \ ι • 98 ιζζ '02-99ΐ '2ΐ L01 0 9ZS ^^ z \ • 19 00 ■ ΐ ίS' 8 096 'ΟΖ- ST9 皿 Plate 3 SS8 ^
IS •U 00 •ΐ £IL "98 £98 'ΖΖ- •εΐ Οΐ 腿 203 S8 士IS • U 00 • ΐ £ IL "98 £ 98 'ΖΖ- • εΐ 腿 thigh 203 S8
19 •u 00 •ΐ OZ '98 008 -\ζ- '91 L01 皿 TOO εεβ 士^19 • u 00 • ΐ OZ '98 008-\ ζ- '91 L01 Dish TOO εεβ ^^
IS 'XL 00 •ΐ 299 •98 εο^ - •Η Οΐ 皿 93 Z£8 士^ ετ -ΐ9 00 •ΐ ε 9 -Ζ8 99C ·\ζ- ε 6 •ει Οΐ 皿 VD IZS 士^ ei •19 00 •ΐ 066 •88 U8 Ζ8ΐ ' \ Οΐ N 0S8 士^IS 'XL 00 • ΐ 299 • 98 εο ^-• Η Οΐ plate 93 Z £ 8 ^^ ετ -ΐ9 00 • ΐ ε 9 -Ζ8 99C · \ ζ- ε 6 • ει 皿 plate VD IZS ^^ ei • 19 00 • ΐ 066 • 88 U8 Ζ8ΐ '\ Οΐ N 0S8 ^^
6Z -os 00 •ΐ S98 •68 CS8 ■61- S 8 •ει 90ΐ 皿 0 628 士^ ら L •OS 00 •ΐ STO •06 620 -\ζ- on ' ΐ 90ΐ D 828 士^6Z -os 00 • ΐ S98 • 68 CS8 ■ 61- S 8 • ει 90ΐ Plate 0 628 ^^ L • OS 00 • ΐ STO • 06 620-\ ζ- on 'ΐ 90ΐ D 828 ^
'S9 00 ■ΐ 66ε •S6 Ζ89 - 99ΐ 'CI 901 腿 ZOO LZ8 士^'S9 00 ■ ΐ 66ε • S6 Ζ89-99ΐ' CI 901 Thigh ZOO LZ8 ^^
"S9 00 •ΐ
Figure imgf000074_0001
·ΐ6 81C ' - S96 •π 90ΐ 丄 TOO 928 士^
"S9 00 • ΐ
Figure imgf000074_0001
· Ϊ́6 81C '-S96 • π 90ΐ 丄 TOO 928 ^^
I "SS 00 •ΐ 6ΐ6 ·ΐ6 LZZ 'ΖΖ- 090 •ει 90ΐ 皿 93 928 士 ¾I "SS 00 • ΐ 6ΐ6 · ΐ6 LZZ 'ΖΖ- 090 • ει 90ΐ Plate 93 928 ¾
6L •OS 00 •ΐ 01 ·ΐ6 96S ■\ζ- •Η 90ΐ HH1 V3 fZS 士^6L • OS 00 • ΐ 01 · ΐ6 96S ■ \ ζ- • Η 90ΐ HH1 V3 fZS ^^
6L •OS 00 •ΐ 6fZ '26
Figure imgf000074_0002
•02- OVL 90ΐ HHI N ZZS 士^
6L • OS 00 • ΐ 6fZ '26
Figure imgf000074_0002
• 02- OVL 90ΐ HHI N ZZS ^^
96 ' ε 00 •ΐ 9ZL Ί6 699 •ΟΖ- 626 ·9ΐ 901 OHd 0 ZZS 士^96 'ε 00 • ΐ 9ZL Ί6 699 • ΟΖ-626 · 9ΐ 901 OHd 0 ZZS
96 '9ε 00 •ΐ ZZZ -26 εο ■οζ- 686 "ST SOT OHd 3 IZ8 士^96 '9ε 00 • ΐ ZZZ -26 εο ■ οζ- 686 "ST SOT OHd 3 IZ8 ^^
91 •ιε 00 ■ΐ εοε 'Ζ6 290 ' ΐ- "ΖΤ SOT OMd 03 Z8 士^91 • ιε 00 ■ ΐ εοε 'Ζ6 290' ΐ- "ΖΤ SOT OMd 03 Z8 ^^
91 •ιε 00 •ΐ 88 "26 • ΐ- 刚 •91 90ΐ OHd 93 6T8 士^ e9£0/00df/X3J s層 O •S8 00•ΐ 89Ζ Ί6 909•H- OO •S ZU SAT 33 9Z8 士^91 • ιε 00 • ΐ 88 "26 • ΐ- 刚 • 91 90ΐ OHd 93 6T8 ^^ e9 £ 0 / 00df / X3J s layer O • S8 00 • ΐ 89Ζ Ί6 909 • H-OO • S ZU SAT 33 9Z8 ^^
•S8 00 •ΐ 901 Ί6 Zl 89 •9 ζ\\ SAT 03 SZ8 士^ ε •S8 00 •ΐ 819 •68 291 •gi- ε •9 SAT 93 8 士^• S8 00 • ΐ 901 Ί6 Zl 89 • 9 ζ \\ SAT 03 SZ8 士 ^^ • S8 00 • ΐ 819 • 68 291 • gi-ε • 9 SAT 93 8 8
■S8 00 •ΐ 01^6 '88 '9ΐ- 89 Ί ζ\\ SAT S3 £18 士^ π ■6ε 00 •I g^s ' 8 9n •SI - £Ζ0 •8 SAT V3 ZLS 士^ π ·6ε 00 •ΐ •98 SZI ·9ΐ - 6ΐΐ •6 ZU SAT N 1Z8 士^■ S8 00 • ΐ 01 ^ 6 '88 '9ΐ- 89 Ί \\\ SAT S3 £ 18 person ^ π ■ 6ε 00 • I g ^ s' 8 9n • SI-£ Ζ0 • 8 SAT V3 ZLS person ^ π · 6ε 00 • ΐ • 98 SZI · 9ΐ-6ΐΐ • 6 ZU SAT N 1Z8
8ΐ 00 ■ΐ 196 '^8 8SI •SI - ειβ •8 in V1V 0 0A8 士8ΐ 00 ■ ΐ 196 '^ 8 8SI • SI-ειβ • 8 in V1V 0 0A8
8ΐ '6 00 •ΐ 689 •38 8 6 •SI- •6 in V1V 3 698 士^8ΐ '6 00 • ΐ 689 • 38 8 6 • SI- • 6 in V1V 3 698 ^^
0 "9C 00 •ΐ ZS9 8 ZL\ ·8ΐ- οετ •01 Πΐ V1V 93 898 士^0 "9C 00 • ΐ ZS9 8 ZL \ · 8ΐ- οετ • 01 Πΐ V1V 93 898 ^^
81 •6 00 'ΐ 89ΐ •S8 L18 •91- •01 Πΐ V1V VD 98 士^81 • 6 00 'ΐ 89ΐ • S8 L18 • 91- • 01 Πΐ V1V VD 98
8ΐ '617 00 •ΐ VZZ •98 Z66 ·9ΐ- 229 •ΐΐ ΐΐΐ V1V N 998 士^8ΐ '617 00 • ΐ VZZ • 98 Z66 • 9ΐ-229 • ΐΐ ΐΐΐ V1V N 998 ^
S8 00 •ΐ L •98 ZSL • - 986 •ΐΐ Οΐΐ oav 0 S98 士^S8 00 • ΐ L • 98 ZSL •-986 • ΐΐ Οΐΐ oav 0 S98 ^^
38 •ζε 00 'ΐ S8Z •98 9 6 •SI- VZZ •ζι Οΐΐ OHV 3 刚 士^38 • ζε 00 'ΐ S8Z • 98 9 6 • SI-VZZ • ζι Οΐΐ OHV 3 士士 ^
80 •IS 00 ΐ TSZ •68 ZfO ·8ΐ- Ζ6 -6ΐ Οΐΐ OHV zm S98 士^80 • IS 00 ΐ TSZ • 68 ZfO · 8ΐ- Ζ6 -6ΐ Οΐΐ OHV zm S98 ^^
80 'IS 00 ΐ 629 '88 LZ •9ト 9 '81 οπ OHV ΪΗΝ 298 士^80 'IS 00 ΐ 629 '88 LZ 9 to 9 '81 οπ OHV ΪΗΝ 298
80 •IS 00 •ΐ LZ6 •88 69S " ΐ- £99 ·8ΐ οπ OMV Z3 198 士^80 • IS 00 • ΐ LZ6 • 88 69S "ΐ- £ 99 · 8ΐ οπ OMV Z3 198 ^^
80 'IS 00 ■ΐ S0 •88 06S ·8ΐ- 99Ζ ' ΐ Οΐΐ OHV 3N 098 士^80 'IS 00 ■ ΐ S0 • 88 06S · 8ΐ-99Ζ' ΐ Οΐΐ OHV 3N 098 ^^
80 "IS 00 ■ΐ ' 8 ZL6 'Ζΐ- Ζ69 •91 ΟΙΐ OHV 03 6S8 士^80 "IS 00 ■ ΐ '8 ZL6' Ζΐ- Ζ69 • 91 ΟΙΐ OHV 03 6S8 ^^
80 ■19 00 •ΐ ΖΟΖ ■88 Ι6Ϊ "Ζΐ- 86S "SI Οΐΐ OHV 03 8S8 士^80 ■ 19 00 • ΐ ΖΟΖ ■ 88 Ι6Ϊ "Ζΐ-86S" SI Οΐΐ OHV 03 8S8 ^^
80 "19 00 •ΐ 'Z8 606 •91- 9 Οΐΐ oav 83 98 士^80 "19 00 • ΐ 'Z8 606 • 91- 9 Οΐΐ oav 83 98 ^^
S8 •L 00 'ΐ ε 8 "Ζ.8 832 •91- LZZ •ει οπ OHV VD 998 士^S8 • L 00 'ΐ ε 8 "Ζ.8 832 • 91- LZZ • ει οπ OHV VD 998 ^^
S8 "ζε 00 •I 9^8 ■88 S l " Τ- fZ9 Οΐΐ OHV N 998 士^ 8 00 •ΐ 00S •68 6L '9ΐ- 998 •Οΐ 601 ΝΊΟ 0 ί/98 士^S8 "ζε 00 • I 9 ^ 8 ■ 88 S l” Τ- fZ9 Οΐΐ OHV N 998 ^^ 800 ΐ 00S • 68 6L '9ΐ- 998 • Οΐ 601 ΝΊΟ 0 ί / 98 ^
^8 00 ■ΐ •68 9S8 ■9ΐ- ε •π 60ΐ N10 3 SS8 士^^ 8 00 ■ ΐ • 68 9S8 ■ 9ΐ-ε • π 60ΐ N10 3 SS8
9C 'Ζ 00 ΐ 981 "S6 Z 8 'ίΐ- •π 60ΐ N10 z ZS8 士^9C 'Ζ 00 ΐ 981 "S6 Z 8' ίΐ- • π60ΐ N10 z ZS8 ^^
9Ζ 00 ΐ OS • 6 96 ·8ΐ - •εΐ 60ΐ ΝΊΟ 130 198 士^ £ 'Ζ 00 •ΐ 9SI •^6 ZLf ·8ΐ- 6 •π 60ΐ N10 ao 0S8 士^9Ζ 00 ΐ OS • 6 96 · 8ΐ-• εΐ 60ΐ ΝΊΟ 130 198 ^^ £ 'Ζ 00 • ΐ 9SI • ^ 6 ZLf · 8ΐ-6 • π 60ΐ N10 ao 0S8 ^^
92 00 •ΐ 068 ■26 199 ·8ΐ- ζζι ■Π 60ΐ ΝΊΟ 03 6 8 士^ se 00 •ΐ O •16 ZS "Ζΐ- £9ί 'π 60ΐ N10 93 8 士^ e9£0/00df/X3d Z81SZ./00 OA ft 92 00 • ΐ 068 ■ 26 199 · 8ΐ- ζζι ■ Π 60ΐ ΝΊΟ 03 68 8 ^^ ./00 OA ft
■09 00 •ΐ "S8 Ζ6Ζ •ει- 8 ■ε SII SAT Q3 S06 士^ ■ 09 00 • ΐ "S8 Ζ6Ζ • ει-8 ■ ε SII SAT Q3 S06 ^
•09 00 •ΐ ζζζ "S8 LZV 'ει- 902 9Π SA1 03 V06 士^• 09 00 • ΐ ζζζ “S8 LZV 'ει- 902 9Π SA1 03 V06 ^^
•09 00 •ΐ 68ΐ ' 8 1ST •π- f •9 9ΐΐ SAT 8D εο6 士^• 09 00 • ΐ 68ΐ '8 1ST • π-f • 9 9ΐΐ SAT 8D εο6 ^^
00 •ΐ 198 •S8 Π6 •ΐΐ- LLl •L 9Ιΐ SAT V3 206 士^00 • ΐ 198 • S8 Π6 • ΐΐ- LLl • L 9Ιΐ SAT V3 206 ^^
9Z "ζε 00 •ΐ lZ 8 ζζι 'ΖΙ- 0 s •8 SH SAT N 106 士^9Z "ζε 00 • ΐ lZ 8 ζζι 'ΖΙ- 0 s • 8 SH SAT N 106 ^^
80 "ζε 00 •ΐ 9 'S8 86ΐ •01- ZZ •6 ^ΐΐ 1VA 0 006 士^80 "ζε 00 • ΐ 9 'S8 86ΐ • 01-ZZ • 6 ^ ΐΐ 1VA 0 006 ^^
80 •L 00 •ΐ 8 0 8 LU 'ΐΐ- OS •6 ΐΐ 1VA 3 668 士^80 • L 00 • ΐ 8 0 8 LU 'ΐΐ- OS • 6 ΐΐ 1VA 3 668 ^
08 00 •ΐ 90 • 8 8 'ΖΙ- 900 •ει Ηΐ 1VA ZDD 868 士^08 00 • ΐ 90 • 8 8 'ΖΙ- 900 • ει Ηΐ 1VA ZDD 868 ^^
08 00 •ΐ 6ΖΖ 'ZS TOO ·2ΐ - t S 'π \\ 1VA 103 68 士^08 00 • ΐ 6ΖΖ 'ZS TOO 2ΐ-t S' π \\ 1VA 103 68 ^
08 •sz 00 "ΐ 9Ζ9 "S8 88S ■ζι- 89S •π ^ΐΐ 1VA 968 士^08 • sz 00 "ΐ 9Ζ9" S8 88S ■ ζι-89S • π ^ ΐΐ 1VA 968 ^^
80 ' C 00 •ΐ IG9 619 •Ιΐ- ε 8 •Οΐ HI 1VA V3 S68 士^80 'C 00 • ΐ IG9 619 • Ιΐ-ε 8 • Οΐ HI 1VA V3 S68 ^
80 00 •ΐ 6 '28 9ΖΖ 'Ζ\- ^69 •01 ^ΐΐ 1VA N 68 士 ¾80 00 • ΐ 6 '28 9ΖΖ 'Ζ \-^ 69 • 01 ^ ΐΐ 1VA N 68 ¾
C8 •ιε 00 •ΐ 898 •98 Ζ9£ •Οΐ- S88 •6 επ dai 0 £68 士^C8 • ιε 00 • ΐ 898 • 98 Ζ9 £ • Οΐ- S88 • 6 επ dai 0 £ 68 ^^
S8 'ιε 00 "ΐ 996 -98 Z 2 •Ιΐ- ZOZ •Οΐ επ dMl 3 Z6S 士^S8 'ιε 00 "ΐ 996 -98 Z 2 • Ιΐ- ZOZ • Οΐ επ dMl 3 Z6S ^^
1^ '9Ζ 00 •ΐ 0 ΐ 6 188 - ΐ ετι dM ZU3 168 士^1 ^ '9Ζ 00 • ΐ 0 ΐ 6 188-ΐετι dM ZU3 168 ^^
00 •I LZ6 •16 0TS •Η- επ dMl SZD 068 士^00 • I LZ6 • 16 0TS • Η-επ dMl SZD 068 ^
' Ζ 00 •ΐ ' ト ΐ επ dMl ZZ3 688 士^'Ζ 00 • ΐ' ト εππ dMl ZZ3 688 ^^
'92 00 •ΐ 6ε 6 ε in ■Οΐ ειτ da丄 I3N 888 士^'92 00 • ΐ 6ε 6 ε in ■ Οΐ ειτ da 丄 I3N 888 ^^
■S2 00 •ΐ "16 cos ト Όΐ επ dHl I d Z.88 士^ S ' Ζ 00 •ΐ 9 6 •06 918 •ει- 819 •ει επ dHl C3D 988 士^■ S2 00 • ΐ "16 cos G Όΐ επ dHl Id Z.88 ^^ S 'Ζ 00 • ΐ 9 6 • 06 918 • ει-819 • ει επ dHl C3D 988 ^^
' Ζ 00 ■ΐ £ 'Ζ6 6Ζ8 ·ει_ ΠΖ •ΐΐ επ dHI SHD S88 士^'Ζ 00 ■ ΐ £' Ζ6 6Ζ8 · ει_ ΠΖ • ΐΐ επ dHI SHD S88 ^^
00 •I £0Z •16 06, •CT- SLZ επ d 丄 Z 3 88 士^ S 00 •I 6 •06 018 'ΖΙ- 992 •ΐΐ επ dHI 03 288 士^00 • I £ 0Z • 16 06, • CT-SLZ επ d 丄 Z 388 ^^ S 00 • I 6 • 06 018 'ΖΙ- 992 • ΐΐ επ dHI 03 288 ^^
^9 'S3 00 •ΐ 9L0 •68 LZZ •21- 89S •ΐΐ επ dHI 93 Ζ88 士^^ 9 'S3 00 • ΐ 9L0 • 68 LZZ • 21-89S • ΐΐ επ dHI 93 Ζ88
S8 •ιε 00 •ΐ 66Z •88
Figure imgf000076_0001
'2ΐ- Z O •Οΐ επ dHI V3 188 士^
S8 • ιε 00 • ΐ 66Z • 88
Figure imgf000076_0001
'2ΐ- ZO • Οΐ επ dHI V3 188 ^^
S8 'ΐε 00 •ΐ 9fl •88 6 9 •εΐ- 8Z9 '6 επ dai N 088 士^S8 'ΐε 00 • ΐ 9fl • 88 6 9 • εΐ-8Z9' 6 επ dai N 088 ^^
Π •62 00 ■ΐ 892 " 8 9 0 "2ΐ- 989 • L ζ\\ SAT 0 6Ζ8 士^Π • 62 00 ■ ΐ 892 "8 9 0" 2ΐ- 989 • L ζ \\ SAT 0 6Ζ8 ^^
Π ·6ε 00 •ΐ Zf9 "Ζ8 9C6 •ci- •8 ζ\\ SAT 3 8Ζ8 士^Π · 6ε 00 • ΐ Zf9 "Ζ8 9C6 • ci- • 8 ζ \\ SAT 3 8Ζ8 ^^
"98 00 •ΐ Z Z ·£6 138 εοε "9 ζιι SAT ZN LIS 士^ £9£0/00<ir/I3cI Z8ISZ./00 OAV 9 "98 00 • ΐ ZZ £ 6 138 εοε” 9 ζιι SAT ZN LIS ^^ £ 9 £ 0/00 <ir / I3cI Z8ISZ./00 OAV 9
98 •εε 00 •ΐ ΐΐΐ "C8 ZZG •9 - O l · 6ΐΐ mo V3 士:^ 98 • εε 00 • ΐ ΐΐΐ “C8 ZZG • 9-O l · 6ΐΐ mo V3 :: ^
98 00 •ΐ 9S6 •Z8 996 •9 - Z9 •S 6ΐΐ mo N es6 士^98 00 • ΐ 9S6 • Z8 996 • 9-Z9 • S 6ΐΐ mo N es6 ^^
•o^ 00 Ί ζ\ζ Ί8 629 "9- C96 ■g 8ΐΐ SAT 0 士^• o ^ 00 Ί ζ \ ζ Ί8 629 "9- C96 ■ g 8ΐΐ SAT 0
ΙΖ •0, 00 "ΐ LZO ■28 PIP •9 - ILZ •9 8ΐΐ SAT D IS6 士^ΙΖ • 0, 00 "ΐ LZO ■ 28 PIP • 9-ILZ • 9 8ΐΐ SAT D IS6 士 ^
LL •19 00 •ΐ 6fL "9Z 06P "Οΐ- S6^ •8 8ΐΐ SAT ZN 0S6 士LL • 19 00 • ΐ 6fL "9Z 06P" Οΐ- S6 ^ • 8 8ΐΐ SAT ZN 0S6
LL •19 00 •ΐ 18C 'ίί LZZ •6- L6 •L 8ΐΐ SAT 33 626 士^LL • 19 00 • ΐ 18C 'ίί LZZ • 6-L6 • L 8ΐΐ SAT 33 626
LL •19 00 ■I ZIS '8 •6 - 019 Ί 8ΐΐ SAT Q3 8Z6 士LL • 19 00 ■ I ZIS '8 • 6-019 Ί 8ΐΐ SAT Q3 8Z6
LL Ί9 00 •ΐ LL9 •6Z 002 ■8 - \SZ Ί 8ΐΐ SAT 00 LZ6 士^LL Ί9 00 • ΐ LL9 • 6Z 002 ■ 8-\ SZ Ί 8ΐΐ SAT 00 LZ6 ^^
LL •19 00 •ΐ £90 ■18 \Z •8- 66f ' L 8ΐΐ SAT 93 9Z6 士^LL • 19 00 • ΐ £ 90 ■ 18 \ Z • 8- 66f 'L 8ΐΐ SAT 93 9Z6 ^^
IL '0 00 ■ΐ ZSS •18 LZl Ί- ZZ9 ' L 8ΐΐ SAT VD 326 士^IL '0 00 ■ ΐ ZSS • 18 LZl Ί- ZZ9' L 8ΐΐ SAT VD 326 ^^
IL ■Ofr 00 •ΐ ZLl 8 ε ' - zzz •8 8ΐΐ SAT N 6 士^IL ■ Ofr 00 • ΐ ZLl 8 ε '-zzz • 8 8ΐΐ SAT N 6 ^
66 •ΐε 00 •ΐ Z£S •£8 Z0£ •ς一 πε •8 ΐΐ V1V 0 £Z6 士66 • ΐε 00 • ΐ Z £ S • £ 8 Z0 £ • ς1 πε • 8 ΐΐ V1V 0 £ Z6
66 'ιε 00 •ΐ • 8 ΐθί^ •9- •8 III V1V 3 ZZ6 士^66 'ιε 00 • ΐ • 8 ΐθί ^ • 9- • 8 III V1V 3 ZZ6 ^^
9Z
Figure imgf000077_0001
士^
9Z
Figure imgf000077_0001
Chief ^
66 'ιε 00 •ΐ "98 6S6 '9 - SSI •6 ΐΐ V1V V3 0Z6 士 Hi66 'ιε 00 • ΐ "98 6S6' 9-SSI • 6 ΐΐ V1V V3 0Z6
66 'ΐε 00 •ΐ 918 "S8 •8 - 0 ^ •8 Ιΐ V1V N 616 士66 'ΐε 00 • ΐ 918 "S8 • 8-0 ^ • 8 Ιΐ V1V N 616
89 ' 00 'ΐ Z9\ ■98 620 ' - LZ •9 9Π SAT 0 816 士^89 '00' ΐ Z9 \ ■ 98 620 '-LZ • 9 9Π SAT 0 816 ^^
89 ■ 00 •ΐ 81 •98 180 •8 - L\ Ί 9ΐΐ s人つ 3 I6 士^89 ■ 00 • ΐ 81 • 98 180 • 8-L \ Ί 9ΐΐ s 3 I6 ^
S8 00 •ΐ 89 "C6 Z98 •Ζ - 9SI •L 9ΐΐ SAT ZN 916 士^S8 00 • ΐ 89 "C6 Z98 • Ζ-9SI • L 9ΐΐ SAT ZN 916 ^^
Ί 00 •ΐ oot "16 Ί- 289 •9 9ΐΐ SAT HD S16 士^Ί 00 • ΐ oot "16 Ί- 289 • 9 9ΐΐ SAT HD S16 ^
S8 00 •ΐ 08^ •06 •8 - •9 9ΐΐ SAT D H6 士^S8 00 • ΐ 08 ^ • 06 • 8-• 9 9ΐΐ SAT D H6 ^^
C8 ' 00 'ΐ 2 0 •68 OTS •8 - "9 9ΐΐ SAT 03 S16 士^C8 '00' ΐ 2 0 • 68 OTS • 8-"9 9ΐΐ SAT 03 S16 ^^
S8 00 •ΐ Z\ •88 6S9 ■6 - •9 9ΐΐ SAT 93 216 士^S8 00 • ΐ Z \ • 88 6S9 ■ 6-• 9 9ΐΐ SAT 93 216
89 ■ 00 ■ΐ 6 9 •98 Z6£ •6 - •9 9ΐΐ SAT V3 Π6 士89 ■ 00 ■ ΐ 6 9 • 98 Z6 £ • 6-• 9 9ΐΐ SAT V3 Π6
89 - 00 •ΐ L 8 "98 619 •01 - 886 •9 9ΐϊ SAT N 016 士^89-00 • ΐ L 8 "98 619 • 01-886 • 9 9ΐϊ SAT N 016 ^^
9Z 'ζε 00 •ΐ 666 -£8 968 •6 - C98 •S 9Ιΐ SAT 0 606 士^9Z 'ζε 00 • ΐ 666-£ 8 968 • 6-C98 • S 9Ιΐ SAT 0 606 ^^
9 ■ ε 00 •I 08S 289 'Οΐ - CT9 •9 9ΐΤ SAT 3 806 士^9 ■ ε 00 • I 08S 289 'Οΐ-CT9 • 9 9ΐΤ SAT 3 806 ^^
•09 00 •ΐ £96 τ8 6 Z ■Η- Z12 •ΐ 9ΐΐ SAT ZN Z06 士^• 09 00 • ΐ £ 96 τ8 6 Z ■ Η- Z12 • ΐ 9ΐΐ SAT ZN Z06 ^^
·09 00 Ί 169 -£8 6LV - SS6 "2 9ΐΐ SAT HD 906 士^ £9e0/00df/XDd 181S/./00 OAV 9Z 09 00 Ί 169-£ 8 6LV-SS6 "2 9ΐΐ SAT HD 906 ^ ^ £ 9e0 / 00df / XDd 181S /./ 00 OAV 9Z
80 ·0 00 •ΐ 99 "9Z 69V 'ト L l ■z ζζι mo 230 S96 士^ 80 · 0 00 • ΐ 99 "9Z 69V 'L L ■ z ζζι mo 230 S96 士 ^
80 ·0 00 •ΐ 999 "9Z 86S ■ - 9 6 ζζι mo 130 296 士^80 · 0 00 • ΐ 999 "9Z 86S ■-9 6 ζζι mo 130 296
80 'O 00 ■ΐ 9ΖΖ 'LI 9 ZS8 •ε ζζι mo CD 196 -80 'O 00 ■ ΐ 9ΖΖ' LI 9 ZS8 • ε moι mo CD 196-
80 Όί' 00 •ΐ Ζ 9 •8 Ο^ΐ •s - 898 •ε ζζι mo 03 096 士^80 Όί '00 • ΐ Ζ 9 • 8 Ο ^ ΐ • s-898 • ε ζζι mo 03 096 士 ^
80 00 •ΐ L 9 "6Z Ηΐ ■ - L £ •ε ζζι mo 93 696 士^80 00 • ΐ L 9 "6Z Ηΐ ■-L £ • ε moι mo 93 696 ^^
£6 · 00 •ΐ 811 '6Z ZZ8 'Ζ- 69ΐ ■f- ζζ\ mo V3 896 士^£ 600 • ΐ 811 '6Z ZZ8' Ζ- 69ΐ ■ f- ζζ \ mo V3 896 ^^
£6 00 •ΐ 9 •08 Z6 'Ζ- 19Ζ •s ζζι mo N Z96 £ 6 00 • ΐ 9 • 08 Z6 'Ζ- 19Ζ • s ζζι mo N Z96
S6 'SC 00 •ΐ OZZ •08 8 •0 - HO •9 ιζι 1VA 0 996  S6 'SC 00 • ΐ OZZ • 08 8 • 0-HO • 9 ιζι 1VA 0 996
S6 "SC 00 "ΐ 698 •08 £ΐ6 •ΐ - 60 •9 ΐδΐ 1VA 3 SS6 士^ S6 "SC 00" ΐ 698 • 08 £ ΐ6 • ΐ-60 • 9 ΐδΐ 1VA 3 SS6 士 ^
S9 "92 00 'ΐ OZZ "28 S - 9G9 •6 ιζι 1VA Z03 ^96 士^S9 "92 00 'ΐ OZZ" 28 S-9G9 • 6 ιζι 1VA Z03 ^ 96 ^^
39 '9Ζ 00 •ΐ 896 •6Z HO '6- S9 •8 ιζι 1VA 103 C96 士^39 '9Ζ 00 • ΐ 896 • 6Z HO' 6- S9 • 8 ιζι 1VA 103 C96
S9 '9Ζ 00 •I SLZ •18 LOL ■z- 6 ^ •8 1VA 93 ZS6 士^S9 '9Ζ 00 • I SLZ • 18 LOL ■ z- 6 ^ • 8 1VA 93 ZS6
S6 -SC 00 •ΐ Z6 •18 SOI "2- 88ΐ • 1VA V3 IS6 -S6 -SC 00 • ΐ Z6 • 18 SOI "2-88ΐ • 1VA V3 IS6-
S6 "9C 00 •ΐ SSO •£8 LZ6 'Ζ- m •9 1VA N 096 士^S6 "9C 00 • ΐ SSO • £ 8 LZ6 'Ζ-m • 9 1VA N 096 ^^
00 -0G 00 •ΐ 288 ■ 8 ZZ ·ΐ_ ■ •g
Figure imgf000078_0001
311 0 6 6 - oo ·οε 00 •ΐ SS6 'C8 ΗΊΙ 3 8 6 士^ si 'οε 00 •ΐ S8S •88
Figure imgf000078_0002
311 IQ3 L 6 士^
00 -0G 00 • ΐ 288 ■ 8 ZZ · ΐ_ ■ • g
Figure imgf000078_0001
311 0 6 6-oo · οε 00 • ΐ SS6 'C8 ΗΊΙ 3 8 6 ^^ si' οε 00 • ΐ S8S • 88
Figure imgf000078_0002
311 IQ3 L 6men ^
SI 'OS 00 'ΐ 862 ' 8 9Π 'ト 9Ζΐ •9 οζι H1I 103 9^6 士^ si 'οε 00 •ΐ ZLZ ■98 evo '2- 89ΐ • L οζι 311 203 ^6 士^SI 'OS 00' ΐ 862 '8 9Π' ト 9Ζΐ • 9 οζι H1I 103 9 ^ 6 ^^ si 'οε 00 • ΐ ZLZ ■ 98 evo' 2- 89ΐ • L οζι 311 203 ^ 6 ^^
ST "OS 00 •ΐ 001 •98 •ε - 9S9 •9 οζι 311 83 6 士^ oo 'οε 00 •ΐ S90 '98 OZ •ε - 009 •S
Figure imgf000078_0003
H1I V3 £ 6 士^ oo ·οε 00 •ΐ L8 '^8 OZL ■ - OLZ •s ζι 311 N Z 6 士^
ST "OS 00 • ΐ 001 • 98 • ε-9S9 • 9 οζι 311 83 6 ^^ oo 'οε 00 • ΐ S90 '98 OZ • ε-009 • S
Figure imgf000078_0003
H1I V3 £ 6 ^^ oo · οε 00 • ΐ L8 '^ 8 OZL ■-OLZ • s 3ι 311 NZ 6 ^^
98 ζ 00 •ΐ Z9Z T8 S60 6Z •ε 6ΐΐ mo 0 \f6 士 si98 ζ 00 • ΐ Z9Z T8 S60 6Z • ε 6ΐΐ mo 0 \ f6 si
98 ·εε 00 •ΐ VL9 ■£8 296 S Z - 6Π mo 3 0 6 士^98 · εε 00 • ΐ VL9 ■ £ 8 296 S Z-6Π mo 3 06 6 ^
00 •ΐ T8C Ί8 8Z0 ■8 - ZZO 'τ 6ΐΐ mo 2Ξ0 6S6 士^00 • ΐ T8C Ί8 8Z0 ■ 8-ZZO 'τ 6ΐΐ mo 2Ξ0 6S6 ^^
29 · 9 00 ■ΐ eoz •18 LZZ •9 - 818 •0 6ΐΐ mo 130 8C6 士^29 · 9 00 ■ ΐ eoz • 18 LZZ • 9-818 • 0 6ΐΐ mo 130 8C6 ^^
C9 ' 9 00 'ΐ ■28 091 ■ 1- OSS •ΐ 6ΐΐ mo 03 ZS6 士^C9 '9000' ΐ ■ 28 091 ■ 1-OSS • ΐ 6ΐΐ mo 03 ZS6 士 ^
G9 9 00 •ΐ 6C9 "C8 ZZ Ί- 88Z •ΐ 6ΐΐ mo 03 9C6 士^G9 9 00 • ΐ 6C9 "C8 ZZ 88-88Z • ΐΐ 6ΐΐ mo 03 9C6 ^^
S9 ' 9 00 •τ 166 ■£8 6LZ "Z- LZ •ε 6Π mo 8D SS6 士^ £9謂 OdT/JL d Z81SZ./00 OAV ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾S9 '9 00 • τ 166 ■ £ 8 6LZ "Z- LZ • ε 6Π mo 8D SS6 SS ^ £ 9 So-called OdT / JL d Z81SZ./00 OAV ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾
1 1 1 1 1 1
屮 屮 屮 屮 屮 屮 屮 屮 屮 屮 屮 屮 D •X) to CD C O O CD CD O D • X) to CD C O O CD CD O Bubble Bubble Bubble Bubble Bubble Bubble Bubble B
CD 00 00 00 00 00 00 00 00 CO 00 05  CD 00 00 00 00 00 00 00 00 CO 00 05
O 00 -J i 00 C o ( ) 00 cn CO o
Figure imgf000079_0001
O 00 -J i 00 C o () 00 cn CO o
Figure imgf000079_0001
o o o o o c o 〇 o o o o o o c o 〇 o
> m CO > m CO
Figure imgf000079_0002
t CO O DO D t C t t ΓΟ tN3 t> ts3 C cn oi cn cn n cn 00
> m CO> m CO
Figure imgf000079_0002
t CO O DO D t C tt ΓΟ tN3 t> ts3 C cn oi cn cn n cn 00
1 1 1 1 1 1
O o o t t O —J cn ^ o o o  O o o t t O —J cn ^ o o o
CTi t>o —J , , o co o O -J 00 CO D t ~ 1 C o t o cn O CO cn o O O o CTi t> o —J,, o co o O -J 00 CO D t ~ 1 C oto cn O CO cn o OO o
CO on n co 00 CO n D D o o cn CO 00 oo o CO on n co 00 CO n D D o o cn CO 00 oo o
1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O r r t oo C o o r CO t o O to o h— * o o o t— » 00 00
Figure imgf000079_0003
00 o
O rrt oo C oor CO to O to oh— * ooot— »00 00
Figure imgf000079_0003
00 o
00 CO 00 00 00 00 CO 00 00 CO 00 -J 00 00 CO 00 00 00 00 CO 00 00 CO 00 -J 00
00 00 00 oo O D o h— * h— * C CO CO 00 CO t h- 1 o 00 00 00 oo OD oh— * h— * C CO CO 00 CO t h- 1 o
Figure imgf000079_0004
Figure imgf000079_0004
964 OsAV一 964 OsAV one
Figure imgf000080_0001
Figure imgf000080_0001
·_·
Figure imgf000080_0002
· _ ·
Figure imgf000080_0002
Figure imgf000080_0003
Figure imgf000080_0003
< < < <<<
-< < < < <c c リ  -<<<<<c c
屮 屮 屮 r 屮 r 十 屮 屮 屮 屮 十 十 r 屮 屮 屮 Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble
原子 1022 CB ASN 130 - 1. 981 7. 517 78. 193 1. 00 39. 26 原子 1023 CG ASN 130 -2. 935 6. 328 78. 185 1. 00 39. 26 原子 1024 0D 1 ASN 130 - 3. 616 6. 075 77. 188 1. , 00 39. 26 原子 1025 ND2 ASN 130 -3. 005 5. 610 79. 301 1. , 00 39. 26 原子 1026 C ASN 130 - 1. 083 9. 340 76. 732 1. 00 30. 83 原子 1027 0 ASN 130 - 1 · 826 10. 185 76. 230 1. 00 30. 83 原子 1028 N E 131 0. 108 9. 627 77. 247 1. 00 30. 20 原子 1029 CA Iし E 131 0. 635 10. 98 1 77. 229 1. 00 30. 20 原子 1030 CB Iし E 131 2. 061 1 1. 008 77. 807 1. 00 27. 12 原子 1031 CG2 RE 131 2. 740 12. 339 77. 485 1. 00 27. 12 原子 1032 CG 1 I LE 131 2. 003 10. 728 79. 310 1. 00 27. 12 原子 1033 CD 1 I LE 131 3. 357 10. 540 79. 955 1. 00 27. 12 原子 1034 C ILE 131 0. 655 1 1. 475 75. 780 1. 00 30. 20 原子 1035 0 ILE 131 0. 271 12. 607 75. 493 1. 00 30. 20 原子 1036 N ARG 132 1. 094 10. 610 74. 869 1. 00 30. 22 原子 1037 CA ARG 132 1. 149 10. 943 73. 452 1. 00 30. 22 原子 1038 CB ARG 132 1. 653 9. 744 72. 649 1. 00 38. 82 原子 1039 CG ARG 132 1. 395 9. 844 71. 152 1. 00 38. 82 原子 1040 CD ARG 132 1 . 837 8. 584 70. 433 1. 00 38. 82 原子 1041 NE ARG 132 1. 578 8. 664 69. 003 1. 00 38. 82 原子 1042 CZ ARG 132 0. 370 8. 586 68. 441 1. 00 38. 82 原子 1043 NH 1 ARG 132 - 0. 718 8. 412 69. 185 1. 00 38. 82 原子 1044 NH2 ARG 132 0. 245 8. 714 67. 125 1. 00 38. 82 原子 1045 C ARG 132 - 0. 221 1 1. 359 72. 926 1. 00 30. 22 原子 1046 0 ARG 132 - 0. 356 12. 389 72. 271 1. 00 30. 22 原子 1047 N ARG 133 - 1. 236 10. 549 73. 213 1. 00 41. 63 原子 1048 CA ARG 133 -2. 593 10. 829 72. 757 1. 00 41. 63 原子 1049 CB ARG 133 -3. 498 9. 635 73. 059 1. 00 50. 13 原子 1050 CG ARG 133 一 4. 978 9. 972 73. 139 1. 00 50. 13 o o o o o o o o o o o o
Figure imgf000082_0001
Atom 1022 CB ASN 130-1.981 7.517 78.193 1.00 39.26 atom 1023 CG ASN 130 -2.935 6.328 78.185 1.00 39.26 atom 1024 0D 1 ASN 130-3 616 6.075 77.188 1., 00 39.26 atoms 1025 ND2 ASN 130 -3.005 5.610 79.301 1., 00 39.26 atoms 1026 C ASN 130-1.083 9.340 76 732 1.00 30.83 atom 1027 0 ASN 130-1 826 10.185 76. 230 1.00 30.83 atom 1028 NE 131 0.108 9.627 77.247 1.00 30.20 atom 1029 CA I and E 131 0.635 10.98 1 77.229 1.00 30.20 atoms 1030 CB I and E 131 2.061 1 1.008 77.807 1.00 27.12 atoms 1031 CG2 RE 131 2 740 12.339 77.485 1.00 27.12 atoms 1032 CG 1 I LE 131 2.003 10.728 79.310 1.00 27.12 atoms 1033 CD 1 I LE 131 3.357 540 10.79 955 1.00 27.12 atoms 1034 C ILE 131 0.655 1 1.475 75.780 1.00 30.20 atoms 1035 0 ILE 131 0.271 12.607 75.493 1.00 30.20 atoms 1036 N ARG 132 1.094 10.610 74.869 1.00 30.22 atoms 1037 CA ARG 132 1.149 10. 943 73.452 1.00 30.22 atoms 1038 CB ARG 132 1.653 9.744 72.649 1.00 38.82 atoms 1039 CG ARG 132 1.395 9.844 71.152 1.00 38.82 atoms 1040 CD ARG 132 1.837 8.584 70.433 1.00 38.82 atoms 1041 NE ARG 132 1.578 8.664 69.003 1.00 38.82 atoms 1042 CZ ARG 132 0.370 8.586 68.441 1.00 38.82 atoms 1043 NH 1 ARG 132-0.718 8 412 69.185 1.00 38.82 atom 1044 NH2 ARG 132 0.245 8.714 67.125 1.00 38.82 atom 1045 C ARG 132-0.221 1 1.359 72.926 1.00 30.22 atoms 1046 0 ARG 132-0.356 12.389 72.271 1.00 30.22 atoms 1047 N ARG 133-1.236 10. 549 73.213 1.00 41.63 atoms 1048 CA ARG 133 -2.593 10.829 72. 757 1.00 41.63 atom 1049 CB ARG 133 -3.498 9.635 73.059 1.00 50.13 atom 1050 CG ARG 133 1 4.978 9.972 73 . 139 1.00 50. 13 oooooooooooo
Figure imgf000082_0001
o 1— ( o o 1 ~ o 1— (o o 1 ~
—i to  —I to
o  o
• • •  • • •
o σ¾ o 1— t o  o σ¾ o 1—t o
o o  o o
o o o o oo o o σ¾  o o o o oo o o σ¾
o o o σ¾ i o  o o o σ¾ i o
oo o c^a σ) o  oo o c ^ a σ) o
) ~ 1 , , o o
Figure imgf000082_0002
) ~ 1,, oo
Figure imgf000082_0002
D D
- <c ~~ 1 ―" 1 1 ·_] -<c ~~ 1 ― "1 1 · _]
Q ェ an < -U < Q o o o o o o o o o o o o o o 屮 屮 屮 屮 rf 屮
Figure imgf000082_0003
Q an an <-U <Q oooooooooooooo
Figure imgf000082_0003
18 18
ιζ •IS 00 •ΐ 009 " 9 6 Z •Ϊ2 •ε - 6ST 311 0 80Π 士^ ιζ •ιε 00 •ΐ 9Z •89 ΖΖΖ '02 ιιζ •ε- 6£ΐ 311 3 ΖΟΠ 士^ ιζ • IS 00 • ΐ 009 "9 6 Z • Ϊ2 • ε-6ST 311 0 80Π ^^ ιζ • ιε 00 • ΐ 9Z • 89 ΖΖΖ '02 ιιζ • ε- 6 £ ΐ 311 3 士
S8 ■οε 00 •ΐ ΪΖ9 •69 8 ·8ΐ •ΐ 6SI 311 I( 90Π 士^S8 ■ οε 00 • ΐ ΪΖ9 • 69 8 · 8ΐ • ΐ 6SI 311 I (90Π ^^
£S •οε 00 ■ΐ 0^8 •69 O ^ •61 •0 6Π 311 TOD 90Π 士^£ S • οε 00 ■ ΐ 0 ^ 8 • 69 O ^ • 61 • 0 6Π 311 TOD 90Π ^^
£8 •οε 00 ■ΐ 0617 ■Z9 698 •61 ■0 - 6S1 311 Z 3 ton 士^£ 8 • οε 00 ■ ΐ 0617 ■ Z9 698 • 61 ■ 0-6S1 311 Z 3 ton ^
C8 'οε 00 •ΐ •89 62C •61 8C0 •ΐ - 6SI 311 83 son 士^ ιζ ■ιε 00 99ε •69 SZl 'OS SZ 'Ζ- 6ST ΗΊΙ vo ΖΟΠ 士^C8 'οε 00 • ΐ • 89 62C • 61 8C0 • ΐ-6SI 311 83 son ^^ ιζ ■ ιε 00 99ε • 69 SZl' OS SZ 'Ζ- 6ST ΗΊΙ vo ΖΟΠ ΖΟΠ ^
\Ζ •ΐε 00 •ΐ 8TS Ό 9 •61 698 'Ζ- 6SI 311 N ΐθΐΐ 士^\ Ζ • ΐε 00 • ΐ 8TS Ό 9 • 61 698 'Ζ- 6SI 311 N ΐθΐΐ 士 ^
8 ·8ε 00 "ΐ οζο 'ΐΖ 992 -\z Ol · - 8£ΐ SA1 0 ΟΟΐΐ 士^8 · 8ε 00 "ΐ οζο 'ΐΖ 992-\ z Ol ·-8 £ ΐ SA1 0 士士 ^
8^ '8C 00 •I LZ 'ΤΖ Ol \ L ■ε - 8S1 SAT 3 6601 士^8 ^ '8C 00 • I LZ' ΤΖ Ol \ L ■ ε-8S1 SAT 3 6601
SO •9 00 'ΐ 6 !! 906 •81 920 'τ- 8S1 SAT ZN 8601 士≤ίSO • 9 00 'ΐ 6! ! 906 • 81 920 'τ-8S1 SAT ZN 8601 ≤ί
SO 00 •ΐ 6S9 frS9 ■81 9SZ •2- 8S1 SAT 33 601 士^SO 00 • ΐ 6S9 frS9 ■ 81 9SZ • 2-8S1 SAT 33 601 ^^
SO •91/ 00 •ΐ LLI '9Z 068 ·6ΐ 98 ·ε_ 8S1 SAT ( 9601 士^SO • 91/00 • ΐ LLI '9Z 068 · 6ΐ 98 · ε_ 8S1 SAT (9601 ^
SO '9 00 •ΐ ε 6 f\9 ·6ΐ ZZ£ ■ - 8S1 SAT 03 S601 士^SO '9 00 • ΐ ε 6 f \ 9 · 6ΐ ZZ £ ■-8S1 SAT 03 S601 ^^
90 •9 00 •ΐ 689 •ε 09 '6ΐ 9 •ε- 8C1 SAT 93 60ΐ 士^90 • 9 00 • ΐ 689 • ε 09 '6ΐ 9 • ε- 8C1 SAT 93 60ΐ
8 ·8£ 00 "ΐ Z 'ZL S6Z ·6ΐ Zf2 ' - 8ει SAT V3 C60T 士8 · 8 £ 00 "ΐ Z 'ZL S6Z · 6ΐ Zf2'-8ει SAT V3 C60T
·8ε 00 •ΐ 800 •ZL Π6 "Ζΐ IZf ' - 8ει SAT N Ζ6 \ 士^· 8ε 00 • ΐ 800 • ZL Π6 "Ζΐ IZf '-8ει SAT N Ζ6 \ ^^
S8 00 'ΐ Π9 •0丄 S9C ·8ΐ Zl\ •9- ετ SAT 0 ΐ60ΐ 士^S8 00 'ΐ Π9 • 0 丄 S9C · 8ΐ Zl \ • 9- ετ SAT 0 ΐ60ΐ ^^
C8 "31 00 "ΐ Ζ80 Ί 6SS ' ΐ HC •s - ζετ SA1 3 0601 士^C8 "31 00" ΐ Ζ80 Ί 6SS 'ΐHC • s-ζετ SA1 3 0601 ^^
L - ι 00 •ΐ S0 ' Ί 6S8 •εΐ Z8S •6 - ετ SAT ZN 680ΐ 士^L-ι 00 • ΐ S0 'Ί 6S8 • εΐ Z8S • 6-ετ SAT ZN 680ΐ ^^
Z9 - ι 00 "ΐ LOL 'εζ S8 6SZ •8 - ζετ SAT 33 8801 士^ S ■ ι 00 •ΐ 60, •εζ SZ •Η 9Z Ί- ζετ SAT CD 801 士^ 9 - ι 00 'ΐ SS8 'ZL 0Z£ 'ST fO •9 - SAT 03 9801 士^Z9-ι 00 "ΐ LOL 'εζ S8 6SZ • 8-ζετ SAT 33 8801 ^^ S ■ ι 00 • ΐ60, • εζ SZ ZL 0Z £ 'ST fO • 9-SAT 03 9801 ^^
1 - ι 00 •ΐ 92G "ΐΖ οεε "9ΐ 6 •9_ ιζι SAT 83 2801 士^1-ι 00 • ΐ 92G "ΐΖ οεε" 9ΐ 6 • 9_ ιζι SAT 83 2801 ^^
C8 00 •ΐ •0 60ΐ '91 Sl ζετ SAT V3 刚 I 士C8 00 • ΐ • 0 60ΐ '91 Sl ζετ SAT V3 刚 I
C8 •s 00 "Τ 0S8 "ΟΖ S "91 020 'ト ει SAT N S801 士^C8 • s 00 "Τ 0S8" ΟΖ S "91 020 'g ει SAT N S801 ^^
9 ·\ 00 •ΐ 9S0 •69 90S "91 ZLI •ε - 9ετ ilHl 0 ZSO\ 士^9 \ 00 • ΐ 9S0 • 69 90S "91 ZLI • ε-9ετ ilHl 0 ZSO \ ^^
9 ' 00 •ΐ ,00 ΌΖ L •gi οεο •ε - nm 3 ΐ80ΐ 士^9 '00 • ΐ, 00 ΌΖ L • gi οεο • ε-nm 3 ΐ80ΐ ^^
9S •^ε 00 •ΐ •89 698 •π 09 •0 - 9ει nm ZQd 0801 士^ £9£0/00df/I3d i8lSZ,/00 OAV 28 9S • ^ ε 00 • ΐ • 89 698 • π 09 • 0-9ει nm ZQd 0801 k ^ £ 9 £ 0 / 00df / I3d i8lSZ, / 00 OAV 28
9ΐ "92 00 •I OLZ S 0 ■zz Ζ6ΐ ■ - ε ΐ ΝΊΟ 03 ζεπ 士^ 9ΐ "92 00 • I OLZ S 0 ■ zz Ζ6ΐ ■-ε ΐ ΝΊΟ 03 ζεπ 士 ^
-8C 00 ■ΐ 8 8 ■ 9 ΐθ^ ' - S ΝΊΟ V3 士^-8C 00 ■ ΐ 8 8 ■ 9 ΐθ ^ '-S ΝΊΟ V3
"8C 00 •ΐ •99 LZ ■£Z Ζ99 'V- S ΝΊΟ N sen 士^"8C 00 • ΐ • 99 LZ ■ £ Z Ζ99 'V-S ΝΊΟ N senshi ^
•S 00 •ΐ •99 269 ZOO •S - Zfl dSV 0 士^• S 00 • ΐ • 99 269 ZOO • S-Zfl dSV 0 ^^
6V 00 •ΐ Ζ86 •99 L6f - z 098 'ト Z l dSV 3 εεπ 士^6V 00 • ΐ Ζ86 • 99 L6f-z 098 'G Z l dSV 3 εεπ 士 ^
9£ '0 00 •ΐ 280 ΊΖ 9fZ ' Z "2- Z \ dSV 200 ζεπ 士^9 £ '0 00 • ΐ 280 ΊΖ 9fZ' Z "2-Z \ dSV 200 ζεπ 士 ^
9S •0 00 ■ΐ 08ΐ 'ΐ Z9S 66S 'ト Zfl dSV ταο τεπ 士^9S • 0 00 ■ ΐ 08ΐ 'ΐ Z9S 66S' G Zfl dSV ταο τεπ 士 ^
9S •017 00 •ΐ ZS9 ΌΖ 088
Figure imgf000084_0001
dSV 03 οεπ 士^
9S • 017 00 • ΐ ZS9 ΌΖ 088
Figure imgf000084_0001
dSV 03 οεπ 士 ^
9C •O 00 "ΐ 90ΐ •69 - z OIS ■e- z \ dSV 93 62ΐΐ 士^9C • O 00 "ΐ 90ΐ • 69-z OIS ■ e-z \ dSV 93 62ΐΐ
6^ ■£ 00 •ΐ OS •89 6L£ - z ΐΐ6 'ト Zfl dSV V3 szw 士¾6 ^ ■ £ 00 • ΐ OS • 89 6L £-z ΐΐ6 'G Zd dSV V3 szw ¾
6 •£ 00 •I 88 •89 9GI 'ZZ 8i^S •s- z \ dSV N LZU 士^6 • £ 00 • I 88 • 89 9GI 'ZZ 8i ^ S • s-z \ dSV N LZU ^^
L 00 •ΐ 098 "Ζ9 0C9 - Z ΐ6 I mo 0 92ΐΐ 士^L 00 • ΐ 098 "Ζ9 0C9-Z ΐ6 I mo 0 92ΐΐ ^^
L\ £ 00 'ΐ LZ •89 298 Ζ Lら L •9 - ΐΐ/ΐ mo 0 士^L \ £ 00 'ΐ LZ • 89 298 Ζ L et L • 9-ΐΐ / ΐ mo 0 ^^
81 "9S 00 •ΐ 299 •ζι 9 \ '61 ζοι '6 - \ \ mo 230 ζ\\ 士^81 "9S 00 • ΐ 299 • ζι 9 \ '61 ζοι '6-\ \ mo 230 ζ \\ 士 ^
81 •9S 00 •ΐ οιε "CZ 196 •02 880 •8- I mo 130 士^81 • 9S 00 • ΐ οιε "CZ 196 • 02 880 • 8- I mo 130 ^^
81 '9S 00 •ΐ 6ε 'ΖΙ οοε •OS 9 9 •8 - ΐΗ mo 03 ZZU 士^81 '9S 00 • ΐ 6ε' ΖΙ οοε • OS 9 9 • 8-ΐΗ mo 03 ZZU ^^
81 "99 00 •ΐ no •U εεβ "OC 68Z '8- \ \ mo 03 Τ2ΐΐ 士^81 "99 00 • ΐ no • U εεβ" OC 68Z '8- \ \ mo 03 Τ2ΐΐ 士 ^
ST "99 00 'ΐ Ζ19 '0 ■\z L6f ΐ mo 93 02ΐΐ 士^ST "99 00 'ΐ Ζ19' 0 ■ \ z L6f ΐ mo 93 02ΐΐ ^^
L '22 00 ■I 66 •89 LZ 9C£ ' - ηι mo V3 6ΐΐΐ 士^ l 'ZZ 00 •ΐ 66S •89 "02 ZO ■9- m mo N 8ΐΐΐ 士^L '22 00 ■ I 66 • 89 LZ 9C £ '-ηι mo V3 6ΐΐΐΐΐΐ ^ l' ZZ 00 • ΐ 66S • 89 "02 ZO ■ 9-m mo N 8ΐΐΐ 士 ^
TO 00 •ΐ S8C •99 828 ■02 S99 ·9 - OH SAT 0 ΐΐΐ 士^TO 00 • ΐ S8C • 99 828 ■ 02 S99 · 9-OH SAT 0 ^ 士 ^
TO • ε 00 •ΐ ΖΖΖ · 9 ZZZ •OS 9SI •9_ SAT 3 9ΐΐΐ 士^TO • ε 00 • ΐ ΖΖΖ · 9 ZZZ • OS 9SI • 9_ SAT 3 9ΐΐΐ ^ ^
66 •09 00 •ΐ SOS "C9 S6Z - \ 6 0 'ト O l SAT ZN 9ΐΐΐ 士^66 • 09 00 • ΐ SOS "C9 S6Z-\ 6 0 'to Ol SAT ZN 9ΐΐΐ ^^
66 •09 00 •ΐ 6^6 •S9 SC9 •SI 90S •S - OH SAT 33 ΐΐ 士^66 • 09 00 • ΐ 6 ^ 6 • S9 SC9 • SI 90S • S-OH SAT 33 士士 ^
66 '09 00 •ΐ S6I '99 Z9f •91 888 'V- 0 ΐ SAT αο TH 士^66 '09 00 • ΐ S6I '99 Z9f • 91 888 'V- 0 ΐ SAT αο TH ^^
66 •09 00 •ΐ Ϊ9Ζ •S9 6VI "Ζΐ ΐ •9 - OH SAT 03 2ΐΐΐ 士^66 • 09 00 • ΐ Ϊ9Ζ • S9 6VI "Ζΐ ΐ • 9-OH SAT 03 2ΐΐΐ
66 •09 00 •ΐ ΐΐΐ 'Z9 9L 'Ζΐ 898 •S - 0 ΐ SAT QD ΐΐΐΐ 士^66 • 09 00 • ΐ ΐΐΐ 'Z9 9L' Ζΐ 898 • S-0 ΐ SAT QD 士士 ^
TO 00 •ΐ 890 "Ζ9 SOT ·6ΐ 6ΖΙ "9- 0 ΐ SAT VD Οΐΐΐ 士^TO 00 • ΐ 890 "Ζ9 SOT · 6ΐ 6ΖΙ" 9-0 ΐ SAT VD Οΐΐΐ 士 ^
TO ■ζε 00 •ΐ 180 •89 L l ·6ΐ LLO 'ト SAT N 60ΐΐ 士^ £9£0/00df/IDd[ Z8ISZ./00 OA 28 TO ■ ζε 00 • ΐ 180 • 89 L l · 6ΐ LLO 'T SAT N 60ΐΐ ^^ £ 9 £ 0 / 00df / IDd [Z8ISZ./00 OA 28
•ιε 00 ■ΐ •S9 LZ •8 S9 'ト 1 \ N 99Π 士^ • ιε 00 ■ ΐ • S9 LZ • 8 S9 'ト 1 \ N 99Π ^^
86 00 •ΐ 9 IZf '6Z 60 ' - 9 I 入 1。 0 S9H 士^86 00 • ΐ 9 IZf '6Z 60'-9 I Input1. 0 S9H ^^
86 •LZ 00 •ΐ '^9 822. •8Z 8 'ト 9Η no 3 Ι'θΐΐ 士^86 • LZ 00 • ΐ '^ 9 822. • 8Z 8' to 9Η no 3 Ι'θΐΐ ^^
86 •LZ 00 •ΐ 6CS Έ9 OOZ -82 C91 •9 - 9Η ΑΊΟ V3 S9H 士^86 • LZ 00 • ΐ 6CS Έ9 OOZ -82 C91 • 9-9Η ΑΊΟ V3 S9H
86 'LZ 00 •ΐ Z f - 9 90 'LZ 8S6 •9- 9^1 人 Ί。 N 29Π 士^86 'LZ 00 • ΐ Z f-9 90' LZ 8S6 • 9-9 ^ 1 person Ί. N 29Π
69 'ZZ 00 ■ΐ 8E6 80ΐ •62 9 •8 - S mo 0 19ΐΐ 士^69 'ZZ 00 ■ ΐ 8E6 80ΐ • 62 9 • 8-S mo 0 19ΐΐ ^^
6S '22 00 •ΐ 8Z0 •S9 εεβ •LZ 66 ' ί- SH mo 3 09ΐΐ 士^6S '22 00 • ΐ 8Z0 • S9 εεβ • LZ 66 'ί- SH mo 3 09ΐΐ ^^
28 S 00 ,ΐ S16 •69 SI9 "82 81 •8 - S mo 230 69Π 士^28 S 00, ΐ S16 • 69 SI9 "82 81 • 8-S mo 230 69Π
28 •^9 00 'ΐ L "OZ 629 '92 sn •8 - SH mo ΪΗΟ 89Π 士^28 • ^ 9 00 'ΐ L "OZ 629 '92 sn • 8-SH mo ΪΗΟ 89Π ^^
Z8 •t^ 00 •ΐ 8 8 •69 ZLZ •LZ s "8- S mo CD L 11 士^Z8 • t ^ 00 • ΐ 8 8 • 69 ZLZ • LZ s "8- Smo CD L 11 ^^
ZS S 00 •I t^s •89 299 ■9Z e6 ■8- S ΐ mo 03 99Π 士^ZS S 00 • It ^ s • 89 299 ■ 9Z e6 ■ 8- S ΐ mo 03 99Π ^^
ZS ■ 00 'ΐ "Z9 08^ 'LZ 90 '8 - mo 93 S9U 士^ZS ■ 00 'ΐ "Z9 08 ^' LZ 90 '8-mo 93 S9U ^^
6S 'ZZ 00 'ΐ 620 •99 020 'LZ ■8 - SH mo V3 sn 士^6S 'ZZ 00' ΐ 620 • 99 020 'LZ ■ 8-SH mo V3 sn ^
6S 00 •ΐ H8 "99 9ΐ9 •SS 0 •8 - S mo N 士^6S 00 • ΐ H8 "99 9ΐ9 • SS 0 • 8-S mo N ^^
08 ' 00 •ΐ S88 "S9 Z 9 "92 o s •6 - \ SAT 0 Z2W 士08 '00 • ΐ S88 "S9 Z 9" 92 o s • 6-\ SAT 0 Z2W
08 ' 00 •ΐ οεζ ' 9 286 - z 0^8 •8 - m SAT 3 1911 士^08 '00 • ΐ οεζ' 9 286-z 0 ^ 8 • 8-m SAT 3 1911 ^^
ZZ "OZ 00 •ΐ SI6 9 Z8S •OS ZZ6 'Π - s人 Ί ZN 09ΐΐ 士ZZ "OZ 00 • ΐ SI6 9 Z8S • OS ZZ6 'Π-s people Ί ZN 09ΐΐ
ZZ "OZ 00 •ΐ HS • 9 81S 0 0 •εト SAT 33 6 ΐΐ 士^ZZ "OZ 00 • ΐ HS • 9 81S 0 0 • ε G SAT 33 6 ^^
ZZ •oz 00 •ΐ 9ZZ "S9 609 ■\z 689 ·π_ n\ SAT CD 8 ΐΐ 士^ZZ • oz 00 • ΐ 9ZZ "S9 609 ■ \ z 689 · π_ n \ SAT CD 8
ZZ "OZ 00 •ΐ III LZ9 'ZZ Z08 •01 - ΐ S入 Ί 03 L U 士^ZZ "OZ 00 • ΐ III LZ9 'ZZ Z08 • 01-入 S Ί 03 L U ^
ZZ "OZ 00 •I ZSZ "99 169 'ZZ 90V •6 - H SAT eo 9f\\ 士^ZZ "OZ 00 • I ZSZ" 99 169 'ZZ 90V • 6-H SAT eo 9f \\
08 ' 00 "I 6 9 ' 9 ITS ΈΖ Z "8- m SAT V3 士^08 '00 "I 6 9' 9 ITS ΈΖ Z" 8-m SAT V3 ^
08 ' 00 Ί 186 ' 9 ZZ 090 Ί- ΐ SAT N m\ 士^08 '00 Ί 186 '9 ZZ 090 Ί- ΐ SAT N m
If 00 •ΐ Z9Z •S9 Z - z Ϊ9Ϊ •9 - ε^ι ΝΊΟ 0 士^If 00 • ΐ Z9Z • S9 Z-z Ϊ9Ϊ • 9-ε ^ ι ΝΊΟ 0 士 ^
·8ε 00 •ΐ 6Z£ 9 L2L 320 •9- ε ΐ ΝΊΟ 3 ZU\ 士^· 8ε 00 • ΐ 6Z £ 9 L2L 320 • 9- ε ΝΊΟ ΝΊΟ 3 ZU \
91 00 •ΐ 8 ■09 Z£9 '02 698 •ε - εΗ ΝΊΟ 23N ΐ ΐ 士^91 00 • ΐ 8 ■ 09 Z £ 9 '02 698 • ε-εΗ ΝΊΟ 23N ΐ 士士 ^
91 ■9ε 00 •ΐ 18 "29 299 •61 £98 ·ε_ ε ΐ N10 Ϊ30 Ο^ΐΐ 士^91 ■ 9ε 00 • ΐ 18 "29 299 • 61 £ 98 · ε_ ε ΐ N10 Ϊ30 Ο ^ ΐΐ 士 ^
91 ·9ε 00 ■ΐ Z \ •S9 S8S ΌΖ £90 ' - εΗ N10 CD 6εΐΐ 士^91 · 9ε 00 ■ ΐ Z \ S9 S8S ΌΖ £ 90 '-εΗ N10 CD 6εΐΐ 士 ^
91 '9ε 00 •ΐ 66 •S9 898 -\z 1^89 ' - N10 03 82Π 士^£9e0/00df/X3d 18XSZ./00 OAV 8 91 '9ε 00 • ΐ 66 • S9 898-\ z 1 ^ 89'-N10 03 82Π ^^ 9e0 / 00df / X3d 18XSZ./00 OAV 8
86 •19 00 •ΐ ST6 •ss '\Ζ fZ •ε - OST mo 230 S6H 士^ 86 • 19 00 • ΐ ST6 • ss' \ Ζ fZ • ε-OST mo 230 S6H ^^
86 Ί9 00 •ΐ 980 •9S ειε ·6ΐ 8 6 - OS! mo 130 ^6ΐΐ 士^86 Ί9 00 • ΐ 980 • 9S ειε · 6ΐ 8 6-OS! Mo 130 ^ 6ΐΐ 士 ^
86 •19 00 ■ΐ 09, •9S 90S "02 268 - 09ΐ mo (D 士^86 • 19 00 ■ ΐ09, • 9S 90S "02 268-09ΐ mo (D ^^
86 •19 00 •ΐ 129 ' S 628 "02 186 •ΐ - 03ΐ mo 03 zen 士^86 • 19 00 • ΐ 129 'S 628 "02 186 • ΐ-03ΐ mo 03 zen ^^
86 ·ΐ9 00 •ΐ 096 " 9 CS6 •ΐ - OS! mo 93 Ϊ6Π 士^86 · ΐ9 00 • ΐ 096 "9 CS6 • ΐ-OS! Mo 93 Ϊ6Π 士 ^
IS •s^ 00 'ΐ 91£ •6S Z09 6ΐε 'ΐ- OST mo V3 06Π 士^IS • s ^ 00 'ΐ 91 £ • 6S Z09 6ΐε' ΐ- OST mo V3 06Π 士 ^
19 00 ■ΐ 199 "69 ΟΐΟ - ζ 8IS -ΐ- OS! mo U 68ΐΐ 士^ ιζ • 00 •ΐ 9ΖΖ •19 280 980 •0 6H 0 88Π 士^19 00 ■ ΐ 199 "69 ΟΐΟ-ζ 8IS -ΐ- OS! Mo U 68ΐΐ ^^ ιζ • 00 • ΐ 9ΖΖ • 19 280 980 • 0 6H 0 88Π 士 ^
IL • 00 'ΐ 269 •09 SC9 ' 908 •0 - oad D Ζ8ΐΐ 士¾ S '62 00 -ΐ £66 ■09 ιζ 'LZ IZ8 •0 6H OHd 03 98ΐΐ 士^IL • 00 'ΐ 269 • 09 SC9' 908 • 0-oad D Ζ8ΐΐ ΐΐS '62 00 -ΐ £ 66 ■ 09 ιζ 'LZ IZ8 • 0 6H OHd 03 98ΐΐ ^^
SG -6C 00 Ί £90 •09 6Z0 'LZ 6Z "0- 6H OHd 93 S8U 士 S ΐΖ ' 00 •I 6VS •09 60 •92 Ζ9Ϊ •ΐ- 6V\ OHd VD ΐ'δΐΐ 士^ se -6C 00 •ΐ LZZ '29 82S 'LZ 221 •0 6H oad Q3 εδΐΐ 士^SG -6C 00 Ί £ 90 • 09 6Z0 'LZ 6Z “0-6H OHd 93 S8U SS ΐΖ '00 • I 6VS • 09 60 • 92 Ζ9Ϊ • ΐ- 6V \ OHd VD ΐ'δΐΐ ^^ se -6C 00 • ΐ LZZ '29 82S 'LZ 221 • 0 6H oad Q3 εδΐΐ ^^
\L • 00 •ΐ '29 9 '92 ZLS •0 - 6 ΐ oad N Ζ8Π 士^\ L • 00 • ΐ '29 9 '92 ZLS • 0-6 ΐ oad N Ζ8Π 士 ^
LZ '8C 00 •ΐ ιζ "C9 69S - 8H mi 0 18ΐΐ 士 SiLZ '8C 00 • ΐ ιζ "C9 69S-8H mi 0 18ΐΐ
LZ •8C 00 'ΐ 9ΖΖ •S9 IT8 LIS •ΐ- 8fl 311 3 08Π 士^ 0 '62 00 'ΐ Π8 "19 Οΐ - z OL •0 - 8H 311 ταο 6Ζ.Π 士^LZ • 8C 00 'ΐ 9ΖΖ • S9 IT8 LIS • ΐ- 8fl 311 3 08Π ^^ 0 '62 00' ΐ Π8 "19 Οΐ -z OL • 0-8H 311 ταο 6Ζ.Π ^^
•62 00 •I ■99 L8Z ' Z SOS •0 - 8 ΐ H1I 103 8Ζΐΐ 士^ 0 '62 00 ■ΐ 9 Ζ0\ ' Z •0 8 ΗΊΙ 203 Ιΐ 士^• 62 00 • I ■ 99 L8Z 'Z SOS • 0-8 ΐ H1I 103 8 士 ^ 0 '62 00 ■ ΐ 9 Ζ0 \' Z • 0 8 ΗΊΙ 203 士 ^
•6Z 00 •I I9f 'S9 IC6 ' Z ZI6 •0 - 8H mi 93 9ΖΠ 士^• 6Z 00 • I I9f 'S9 IC6' Z ZI6 • 0-8H mi 93 9ΖΠ ^
LZ •8S 00 ■ΐ 899 9 ,ΙΖ •9Z ZS\ •ΐ - 311 VD s n 士^LZ • 8S 00 ■ ΐ 899 9, ΙΖ • 9Z ZS \ • ΐ-311 VD sn n ^
LZ ■8ε 00 ■I 6ΖΖ •S9 S96 "92 382 '7>- fl 311 N 士^ O ■ιε 00 •ΐ LZZ '99 6 '82 9\Z •ΐ - LVl ΩΗΊ 0 εζπ 士^ 0 '1C 00 •ΐ ΐ8 ■S9 692 ■8S HZ "2- Lf\ ΠΗΊ 3 ZLU 士^LZ ■ 8ε 00 ■ I 6ΖΖ • S9 S96 "92 382 '7>-fl 311 N N ^ O ■ ιε 00 • ΐ LZZ '99 6 '82 9 \ Z • ΐ-LVl ΩΗΊ 0 εζπ N ^ 0' 1C 00 • ΐ ΐ8 ■ S9 692 ■ 8S HZ "2- Lf \ ΠΗΊ3 ZLU ^^
LI 00 •ΐ LZf •89 8SZ "OS 6Z ' - LVl Ω31 ZQD \L\\ 士^LI 00 • ΐ LZf • 89 8SZ "OS 6Z '-LVl Ω31 ZQD \ L \\ ^^
LI 00 'ΐ Z S '69 869 '82 8TS ' - L l Π3Ί \Q3 ΟΖΐΐ 士^LI 00 'ΐ Z S '69 869 '82 8TS'-L l Π3Ί \ Q3 士士 ^
LI ■εε 00 •ΐ 6£ •89 O Z '6Z 19S ' - H ΩΗΊ 03 69ΐΐ 士^LI ■ εε 00 • ΐ 6 £ • 89 O Z '6Z 19S'-H ΩΗΊ 03 69ΐΐ ^^
11 •εε 00 •ΐ 069 •Z9 8Ζ •82 90S •ε - L 031 93 89ΐΐ 士^11 • εε 00 • ΐ 069 • Z9 8Ζ • 82 90S • ε-L 031 93 89ΐΐ
•ιε 00 •ΐ 80ΐ •99 968 '82 \ •ε— L l Π3Τ V3 Ζ9Π 士^ €9εθ/00<ΙΓ/Ι3«Ι Z8XSL/00 Ο 98 • ιε 00 • ΐ 80ΐ • 99 968 '82 \ • ε— L l Π3Τ V3 Ζ9Π 士 ^ € 9εθ / 00 <ΙΓ / Ι3 «Ι Z8XSL / 00 Ο 98
9t '61 00 •I S2I 'Z9 SZ9 ■LI 091 ■0- SI SA1 3D ZZ\ 士^ 9t '61 00I S2I 'Z9 SZ9 ■ LI 091 ■ 0- SI SA1 3D ZZ
9ΐ •6Z 00 •ΐ C "ZS 89Z ' ΐ 8ZZ •I Ρ51 S入 Ί CD ZZ\ 士^9ΐ • 6Z 00 • ΐ C "ZS 89Z 'ΐ 8ZZ • I Ρ51 S input Ί CD ZZ \ ^^
00 •ΐ OLZ ■6S Zl 'LI 911 •I SA1 03 ZZZ\ 士^00 • ΐ OLZ 6S Zl 'LI 911 • I SA1 03 ZZZ
91 6Z 00 'ΐ 668 '69 6 'LI 6S9 V 1 SA1 93 \ZZ\ 士^91 6Z 00 'ΐ 668 '69 6' LI 6S9 V 1 SA1 93 \ ZZ \
L6 ·6ε 00 'ΐ ζ "19 丄 SO '81 191 SA1 V3 OZZ\ 士^L6 6ε 00 'ΐ ζ "19 丄 SO '81 191 SA1 V3 OZZ \
16 '6C 00 •ΐ 8 8 •19 \1 •61 S68 •I ΐ SA1 N 6Ϊ2Ϊ 士^16 '6C 00 • ΐ 8 8 • 19 \ 1 • 61 S68 • I ΐ SA1 N 6Ϊ2Ϊ ^^
89 • 00 •I ΟΐΟ •1/9 oz •81 S88 •ΐ £91 V1V 0 8ΐ2ΐ 士^89 • 00 • I ΟΐΟ • 1/9 oz • 81 S88 • ΐ £ 91 V1V 0 8ΐ2 ΐ ^
89 'PZ 00 •I οετ •£9 Z '61 SS9 'ΐ 29ΐ V1V 3 L\Z\ 士^89 'PZ 00 • I οετ • £ 9 Z '61 SS9' ΐ 29ΐ V1V 3 L \ Z \
SI '62 00 •ΐ 98ΐ "S9 98 ■oz 28^ •0 - CS1 V1V 93 9121 士^SI '62 00 • ΐ 98ΐ “S9 98 ■ oz 28 ^ • 0-CS1 V1V 93 9121 ^^
89 00 •ΐ ZL •S9 188 '02 ΖΪΟ •ΐ S9I V1V VD S ΐ 士^89 00 • ΐ ZL • S9 188 '02 ΖΪΟ • ΐ S9I V1V VD S
89 · ε 00 •ΐ 8 9 "29 Z06 ■\z 9S9 •ΐ CS1 V1V ZI 士^89 · ε 00 • ΐ 8 9 "29 Z06 ■ \ z 9S9 • ΐ CS1 V1V ZI
19 •0 00 •I 66 •£9 6L •\z 86S •ε ZST dSV 0 SIS! 士^19 • 0 00 • I 66 • £ 9 6L • \ z 86S • ε ZST dSV 0 SIS!
19 '0V 00 •ΐ 0Τ6 •Z9 ZSZ ■zz 806 Ζ \ dSV 3 Z\Z\ 士^19 '0V 00 • ΐ 0Τ6 • Z9 ZSZ ■ zz 806 Ζ \ dSV 3 Z \ Z \
L6 'Z9 00 'ΐ S£ '29 6LZ '92 Z 6 Ζ 1 dSV Z O Π2ΐ 士^L6 'Z9 00' ΐ S £ '29 6 LZ '92 Z 6 Ζ 1 dSV Z O Π2ΐ
L<o 'Z9 00 'ΐ 09 •09 891 '92 09 •ε Ζ3ΐ dSV ιαο o 士^L <o 'Z9 00' ΐ 09 • 09 891 '92 09 • ε Ζ3ΐ dSV ιαο o 士 ^
L6 'Z9 00 •ΐ 598 •Ϊ9 8 ■ Z IS6 •ε ZS1 dSV 03 6021 士^L6 'Z9 00 • ΐ 598 • Ϊ9 8 ■ Z IS6 • ε ZS1 dSV 03 6021 ^^
L6 " S 00 "ΐ Zf9 '29 9CZ ■fZ dSV ao 8021 士^L6 "S 00" ΐ Zf9 '29 9CZ fZ dSV ao 8021 ^^
19 'Ο^ 00 'ΐ 866 •Ϊ9 99S •ε Ζ \ dSV V3 LOZ\ 士^19 'Ο ^ 00' ΐ 866 • Ϊ9 99S • ε Ζ \ dSV V3 LOZ \ ^^
19 'OV 00 •ΐ S89 •09 9ΐε Z8 'ζ Ζ 1 dSV N 90 士^19 'OV 00 • ΐ S89 • 09 9ΐε Z8' ζ Ζ 1 dSV N 90 ^^
61 I 00 •ΐ ιετ ■09 ■\z 6Z8 •ε Ι9ΐ dSV 0 9021 士^61 I 00 • ΐ ιετ ■ 09 ■ \ z 6Z8 • ε Ι9ΐ dSV 0 9021 ^^
61 I ν 00 •ΐ •6S 960 'C 1ST dSV 3 QZ 士^61 I ν 00 • ΐ • 6S 960 'C 1ST dSV 3 QZ ^
90 69 00 'ΐ Ζΐ8 "9S εεο 'ZZ Z0 •ζ ΐ9ΐ dSV ZQO OS! 士^90 69 00 'ΐ Ζΐ8 "9S εεο' ZZ Z0 • ζ ΐ9ΐ dSV ZQO OS!
90 9 00 ΐ ΖΖΖ "S9 988 'ZZ OSO 1ST dSV ιαο 2021 士^90 9 00 ΐ ΖΖΖ "S9 988 'ZZ OSO 1ST dSV ιαο 2021 士 ^
90 9 00 •ΐ 880 '9S ■£Z OU ΐ9ΐ dSV ΐΟΖΐ 士^90 9 00 • ΐ 880 '9SS £ Z OU ΐ9ΐ dSV 士士 ^
90 9 00 'ΐ ZIS "ZS Z Z •zz SSI •ε ΐ9ΐ dSV ao OOSI 士^90 9 00 'ΐ ZIS "ZS Z Z • zz SSI • ε ΐ9ΐ dSV ao OOSI ^^
61 ' 00 •ΐ 98, "8S o ε ■zz Z6£ "2 ΐ3ΐ dSV V3 66Π 士^61 '00 • ΐ 98, "8S o ε ■ zz Z6 £" 2 ΐ3ΐ dSV V3 66Π ^^
6T ' 00 •ΐ 6^5 "8S 9L •zz 66 •0 1ST dSV N 86Π 士^6T '00 • ΐ 6 ^ 5 "8S 9L • zz 66 • 0 1ST dSV N 86Π
19 ' 00 •ΐ TOO •09 lf\ Z2f •0 OST mo 0 6Π 士^19 '00 • ΐ TOO • 09 lf \ Z2f • 0 OST mo 0 6Π ^^
19 •St 00 •I 9ie "63 901 -zz LZl •0 05ΐ mo D 96Π 士^ £9€0/00df/lDd r8IS./00 OAV o o
Figure imgf000088_0001
19 • St 00 • I 9ie “63 901 -zz LZl • 0 05ΐ mo D 96Π ^^ £ 9 € 0 / 00df / lDd r8IS./00 OAV oo
Figure imgf000088_0001
! ·· oi o σί o o o o σ> o  ! Oi o σί o o o o σ> o
O o o O o n o  O o o O o no
* *  * *
o  o
o oo o
- > -' UJ  ->-'UJ
-< , 1 o o  -<, 1 o o
Q o <  Q o <
o 乙 u リ o o o o o  o Otsu u o o o o o o
屮 屮 屮 屮 十 屮 屮 屮 屮 屮 屮 屮 屮 Bubble Bubble Bubble Bubble Bubble Bubble Bubble Bubble
Z8 Z8
•O 00 'ΐ 8 ■L9 99 •Οΐ oo •9 ΐ9ΐ N10 V3 2821 士^ • O 00 'ΐ 8 ■ L9 99 • Οΐ oo • 9 ΐ9ΐ N10 V3 2821 ^^
'0 00 •ΐ 9C2 •89 9S0 'ΖΙ 9 8 •S ΐ9ΐ ΊΟ N Ϊ82Ϊ 士^'0 00 • ΐ 9C2 • 89 9S0' ΖΙ 9 8 • S ΐ9ΐ ΊΟ N Ϊ82Ϊ ^^
91 'ζε 00 'ΐ 98ε OA 09 'ΐΐ ΟΖΖ ■9 091 311 0 0821 士^91 'ζε 00' ΐ 98ε OA 09 'ΐΐ ΟΖΖ ■ 9 091 311 0 0821
91 00 •ΐ '69 ε '2ΐ OfO •9 091 311 3 6LZI 士^91 00 • ΐ '69 ε '2ΐ OfO • 9 091 311 3 6LZI
■ 00 ■ΐ 9 6 ΌΖ 8C9 ■91 Ζ98 - 09ΐ 3ΊΙ 103 8LZI 士^■ 00 ■ ΐ 9 6 ΌΖ 8C9 ■ 91 Ζ98-09ΐ 3ΊΙ 103 8LZI
' 00 "ΐ οει 'ΐΖ '9ΐ εζτ 09ΐ 311 103 LLZ\ 士^'00 "ΐ οει' ΐΖ '9ΐ εζτ 09ΐ 311 103 LLZ \ 士 ^
' 00 •τ
Figure imgf000089_0001
"OZ no Τ •ε 091 311 203 9 Z1 士^
'00 • τ
Figure imgf000089_0001
"OZ no Τ • ε 091 311 203 9 Z1
Zf ■\v 00 •ΐ 196 ■69 69C -\ 09ΐ 311 93 2LZI 士^Zf ■ \ v 00 • ΐ 196 ■ 69 69C-\ 09ΐ 311 93 2LZI
91 ■LZ 00 •ΐ 018 •69 968 •ει 8 8 •S 091 311 VD VLZl 士^91 ■ LZ 00 • ΐ 018 • 69 968 • ει 8 8 • S 091 311 VD VLZl
91 • 2 00 •ΐ LZL •89 9S9 ' ΐ 9617 •9 091 311 N ZLZ\ 士^ εο ■\\ 00 'ΐ 002 '69 688 1SS •8 6SI ΓΠΟ 0 ZLZ\ 士^ εο ■\ 00 •I 9IS •89 6 9 S08 • L 6SI mo 3 \LZ\ 士^ z\ •08 00 •ΐ 80Ζ ■19 ζεε •91 OLZ ·\ι 63ΐ mo 230 LZl 士^ z\ '08 00 •ΐ 688 '69 ISO ·9ΐ L9 •Π 6SI mo 130 6921 士^ z\ •08 00 •ΐ 2S8 •89 οε ·9ΐ ZLL 'Οΐ 6S1 mo CD S9Z\ 士^ z\ •08 00 •ΐ 666 •89 ε o "Ζΐ 8ε •6 69ΐ mo 03 L9Z 士^ z\ •08 00 'ΐ 09Ζ -Z9 S98 ·9ΐ Ζΐ9 •8 69ΐ mo 93 992Ϊ 士^ εο •I 00 •I 0 Ζ •Z9 0017 '9ΐ Ζ Ζ •8 6ST mo V3 3921 士^ εο ' 00 •ΐ ΖΟΖ •99 ZQZ 'SI 89 ' L 6S1 mo N 士^91 • 2000 • ΐ LZL • 89 9S9 'ΐ 9617 • 9 091 311 N ZLZ \ ^^ εο ■ \\ 00' ΐ 002 '69 688 1SS • 8 6SI ΓΠΟ 0 ZLZ \ ^^ εο ■ \ 00 • I 9IS • 89 6 9 S08 • L 6SI mo 3 \ LZ \ ^^ z \ • 08 00 • ΐ 80Ζ ■ 19 ζεε • 91 OLZ · \ ι 63ΐ mo 230 LZl ^^ z \ '08 00 • ΐ 688 '69 ISO · 9ΐ L9 • Π 6SI mo 130 6921 ^^ \\ 08 00 • ΐ 2S8 • 89 οε · 9ΐ ZLL 'Οΐ 6S1 mo CD S9Z \ ^^ z \ • 08 00 • ΐ 666 • 89 ε o “Ζΐ 8ε • 6 69ΐ mo 03 L9Z ^^ z \ • 08 00 'ΐ 09Ζ -Z9 S98 · 9ΐ Ζΐ9 • 8 69ΐ mo 93 992Ϊ ^^ εο • I 00 • I 0 Ζ • Z9 0017' 9ΐ Ζ 8 • 8 6ST mo V3 3921 ^ εο '00 • ΐ ΖΟΖ • 99 ZQZ' SI 89 'L 6S1 mo N
S9 ■z 00 •ΐ ιζο •99 890 •ει ZS • L 8SI NSV 0 Z9Z\ 士^S9 ■ z 00 • ΐ ιζο • 99 890 • ει ZS • L 8SI NSV 0 Z9Z \
S9 ■z 00 •ΐ LZ9 •S9 ΟΟΐ ' 1 LZ 'L 8ST NSV 3 Z9Z\ 士^S9 ■ z 00 • ΐ LZ9 • S9 ΟΟΐ '1 LZ' L 8ST NSV 3 Z9Z
8Z T9 00 •ΐ 910 ■29 ZZf •εΐ 892 "5 89ΐ NSV 環 Ϊ92Ϊ 士^8Z T9 00 • ΐ 910 ■ 29 ZZf • εΐ 892 "5 89ΐ NSV ring Ϊ92Ϊ ^^
SL •C 00 •ΐ 898 •09 898 S99 •9 8SI NSV ιαο 0921 士^SL • C 00 • ΐ 898 • 09 898 S99 • 9 8SI NSV ιαο 0921 士 ^
8 - 9 00 •ΐ Ζ6 Ί9 862 •Η ZLZ •9 8SI NSV 03 6 Z\ 士^8-9 00 • ΐ Ζ6 Ί9 862 • Η ZLZ • 9 8SI NSV 03 6 Z
8Z "SS 00 •ΐ LSI 'C9 6^9 •Η 090 •L 89ΐ NSV 80 S Z\ 士^8Z "SS 00 • ΐ LSI 'C9 6 ^ 9 • Η 090 • L 89ΐ NSV 80 S Z
39 ■z 00 •ΐ LZV '^9 ΖίΟ •Η ΖΖΖ •9 291 NSV VD L Z\ 士^39 ■ z 00 • ΐ LZV '^ 9 ΖίΟ • Η ΖΖΖ • 9 291 NSV VD L Z
S9 00 •ΐ ,69 • 9 Z\6 ■f\ L \ '9 8S1 NSV N 9S2T 士^S9 00 • ΐ, 69 • 9 Z \ 6 ■ f \ L \ '9 8S1 NSV N 9S2T ^^
0 00 'ΐ Zf •99 289 1 ' ί \ mo 0 Z\ 士^0 00 'ΐ Zf • 99 289 1' ί \ mo 0 Z \ ^^
■8ε 00 •ΐ 89 •S9 9 Ζ\Ζ ■ L91 mo 3 V Z 士^ e9£0/00df/XDd znsuoo θΛ 蚝■ 8ε 00 • ΐ 89 • S9 9 Ζ \ Ζ ■ L91 mo 3 VZ ^^ e9 £ 0 / 00df / XDd znsuoo θΛ 蚝
«0  «0
o o O oo  o o O oo
o o o o ¾ o o o o
Figure imgf000090_0001
oooo ¾ oooo
Figure imgf000090_0001
00 00 、 ·_« > ^― > D <X) D D D  00 00, · _ «> ^ ―> D <X) D D D
00 o o o o o o i—( 00 , co co LO LO co CO CO O 00 00  00 o o o o o o i— (00, co co LO LO co CO CO O 00 00
o CM o ¾ o O CO O O CM CO CO o σι o 00 οό o cri o o ϊ O cri od oo
Figure imgf000090_0002
o CM o ¾ o O CO OO CM CO CO o σι o 00 οό o cri oo ϊ O cri od oo
Figure imgf000090_0002
00 o oo 00 oo oo ¾ co co co co 00 o oo 00 oo oo ¾ co co co co
D CD D to CD D D CD D D  D CD D to CD D D CD D D
< < < <<<
-J UJ J J X r O 00 -J UJ J J Xr O 00
< < < -J «J «J - → f— eg <<<-J «J« J-→ f— eg
< ¾ M CO <¾ M CO
J o O 2: リ o o  J o O 2: Re o o
¾屮  Subbed
 Subordinate
 Subordinate
Figure imgf000090_0003
Figure imgf000090_0003
Subordinate
¾屮 68 Subbed 68
\z 00 •I 060 ■εζ SS8 '2 IZZ '8 891 311 93 士^ \ z 00 • I 060 ■ εζ SS8 '2 IZZ' 8 891 311 93
99 00 •ΐ 8 ε Ifl •S 6ZI •6 89ΐ 311 VD βεει 士^99 00 • ΐ 8 ε Ifl • S 6ZI • 6 89ΐ 311 VD βεει 士 ^
99 00 Ί 929 ' Π •6 89ΐ 311 N 8εετ 士^99 00 Ί 929 'Π • 6 89ΐ 311 N 8εετ
•se 00 •ΐ \ι •9Z 6Z - 99f Όΐ 9ΐ 3Hd 0 ί£ΖΙ 士^• se 00 • ΐ \ ι • 9Z 6Z-99f Όΐ 9ΐ 3Hd 0 ί £ ΖΙ 士 ^
\% 00 •ΐ •sz 266 - 0Z •Οΐ Ζ9Τ 3Hd D 9εετ 士^\% 00 • ΐ • sz 266-0Z • Οΐ Ζ9Τ 3Hd D 9εετ 士 ^
•εε 00 •ΐ 6 6 'LI CS9 '01 ZOS 'ΐΐ Z91 3Hd ZD ssei 士^ 0 •εε 00 •ΐ 969 ' £2 •6 'ΐΐ Ζ9ΐ 3Hd Z3D ει 士^ o 'εε 00 ■ΐ 0S9 -9Z ZZL •Οΐ οεε ■ΐΐ Ζ9ΐ HHd I3D εεετ 士^ 0 •εε 00 'ΐ LZl '8Z SS •8 908 •Οΐ Ζ9ΐ 3Hd ZOD 士^ to •εε 00 ■ΐ S60 '9Z LL9 •6 Z09 •Οΐ Ζ9ΐ HHd Ϊ03 ιεετ 士^• εε 00 • ΐ 6 6 'LI CS9 '01 ZOS' ΐΐ Z91 3Hd ZD ssei ^^ 0 • εε 00 • ΐ 969 '£ 2 ZZL • Οΐ οεε ■ ΐΐ Ζ9ΐ HHd I3D εεετ ^^ 0 • εε 00 'ΐ LZl' 8Z SS • 8 908 • Οΐ Ζ9ΐ 3Hd ZOD ^^ to • εε 00 ■ ΐ S60 '9Z LL9 • 6 Z09 • Οΐ Ζ9ΐ HHd Ϊ03 ιεετ 士 ^
00 •I "9A Z ■8 LZZ •Οΐ Α9ΐ HHd 03 οεει 士^00 • I "9A Z ■ 8 LZZ • Οΐ Α9ΐ HHd 03 οεει ^^
•εε 00 'ΐ ΐ8ΐ -9Z 6 £ 'Z S 9 •6 Ζ9ΐ HHd 93 6Ζ£1 士^ s 00 •ΐ S ^ •gz LZ •9 9 •Οΐ Ζ9ΐ HHd VD 8Ζ£\ 士^ 8 'ΖΖ 00 •ΐ SZl S6 '9 996 •Οΐ Z91 HHd N ίΖΖΙ 士^• εε 00 'ΐ ΐ8ΐ -9Z 6 £' ZS 9 • 6 Ζ9ΐ HHd 93 6Ζ £ 1 ^^ s 00 • ΐ S ^ • gz LZ • 9 9 • Οΐ Ζ9ΐ HHd VD 8Ζ £ \ ΐ SZl S6 '9 996Οΐ Οΐ Z91 HHd N
IL 00 ■ΐ S80 - i 896 "S 8 6 ΐ 99ΐ mo 0 9ΖΖΙ 士^IL 00 ■ ΐ S80-i 896 "S 8 6 ΐ 99ΐ mo 0 9ΖΖΙ ^^
\L '9ε 00 •I 6^ ■£L 8Z9 '9 τει '2ΐ 99ΐ mo 3 Ζ£\ 士^\ L '9ε 00 • I 6 ^ ■ £ L 8Z9' 9 τει '2ΐ 99ΐ mo 3 Ζ £ \ ^^
L9 00 •ΐ 9 ε "2 Z Z •II ΟΐΟ •Η 991 mo 230 ει 士^L9 00 • ΐ 9 ε “2 Z Z • II ΟΐΟ • Η 991 mo 230 ει 士 ^
L 00 ■ΐ 8 • 010 •ΐΐ 09 •Η 99ΐ mo Ϊ30 士^L 00 ■ ΐ 8 • 010 • ΐΐ 09 • Η 99ΐ mo Ϊ30 ^^
19 00 Ί I8S ' L Όί 39ΐ ' ΐ 99ΐ mo ( ζζζι 士¾ S •^s 00 •I 8IC ι SO •6 Π8 •ει 991 mo 03 士^ S 00 •ΐ L Z 'ZL •8 ZSL 99ΐ mo 93 0Ζ£\ 士^19 00 Ί I8S 'L Όί 39ΐ' ΐ 99ΐ mo (ζζζι Shi S • ^ s 00 • I 8IC ι SO • 6 Π8 • ει 991 mo 03 Shi ^ S 00 • ΐ LZ 'ZL • 8 ZSL 99ΐ mo 93 0Ζ £ \ ^^
IL 00 •ΐ 6S1 ■ZL \LZ ' L 6ZC •Ζΐ 991 mo VD 6ΐει 士^IL 00 • ΐ 6S1 ■ ZL \ LZ 'L 6ZC • Ζΐ 991 mo VD 6ΐει 士 ^
\L 00 •ΐ 09ε -\L 8H Ί 081 •π 99ΐ mo N 8ΐει 士^ l ·9ε 00 'ΐ 89 '\L 016 9Ζΐ •π 991 dSV 0 ιετ 士^ l ·9ε 00 "ΐ 180 ■\L S6 "S 699 ■Οΐ 39ΐ dSV 3 9τετ 士^\ L 00 • ΐ 09ε-\ L 8H Ί 081 • π 99ΐ mo N 8ΐει ^^ l · 9ε 00 'ΐ 89' \ L 016 9Ζΐ • π 991 dSV 0 ιετ ^^ l · 9ε 00 "ΐ 180 ■ \ L S6 "S 699 ■ Οΐ 39ΐ dSV 3 9τετ
OZ 00 'ΐ Ϊ8Ζ •99 C89 •9 εε •8 991 dSV 9ΐετ 士 SiOZ 00 'ΐ Ϊ8Ζ • 99 C89 • 9 εε • 8 991 dSV 9ΐετ
OZ 00 •ΐ ZSI '89 Οΐ •g 869 ' 99ΐ dSV ταο 士^OZ 00 • ΐ ZSI '89 Οΐ • g 869 '99ΐ dSV ταο 士 ^
OZ 00 •ΐ 8S8 ' 9 8S0 •9 LZ9 •8 99ΐ dSV 03 士^OZ 00 • ΐ 8S8 '9 8S0 • 9 LZ9 • 8 99ΐ dSV 03 ^^
OZ •ε 00 •ΐ f9L '89 600 •9 608 '6 99ΐ dSV 83 ζ\ζ\ 士^ £9e0/00df/13d J81SZ./00 ΟΛ 06 OZ • ε 00 • ΐ f9L '89 600 • 9 608 '6 99ΐ dSV 83 ζ \ ζ \ ^^ £ 9e0 / 00df / 13d J81SZ./00 ΟΛ 06
•LZ 00 'ΐ 969 ·8Ζ LZ •ε 9 •8 Ω3Ί ZQD 69£l 士^ zo 'LZ 00 •ΐ ssg •08 9 •6 Μ\ IQ3 89SI 士^ zo 'LZ 00 •ΐ '6Ζ ZS6 •ΐ εοβ '8 ΙίΙ am 00 L9ZI 士^ zo ■LZ 00 •ΐ LZZ '8Ζ ζζ -ΐ 208 •6 III Π3Ί 93 99ΕΪ 士^ • LZ 00 'ΐ 969 · 8Ζ LZ • ε 9 • 8 Ω3Ί ZQD 69 £ l 士 ^ zo' LZ 00 • ΐ ssg • 08 9 • 6 Μ \ IQ3 89SISI ^ zo 'LZ 00 • ΐ' 6Ζ ZS6 εοβ '8 ΙίΙ am 00 L9ZI ^^ zo ■ LZ 00 • ΐ LZZ' 8Ζ ζζ -ΐ 208 • 6 III Π3Ί 93 99ΕΪ ^^
61 ' 00 •ΐ \ -8Ζ •I 60C •ΐΐ ΙΖΙ Π3Ί V3 S9SI 士^61 '00 • ΐ \ -8Ζ • I 60C • ΐΐ ΙΖΙ Π3Ί V3 S9SI ^
61 ' 00 •ΐ IS9 ' IL 060 '2 Ο Ί\ III Π31 N 1 士^61 '00 • ΐ IS9' IL 060 '2 Ο Ί \ III Π31 N 1
LZ '6Z 00 •χ 9^9 '8 9 •ΐ 666 'εΐ 0ん ΐ SAT 0 S9Sl 士^LZ '6Z 00 • χ 9 ^ 9' 8 9 • ΐ 666 'εΐ 0 ΐ SAT 0 S9Sll ^
LZ "62 00 •I 66 ' Ζ 8 Ζ '2 •εΐ ΟίΙ SAT 3 Z9 士^LZ "62 00 • I 66 'Ζ 8 Ζ' 2 • εΐ ΟίΙ SAT 3 Z9 ^^
■LZ 00 'ΐ IS6 '9 S9C •8 ill •91 ΟΖΐ SAT ZN ΐ9£ΐ 士^■ LZ 00 'ΐ IS6' 9 S9C • 8 ill • 91 SAT SAT ZN ΐ9 £ ΐ
\ 'LZ 00 •ΐ 6178 '9 162 •8 S00 'S1 OLI SAT 33 09ετ 士^\ 'LZ 00 • ΐ 6178' 9 162 • 8 S00 'S1 OLI SAT 33 09ετ
■ίΐ. 00 •ΐ 26S 'ΙΛ 1^96 '9 8Α8 ΟΖΐ SAT CD 士^■ ίΐ. 00 • ΐ 26S 'ΙΛ 1 ^ 96' 9 8Α8 ΟΖΐ SAT CD player ^
'LZ 00 •I 189 '9 8LL -9 Ο ΐ SAT 03 8SE1 士^'LZ 00 • I 189' 9 8LL -9 Ο ΐ SAT 03 8SE1 士 ^
'LZ 00 •ΐ 6LV •IL S99 '] εεβ •ει OLI SAT eo SSI 士^'LZ 00 • ΐ 6LV • IL S99'] εεβ • ει OLI SAT eo SSI ^^
LZ •62 00 •ΐ 698 '9Ζ ·£ 020 ΟΖΐ SAT VD 9 ZI 士^LZ • 62 00 • ΐ 698 '9Ζ · £ 020 ΟΖΐ SAT VD 9 ZI ^
LZ ■6Z 00 •ΐ Z9S 'SZ 'Ζ 6ε •εΐ ΟΖΐ SAT N 92£\ 士^LZ ■ 6Z 00 • ΐ Z9S 'SZ' Ζ 6ε • εΐ SAT SAT N 92 £ \ ^^
S9 'TC 00 •ΐ 99ΐ 'SZ •ΐ LZ6 •ει 69ΐ mo 0 士^S9 'TC 00 • ΐ 99ΐ' SZ • ΐ LZ6 • ει 69ΐ mo 0 士 ^
99 •ιε 00 •ΐ Π8 •η ££1 •S 66S 'ει 69ΐ mo 0 esei 士^99 • ιε 00 • ΐ Π8 • η ££ 1 • S 66S 'ει 69ΐ mo 0 esei ^^
Z "S6 00 ΐ εει Όί 9S6 'ε LSZ 'ST 69ΐ mo Z30 士^Z "S6 00 ΐ εει Όί 9S6 'ε LSZ' ST 69ΐ mo Z30 ^^
Z "G6 00 •ΐ £Ζ9 Ό 620 •ζ 6 Ζ '9ΐ 69ΐ mo ΪΗΟ isei 士^Z "G6 00 • ΐ £ Ζ9 Ό 620 • ζ 6 Ζ '9ΐ 69ΐ mo ΪΗΟ isei ^^
Z •E6 00 •ΐ Ζΐ9 ΌΖ Ζ9Ζ -9ΐ 691 mo ( 09ΕΪ 士^Z • E6 00 • ΐ Ζΐ9 ΌΖ Ζ9Ζ -9ΐ 691 mo (09ΕΪ ^^
Z '£6 00 •ΐ LZZ 'ΐΖ 6LZ ZL6 •ει 69ΐ mo 03 6 ει 士^Z '£ 6 00 • ΐ LZZ' ΐΖ 6LZ ZL6 • ει 69ΐ mo 03 6 ει 士 ^
Z ■£6 00 •ΐ 213 '2 910 ■ε ΖΖ9 '2ΐ 691 mo 93 8 ει 士^Z ■ £ 6 00 • ΐ 213 '2 910 ■ ε ΖΖ9' 2ΐ 691 mo 93 8 ει ^^
99 •ιε 00 •ΐ 09 ess •τ \\ι "2ΐ 691 mo V3 LfZ\ 士^99 • ιε 00 • ΐ 09 ess • τ \\ ι "2ΐ 691 mo V3 LfZ \
99 •τε 00 ■I fS 'ε 6 60 •ΐΐ 691 mo N 9^ει 士^99 • τε 00 ■ I fS 'ε 6 60 • ΐΐ 691 mo N 9 ^ ει ^^
99 '62 00 •ΐ £96 "ΐ 919 •Οΐ 891 311 0 m 士^99 '62 00 • ΐ £ 96 “ΐ 919 • Οΐ 891 311 0 m
99 •62 00 "1 εεε - ι •2 Iff •01 89ΐ 311 3 ηζι 士^99 • 62 00 "1 εεε-ι • 2 Iff • 01 89ΐ 311 3 ηζι 士 ^
\Z -£Z 00 ■ΐ 19Ζ - ι 900 "C 9fO •9 89ΐ 311 103 士^\ Z-£ Z 00 ■ ΐ 19Ζ-ι 900 "C 9fO • 9 89ΐ 311 103 ^^
\Z 00 •ΐ ΐ9ΐ 'ε •ε 996 •9 89ΐ 311 TOO 士^\ Z 00 • ΐ ΐ9ΐ 'ε • ε 996 • 9 89ΐ 311 TOO ^
IZ ■ζζ 00 'ΐ Η6 •ζι 9εε •ΐ ^9ΐ •8 89ΐ H1I Z03 ΐ εΐ 士^ e9eo/oodf/i3<i 原子 1370 C LEU 171 1 1. 789 - 0. 271 78. 153 1. 00 41. 19 原子 1371 0 LEU 171 12. 092 - 1. 059 79. 048 1. 00 41. 19 原子 1372 N ASP 172 1 1. 872 - 0. 577 76. 863 1. 00 35. 05 原子 1373 CA ASP 172 12. 321 - 1 · 890 76. 435 1. 00 35. 05 原子 1374 CB ASP 172 12. 324 - 2. 001 74. 907 1. 00 41. 75 原子 1375 CG ASP 172 10. 923 -2. 075 74. 324 1. 00 41. 75 原子 1376 0D 1 ASP 172 10. 790 - 2. 135 73. 080 1. 00 41. 75 原子 1377 0D2 ASP 172 9. 954 -2. 077 75. 1 1 1 1. 00 41. 75 原子 1378 C ASP 172 13. 71 1 -2. 152 76. 962 1. 00 35. 05 原子 1379 0 ASP 172 14. 037 - 3. 283 77. 336 1. 00 35. 05 原子 1380 N GLU 173 14. 533 - 1. 1 10 77. 003 1. 00 32. 93 原子 1381 CA GLU 173 15. 892 - 1. 278 77. 491 1. 00 32. 93 原子 1382 CB GLU 173 16. 706 - 0. 007 77. 306 1. 00 41. 86 原子 1383 CG GLU 173 18. 142 - 0. 213 77. 734 1. 00 41. 86 原子 1384 CD GLU 173 18. 999 1. 008 77. 563 1. 00 41. 86 原子 1385 0E 1 GLU 173 18. 671 1. 847 76. 688 1. , 00 41. 86 原子 1386 0E2 GLU 173 20. 009 1. 1 12 78. 294 1. 00 41. 86 原子 1387 C Gし U 173 15. 873 - 1. 630 78. 965 1. 00 32. 93 原子 1388 0 GLU 1 73 16. 495 一 2. 601 79. 400 1. 00 32. 93 原子 1389 N VAL 1 74 15. 160 - 0. 81 1 79. 726 1. 00 31. 38 原子 1390 CA VAL 174 15. 023 - 0. 990 81. 156 1. 00 31. 38 原子 1391 CB VAし 174 14. 087 0. 108 81. 715 1. 00 34. 37 原子 1392 CG I VAL 174 13. 572 -0. 277 83. 053 1. 00 34. 37 原子 1393 CG2 VAし 174 14. 846 1. 426 81. 815 1. 00 34. 37 原子 1394 C VAL 1 74 14. 506 - 2. 401 81 . 488 1. 00 31. 38 原子 1395 0 VAL 174 14. 896 -2. 997 82. 492 1. 00 31 . 38 原子 1396 N PHE 175 13. 631 -2. 943 80. 648 1. 00 32. 64 原子 1397 CA PHE 175 13. 136 - 4. 290 80. 895 1. 00 32. 64 原子 1398 CB PHE 175 1 1. 999 一 4. 661 79. 947 1. 00 30. 70 Z6 IZ ■ ζζ 00 'ΐ Η6 • ζι 9εε • ΐ ^ 9ΐ • 8 89ΐ H1I Z03 ΐ ε 士 ^^ e9eo / oodf / i3 <i Atomic 1370 C LEU 171 1 1.789-0.271 78.153 1.00 41.19 Atomic 1371 0 LEU 171 12.092-1.059 79.048 1.00 41.19 Atomic 1372 N ASP 172 1 1 872-0.577 76.863 1.00 35.05 atom 1373 CA ASP 172 12.321-1 890 76.435 1.00 35.05 atom 1374 CB ASP 172 12.324-2.001 74. 907 1.00 41.75 atom 1375 CG ASP 172 10.923 -2.0.75 75.324 1.00 41.75 atom 1376 0D 1 ASP 172 10.790-2.135 73.080 1.00 41.75 Atom 1377 0D2 ASP 172 9.954 -2.07 77.1 1 1 1.00 41.75 Atom 1378 C ASP 172 13.71 1 -2.152 76.962 1.00 35.05 Atom 1379 0 ASP 172 14.037-3.283 77.336 1.00 35.05 atom 1380 N GLU 173 14.533-1.10 10 77.003 1.00 32.93 atom 1381 CA GLU 173 15.892-1.278 77.491 1.00 32.93 atoms 1382 CB GLU 173 16.706-0.007 77.306 1.00 41.86 atoms 1383 CG GLU 173 18.142-0.213 77.734 1.00 41. 86 atoms 1384 CD GLU 173 18.999 1.008 77.563 1.00 41.86 atoms 1385 0E 1 GLU 173 18.671 1.847 76.688 1., 00 41.86 atoms 1386 0E2 GLU 173 20. 009 1. 1 12 78.294 1.00 41.86 atoms 1387 CG U 173 15.873-1.630 78.965 1.00 32.93 atoms 1388 0 GLU 1 73 16. 495 1 2. 601 79. 400 1.00 32.93 atoms 1389 N VAL 1 74 15.160-0.81 1 79.726 1.00 31.38 atoms 1390 CA VAL 174 15. 023-0.990 81.156 1. 00 31.38 atom 1391 CB VA 174 14.087 0.108 81.715 1.00 34.37 atom 1392 CG I VAL 174 13.572 -0.277 83.053 1.00 34.37 atom 1393 CG2 VA then 174 14.846 1.426 81.815 1.00 34.37 atom 1394 C VAL 1 74 14.506-2.401 81.488 1.00 31.38 atom 1395 0 VAL 174 14.896 -2 997 82.492 1.00 31 .38 atom 1396 N PHE 175 13.631 -2. 943 80.648 1.00 32.64 atom 1397 CA PHE 175 13.136-4.290 80.895 1.00 32.64 atoms 1398 CB PHE 175 1 1.999 -1 4.661 661 79.947 1.00 30.70 Z6
ζι '82 00 'ΐ 9 ε •98 60ΐ •9- 88ΐ •H 8Ζΐ SAT 03 Lzn 士^ z\ •82 00 ·Ι εοο ■S8 89 ■g- Ζ89 •H 8ΖΙ SAT 83 士^ z\ ' ε 00 ·ΐ LOL ' 8 ι\\ •9 - 2ΐΐ ·9ΐ 8 ΐ SAT VD ^z 士^ ετ • 00 'ΐ SS 'C8 8 •g- £ 9 ■9ΐ 8Z1 SAT N 士^ ζι '82 00 'ΐ 9 ε • 98 60ΐ • 9-88ΐ • H 8Ζΐ SAT 03 Lzn ^^ z \ • 82 00 Ι εοο ■ S8 89 ■ g- Ζ89 • H 8ΖΙ SAT 83 ^^ z \ · Ϊ́ LOL '8 ι \\ • 9-2ΐΐ · 9ΐ 8 ΐ SAT VD ^ z ^^ ετ • 00' ΐ SS 'C8 8 • g- £ 9 ■ 9ΐ 8Z1 SAT N ^^
S8 ■gs 00 "ΐ 9V6 ■S8 Ζ91 •9 - 8SZ ·8ΐ LLI ΗΊΙ 0 ZV\ 士^S8 ■ gs 00 "ΐ 9V6 ■ S8 Ζ91 • 9-8SZ · 8ΐ LLI ΗΊΙ 0 ZV \ 士 ^
C8 •ss 00 ·Ι 9Ζ 'ε8 £19 ■S - 9S6 " ΐ LL\ ΗΊΙ 3 ZZW 士^C8 • ss 00 · Ι 9Ζ 'ε8 £ 19 ■ S-9S6 "ΐ LL \ ΗΊΙ 3 ZZW ^^
9Z '62 00 'ΐ "18 G98 "2- 138 ΌΖ LLI 311 103 ΐ ΐ 士^9Z '62 00 'ΐ "18 G98" 2- 138 ΌΖ LLI 311 103 ΐ 士
9Z "62 00 ·ΐ εοε •18 929 - 8SC •61 LLI 311 103 02H 士^9Z "62 00ΐ εοε • 18 929-8SC • 61 LLI 311 103 02H
92 '62 00 ·ΐ ·ε8 S9T ■?- οζε ·6ΐ LL\ 311 203 6 ΐ 士^92 '62 00 · ΐ · ε8 S9T ■?-Οζε · 6ΐ LL \ 311 203 6 士士 ^
9Z 00 'ΐ ζζ 6 Ζ ■ε - 909 •81 LLI 3TI 93 8 ΐ 士^9Z 00 'ΐ ζζ 6 Ζ ■ ε-909 • 81 LLI 3TI 93 8 ^^^
C8 ' ε 00 Ί εεο •28 0 'V- 86C '8ΐ LLI 311 V ΐΗ 士^C8 'ε 00 ε εεο • 28 0' V- 86C '8ΐ LLI 311 V ^ ^^
C8 00 ·ΐ Z 6 •08 998 'ト "Ζΐ LLI 311 N 9 ΐ 士^C8 00 · ΐ Z 6 • 08 998 '' "Ζΐ LLI 311 N 9 ΐ 士 ^
9S ■9ε 00 ·ΐ ZC8 •08 Οΐΐ εο9 ' ΐ 9L\ mo 0 士^9S ■ 9ε 00 · ΐ ZC8 • 08 Οΐΐ εο9 'ΐ 9L \ mo 0 ^^
9ε ·9ε 00 "ΐ 82 •08 0S0 •9 - ZI 'Ζΐ 9LI mo 3 ινι 士^9ε · 9ε 00 "ΐ 82 • 08 0S0 • 9-ZI 'Ζΐ 9LI mo 3 ινι 士 ^
•6 00 'ΐ ζζζ ΊΙ S10 •6 - 6Z6 ·9ΐ 9L\ mo 230 zm 士^• 6 00 'ΐ ζζζ ΊΙ S10 • 6-6Z6 · 9ΐ 9L \ mo 230 zm
00 "ΐ εβ ' Ζ 698 "Ζ- ZZL ·8ΐ 9Z1 mo 130 zm 士^ ss •6 00 'ΐ 8^ε ΊΙ SS6 Ί- V9 "Ζΐ 9ΖΪ mo CD 士^00 "ΐ εβ 'Ζ 698" Ζ- ZZL · 8ΐ 9Z1 mo 130 zm ^^ ss • 6 00' ΐ 8 ^ ε ΊΙ SS6 Ί- V9 "Ζΐ 9ΖΪ mo CD ^
9C •6 00 'ΐ \Ζ6 "9Ζ 6V9 •9 - Z9S ·9ΐ 9ΖΪ mo 03 ΟίίΊ 士^9C • 6 00 'ΐ \ Ζ6 "9Ζ 6V9 • 9-Z9S9ΐ 9ΖΪ mo 03 士士 ^
SS ■6 00 'ΐ ΐΐθ "8Ζ S6S •S - 928 •91 9ΖΪ mo 93 60^1 士¾SS ■ 6 00 'ΐ "θ" 8Ζ S6S • S-928 • 91 9ΖΪ mo 93 60 ^ 1 ¾
9S ·9ε 00 ·ΐ 062 "6 6C0 •9 - OZl •91 9ΖΪ mo VD 80H 士^9S 9ε 00 · ΐ 062 "6 6C0 • 9-OZl • 91 9ΖΪ mo VD 80H
9C '9C 00 ·ΐ Z6S '6Ζ 091 •S - ZOO •SI 9ΖΪ mo N OH 士^ 9 00 'ΐ 60S ·ΐ8 96ΐ '9 - •Η SZI HHd 0 90fl 士^9C '9C 00 · ΐ Z6S' 6Ζ 091 • S-ZOO • SI 9ΖΪ mo N OH ^^ 900 ΐ 60S · ΐ8 96 ΐ '9-• Η SZI HHd 0 90fl ^^
^9 •ζε 00 'ΐ S69 ■08 962 Z9Z · ΐ 9 Ϊ HHd 3 90Π 士^^ 9 • ζε 00 'ΐ S69 ■ 08 962 Z9Z · ΐ9 Ϊ HHd 3 90Π
OZ •οε 00 ·ΐ 8S6 •6 916 •8 - S £ •Π 911 HHd ZD I 士^OZ • οε 00 · ΐ 8S6 • 6 916 • 8-S £ • Π 911 HHd ZD I
OZ •οε 00 ·ΐ Π8 '8 082 •8- 8Z8 •ΐΐ LI 3Hd 2H3 0f\ 士^OZ • οε 00 · ΐ Π8 '8 082 • 8-8Z8 • ΐΐ LI 3Hd 2H3 0f \ ^^
OZ •οε 00 'ΐ 990 •18 63ΐ ■8 - TOO •ΐΐ 211 HHd ΪΗ3 ZOU 士^OZ • οε 00 'ΐ 990 • 18 63ΐ ■ 8-TOO • ΐΐ 211 HHd ΪΗ3 ZOU ^^
OZ •οε 00 'ΐ 018 "8Ζ 868 '9 - 9S0 '2ΐ LI HHd ZQ3 ΐθί^ΐ 士^OZ • οε 00 'ΐ 018 "8Ζ 868' 9-9S0 '2ΐ LI HHd ZQ3 ΐθί ^ ΐ 士 ^
OZ 'οε 00 ·ΐ 8C0 •18 OLL •9- LSI •ΐΐ 9 I 3Hd 103 00^1 士^OZ 'οε 00 · ΐ 8C0 • 18 OLL • 9- LSI • ΐΐ 9 I 3Hd 103 00 ^ 1 ^^
OZ •οε 00 ·ΐ 026 "6Ζ εετ ·9_ 8ΪΖ •ΐΐ 9ΖΪ HHd 03 6621 士^ £9£0/00«If/X3cI Z8IS./00 OAV ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾OZ • οε 00 · ΐ 026 "6Ζ εετ · 9_ 8ΪΖ • ΐΐ 9ΖΪ HHd 03 6621 ^^ £ 9 £ 0/00« If / X3cI Z8IS./00 OAV ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾
4 4 4 i 4 4 4 i
寸 J 4 i ^ 4^ 4^ on an cn cn CO CO CO oo O CO o O  Dimension J 4 i ^ 4 ^ 4 ^ on an cn cn CO CO CO oo O CO o O
on ο οο CO t— · o 00 D an CO (NO o OO on ο οο CO t— · o 00 D an CO (NO o OO
〇 o n o 〇 〇 〇 n n 〇 2: o o 〇 o n o 〇 〇 〇 n n 〇 2: o o
σ D > ΓΠ σ CD > rn σ CO > N σ σ D> ΓΠ σ CD> rn σ CO> N σ
「 「 「 「 「 「 「 「 「 「 「 「"" "" "" "" "" ""
「 「 「 「 r- 「 「 「 「 「 「 「 -< -< '- >·< : cz: : : G CO 00 CO 00 CO CO CO cn CO cn G cn "" "" R- "" "" ""-<-<'-> · <: cz::: G CO 00 CO 00 CO CO CO cn CO cn G cn
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -J ^4 —a —J •o - \ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -J ^ 4 —a —J • o-\
ο ο ο ο o o o o o O D O 00 00 00 00 00 t t  ο ο ο ο o o o o o O D O 00 00 00 00 00 t t
00 CD Ο )— 1 ο o o CO -J cn n cn cn cn 00 CD)) — 1 ο oo CO -J cn n cn cn cn
CO 00 00 o CO o t o D 00 t r oo cn o o O o ο O 00 cn 00 o cn cn o 00 o CO CO 00 cn CO 00 00 o CO o t o D 00 tr oo cn o o O o ο O 00 cn 00 o cn cn o 00 o CO CO 00 cn
00 4^ 00 ΟΊ 00 —J cn cn t 00 O r o CO 00 4 ^ 00 ΟΊ 00 —J cn cn t 00 Oro CO
1 1 1 1 1 1  1 1 1 1 1 1
1 1 ! 1 1 1 1 1 1 1 1 J —J 00 οο ο σι — J oo 00 D t— · o t 1 ~ 1 CD 00 00 on ΟΊ ΟΊ 1 1! 1 1 1 1 1 1 1 1 J —J 00 οο ο σι — J oo 00 D t— · ot 1 ~ 1 CD 00 00 on ΟΊ ΟΊ
r  r
m —0 CD o 00 CO •o t 1— » o t— * o o < i 00 σ) O ο cn a o cn O O cn t ai O oo 00 t 00 CO ο 00 CO r cn -o ΟΊ σ> o cn 00 O cn 00 00 t>o m —0 CD o 00 CO • ot 1— »ot— * oo <i 00 σ) O ο cn ao cn OO cn t ai O oo 00 t 00 CO ο 00 CO r cn -o ΟΊ σ> o cn 00 O cn 00 00 t> o
00 00 00 00 00 00 00 00 00 00 00 00 00 00 -0 00 00 00 00 00 00 00 0000 00 00 00 00 00 00 00 00 00 00 00 00 00 -0 00 00 00 00 00 00 00 00
■X) CO —J 4^ ο 00 CO o CO CO 00 o CO O cn 00■ X) CO —J 4 ^ ο 00 CO o CO CO 00 o CO O cn 00
CO D ο [>ο D t— * o 00 to CO 00 00 ^CO D ο [> ο D t— * o 00 to CO 00 00 ^
1 ' 00 00 J 00 o o CO 00 σι O t cn 1 '00 00 J 00 o o CO 00 σι O t cn
DO o n ΟΙ ΟΊ C D o 00 υι CO 4^ 00 —J O on t an 00 —j <X) o O O o ο ο ο Ο ο o o o o o o O O o o ο o o o o o o o o o o O o o ο ο ο ο ο o o o o o o o O o o ο o o o o o o o o o  DO o n ΟΙ ΟΊ C D o 00 υι CO 4 ^ 00 —J O on t an 00 —j <X) o O O o ο ο ο Ο ο o o o o o o o O o o ο o o o o o o o o o o O o o ο ο ο ο ο ο ο o o o o o o o o o o o o o o o o
ro 00 cn cn cn  ro 00 cn cn cn
o o oo
6 6
28 9 00 ΐ 8SS 78 OZI ΖΖ9 IZ 98ΐ HHd N 士^ 28 9 00 ΐ 8SS 78 OZI ΖΖ9 IZ 98ΐ HHd N
29 -f9 00 ΐ 969 ' 8 ZS9 ζ\- S62 ZZ SI mo 0 ^8^1 士^29 -f9 00 ΐ 969 '8 ZS9 ζ \-S62 ZZ SI mo 0 ^ 8 ^ 1 ^^
Z9 ' 9 00 ΐ 6 ■98 ετε ζ\- 8Ζ 'ZZ 8ΐ mo 3 ZSU 士^Z9 '9 00 ΐ 6 ■ 98 ετε ζ \-8Ζ' ZZ 8ΐ mo 3 ZSU ^^
ZZ •00100 ΐ 9Zf 18 ζ\- 06 ZZ ^8ΐ mo 230 ZSVl 士^ZZ • 00100 ΐ 9Zf 18 ζ \-06 ZZ ^ 8ΐ mo 230 ZSVl ^^
ZZ •ΟΟΐΟΟ ΐ Z 9 Ζ8 ει - Z8Z Z 8ΐ o ΐョ 0 Ϊ8Η 士^ZZ • ΟΟΐΟΟ ΐ Z 9 Ζ8 ει-Z8Z Z 8ΐ o ΐ 0 Ϊ8Η 士 ^
ZZ •ΟΟΐΟΟ 'ΐ 6Z 'ZS εεζ 'Ζΐ- nz 8ΐ mo CD 08^1 士^ZZ • ΟΟΐΟΟ 'ΐ 6Z' ZS εεζ 'Ζΐ- nz 8ΐ mo CD 08 ^ 1 士 ^
ZZ •OOIOO 'ΐ ΖΖ •£8 699 •π- ISL 8ΐ mo 03 6 H 士^ZZ • OOIOO 'ΐ ΖΖ • £ 8 699 • π- ISL 8ΐ mo 03 6 H ^^
ZZ •OOIOO •ΐ 988 8 910 ■ζι- Ol 81 mo 93 8Lfl 士^ZZ • OOIOO • ΐ 988 8 910 ■ ζι- Ol 81 mo 93 8Lfl
Z9 • 9 00 "ΐ LZ\ •S8 962 •ει- SS ■zz 8ΐ mo V3 LLVl 士^Z9 • 9 00 "ΐ LZ \ • S8 962 • ει- SS ■ zz 8ΐ mo V3 LLVl ^^
Z9 ' 9 00 •I 8Ζ\ 'S8 ΖΖ •ει- 9Z0 ■\z ^8ΐ mo N 9Lfl 士^Z9 '9 00 • I 8Ζ \' S8 ΖΖ • ει-9Z0 ■ \ z ^ 8ΐ mo N 9Lfl ^
19 00 •ΐ C89 ■98 9TS ■ST- LLL •OS S81 丄 3W 0 LV\ 士^19 00 • ΐ C89 ■ 98 9TS ■ ST-LLL • OS S81 丄 3W 0 LV
L9 ■ι 00 'ΐ 19Ζ -S8 Z '^τ- 662 •oz S8T lm 3 ΐ 士^L9 ■ ι 00 'ΐ 19Ζ -S8 Z' ^ τ- 662 • oz S8T lm 3 士士 ^
ZL ' 00 •I ΖΖΖ •S8 9S6 ·9ΐ - ZS8 ·9ΐ S81 3 士^ L •S 00 •ΐ S6 •S8 289 •SI- 9Z0 ·9ΐ S81 as 士^ εζ ■ f 00 •ΐ 66 •28 ιζζ •Η- Ll 'Ζΐ S8T 丄 3W 03 iin 士^ZL '00 • I ΖΖΖ • S8 9S6 · 9ΐ-ZS8 · 9ΐ S81 3 ^^ L • S 00 • ΐ S6 • S8 289 • SI- 9Z0 · 9ΐ S81 as ^^ ζ ΐ Η- Ll 'Ζΐ S8T 丄 3W 03 iin 士 ^
ZL - 00 •ΐ f f •S8 ο ε •Η- H9 '8ΐ S8T i 93 OL l 士^ZL-00 • ΐ f f • S8 ο ε • Η- H9 '8ΐ S8T i 93 OL l ^^
ZS 'L 00 'ΐ ZS6 '^8 •Η - 618 "81 S81 VD 69H 士^ZS 'L 00' ΐ ZS6 '^ 8 • Η-618 "81 S81 VD 69H ^^
L ' 00 ■ΐ 0Ζ "98 •ει - 6 Z ·8ΐ ε8ΐ 丄 3W N 89H 士^L '00 ■ ΐ 0Ζ "98 • ει-6 Z · 8ΐ ε8ΐ 丄 3W N 89H
ZZ •8£ 00 "ΐ U "Z8 Ζ66 •εΐ- n "Ζΐ ZSI 0 士^ZZ • 8 £ 00 "ΐ U" Z8 Ζ66 • εΐ- n "Ζΐ ZSI 0 ^^
ZZ •8C 00 •ΐ ZLL •98 0 0 •Π- 86 'Ζΐ ZSI mi 3 99 ΐ 士^ZZ • 8C 00 • ΐ ZLL • 98 0 0 • Π-86 'Ζΐ ZSI mi 3 99 ΐ 士 ^
"is 00 •ΐ L O "Z8 ε ι ■01- 089 •ει Ζ81 IQD S9 士^"is 00 • ΐ L O" Z8 ε ι ■ 01-089 • ει Ζ81 IQD S9 ^^
•ιε 00 •ΐ S6S 'Z8 sis •01- ISO '3ΐ 281 mi TOD f9 l 士^• ιε 00 • ΐ S6S 'Z8 sis • 01- ISO' 3ΐ 281 mi TOD f9 l
•χε 00 •ΐ 6ΐ • 8 ΟΐΟ •εト 990 'S1 Ζ81 311 203 Z9f\ 士^• χε 00 • ΐ 6ΐ • 8 ΟΐΟ • ε G 990 'S1 Ζ81 311 203 Z9f
•ιε 00 •ΐ 0 8 •98 εζθ •π- Zl "9ΐ ZSI 311 93 Z9 l 士^• ιε 00 • ΐ 0 8 • 98 εζθ • π-Zl "9ΐ ZSI 311 93 Z9 l
ZZ ·8ε 00 •I fZ ' 8 LIL •π- OIZ ' ΐ ZSI H1I VD I9H 士^ZZ · 8ε 00 • I fZ '8 LIL • π- OIZ' ΐ ZSI H1I VD I9H
ZZ ·8ε 00 •ΐ 60Z •98 S9S ■Οΐ- 668 • ΐ ZSI 311 N 09 ΐ 士^ZZ · 8ε 00 • ΐ 60Z • 98 S9S ■ Οΐ- 668 • ΐ ZSI 311 N 09 士士 ^
06 •SS 00 Ί 0ΐ6 'Z8 268 Όΐ- ILL ·6ΐ Ϊ8Ι mo 0 62 \ 士^06 • SS 00 Ί 0ΐ6 'Z8 268 Όΐ- ILL · 6ΐ Ϊ8Ι mo 0 62 \ 士 ^
06 ·9ε 00 •ΐ 960 ' 8 Ο ,Ζ •Οΐ - 921 '6ΐ 18ΐ mo 3 8SH 士^06 9 00 00 • ΐ 960 '8 Ο, Ζ • Οΐ-921' 6ΐ 18ΐ mo 3 8SH ^^
9V '1 00 •ΐ £Z2 •68 689 •g一 6 "6Τ ΐ8ΐ mo 230 L2f 士^ £9e0/00df/X3d Z81SZ./00 OAV つ 9V '1 00 • ΐ £ Z2 • 68 689 • g 1 6 ”6Τ ΐ8ΐ mo 230 L2f ^^ £ 9e0 / 00df / X3d Z81SZ./00 OAV One
0 0 0 O o
Figure imgf000097_0001
0 0 0 O O 0
0 0 0 O o
Figure imgf000097_0001
0 0 0 OO 0
00 00 00 00 0
Figure imgf000097_0002
00 00 00 00 0
Figure imgf000097_0002
r— 00 00 00 00 0 00  r— 00 00 00 00 0 00
00 0 00 0 0 0 00 00 00 0 00 0 0 0 00 00
00 00 O O o t 0 0 oo 00 00 O O ot 0 0 oo
e 0 0 o  e 0 0 o
1 1  1 1
t 1 I 1 1 1 1 1 1 1 1 1
Figure imgf000097_0003
\3 00 o 00
t 1 I 1 1 1 1 1 1 1 1 1
Figure imgf000097_0003
\ 3 00 o 00
00 00 00 00 00 00 00 00 00 CO 00 ω J UQ UJ UJ u E— E— 00 00 00 00 00 00 00 00 00 CO 00 ω J UQ UJ UJ u E— E—
:E rn X X n: n: < < <C < : E rn X X n: n: <<<C <
0-, a- a. ^ 0-, a- a. ^
0 ェ ェ X rn rr :n X n: n: X n: X  0x X rn rr: n X n: n: X n: X
0 O 0 0 0 0  0 O 0 0 0 0
0 rf rf rf 屮
Figure imgf000097_0004
0 rf rf rf block
Figure imgf000097_0004
εο 00 'ΐ Ζ68•Οΐΐ 09Ζ■ε- ΟίΖ•0 ι IV z Z 2l 士^εο 00 'ΐ Ζ68 • Οΐΐ 09Ζ ■ ε- ΟίΖ • 0 ι IV z Z 2l 士 ^
6Ζ •z 00 •ΐ "ΟΖ 9f •ε 9 zm Zf l 士:6Ζ • z 00 • ΐ "ΟΖ 9f • ε 9 zm Zf l
99 00 •ΐ οεζ •08 f6 '8ΐ οζζ ■ε- S 丄 VM zm SI 士^ £ 00 •ΐ 666 '96 Z6f ·9ΐ- •8 丄 VA\ zm 0^ 1 士^99 00 • ΐ οεζ • 08 f6 '8ΐ οζζ ■ ε- S 丄 VM zm SI ^^ £ 00 • ΐ 666 '96 Z6f · 9ΐ- • 8 丄 VA \ zm 0 ^ 1 ^
89 -\ 00 •ΐ 668 ·8Π 8 6 'ト 696 ε 丄 VA\ zm 6G9T 士^89-\ 00 • ΐ 668 · 8Π 8 6 'G 696 ε 丄 VA \ zm 6G9T
00 •ΐ £ '06 8£Z · ΐ IVM zm 8S91 士^ 9 00 •ΐ 09 •99 •8 298 •ε - IVM zm LZ 1 士^00 • ΐ £ '06 8 £ Z · ΐ IVM zm 8S91 ^^ 9 00 • ΐ 09 • 99 • 8 298 • ε-IVM zm LZ 1 ^^
SS 00 'ΐ 908 ' ΐΐ s Ό 99ε •ΐ IVM zm 9291 士^SS 00 'ΐ 908' ΐΐ s Ό 99ε • ΐ IVM zm 9291 ^^
81 -\ 00 •ΐ ζ\ ■601 ZL •0 l 'τ- 6ε IVM zm SS9T 士^ οε ■9S 00 •ΐ C29 •S6 •8 - 009 •SI 8S 丄 VA\ zm SI 士81-\ 00 • ΐ ζ \ ■ 601 ZL • 0 l 'τ-6ε IVM zm SS9T ^^ οε ■ 9S 00 • ΐ C29 • S6 • 8-009 • SI 8S 丄 VA \ zm SI
ΫΛ ' 00 ■ΐ 8 8 •99 zn 'S2 Ζ6Ζ 'Ζΐ- IVM zm SSST 士^ΫΛ '00 ■ ΐ 8 8 • 99 zn' S2 Ζ6Ζ 'Ζΐ- IVM zm SSST ^^
LZ ·8ε 00 •ΐ 6^ε '28 1ST •Sト 860 •6 9ε IVM zm Z l 士^LZ · 8ε 00 • ΐ 6 ^ ε '28 1ST • ST G 860 • 6 9ε IVM zm Z l
80 00 'ΐ 018 " S 98 'S3 006 'Ζ- IVM zm 1S91 士^80 00 'ΐ 018 "S 98' S3 006 'Ζ- IVM zm 1S91 ^^
8fr ■8ε 00 •ΐ 06 •εοι Z9 ·ε_ 909 'Ζ ε zm 0SS1 士^8fr ■ 8ε 00 • ΐ 06 • εοι Z9 · ε_ 909 'Ζ ε zm 0SS1 ^
00 ■ΐ 99V ·ε6 LOZ •Ζΐ- 806 -\ζ εε IVM zm 6221 士^00 ■ ΐ 99V · ε6 LOZ • Ζΐ- 806-\ ζ εε IVM zm 6221 ^^
60 'n 00 •ΐ SZZ "ΖΟΐ £9L ■ΐ 09S ·6ΐ 丄 VA\ zm 8291 士60 'n 00 • ΐ SZZ "ΖΟΐ £ 9L ■ ΐ 09S · 6ΐ 丄 VA \ zm 8291
66 O 00 •ΐ ΖΖ ζ LOZ •0 - SZZ ·9ΐ IVM zm LZ91 士^66 O 00 • ΐ ΖΖ ζ LOZ • 0-SZZ · 9ΐ IVM zm LZ91 ^^
29 •εε 00 •ΐ 80ΐ •επ 9Lf •εト L f " ΐ οε 丄 zm 9Ζ9Ϊ 士^ f8 ~ 00 •ΐ
Figure imgf000098_0001
•68 ZLS 989 •ει 6Ζ IVM zm Z 1 士^
29 • εε 00 • ΐ 80ΐ • επ 9Lf • ε G Lf ”ΐ οε 丄 zm 9Ζ9Ϊ ^^ f8 ~ 00 • ΐ
Figure imgf000098_0001
• 68 ZLS 989 • ει 6Ζ IVM zm Z 1
OL 00 ■I IZS '28 ZO •ζ oot •0 - 8Ζ 丄 VAl zm SI 士^OL 00 ■ I IZS '28 ZO • ζ oot • 0-8Ζ 丄 VAl zm SI
29 •IS 00 "ΐ OCS •S8 SL ΐ 86ΐ "Ζΐ LZ 丄 VA\ zm ZZ \ 士^29 • IS 00 "ΐ OCS • S8 SL ΐ 86ΐ" Ζΐ LZ 丄 VA \ zm ZZ \ ^^
' 00 •ΐ 8Ζ8 •66 Z \ 'Ζ- C98 -\ζ 9Ζ IVM zm ZZQ\ 士^'00 • ΐ 8Ζ8 • 66 Z \' Ζ- C98-\ ζ 9Ζ IVM zm ZZQ \ ^^
IZ 00 •ΐ " S ·6Ζ ZOL •ΐ Ζ 丄 VA\ \Z l 士^IZ 00 • ΐ "S · 6Ζ ZOL • ΐ Ζ 丄 VA \ \ Z l ^^
96 •s 00 'ΐ 186 "88 ΐ Ί2- 8 0 Όΐ Ζ 丄 VM zm Z21 士^ 9 00 •ΐ 6ΖΖ ■fOl 6£ΐ ' ι Ϊ9Ζ •S ΖΖ zm 6191 士^96 • s 00 'ΐ 186 "88 ΐ Ί2-80 Όΐ Ζ 丄 VM zm Z21 ^ 9 00 • ΐ 6ΖΖ fOl 6 £ ΐ' ι Ϊ9Ζ • S ΖΖ zm 6191 ^^
18 ' 00 "I 3^8 ' 8 S6Z 89ΐ •S ΖΖ IVM zm 8Ϊ5Ϊ 士^18 '00 "I 3 ^ 8' 8 S6Z 89ΐS ΖΖ IVM zm 8Ϊ5Ϊ
69 00 •ΐ 60ΐ •68 OZZ 99£ ·9ΐ \Ζ 丄 Vitt zm ISl 士^ 6 •εε 00 •ΐ "Ζ8 Z6L 'ΐ - 68S 'Ζ οζ IVM zm 9IST69 00 • ΐ 60ΐ • 68 OZZ 99 £ · 9ΐ \ Ζ 丄 Vitt zm ISl ^^ 6 • εε 00 • ΐ "Ζ8 Z6L 'ΐ-68S' Ζ οζ IVM zm 9IST
6ΐ 00 •ΐ ζοι 'ΖΟΐ 180 "Ζΐ- 9fL •9 61 丄 VA\ zm 9IST 士^ £9£0/00Jr/13d J81S-/00 OAV Z.6 6ΐ 00 • ΐ ιοι 'ΖΟΐ 180 "Ζΐ- 9fL • 9 61 丄 VA \ zm 9IST ^^ 9 £ 0 / 00Jr / 13d J81S- / 00 OAV Z.6
20 ■ 00 'ΐ \ζ •06 LLS •S- 098 •ε ZL 丄 VM zm 6991 士^20 ■ 00 'ΐ \ ζ • 06 LLS • S-098 • ε ZL 丄 VM zm 6991 ^^
68 •IS 00 ■ΐ 8 '02ΐ SL6 •0 - 6 ·9ΐ ZL 丄 VA\ 89ST 士^ ετ ' 00 ■ΐ 9S0 'ΖΟΙ LZf •z 6 S ·9ΐ IL 丄 VA\ zm 9SI 士¾ ετ •617 00 •ΐ ΟΐΖ •69 996 •9 U9 ' - Ο 1VM zm 99ST 士^68 • IS 00 ■ ΐ 8 '02 ΐ SL6 • 0-6 · 9ΐ ZL 丄 VA \ 89ST ^^ ετ '00 ■ ΐ 9S0 'ΖΟΙ LZf • ΐ ΟΐΖ • 69 996 • 9 U9 '-Ο 1VM zm 99ST ^^
68 "62 00 'ΐ βεε •S9 OLZ •IS 8S9 •0 - 69 丄 VA\ zm S99I 士^68 "62 00 'ΐ βεε • S9 OLZ • IS 8S9 • 0-69 丄 VA \ zm S99I
19 "S9 00 •ΐ 680 '96 199 '6ΐ- £68 ■ ζ 89 丄 VM zm ^9SI 士^ ο " S 00 •ΐ Ζ9Ζ '69 9ZL •S Z 'Ζ Ζ9 丄 VA\ zwo S991 士^19 "S9 00 • ΐ 680 '96 199 '6ΐ- £ 68 ■ ζ 89 丄 VM zm ^ 9SI ^^ ο" S 00 • ΐ Ζ9Ζ '69 9ZL • S Z' Ζ Ζ9 丄 VA \ zwo S991 ^
86 •εε 00 'ΐ 0S8 •19 8V •62 % •ε 99 丄 VA\ zm 29SI 士^86 • εε 00 'ΐ 0S8 • 19 8V • 62% • ε 99 丄 VA \ zm 29SI
9ΐ 00 'ΐ I S -ΐ6 OIL •ΐΐ - Π6 '\ S9 1VM zm 19S1 士^ 6 00 •ΐ LOL "ΐθΐ S81 I9S •0 1V zwo 09S1 士^ ζΖ '0 00 •ΐ 9ST '0 8^ε 'τ 6 •Οΐ C9 環 z o 6SST 士^9ΐ 00 'ΐ IS -ΐ6 OIL ・ ΐΐ-Π6' \ S9 1VM zm 19S1 ^^ 6 00 6 • Οΐ C9 ring zo 6SST
66 ·6ε 00 •ΐ 6 Ζ ·90ΐ gs9 •εト SCO •ι- Ζ9 IVM zwo 8S9T 士^66 · 6ε 00 • ΐ 6 Ζ · 90ΐ gs9 • ε G SCO • ι- Ζ9 IVM zwo 8S9T
98 •9 00 •ΐ L\ •08 o^s •c 068 'ト 19 丄 VM zm SSI 士^98 • 900 • ΐ L \ • 08 o ^ s • c 068 'to 19 丄 VM zm SSI
9S 'βί' 00 'ΐ V£Z "9ΐΐ 9Z9 ト 9 6 - 09 IVM zm 9SST 士^ 6 00 •ΐ 96E ■\ζ\ 9^0 ■ι 0 •9 6S 丄 VA\ zm SSSl 士^9S 'βί' 00 'ΐ V £ Z "9ΐΐ 9Z9 G 9 6-09 IVM zm 9SST ^^ 6 00 • ΐ 96E ■ \ ζ \ 9 ^ 0 ■ ι 0 • 9 6S 丄 VA \ zm SSSl ^^
S6 'ζε 00 'ΐ LZI •96 szz •0 629 "Ζΐ 8S zm SSI 士^S6 'ζε 00' ΐ LZI • 96 szz • 0 629 "Ζΐ 8S zm SSI ^^
11 "69 00 •ΐ 82 •επ •6- fLL •ε- 9 zm CS9I 士^ εε "99 00 •ΐ 9^9 'SZ •82 ε8ΐ •Οΐ 99 IVM zwo CSSl 士^11 "69 00 • ΐ 82 • επ • 6- fLL • ε- 9 zm CS9I ^^ εε“ 99 00 • ΐ 9 ^ 9 'SZ • 82 ε8ΐ • Οΐ 99 IVM zwo CSSl ^
'2 00 •ΐ ceo •99 OZL "SI εετ - 丄 VA\ zm TSSl 士^ νζ ' 00 ΐ S9S '90ΐ ζΖ •91- ^66 •Π IVM zm 0SS1 士^'2 00 • ΐ ceo • 99 OZL "SI εετ-丄 VA \ zm TSSl ^^ νζ' 00 ΐ S9S '90 ΐ ζΖ • 91- ^ 66 • Π IVM zm 0SS1 ^^
8Ζ ■Z£ 00 •ΐ IZS '86 98 ' S9S C 丄 VA\ zm 6^91 士^8Ζ ■ Z £ 00 • ΐ IZS '86 98 'S9S C 丄 VA \ zm 6 ^ 91 ^^
19 •8S 00 •ΐ ΐ8ΐ •U 8C8 'zz Οΐ '9- 29 IVM zm 8^31 士^ ιε 'Ζ 00 •ΐ 8Ζ8 '6 l •SI - ΖΖ6 •81 IS IVM zwo L l 士^ '6 00 •ΐ 682 'ΖΖΙ ZZZ 'Z- L6L •gi OS IVM zm 9^91 士^ Ι •62 00 'ΐ 98 · 8 380 •z - 9\Ζ ·9ΐ 6^ 丄 VA\ zm s^gi 士^ ζι 00 •ΐ Iff •Οΐΐ 019 6 •ΐ 8 IVM zm SI 士^ e9eo/oodf/iD<i 381SZ./00 OAV. 19 • 8S 00 • ΐ ΐ8ΐ • U 8C8 'zz Οΐ' 9- 29 IVM zm 8 ^ 31 ^^ ιε 'Ζ 00 • ΐ 8Ζ8' 6 l • SI-ΖΖ6 • 81 IS IVM zwo L l ^^ '600 • ΐ 682 'ΖΖΙ ZZZ' Z- L6L • gi OS IVM zm 9 ^ 91 ^^ Ι • 62 00 'ΐ 98 · 8 380 • z-9 \ Ζ · 9ΐ 6 ^ 丄 VA \ zm s ^ gi ^^ ζι 00 • ΐ Iff • Οΐΐ 019 6 • ΐ 8 IVM zm SI Engineer ^ e9eo / oodf / iD <i 381SZ./00 OAV.

Claims

請求の範囲 The scope of the claims
1. RRFタンパクの活性部位、 補助的結合部位又はポケッ トと結合し得る化 合物を設計する方法であって、 RRFタンパク結晶から得られる構造座標に基づ き、 その化学的実体をコンピューター評価してなる、 前記方法。 1. A method for designing a compound that can bind to the active site, an auxiliary binding site, or a pocket of RRF protein. The chemical entity is evaluated by computer based on the structural coordinates obtained from the RRF protein crystal. The method as described above.
2. RRFタンパク結晶が、 RRFタンパク自体の結晶、 RRFタンパク変異体の結 晶、 RRFタンパクホモ口グの結晶及び RRFタンパクの共複合体の結晶のいずれ かである、 請求項 1に記載の方法。  2. The method according to claim 1, wherein the RRF protein crystal is any one of a crystal of the RRF protein itself, a crystal of a mutant RRF protein, a crystal of a homologue of the RRF protein, and a crystal of a co-complex of the RRF protein. .
3. RRFタンパク結晶が、 bipyramid系である、 請求項 1又は 2に記載の方法  3. The method according to claim 1, wherein the RRF protein crystal is a bipyramid system.
4. RRFタンパク結晶が、 空間群 1^4,2,2,又は空間群 P432,2を有する、 請求項 1〜3のいずれかに記載の方法。 4. RRF protein crystals have a space group 1 ^ 4,2,2, or space group P4 3 2, 2, The method according to any one of claims 1 to 3.
5. RRFタンパク結晶が、 0.3X0.3X0.5mmの大きさを有する、 請求項 1〜4 のいずれかに記載の方法。  5. The method according to any one of claims 1 to 4, wherein the RRF protein crystal has a size of 0.3X0.3X0.5mm.
6. RRFタンパク結晶が、 a = b=47.3A、 c = 297.6 Aの大きさの各単位格子を 有する、 請求項 1〜5のいずれかに記載の方法。  6. The method according to any one of claims 1 to 5, wherein the RRF protein crystal has a unit cell having a size of a = b = 47.3A and c = 297.6A.
7. RRFタンパク結晶が、 表 7による構造座標により特徴づけられる、 請求 項 1〜6のいずれかに記載の方法。  7. The method according to any of claims 1 to 6, wherein the RRF protein crystals are characterized by the structural coordinates according to Table 7.
8. RRFタンパク結晶が、 Thermotoga Maritima由来のものである、 請求項 1〜7のいずれかに記載の方法。  8. The method according to any one of claims 1 to 7, wherein the RRF protein crystal is derived from Thermotoga Maritima.
9. RRFタンパク結晶が、 斜方晶系である、 請求項 1又は 2に記載の方法。 9. The method according to claim 1, wherein the RRF protein crystal is orthorhombic.
1 0. RRFタンパク結晶が、 空間群?2,2 を有する、 請求項 1、 2及び 9のい ずれかに記載の方法。 1 0. Is the RRF protein crystal a space group? 10. The method according to any one of claims 1, 2 and 9, comprising 2,2.
1 1. RRFタンパク結晶が、 30X50 X25(^ :11の大きさを有する、 請求項 1〜2 及び 9〜 10のいずれかに記載の方法。  1 1. The method according to any one of claims 1-2 and 9-10, wherein the RRF protein crystal has a size of 30X50 X25 (^: 11).
1 2. RRFタンパク結晶が、 菌 X由来のものである、 請求項 1〜2及び 9〜11の いずれかに記載の方法。  12. The method according to any one of claims 1-2 and 9-11, wherein the RRF protein crystal is derived from fungus X.
1 3. RRFタンパク結晶が、 滴状蒸気拡散法により結晶化されている、 請求 項 1〜 12のいずれかに記載の方法。 13. The method according to any one of claims 1 to 12, wherein the RRF protein crystal is crystallized by a droplet vapor diffusion method.
1 4. RRFタンパク結晶が重原子誘導体であって、 該結晶が RRFタンパク 自 体の結晶、 RRFタンパク変異体の結晶、 RRFタンパクホモログの結晶及び RRFタ ンパクの共複合体の結晶のいずれかである、 請求項 1〜13のいずれかに記載の 方法。 1 4. The RRF protein crystal is a heavy atom derivative, and the crystal is one of a crystal of the RRF protein itself, a crystal of the RRF protein mutant, a crystal of the RRF protein homolog, and a crystal of a co-complex of the RRF protein. A method according to any of the preceding claims.
1 5. 重原子誘導体が、 チロメサール、 チオリンゴ酸金、 酢酸ゥラニル及 び塩化鉛からなる群より選択される化合物との反応により形成されている、 請求項 1〜 14のいずれかに記載の方法。  15. The method according to any one of claims 1 to 14, wherein the heavy atom derivative is formed by reaction with a compound selected from the group consisting of tyromesal, gold thiomalate, peranyl acetate, and lead chloride.
1 6. RRFタンパク結晶が、 白金又は水銀による重原子誘導体である、 請求 項 1、 2及び 9〜12のいずれかに記載の方法。  1 6. The method according to any one of claims 1, 2 and 9 to 12, wherein the RRF protein crystal is a heavy atom derivative with platinum or mercury.
1 7. RRFタンパクがモノマーである、 請求項 1〜16のいずれかに記載の方 法。  17. The method according to any one of claims 1 to 16, wherein the RRF protein is a monomer.
1 8. RRFタンパクが、 表 5又は表 6によるアミノ酸変位により特徴づけられ る、 請求項 1〜8、 13〜15及び 17のいずれかに記載の方法。  18. The method according to any of claims 1 to 8, 13 to 15 and 17, wherein the RRF protein is characterized by amino acid changes according to Table 5 or Table 6.
1 9. 活性部位、 補助的結合部位又はポケッ トに結合する化学的実体によ り特徴づけられる化合物が、 RRFタンパクの阻害物質であることを特徴とする 、 請求項 1〜18のいずれかに記載の方法。  19. The compound according to any one of claims 1 to 18, characterized in that the compound characterized by an active site, an auxiliary binding site or a chemical entity binding to a pocket is an inhibitor of the RRF protein. The described method.
2 0. 前記阻害物質が RRFの競合的、 非競合的又は不競合的阻害物質である ことを特徴とする、 請求項 1〜19のいずれかに記載の方法。  20. The method according to any one of claims 1 to 19, wherein the inhibitor is a competitive, non-competitive or uncompetitive inhibitor of RRF.
2 1. RRFタンパクの活性部位又は補助的結合部位におけるリガンドの配向 を決定することを含む、 請求項 1〜20のいずれかに記載の方法。  21. The method according to any of the preceding claims, comprising determining the orientation of the ligand at the active or auxiliary binding site of the RRF protein.
2 2. 構造座標が表 7による、 RRFタンパクの構造座標であることを特徴と する、 請求項 1〜8、 13〜15及び 17〜21のいずれかに記載の方法。  22. The method according to any one of claims 1 to 8, 13 to 15, and 17 to 21, wherein the structural coordinates are the structural coordinates of the RRF protein according to Table 7.
2 3. RRFタンパクの変異体、 ホモログ又は共複合体の結晶形態を分子置換 により解明することを含む、 RRFタンパクの 3次元構造を決定する方法。  2 3. A method for determining the three-dimensional structure of an RRF protein, comprising elucidating the crystal form of a mutant, homolog or co-complex of the RRF protein by molecular replacement.
2 4. 斜方晶系の RRFタンパク結晶。  2 4. Orthogonal RRF protein crystals.
2 5. 空間群 P2i2,2を有する、 請求項 24に記載の RRFタンパク結晶。  25. The RRF protein crystal according to claim 24, having the space group P2i2,2.
2 6. 30X 50X250/i mの大きさを有する、 請求項 24又は 25に記載の RRFタン パク結晶。  26. The RRF protein crystal according to claim 24 or 25, having a size of 30X50X250 / im.
2 7. RRFが菌 X由来のものである、 請求項 24〜26のいずれかに記載の RRFタ ンパク結晶。 27. The RRF tag according to any one of claims 24 to 26, wherein the RRF is derived from bacterium X. Compact crystal.
2 8. bipyramid系である、 RRFタンパク結晶。  2 8. Bipyramid-based RRF protein crystals.
2 9. 空間群 F ^A又は空間群 Ρ432,2を有する、 請求項 28に記載の RRFタン パク結晶。 2 9. with space group F ^ A or space group Ρ4 3 2,2, RRF Tan Pak crystal according to claim 28.
3 0. 0.3X0.3X0.5mmの大きさを有する、 言青求項 28又は 29に記載の RRFタ ンパク結晶。  30. The RRF protein crystal according to claim 28 or 29, having a size of 0.3X0.3X0.5mm.
3 1. a=b=47.3A、 c = 297.6 Aの大きさの各単位格子を有する、 請求項 28 〜30のいずれかに記載の RRFタンパク結晶。  31. The RRF protein crystal according to any one of claims 28 to 30, having a unit cell having a size of a = b = 47.3A and c = 297.6A.
3 2. 表 5又は表 6によるアミノ酸変位により特徴づけられる、 請求項 28〜3 1のいずれかに記載の RRFタンパク結晶。  32. The RRF protein crystal of any one of claims 28-31, characterized by amino acid changes according to Table 5 or Table 6.
3 3. 表 7による構造座標により特徴づけられる、 請求項 28〜32のいずれか に記載の RRFタンパク結晶。  3 3. An RRF protein crystal according to any of claims 28 to 32, characterized by the structural coordinates according to Table 7.
3 4. Thermotoga Mar i t ima由来のものである、 言青求項 28〜33のレヽずれ力、 に記載の RRFタンパク結晶。  3 4. The RRF protein crystal according to 28, wherein the RRF protein crystal is derived from Thermotoga Maritima.
3 5. 滴状蒸気拡散法により結晶化された、 請求項 24〜34のいずれかに記 載の RRFタンパク結晶。  3 5. The RRF protein crystal according to any one of claims 24 to 34, crystallized by a droplet vapor diffusion method.
3 6. 結晶が RRFタンパク自体の結晶、 RRFタンパク変異体の結晶、 RRFタン パクホモ口グの結晶及び RRFタンパクの共複合体の結晶のいずれかである、 請 求項 24〜35のいずれかに記載の RRFタンパク結晶。  3 6. The claim as claimed in any one of claims 24 to 35, wherein the crystal is any one of a crystal of the RRF protein itself, a crystal of the RRF protein mutant, a crystal of the RRF protein homologue, and a crystal of the RRF protein co-complex. The described RRF protein crystal.
3 7. 活性部位のアミノ酸が、 配列番号 1の Arg 110、 Arg 129及び Arg 132 からなる群から選択される、 RRFタンパク。  3 7. An RRF protein wherein the amino acid at the active site is selected from the group consisting of Arg 110, Arg 129 and Arg 132 of SEQ ID NO: 1.
3 8. 活性部位又は補助的活性部位中の 1つ以上のアミノ酸が、 天然に存在 するアミノ酸、 非天然アミノ酸、 セレノシスティン及びセレノメチォニンか らなる群から選択される 1つ以上のァミノ酸により置換されている、 請求項 37 に記載の RRFタンパク。  3 8. One or more amino acids in the active or auxiliary active site are replaced by one or more amino acids selected from the group consisting of naturally occurring amino acids, unnatural amino acids, selenocystine and selenomethionine. 39. The RRF protein of claim 37, wherein
3 9. 活性部位又は補助的活性部位中の親水性ァミノ酸及び疎水性ァミノ 酸が置換されている、 請求項 37に記載の RRFタンパク。  39. The RRF protein according to claim 37, wherein the hydrophilic amino acid and the hydrophobic amino acid in the active site or the auxiliary active site are substituted.
4 0. 少なく とも 1つのシスティンアミノ酸が、 セレノシスティン又はセレ ノメチォニンからなる群から選択されるアミノ酸により置換されている、 請 求項 37に記載の RRFタンパク。 40. At least one cysteine amino acid has been replaced by an amino acid selected from the group consisting of selenocysteine or selenomethionine. The RRF protein of claim 37.
4 1 . 少なく とも 1つのメチォニンアミノ酸が、 セレノシスティン又はセレ ノメチォニンからなる群から選択されるアミノ酸により置換されている、 請 求項 37に記載の RRFタンパク。  41. The RRF protein of claim 37, wherein at least one methionine amino acid is substituted with an amino acid selected from the group consisting of selenocystine or selenomethionine.
4 2 . 結晶形態である、 請求項 37〜38のいずれかに記載の RRFタンパク。 42. The RRF protein according to any of claims 37 to 38, which is in a crystalline form.
4 3 . 野生型酵素より高いか、 又は低い比活性を有する、 請求項 37に記載 の RRFタンパク。 43. The RRF protein of claim 37, having a higher or lower specific activity than the wild-type enzyme.
4 4 . 変化した基質特異性を有する、 請求項 37に記載の RRFタンパク。  44. The RRF protein of claim 37, having altered substrate specificity.
4 5 . 化合物と RRFタンパクとの結合相互作用を測定するための、 請求項 37 に記載の RRFタンパクの使用。  45. Use of the RRF protein according to claim 37 for measuring the binding interaction between a compound and the RRF protein.
4 6 . RRFタンパクの表面上、 表面又はその近傍の少なく とも 1個のアミノ 酸残基が置換されており、 表面荷電の 1以上の荷電単位の変化が生じている、 請求項 37に記載の RRFタンパク。  46. The method of claim 37, wherein at least one amino acid residue on or near the surface of the RRF protein has been substituted, resulting in a change in one or more charge units of the surface charge. RRF protein.
4 7 . R R Fタンパクのポケッ ト力 R R Fタンパクの二つの ドメインを 隔てる折れ曲がり部分に位置する C末端近傍のボケッ トである請求項 1〜 2 2のいずれかに記載の方法。  47. The pocket force of RRF protein The method according to any one of claims 1 to 22, which is a pocket near the C-terminus located at a bent portion separating two domains of RRF protein.
4 8 . 上記化合物が、 R R Fタンパクのリボソームへの結合を阻害し、 又 は R R Fタンパクのリボソ一ム上での挙動を阻害する請求項 1 〜 2 2のいず れかに記載の方法。  48. The method of any of claims 1-22, wherein the compound inhibits binding of the RRF protein to the ribosome or inhibits the behavior of the RRF protein on the ribosome.
4 9 . 請求項 19〜23、47、48のいずれかに記載の方法により得られる、 RRFタ ンパクの阻害物質。  49. An RRF protein inhibitor obtained by the method according to any one of claims 19 to 23, 47, and 48.
5 0 . R R Fタンパクのリボソームへの結合を阻害する活性又は R R Fタ ンパクのリボソ一ム上での挙動を阻害する活性に基づいて、 RRFタンパクの活 性を阻害し得る化合物を探索する方法。  50. A method for searching for a compound that can inhibit the activity of RRF protein based on the activity of inhibiting the binding of RRF protein to ribosomes or the activity of inhibiting the behavior of RRF protein on ribosomes.
5 1 . 請求項 5 0に記載の方法により得られる、 RRFタンパクの阻害物質。  51. An RRF protein inhibitor obtained by the method according to claim 50.
PCT/JP2000/003639 1999-06-04 2000-06-05 Crystal of ribosomal recycling factor (rrf) protein and application thereof on the basis of three-dimensional structural data obtained from the crystal WO2000075182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15863799 1999-06-04
JP11/158637 1999-06-04

Publications (1)

Publication Number Publication Date
WO2000075182A1 true WO2000075182A1 (en) 2000-12-14

Family

ID=15676074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003639 WO2000075182A1 (en) 1999-06-04 2000-06-05 Crystal of ribosomal recycling factor (rrf) protein and application thereof on the basis of three-dimensional structural data obtained from the crystal

Country Status (1)

Country Link
WO (1) WO2000075182A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512954A (en) * 2001-07-12 2005-05-12 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング X-ray coordinates defining the human papillomavirus E2 transactivation domain / inhibitor co-crystal and the inhibitor binding pocket

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037202A1 (en) * 1997-02-24 1998-08-27 Akira Kaji Isolation of ribosome recycling factor genes and determination of the primary structures of ribosome recycling factor genes of pseudomanas aeruginosa and one other
JP2000086696A (en) * 1998-09-08 2000-03-28 Akira Kaji Ribosome recycling factor(rrf) protein crystal and application to rational drug design based on three- dimensional structural information obtained from the crystal
JP2000157275A (en) * 1998-11-20 2000-06-13 Giichi Nakamura Ribosome recycling factor gene of highly thermophilic bacterium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037202A1 (en) * 1997-02-24 1998-08-27 Akira Kaji Isolation of ribosome recycling factor genes and determination of the primary structures of ribosome recycling factor genes of pseudomanas aeruginosa and one other
JP2000086696A (en) * 1998-09-08 2000-03-28 Akira Kaji Ribosome recycling factor(rrf) protein crystal and application to rational drug design based on three- dimensional structural information obtained from the crystal
JP2000157275A (en) * 1998-11-20 2000-06-13 Giichi Nakamura Ribosome recycling factor gene of highly thermophilic bacterium

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KANAI T. ET AL.: "A regulatory factor, Fillp, involved in derepression of the isocitrate lyase gene in saccharomyces cerevisiae", EUR J. BIOCHEM., vol. 256, no. 1, 1998, pages 212 - 220 *
KASHIMORI H. ET AL.: "Letter to the editor: backbone NMR assignment and secondary structure of ribosome recycling factor (RRF) from pseudomonas aeruginosa", JOURNAL OF BIOMOLECULAR NMR, vol. 15, no. 4, December 1999 (1999-12-01), pages 341 - 342 *
NELSON K.E. ET AL.: "Evidence for lateral gene transfer between archaea and bacteria from genome sequence of thermotoga maritima", NATURE, vol. 399, no. 6734, May 1999 (1999-05-01), pages 323 - 329 *
SELMER M. ET AL.: "Crystal structure of thermotoga maritime ribosome recycling factor: A tRNA mimic", SCIENCE, vol. 286, December 1999 (1999-12-01), pages 2349 - 2352 *
SELMER M. ET AL.: "Crystallization and preliminary X-ray analysis of thermotoga maritima ribosome recycling factor", ACTA CRYST., vol. 55, no. 12, December 1999 (1999-12-01), pages 2049 - 2050 *
YUN J. ET AL.: "Crystallization and preliminary crystallographic studies of ribosome recycling factor from escherichia coli", ACTA CRYST., vol. 56, no. 1, January 2000 (2000-01-01), pages 84 - 85 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512954A (en) * 2001-07-12 2005-05-12 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング X-ray coordinates defining the human papillomavirus E2 transactivation domain / inhibitor co-crystal and the inhibitor binding pocket

Similar Documents

Publication Publication Date Title
Keep et al. A modulator of rho family G proteins, rhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm
Bidwell et al. Crystal structure of human catecholamine sulfotransferase
Athappilly et al. Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing
Jia et al. Structure of apoptosis-linked protein ALG-2: insights into Ca2+-induced changes in penta-EF-hand proteins
Létoquart et al. Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure
Kukimoto-Niino et al. Structural basis for the exclusive specificity of Slac2-a/melanophilin for the Rab27 GTPases
Nakamura et al. Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome
WO2008109871A2 (en) Crystal structure of proprotein convertase 9 (pcsk9) and uses thereof
Davies et al. The crystal structure of ribosomal protein L14 reveals an important organizational component of the translational apparatus
US8338573B2 (en) Crystal structure of CD147 extracellular region and use thereof
Casado-Vela et al. Analysis of root plasma membrane aquaporins from Brassica oleracea: post-translational modifications, de novo sequencing and detection of isoforms by high resolution mass spectrometry
WO2003097824A1 (en) Crystal of glucokinase protein, and method for drug design using the crystal
Scapin et al. The crystal structure of the small GTPase Rab11b reveals critical differences relative to the Rab11a isoform
Brenk et al. Crystallographic study of inhibitors of tRNA-guanine transglycosylase suggests a new structure-based pharmacophore for virtual screening
US20110021760A1 (en) Crystalline vap-1 and uses thereof
Gooptu et al. Crystallographic and cellular characterisation of two mechanisms stabilising the native fold of α1-antitrypsin: implications for disease and drug design
JP2003212895A (en) Crystal structure of antibiotic bound to 30s ribosome, and its application
JP2003523175A (en) Crystallization and structure determination of Staphylococcus aureus UDP-N-acetylenolpyruvyl glucosamine reductase (S. aureusMurB)
WO2000075182A1 (en) Crystal of ribosomal recycling factor (rrf) protein and application thereof on the basis of three-dimensional structural data obtained from the crystal
Steussy et al. X-ray crystal structures of HMG-CoA synthase from Enterococcus faecalis and a complex with its second substrate/inhibitor acetoacetyl-CoA
JP2005194188A (en) Crystal structure of 30s ribosome and use thereof
JP2003510250A (en) Crystallization and structure determination of Staphylococcus aureus elongation factor P
US20030232369A1 (en) Molecular structure of RNA polymerase II
JP2009504141A (en) Crystal structure of human soluble adenylate cyclase.
US20080167385A1 (en) Crystal Structure of Human Proliferating Cell Nuclear Antigen (Pcna) and Uses Thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 502463

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09980954

Country of ref document: US

122 Ep: pct application non-entry in european phase