WO2000069900A2 - Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components - Google Patents
Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components Download PDFInfo
- Publication number
- WO2000069900A2 WO2000069900A2 PCT/US2000/013576 US0013576W WO0069900A2 WO 2000069900 A2 WO2000069900 A2 WO 2000069900A2 US 0013576 W US0013576 W US 0013576W WO 0069900 A2 WO0069900 A2 WO 0069900A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fmoc
- peptide
- amino acid
- lys
- therapeutic
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/645—Secretins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/18—Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/465—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from birds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/57545—Neuropeptide Y
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/605—Glucagons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/62—Insulins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/76—Albumins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/31—Fusion polypeptide fusions, other than Fc, for prolonged plasma life, e.g. albumin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16111—Human Immunodeficiency Virus, HIV concerning HIV env
- C12N2740/16122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Definitions
- This invention relates to modified therapeutic peptides.
- this invention relates to protection of endogenous therapeutic peptides from peptidase activity through a modification that enables the peptide to selectively conjugate to blood components, thus protecting the peptide from peptidase activity and increasing the duration of action of the therapeutic peptide for the treatment of various disorders.
- endogenous peptides have been described as key components of biological processes. Some of these peptides have been identified as key therapeutic agents for the management of various disorders. In general, endogenous peptides are more desirable as therapeutic agents than synthetic peptides with non-native sequences, because they do not produce an immune response due to their endogenous character. In addition, endogenous peptides are highly specific for their target receptors and are easy to synthesize and manufacture. However, a major difficulty with the delivery of such therapeutic peptides is their short plasma half-life, mainly due to rapid serum clearance and proteolytic degradation via the action of peptidases.
- Peptidases break a peptide bond in peptides by inserting a water molecule across the bond. Generally, most peptides are broken down by peptidases in the body in a manner of a few minutes or less. In addition, some peptidases are specific for certain types of peptides, making their degradation even more rapid. Thus, if a peptide is used as a therapeutic agent, its activity is generally reduced as the peptide quickly degrades in the body due to the action of peptidases.
- One way to overcome this disadvantage is to administer large dosages of the therapeutic peptide of interest to the patient so that even if some of the peptide is degraded, enough remains to be therapeutically effective. However, this method is quite uncomfortable for the patient.
- the - therapeutic peptide would have to be either constantly infused, frequently administered by intravenous injections, or administered frequently by the inconvenient route of subcutaneous injections.
- the need for frequent administration also results in many potential peptide therapeutics having an unacceptably high projected cost per treatment course.
- the presence of large amounts of degraded peptide may also generate undesired side effects.
- An alternative to creating peptide mimics is to block the action of peptidases to prevent degradation of the therapeutic peptide or to modify the therapeutic peptides in such a way that their degradation is slowed down while still maintaining biological activity.
- Such methods include conjugation with polymeric materials such as dextrans, polyvinyl pyrrolidones, glycopeptides, polyethylene glycol and polyamino acids, conjugation with adroitin sulfates, as well as conjugation with polysaccharides, low molecular weight compounds such as aminolethicin, fatty acids, vitamin B ⁇ 2 , and glycosides. These conjugates, however, are still often susceptible to protease activity.
- This invention is directed to overcoming the problem of peptide degradation in the body by modifying the therapeutic peptide of interest and attaching it to protein carriers, such that the action of peptidases is prevented, or slowed down. More specifically, this invention relates to novel chemically reactive derivatives of therapeutic peptides that can react with available functionalities on blood proteins to form covalent linkages, specifically a therapeutic peptide-maleimide derivative. The invention also relates to novel chemically reactive derivatives or analogs of such therapeutic peptides. The invention additionally pertains to the therapeutic uses of such compounds.
- the present invention is directed to modifying and attaching therapeutic peptides to protein carriers, preferentially albumin, through in vivo or ex vivo technology to prevent or reduce the action of peptidases by virtue of a synthetic modification on the first residue to be cleaved.
- Therapeutic peptides are usually active at the N-terminus portion, at the C-terminus portion, or in an interior portion of the peptide chain.
- a site other than the active portion of a therapeutic peptide is modified with certain reactive groups. These reactive groups are capable of forming covalent bonds with functionalities present on blood components. The reactive group is placed at a site such that when the therapeutic peptide is bonded to the blood component, the peptide retains a substantial proportion of the parent compound's activity.
- the modification of the therapeutic peptide through the chemical modification used in the invention is done in such a way that all or most of the peptide specificity is conserved despite attachment to a blood component.
- This therapeutic peptide-blood component complex is now capable of traveling to various body regions without and being degraded by peptidases, with the peptide still retaining its therapeutic activity.
- the invention is applicable to all known therapeutic peptides and is easily tested under physiological conditions by the direct comparison of the pharmacokinetic parameters for the free and the modified therapeutic peptide.
- the present invention is directed to a modified therapeutic peptide capable of forming a peptidase stabilized therapeutic peptide composed of between 3 and 50 amino acids.
- the peptide has a carboxy terminal amino acid, an amino terminal amino acid, a therapeutically active region of amino acids and a less therapeutically active region of amino acids.
- the peptide comprises a reactive group which reacts with amino groups, hydroxyl groups, or thiol groups on blood components to form a stable covalent bond and thereby forms the peptidase stabilized therapeutic peptide.
- the reactive group is selected from the group consisting of succinimidyl and maleimido groups and the reactive group is attached to an amino acid positioned in the less therapeutically active region of amino acids.
- the therapeutically active region of the peptide includes the carboxy terminal amino acid and the reactive group is attached to said amino terminal amino acid.
- the therapeutically active region of the peptide includes the amino terminal amino acid and the reactive group is " attached to the carboxy terminal amino acid.
- the therapeutically active region of the peptide includes the carboxy terminal amino acid and the reactive group is attached to an amino acid positioned between the amino terminal amino acid and the carboxy terminal amino acid.
- the therapeutically active region includes the amino terminal amino acid and the reactive group is attached to an amino acid positioned between the amino terminal amino acid and the carboxy terminal amino acid.
- the present invention is also directed to a method of synthesizing the modified therapeutic peptide. The method comprises the following steps. In the first step, if the therapeutic peptide does not contain a cysteine, then the peptide is synthesized from the carboxy terminal amino acid and the reactive group is added to the carboxy terminal amino acid. Alternatively, a terminal lysine is added to the carboxy terminal amino acid and the reactive group is added to the terminal lysine.
- the cysteine is reacted with a protective group prior to addition of the reactive group to an amino acid in the less therapeutically active region of the peptide.
- the therapeutic peptide containe two cysteines as a disulfide bridge, then the two cysteines are oxidized and the reactive group is added to the amino terminal amino acid, or to the carboxy terminal amino acid, or to an amino acid positioned between the carboxy terminal amino acid and the amino terminal amino acid of the therapeutic peptide.
- the cysteines are sequentially oxidized in the disulfide bridges and the peptide is purified prior to the addition of the reactive groups to the carboxy terminal amino acid.
- the present invention is also directed to a method for protecting a therapeutic peptide from peptidase activity in vivo, the peptide being composed of between 3 and 50 amino acids and having a carboxy " terminus and an amino terminus and a carboxy terminal amino acid amino acid and an amino terminal amino acid.
- the method comprises the following steps:
- the present invention is also directed to a method for protecting a therapeutic peptide from peptidase activity in vivo, the peptide being composed of between 3 and 50 amino acids and having a therapeutically active region of amino acids and a less therapeutically active region of amino acids.
- the method comprises the following steps:
- peptides useful in the compositions and methods of the present invention include, but are not limited to, the peptides presented in SEQ ID NO:1 to SEQ ID NO:1617.
- Reactive groups are entities capable of forming a covalent bond. Such reactive groups are coupled or bonded to a therapeutic peptide of interest. Reactive groups will generally be stable in an aqueous environment and will usually be carboxy, phosphoryl, or convenient acyl group, either as an ester or a mixed anhydride, or an imidate, thereby capable of forming a covalent bond with functionalities such as an amino group, a hydroxy or a thiol at the target site on mobile blood components. For the most part, the esters will involve phenolic compounds, or be thiol esters, alkyl esters, phosphate esters, or the like. Reactive groups include succimidyl and maleimido groups.
- Functionalities are groups on blood components, including mobile and fixed proteins, to which reactive groups on modified therapeutic peptides react to form covalent bonds. Functionalities usually include hydroxyl groups for bonding to ester reactive groups, thiol groups for bonding to maleimides, imidates and thioester groups; amino groups for bonding to activated carboxyl, phosphoryl or any other acyl groups on reactive groups.
- Blood components may be either fixed or mobile.
- Fixed blood components are non-mobile blood components and include tissues, membrane receptors, interstitial proteins, fibrin proteins, collagens, platelets, endothelial cells, epithelial cells and their associated membrane and membraneous receptors, somatic body cells, skeletal and smooth muscle cells, neuronal components, osteocytes and osteoclasts and all body tissues especially those associated with the circulatory and lymphatic systems.
- Mobile blood components are blood components that do not have a fixed situs for any extended period of time, generally not exceeding 5, more usually one minute. These blood components are not membrane-associated and are present in the blood for extended periods of time and are present in a minimum concentration of at least 0.1 ⁇ g/ml.
- Mobile blood components include serum albumin, transferrin, ferritin and immunoglobulins such as IgM and IgG. The half- life of mobile blood components is at least about 12 hours.
- Protective groups are chemical moieties utilized to protect peptide derivatives from reacting with themselves. Various protective groups are disclosed herein and in U.S. 5,493,007 which is hereby incorporated by reference. Such protective groups include acetyl, fluorenylmethyloxycarbonyl (Fmoc), t-butyloxycarbonyl (Boc), benzyloxycarbonyl (Cbz), and the like. The specific protected amino acids are depicted in Table 1.
- Linkin Groups Linking groups are chemical moieties that link or connect reactive groups to therapeutic peptides.
- Linking groups may comprise one or more alkyl groups, alkoxy group, alkenyl group, alkynyl group or amino group substituted by alkyl groups, cycloaikyl group, polycyclic group, aryl groups, polyaryl groups, substituted aryl groups, heterocyclic groups, and substituted heterocyclic groups.
- Linking groups may also comprise poly ethoxy aminoacids such as AEA ((2-amino) ethoxy acetic acid) or a preferred linking group AEEA ([2-(2- amino)ethoxy)]ethoxy acetic acid).
- a preferred linking group is aminoethoxyethoxyacetic acid (AEEA).
- Sensitive Functional Groups - A sensitive functional group is a group of atoms that represents a potential reaction site on a therapeutic peptide. If present, a sensitive functional group may be chosen as the attachment point for the linker-reactive group modification. Sensitive functional groups include but are not limited to carboxyl, amino, thiol, and hydroxyl groups.
- a modified therapeutic peptide peptide is a therapeutic peptide that has been modified by attaching a reactive group, and is capable of forming a peptidase stabalized peptide through conjugation to blood components.
- the reactive group may be attached to the therapeutic peptide either via a linking group, or optionally without using a linking group. It is also contemplated that one or more additional amino acids may be added to the therapeutic peptide to facilitage the attachment of the reactive group.
- Modified peptides may be administered in vivo such that conjugation with blood components occurs in vivo, or they may be first conjugated to blood components in vitro and the resulting peptidase stabalized peptide (as defined below) administered in vivo.
- modified therapeutic peptide and “modified peptide” may be used interchangeably in this application.
- a peptidase stabalized therapeutic peptide is a modified peptide that has been conjugated to a blood component via a covalent bond formed between the reactive group of the modified peptide and the functionalities of the " blood component, with or without a linking group.
- Peptidase stabalized peptides are more stable in the presence of peptidases in vivo than a non-stabalized peptide.
- a peptidase stabalized therapeutic peptide generally has an increased half life of at least 10-50% as compared to a non-stabalized peptide of identical sequence.
- Peptidase stability is determined by comparing the half life of the unmodified therapeutic peptide in serum or blood to the half life of a modified counterpart therapeutic peptide in serum or blood.
- Half life is determined by sampling the serum or blood after administration of the modified and non-modified peptides and determining the activity of the peptide. In addition to determining the activity, the length of the therapeutic peptide may also be measured.
- therapeutic peptides are amino acid chains of between 2-50 amino acids with therapeutic activity, as defined below.
- Each therapeutic peptide has an amino terminus (also referred to as N-terminus or amino terminal amino acid), a carboxyl terminus (also referred to as C-terminus terminal carboxyl terminal amino acid) and internal amino acids located between the amino terminus and the carboxyl terminus.
- the amino terminus is defined by the only amino acid in the therapeutic peptide chain with a free ⁇ -amino group.
- the carboxyl terminus is defined by the only amino acid in the therapeutic peptide chain with a free ⁇ -carboxyl group.
- Therapeutic peptides used in the present invention contain a therapeutically active region generally located at the amino terminus, at the carboxyl terminus, or at an internal amino acid.
- the therapeutically active region may be identified using blind or structure activity relationship (SAR) driven substitution, as defined in more detail in this application.
- SAR is an analysis which defines the relationship between the structure of a molecule and its pharmacological activity for a series of compounds.
- the therapeutically active region may be v obtained by referring to references such as scientific journals. Knowledge of the location of the therapeutically active region of the peptide is important for modifying the therapeutic peptide, as defined in more detail below.
- Therapeutic peptides used in this invention also contain a less therapeutically active region generally located at the amino terminus, at or near the carboxyl terminus, or at or near an internal amino acid.
- the less therapeutically active region is a region of amino acids that does not coincide with the therapeutically active region of the therapeutic peptide.
- the less therapeutically active reion is generally located away from the therapeutically active region, such that modification at the less therapeutically active region does not substantially affect the therapeutic activity of the therapeutic peptide. For example, if the therapeutically active region is located at the amino terminus, the therapeutic peptide will be modified at either the carboxyl terminus or at an internal amino acid.
- the therapeutically active region is located at the carboxyl terminus, the therapeutic peptide will be modified at either the amino terminus or at an internal amino acid. Finally, if the therapeutically active region is located at an internal region, the therapeutic peptide will be modified at either the amino terminus or the carboxyl terminus.
- “Therapeutic activity” is any activity directed toward healing or curing a biological disorder in a patient.
- said therapeutic peptides include pituitary hormones such as vasopressin, oxytocin, melanocyte stimulating hormones, adrenocorticotropic hormones, growth hormones; hypothalamic hormones such as growth hormone releasing factor, corticotropin releasing factor, prolactin releasing peptides, gonadotropin releasing hormone and its associated peptides, luteinizing hormone release hormones, thyrotropin releasing hormone, orexin, and somatostatin; thyroid hormones such as calcitonins, calcitonin precursors, and calcitonin gene related peptides; parathyroid hormones and their related proteins; pancreatic hormones such as insulin and insulin-like peptides, glucagon, somatostatin, pancreatic polypeptides, amylin, peptide YY, and neuropeptide Y; digestive hormone
- the focus of this invention is to modify therapeutic peptides to protect them from peptidase activity in vivo and thereby extend the effective therapeutic life of the therapeutic peptide in question as compared to administration of the peptide per se to a patient.
- Peptide fragments chosen from the determined amino acid sequence of a therapeutic peptide as provided in the attached SEQUENCE LISTING constitute the starting point in the development comprising the present invention.
- the peptides range from 2 to 50 amino acids in length.
- the interchangeable terms "peptide fragment” and “peptide moiety” are meant to include both synthetic and naturally occurring amino acid sequences derivable from a naturally occurring amino acid sequence.
- peptide and peptide fragments are synthesized by conventional means, either by bench-top methods or by automated peptide synthesis machines as discussed in detail below. However, it is also possible to obtain fragments of the peptides by fragmenting the naturally occurring amino acid sequence, using, for example, a proteolytic enzyme.
- the present invention includes peptides which are derivable from the naturally occuring sequence of the therapeutic peptide.
- a peptide is said to be "derivable from a naturally occurring amino acid sequence” if it can be obtained by fragmenting a naturally occurring sequence, or if it can be synthesized based upon a knowledge of the sequence of the naturally occurring amino acid sequence or of the genetic material (DNA or RNA) which encodes this sequence.
- Included within the scope of the present invention are those molecules which are said to be “derivatives” of a peptide.
- Such a “derivative” has the following characteristics: (1) it shares substantial homology with the therapeutic peptide or a similarly sized fragment of the peptide and (2) it is capable of functioning with the same therapeutic activity as the peptide.
- a derivative of a peptide is said to share "substantial homology" with the peptide if the amino acid sequences of the derivative is at least 80%, and more preferably at least 90%, and most preferably at least 95%, the same as that of either the peptide or a fragment of the peptide having the same number of amino acid residues as the derivative.
- the derivatives of the present invention include fragments which, in addition to containing a sequence that is substantially homologous to that of a naturally occurring therapeutic peptide may contain one or more additional amino acids at their amino and/or their carboxy termini as discussed in detail below.
- the invention pertains to polypeptide fragments of the therapeutic peptide that may contain one or more amino acids that may not be present in a naturally occurring therapeutic peptide sequence provided that such fragments have a therapeutic activity which exceeds that of the therapeutic peptide.
- the invention includes polypeptide fragments which, although containing a sequence that is substantially homologous to that of a naturally occurring therapeutic peptide, may lack one or more additional amino acids at their amino and/or their carboxy termini that are naturally found on the therapeutic peptide.
- the invention pertains to polypeptide fragments of the therapeutic peptide that may lack one or more amino acids that are normally present in the naturally occurring peptide sequence provided that such polypeptides have a v therapeutic activity which exceeds that of the therapeutic peptide.
- the invention also encompasses the obvious or trivial variants of the above-described fragments which have inconsequential amino acid substitutions (and thus have amino acid sequences which differ from that of the natural sequence) provided that such variants have an activity which is substantially identical to that of the above-described derivatives.
- obvious or trivial substitutions include the substitution of one basic residue for another (i.e. Arg for Lys), the substitution of one hydrophobic residue for another (i.e. Leu for He), or the substitution of one aromatic residue for another (i.e. Phe for Tyr), etc.
- variable length peptides may be in the form of the free amines (on the N-terminus), or acid-addition salts thereof.
- Common acid addition salts are hydrohalic acid salts, i.e., HBr, HI, or, more preferably, HCI.
- Useful cations are alkali or alkaline earth metallic cations (i.e., Na, K, Li, Ca, Ba, etc.) or amine cations (i.e., tetraalkylammonium, trialkylammonium, where alkyl can be C ⁇ C ⁇ 2 ).
- Any peptide having a therapeutic activity may be used in this invention.
- the following list of peptides provides examples of peptides that may be used in this invention, but is not exhaustive and in no way limits the number or type of peptides that may be used in this invention.
- These therapeutic peptides and fragments produced from these peptides may be modified according to the present invention, and used therapeutically in the body.
- SEQ ID NOS: 1-72 Pituitary Hormones
- Adrenocortiocotropic Hormones (ACTH. aka corticotropin) (SEQ ID NOS: 1-22) -
- the endocrine functions of the adrenal cortex are regulated by an anterior pituitary hormone, ACTH.
- ACTH a 39-amino acid peptide is generated in the corticotrophic cells of the anterior pituitary under the control of corticotropin releasing factor.
- ACTH is derived by post-translational modification from a 241 -amino acid precursor known as pro-opiomelanocortin (POMC).
- POMC pro-opiomelanocortin
- ACTH The biological role of ACTH is to maintain the bulk and the viability of the adrenal cortex and to stimulate the production of adrenal cortex steroids, principally cortisol and costicosterone.
- the mechanism of action of ACTH involves binding to the ACTH receptor followed by activation of adenylate cyclase, elevation of cyclic AMP (cAMP), and increased protein kinase A (PKA) activity of adrenal cortex tissue.
- cAMP cyclic AMP
- PKA protein kinase A
- the main effect of these events is to increase the activity of a side chain- cleaving enzyme, which converts cholesterol to pregnenolone. Because of the distribution of enzymes in the various adrenal cortex subdivisions, the principal physiological effect of ACTH is production of the glucocorticosteroids.
- ACTH corticotropin releasing factor
- Growth Hormone Peptides SEQ ID NOS: 23-24, 45
- hPL Human placental lactogen
- Trl prolactin
- Mature GH (22,000 daltons) is synthesized in acidophilic pituitary somatotropes as a single polypeptide chain. Because of alternate RNA splicing, a small amount of a somewhat smaller molecular form is also secreted.
- GH-deficient dwarfs lack the ability to synthesize or secrete GH, and these short-statured individuals respond well to GH therapy. Pygmies lack the IGF-1 response to GH but not its metabolic effects; thus in pygmies the deficiency is post-receptor in nature.
- Laron dwarfs have normal or excess plasma GH, but lack liver GH receptors and have low levels of circulating IGF-1. The defect in these individuals is clearly related to an inability to respond to GH by the production of IGF-1.
- MSH Melanocvte Stimulating Hormones
- MSH Melanocyte stimulating hormone
- Oxytocin (SEQ ID NOS: 40-44) - Oxytocin is involved in the enhancement of lactation, contraction of the uterus, and relaxation of the pelvis prior to childbirth.
- Oxytocin secretion in nursing women is stimulated by direct neural feedback obtained by stimulation of the nipple during suckling. Its physiological effects include the contraction of mammary gland myoepithelial cells, which induces the ejection of milk from mammary glands, and the stimulation of uterine smooth muscle contraction leading to childbirth.
- Oxytocin causes myoepithelial cells surrounding secretory acini of mammary glands to contract, pushing milk through ducts.
- prolactin is trophic on the breast and stimulates acinar formation of milk.
- a conjugated oxytocin could thus be used to aid lactation and help relax the pelvis prior to birth. It could also be used to prevent post partum uterine hemorrage.
- Vasopressin (SEQ ID NOS: 46-72)- Vasopressin is also known as antidiuretic hormone (ADH), because it is the main regulator of body fluid osmolarity, causing antidiuresis and increase in blood pressure.
- Vasopressin binds plasma membrane receptors and acts through G-proteins to activate the cyclic AMP/protein kinase A (cAMP/PKA) regulatory system.
- cAMP/PKA cyclic AMP/protein kinase A
- the secretion of vasopressin is regulated in the hypothalamus by osmoreceptors, which sense water concentration and stimulate increased vasopressin secretion when plasma osmolarity increases.
- vasopressin increases the reabsorption rate of water in kidney tubule cells, causing the excretion of urine that is concentrated in Na + and thus yielding a net drop in osmolarity of body fluids.
- Vasopressin deficiency leads to watery urine and polydipsia, a condition known as diabetes insipidus. Using conjugated vasopressin or vasopressin fragments would thus prevent these disorders and allow the regular maintenance of the body's osmolarity.
- Corticotropin Releasing Factor (CRF) & related peptides (SEQ ID NOS: 73-102) - Corticotrophin-releasing factor (CRF), a 41 amino acid peptide, plays a significant role in coordinating the overall response to stress through actions both in the brain and the periphery.
- CRF Corticotropin Releasing Factor
- SEQ ID NOS: 73-102 Corticotrophin-releasing factor
- the CRF-containing neurons project to the portal capillary zone of the median eminence and act to stimulate the secretion of adrenocorticotrophic hormone (ACTH), beta-endorphin, and other proopiomelanocortin (POMC)-derived peptides from the pituitary gland.
- ACTH adrenocorticotrophic hormone
- POMC proopiomelanocortin
- the subsequent ACTH-induced release of adrenal glucocorticoids represents the final stage in the hypothalamic-pituitary-adrenal axis (HPA), which mediates the endocrine response to stress.
- HPA hypothalamic-pituitary-adrenal axis
- CRF also functions as a neurotransmitter and neuromodulator to elicit a wide spectrum of autonomic, behavioral and immune effects to physiological, pharmacological, and pathological stimuli.
- CRF hypersecretion is associated with various diseases, such as major depression, anxiety-related illness, eating disorder, as well as inflammatory disorder.
- Low levels of CRF have been found in Alzheimer's disease, dementias, obesity, and many endocrine diseases. Therefore, the use of CRF as a therapeutic agent to counter the effects associated with high levels or low levels of CRF will provide a basis for the treatment of diseases that are associated with abnormal CRF levels.
- Several peptide antagonists and nonpeptide antagonists have been discovered and widely studied, including a-helical CRF(9-41), Astressin, D-PheCRF(12-41) (peptide antagonist) and CP- 154526 (nonpeptide antagonist). These CRF antagonists may provide a novel agent for treatment of depression, anxiety and other CRF related illnesses. Conjugated CRF peptides could thus be used to maintain adrenal health and viability during long term steroid use or as anti- inflamatory agents.
- GAP Gonadotropin Releasing Hormone Associated peptides
- GAP Gonadotropin Releasing Hormone Associated peptides
- GAP has prolactin inhibiting properties.
- Gn-RH is a hormone secreted by the hypothalamus that stimulate the release of gonadotrophic hormones follicle stimulating hormone (FSH) and luteinizing hormone (LH). Low levels of circulating sex hormone reduce feedback inhibition on GnRH synthesis, leading to elevated levels of FSH and LH.
- GnRM protein kinase A
- GRF Growth Hormone Releasing Factor
- IGF-1 is a conjugated GRF as a therapeutic agent to increase GH release, causing the target tissue to secrete IGF-1. Growth hormone also has other more direct metabolic effects; it is both hyperglycemic and lipolytic.
- the principal source of systemic IGF-1 is the liver, although most other tissues secrete and contribute to systemic IGF-1. Liver IGF-1 is considered to be the principal regulator of tissue growth. In particular, the IGF-1 secreted by the liver is believed to synchronize growth throughout the body, resulting in a homeostatic balance of tissue size and mass. IGF-1 secreted by peripheral tissues is generally considered to be autocrine or paracrine in its biological action.
- the use of a conjugated GRF as a therapeutic agent to increase GH release, would then help treat disorders involving growth functions regulated by GRF.
- Lutenizinq Hormone Release Hormones (SEQ ID NOS: 135-161) - Luteinizing hormone releasing hormone is the key mediator in the neuroregulation of the secretion of gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH).
- LH-RH can modify sexual behavior by regulating plasma gonadotropin and sex steroid levels. See Vale, W.W. et al., Peptides, Structure and Biological Function, Proceedings of the Sixth American Peptide Symposium, Gross, E. and Meienhofer, M., eds., 781 (1979).
- a conjugated LH-RH agent could be used to stimulate ovulation in humans or animals as an aid to fertility.
- Orexins (SEQ ID NOS: 162-164) - Orexins are a family of neuropeptides from the hypothalamus that have been recently x discovered and characterized. Orexins stimulate appetite and food consumption. Their genes are expressed bilaterally and symmetrically in the lateral hypothalamus, which was earlier determined to be the "feeding center" of the hypothalamus. In contrast, the so-called satiety center is expressed in the ventromedial hypothalamus and is dominated by the leptin-regulated neuropeptide network.
- Prolactin Releasing Peptides (SEQ ID NOS: 65-170)- Prolactin is produced by acidophilic pituitary lactotropes. Prolactin releasing peptides act on lactotrope to release prolactin. PRL initiates and maintains lactation in mammals, but normally only in mammary tissue that has been primed with estrogenic sex hormones. A conjugated PRP could be used to increase lactation in humans or animals.
- Somatostatin (SEQ ID NOS: 171-201) - Also known as Growth Hormone Release Inhibiting Factors (GIF), somatostatin is a 14 amino acid peptide is secreted by both the hypothatamus and by d cells of the pancreas (its pancreatic version is discussed below). Somatostatin has been reported to modulate physiological functions at various sites including pituitary, pancreas, gut and brain. It inhibits the release of growth hormone, insulin, and glucagon. It has many biological roles, including: inhibition of basal and stimulated hormone secretion from endocrine and exocrine cells, an effect on locomotor activity and cognitive function, and possible therapeutic value in small cell lung cancer. See Reubi, J. C.
- THR Thyrotropin Releasing Hormone
- SEQ ID NOS: 202-214 Analogs
- TSH thyroid stimulating hormone
- TSH is responsible for up-regulating general protein synthesis and inducing a state of positive nitrogen balance.
- Hypothyroidism in the embryo is responsible for cretinism, which is characterized by multiple congenital defects and mental retardation.
- a conjugated THR could then be used as a therapeutic agent in the treatment of these disorders. It could also be used to treat pituitary causes of thyroid insufficiency or in the diagnosis of human tumors of the thyroid.
- Calcitonins & Caltitonins Precursor Peptides (SEQ ID NOS: 215-224 - Calcitonin (CT) is a 32-amino acid peptide secreted by C cells of the thyroid gland. Calcitonin is employed therapeutically to relieve the symptoms of osteoporosis, although details of its mechanism of action remain unclear.
- CT induces the synthesis of parathyroid hormone (PTH) in isolated cells, which leads in vivo to increased plasma Ca 2+ levels.
- PTH parathyroid hormone
- CT has been shown to reduce the synthesis of osteoporin (Opn), a protein made by osteoclasts and responsible for attaching osteoclasts to bone.
- using conjugated CT as a therapeutic peptide would elevate plasma Ca 2+ via PTH induction and reduce bone reabsorption by decreasing osteoclast binding to bone.
- Calcitonins Gene Related Peptide (SEQ ID NOS: 225- 253)- CGRP is a 37 amino acid peptide that results from alternative splicing of calcitonin gene transcripts. It exists in at least two forms: alpha-CGRP (or CGRP-I) and beta-CGRP (or CGRP-II). CGRP has considerable homology with amylin and adrenomedullin, and is widely distributed both centrally and peripherally in organs including the skin, the heart, the pancreas, the lungs, and the kidneys. CGRP has many biological roles, affecting the nervous and cardiovascular systems, inflammation and metabolism.
- PTH Parathyroid Hormones
- Parathyroid hormone is synthesized and secreted by chief cells of the parathyroid in response to systemic Ca 2+ levels. It plays a major role in the modulation of serum calcium concentration and thereby affect the physiology of mineral and bone metabolism.
- the Ca 2+ receptor of the parathyroid gland responds to Ca 2+ by increasing intracellular levels of PKC, Ca 2+ and IP 3 ; this stage is followed, after a period of protein synthesis, by PTH secretion.
- the synthesis and secretion of PTH in chief cells is constitutive, but Ca 2 regulates the level of PTH in chief cells (and thus its secretion) by increasing the rate of PTH proteolysis when plasma Ca 2+ levels rise and by decreasing the proteolysis of PTH when Ca 2+ levels fall.
- the role of PTH is to regulate Ca 2+ concentration in extracellular fluids.
- the feedback loop that regulates PTH secretion therefore involves the parathyroids, Ca 2+ , and the target tissues described below.
- PTH acts by binding to cAMP-coupled plasma membrane receptors, initiating a cascade of reactions that culminates in the biological response.
- the body's response to PTH is complex but is aimed in all tissues at increasing Ca 2+ levels in extracellular fluids.
- PTH induces the dissolution of bone by stimulating osteoclast activity, which leads to elevated plasma Ca 2+ and phosphate.
- PTH reduces renal Ca 2+ clearance by stimulating its reabsorption; at the same time, PTH reduces the reabsorption of phosphate and thereby increases its clearance.
- PTH acts on the liver, kidney, and intestine to stimulate the production of the steroid hormone 1 ,25- dihydroxycholecalciferol (calcitriol), which is responsible for Ca 2+ absorption in the intestine.
- a conjugated PTH could be used to regulate calcium homeostasis in patients with parathyroid hormone deficiency states.
- Inhibitor analogues could be used to block PTH action in renal failure or other patients with excessive PTH levels.
- PTHrP Parathyroid Hormone Related Proteins
- PTHrP Parathyroid Hormone Related Proteins
- PTHrP Parathyroid hormone-related protein
- PTH the major regulator of calcium homeostasis
- PTH and PTHrP bind to a common G protein-coupled cell surface receptor (PTH/PTHrP or PTH-1 receptor) that recognizes the N- terminal (1-34) region of these peptides.
- tumor-derived PTHrP when tumor-derived PTHrP enters the circulation, it activates receptors in classic PTH target organs such as bone and kidney and elicits PTH-like bioactivity. By promoting bone resorption and inhibiting calcium excretion, circulating PTHrP gives rise to the common paraneoplastic syndrome of malignancy-associated humoral hypercalcemia.
- PTHrP Although initially discovered in tumors, PTHrP was subsequently shown to be expressed in a remarkable variety of normal tissues including the fetal and adult skeleton, where acting in concert with its amino terminal PTH-1 receptor, it serves to regulate cellular growth and differentiation.
- the anabolic effects of intermittent PTH administration on bone and its therapeutic potential in osteoporosis have been extensively explored.
- PTHrP is the endogenous ligand for the PTH/PTHrP receptor in osteoblasts
- its use as an anabolic agent has also been investigated. Modified PTHrP peptides could be used for similar indications as PTH.
- pancreatic Hormones The principal role of the pancreatic hormones is the regulation of whole-body energy metabolism, principally by regulating the concentration and activity of numerous enzymes involved in catabolism and anabolism of the major cell energy supplies.
- Amylin (SEQ ID NOS: 310-335)- Pancreatic beta-cell hormone amylin is a 37-amino-acid peptide related to CGRP and calcitonin. It is co-secreted with insulin from pancreatic beta-cells. Amylin is deficient with type 1 diabetes mellitus. Amylin appears to work with insulin to regulate plasma glucose concentrations in the bloodstream, suppressing the postherapeutic peptiderandial secretion of glucagon and restraining the rate of gastric emptying. People with diabetes have a deficiency in the secretion of amylin that parallels the deficiency in insulin secretion, resulting in an excessive inflow of glucose into the bloodstream during the postherapeutic peptiderandial period.
- Type 2 diabetes is characterized by islet amyloid deposits, which are primarily composed of the amyloidogenic human form of islet amyloid polypeptide.
- a conjugated amylin could be used in the management of diabetes to limit post prandial hyperglysemia.
- Glucagon SEQ ID NOS: 336-376
- Glucagon is a 29-amino acid hormone synthesized by the a cells of the islets of Langerhans as a very much larger proglucagon molecule.
- glucagon Like insulin, glucagon lacks a plasma carrier protein, and like insulin its circulating half life is also about 5 minutes. As a consequence of the latter trait, the principal effect of glucagon is on the liver, which is the first tissue perfused by blood containing pancreatic secretions. Glucagon binds to plasma membrane receptors and is coupled through G-proteins to adenylate cyclase. The resultant increases in cAMP and PKA reverse all of the effects described above that insulin has on liver. The increases also lead to a marked elevation of circulating glucose, with the glucose being derived from liver gluconeogenesis and liver glycogenolysis. A conjugated glucagon construct could be used to manage brittle diabetes with recurrent hypoglycemia or to prevent or treat iatrogenic hypoglycemia.
- Insulin and Insulin-Like peptides SEQ ID NOS: 377-382 - The earliest of these hormones recognized was insulin, a disulfide bonded dipeptide of 21 and 30 amino acids produced by the pancreas, s whose major function is to counter the concerted action of a number of hyperglycemia-generating hormones and to maintain low blood glucose levels.
- Insulin is a member of a family of structurally and functionally similar molecules that include IGF-1 , IGF-2, and relaxin. The tertiary structure of all 4 molecules is similar, and all have growth-promoting activities, but the dominant role of insulin is metabolic while the dominant roles of the IGFs and relaxin are in the regulation of cell growth and differentiation.
- Insulin is synthesized as a preprohormone in the b cells of the islets of Langerhans. Its signal peptide is removed in the cisternae of the endoplasmic reticulum and it is packaged into secretory vesicles in the Golgi, folded to its native structure, and locked in this conformation by the formation of 2 disulfide bonds. Specific protease activity cleaves the center third of the molecule, which dissociates as C peptide, leaving the amino terminal B peptide disulfide bonded to the carboxy terminal A peptide.
- Insulin generates its intracellular effects by binding to a plasma membrane receptor, which is the same in all cells.
- the receptor is a disulfide-bonded glycoprotein.
- One function of insulin (aside from its role in signal transduction) is to increase glucose transport in extrahepatic tissue is by increasing the number of glucose transport molecules in the plasma membrane.
- Glucose transporters are in a continuous state of turnover. Increases in the plasma membrane content of transporters stem from an increase in the rate of recruitment of new transporters into the plasma membrane, deriving from a special pool of preformed transporters localized in the cytoplasm.
- insulin stimulates lipogenesis, diminishes lipolysis, and increases amino acid transport into cells.
- Insulin also modulates transcription, altering the cell content of numerous mRNAs. It stimulates growth, DNA synthesis, and cell " replication, effects that it holds in common with the IGFs and relaxin. A conjugated insulin could thus be used to manage diabetes.
- Neuropeptide Y (SEQ ID NOS: 383-389) - Neuropeptide Y (NPY), a peptide with 36 amino acid residues, is one of the most abundant neuropeptides in both the peripheral and the central nervous systems. It belongs to the pancreatic polypeptide family of peptides. Like its relatives, peptide YY (PYY) and pancreatic polypeptide (PP), NPY is bent into hairpin configuration that is important in bringing the free ends of the molecule together for binding to the receptors. NPY exerts a wide range of effects in the central nervous system
- CNS central nervous system
- NPY neuropeptide Y
- hypothalamic NPY has been found to play a fundamental role in developing the features of obesity, it is a major transducer in the pathways signalling body fat to the hypothalamus, and in regulating body fat content.
- Leptin an obese gene product, has been found to decrease NPY gene expression in obese (ob/ob) mice.
- Insulin and corticosteroids are also involved in the regulation of hypothalamic NPY synthesis, with insulin decreasing and corticosteroids increasing NPY expression.
- a conjugated NPY could be used to treat obesity and MODM (Type II DM) in obese patients.
- Pancreatic Polypeptides (PP) SEQ ID NOS: 390-396) -
- Pancreatic polypeptide is a 36-amino acid hormone produced by F cells within the pancreatic islets and the exocrine pancreas. It is a member of the PP fold family of regulatory peptides, and increases glycogenolysis and regulates gastrointestinal activity. A conjugated pancreatic polypeptide could thus be used to alter absorption and metabolism of foods.
- Peptide YY (SEQ ID NOS: 397-400) - PYY is a thirty six amino
- Somatostatin (SEQ ID NOS: 171-201) -
- the somatostatin secreted by d cells of the pancreas is a 14-amino acid peptide identical to somatostatin secreted by the hypothalamus.
- somatostatin inhibits GH secretion and thus has systemic effects.
- somatostatin acts a paracrine inhibitor of other pancreatic hormones and thus also has systemic effects. It has been speculated that somatostatin secretion responds principally to blood glucose levels, increasing as blood glucose levels rise and thus leading to down- regulation of glucagon secretion. A conjugated somatostatin could then be used to aid in the management of diabetes.
- CCK Cholecvstokinin
- SEQ ID NOS: 401- 416 Cholecvstokinin (CCK) & related peptides (SEQ ID NOS: 401- 416) - CCK is a polypeptide of 33 amino acids originally isolated from pig small intestine that stimulates gallbladder contraction and bile flow and increases secretion of digestive enzymes from pancreas. It exists in multiple forms, including CCK-4 and CCK-8, with the octapeptide representing the dominant molecular species showing the greatest activity. It belongs to the CCK/gastrin peptide family and is distributed centrally in the nervous system and peripherally in the gastrointestinal system.
- CCK conjugated CCK
- GRP Gastrin Releasing Peptide
- SEQ ID NOS: 417-429) - GRP is a 27-amino acid peptide originally isolated from porcine non- v antral gastric tissue, and is the homolog of the frog skin peptide named bombesin growth. It is widely distributed both centrally and peripherally in tissues including brain, lung and gastrointestinal tract It regulates a variety of cell physiological processes including secretion, smooth muscle contraction, neurotransmission and cell growth.
- a conjugated GRP could be used in the treatment of adynamic ileus or constipation in the elderly.
- Gastrin & related peptides (SEQ ID NOS: 417-429) - Gastrin is a polypeptide of 17 amino acids produced by stomach antrum, which stimulates acid and pepsin secretion. Gastrin also stimulates pancreatic secretions. Multiple active products are generated from the gastrin precursor, and there are multiple control points in gastrin biosynthesis.
- Biosynthetic precursors and intermediates are putative growth factors; their products, the amidated gastrins, regulate epithelial cell proliferation, the differentiation of acid-producing parietal cells and histamine-secreting enterochromaffin-like (ECL) cells, and the expression of genes associated with histamine synthesis and storage in ECL cells, as well as acutely stimulating acid secretion.
- Gastrin also stimulates the production of members of the epidermal growth factor (EGF) family, which in turn inhibit parietal cell function but stimulate the growth of surface epithelial cells.
- EGF epidermal growth factor
- Gastrin concentrations are elevated in subjects with Helicobacter pylori, who are known to have increased risk of duodenal ulcer disease and gastric cancer.
- the use of gastrin or gastrin antagonists as a therapeutic agent may therefore contribute to treating major upper gastrointestinal tract disease.
- Gastrin Inhibitory peptides SEQ ID NOS: 417-429) - Gastrin inhibitory peptide is a polypeptide of 43 amino acids that inhibits secretion of gastrin.
- a conjugated GIP could be used to treat severe peptic ulcer disease.
- Motilin SEQ ID NOS: 430-433
- Motilin is a polypeptide of 22
- Motilin-producing cells are distributed in the duodenum, upper jejunum, and colorectal adenocarinomas and in midgut carcinoids. Motilin stimulates gut motility.
- Secretin (SEQ ID NOS: 434-441) - Secretin is a polypeptide of
- Secretin is a neurotransmitter (a chemical messenger) in the neuropeptide group. It is one of the hormones that controls digestion (gastrin and cholecystokinin are the others). It is a polypeptide composed of 27 amino acids and is secreted by cells in the digestive system when the stomach empties. Secretin stimulates the pancreas to emit digestive fluids that are rich in bicarbonate which neutralizes the acidity of the intestines, the stomach to produce pepsin (an enzyme that aids digestion of protein), and the liver to produce bile.
- pepsin an enzyme that aids digestion of protein
- Secretin may be useful in treating autism.
- children with autistic spectrum disorders underwent upper gastrointestinal endoscopy and intravenous administration of secretin to stimulate pancreaticobiliary secretion. All three had an increased pancreaticobiliary secretory response when compared with nonautistic patients (7.5 to 10 mUmin versus 1 to 2 mLAnin).
- nonautistic patients 7.5 to 10 mUmin versus 1 to 2 mLAnin.
- a significant amelioration of the children's gastrointestinal symptoms was observed, as was a dramatic improvement in their behavior, manifested by improved eye contact, alertness, and expansion of expressive language.
- VIP Vasoactive Intestinal Peptide
- SEQ ID NOS: 442-464 vascular endothelial peptides
- -VIP is a polypeptide of 28 residues produced by hypothalamus and Gl tract. It relaxes the Gl, inhibits acid and pepsin secretion, acts as a neurotransmitter in peripheral autonomic nervous system, and increases secretion of H 2 O and electrolytes from pancreas and gut. It was originally discovered in lung and intestine and is also found in tissues including brain, liver, pancreas, smooth muscle and lymphocytes. It is structurally related to a family of peptides which include PACAP, PHI, secretin and glucagon.
- a conjugated VIP may be useful in the treatment of achlorhydria, ischemic colitis and irritable bowel syndrome (IBS).
- Natriuretic Peptides There are three members in the natriuretic peptide hormone family, atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP, brain natriuretic peptide), and C-type natriuretic peptide (CNP), that are involved in the regulation of blood pressure and fluid homeostasis.
- Atrial-Natriuretic Peptides (ANP) SEQ ID NOS: 465-507-
- ANP is a 28-amino acid peptide hormone containing a disulfide bond. It exerts natriuretic, diuretic, and vasorelaxant effects and play an important role in the body's blood volume and blood pressure homeostasis. See Smith, F.G. et al., J. Dev. Physiol. 12, 55 (1989). The mechanisms controlling ANP release have been the subject of intense research, and are now fairly well understood. The major determinant of ANP secretion is myocyte stretch. Although much less is known about the factors regulating BNP release from the heart, myocyte stretch has also been reported to stimulate BNP release from both atria and ventricles.
- angiotensin II and nitric oxide may also exert a significant modulatory effect on stretch-activated ANP secretion.
- the molecular mechanisms by which endothelin-1, angiotensin II, and nitric oxide synergistically regulate stretch-activated ANP release are yet unclear. Abstract Volume 75 Issue 11/12 (1997) pp 876-885, Journal of Molecular Medicine. A conjugated would be useful in the management of malignant hypertension or severe hypertension and renal failure.
- Brain Natriuretic Peptides (BNP) SEQ ID NOS: 507-516)
- BNP Brain natriuretic peptide
- BNP regulates the body fluid volume, blood pressure, and vascular tones through the A- type guanylate cyclase-coupled receptor.
- the BNP plays a role in electrolyte-fluid homeostasis such as atrial natriuretic peptides (ANP).
- a conjugated BNP could be useful in the management of heart failure.
- CNP C-Type Natriuretic Peptides
- ECs vascular endothelial cells
- CNP C-type natriuretic peptide
- ANP and BNP cardiac hormones.
- ANP is synthesized mainly in the atria of the normal adult heart, while BNP is produced by both the atria and ventricles.
- Tachykinins SEQ ID NOS: 525-627) - A family of peptides, including neurokinin A and substance P, that share a common C terminal sequence (F-X-GLM-NH2) which is required for full biological activity including Neurokinin A, B, and Substance P.
- Neurokinin A - Neurokinin A is a decapeptide, previously known as substance K. It is is a member of the tachykinin family of neuropeptides which includes substance P and neurokinin B. It exhibits a variety of activities related to smooth muscle contraction, pain transmission, bronchoconstriction, vasodilation and modulation of the immune system.
- Neuromedin- Neuromedins smooth-muscle-stimulating peptides, are commonly divided into four groups: bombesin-like, kassinin-like, neurotensin-like and neuromedins U. These neuropeptides and their receptors are localized to all components of the HPA hypophyseal pituitary axis, the only exemption seems to be neurokinin B, which is not detected in the adenohypophysis. Neuromedins exert a manifold effect on HPA axis, and their action on the adrenal suggests their involvement in the regulation of growth, structure and function of the adrenal cortex. Neuromedins may exert both direct and indirect effects on the adrenal cortex.
- Direct effect is proven by the stimulation of mineralo- and glucocorticoid therapeutic peptides by isolated or cultured adrenocortical cells and by mobilisation of intracellular [Ca2+].
- Indirect effects may be mediated by ACTH, arginine-vasopressin, angiotensin II, catecholamines or by other regulatory substances of medullary origin.
- Substance P and Related Peptides - Substance P is an eleven amino acid peptide, first isolated from brain and intestine. It has been proposed as a neuromodulator involved in pain transmission in the spinal cord. It also affects contraction of smooth muscle, reduction of blood pressure, stimulation of secretory tissue, and release of histimine from mast cells.
- Angiotensin is a 10 amino acid peptide derived from enzymatic cleavage of a2-globin by the kidney enzyme renin. The C-terminal 2 amino acids are then released to yield angiotensin I, which is responsible for essential hypertension through stimulated synthesis and release of aldosterone from adrenal cells. It is a multifunctional hormone regulating blood pressure, plasma volume, neuronal function thirst, and water intake.
- Angiotensin II is an octapeptide derived from angiotensin I by angiotensin converting enzyme, and is widely distributed both centrally and peripherally in organs such as the heart, the kidneys, and the liver.
- Angiotensin IV is the terminal hexapeptide fragment of angiotensin II formed metabolically by proteolytic cleavage from either angiotensin I or angiotensin II. It plays a role in vascular control, cardiac growth, renal blood flow and memory function.
- Angiotensin II is the key peptide hormone that regulates vascular smooth muscle tone, blood pressure, free water intake and sodium retension. It controls vascular homeostasis compensating for loss of intravascular volume by stimulating increased vasospastic tone, increase sodium retention and increased free water intake.
- Renin substrates and Inhibitors (SEQ ID NOS: 678-684) - Renin is a very specific aspartic protease, which is synthesized and released by differentiated smooth muscle cells in the vasculature of the kidney called granular epithelial cells. Renin is specific for its substrate, angiotensinogen, which it cleaves specifically at the Leu 10 -Val 11 bond to form the decapeptide, angiotensin I (Al). The renin-angiotensin system is involved in the control of fluid and mineral balance throughout the vertebrates. Renin can be found in mammals, birds, reptiles, amphibians, bony fishes, cartilaginous fishes, and agnathans. Specific renin inhibitors can also be designed, with therapeutic applications for treatment of for example hypertension and congestive heart failure (Blundell et al., 1987).
- the endothelin peptide family consists of the 21 amino acid isoforms endothelin-1 , endothelin-2, endothelin-3, sarafotoxin (a snake venom) and scorpion toxin.
- Endothelins and Big Endothelins - Endothelins are found on endothelial cells in a wide variety of organ systems.
- pathologies and physiological processes associated with changes in endothelin levels and synthetics include: atherosclerosis and hypertension, coronary vasospasm, acute renal failure, changes in intracellular Ca2 + levels, and effects on the renin-angiotensin system.
- Endothelins are released in reponse to variations in angiotensin II, vasopressin, and cytokines (e.g. TGF- ⁇ m TNF- , IL- ⁇ -) levels as well as other physiological events including increase blood flow.
- cytokines e.g. TGF- ⁇ m TNF- , IL- ⁇ -
- the endothelin family of peptides consists of highly potent endogenous vasoconstrictor agents first isolated from endothelial cell supernatant. They regulate blood flow to organs by exporting a vasoconstrictive effect on arteries.
- Endothelins are derived from big- endothelin, which is cleaved by a unique membrane-bound metalloprotease, endothelin-converting enzyme, into the 21-amino-acid bioactive forms (ET-1 , ET-2 and ET-3). Of the 3 isoforms (ET-1 , ET-2, ET-3), endothelin-1 is the major isoform and plays an important role for regulation of vascular function.
- Endogenous endothelin peptides and their receptors are differentially distributed throughout the many smooth muscle tissues including blood vessels, uterus, bladder and intestine. Through this widespread distribution and localization, they exert biological functions in regulating vascular tone and causing mitogenesis. ETs and their receptor subtypes are also present in various endocrine organs. It appears to act as a modulator of secretion of prolactin, gonadotropins GH and TSH. Endothelin may also be the disease marker or an etiologic factor in ischemic heart disease, atherosclerosis, congestive heart failure, renal failure, systemic hypertension, pulmonary hypertension, cerebral vasospasm.
- Exogenously administered endothelin-1 has been demonstrated to increase peripheral resistance and blood pressure in a dose- dependent manner.
- endothelins also decrease peripheral resistance and blood pressure, presumably due to the release of vasodilatory compounds such as nitric oxide, prostacyclin, and atrial natriuretic peptide.
- ET(A) Receptor Antagonists - Endothelin receptors exist as two types: A (ET-A) and B (ET-B1 and ET-B2). ET-A receptors are responsible for while ET-B1 and ET-B2 mediate vasorelaxation and vasoconstriction respectively.
- Sarafotoxin peptides are potent growth factors binding to G protein-coupled receptors.
- Sarafotoxins (S6) isolated from Atractaspis engaddensis are highly homologous to endothelins.
- Sarafotoxin peptides have marked vasoconstrictive activity and are responsible for the ischemic limb loss that follows snake or scorpion bites. They could be used therapeutically as a peptidase stabalized peptide as a vasopressive agent in shock and sepsis.
- Opioid Peptides (SEQ ID NOS: 745-927) - Opioids are a large class of drugs, used clinically as painkillers, that include both plant- derived and synthetic alkaloids and peptides found endogenously in the mammalian brain. While the plant-derived alkaloids have been known and used for thousands of years, the endogenous opioid peptides were discovered only in the mid-1970s. Opioids include casomorphin peptides, demorphins, endorphins, enkephalins, deltorphins, dynorphins, and analogs and derivatives of these.
- Casomorphin Peptides - Casomorphin peptides are novel opioid peptides derived from casein( ⁇ -casomorphins). Beta casomorphins are the more exstensive studied opioid peptides arising from food proteins (beta-caseins). They were originally isolated from bovine beta-casein, the same sequences occur in ovine and buffalo beta-caseins.
- Dermorphins - Demorphin is a is a seven amino acid peptide, originally isolated from Phylomedusa sauvagei frog skin. It is a ligand which binds with high affinity to the ⁇ opioid receptor, and has many biological roles including analgesia, endocrine modulation, immunomodulation, increased K + conductance and inhibition of action potentials.
- Dynorphin/New-Endorphin Precursor Related Peptides - Dynorphins are a class of endogenous opioids that exist in multiple forms in the central nervous system.
- Dynorphins are derived from the precursor prodynorphin (proenkephalin B).
- Dynorphin also known as Dynorphin A1-17, is a well known opioid which has the sequence Tyr- Gly-Gly-Phe-Leu 5 -Arg-Arg-lle-Arg-Pro 10 -Lys-Leu-Lys-Trp-Asp 15 -Asn-Gln. SEQ ID NO:1.
- a number of derivatives and analogs of dynorphin are known including Dyn A1-13, SEQ ID NO: 2 Dyn A2-13, SEQ ID NO:3, Dyn A1-12, Dyn A2-12 and Dyn A2-17 as well as amide analogs such as those mentioned in U.S. Patent 4,462,941 of Lee et al., N-terminus truncated dynorphin analogs such as those described in International Patent Application WO 96/06626 of Lee et al. and des-Tyr or des-Tyr- Gly analogs such as those disclosed in International Patent Application WO 93/25217 also of Lee et al.
- the dynorphis are highly potent opioids, and demonstrate selective affinity for the kappa receptor. See
- Endorphins - The endorphis are derived from the precursor protein -lipotropin. They have been found to elicit several biological reactions such as analgesia, behavioral changes and growth hormone release. See Akil, H. et al., Ann. Rev. Neurosci., 7, 223 (1984).
- Enkepalins & related peptides - Enkephalins and endorphins are neurohormones that inhibit transmission of pain impulses.
- the activity of neurons in both the central and peripheral nervous systems is affected by a large number of neurohormones that act on cells quite distant from their site of release. Neurohormones can modify the ability of nerve cells to respond to synaptic neurotransmitters.
- enkephalins e.g. Met-enkephalin and Leu-enkephalin
- endorphins e.g. ⁇ endorphin.
- These three contain a common tetrapeptide sequence (Tyr-Gly-Gly-Phe) that is essential to their functions.
- Enkephalins and endorphins function as natural pain killers or opiates and decrease the pain responses in the central nervous system. See also Akil, H. etl al., Ann. Rev. Neurosci., 7, 223 (1984).
- Thymic peptides SEQ ID NOS: 928-934.
- the thymus is thought to be responsible for the development and regulation of T cell immunity in both infants and adults. The thymus seems to exert its regulatory functions through the secretion of various noncellular, hormonelike products via its epithelial cells, called thymic peptides.
- Thymic peptides are reported to have many effects on T cells. Several studies have reported that thymic peptides can assist development of immature, precursor cells into fully competent T cells. Thymic peptides seem to regulate the expression of various cytokine and monokine receptors on T cells and induce secretion of IL-2, interferon alpha, and interferon gamma (disease-fighting substances) when the immune system is challenged. There are reports that the use of thymic hormones in children with immuno-deficiencies caused by chemotherapy has resulted in an increase in circulating T cells, normalization of T cell subsets, and restoration of delayed hypersensitivity reactions.
- Thymopoietin - Thymopoietin is the largest of the known thymic hormones and consists of 49 amino acids.
- Thymulin Previously known as thymic serum factor, thymulin is the smallest of the chemically characterized thymic hormones and consists of 9 amino acids. Thymulin is the hormone responsible for stimulating the production of immune-system T cells
- Thymopentin - Thymopentin is a small, synthesized thymic peptide drug, also known as therapeutic peptide-5 or Timunox. In the U.S. it is being developed as an AIDS therapy by the Immunobiology Research Institute. Thymopentin has been studied more extensively than most other thymic peptide drugs. At least one study has claimed a significant rise in T cells and slight clinical improvement in those patients who received thymopentin three times a week, compared to untreated control participants. Compared to the 14 untreated control participants, those taking the drug showed greater "immunologic stability" and some clinical improvement.
- Thymosin - Thymosin is a mixture of 15 or more proteins.
- One of these proteins is thymosin alpha-1 which consists of 28 amino acids.
- Thymosin has therapeutic use for the treatment of primary immunodeficiencies and as a booster for influenza vaccine in renal dialysis patients. It is also being tested in ongoing clinical trials for activity against chronic hepatitis B and C, HIV infection, and certain forms of cancer.
- Thvmic Humoral Factor (THF) - THF is a thymic peptide currently being examined as an anti- HIV treatment. In preclinical studies in rats with CMV-related immunosuppression, THF restored immune competence through modulation of T cells. In addition, it may have therapeutic use in the treatment of herpes, causing (at least in one study) the viral infection's rapid regression and increase of T-cell populations.
- Adrenomedullin Peptides (AM) (SEQ ID NOS: 935-945) -
- Adrenomedullin is a potent vasodilator peptide that exerts major effects on cardiovascular functions. Its systemic administration causes a rapid and profound fall in blood pressure and an increase in pulmonary blood flow. Its other actions are bronchodilatation, being an inhibitor of drinking behavior and an inhibitor of angiotensin-induced aldosterone secretion. See The Journal of Biological Chemistry, Vol. 270, No. 43, pp 25344- 25347, 1995 and in the references cited therein
- Allatostatin Peptides (SEQ ID NOS: 946-949) - Allatostatins are 6-18 amino acid peptides synthesized by insects to control production of juvenile hormones, which in turn regulate functions including metamorphosis and egg production. While neuropeptides of the allatostatin family inhibit in vitro production of juvenile hormone, which modulates aspects of development and reproduction in the cockroach, Diploptera p ⁇ nctata, they are susceptible to inactivation by peptidases in the hemolymph, gut, and bound to internal tissues.
- Amyloid Beta-Protein Fragments (SEQ ID NOS: 950-1010) - These are the principle component of the amyloid plaques that accumulate intracellularly and extracellularly in the neuritic plaques in the brain in Alzheimer's Disease.
- a ⁇ is a 4.5 kD protein, about 40-42 amino acids long, that is derived from the C-terminus of amyloid precursor protein (APP).
- APP is a membrane-spanning glycoprotein that, in the normal processing pathway, is cleaved inside the A ⁇ protein to produce ⁇ -sAPP, a secreted form of APP. Formation of ⁇ -sAPP precludes formation of A ⁇ .
- a ⁇ accumulates by virtue of abnormal processing of APP, so that compounds that inhibit the activity of enzymes responsible for A ⁇ production are being sought. See, e.g., Wagner et al. Biotech. Report (1994/1995), pp. 106-107; and Selkoe (1993) TINS 16:403-409. Under certain conditions A ⁇ peptides first aggregate and then are deposited as a folded ⁇ -sheet structure that is characteristic of amyloid fibrils, ⁇ - amyloid (1-42) forms aggregates at a significantly greater rate and to a greater extent than ⁇ -amyloid (1-40).
- Antimicrobial peptides are a key component of the innate immune systems of most multicellular organisms, being active against one or more microorganisms such as bacteria, fungi, protozoa, yeast, and mycobacteria. Examples of such peptides include defensin, cecropin, buforin, and magainin. Despite broad divergences in sequence and taxonomy, most antimicrobial peptides share a common mechanism of action, i.e.. membrane permeabilization of the pathogen. They are classified in two broad groups: linear and cyclic.
- linear antimicrobial peptides there are two subgroups: linear peptides tending to adopt ⁇ -helical amphipathic conformation and linear peptides of unusual composition, rich in amino acids such as Pro, Arg, or Trp.
- the cyclic group encompasses all cysteine-containing peptides, and can be further divided into two subgroups corresponding to single or multiple disulfide structures.
- Antimicrobial peptides provoke an increase in plasma membrane permeability. There is also evidence of other mechanisms, such as inhibition of specific membrane proteins, synthesis of stress proteins, arrest of DNA synthesis, breakage of single-strand DNA by defensins, interaction with DNA (without arrest of synthesis) by buforins, or production of hydrogen peroxide.
- Antimicrobial peptides can also act by triggering self-destructive mechanisms such as apoptosis in eukaryotic cells or autolysis in bacterial targets.
- Antimicrobial peptides are also known to act as inhibitors of enzymes produced by pathogenic organisms, either by serving as pseudo-substrates or by tight binding to the active sight that disturbs the access of the substrate.
- Antioxidant Peptides (SEQ ID NOS: 1048-1050) - Antioxidants are agents that prevents oxidative damage to tissue. Mammalian cells are continuously exposed to activated oxygen species such as superoxide, hydrogen peroxide, hydroxyl radical, and singlet oxygen. These reactive oxygen intermediates are generated in vivo by cells in response to aerobic metabolism, catabolism of drugs and other xenobiotics, ultraviolet and x-ray radiation, and the respiratory burst of phagocytic cells (such as white blood cells) to kill invading bacteria such as those introduced through wounds. Hydrogen peroxide, for example, is produced during respiration of most living organisms especially by stressed and injured cells.
- NKEF-B natural killer-enhancing factor B
- Natural killer-enhancing factor (NKEF) was identified and cloned on the basis of its ability to increase NK cytotoxicity.
- the role of NKEF-B as an antioxidant has been demonstrated by its protection of transfected cells to oxidative damage by hydrogen peroxide.
- NKEF-B has antioxidant activities toward prooxidants such as alkyl hydroperoxide and MeHg. Together with its antioxidant activity, the induction of NKEF-B by HP indicates that NKEF- B is an important oxidative stress protein providing protection against a variety of xenobiotic toxic agents.
- Apoptosis is a form of programmed cell death that is characterized by specific morphologic and biochemical properties (Wyllie et al., 1980). Morphologically, apoptosis is characterized by a series of structural changes in dying cells: blebbing (i.e. blistering) of the plasma membrane, condensation of the cytoplasm and nucleus, and cellular fragmentation into membrane apoptotic bodies (Steller, 1995; Wyllie et al., 1980).
- apoptosis is characterized by the degradation of chromatin, initially into large fragments of 50-300 kilobases and subsequently into smaller fragments that are monomers and multimers of 200 bases (Oberhammer et al., 1993; Wyllie, 1980).
- Other biochemical indicators of apoptosis are induced or increased levels of the protein clusterin (Pearse et al., 1992), also known as TRPM-2 or SGP-2, and activation of the enzyme typell transglutaminase, which crosslinks proteins to the envelope of apoptotic bodies (Fesus et al., 1991).
- Apoptosis is a complex phenomenon of related morphological and biochemical processes that can vary with tissue and cell type (Zakeri e a/., 1995).
- the execution of apoptosis minimizes the leakage of cellular constituents from dying cells (apoptosis causes the cell to involute).
- proteases could damage adjacent cells or stimulate an inflammatory response.
- This cardinal feature of apoptosis distinguishes it from necrosis, which usually results from trauma that causes injured cells to swell and lyse, releasing the cytoplasmic material that stimulates an inflammatory response (Steller, 1995; Wyllie er a/., 1980)
- Bag Cell Peptides (SEQ ID NOS: 1076-1080) -
- the neuropeptidergic bag cells of the marine mollusc Aplysia californica are involved in the egg-laying behavior of the animal. These neurosecretory cells synthesize an egg-laying hormone (ELH) precursor protein, yielding multiple bioactive peptides, including ELH, several bag cell peptides (BCP) and acidic peptide (AP).
- the bag cells of the marine mollusc Aplysia californica are well-characterized neuroendocrine cells that initiate egg laying. During sexual maturation, these cells (bag cell neurons), develop the capability of storing hormones that are released during periods of nervous system stimulation. The hormones are important to the process of egg laying, and so must not be released before the animal is sexually mature.
- Alpha-bag cell peptide belong to a small family of structurally related peptides that can elicit bag-cell activity in vitro.
- Bombesin (SEQ ID NOS: 1081-1090) - Bombesin is a bioactive tetradecapeptide neuropeptide that belongs to a family of peptides sharing a common C terminal sequence, Trp-Ala-X-Gly-His-Met-NH2, and the N terminal region. It has a modulatory role found in nerves of the brain and gut that prevents gastric injury by release of endogenous gastrin.
- the mammalian homologue of bombesin is gastrin-releasing peptide (GRP).
- GRP gastrin-releasing peptide
- Osteocalcin bone Gla-protein, or BGP
- BGP bone Gla-protein, or BGP
- Serum osteocalcin rises when bone formation rates increase. Levels are high during puberty when bone growth is most rapid. Often levels are also high in diseases having high bone turnover, such as hyperparathyroidism and hyperthyroidism. In postmenopausal osteoporosis, osteocalcin levels are sometimes increased, reflecting the increased turnover of bone secondary to rapid bone resorption. In senile osteoporosis, occurring in more elderly subjects, osteocalcin levels are more likely to be low, reflecting reduced rates of both bone turnover and bone formation.
- CART Peptides SEQ ID NOS: 1098-1100
- Cocaine and amphetamine regulated transcript peptide CART
- CART is a recently discovered hypothalamic peptide with a potent appetite suppressing activity.
- the CART gene encodes a peptide of either 129 or 116 amino acid residues whereas only the short form exists in humans.
- the predicted signal sequence is 27 amino acid residues resulting in a prohormone of 102 or 89 residues.
- the C-terminal end of CART consisting of 48 amino acid residues and 3 disulphide bonds, is thought to constitute a biologically active part of the molecule.
- CART In the central nervous system CART is highly expressed in many hypothalamic nuclei, some of which are involved in regulating feeding behavior.
- the CART mRNA is regulated by leptin, and the expressed CART is a potent inhibitor of feeding that even overrides the feeding response induced by neuropeptide Y.
- the putative CART receptor is therefore a potential therapeutic target for an anti-obesity drug. See CART, a new anorectic peptide Thim L; Kristensen P; Larsen PJ; Wulff BS, Int J Biochem Cell Biol, 30(12):1281-4 1998 Dec.
- Cell Adhesion Peptides (SEQ ID NO: 1101) - Cellular adhesion peptides are directly involved in the cellular response to external stimuli. For example, during an inflammatory response, leukocytes must leave the plasma compartment and migrate to the point of antigenic insult. The mechanism of this migratory event is a complex interplay between soluble mediators and membrane-bound cellular adhesion molecules. Soluble cellular chemotactic factors, which are produced in the damaged tissue by a variety of resident cells, set up a chemical concentration gradient out to the plasma compartment. Interaction of these factors with their receptors on leukocytes leads to a directional migration of the leukocytes toward increasing concentrations of the chemotactic factor.
- various adhesion peptides are upregulated on the leukocyte which mediate the initial rolling on the endothelial tissue, binding to a specific ligand on the activated endothelial tissue, and finally migration between endothelial cells into the tissue.
- the steps in this cascade of events are mediated by the interaction of specific cell surface proteins, termed "cell adhesion molecules such as. E-selectin (ELAM-1 , endothelial leukocyte adhesion molecule-1), ICAM-1 (intercellular adhesion molecule-1), and VCAM-1 (vascular cell adhesion molecule-1).
- ELAM-1 E-selectin
- ICAM-1 intercellular adhesion molecule-1
- VCAM-1 vascular cell adhesion molecule-1
- Chemotactic peptides are peptides that stimulate the migration of white cells, leukocytes and macrophages into tissues at the site of infection or injury or alternatively the prevent the migration of these same cells away from these sites.
- Complement Inhibitors SEQ ID NOS: 1114-1120
- HAR hyperacute rejection
- HAR of xenotransplants is initiated by preformed "natural" antibodies that bind to donor organ endothelium and activate complement attack by the recipient immune system.
- complement inhibitors inhibit this process.
- Coitistatin Peptides SEQ ID NOS: 1121-1124
- Cortistatin whose mRNA accumulates during sleep deprivation, apparently acts by v antagonizing the effects of acetylcholine on cortical excitability, thereby causing synchronization brain slow waves.
- Cortistatin-14 (CST-14) shares 11 of its 14 residues with somatostatin-14 (SRIF-14), yet its effects on sleep physiology, locomotor behavior and hippocampal function are quite different from those of somatostatin.
- Fibronectin Fragments & Fibrin Related Peptides (SEQ ID NOS: 1125-1174) - Fibronectin is a large glycoprotein that is composed of blocks of three types of repeating, homologous peptide sequences. Several of the homologous blocks form functional domains that are organized in a linear array on two nearly identical subunit arms. Each arm can be divided into functional domains, which are often referred to by one of the substances which bind in that region, for example the heparin-binding fragment, the fibrin binding fragment, and the cell- binding fragment.
- the Arg-Gly-Asp (RGD) sequence in the cell-binding domain of fibronectin interacts with a cell- surface glycoprotein designated lib/Ilia. Fibronectin also binds to extracellular and basement-membrane components, to the envelope glycoprotein of viruses, to a variety of bacteria including staphylococci and streptococci, and to parasites such as Trypanosoma cruzi and Leishmania species.
- Fibronectin has several adhesive functions, for example cell-to- cell adhesion, cell-to-basement-membrane attachment, and clot stabilization.
- fibronectin promotes embryogenesis, nerve regeneration, fibroblast migration, macrophage function, and pathogen (virus, fungus, bacteria, and protozoa) binding to mammalian cells and extracellular matrix.
- pathogen virus, fungus, bacteria, and protozoa binding to mammalian cells and extracellular matrix.
- pathogen virus, fungus, bacteria, and protozoa
- FMRF and Analog peptides (SEQ ID NOS: 1175-1187) - FMRF are neuropeptides encoded in the FMRFamide gene and have a common C-terminal FMRFamide but different N-terminal extensions.
- FMRFamide-related peptides (FaRPs) are present throughout the animal kingdom and affect both neural and gastrointestinal functions. Organisms have several genes encoding numerous FaRPs with a common C-terminal structure but different N-terminal amino acid extensions.
- Galanin & related peptides (SEQ ID NOS: 1188-1208)- Galanin is a 29-30 amino acid peptide originally isolated from pig small intestine. It is found in two biologically active forms: GAL (1-19), and GAL (1-30), a non-amidated form. It has many biological roles including: the inhibition of the release of biogenic amines in the hypothalamus, the pre- and post-synaptic inhibition of cholinergic function, the maintenance of gastrointestinal homeostasis, and the regulation of insulin and glucagon secretion.
- Growth Factors & related peptides are a family of proteins that regulate cell division. Some growth factors are cell type specific, stimulating division of only those cells with appropriate receptors. Other growth factors are more general in their effects. There are also extracellular factors that antagonize the effects of growth factors, slowing or preventing division (for example transforming growth factor beta and tumor necrosis factor). These extracellular signals act through cell surface receptors very similar to those for hormones, and by similar mechanisms: the production of intracellular second messangers, protein phosphorylation, and ultimately, alteration of gene expression. Gtherapeutic peptide-Binding protein fragments (SEQ ID NOS: 1209-1240) - Growth factors are a family of proteins that regulate cell division. Some growth factors are cell type specific, stimulating division of only those cells with appropriate receptors. Other growth factors are more general in their effects. There are also extracellular factors that antagonize the effects of growth factors, slowing or preventing division (for example transforming growth factor beta and tumor necrosis factor). These extracellular signals act through cell surface receptor
- G-proteins Gtherapeutic peptide- binding regulatory proteins
- the family includes G s and Gj, which are responsible for stimulation and inhibition, respectively, of adenylate cyclase.
- Transducin (T) localized in the disc membranes of retinal rod outer segments, couples activation of rhodopsin by light to increased cyclinc GMP phosphodiesterase activity.
- G 0 found originally in bovine brain, is a fourth member of the family.
- Purified G proteins have similar physical properties. They are heterodimers composed of ⁇ , ⁇ , and ⁇ subunits. The ⁇ subunits bind and hydrolyze Gtherapeutic peptide. See S. M. Mumby et al., PNAS 83, 265 (1986) and Lehninger p. 764.
- Guanylin and Uroquanylin are peptides isolated from intestinal mucosa, and urine, which regulate cyclic GMP production in enterocytes bind to and activate guanylate cyclase C and control salt and water transport in many epithelia in vertebrates, mimicking the action of several heat- stable bacteria enterotoxins. In the kidney, both of them have well- documented natriuretic and kaliuretic effects.
- Chloride secretion in the intestine is regulated by these hormones via activation of guanylate cyclase C (GC-C). Both peptides are expressed in a variety of tissues and organs, including the kidney. In the isolated perfused kidney and in vivo these hormones induce natriuresis and diuresis, however, localisation and cellular mechanisms of their action in the kidney are still unknown.
- GC-C guanylate cyclase C
- Inhibin Peptides SEQ ID NOS: 1250-1255
- - Inhibin is composed of two subunits ( ⁇ is 134 amino acids; ⁇ is 115 and 116 amino acids). Its role is inhibition of FSH secretion.
- the two inhibin isoforms, inhibin A and inhibin B, are produced by the gonads in the course of gamete maturation and have different patterns of secretion during the menstrual cycle. Inhibins are also produced by the placenta and fetal membranes and may be involved in physiological adaptation of pregnancy.
- inhibins may serve as sensitive tumor markers in postmenopausal women, or as useful tools for evaluating ovarian reserve in infertile women; they may also be used in the diagnosis of materno-fetal disorders and to prevent maturation of the ovum or to inhibit ovulation.
- Interleukin (IL) and Interleukin Receptor Proteins (SEQ ID NOS: 1256-1263) - Interleukins are growth factors targeted to cells of s hematopoietic origin.
- IL Interleukin
- SEQ ID NOS: 1256-1263 Interleukin Receptor Proteins
- IL Interleukin
- SEQ ID NOS: 1256-1263 Interleukin Receptor Proteins
- Interleukins are growth factors targeted to cells of s hematopoietic origin.
- a variety of biological activities associated with immune and inflammatory responses have been ascribed to interleukins. These responses include fever, cartilage breakdown, bone resorption, thymocyte proliferation, activation of T and B lymphocytes, induction of acute-phase protein synthesis from hepatocytes, fibroblast proliferation, and differentiation and proliferation of bone marrow cells.
- Laminin Fragments (SEQ ID NOS: 1264-1284) - Laminin, the major noncollagenous glycoprotein of basement membranes, has been shown to promote the adhesion, spreading, and migration of a variety of tumor cell types in vitro.
- the major current studies in the laboratory utilize intact laminin, purified proteolytic fragments of laminin, and synthetic peptides of laminin to identify functionally active sites on this large protein. Components of such basement membranes are important modulators of growth, development, and differentiation for various cell types.
- a conjugated laminin could be used to prevent inflamation or fibrosis in tissues.
- This category also includes the peptide kringle-5 (or K-5).
- kringle 5" refers to the region of mammalian plasminogen having three disulfide bonds which contribute to the specific three-dimensional confirmation defined by the fifth kringle region of the mammalian plasminogen molecule.
- One such disulfide bond links the cysteine residues located at amino acid positions 462 and 541 , a second links the cysteine residues located at amino acid positions 483 and 524 and a third links the cysteine residues located at amino acid positions 512 and 536.
- kringle 5 peptide peptides refers to peptides with anti-angiogenic activity of between 4 and 104 amino acids (inclusive) with a substantial sequence homology to the corresponding peptide fragment of mammalian plasminogen.
- Leptin Fragment Peptides (SEQ ID NOS: 1285-1288) - Leptin, the protein product of the obesity gene, is secreted by fat cells. Leptin is involved in the regulation of bodyweight and metabolism in man and might also be involved in the pathophysiology of the insulin resistance syndrome, which is associated with the development of cardiovascular diseases
- Leucokinins (SEQ ID NOS: 1289-98) - Leucokinins are a group of widespread insect hormones that stimulate gut motility and tubule fluid secretion rates. In tubules, their major action is to raise chloride permeability by binding to a receptor on the basolateral membrane.
- PACAP Pituitary Adenylate Cyclase Activating Polypeptide
- Pancreastatin (SEQ ID NOS: 1312-1324) - Pancreastatin is a 49 amino acid peptide first isolated, purified and characterized from porcine pancreas. Its biological activity in different tissues can be assigned to the C-terminal part of the molecule. Pancreastatin has a prohormonal precursor, chromogranin A, which is a glycoprotein present in neuroendocrine cells, including the endocrine pancreas
- Polypeptides (SEQ ID NOS: 1325-1326) - these are repetitive chains. Two examples are provided: (pro-Hyp-Gly)10 * 20H20 and Poly- L-Lysine Hydrochloride. Signal Transduction Reagents (SEQ ID NOS: 1327-1367) -
- Signal transduction is the process by which an extracellular signal (for example chemical, mechanical, or electrical) is amplified and converted to a cellular response.
- Many reagents are involved in this process, for example achatin-1 , glycogen synthase, autocamtide 2, calcineurin autoinhibitory peptide, calmodulin dependent protein kinase II, calmodulin dependent protein kinase substrate, calmodulin dependent p otein kinase substrate analog, CKS-17, Cys-Kemptide, autocamtide 2, malantide, melittin, phosphate acceptor peptide, protein kinase C fragments, P34cd2 kinase fragment, P60c-src substrate II, protein kinase A fragments, tyrosine protein kinase substrate, syntide 2, S6 kinase substrate peptide 32, tyrosine specific protein kinase inhibitor, and their derivatives and fragments.
- Thrombin Inhibitors SEQ ID NOS: 1368-1377
- Thrombin is a key regulatory enzyme in the coagulation cascade; it serves a pluralistic role as both a positive and negative feedback regulator.
- thrombin exerts direct effects on diverse cell types that support and amplify pathogenesis of arterial thrombus disease.
- the enzyme is the strongest activator of platelets causing them to aggregate and release substances (eg. ADP TXA.sub.2 NE) that further propagate the thrombotic cycle. Platelets in a fibrin mesh comprise the principal framework of a white thrombus.
- thromboin also exerts direct effects on endothelial cells causing release of vasoconstrictor substances and translocation of adhesion molecules that become sites for attachment of immune cells.
- the enzyme causes mitogenesis of smooth muscle cells and proliferation of fibroblasts. From this analysis, it is apparent that inhibition of thrombin activity by thrombin inhibitors constitutes a viable therapeutic approach towards the attenuation of proliferative events associated with thrombosis.
- Toxins (SEQ ID NOS: 1378-1415) - A toxin can be conjugated using the present invention to target cancer cells, receptors, viruses, or blood cells. Once the toxin binds to the target cells the toxin is allowed to internalize and cause cell toxicity and eventually cell death. Toxins have been widely used as cancer therapeutics.
- One example of a class of toxins is the mast cell degranulating peptide, a cationic 22-amino acid residue peptide with two disulfide bridges isolated from bee venom, causes mast cell degranulation and histamine release at low concentrations and has anti-inflammatory activity at higher concentrations. It is a powerful anti-inflammatory, more than 100 times more effective than hydrocortisone in reducing inflammation.
- MCD peptide may serve as a useful tool for studying secretory mechanisms of inflammatory cells such as mast cells, basophils, and leukocytes, leading to the design of compounds with therapeutic potential.
- An example of a mast cell degranulating peptide is mastoparans, originating from wasp venom. It degranulates mast cells in the concentration of 0.5 ⁇ g/ml and releases histamine from the cells in the same concentration. See IY. Hirai et al., Chem. Pharm. Bull. 27, 1942 (1979).
- toxins include omega-agatoxin TK, agelenin, apamin, calcicudine, calciseptine, charbdotoxin, chlorotoxin, conotoxins, endotoxin inhibitors, gegraphutoxins, iberiotoxin, kaliotoxin, mast cell degranulating peptides, margatoxin, neurotoxin NSTX-3, PLTX-II, scyllatoxin, stichodactyla toxin, and derivatives and fragments thereof.
- Trypsin Inhibitors SEQ ID NOS: 1416-1418
- Trypsin inhibitors functions as an inhibitors of trypsin, as well as other serine proteases. Useful for treatment of lung inflammation, pancreatitis, myocardial infarction, cerebrovascular ischemia
- Virus Related Peptides are proteins related to viruses, for example virus receptors, virus inhibitors, and envelope proteins. Examples include but are not limited to peptide inhibitors of human immunodeficiency virus (HIV), respiratory syncytial virus (RSV), human parainfluenza virus (HPV), measles virus (MeV), and simian immunodeficiency virus (SN), fluorogenic Human CMV Protease Substrate, HCV Core Protein, HCV NS4A Protein, Hepatitis B Virus Receptor Binding Fragment, Hepatitis B Virus Pre-S Region, Herpes Virus Inhibitor 2, HIV Envelope Protein Fragment, HIV gag fragment, HIV substrate, HIV-1 Inhibitory Peptide, peptide T, T21 , V3 decapeptide, Virus Replication Inhibitor Peptide, and s their fragments and derivatives.
- HCV human immunodeficiency virus
- RSV respiratory syncytial virus
- HPV human parain
- peptide T is a chain of 8 amino acids from the V2 region of HIV-1 gp120. These amino acids look like a portion of HIV's outer envelope. It is under investigation as a treatment for HIV-related neurological and constitutional symptoms, as peptide T may be able to alleviate symptoms like fevers, night sweats, weight loss, and fatigue. It has also been shown to resolve psoriatic lesions.
- Miscellaneous peptides (SEQ ID NOS: 1529-1617) - Including adjuvant peptide analogs, alpha mating factor, antiarrhythmic peptide, anorexigenic peptide, alpha-1 antitrypsin, bovine pineal antireproductive peptide, bursin, C3 peptide P16, cadherin peptide, chromogranin A fragment, contraceptive tetrapeptide, conantokin G, conantokin T, crustacean cardioactive peptide, C-telqpeptide, cytochrome b588 peptide, decorsin, delicious peptide, delta-sleep-inducing peptide, diazempam-binding inhibitor fragment, nitric oxide synthase blocking peptide, OVA peptide, platelet calpain inhibitor (P1), plasminogen activator inhibitor 1 , rigin, schizophrenia related peptide, sodium potassium Atherapeutic peptidease inhibitor-1 , speract
- modified therapeutic peptides and their derivatives relate to modified therapeutic peptides and their derivatives.
- the modified therapeutic peptides of the invention include reactive groups which can react with available reactive functionalities on blood components to form covalent bonds.
- the invention also relates to such modifications, such combinations with blood components and methods for their use. These methods include extending the effective therapeutic in vivo half life of the modified therapeutic peptides.
- a reactive group a wide variety of active carboxyl groups, particularly esters, where the hydroxyl moiety is physiologically acceptable at the levels required to modify the therapeutic peptide. While a number of different hydroxyl groups may be employed in these linking agents, the most convenient would be N-hydroxysuccinimide (NHS), and N-hydroxy-sulfosuccinimide (sulfo-NHS).
- NHS N-hydroxysuccinimide
- sulfo-NHS N-hydroxy-sulfosuccinimide
- Primary amines are the principal targets for NHS esters as diagramed in schematic 1A below. Accessible ⁇ -amine groups present on the N-termini of proteins react with NHS esters. However, ⁇ -amino groups on a protein may not be desirable or available for the NHS coupling.
- the functionality on the protein will be a thiol group and the reactive group will be a maleimido-containing group such as gamma-maleimide-butyralamide (GMBA) or MPA.
- GMBA gamma-maleimide-butyralamide
- the maleimido group is most selective for sulfhydryl groups on peptides when the pH of the reaction mixture is kept between 6.5 and 7.4 as shown in schematic 1 B below. At pH 7.0, the rate of reaction of maleimido groups with sulfhydryls is 1000-fold faster than with amines. A stable thioether linkage between the maleimido group and the sulfhydryl is formed which cannot be cleaved under physiological conditions.
- the therapeutic peptides and peptide derivatives of the invention may be modified for specific labeling and non-specific labeling of blood components.
- the therapeutic peptides of this invention are designed to specifically react with thiol groups on mobile blood proteins.
- Such reaction is preferably established by covalent bonding of a therapeutic peptide modified with a maleimide link (e.g. prepared from GMBS, MPA or other maleimides) to a thiol group on a mobile blood protein such as serum albumin or IgG.
- a maleimide link e.g. prepared from GMBS, MPA or other maleimides
- maleimide derivatives of this invention will covalently bond to fewer proteins.
- albumin the most abundant blood protein
- therapeutic peptide-maleimide-albumin conjugates will tend to comprise approximately a 1 :1 molar ratio of therapeutic peptide to albumin.
- IgG molecules class II
- serum albumin make up the majority of the soluble protein in blood they also make up the majority of the free thiol groups in blood that are available to covalently bond to maleimide-modified therapeutic peptides.
- Cys 34 of albumin is predominantly in the ionized form, which dramatically increases its reactivity.
- another factor which enhances the reactivity of Cys 34 is its location, which is in a crevice close to the surface of one loop of region V of albumin. This location makes Cys 34 very available to ligands of all kinds, and is an important factor in Cys 34, s biological role as free radical trap and free thiol scavenger.
- Another advantage of therapeutic peptide-maleimide-albumin conjugates is the reproducibility associated with the 1 :1 loading of peptide to albumin specifically at Cys 34 .
- Other techniques such as glutaraldehyde, DCC, EDC and other chemical activations of, for example, free amines lack this selectivity.
- albumin contains 52 lysine residues, 25-30 of which are located on the surface of albumin and accessible for conjugation. Activating these lysine residues, or alternatively modifying peptides to couple through these lysine residues, results in a heterogenous population of conjugates.
- maleimide-therapeutic peptides Through controlled administration of maleimide-therapeutic peptides in vivo, one can control the specific labeling of albumin and IgG in vivo. In typical administrations, 80-90% of the administered maleimide-therapeutic peptides will label albumin and less than 5% will label IgG. Trace labeling of free thiols such as glutathione will also occur. Such specific labeling is preferred for in vivo use as it permits an accurate calculation of the estimated half-life of the administered agent. In addition to providing controlled specific in vivo labeling, maleimide-therapeutic peptides can provide specific labeling of serum albumin and IgG ex vivo.
- ex vivo labeling involves the addition of maleimide-therapeutic peptides to blood, serum or saline solution containing serum albumin and/or IgG. Once modified ex vivo with maleimide-therapeutic peptides, the blood, serum or saline solution can be readministered to the blood for in vivo treatment.
- maleimide-therapeutic peptides are generally quite stable in the presence of aqueous solutions and in the presence of free amines. Since maleimide-therapeutic peptides will only react with free thiols, protective groups are generally not necessary to prevent the maleimide-therapeutic peptides from reacting with itself.
- the increased stability of the peptide permits the use of further purification steps such as HPLC to prepare highly purified products suitable for in vivo use.
- the increased chemical stability provides a product with a longer shelf life.
- the therapeutic peptides of the invention may also be modified for non-specific labeling of blood components. Bonds to amino groups will generally be employed, particularly with the formation of amide bonds for non-specific labeling. To form such bonds, one may use as a chemically reactive group coupled to the therapeutic peptide a wide variety of active carboxyl groups, particularly esters, where the hydroxyl moiety is physiologically acceptable at the levels required. While a number of different hydroxyl groups may be employed in these linking agents, the most convenient would be N-hydroxysuccinimide (NHS) and N-hydroxy-sulfosuccinimide (sulfo-NHS). Other linking agents which may be utilized are described in U.S.
- Patent 5,612,034 which is hereby incorporated herein.
- the various sites with which the chemically reactive groups of the non-specific therapeutic peptides may react in vivo include cells, particularly red blood cells (erythrocytes) and platelets, and proteins, such as immunoglobulins, including IgG and IgM, serum albumin, ferritin, steroid binding proteins, transferrin, thyroxin binding protein, ⁇ -2- macroglobulin, and the like.
- erythrocytes red blood cells
- platelets proteins, such as immunoglobulins, including IgG and IgM, serum albumin, ferritin, steroid binding proteins, transferrin, thyroxin binding protein, ⁇ -2- macroglobulin, and the like.
- immunoglobulins including IgG and IgM, serum albumin, ferritin, steroid binding proteins, transferrin, thyroxin binding protein, ⁇ -2- macroglobulin, and the like.
- the proteins indicated above will remain in the bloodstream at least three days, and may remain five days or more (usually not exceeding 60 days, more usually not exceeding 30 days) particularly as to the half life, based on the concentration in the blood.
- reaction will be with mobile components in the blood, particularly blood proteins and cells, more particularly blood proteins and erythrocytes.
- mobile is intended that the component does not have a fixed situs for any extended period of time, generally not exceeding 5 minutes, more usually one minute, although some of the blood components may be relatively stationary for extended periods of time. Initially, there will be a relatively heterogeneous population of labeled proteins and cells.
- IgG will become the predominant labeled protein in the blood stream.
- IgG, serum albumin and erythrocytes will be at least about 60 mole %, usually at least about 75 mole %, of the conjugated components in blood, with IgG, IgM (to a substantially lesser extent) and serum albumin being at least about 50 mole %, usually at least about 75 mole %, more usually at least about 80 mole %, of the non-cellular conjugated components.
- the desired conjugates of non-specific therapeutic peptides to blood components may be prepared in vivo by administration of the therapeutic peptides directly to the patient, which may be a human or other mammal.
- the administration may be done in the form of a bolus or introduced slowly over time by infusion using metered flow or the like.
- the subject conjugates may also be prepared ex vivo by combining blood with modified therapeutic peptides of the present invention, allowing covalent bonding of the modified therapeutic peptides to reactive functionalities on blood components and then returning or administering the conjugated blood to the host.
- the above may also be accomplished by first purifying an individual blood component or limited number of components, such as red blood cells, immunoglobulins, serum albumin, or the like, and combining the component or components ex vivo with the chemically reactive Itherapeutic peptides.
- the labeled blood or blood component may then be returned to the host to provide in vivo the subject therapeutically effective conjugates.
- the blood also may be treated to prevent coagulation during handling ex vivo.
- Peptide fragments may be synthesized by standard methods of solid phase peptide chemistry known to those of ordinary skill in the art. For example, peptide fragments may be synthesized by solid phase chemistry techniques following the procedures described by Steward and Young (Steward, J. M. and Young, J. D., Solid Phase Peptide Synthesis, 2nd Ed., Pierce Chemical Company, Rockford, III., (1984) using an Applied Biosystem synthesizer. Similarly, multiple fragments may be synthesized then linked together to form larger fragments. These synthetic peptide fragments can also be made with amino acid substitutions at specific locations. For solid phase peptide synthesis, a summary of the many techniques may be found in J. M.
- the protected or derivatized amino acid is then either attached to an inert solid support or utilized in solution by adding the next amino acid in the sequence having the complimentary (amino or carboxyl) group suitably protected and under conditions suitable for forming the amide linkage.
- the protecting group is then removed from this newly added amino acid residue and the next amino acid (suitably protected) is added, and so forth.
- any remaining protecting groups are removed sequentially or concurrently to afford the final polypeptide.
- a particularly preferred method of preparing compounds of the present invention involves solid phase peptide synthesis wherein the amino acid ⁇ -N-terminal is protected by an acid or base sensitive group.
- Such protecting groups should have the properties of being stable to the conditions of peptide linkage formation while being readily removable without destruction of the growing peptide chain or racemization of any of the chiral centers contained therein.
- Suitable protecting groups are 9- fluorenylmethyloxycarbonyl (Fmoc), t-butyloxycarbonyl (Boc), benzyloxycarbonyl (Cbz), biphenylisopropyloxycarbonyl , t- amyloxycarbonyl, isobomyloxycarbonyl, ⁇ , ⁇ -dimethyl-3,5- dimethoxybenzyloxycarbonyl, o-nitrophenylsulfenyl, 2-cyano-t- butyloxycarbonyl, and the like.
- the 9-fluorenyl-methyloxycarbonyl (Fmoc) protecting group is particularly preferred for the synthesis of Itherapeutic peptide fragments.
- Other preferred side chain protecting groups are, for side chain amino groups like lysine and arginine,
- the ⁇ -C-terminal amino acid is attached to a suitable solid support or resin.
- suitable solid supports useful for the above synthesis are those materials which are inert to the reagents and reaction conditions of the stepwise condensation-deprotection reactions, as well as being insoluble in the media used.
- the preferred solid support for synthesis of ⁇ -C-terminal carboxy peptides is 4-hydroxymethylphenoxymethyl-copoly(styrene-1% divinylbenzene).
- the preferred solid support for ⁇ -C-terminal amide peptides is the 4-(2',4'-dimethoxyphenyl-Fmoc- aminomethy phenoxyacetamidoethyl resin available from Applied Biosystems (Foster City, Calif).
- the ⁇ -C-terminal amino acid is coupled to the resin by means of N,N'-dicyclohexylcarbodiimide (DCC), N,N'- diisopropylcarbodiimide (DIC) or O-benzotriazol-1-yl-N,N,N',N'- tetramethyluronium-hexafluorophosphate (HBTU), with or without 4- dimethylaminopyridine (DMAP), l-hydroxybenzotriazole (HOBT), benzotriazol-1-yloxy-tris(dimethylamino)phosphonium- hexafluorophosphate (BOP) or bis(2-oxo-3-oxazolidinyl)phosphine chloride (BOPCI), mediated coupling for from about 1 to about 24 hours at a temperature of between 10° and 50°C. in a solvent such as dichloromethane or DMF.
- DCC N,N'-dicyclohexylcarbod
- the Fmoc group is cleaved with a secondary amine, preferably piperidine, prior to coupling with the ⁇ -C-terminal amino acid as described above.
- the preferred method for coupling to the deprotected 4-(2',4'-dimethoxyphenyl-Fmoc- aminomethyl)phenoxy-acetamidoethyl resin is O-benzotriazol-1-yl- N,N,N',N'-tetramethyluroniumhexafluoro-phosphate (HBTU, 1 equiv.) and 1-hydroxybenzotriazole (HOBT, 1 equiv.) in DMF.
- HBTU O-benzotriazol-1-yl- N,N,N',N'-tetramethyluroniumhexafluoro-phosphate
- HOBT 1-hydroxybenzotriazole
- the coupling of successive protected amino acids can be carried out in an automatic polypeptide synthesizer as is well known in the art.
- the ⁇ -N-terminal amino acids of the growing peptide chain s are protected with Fmoc.
- the removal of the Fmoc protecting group from the ⁇ -N-terminal side of the growing peptide is accomplished by treatment with a secondary amine, preferably piperidine. Each protected amino acid is then introduced in about 3-fold molar excess, and the coupling is preferably carried out in DMF.
- the coupling agent is normally O-benzotriazol-1-yl-N,N,N',N'-tetramethyluroniumhexafluorophosphate (HBTU, 1 equiv.) and 1-hydroxybenzotriazole (HOBT, 1 equiv.).
- HBTU O-benzotriazol-1-yl-N,N,N',N'-tetramethyluroniumhexafluorophosphate
- HOBT 1-hydroxybenzotriazole
- Removal of the polypeptide and deprotection can be accomplished in a single operation by treating the resin-bound polypeptide with a cleavage reagent comprising thianisole, water, ethanedithiol and trifluoroacetic acid.
- a cleavage reagent comprising thianisole, water, ethanedithiol and trifluoroacetic acid.
- the resin is cleaved by aminolysis with an alkylamine.
- the peptide may be removed by transesterification, e.g. with methanol, followed by aminolysis or by direct transamidation.
- the protected peptide may be purified at this point or taken to the next step directly.
- the removal of the side chain protecting groups is accomplished using the cleavage cocktail described above.
- the fully deprotected peptide is purified by a sequence of chromatographic steps employing any or all of the following types: ion exchange on a weakly basic resin (acetate form); hydrophobic adsorption chromatography on underivitized polystyrene-divinylbenzene (for example, Amberlite XAD); silica gel adsorption chromatography; ion exchange chromatography on carboxymethylcellulose; partition chromatography, e.g. on Sephadex G-25, LH-20 or countercurrent distribution; high performance liquid chromatography (HPLC), especially reverse-phase HPLC on octyl- or octadecylsilyl-silica bonded phase column packing.
- HPLC high performance liquid chromatography
- the therapeutic peptides of the invention may be synthesized with N- and C-terminal protecting groups for use as pro-drugs.
- N-protecting group refers to those groups intended to protect the ⁇ -N-terminal of an amino acid or peptide or to otherwise protect the amino group of an amino acid or peptide against undesirable reactions during synthetic procedures.
- Commonly used N-protecting groups are disclosed in Greene, "Protective Groups In Organic Synthesis,” (John Wiley & Sons, New York (1981)), which is hereby incorporated by reference. Additionally, protecting groups can be used as pro-drugs which are readily cleaved in vivo, for example, by enzymatic hydrolysis, to release the biologically active parent.
- ⁇ -N- protecting groups comprise loweralkanoyl groups such as formyl, acetyl ("Ac"), propionyl, pivaloyl, t-butylacetyl and the like; other acyl groups include 2-chloroacetyl, 2-bromoacetyl, trifluoroacetyl, trichloroacetyl, phthalyl, o-nitrophenoxyacetyl, -chlorobutyryl, benzoyl, 4-chlorobenzoyl, 4-bromobenzoyl, 4-nitrobenzoyl and the like; sulfonyl groups such as benzenesulfonyl, p-toluenesulfonyl and the like; carbamate forming groups such as benzyloxycarbonyl, p-chlorobenzyloxycarbonyl, p- methoxybenzyloxycarbonyl, p-nitrobenzyloxycarbonyl, 2-
- Carboxy protecting group refers to a carboxylic acid protecting ester or amide group employed to block or protect the carboxylic acid functionality while the reactions involving other functional sites of the compound are performed.
- Carboxy protecting groups are disclosed in Greene, "Protective Groups in Organic Synthesis” pp. 152-186 (1981), which is hereby incorporated by reference.
- a carboxy protecting group can be used as a pro-drug whereby the carboxy protecting group can be readily cleaved in vivo, for example by enzymatic hydrolysis, to release the biologically active parent.
- carboxy protecting groups are well known to those skilled in the art, having been extensively used in the protection of carboxyl groups in the penicillin and cephalosporin fields as described in U.S. Pat. Nos. 3,840,556 and 3,719,667, the disclosures of which are hereby incorporated herein by reference.
- carboxy protecting groups are Ci -C 8 loweralkyl (e.g., methyl, ethyl or t-butyl and the like); arylalkyl such as phenethyl or benzyl and substituted derivatives thereof such as alkoxybenzyl or nitrobenzyl groups and the like; arylalkenyl such as phenylethenyl and the like; aryl and substituted derivatives thereofsuch as 5-indanyl and the like; dialkylaminoalkyl such as dimethylaminoethyl and the like); alkanoyloxyalkyl groups such as acetoxymethyl, butyryloxymethyl, valeryloxymethyl, isobutyryloxymethyl, isovaleryloxymethyl, 1-(propionyloxy)-1 -ethyl, 1-(pivaloyloxyl)-1 -ethyl, 1- methyl-1-(propionyloxy)-1 -ethyl, pivaloyloxymethyl,
- Representative amide carboxy protecting groups are aminocarbonyl and loweralkylaminocarbonyl groups.
- Preferred carboxy-protected compounds of the invention are compounds wherein the protected carboxy group is a loweralkyl, cycloalkyl or arylalkyl ester, for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, sec-butyl ester, isobutyl ester, amyl ester, isoamyl ester, octyl ester, cyclohexyl ester, phenylethyl ester and the like or an alkanoyloxyalkyl, cycloalkanoyloxyalkyl, aroyloxyalkyl or an arylalkylcarbonyloxyalkyl ester.
- Preferred amide carboxy protecting groups are loweralkylaminocarbonyl groups.
- aspartic acid may be protected at the ⁇ -C-terminal by an acid labile group (e.g. t- butyl) and protected at the ⁇ -C-terminal by a hydrogenation labile group (e.g. benzyl) then deprotected selectively during synthesis.
- an acid labile group e.g. t- butyl
- a hydrogenation labile group e.g. benzyl
- fragments of the peptides by fragmenting the naturally occurring amino acid sequence, using, for example, a proteolytic enzyme according to methods well known in the art. Further, it is possible to obtain the desired fragments of the therapeutic peptide through the use of recombinant DNA technology using methods well known in the art.
- modified therapeutic peptides of the present invention will vary widely, depending upon the nature of the various elements comprising the molecule.
- the synthetic procedures will be selected so as to be simple, provide for high yields, and allow for a highly purified stable product.
- the reactive group will be created as the last stage, for example, with a carboxyl group, esterification to form an active ester will be the last step of the synthesis.
- Specific methods for the production of modified therapeutic peptides of the present invention are described below.
- the modified therapeutic peptides of the present invention may be made using blind or structure activity relationship (SAR) driven substitution.
- SAR is an analysis which defines the relationship between the structure of a molecule and its pharmacological activity for a series of compounds.
- the activity of the peptide varies according to the variation of chemical structure or chemical properties. More specifically, first the therapeutic activity of the free peptide is assayed. Next, the peptide is modified according to the invention, either at the N-terminus, at the C-terminus, or in the interior of the peptide with the linking group only.
- the linking group will include the reactive group as discussed above.
- the therapeutic activity of this modified peptide- linking group is assayed next, and based on the detected activity a decision is made regarding the modification site.
- the peptide conjugate is prepared and its therapeutic ativity is determined. If the therapeutic activity of the peptide after conjugation is not substantially reduced (i.e.
- each therapeutic peptide selected to undergo the derivatization with a linker and a reactive group will be modified according to the following criteria: if a terminal carboxylic group is available on the therapeutic peptide and is not critical for the retention of pharmacological activity, and no other sensitive functional group is present on the therapeutic peptide, then the carboxylic acid will be chosen as attachment point for the linker-reactive group modification.
- any other sensitive functional group not critical for the retention of pharmacological activity will be selected as the attachment point for the linker-reactive group modification. If several sensitive functional groups are available on a therapeutic peptide, a combination of protecting groups will be used in such a way that after addition of the linker/reactive group and deprotection of all the protected sensitive functional groups, retention of pharmacological activity is still obtained. If no sensitive functional groups are available on the therapeutic peptide, or if a simpler modification route is desired, synthetic efforts will allow for a modification of the original peptide in such a way that retention of biological activity and retention of receptor or target specificity is obtained. In this case the modification will occur at the opposite end of the peptide.
- An NHS derivative may be synthesized from a carboxylic acid in absence of other sensitive functional groups in the therapeutic peptide. Specifically, such a therapeutic peptide is reacted with N- hydroxysuccinimide in anhydrous CH 2 Cl 2 and EDC, and the product is purified by chromatography or recrystallized from the appropriate solvent system to give the NHS derivative.
- an NHS derivative may be synthesized from a therapeutic peptide that contains an amino and/or thiol group and a carboxylic acid. When a free amino or thiol group is present in the molecule, it is preferable to protect these sensitive functional groups prior to perform the addition of the NHS derivative.
- the molecule contains a free amino group
- a transformation of the amine into a Fmoc or preferably into a tBoc protected amine is necessary prior to perform the chemistry described above.
- the amine functionality will not be deprotected after preparation of the NHS derivative. Therefore this method applies only to a compound whose amine group is not required to be freed to induce a pharmacological desired effect. If the amino group needs to be freed to retain the original biological properties of the molecule, then another type of chemistry described in example 3-6 has to be performed.
- an NHS derivative may be synthesized from a therapeutic peptide containing an amino or a thiol group and no carboxylic acid.
- an array of bifunctional linkers can be used to convert the molecule into a reactive NHS derivative. For instance, ethylene glycol- bis(succinimydylsuccinate) (EGS) and triethylamine dissolved in DMF and added to the free amino containing molecule (with a ratio of 10:1 in favor of EGS) will produce the mono NHS derivative.
- an NHS derivative from a thiol derivatized molecule
- N-[ - maleimidobutyryloxyjsuccinimide ester (GMBS) and triethylamine in DMF.
- the maleimido group will react with the free thiol and the NHS derivative will be purified from the reaction mixture by chromatography on silica or by HPLC.
- An NHS derivative may also be synthesized from a therapeutic peptide containing multiple sensitive functional groups. Each case will have to be analyzed and solved in a different manner.
- this invention is applicable to any therapeutic peptide with preferably one chemical step only to derivatize the therapeutic peptide (as described in example 1 or 3) or two steps (as described in example 2 and involving prior protection of a sensitive group) or three steps (protection, activation and deprotection). Under exceptional circumstances only, would we require to use multiple steps (beyond three steps) synthesis to transform a therapeutic peptide into an active NHS or maleimide derivative.
- a maleimide derivative may also be synthesized from a therapeutic peptide containing a free amino group and a free carboxylic acid.
- a maleimide derivative may be synthesized from a amino derivatized molecule.
- GMBS a leimidobutyryloxyjsuccinimide ester
- the succinimide ester group will react with the free amino and the maleimide derivative will be purified from the reaction mixture by crystallization or by chromatography on silica or by HPLC.
- a maleimide derivative may be synthesized from a therapeutic peptide containing multiple other sensitive functional groups and no free carboxylic acids.
- an array of bifunctional crosslinking reagents can be used to convert the molecule into a reactive NHS derivative.
- maleimidopropionic acid (MPA) can be coupled to the free amine to produce a maleimide derivative through reaction of the free amine with the carboxylic group of MPA using HBTU/HOBt/DIEA activation in DMF.
- a lysine residue can be added on the C-terminus end of the peptide to allow for conjugation onto the -amino group of the lysine as described in the examples below.
- Illustrative reagents include: azidobenzoyl hydrazide, N-[4-(p- azidosalicylamino)butyl]-3'-[2'-pyridyldithio)propionamide), bis- sulfosuccinimidyl suberate, dimethyl adipimidate, disuccinimidyl tartrate, N-y-maleimidobutyryloxysuccinimide ester, N-hydroxy sulfosuccinimidyl- 4-azidobenzoate, N-succinimidyl [4-azidophenyl]-1 ,3'-dithiopropionate, N-succinimidyl [4-iodoacetyl]aminobenzoate, glutaraldehyde, and succinimidyl 4-[N-maleimidomethyl]cyclohexane-1 -carboxylate.
- the peptides are preferably modified according to the nature of their substituants and the presence or absence of free cysteines. Most peptides can be gathered into three distinct categories: (1) peptides that contain no cysteines; (2) peptides that contain one cysteine, (3) peptides that contain two cysteines as a disulfide bridge (cystine); and (4) peptides that contain multiple cysteines.
- N-terminus modification is favored, and again for a peptide containing no cysteine, addition on the N terminus is performed with all residues still on the support resin and fully protected. Addition of activated NHS-Mal bifunctional linker could be performed on deprotected N-terminus with peptide still on resin. The peptide is then fully deprotected. Examples of therapeutic peptides that contain no cystein and undergo a C-terminus modification are described in examples 7-26. Examples of therapeutic peptides that contain no cystein and undergo a N-terminus modification are described in examples 27-38. The generalized reaction scheme for N-terminus modification of peptides that contain no cysteines is illustrated in the schematic diagrams below, using hetero NHS maleimide (GMBS like) and 3-MPA, respectively.
- R NH 2 or H
- the peptide may be modified at an internal amino acid (i.e. neither at the C-terminus nor at the N-terminus).
- the generalized reaction scheme for modification at an internal amino acid of a peptide that contains no free cysteines is illustrated in the schematic diagrams below, using homo bis NHS and hetero NHS maleimide.
- R NH 2 or H
- X alkyl or aromatic
- R NH 2 or H
- Aaa an amino acid
- Peptides that contain no cysteine and can be modified as described above include fragments of the Kringle 5 peptide, of the GLP- 1 peptide, of dynorphin A, human growth hormone releasing factor, the 1-24 fragment of human neuropeptide Y, and human secretin. Full description of the chemistry for each of these peptides is reported in the Example section.
- cysteine must stay capped after addition of the maleimide. If the cysteine is involved in binding site, assessment has to be made of how much potency is lost is cysteine is capped by a protecting group. If the cysteine can stay v capped, then the synthetic path is similar to that described in section A above for either a C or an N terminus modification.
- the peptide may be modified at an internal amino acid (i.e. neither at the C-terminus nor at the N-terminus).
- the generalized reaction scheme for modification at an internal amino acid of a peptide that contains no cysteines is illustrated in the schematic diagram below, using homobis maleimide and hetero NHS maleimide (GMBS like).
- X alkyl or aromatic
- therapeutic peptides that contain one cysteine include G ⁇ (the alpha subunit of Gtherapeutic peptide binding protein), the 724-739 fragment of rat brain nitric oxide synthase blocking peptide, the alpha subunit 1-32 fragment of human [TyrO] inhibin, the 254-274 fragment of HIV envelope protein, and P34cdc2 kinase fragment.
- G ⁇ the alpha subunit of Gtherapeutic peptide binding protein
- the 724-739 fragment of rat brain nitric oxide synthase blocking peptide the alpha subunit 1-32 fragment of human [TyrO] inhibin
- the 254-274 fragment of HIV envelope protein the 254-274 fragment of HIV envelope protein
- P34cdc2 kinase fragment examples include G ⁇ (the alpha subunit of Gtherapeutic peptide binding protein), the 724-739 fragment of rat brain nitric oxide synthase blocking peptide, the alpha subunit 1-32 fragment of human
- the peptide contains two cysteines as a disulfide bridge
- the peptide is cleaved from the support resin before addition of the maleimide.
- all protecting groups are present except at the carboxy terminus (which stays unprotected due to cleavage from the support resin) and at the two cysteines, which need to be deprotected when peptide is cleaved from resin. Mild air oxidation yields the disulfide bridge, and the peptide can be purified at that stage. Solution phase chemistry is then required to activate the C-terminus in presence of the disulfide bridge and add the maleimide (through an amino-alkyl-maleimide) to the C-terminus. The peptide is then fully deprotected.
- the peptide can remain on the support resin.
- the two cysteines are selectively deprotected before addition of the maleimide. Air oxidation, potentially helped by a catalyst (heterogeneous) can yield the disulfide with the peptide still on the resin. Maleimide is then added on the N-terminus and peptide cleaved from resin and fully deprotected.
- the generalized reaction scheme for modification at an internal amino acid of a peptide that contains two cysteines in a disulfide bridge is illustrated in the schematic diagram below.
- R NH 2 or H
- the peptide may be modified at an internal amino acid (i.e. neither at the C-terminus nor at the N-terminus).
- the generalized reaction scheme for modification at an internal amino acid of a peptide that contains two cysteines in a disulfide bridge is illustrated in the schematic diagram below.
- the peptide contains multiple cysteines as disulfide bridges
- the peptide is cleaved from the support resin before addition of the maleimide.
- all protecting groups are present except at the carboxy terminus (which stays unprotected due to cleavage from the support resin) and at the two cysteines that are supposed to build a disulfide bridge.
- Cysteines that are involved in other disulfide bridges are deprotected sequencially in pairs using a choice of protecting groups. It is recommended to build and purify each bridge one at a time prior to moving on to the next bridge.
- the peptide may be modified at an internal amino acid (i.e. neither at the C-terminus nor at the N-terminus).
- Peptides containing multiple cysteines include human endothelins and [Lys4] Sarafotoxin S6c.
- the modified therapeutic peptide will be administered in a physiologically acceptable medium, e.g. deionized water, phosphate buffered saline (PBS), saline, aqueous ethanol or other alcohol, plasma, proteinaceous solutions, mannitol, aqueous glucose, alcohol, vegetable oil, or the like.
- a physiologically acceptable medium e.g. deionized water, phosphate buffered saline (PBS), saline, aqueous ethanol or other alcohol, plasma, proteinaceous solutions, mannitol, aqueous glucose, alcohol, vegetable oil, or the like.
- Other additives which may be included include buffers, where the media are generally buffered at a pH in the range of about 5 to 10, where the buffer will generally range in concentration from about 50 to 250 mM, salt, where the concentration of salt will generally range from about 5 to 500 mM, physiologically acceptable stabilizers, and the like.
- the compositions may be lyophilized for convenient
- the modified Itherapeutic peptides will for the most part be administered orally, parenterally, such as intravascularly (IV), intraarterially (IA), intramuscularly (IM), subcutaneously (SC), or the like. Administration may in appropriate situations be by transfusion. In some instances, where reaction of the functional group is relatively slow, administration may be oral, nasal, rectal, transdermal or aerosol, where the nature of the conjugate allows for transfer to the vascular system. Usually a single injection will be employed although more than one injection may be used, if desired.
- the modified therapeutic peptides may be administered by any convenient means, including syringe, trocar, catheter, or the like.
- the administration will be intravascularly, where the site of introduction is not critical to this invention, preferably at a site where there is rapid blood flow, e.g., intravenously, peripheral or central vein. Other routes may find use where the administration is coupled with slow release techniques or a protective matrix.
- the intent is that the Itherapeutic peptides be effectively distributed in the blood, so as to be able to react with the blood components.
- concentration of the conjugate will vary widely, generally ranging from about 1 pg/ml to 50 mg/ml.
- the total administered intravascularly will generally be in the range of about 0.1 mg/ml to about 10 mg/ml, more usually about 1 mg/ml to about 5 mg/ml.
- long-lived components of the blood such as immunoglobulin, serum albumin, red blood cells and platelets.
- the activity of the modified therapeutic peptides compound is extended for days to weeks. Only one administration need be given during this period of time. Greater specificity can be achieved, since the active compound will be primarily bound to large molecules, where it is less likely to be taken up intracellularly to interfere with other physiological processes.
- the formation of the covalent bond between the blood component v may occur in vivo or ex vivo.
- the modified Itherapeutic peptide is added to blood, serum or saline solution containing human serum albumin or IgG to permit covalent bond formation between the modified therapeutic peptide and the blood component.
- the therapeutic peptide is modified with maleimide and it is reacted with human serum albumin in saline solution.
- the conjugate may be administered to the patient.
- the modified therapeutic peptide may be administered to the patient directly so that the covalent bond forms between the modified Itherapeutic peptide and the blood component in vivo.
- the therapeutic compound would either be lavaged in the surgical site (or a portion of that site) prior to closure, or the therapeutic compound would be incubated for a short time in a confined space (e.g., the interior of a section of an artery following an endarterectomy procedure or a portion of Gl tract during resection) and the excess fluid subsequently evacuated.
- a confined space e.g., the interior of a section of an artery following an endarterectomy procedure or a portion of Gl tract during resection
- Tissue grafts such as autologous and xenobiotic vein/artery and valve grafts as well as organ grafts can be pretreated with therapeutic compoundsthat have been modified to permit covalent bond formation by either incubating them in a therapeutic solution and/or perfusing them with such a solution.
- a catheter is used to deliver the therapeutic compound either as part of an endoscopic procedure into the interior of an organ (e.g., bladder, Gl tract, vagina/uterus) or adjunctiveto a cardiovascular catheter procedure such as a balloon angioplasty. Standard catheters as well as newer drug delivery and iontophoretic catheters can be utilized.
- a direct injection of a therapeutic compound may be able to bioconjugate to surface tissues and achieve a desirable duration of drug effect.
- Other applications could include intra medullary, intratumor, intravaginal, intrauterine, intra intestinal, intra eustachian tube, intrathecal, subcutaneous, intrarticular, intraperitoneal or intraocular injections as weel as via bronchoscope, via nasogastirictube and via nophrostomy.
- Another aspect of this invention relates to methods for determining the concentration of the therapeutic peptides and/or analogs, or their derivatives and conjugates in biological samples (such as blood) and determining the peptidase stability of the modified peptides.
- the blood of the mammalian host may be monitored for the presence of the modified therapeutic peptide compounds one or more times. By taking a portion or sample of the blood of the host, one may determine whether the therapeutic peptide has become bound to the long-lived blood components in sufficient amount to be therapeutically active and, thereafter, the level of therapeutic peptide compound in the blood. If desired, one may also determine to which of the blood components the therapeutic peptide derivative molecule is bound. This is particularly important when using non-specific therapeutic peptides. For specific maleimide-therapeutic peptides, it is much simpler to calculate the half life of serum albumin and IgG.
- One method for determining the concentration of the therapeutic peptide, analogs, derivatives and conjugates is to use antibodies specific v to the therapeutic peptides or therapeutic peptide analogs or their derivatives and conjugates, and to use such antibodies as a treatment for toxicity potentially associated with such therapeutic peptides, analogs, and/or their derivatives or conjugates.
- This is advantageous because the increased stability and life of the therapeutic peptides in vivo in the patient might lead to novel problems during treatment, including increased possibility for toxicity.
- the traditional antibody assay may not recognize the difference between cleaved and uncleaved therapeutic peptides.
- other assay techniques may be employed, for example LC/MS (Liquid Chromatography / Mass Spectrometry).
- antibodies either monoclonal or polyclonal, having specificity for a particular therapeutic peptide, analog or derivative thereof, can assist in mediating any such problem.
- the antibody may be generated or derived from a host immunized with the particular therapeutic peptide, analog or derivative thereof, or with an immunogenic fragment of the agent, or a synthesized immunogen corresponding to an antigenic determinant of the agent.
- Preferred antibodies will have high specificity and affinity for native, derivatized and conjugated forms of the therapeutic peptide or therapeutic peptide analog.
- Such antibodies can also be labeled with enzymes, fluorochromes, or radiolabels.
- Antibodies specific for derivatized therapeutic peptides may be produced by using purified therapeutic peptides for the induction of derivatized therapeutic peptide-specific antibodies. By induction of antibodies, it is intended not only the stimulation of an immune response by injection into animals, but analogous steps in the production of synthetic antibodies or other specific binding molecules such as screening of recombinant immunoglobulin libraries. Both monoclonal and polyclonal antibodies can be produced by procedures well known in the art. In some cases, the use of monoclonal antibodies may be preferred over polyclonal antibodies, such as when degradation occurs v over an area not covered by epitope/antibody recognition.
- the antibodies may be used to treat toxicity induced by administration of the therapeutic peptide, analog or derivative thereof, and may be used ex vivo or in vivo.
- Ex vivo methods would include immuno-dialysis treatment for toxicity employing antibodies fixed to solid supports.
- In vivo methods include administration of antibodies in amounts effective to induce clearance of antibody-agent complexes.
- the antibodies may be used to remove the therapeutic peptides, analogs or derivatives thereof, and conjugates thereof, from a patient's blood ex vivo by contacting the blood with the antibodies under sterile conditions.
- the antibodies can be fixed or otherwise immobilized on a column matrix and the patient's blood can be removed from the patient and passed over the matrix.
- the therapeutic peptide analogs, derivatives or conjugates will bind to the antibodies and the blood containing a low concentration of the therapeutic peptide, analog, derivative or conjugate, then may be returned to the patient's circulatory system.
- the amount of therapeutic peptide compound removed can be controlled by adjusting the pressure and flow rate.
- Preferential removal of the therapeutic peptides, analogs, derivatives and conjugates from the plasma component of a patient's blood can be affected, for example, by the use of a semipermeable membrane, or by otherwise first separating the plasma component from the cellular component by ways known in the art prior to passing the plasma component over a matrix containing the anti-therapeutic antibodies.
- the preferential removal of therapeutic peptide-conjugated blood cells, including red blood cells can be effected by collecting and concentrating the blood cells in the patient's blood and contacting those cells with fixed anti-therapeutic antibodies to the exclusion of the serum component of the patient's blood.
- the antibodies can be administered in vivo, parenterally, to a patient that has received the therapeutic peptide, analogs, derivatives or conjugates for treatment.
- the antibodies will bind the therapeutic ⁇ peptide compounds and conjugates. Once bound the therapeutic peptide, activity will be hindered if not completely blocked thereby reducing the biologically effective concentration of therapeutic peptide compound in the patient's bloodstream and minimizing harmful side effects.
- the bound antibody-therapeutic peptide complex will facilitate clearance of the therapeutic peptide compounds and conjugates from the patient's blood stream.
- Step 1 O-benzotriazol-1-yl- ⁇ /, N, IV, /V-tetramethyl-uronium hexafluorophosphate (HBTU) in ⁇ /, ⁇ /-dimethylformamide (DMF) solution and activation with ⁇ /-methyl morpholine (NMM), and piperidine deprotection of Fmoc groups (Step 1).
- the deprotection of the terminal Fmoc group is accomplished using 20% piperidine (Step 2) followed by either the coupling of 3-maleimidopropionic acid (3-MPA), the coupling of acetic acid or the coupling of one or multiple Fmoc-AEEA followed by the coupling of 3-MPA (Step 3).
- Resin cleavage and products isolation are performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the products are purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product should have >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization.
- one or more amino acid residues may be added to the peptide as described in examples 1 to 5, and/or one or more amino acid residues may be replaced with other amino acid residues. This alteration aids attachment of the reactive group.
- Example 1 Addition of Lys at C-Terminus of Kringle-5 Preparation of NAc-Pro-Arg-Lys-Leu-Tyr-Asp-Tyr-Lys-NH 2 .3TFA
- Deblocking of the Fmoc group the the N- terminal of the resin-bound amino acid was performed with 20% piperidine in DMF for about 15-20 minutes. Coupling of the acetic acid was performed under conditions similar to amino acid coupling. Final cleavage from the resin was performed using cleavage mixture as described above. The product was isolated by precipitation and purified by preparative HPLC to afford the desired product as a white solid upon lyophilization.
- Deblocking of the Fmoc group the the N-terminal of the resin-bound amino acid was performed with 20% piperidine in DMF for about 15-20 minutes. Coupling of the acetic acid was performed under conditions similar to amino acid coupling. Final cleavage from the resin was performed using cleavage mixture as described above. The product was isolated by precipitation and purified by preparative HPLC to afford the desired product as a white solid upon lyophilization.
- Deblocking of the Fmoc group the the N-terminal of the resin-bound amino acid was performed with 20% piperidine in DMF for about 15-20 minutes. Coupling of the acetic acid was performed under conditions similar to amino acid coupling. Final cleavage from the resin was performed using cleavage mixture as described above. The product was isolated by precipitation and purified by preparative HPLC to afford the desired product as a white solid upon lyophilization.
- Solid phase peptide synthesis of the GLP-1 analog on a 100 ⁇ mole scale is performed using manual solid-phase synthesis and a Symphony Peptide Synthesizer using Fmoc protected Rink Amide
- MBHA resin Fmoc protected amino acids, O-benzotriazol-1-yl- ⁇ /, N, IV, /V-tetramethyl-uronium hexafluorophosphate (HBTU) in N,N- dimethylformamide (DMF) solution and activation with ⁇ /-methyl morpholine (NMM), and piperidine deprotection of Fmoc groups (Step 1). Resin cleavage and product isolation is performed using 85%
- the peptide may be modified at the N-terminus, the C-terminus, or at an amino acid located between the N-terminus and the C-terminus.
- the modified peptide is synthesized by linking off the N-terminus of the natural peptide sequence or by linking off the modified C-terminus of the natural peptide sequence.
- One or more additional amino acids may be added to the therapeutic peptide to facilitate attachment of the reactive group. 1. Modification of the Therapeutic Peptide at the C- Terminus
- Solid phase peptide synthesis of the DAC analog on a 100 ⁇ mole scale is performed using manual solid-phase synthesis, a Symphony Peptide Synthesizer and Fmoc protected Rink Amide MBHA.
- the following protected amino acids are sequentially added to resin: Fmoc- Lys(Aloc)-OH, Fmoc-Val-OH, Fmoc-Ala-OH, Fmoc-Asn(Trt)-OH, Fmoc- Lys(Boc)-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Asp(tBu)- OH, Fmoc-Leu-OH, Fmoc-Glu(tBu)-OH, Fmoc-Gln(Trt)-OH, Fmoc- Lys(Boc)-OH, Fmoc-lle-OH, Fmoc-Leu-OH,
- Removal of the Fmoc protecting group is achieved using a solution of 20% (V/V) piperidine in N,N-dimethylformamide (DMF) for 20 minutes (step 1).
- the selective deprotection of the Lys (Aloe) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh3)4 dissolved in 5 mL of CHCI3:NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin is then washed with CHCI3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis is then re-automated for the addition of the 3-maleimidopropionic acid (Step 3). Between every coupling, the resin is washed 3 times with N,N- dimethylformamide (DMF) and 3 times with isopropanol. The peptide is cleaved from the resin using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et2O (Step 4).
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H2O (A) and 0.045% TFA in CH3CN (B)) over 180 min at 9.5 mlJmin using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP- HPLC.
- Varian (Rainin) preparative binary HPLC system gradient elution of 30-55% B (0.045% TFA in H2O (A) and 0.045% TFA in CH3CN (B)) over 180 min at 9.5 mlJmin using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD
- Example 8 Modification of Dyn A 1-13 at the ⁇ -Amino Group of the Added C-terminus Lysine Residue - Synthesis of Dyn A 1-13(N ⁇ - MPA)-NH 2 Tyr-Gly-Gly-Phe-Leu-Arg-Arg-lle-Arg-Pro-Lys-Leu-Lys-(N ⁇ -MPA)- NH 2
- Solid phase peptide synthesis of a modified Dyn A 1-13 on a 100 ⁇ mole scale was performed using manual solid-phase synthesis, a Symphony Peptide Synthesizer and Fmoc protected Rink Amide MBHA.
- the following protected amino acids were sequentially added to resin: Fmoc-Lys(Aloc)-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Pro-OH, Fmoc-Arg(Pbf)-OH, Fmoc-lle-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Arg(Pbf)- OH, Fmoc-Leu-OH, Fmoc-Phe-OH, Fmoc-Gly-OH, Fmoc-Gly-OH, Fmoc-Tyr(tBu)-OH.
- DMF ⁇ /, ⁇ /-dimethylformamide
- HBTU ⁇ /, ⁇ /-dimethylformamide
- DIEA Diisopropylethylamine
- Step 1 Removal of the Fmoc protecting group is achieved using a solution of 20% (V/V) piperidine in N,N- dimethylformamide (DMF) for 20 minutes (Step 1).
- the selective deprotection of the Lys (Aloe) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin is then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis is then re- automated for the addition of the 3-maleimidopropionic acid (Step 3). Between every coupling, the resin is washed 3 times with N,N- dimethylformamide (DMF) and 3 times with isopropanol. The peptide is cleaved from the resin using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- DMF N,N- dimethylformamide
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP- HPLC.
- Varian (Rainin) preparative binary HPLC system gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax
- Step 1 Removal of the Fmoc protecting group is achieved using a solution of 20% (V/V) piperidine in ⁇ /, ⁇ -dimethylformamide (DMF) for 20 minutes (Step 1).
- the selective deprotection of the Lys (Aloe) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin is then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis is then re-automated for the addition of the 3- maleimidopropionic acid (Step 3). Between every coupling, the resin is washed 3 times with ⁇ /, ⁇ /-dimethylformamide (DMF) and 3 times with isopropanol. The peptide is cleaved from the resin using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mlJmin using a Phenomenex Luna 10 ⁇ phenyl- hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- Example 13 Modification of GLP-1 (7-36) at the C-Terminus
- Glu(OtBu)-OH, Fmoc-Ala-OH, Boc-His(Trt)-OH They are dissolved in ⁇ /, ⁇ /-dimethylformamide (DMF) and, according to the sequence, activated using O-benzotriazol-1-yl- ⁇ /, N, IV, /V-tetramethyl-uronium hexafluorophosphate (HBTU) and Diisopropylethylamine (DIEA). Removal of the Fmoc protecting group is achieved using a solution of 20% (V/V) piperidine in ⁇ /, ⁇ /-dimethylformamide (DMF) for 20 minutes (Step 1).
- DIEA Diisopropylethylamine
- the fully protected peptide is cleaved from the resin by treatment with 1% TFA / DCM (Step 2). Ethylenediamine and 3- maleimidopropionic acid are then sequentially added to the free C- terminus (Step 3). The protecting groups are then cleaved and the product isolated using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax Ci ⁇ , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax Ci ⁇ , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- Varian (Rainin) preparative binary HPLC system using a Dynamax Ci ⁇ , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax Ci ⁇ , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- Step 3 Ethylenediamine and 3-maleimidopropionic acid are then sequentially added to the free C-terminus (Step 3).
- the protecting groups are then cleaved and the product isolated using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C 18 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a
- Step 4 I 85% TFA/5% TIS/5% thioanisole / 5% phenol
- Solid phase peptide synthesis of a modified secretin peptide analog on a 100 ⁇ mole scale is performed using manual solid-phase synthesis, a Symphony Peptide Synthesizer and Fmoc protected Rink Amide MBHA.
- the following protected amino acids are sequentially added to resin: Fmoc-Lys(Aloc)-OH, Fmoc-Val-OH, Fmoc-Leu-OH,
- Step 1 Removal of the Fmoc protecting group is achieved using a solution of 20% (V/V) piperidine in ⁇ /, ⁇ /-dimethylformamide (DMF) for 20 minutes (Step 1).
- the selective deprotection of the Lys (Aloe) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1:0.5) for 2 h (Step 2).
- the resin is then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis is then re-automated for the addition of the 3-maleimidopropionic acid (Step 3). Between every coupling, the resin is washed 3 times with N,N- dimethylformamide (DMF) and 3 times with isopropanol. The peptide is cleaved from the resin using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- DMF N,N- dimethylformamide
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at s 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP- HPLC.
- Varian (Rainin) preparative binary HPLC system gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at s 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (
- Solid phase peptide synthesis of a modified Kringle-5 peptide on a 100 ⁇ mole scale was performed using manual solid-phase synthesis, a Symphony Peptide Synthesizer and Fmoc protected Rink Amide MBHA.
- the following protected amino acids are sequentially added to resin: Fmoc-Lys(Aloc)-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Asp(tBu)-OH, Fmoc- Tyr(tBu)-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Pro-OH.
- the resin is washed 3 times with N,N- dimethylformamide (DMF) and 3 times with isopropanol.
- DMF N,N- dimethylformamide
- the peptide is cleaved from the resin using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product is purified by preparative reverse phase HPLC using a Varian s (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mlJmin using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP- HPLC.
- Varian s (Rainin) gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mlJmin using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD
- Example 17 Modification of Kringle-5 at the ⁇ -Amino Group of the Added C-terminus Lysine Residue Preparation of NAc-Tyr-Thr-Thr-Asn-Pro-Arg-Lys-Leu-Tyr-Asp-Tyr- Lys-(N ⁇ -MPA)-NH 2 .2TFA
- the product was isolated by precipitation and purified by preparative HPLC to afford the desired product as a white solid upon lyophilization
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1:0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition of the 3-maleimidopropionic acid
- Step 3 Resin cleavage and product isolation was performed using
- Step 4 The product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O
- Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition of the 3-maleimidopropionic acid (Step 3).
- Resin cleavage and product isolation was performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition of the 3- maleimidopropionic acid (Step 3).
- Resin cleavage and product isolation was performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm v column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- Example 20 Modification of Kringle-5 at the ⁇ -Amino Group of the Added C-terminus Lysine Residue Preparation of NAc-Arg-Lys-Leu-Tyr-Asp-Tyr-Lys-(N ⁇ -MPA)- NH 2 .2TFA
- Step 1 Deblocking of the Fmoc group the N-terminal of the resin- bound amino acid was performed with 20% piperidine in DMF for about 15-20 minutes. Coupling of the acetic acid was performed under conditions similar to amino acid coupling. Final cleavage from the resin was performed using cleavage mixture as described above.
- the product was isolated by precipitation and purified by preparative HPLC to afford the desired product as a white solid upon lyophilization
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- Step 3 The synthesis was then re-automated for the addition of the 3-maleimidopropionic acid (Step 3). Resin cleavage and product isolation was performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- Varian (Rainin) preparative binary HPLC system gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition of the 3-maleimidopropionic acid (Step 3).
- Resin cleavage and product isolation was performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mlJmin using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- Coupling of the acetic acid was performed under conditions similar to amino acid coupling.
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1:0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition.
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition.
- n AEEA aminoethoxyethoxyacetic acid
- MPA 3-maleimidopropionic acid
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mUmin using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- Varian (Rainin) preparative binary HPLC system gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mUmin using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition of the 3-maleimidopropionic acid (Step 3).
- Resin cleavage and product isolation was performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mlJmin using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization. These steps are illustrated in the schematic diagram below.
- Step 2 j lpd(PPh 3 ) 4 /NMM/HOActCHCI 3
- GLP-1 (1-36)-Lys 37 (N ⁇ -AEEA-AEEA-MPA)-NH 2 .5TFA; His-Asp-Glu-Phe-Glu-Arg-His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val- Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-lle-Ala-Trp-Leu- Val-Lys-Gly-Arg-Lys(N ⁇ -AEEA-AEEA-MPA)-NH 2 .5TFA
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18: 1 :0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition of the two AEEA (aminoethoxyethoxyacetic acid) groups and the 3-maleimidopropionic acid (Step 3).
- Resin cleavage and product isolation was performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mlJmin using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCi 3 NMM:HOAc (18:1 :0.5) for 2 h s (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition of the 3-maleimidopropionic acid (Step 3).
- Resin cleavage and product isolation was performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mlJmin using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a
- Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization.
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition of the two AEEA
- the product was purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization.
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1:0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition of the 3-maleimidopropionic acid (Step 3).
- Resin cleavage and product isolation was performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization. These steps are illustrated in the schematic diagram below.
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition of the two AEEA (aminoethoxyethoxyacetic acid) groups and the 3-maleimidopropionic acid (Step 3).
- Resin cleavage and product isolation was performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization. These steps are illustrated in the schematic diagram below.
- Example 30 Modification of Exendin-4(1-39) at the ⁇ -Amino Group of the Added C-terminus Lysine Residue Preparation of Exendin-4 (1 -39)-Lys 40 (N ⁇ -MPA)-NH 2 ;
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition of the 3-maleimidopropionic acid (Step 3).
- Resin cleavage and product isolation was performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization. These steps are illustrated in the schematic diagram below.
- Step 2 j I Pd(PPh 3 ) 4 /NMM/HOAc/CHCI 3
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition of the two AEEA (aminoethoxyethoxyacetic acid) groups and the 3-maleimidopropionic acid (Step 3).
- Resin cleavage and product isolation was performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization. These steps are illustrated in the schematic diagram below.
- Example 32 Modification of Exendin-3(1-39) at the ⁇ -Amino Group of the Added C-terminus Lysine Residue Preparation of Exendin-3 (1 -39)-Lys 40 (N ⁇ -MPA)-NH 2 .5TFA;
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq v of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis was then re-automated for the addition of the 3-maleimidopropionic acid (Step 3).
- Resin cleavage and product isolation was performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization. These steps are illustrated in the schematic diagram below.
- Step 2 I 85% TFA/5% TIS/5% thioan ⁇ sole/5% phenol
- Exendin-3 (1-39)-NH 2 Example 33 - Modification of Exendin-3(1-39) at the ⁇ -Amino Group of the Added C-terminus Lysine Residue Preparation of Exendin-3 (1-39)-Lys 40 (N ⁇ -AEEA-AEEA-MPA)- NH 2 -5TFA;
- the selective deprotection of the Lys(Aloc) group was performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin was then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL .
- the synthesis was then re-automated for the addition of the two AEEA (aminoethoxyethoxyacetic acid) groups and the 3-maleimidopropionic acid (Step 3).
- Resin cleavage and product isolation was performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a s Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization.
- Example 35 Modification of HIV-1 DP 107 at the C-Terminus Preparation of modified HIV-1 DP 107 antifusogenic peptide Asn-Asn-Leu-Leu-Arg-Ala-lle-Glu-Ala-Glu-Glu-His-Leu-Leu-Glu-Leu- Thr-Val-Trp-Glu-lle-Lys-Glu-Leu-Glu-Ala-Arg-lle-Leu-Ala-Val-Glu- Arg-Tyr-Leu-Lys-Asp-Glu-Lys-( N ⁇ -MPA)NH 2
- Solid phase peptide synthesis of a modified RSV peptide on a 100 ⁇ mole scale is performed using manual solid-phase synthesis, a Symphony Peptide Synthesizer and Fmoc protected Rink Amide MBHA.
- the following protected amino acids are sequentially added to resin: Fmoc-Val-OH, Fmoc-Ala-OH, Fmoc-Asn(Trt)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Asp(tBu)-OH, Fmoc-Leu- OH, Fmoc-Glu(tBu)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Lys(Boc)-OH, Fmoc- lle-OH, Fmoc-Leu-OH, Fmoc-Ly
- Step 1 Removal of the Fmoc protecting group is achieved using a solution of 20% (V/V) piperidine in N,N-dimethylformamide (DMF) for 20 minutes (Step 1).
- the selective deprotection of the Lys (Aloe) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh3)4 dissolved in 5 mL of CHCI3:NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin is then washed with CHCI3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis is then re-automated for the addition of the 3- maleimidopropionic acid (Step 3). Between every coupling, the resin is washed 3 times with N,N-dimethylformamide (DMF) and 3 times with isopropanol. The peptide is cleaved from the resin using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et2O (Step 4).
- DMF N,N-dimethylformamide
- the product is purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H2O (A) and 0.045% TFA in CH3CN (B)) over 180 min at 9.5 mlJmin using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- Example 37 Modification of Neuropeptide Y at the ⁇ -Amino Group of the Added N-terminus Lysine Residue
- Solid phase peptide synthesis of a modified neuropeptide Y on a 100 ⁇ mole scale was performed using manual solid-phase synthesis, a Symphony Peptide Synthesizer and Fmoc protected Rink Amide MBHA.
- the following protected amino acids are sequentially added to resin: Fmoc-Leu-OH, Fmoc-Ala-OH, Fmoc-Ser(tBu)-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Ala-OH, Fmoc-Met-OH, Fmoc-Asp(tBu)-OH, Fmoc-Glu(tBu)-OH, Fmoc-Ala-OH, Fmoc-Pro-OH, Fmoc-Ala-OH, Fmoc-Asp(tBu)-OH, Fmoc-Glu(tBu)-OH
- N,N-dimethylformamide DMF
- HBTU O-benzotriazol- 1-yl-N, N, N', N'-tetramethyl-uronium hexafluorophosphate
- DIEA Diisopropylethylamine
- Step 1 Removal of the Fmoc protecting group is achieved using a solution of 20% (V/V) piperidine in N,N- dimethylformamide (DMF) for 20 minutes (Step 1).
- the selective deprotection of the Lys (Aloe) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin is then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis is then re- automated for the addition of the 3-maleimidopropionic acid (Step 3). Between every coupling, the resin is washed 3 times with N,N- dimethylformamide (DMF) and 3 times with isopropanol. The peptide is cleaved from the resin using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- DMF N,N- dimethylformamide
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP- HPLC.
- Varian (Rainin) preparative binary HPLC system gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax
- Solid phase peptide synthesis of a modified neuropeptide Y on a 100 ⁇ mole scale was performed using manual solid-phase synthesis, a Symphony Peptide Synthesizer and Fmoc protected Rink Amide MBHA.
- the following protected amino acids are sequentially added to resin: Fmoc-Leu-OH, Fmoc-Ala-OH, Fmoc-Ser(tBu)-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Ala-OH, Fmoc-Met-OH, Fmoc-Asp(tBu)-OH, Fmoc-Glu(tBu)-OH, Fmoc-Ala-OH, Fmoc-Pro-OH, Fmoc-Ala-OH, Fmoc-Asp(tBu)-OH, Fmoc-Glu(tBu)-OH
- N,N-dimethylformamide DMF
- HBTU O-benzotriazol- 1-yl-N, N, N', N'-tetramethyl-uronium hexafluorophosphate
- DIEA Diisopropylethylamine
- Step 1 Removal of the Fmoc protecting group is achieved using a solution of 20% (V/V) piperidine in N,N- dimethylformamide (DMF) for 20 minutes (Step 1).
- the selective deprotection of the Lys (Aloe) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 )4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin is then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis is then re- automated for the addition of the 3-maleimidopropionic acid (Step 3). Between every coupling, the resin is washed 3 times with N,N- dimethylformamide (DMF) and 3 times with isopropanol. The peptide is cleaved from the resin using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et2O (Step 4).
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP- HPLC.
- Varian (Rainin) preparative binary HPLC system gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax
- Example 39 Modification of Dyn A 1-13 at the ⁇ -Amino Group of the Added N-terminus Lysine Residue - Synthesis of (N ⁇ -MPA)-Dyn A 1-13-NH 2 (N ⁇ -MPA)-Lys-Tyr-Gly-Gly-Phe-Leu-Arg-Arg-lle-Arg-Pro-Lys-Leu
- Solid phase peptide synthesis of a modified Dyn A 1-13 analog on a 100 ⁇ mole scale is performed using manual solid-phase synthesis, a Symphony Peptide Synthesizer and Fmoc protected Rink Amide MBHA.
- the following protected amino acids are sequentially added to resin: Fmoc-Lys(Boc)-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Pro-OH, Fmoc-Arg(Pbf)-OH, Fmoc-lle-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Arg(Pbf)- OH, Fmoc-Leu-OH, Fmoc-Phe-OH, Fmoc-Gly-OH, Fmoc-Gly-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Lys(Aloc)-OH.
- DMF N,N- dimethylformamide
- HBTU O-benzotriazol-1-yl- ⁇ /, N, IV, /V-tetramethyl-uronium hexafluorophosphate
- DIEA Diisopropylethylamine
- Step 1 Removal of the Fmoc protecting group is achieved using a solution of 20% (V/V) piperidine in ⁇ /, ⁇ /-dimethylformamide (DMF) for 20 minutes (Step 1).
- the selective deprotection of the Lys (Aloe) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin is then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis is then re-automated for the addition of the 3-maleimidopropionic acid (Step 3). Between every coupling, the resin is washed 3 times with N,N- dimethylformamide (DMF) and 3 times with isopropanol. The peptide is ⁇ cleaved from the resin using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- DMF N,N- dimethylformamide
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP- HPLC.
- Varian (Rainin) preparative binary HPLC system gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax
- Example 40 Modification of Dyn A 2-17-NH 2 at the N-terminus Glycine - Synthesis of MPA-AEA 3 -Dyn A 2-17-NH 2 (MPA-AEA-AEA-AEA)-Gly-Gly-Phe-Leu-Arg-Arg-lle-Arg-Pro-Lys- Leu-Lys-Trp-Asp-Asn-Glu
- Solid phase peptide synthesis of a modified Kringle-5 analog on a 100 ⁇ mole scale was performed using manual solid-phase synthesis, a Symphony Peptide Synthesizer and Fmoc protected Rink Amide MBHA.
- the following protected amino acids are sequentially added to resin: Fmoc-Tyr(tBu)-OH, Fmoc-Asp(tBu)-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Leu- OH, Fmoc-Lys(Boc)-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Pro-OH, Fmoc- Lys(Aloc)-OH.
- DMF ⁇ /, ⁇ /-dimethylformamide
- HBTU O-benzotriazol-1-yl- ⁇ /, N, IV, /V-tetramethyl-uronium hexafluorophosphate
- DIEA Diisopropylethylamine
- Step 1 Removal of the Fmoc protecting group is achieved using a solution of 20% (V/V) piperidine in N,N- dimethylformamide (DMF) for 20 minutes (step 1).
- the selective deprotection of the Lys (Aloe) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin is then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis is then re- automated for the addition of the 3-maleimidopropionic acid (Step 3). Between every coupling, the resin is washed 3 times with N,N- dimethylformamide (DMF) and 3 times with isopropanol. The peptide is cleaved from the resin using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- DMF N,N- dimethylformamide
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP- HPLC.
- Varian (Rainin) preparative binary HPLC system gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax
- Resin cleavage and product isolation was performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax Ci ⁇ , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- Example 44 Modification of Kringle-5 at the N-Terminus Proline Preparation of (MPA)-Pro-Arg-Lys-Leu-Tyr-Asp-Tyr-Lys-NH 2 .2TFA
- Resin cleavage and product isolation was performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization
- Example 45 Modification of Kringle-5 at the N-Terminus Tyrosine Preparation of (MPA-AEEA)-Tyr-Thr-Thr-Asn-Pro-Arg-Lys-Leu-Tyr- Asp-Tyr-NH 2 .2TFA
- the deprotection of the terminal Fmoc group is accomplished using 20% piperidine (Step 2) followed by the coupling of Fmoc-AEEA.
- Deprotection of the resulting Fmoc-AEEA- peptide with piperidine 20% in DMF allow for the subsequent addition of the 3-MPA (Step 3).
- Resin cleavage and product isolation was performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , s 60A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C 18 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization.
- Example 46 Modification of Kringle-5 at the N-Terminus Tyrosine Preparation of (MPA)-Tyr-Thr-Thr-Asn-Pro-Arg-Lys-Leu-Tyr-Asp- Tyr-NH 2 .2TFA
- Step 2 The deprotection of the terminal Fmoc group is accomplished using 20% piperidine (Step 2) followed by the coupling of 3-MPA (Step 3). Resin cleavage and product isolation was performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C 18 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization.
- Example 47 Modification of Kringle-5 at the N-Terminus Arginine Preparation of (MPA-AEEA)-Arg-Asn-Pro-Asp-Gly-Asp-Gly-Pro-Trp- - Ala-Tyr-Thr-Thr-Asn-Pro-Arg-Lys-Leu-Tyr-Asp-Tyr-NH 2 .3TFA
- Fmoc-Gly-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Pro-OH, Fmoc-Asn(Trt)-OH, Fmoc-Arg(Pbf)-OH step 1).
- the deprotection of the terminal Fmoc group is accomplished using 20% piperidine (Step 2) followed by the coupling of Fmoc-AEEA.
- Deprotection of the resulting Fmoc-AEEA- peptide with piperidine 20% in DMF allow for the subsequent addition of the 3-MPA (Step 3).
- Resin cleavage and product isolation was performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax Ci ⁇ , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- Example 48 Modification of Kringle-5 at the N-Terminus Arginine Preparation of (MPA)-Arg-Asn-Pro-Asp-Gly-Asp-Val-Gly-Gly-Pro- Trp-Ala-Tyr-Thr-Thr-Asn-Pro-Arg-Lys-Leu-Tyr-Asp-Tyr-NH 2 .3TFA Using automated peptide synthesis, the following protected amino acids were sequentially added to Rink Amide MBHA resin: Fmoc- Lys(Boc)-OH, Fmoc-Tyr(tBu)OH, Fmoc-Asp(OtBu)-OH, Fmoc- Tyr(tBu)OH, Fmoc-
- Step 2 The deprotection of the terminal Fmoc group is accomplished using 20% piperidine (Step 2) followed by the coupling of 3-MPA (Step 3). Resin cleavage and product isolation was performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization.
- the deprotection of the terminal Fmoc group is accomplished using 20% piperidine (Step 2) followed by the coupling of Fmoc-AEEA.
- Deprotection of the resulting Fmoc-AEEA-peptide with piperidine 20% in DMF allow for the subsequent addition of the 3-MPA (Step 3).
- Resin cleavage and product isolation was performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization.
- Step 2 The deprotection of the terminal Fmoc group is accomplished using 20% piperidine (Step 2) followed by the coupling of 3-MPA (Step 3). Resin cleavage and product isolation was performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro- spray ionization.
- Step 3 Deprotection of the resulting Fmoc-AEEA-peptide with piperidine 20% in DMF allow for the subsequent addition of the 3-MPA (Step 3). Resin cleavage and product isolation was performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization
- Resin cleavage and product isolation was performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by s precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 60A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro- spray ionization.
- Resin cleavage and product isolation was performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et. 2 ⁇ (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 60A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization.
- Resin cleavage and product isolation was performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C 18 , 60A, 8 ⁇ m guard module, 21 mm x 25 cm coiumn and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization.
- Example 55 Synthesis of Lys 26 ( ⁇ -MPA)GLP-1(7-36)-NH 2 Solid phase peptide synthesis of a modified GLP-1 analog on a v 100 ⁇ mole scale was performed manually and on a Symphony Peptide Synthesizer using Fmoc protected Rink amide MBHA resin.
- Resin cleavage and product isolation is performed using 86% TFA/5% TIS/5% H 2 ⁇ /2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product is purified by preparative reversed phase HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 60A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 60A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21
- peptides Preparation of maleimido peptides from therapeutic peptides containing one free Cysteine is exemplified by the synthesis of peptides as described below.
- the peptide may be modified at the N-terminus, the C-terminus, or at an amino acid located between the N-terminus and the C-terminus.
- cysteine can stay capped, then the synthetic path is similar to example (i) above.
- therapeutic peptides that contain one cystein include G ⁇ (the alpha subunit of Gtherapeutic peptide binding protein), the 724-739 fragment of rat brain nitric oxide synthase blocking peptide, the alpha subunit 1-32 fragment of human [TyrO] inhibin, the 254-274 fragment of HIV envelope protein, and P34cdc2 kinase fragment.
- Solid phase peptide synthesis of a modified inhibin peptide analog on a 100 ⁇ mole scale is performed using manual solid-phase synthesis, a Symphony Peptide Synthesizer and Fmoc protected Rink Amide MBHA.
- the following protected amino acids are sequentially added to resin: Fmoc-Arg(Pbf)-OH, Fmoc-His(Boc)-OH, Fmoc-Cys(Trt)- OH, Fmoc-Asn(Trt)-OH, Fmoc-Ala-OH, Fmoc-His(Boc)-OH, Fmoc-Ala- OH, Fmoc-Ala-OH, Fmoc-Pro-OH, Fmoc-Glu(tBu)-OH, Fmoc-Glu(tBu)- OH, Fmoc-Pro-OH, Fmoc-Arg(Pbf)-OH, Fmoc-G
- Step 1 Removal of the Fmoc protecting group is achieved using a solution of 20% (V/V) piperidine in ⁇ /, ⁇ /-dimethylformamide (DMF) for 20 minutes (Step 1).
- the selective deprotection of the Lys (Aloe) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1:0.5) for 2 h (Step 2).
- the resin is then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis is then re-automated for the addition of the 3- maleimidopropionic acid (Step 3). Between every coupling, the resin is washed 3 times with ⁇ /, ⁇ /-dimethylformamide (DMF) and 3 times with isopropanol. The peptide is cleaved from the resin using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl- hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- the deprotection of the terminal Fmoc group is accomplished using 20% piperidine (Step 2) followed by the coupling of 3-MPA (Step 3). Resin cleavage and product isolation was performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL min using a Phenomenex Luna 10 ⁇ phenyl- hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- Varian (Rainin) preparative binary HPLC system gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL min using a Phenomenex Luna 10 ⁇ phenyl- hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax
- Solid phase peptide synthesis of a modified inhibin peptide analog on a 100 ⁇ mole scale is performed using manual solid-phase synthesis, a Symphony Peptide Synthesizer and Fmoc protected Rink Amide MBHA.
- the following protected amino acids are sequentially added to resin: Fmoc-Lys(Boc)-OH, Fmoc-Val-OH, Fmoc-Asp(tBu)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Ala-OH, Fmoc-Ala-OH, Fmoc-Ser(tBu)-OH, Fmoc-lle-OH, Fmoc-Gly-OH, Fmoc-Asp(tBu)-OH, Fmoc-Glu(tBu)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Leu-OH, Fmoc-Asn(Trt)-OH
- Step 1 Removal of the Fmoc protecting group is achieved using a solution of 20% (V/V) piperidine in N,N-practic dimethylformamide (DMF) for 20 minutes (Step 1).
- the selective deprotection of the Lys (Aloe) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh3) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin is then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis is then re- automated for the addition of the 3-maleimidopropionic acid (Step 3). Between every coupling, the resin is washed 3 times with N,N- dimethylformamide (DMF) and 3 times with isopropanol. The peptide is cleaved from the resin using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- DMF N,N- dimethylformamide
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP- HPLC.
- Varian (Rainin) preparative binary HPLC system gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax
- Solid phase peptide synthesis of the maleimido RSV fusogenic peptide on a 100 ⁇ mole scale is performed using manual solid-phase synthesis and a Symphony Peptide Synthesizer using Fmoc protected Rink Amide MBHA resin, Fmoc protected amino acids, O-benzotriazol-1- yl- ⁇ /, N, IV, /V-tetramethyl-uronium hexafluorophosphate (HBTU) in N,N- dimethylformamide (DMF) solution and activation with ⁇ /-methyl morpholine (NMM), and piperidine deprotection of Fmoc groups (Step 1).
- the selective deprotection of the Lys(Aloc) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) 4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin is then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis is then re-automated for the addition of 3-maleimidopropionic acid (Step 3).
- Resin cleavage and product isolation is performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mL/min using a Phenomenex Luna 10 ⁇ phenyl- hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3
- Step 21 lpd(PPh 3 )4 ⁇ MMM/HOAc/CHCI 3
- the selective deprotection of the Lys(Aloc) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh 3 ) dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2 h (Step 2).
- the resin is then washed with CHCI 3 (6 x 5 mL), 20% HOAc in DCM (6 x 5 mL), DCM (6 x 5 mL), and DMF (6 x 5 mL).
- the synthesis is then re-automated for the addition of 3-maleimidopropionic acid (Step 3).
- Resin cleavage and product isolation is performed using 85% TFA/5% TIS/5% thioanisole and 5% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product is purified by preparative reversed phased HPLC using a Varian (Rainin) preparative binary HPLC system: gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3 CN (B)) over 180 min at 9.5 mlJmin using a Phenomenex Luna 10 ⁇ phenyl-hexyl, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- Varian (Rainin) preparative binary HPLC system gradient elution of 30-55% B (0.045% TFA in H 2 O (A) and 0.045% TFA in CH 3
- the peptide contains two cysteines as a disulfide bridge
- the peptide is cleaved from the support resin before addition of the maleimide.
- Solution phase chemistry is then required to activate the C-terminus in presence of the disulfide bridge and add the maleimide (through an amino-alkyl-maleimide) to the C- terminus.
- the peptide is then fully deprotected.
- therapeutic peptides that contain two cysteins as a disulfide bridge include human osteocalcin 1-49, human diabetes associated peptide, the 5-28 fragment of human/canine atrial natriuretic peptide, bovine bactenecin, and human [TyrO]-cortistatin 29.
- peptides Preparation of maleimido peptides from therapeutic peptides containing two Cysteines in a disulfide bridge is exemplified by the synthesis of peptides as described below.
- the peptide may be modified at the N-terminus, the C-terminus, or at an amino acid located between the N-terminus and the C-terminus.
- the deprotection of the terminal Fmoc group is accomplished using 20% piperidine followed by the coupling of 3-MPA (Step 3). Resin cleavage and product isolation was performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product was purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 60A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm.
- the product had >95% purity as determined by RP-HPLC mass spectrometry using a Hewlett Packard LCMS-1100 series spectrometer equipped with a diode array detector and using electro-spray ionization, ESI-MS m/z for C 6 6H95N 2 oO 26 S 2 (MH + ), 1646.8. Found: 1646.7. These steps are illustrated in the schematic diagram below.
- Step 1 Removal of the Fmoc protecting group is achieved using a solution of 20% (V/V) piperidine in N,N- dimethylformamide (DMF) for 20 minutes (Step 1). Removal of the Acm groups and resulting oxidation of the two Cys residues to form the disulfide bridge is accomplished using iodine (Step 2).
- Step 3 Deprotection of the terminal Fmoc group is accomplished using 20% piperidine followed by the coupling of 3-MPA (Step 3). Resin cleavage and product isolation is performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 4).
- the product is purified by preparative reversed phase HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian
- Step 3 Removal of the Acm groups and resulting oxidation of the two Cys residues to form the disulfide bridge is accomplished using iodine (Step 3). Ethylenediamine and 3-maleimidopropionic acid are then sequentially added to the free C-terminus (Step 4). The protecting groups are then cleaved and the product isolated using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 5).
- the product is purified by preparative reversed phase HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 60A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 60A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- Varian (Rainin) using a Dynamax C ⁇ 8 , 60A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 60A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- Step 5 j I 85% TFA/5% TIS/5% thioanisole / 5% phenol
- Resin cleavage and product isolation is performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 5).
- the product is purified by preparative reversed phase HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21
- Step 5 j j 85% TFA/5% TIS/5% thioanisole/5% phenol
- Step 3 The removal of the ft3u groups and resulting oxidation of the other two Cys residues to form the second disulfide bridge on resin is accomplished using thallium (III) trifluoroacetate (Step 3).
- Selective deprotection of the Lys(Aloc) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh3)4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2h (Step 4).
- the resin is then washed with CHCI3 (6 x 5mL), 20% HOAc in DCM (6 x 5mL), DCM (6 x 5mL), and DMF (6 x 5mL).
- Step 5 The synthesis is then re- automated for the addition of the 3-maleimidopropionic acid (Step 5). Resin cleavage and product isolation is performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 5).
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- Varian (Rainin) using a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C ⁇ 8 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- Step 3 The removal of the rBu groups and resulting oxidation of the other two Cys residues to form the second disulfide bridge on resin is accomplished using thallium (III) trifluoroacetate (Step 3).
- Selective deprotection of the Lys(Aloc) group is performed manually and accomplished by treating the resin with a solution of 3 eq of Pd(PPh3)4 dissolved in 5 mL of CHCI 3 :NMM:HOAc (18:1 :0.5) for 2h (Step 4).
- the resin is then washed with CHCI3 (6 x 5mL), 20% HOAc in DCM (6 x 5mL), DCM (6 x 5mL), and DMF (6 x 5mL).
- Step 5 The synthesis is then re-automated for the addition of the 3- maleimidopropionic acid (Step 5). Resin cleavage and product isolation is performed using 86% TFA/5% TIS/5% H 2 O/2% thioanisole and 2% phenol, followed by precipitation by dry-ice cold Et 2 O (Step 5).
- the product is purified by preparative reverse phase HPLC using a Varian (Rainin) preparative binary HPLC system using a Dynamax Cis, 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C 18 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- Varian (Rainin) preparative binary HPLC system using a Dynamax Cis, 6 ⁇ A, 8 ⁇ m, 21 mm x 25 cm column equipped with a Dynamax C 18 , 6 ⁇ A, 8 ⁇ m guard module, 21 mm x 25 cm column and UV detector (Varian Dynamax UVD II) at ⁇ 214 and 254 nm to afford the desired DAC in >95% purity, as determined by RP-HPLC.
- K5 (MW1260.18, 918.12 freebase) was prepared as a 100 mM stock solution in water.
- Human Serum Albumin (HSA) was obtained as a 25% solution (ca 250 mg/ml, 3.75 mM) as Albutein® available from Alpha Therapeutic.
- Human plasma was obtained from Golden West Biologicals.
- the HPLC method was as follows: A Vydac C18 250 X 4.6 mm, 5 ⁇ particle size column was utilized. The column temperature was 30°C with a flow rate of 0.5 ml/min. Mobile Phase A was 0.1% TFA/water. Mobile Phase B was 0.1% TFA/acetonitrite. The injection volume was 10 ⁇ l.
- the gradient was as follows:
- the proteins were detected at 214, 254 and 334 nm.
- the ionization mode was API-electrospray (positive mode) at an M/Z range of 300 to 2000.
- the gain was 3.0, fragmentor 120v, threshold 20, stepsize 0.1.
- the gas temp was 350°C and the drying gas volume was 10.0 l/min.
- the Neb pressure was 24 psi and the Vcap was 3500V.
- the HPLC method was as follows: A Vydac C18 250 X 4.6 mm, 5 ⁇ particle size column was utilized. The column temperature was 30°C with a flow rate of 0.5 ml/min.
- Mobile Phase A was 0.1% TFA/water.
- Mobile Phase B was 0.1% TFA/acetonitrite.
- the injection volume was 10 ⁇ l.
- the gradient was as follows:
- the proteins were detected at 214, 254 and 334 nm.
- the ionization mode was API-electrospray (positive mode) at an M/Z range of 300 to 2000.
- the gain was 3.0, fragmentor 120v, threshold 20, stepsize 0.1.
- the gas temp was 350°C and the drying gas volume was 10.0 l/min.
- the Neb pressure was 24 psi and the Vcap was 3500V.
- MPA-K5 modified K5 peptide
- the MPA-K5-HSA conjugate was then incubated at 37° in the presence of human plasma at a final concentration of 160 ⁇ m. After the specific incubation period (0, 4 and 24 hours) an aliquot of 100 ⁇ l was withdrawn and filtered through a 0.22 ⁇ m filter. The presence of intact conjugate was assayed by HPLC-MS.
- the column was an Aquapore RP-300, 250 x 4.6 mm, 7 ⁇ particle size. The column temperature was 50° C.
- the mobile phase A was 0.1% TFA/water.
- the mobile phase B was 0.1% TFA/acetonitrile.
- the injection volume was 1 ⁇ l.
- the gradient was as follows: Time (minutes) %A %B Flow ml/min)
- the peptide was detected at 214 mm for quantification.
- the ionization mode was API- electrospray at 1280 to 1500 m/z range, gain 1.0, fragmentor 125V, threshold 100, stepsize 0.40.
- the gas temperature was 350°C the drying gas was 13.0 l/min.
- the pressure was 60psi and the Vcap was 6000V. The results are presented below.
- mercaptalbumin Approximately 33% of circulating albumin in the bloodstream is mercaptalbumin (SH-albumin) which is not blocked by endogenous sulfhydryl compounds such as cysteine or glutathione and is therefore available for reaction with maleimido groups. The remaining 66% of the circulating albumin is capped or blocked by sulfhydryl compounds.
- the HPLC MS assay permits the identification of capped-HSA, SH-albumin and K5-MPA-albumin. The MPA covalently bonds to the free thiol on the albumin.
- the stability of the three forms of albumin in plasma is presented below.
- Dyn A-(1-13)-OH, Dyn A-(1-13)-NH 2 and Dyn A 1-13(MPA)-NH 2 were synthesized as described above.
- the Dynorphin peptides were mixed with human heparinized plasma to a final concentration of 4 mg/mL. After the required incubation time at 37 °C, 0, 20, 20, 60, 120, 180, 360 and 480 minutes) a 100 ⁇ L-aliquot was added to 100 ⁇ L of blocking solution (5 vol.
- Dyn A-(1-13)-OH and Dyn A-(1-13)-NH 2 were consistent with that reported in literature: the proteolytic breakdown of the dynorphin peptides is quite rapid.
- Dyn A-(1-13)-OH had a half life of about 10 minutes.
- Dyn A-(1-13)-NH 2 had a half life of about 30 minutes.
- Dyn A 1-13(MPA)-NH 2 exhibited striking stabilization in the presence of serum peptidase activity.
- Unmodified dynorphin peptides are degraded within 60 minutes.
- modified dynorphin peptides (Dyn A 1-13(MPA)-NH 2 ) are stable from serum peptidase activity for up to 480 minutes.
- the stability determination of the dynorphin conjugate is determined by ELISA.
- LC mass spectrometrytral analysis of the reaction mixture after 8 h was performed.
- the use of mass spectrometry permits a determination of the molecular weight of the conjugate and allows the determination whether there are any truncated forms of the dynorphin conjugate.
- Mass spectrometry of human plasma shows the two forms of albumin, the free thiol at 66436 Da and the oxidized form at 66557 Da.
- mass spectrometry can distinguish between a Dyn 2-13 truncated conjugate (68046 Da) and the intact Dyn 1-13 conjugate, (68207 Da) in an equal mixture.
- Mass spectrometry analysis of dynorphin samples taken from the serum after 480 minutes of exposure to the serum peptidases identifies only the presence of the intact conjugate (68192 Da) and not the breakdown products thereby demonstrating the stability of the dynorphin conjugate from serum peptidase activity.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Endocrinology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Diabetes (AREA)
- Psychiatry (AREA)
- Hospice & Palliative Care (AREA)
- Virology (AREA)
- Epidemiology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200030836T SI1105409T1 (en) | 1999-05-17 | 2000-05-17 | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components |
EP00936023A EP1105409B1 (en) | 1999-05-17 | 2000-05-17 | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components |
DE60026300T DE60026300T2 (en) | 1999-05-17 | 2000-05-17 | PROTECTION OF ENDOGENOUS, THERAPEUTICALLY ACTIVE PEPTIDES FROM PEPTIDASE ACTIVITY BY CONJUGATION TO BLOOD COMPONENTS |
US09/623,548 US6849714B1 (en) | 1999-05-17 | 2000-05-17 | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components |
CA002373680A CA2373680C (en) | 1999-05-17 | 2000-05-17 | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components |
JP2000618316A JP4217004B2 (en) | 1999-05-17 | 2000-05-17 | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components |
AU51393/00A AU765753B2 (en) | 1999-05-17 | 2000-05-17 | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components |
US11/040,810 US20050176641A1 (en) | 2000-05-17 | 2005-01-21 | Long lasting natriuretic peptide derivatives |
US11/067,556 US7601691B2 (en) | 1999-05-17 | 2005-02-25 | Anti-obesity agents |
US11/170,967 US8080516B2 (en) | 1999-05-17 | 2005-06-29 | Long lasting synthetic exendin-4 peptide conjugates |
US11/215,967 US8084414B2 (en) | 1999-05-17 | 2005-08-30 | Methods involving long lasting synthetic exendin-4-peptide conjugates |
US11/304,446 US8093206B2 (en) | 1999-05-17 | 2005-12-14 | Methods involving long lasting synthetic exendin-4 peptide conjugates |
US11/923,222 US7906482B2 (en) | 1999-05-17 | 2007-10-24 | Anti-obesity agents |
US11/926,843 US20080199532A1 (en) | 1999-05-17 | 2007-10-29 | Long Lasting Natriuretic Peptide Derivatives |
US11/982,033 US20090175821A1 (en) | 1999-05-17 | 2007-10-31 | Modified therapeutic peptides with extended half-lives in vivo |
US12/221,554 US20090093408A1 (en) | 1999-05-17 | 2008-08-01 | Protection of exendin-4 peptides through conjugation |
US12/221,553 US20090075890A1 (en) | 1999-05-17 | 2008-08-01 | Long lasting synthetic exendin-4 peptide conjugates and methods of use thereof |
US12/253,856 US20090275506A1 (en) | 2000-05-17 | 2008-10-17 | Long lasting natriuretic peptide derivatives |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13440699P | 1999-05-17 | 1999-05-17 | |
US15340699P | 1999-09-10 | 1999-09-10 | |
US60/134,406 | 1999-09-10 | ||
US60/153,406 | 1999-09-10 | ||
US15978399P | 1999-10-15 | 1999-10-15 | |
US60/159,783 | 1999-10-15 |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/623,548 A-371-Of-International US6849714B1 (en) | 1999-05-17 | 2000-05-17 | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components |
US10/722,733 Continuation US20040127398A1 (en) | 1999-05-17 | 2003-11-25 | Long lasting synthetic glucagon like peptide (GLP-1) |
US10/722,733 Continuation-In-Part US20040127398A1 (en) | 1999-05-17 | 2003-11-25 | Long lasting synthetic glucagon like peptide (GLP-1) |
US11/040,810 Continuation-In-Part US20050176641A1 (en) | 1999-05-17 | 2005-01-21 | Long lasting natriuretic peptide derivatives |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2000069900A2 true WO2000069900A2 (en) | 2000-11-23 |
WO2000069900A3 WO2000069900A3 (en) | 2001-02-15 |
WO2000069900A9 WO2000069900A9 (en) | 2002-07-04 |
Family
ID=27384581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/013576 WO2000069900A2 (en) | 1999-05-17 | 2000-05-17 | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components |
Country Status (11)
Country | Link |
---|---|
EP (5) | EP2100901A1 (en) |
JP (6) | JP4217004B2 (en) |
AT (1) | ATE318835T1 (en) |
AU (1) | AU765753B2 (en) |
CA (4) | CA2505617A1 (en) |
DE (1) | DE60026300T2 (en) |
DK (1) | DK1105409T3 (en) |
ES (1) | ES2257298T3 (en) |
PT (1) | PT1105409E (en) |
SI (1) | SI1105409T1 (en) |
WO (1) | WO2000069900A2 (en) |
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002040510A2 (en) * | 2000-11-02 | 2002-05-23 | Bristol-Myers Squibb Company | Modified plasminogen related peptide fragments and their use as angiogenesis inhibitors |
WO2002062844A2 (en) * | 2001-02-02 | 2002-08-15 | Conjuchem Inc. | Long lasting growth hormone releasing factor derivatives |
WO2002066511A2 (en) * | 2001-02-16 | 2002-08-29 | Conjuchem Inc. | Long lasting glucagon-like peptide 2 (glp-2) for the treatment of gastrointestinal diseases and disorders |
WO2003053996A3 (en) * | 2001-12-20 | 2003-10-30 | Kimberly Clark Co | Modular peptide-based reagent |
WO2003102180A1 (en) * | 2002-06-04 | 2003-12-11 | Japan Science And Technology Agency | NOVEL PEPTIDES HAVING cAMP PRODUCING ACTIVITY |
WO2004011498A2 (en) * | 2002-07-31 | 2004-02-05 | Conjuchem Inc. | Long lasting natriuretic peptide derivatives |
WO2004011595A2 (en) * | 2002-07-26 | 2004-02-05 | Institut Pasteur | Vectors for transferring molecules of interest in target cells |
EP1401862A2 (en) * | 2001-05-17 | 2004-03-31 | Ceremedix, Inc | Peptide compounds for counteracting reactive oxygen species and free radicals |
WO2004039832A2 (en) * | 2002-10-31 | 2004-05-13 | Albany Medical College | Leptin-related peptides |
WO2004069270A1 (en) * | 2003-01-29 | 2004-08-19 | Advanced Research And Technology Institute, Inc. | Immunoregulating compounds and an associated method |
WO2004090546A1 (en) * | 2003-04-10 | 2004-10-21 | B.R.A.H.M.S Aktiengesellschaft | Identifying a midregional proadrenomedullin partial peptide in biological liquids for diagnostic purposes, and immunoassays for conducting an identification of this type |
WO2004097423A1 (en) * | 2003-04-25 | 2004-11-11 | Genova Ltd. | Secreted polypeptide species reduced cardiovascular disorders |
EP1489093A1 (en) * | 2002-03-19 | 2004-12-22 | Oncorex, Inc. | Peptides, medicinal compositions containing the peptide and medicinal compositions for treating cancer |
EP1575511A2 (en) * | 2002-11-07 | 2005-09-21 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by THE SECRETARY of the DEPARTMENT OF HEALTH AND HUMAN SERVICES | A new target for angiogenesis and anti-angiogenesis therapy |
EP1582223A1 (en) * | 2003-01-10 | 2005-10-05 | Niigata TLO Corporation | Vector for gene therapy and method of quantifying target protein in mammal or cultured cells with the administration of the vector for gene theraphy |
GB2391548B (en) * | 2001-04-18 | 2005-11-30 | Univ Open | Polypeptides and derivatives thereof related to amyloid precursor protein (APP) |
JP2006505536A (en) * | 2002-09-24 | 2006-02-16 | フロンティア バイオテクノロジーズ カンパニー リミテッド | Peptide derivative fusion inhibitor for HIV infection |
EP1700096A2 (en) * | 2003-12-04 | 2006-09-13 | Areté Associates | Detection of conformationally altered proteins and prions |
WO2006108686A2 (en) * | 2005-04-14 | 2006-10-19 | Aic | Bnp agonists |
WO2007049941A1 (en) * | 2005-10-27 | 2007-05-03 | Peptron Co., Ltd | Bioactive substance carrier for in vivo stable delivery tehreof, conjugate containing the same, and method of in vivo stable delivery of the bioactive substance |
US7256253B2 (en) | 1999-09-10 | 2007-08-14 | Conjuchem Biotechnologies Inc. | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components |
WO2006116156A3 (en) * | 2005-04-22 | 2007-10-04 | Amgen Inc | Toxin peptides with extended blood halflife |
WO2008052043A2 (en) * | 2006-10-24 | 2008-05-02 | Cogenesys, Inc. | Opioid receptor agonist fusion proteins |
US7378495B2 (en) * | 2002-10-21 | 2008-05-27 | Pevion Biotech, Ltd. | PTH-rP related peptide cancer therapeutics |
WO2008088422A2 (en) * | 2006-10-25 | 2008-07-24 | Amgen Inc. | Toxin peptide therapeutic agents |
US20080292627A1 (en) * | 2005-05-05 | 2008-11-27 | The Board Of Trustees Of The University Of Illinois | Compositions and Methods for Treating Mood and Anxiety Disorders |
US7491702B2 (en) | 2001-04-18 | 2009-02-17 | The Open University | Polypeptides related to amyloid precursor protein, pharmaceutical compositions thereof, and methods of treatment using the same |
WO2009023125A1 (en) * | 2007-08-14 | 2009-02-19 | The Board Of Trustees Of The Leland Stanford Junior University | Neuronostatin and its uses |
WO2009043527A2 (en) * | 2007-09-11 | 2009-04-09 | Mondobiotech Laboratories Ag | Therapeutic use of human growth hormone 1-43 |
WO2009043455A2 (en) * | 2007-09-11 | 2009-04-09 | Mondobiotech Laboratories Ag | Therapeutic uses of angiogenin 108-122 and gluten exorphin a5 |
WO2009033807A3 (en) * | 2007-09-11 | 2009-05-14 | Mondobiotech Lab Ag | Therapeutic uses of b-type natriuretic peptide and human growth hormone 1-43 |
US7544653B2 (en) * | 2001-10-18 | 2009-06-09 | Zlatko Ademovic | Additive cytoprotective effects of two bioactive regions of pro-opiomelanocortin hormone |
US7557088B2 (en) | 2006-03-28 | 2009-07-07 | Neopro Labs, Llc | Methods and compositions for treating conditions |
EP2085406A1 (en) * | 2003-07-25 | 2009-08-05 | ConjuChem Biotechnologies Inc. | Long lasting insulin derivatives and methods thereof |
EP2070946A3 (en) * | 2004-09-03 | 2009-09-09 | Philipps-Universität Marburg | Invention affecting GLP-1 and Exendin |
WO2009121884A1 (en) | 2008-04-01 | 2009-10-08 | Novo Nordisk A/S | Insulin albumin conjugates |
US7601691B2 (en) | 1999-05-17 | 2009-10-13 | Conjuchem Biotechnologies Inc. | Anti-obesity agents |
AU2003297583B2 (en) * | 2002-11-26 | 2010-01-14 | Biocon, Ltd | Modified naturetic compounds, conjugates, and uses thereof |
US7648962B2 (en) | 2002-11-26 | 2010-01-19 | Biocon Limited | Natriuretic compounds, conjugates, and uses thereof |
WO2009142727A3 (en) * | 2008-05-19 | 2010-03-11 | Vasogenix Pharmaceuticals, Inc. | Sequence modified calcitonin gene related peptides (cgrp) |
US7691639B2 (en) | 2001-05-31 | 2010-04-06 | Adlyfe, Inc. | Misfolded protein sensor method |
US7704955B2 (en) * | 2004-11-24 | 2010-04-27 | Neopro Pain, Inc. | Methods and compositions for modulating conditions in both mammals and plants |
US7736654B2 (en) | 2001-04-10 | 2010-06-15 | Agensys, Inc. | Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers |
US7741286B2 (en) | 1999-05-17 | 2010-06-22 | Conjuchem Biotechnologies Inc. | Long lasting anti-angiogenic peptides |
US7741453B2 (en) | 2001-05-31 | 2010-06-22 | Conjuchem Biotechnologies, Inc. | Long lasting fusion peptide inhibitors for HIV infection |
EP1745297B1 (en) * | 2004-05-13 | 2011-03-16 | B.R.A.H.M.S GmbH | Use of precursors of enkephalins and/or their fragments in medical diagnostics |
US7982018B2 (en) | 2006-10-16 | 2011-07-19 | Conjuchem, Llc | Modified corticotropin releasing factor peptides and uses thereof |
EP2369350A3 (en) * | 2004-04-20 | 2012-01-25 | SphingoTec GmbH | Use of precursors of tachykinins and/or their fragments in medical diagnostic |
AU2005211776B2 (en) * | 2004-02-11 | 2012-02-02 | Amylin Pharmaceuticals, Llc | Pancreatic polypeptide family motifs and polypeptides comprising the same |
US8217141B2 (en) | 2007-05-17 | 2012-07-10 | Neopro Labs, Llc | Crystalline and amorphous forms of peptide |
CN102918056A (en) * | 2010-03-26 | 2013-02-06 | 诺沃—诺迪斯克有限公司 | Novel glucagon analogues |
US8372593B2 (en) | 2005-02-15 | 2013-02-12 | Adlyfe, Inc. | Method for detecting misfolded proteins and prions |
US8420779B2 (en) | 2007-05-22 | 2013-04-16 | Amgen Inc. | Compositions and methods for producing bioactive fusion proteins |
US8637256B2 (en) | 2005-01-26 | 2014-01-28 | Sphingotec Gmbh | Immunoassay for determining the release of neurotensin into the circulation |
US8906847B2 (en) | 2008-02-01 | 2014-12-09 | Ascendis Pharma A/S | Prodrug comprising a drug linker conjugate |
WO2015001015A1 (en) * | 2013-07-04 | 2015-01-08 | Universitat De Barcelona | Actively transported and protease-resistant peptides as bbb shuttles and shuttle-cargo constructs |
AU2012202855B2 (en) * | 2004-09-03 | 2015-02-26 | Philipps-Universitat Marburg | GLP-1 and exendin related invention |
US9133276B2 (en) | 2010-09-17 | 2015-09-15 | Sanofi-Aventis Deutschland Gmbh | Prodrugs comprising an exendin linker conjugate |
US9138462B2 (en) | 2009-07-31 | 2015-09-22 | Sanofi-Aventis Deutschland Gmbh | Prodrugs comprising an insulin linker conjugate |
US9266939B2 (en) | 2010-12-27 | 2016-02-23 | Alexion Pharmaceuticals, Inc. | Compositions comprising natriuretic peptides and methods of use thereof |
US9265723B2 (en) | 2009-07-31 | 2016-02-23 | Sanofi-Aventis Deutschland Gmbh | Long acting insulin composition |
US9474790B2 (en) | 2013-04-18 | 2016-10-25 | Novo Nordisk A/S | Stable, protracted GLP-1/glucagon receptor co-agonists for medical use |
US9486505B2 (en) | 2011-09-23 | 2016-11-08 | Novo Nordisk A/S | Glucagon analogues |
US9616109B2 (en) | 2014-10-22 | 2017-04-11 | Extend Biosciences, Inc. | Insulin vitamin D conjugates |
US9789197B2 (en) | 2014-10-22 | 2017-10-17 | Extend Biosciences, Inc. | RNAi vitamin D conjugates |
US9884124B2 (en) | 2012-05-17 | 2018-02-06 | Extend Biosciences, Inc. | Carriers for improved drug delivery |
US10052366B2 (en) | 2012-05-21 | 2018-08-21 | Alexion Pharmaceuticsl, Inc. | Compositions comprising alkaline phosphatase and/or natriuretic peptide and methods of use thereof |
US10406202B2 (en) | 2014-10-22 | 2019-09-10 | Extend Biosciences, Inc. | Therapeutic vitamin D conjugates |
US10449236B2 (en) | 2014-12-05 | 2019-10-22 | Alexion Pharmaceuticals, Inc. | Treating seizure with recombinant alkaline phosphatase |
US10570184B2 (en) | 2014-06-04 | 2020-02-25 | Novo Nordisk A/S | GLP-1/glucagon receptor co-agonists for medical use |
US10603361B2 (en) | 2015-01-28 | 2020-03-31 | Alexion Pharmaceuticals, Inc. | Methods of treating a subject with an alkaline phosphatase deficiency |
US10822596B2 (en) | 2014-07-11 | 2020-11-03 | Alexion Pharmaceuticals, Inc. | Compositions and methods for treating craniosynostosis |
US10898549B2 (en) | 2016-04-01 | 2021-01-26 | Alexion Pharmaceuticals, Inc. | Methods for treating hypophosphatasia in adolescents and adults |
US10988744B2 (en) | 2016-06-06 | 2021-04-27 | Alexion Pharmaceuticals, Inc. | Method of producing alkaline phosphatase |
AU2016221298B2 (en) * | 2015-02-22 | 2021-05-13 | Omnix Medical Ltd. | Antimicrobial peptides |
US11065306B2 (en) | 2016-03-08 | 2021-07-20 | Alexion Pharmaceuticals, Inc. | Methods for treating hypophosphatasia in children |
US11116821B2 (en) | 2016-08-18 | 2021-09-14 | Alexion Pharmaceuticals, Inc. | Methods for treating tracheobronchomalacia |
IT202000007720A1 (en) * | 2020-04-10 | 2021-10-10 | Alessandra Marconi | PEPTIDES AND THEIR USES |
US11186832B2 (en) | 2016-04-01 | 2021-11-30 | Alexion Pharmaceuticals, Inc. | Treating muscle weakness with alkaline phosphatases |
US11224637B2 (en) | 2017-03-31 | 2022-01-18 | Alexion Pharmaceuticals, Inc. | Methods for treating hypophosphatasia (HPP) in adults and adolescents |
US11229686B2 (en) | 2015-09-28 | 2022-01-25 | Alexion Pharmaceuticals, Inc. | Reduced frequency dosage regimens for tissue non-specific alkaline phosphatase (TNSALP)-enzyme replacement therapy of hypophosphatasia |
US11248021B2 (en) | 2004-04-21 | 2022-02-15 | Alexion Pharmaceuticals, Inc. | Bone delivery conjugates and method of using same to target proteins to bone |
WO2022115563A1 (en) * | 2020-11-25 | 2022-06-02 | Prolynx Llc | Extended release hydrogel conjugates of c-natriuretic peptides |
US11352612B2 (en) | 2015-08-17 | 2022-06-07 | Alexion Pharmaceuticals, Inc. | Manufacturing of alkaline phosphatases |
US11400140B2 (en) | 2015-10-30 | 2022-08-02 | Alexion Pharmaceuticals, Inc. | Methods for treating craniosynostosis in a patient |
US11913039B2 (en) | 2018-03-30 | 2024-02-27 | Alexion Pharmaceuticals, Inc. | Method for producing recombinant alkaline phosphatase |
US12083169B2 (en) | 2021-02-12 | 2024-09-10 | Alexion Pharmaceuticals, Inc. | Alkaline phosphatase polypeptides and methods of use thereof |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2005090399A1 (en) * | 2004-03-24 | 2008-05-08 | 財団法人岐阜県研究開発財団 | Antibodies that recognize proliferation/differentiation of various cells, and methods for evaluating proliferation/differentiation using the antibodies |
JP4720175B2 (en) * | 2004-12-15 | 2011-07-13 | 富士ゼロックス株式会社 | Maleimidyl group-containing material and method for producing the same |
AU2008232709C1 (en) | 2007-03-28 | 2015-01-15 | President And Fellows Of Harvard College | Stitched polypeptides |
AU2008297535A1 (en) * | 2007-09-11 | 2009-03-19 | Mondobiotech Laboratories Ag | Use of fibronectin fragment (196-203 ) as a therapeutic agent |
KR20110122134A (en) | 2009-02-25 | 2011-11-09 | 머크 샤프 앤드 돔 코포레이션 | Metabolic engineering of a galactose assimilation pathway in the glycoengineered yeast pichia pastoris |
AU2010279076B2 (en) * | 2009-07-29 | 2014-09-25 | Daiichi Sankyo Company,Limited | Motilin-like peptide compound having transmucosal absorbability imparted thereto |
WO2011050471A1 (en) * | 2009-10-28 | 2011-05-05 | University Of Manitoba | Yellow pea seed protein-derived peptides |
KR101930961B1 (en) | 2010-02-24 | 2018-12-19 | 머크 샤프 앤드 돔 코포레이션 | Method for increasing n-glycosylation site occupancy on therapeutic glycoproteins produced in pichia pastoris |
SI2603600T1 (en) | 2010-08-13 | 2019-04-30 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles |
TWI643868B (en) | 2011-10-18 | 2018-12-11 | 艾利倫治療公司 | Peptidomimetic macrocycles |
US8987414B2 (en) | 2012-02-15 | 2015-03-24 | Aileron Therapeutics, Inc. | Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles |
KR102112373B1 (en) | 2012-02-15 | 2020-05-18 | 에일러론 테라퓨틱스 인코포레이티드 | Peptidomimetic macrocycles |
JP2013179884A (en) * | 2012-03-01 | 2013-09-12 | Mitsubishi Rayon Co Ltd | Nucleic acid microarray for evaluating component relating to melanin cascade and method for evaluating component relating to melanin cascade |
AU2013337388B2 (en) | 2012-11-01 | 2018-08-02 | Aileron Therapeutics, Inc. | Disubstituted amino acids and methods of preparation and use thereof |
EP3094643B1 (en) * | 2014-01-15 | 2018-10-17 | Fyziologicky ustav Akademie ved Ceske republiky, v.v.i. | Lipidated peptides for lowering blood glucose |
WO2016049359A1 (en) | 2014-09-24 | 2016-03-31 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles and uses thereof |
MX2017011834A (en) | 2015-03-20 | 2018-04-11 | Aileron Therapeutics Inc | Peptidomimetic macrocycles and uses thereof. |
US11530243B2 (en) * | 2016-02-18 | 2022-12-20 | Veiove Animal Health Inc. | Non-cleavable substance P conjugates and methods of use thereof |
SG11201907914QA (en) | 2017-03-01 | 2019-09-27 | Chengdu Huitai Biomedicine Co Ltd | Polypeptide, polypeptide fragment, derivative thereof, and applications thereof |
WO2018221745A1 (en) * | 2017-06-02 | 2018-12-06 | 株式会社Lsiメディエンス | Method for extracting target protein from biological sample and method for analyzing target protein |
CN109503700A (en) * | 2017-09-14 | 2019-03-22 | 南京安吉生物科技有限公司 | The blood vessel formation inhibitor IIM 3-1 of maleimide base group modification and its application |
EP3717508A1 (en) | 2017-12-01 | 2020-10-07 | The University of Copenhagen | Peptide hormone with one or more o-glycans |
WO2019197313A1 (en) | 2018-04-09 | 2019-10-17 | Svar Life Science Ab | Glucagon Assay |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0602290A1 (en) * | 1992-12-04 | 1994-06-22 | Philippe Pouletty | Cellular drug anchors |
WO1995010302A1 (en) * | 1993-10-15 | 1995-04-20 | Redcell, Inc. | Cellular and serum protein anchors and conjugates |
US5580853A (en) * | 1994-03-22 | 1996-12-03 | New England Deaconess Hospital | Modified polypeptides with increased biological activity |
US5654276A (en) * | 1995-06-07 | 1997-08-05 | Affymax Technologies N.V. | Peptides and compounds that bind to the IL-5 receptor |
WO1999024075A2 (en) * | 1997-11-07 | 1999-05-20 | Conjuchem, Inc. | Affinity markers for human serum albumin |
WO1999024462A2 (en) * | 1997-11-07 | 1999-05-20 | Conjuchem, Inc. | Novel conjugates of rgd-containing peptides and endogenous carriers |
WO1999048536A2 (en) * | 1998-03-23 | 1999-09-30 | Conjuchem, Inc. | Delivery of long lasting therapeutic agents by forming covalent attachments in vivo |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3719667A (en) | 1970-08-24 | 1973-03-06 | Lilly Co Eli | Epimerization of 6-acylamido and 6-imido penicillin sulfoxide esters |
US3840556A (en) | 1971-05-28 | 1974-10-08 | Lilly Co Eli | Penicillin conversion by halogen electrophiles and anti-bacterials derived thereby |
BE795238A (en) * | 1972-02-09 | 1973-08-09 | Schering Ag | INTRAMOLECULAR CROSS-LINKED INSULIN DERIVATIVES, THEIR PREPARATION PROCESS AND THEIR USE |
US4462941A (en) | 1982-06-10 | 1984-07-31 | The Regents Of The University Of California | Dynorphin amide analogs |
DE3604868A1 (en) * | 1986-02-15 | 1987-08-20 | Behringwerke Ag | INSULINE DERIVATIVES, METHOD FOR THEIR PRODUCTION AND THEIR USE |
DD252539A1 (en) * | 1986-09-17 | 1987-12-23 | Berlin Chemie Veb | METHOD FOR ORAL APPLICATION OF BIOLOGICALLY ACTIVE PEPTIDES WITH DELAYED EFFECT |
US5422339A (en) * | 1991-03-19 | 1995-06-06 | Joslin Diabetes Center, Inc. | Peptides having insulin autoantibody but not insulin receptor binding capacity |
WO1992017492A1 (en) | 1991-04-05 | 1992-10-15 | Genentech, Inc. | PLATELET AGGREGATION INHIBITORS HAVING HIGH SPECIFICITY FOR GP IIbIII¿a? |
HUT70160A (en) | 1992-06-12 | 1995-09-28 | Des Tyr Dynorphin Partnership | Process for producing des-tyr dynorphin analogues |
US5446128A (en) * | 1993-06-18 | 1995-08-29 | The Board Of Trustees Of The University Of Illinois | Alpha-helix mimetics and methods relating thereto |
AU7637394A (en) | 1994-08-26 | 1996-03-22 | Avram Goldstein | Analgesic method with dynorphin analogues truncated at the n-terminus |
CA2279836A1 (en) * | 1997-02-05 | 1998-08-13 | 1149336 Ontario Inc. | Polynucleotides encoding proexendin, and methods and uses thereof |
CA2321026A1 (en) * | 1998-03-09 | 1999-09-16 | Zealand Pharmaceuticals A/S | Pharmacologically active peptide conjugates having a reduced tendency towards enzymatic hydrolysis |
-
2000
- 2000-05-17 DE DE60026300T patent/DE60026300T2/en not_active Expired - Lifetime
- 2000-05-17 EP EP08158878A patent/EP2100901A1/en active Pending
- 2000-05-17 CA CA002505617A patent/CA2505617A1/en not_active Abandoned
- 2000-05-17 AT AT00936023T patent/ATE318835T1/en active
- 2000-05-17 CA CA002623458A patent/CA2623458A1/en not_active Abandoned
- 2000-05-17 ES ES00936023T patent/ES2257298T3/en not_active Expired - Lifetime
- 2000-05-17 JP JP2000618316A patent/JP4217004B2/en not_active Expired - Fee Related
- 2000-05-17 AU AU51393/00A patent/AU765753B2/en not_active Ceased
- 2000-05-17 CA CA002373680A patent/CA2373680C/en not_active Expired - Fee Related
- 2000-05-17 EP EP05105387A patent/EP1598365A1/en not_active Withdrawn
- 2000-05-17 EP EP05105384A patent/EP1591453A1/en not_active Withdrawn
- 2000-05-17 WO PCT/US2000/013576 patent/WO2000069900A2/en active IP Right Grant
- 2000-05-17 DK DK00936023T patent/DK1105409T3/en active
- 2000-05-17 EP EP05108328A patent/EP1623994A3/en not_active Withdrawn
- 2000-05-17 SI SI200030836T patent/SI1105409T1/en unknown
- 2000-05-17 CA CA002499211A patent/CA2499211A1/en not_active Abandoned
- 2000-05-17 PT PT00936023T patent/PT1105409E/en unknown
- 2000-05-17 EP EP00936023A patent/EP1105409B1/en not_active Expired - Lifetime
-
2005
- 2005-04-12 JP JP2005115175A patent/JP4219339B2/en not_active Expired - Fee Related
- 2005-05-12 JP JP2005140407A patent/JP4221392B2/en not_active Expired - Fee Related
-
2008
- 2008-01-17 JP JP2008008555A patent/JP2008150384A/en not_active Withdrawn
- 2008-09-25 JP JP2008246982A patent/JP2009079048A/en not_active Withdrawn
-
2010
- 2010-02-01 JP JP2010020780A patent/JP2010168384A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0602290A1 (en) * | 1992-12-04 | 1994-06-22 | Philippe Pouletty | Cellular drug anchors |
WO1995010302A1 (en) * | 1993-10-15 | 1995-04-20 | Redcell, Inc. | Cellular and serum protein anchors and conjugates |
US5580853A (en) * | 1994-03-22 | 1996-12-03 | New England Deaconess Hospital | Modified polypeptides with increased biological activity |
US5654276A (en) * | 1995-06-07 | 1997-08-05 | Affymax Technologies N.V. | Peptides and compounds that bind to the IL-5 receptor |
WO1999024075A2 (en) * | 1997-11-07 | 1999-05-20 | Conjuchem, Inc. | Affinity markers for human serum albumin |
WO1999024462A2 (en) * | 1997-11-07 | 1999-05-20 | Conjuchem, Inc. | Novel conjugates of rgd-containing peptides and endogenous carriers |
WO1999048536A2 (en) * | 1998-03-23 | 1999-09-30 | Conjuchem, Inc. | Delivery of long lasting therapeutic agents by forming covalent attachments in vivo |
Cited By (154)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7601691B2 (en) | 1999-05-17 | 2009-10-13 | Conjuchem Biotechnologies Inc. | Anti-obesity agents |
US7906482B2 (en) | 1999-05-17 | 2011-03-15 | Advanced Diagnostics And Discovery | Anti-obesity agents |
US7741286B2 (en) | 1999-05-17 | 2010-06-22 | Conjuchem Biotechnologies Inc. | Long lasting anti-angiogenic peptides |
US7256253B2 (en) | 1999-09-10 | 2007-08-14 | Conjuchem Biotechnologies Inc. | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components |
WO2002040510A3 (en) * | 2000-11-02 | 2003-06-05 | Bristol Myers Squibb Co | Modified plasminogen related peptide fragments and their use as angiogenesis inhibitors |
WO2002040510A2 (en) * | 2000-11-02 | 2002-05-23 | Bristol-Myers Squibb Company | Modified plasminogen related peptide fragments and their use as angiogenesis inhibitors |
WO2002062844A3 (en) * | 2001-02-02 | 2003-08-21 | Conjuchem Inc | Long lasting growth hormone releasing factor derivatives |
US7268113B2 (en) | 2001-02-02 | 2007-09-11 | Conjuchem Biotechnologies Inc. | Long lasting growth hormone releasing factor derivatives |
WO2002062844A2 (en) * | 2001-02-02 | 2002-08-15 | Conjuchem Inc. | Long lasting growth hormone releasing factor derivatives |
AU2002233089B2 (en) * | 2001-02-16 | 2005-12-22 | Conjuchem Biotechnologies Inc. | Long lasting glucagon-like peptide 2 (GLP-2) for the treatment of gastrointestinal diseases and disorders |
EP1980572A1 (en) * | 2001-02-16 | 2008-10-15 | ConjuChem Biotechnologies Inc. | Long lasting glucagon-like peptide 2 (GLP-2) for the treatment of gastrointestinal diseases and disorders |
US7737251B2 (en) | 2001-02-16 | 2010-06-15 | Conjuchem Biotechnologies Inc. | Long lasting glucagon-like peptide 2 (GLP-2) for the treatment of gastrointestinal diseases and disorders |
WO2002066511A3 (en) * | 2001-02-16 | 2003-03-06 | Conjuchem Inc | Long lasting glucagon-like peptide 2 (glp-2) for the treatment of gastrointestinal diseases and disorders |
WO2002066511A2 (en) * | 2001-02-16 | 2002-08-29 | Conjuchem Inc. | Long lasting glucagon-like peptide 2 (glp-2) for the treatment of gastrointestinal diseases and disorders |
US7112567B2 (en) | 2001-02-16 | 2006-09-26 | Conjuchem Inc. | Long lasting glucagon-like peptide 2 (glp-2) for the treatment of gastrointestinal diseases and disorders |
US7736654B2 (en) | 2001-04-10 | 2010-06-15 | Agensys, Inc. | Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers |
GB2391548B (en) * | 2001-04-18 | 2005-11-30 | Univ Open | Polypeptides and derivatives thereof related to amyloid precursor protein (APP) |
US7491702B2 (en) | 2001-04-18 | 2009-02-17 | The Open University | Polypeptides related to amyloid precursor protein, pharmaceutical compositions thereof, and methods of treatment using the same |
EP1401862A2 (en) * | 2001-05-17 | 2004-03-31 | Ceremedix, Inc | Peptide compounds for counteracting reactive oxygen species and free radicals |
EP1401862A4 (en) * | 2001-05-17 | 2004-12-15 | Ceremedix Inc | Peptide compounds for counteracting reactive oxygen species and free radicals |
US7741453B2 (en) | 2001-05-31 | 2010-06-22 | Conjuchem Biotechnologies, Inc. | Long lasting fusion peptide inhibitors for HIV infection |
US7691639B2 (en) | 2001-05-31 | 2010-04-06 | Adlyfe, Inc. | Misfolded protein sensor method |
US9638702B2 (en) | 2001-05-31 | 2017-05-02 | System Of Systems Analytics, Inc. | Detection of conformationally altered proteins |
US8062895B2 (en) | 2001-05-31 | 2011-11-22 | Adlyfe, Inc. | Misfolded protein sensor method |
US7544653B2 (en) * | 2001-10-18 | 2009-06-09 | Zlatko Ademovic | Additive cytoprotective effects of two bioactive regions of pro-opiomelanocortin hormone |
CN1298729C (en) * | 2001-12-20 | 2007-02-07 | 金伯利-克拉克环球有限公司 | Modular peptide-based reagent |
WO2003053996A3 (en) * | 2001-12-20 | 2003-10-30 | Kimberly Clark Co | Modular peptide-based reagent |
US6822073B2 (en) | 2001-12-20 | 2004-11-23 | Kimberly-Clark Worldwide, Inc. | Modular peptide-based reagent |
EP1489093A4 (en) * | 2002-03-19 | 2005-07-20 | Oncorex Inc | Peptides, medicinal compositions containing the peptide and medicinal compositions for treating cancer |
EP1489093A1 (en) * | 2002-03-19 | 2004-12-22 | Oncorex, Inc. | Peptides, medicinal compositions containing the peptide and medicinal compositions for treating cancer |
WO2003102180A1 (en) * | 2002-06-04 | 2003-12-11 | Japan Science And Technology Agency | NOVEL PEPTIDES HAVING cAMP PRODUCING ACTIVITY |
WO2004011595A3 (en) * | 2002-07-26 | 2005-08-18 | Pasteur Institut | Vectors for transferring molecules of interest in target cells |
WO2004011595A2 (en) * | 2002-07-26 | 2004-02-05 | Institut Pasteur | Vectors for transferring molecules of interest in target cells |
JP2006514607A (en) * | 2002-07-31 | 2006-05-11 | コンジュケム,インコーポレーテッド | Long-lasting sodium excretion increasing peptide derivative |
WO2004011498A3 (en) * | 2002-07-31 | 2004-06-24 | Conjuchem Inc | Long lasting natriuretic peptide derivatives |
WO2004011498A2 (en) * | 2002-07-31 | 2004-02-05 | Conjuchem Inc. | Long lasting natriuretic peptide derivatives |
JP2010209097A (en) * | 2002-09-24 | 2010-09-24 | Frontier Biotechnologies Co Ltd | Peptide derivative fusion inhibitor of hiv infection |
JP2006505536A (en) * | 2002-09-24 | 2006-02-16 | フロンティア バイオテクノロジーズ カンパニー リミテッド | Peptide derivative fusion inhibitor for HIV infection |
US7378495B2 (en) * | 2002-10-21 | 2008-05-27 | Pevion Biotech, Ltd. | PTH-rP related peptide cancer therapeutics |
WO2004039832A2 (en) * | 2002-10-31 | 2004-05-13 | Albany Medical College | Leptin-related peptides |
WO2004039832A3 (en) * | 2002-10-31 | 2006-10-05 | Albany Medical College | Leptin-related peptides |
US7862815B2 (en) | 2002-11-07 | 2011-01-04 | The United States Of America As Represented By The Department Of Health And Human Services | Methods for inhibiting angiogenesis with inhibitors of proadrenomedullin N-terminal 20 peptide (PAMP) |
EP1575511A4 (en) * | 2002-11-07 | 2006-06-28 | Us Gov Health & Human Serv | A new target for angiogenesis and anti-angiogenesis therapy |
EP1575511A2 (en) * | 2002-11-07 | 2005-09-21 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by THE SECRETARY of the DEPARTMENT OF HEALTH AND HUMAN SERVICES | A new target for angiogenesis and anti-angiogenesis therapy |
SG159387A1 (en) * | 2002-11-26 | 2010-03-30 | Biocon Ltd In | Modified natriuretic compounds, conjugates, and uses thereof |
US7662773B2 (en) | 2002-11-26 | 2010-02-16 | Biocon Limited | Natriuretic compounds, conjugates, and uses thereof |
US7648962B2 (en) | 2002-11-26 | 2010-01-19 | Biocon Limited | Natriuretic compounds, conjugates, and uses thereof |
AU2003297583B2 (en) * | 2002-11-26 | 2010-01-14 | Biocon, Ltd | Modified naturetic compounds, conjugates, and uses thereof |
EP1582223A4 (en) * | 2003-01-10 | 2007-01-17 | Niigata Tlo Corp | Vector for gene therapy and method of quantifying target protein in mammal or cultured cells with the administration of the vector for gene theraphy |
EP1582223A1 (en) * | 2003-01-10 | 2005-10-05 | Niigata TLO Corporation | Vector for gene therapy and method of quantifying target protein in mammal or cultured cells with the administration of the vector for gene theraphy |
CN1819839B (en) * | 2003-01-29 | 2010-06-09 | 李惟 | Immune-adjusting compound and relating method thereof |
WO2004069270A1 (en) * | 2003-01-29 | 2004-08-19 | Advanced Research And Technology Institute, Inc. | Immunoregulating compounds and an associated method |
WO2004090546A1 (en) * | 2003-04-10 | 2004-10-21 | B.R.A.H.M.S Aktiengesellschaft | Identifying a midregional proadrenomedullin partial peptide in biological liquids for diagnostic purposes, and immunoassays for conducting an identification of this type |
US9541549B2 (en) | 2003-04-10 | 2017-01-10 | B.R.A.H.M.S. Gmbh | Determination of a midregional proadrenomedullin partial peptide in biological fluids for diagnostic purposes, and immunoassays for carrying out such a determination |
US9885709B2 (en) | 2003-04-10 | 2018-02-06 | B.R.A.H.M.S. Gmbh | Determination of a midregional proadrenomedullin partial peptide in biological fluids for diagnostic purposes, and immunoassays for carrying out such a determination |
CN1759319B (en) * | 2003-04-10 | 2011-08-10 | B.R.A.H.M.S有限公司 | Usage of peptide of ADM Among the regional parts of Biological fluid in preparing immune diagnosticum |
WO2004097423A1 (en) * | 2003-04-25 | 2004-11-11 | Genova Ltd. | Secreted polypeptide species reduced cardiovascular disorders |
EP2085406A1 (en) * | 2003-07-25 | 2009-08-05 | ConjuChem Biotechnologies Inc. | Long lasting insulin derivatives and methods thereof |
EP1700096A2 (en) * | 2003-12-04 | 2006-09-13 | Areté Associates | Detection of conformationally altered proteins and prions |
EP1700096A4 (en) * | 2003-12-04 | 2007-11-21 | Adlyfe Inc | Detection of conformationally altered proteins and prions |
EP2312312A3 (en) * | 2003-12-04 | 2011-08-03 | Adlyfe, Inc. | Detection of conformationally altered proteins and prions |
AU2005211776B2 (en) * | 2004-02-11 | 2012-02-02 | Amylin Pharmaceuticals, Llc | Pancreatic polypeptide family motifs and polypeptides comprising the same |
EP2369350A3 (en) * | 2004-04-20 | 2012-01-25 | SphingoTec GmbH | Use of precursors of tachykinins and/or their fragments in medical diagnostic |
US11248021B2 (en) | 2004-04-21 | 2022-02-15 | Alexion Pharmaceuticals, Inc. | Bone delivery conjugates and method of using same to target proteins to bone |
EP1745297B1 (en) * | 2004-05-13 | 2011-03-16 | B.R.A.H.M.S GmbH | Use of precursors of enkephalins and/or their fragments in medical diagnostics |
EP2301962A3 (en) * | 2004-09-03 | 2011-11-02 | Philipps-Universität Marburg | Invention affecting GLP-1 and Exendin |
AU2012202855B2 (en) * | 2004-09-03 | 2015-02-26 | Philipps-Universitat Marburg | GLP-1 and exendin related invention |
AU2005279537C1 (en) * | 2004-09-03 | 2012-07-05 | Philipps-Universitat Marburg | GLP-1 and exendin related invention |
AU2005279537B2 (en) * | 2004-09-03 | 2012-02-16 | Philipps-Universitat Marburg | GLP-1 and exendin related invention |
DE102004043153B4 (en) * | 2004-09-03 | 2013-11-21 | Philipps-Universität Marburg | Invention relating to GLP-1 and exendin |
EP2070946A3 (en) * | 2004-09-03 | 2009-09-09 | Philipps-Universität Marburg | Invention affecting GLP-1 and Exendin |
US8492159B2 (en) | 2004-11-24 | 2013-07-23 | Neopro Pain, Inc. | Methods and compositions for treating conditions |
US7851448B2 (en) | 2004-11-24 | 2010-12-14 | Neopro Labs, Llc | Methods for modulating activities in plants |
US8530432B2 (en) | 2004-11-24 | 2013-09-10 | Neopro Labs, Llc | Methods and compositions for treating conditions |
US7858586B2 (en) | 2004-11-24 | 2010-12-28 | Neopro Labs, Llc | Method of treating condition in animal |
US7704955B2 (en) * | 2004-11-24 | 2010-04-27 | Neopro Pain, Inc. | Methods and compositions for modulating conditions in both mammals and plants |
US8637256B2 (en) | 2005-01-26 | 2014-01-28 | Sphingotec Gmbh | Immunoassay for determining the release of neurotensin into the circulation |
US8372593B2 (en) | 2005-02-15 | 2013-02-12 | Adlyfe, Inc. | Method for detecting misfolded proteins and prions |
WO2006108686A3 (en) * | 2005-04-14 | 2006-12-21 | Aic | Bnp agonists |
WO2006108686A2 (en) * | 2005-04-14 | 2006-10-19 | Aic | Bnp agonists |
WO2006116156A3 (en) * | 2005-04-22 | 2007-10-04 | Amgen Inc | Toxin peptides with extended blood halflife |
US7833979B2 (en) | 2005-04-22 | 2010-11-16 | Amgen Inc. | Toxin peptide therapeutic agents |
EA013470B1 (en) * | 2005-04-22 | 2010-04-30 | Амген Инк. | Therapeutic agents based on toxin peptides |
US8907071B2 (en) | 2005-04-22 | 2014-12-09 | Amgen Inc. | Toxin peptide therapeutic agents |
US20080292627A1 (en) * | 2005-05-05 | 2008-11-27 | The Board Of Trustees Of The University Of Illinois | Compositions and Methods for Treating Mood and Anxiety Disorders |
WO2007049941A1 (en) * | 2005-10-27 | 2007-05-03 | Peptron Co., Ltd | Bioactive substance carrier for in vivo stable delivery tehreof, conjugate containing the same, and method of in vivo stable delivery of the bioactive substance |
EP1948676A1 (en) * | 2005-10-27 | 2008-07-30 | Peptron Co., Ltd. | Bioactive substance-blood protein conjugate and stabilization of a bioactive substance using the same |
EP1948676A4 (en) * | 2005-10-27 | 2011-05-25 | Peptron Co Ltd | Bioactive substance-blood protein conjugate and stabilization of a bioactive substance using the same |
KR101367867B1 (en) * | 2005-10-27 | 2014-05-07 | 주식회사 펩트론 | Bioactive substance carrier for in vivo stable delivery thereof conjugate containing the same and method of in vivo stable delivery of the bioactive substance |
US7557088B2 (en) | 2006-03-28 | 2009-07-07 | Neopro Labs, Llc | Methods and compositions for treating conditions |
US7982018B2 (en) | 2006-10-16 | 2011-07-19 | Conjuchem, Llc | Modified corticotropin releasing factor peptides and uses thereof |
WO2008052043A2 (en) * | 2006-10-24 | 2008-05-02 | Cogenesys, Inc. | Opioid receptor agonist fusion proteins |
WO2008052043A3 (en) * | 2006-10-24 | 2009-01-08 | Cogenesys Inc | Opioid receptor agonist fusion proteins |
US7820623B2 (en) | 2006-10-25 | 2010-10-26 | Amgen Inc. | Conjugated toxin peptide therapeutic agents |
US7803769B2 (en) | 2006-10-25 | 2010-09-28 | Amgen Inc. | OSK1 peptide analogs and pharmaceutical compositions |
US7910102B2 (en) | 2006-10-25 | 2011-03-22 | Amgen Inc. | Methods of using conjugated toxin peptide therapeutic agents |
US7834164B2 (en) | 2006-10-25 | 2010-11-16 | Amgen Inc. | DNA encoding OSK1 toxin peptide analogs and vectors and cells for combinant expression |
WO2008088422A2 (en) * | 2006-10-25 | 2008-07-24 | Amgen Inc. | Toxin peptide therapeutic agents |
WO2008088422A3 (en) * | 2006-10-25 | 2009-02-19 | Amgen Inc | Toxin peptide therapeutic agents |
US7825093B2 (en) | 2006-10-25 | 2010-11-02 | Amgen Inc. | Methods of using OSK1 peptide analogs |
US8043829B2 (en) | 2006-10-25 | 2011-10-25 | Amgen Inc. | DNA encoding chimeric toxin peptide fusion proteins and vectors and mammalian cells for recombinant expression |
US8217141B2 (en) | 2007-05-17 | 2012-07-10 | Neopro Labs, Llc | Crystalline and amorphous forms of peptide |
US8420779B2 (en) | 2007-05-22 | 2013-04-16 | Amgen Inc. | Compositions and methods for producing bioactive fusion proteins |
WO2009023125A1 (en) * | 2007-08-14 | 2009-02-19 | The Board Of Trustees Of The Leland Stanford Junior University | Neuronostatin and its uses |
WO2009043527A2 (en) * | 2007-09-11 | 2009-04-09 | Mondobiotech Laboratories Ag | Therapeutic use of human growth hormone 1-43 |
WO2009043455A3 (en) * | 2007-09-11 | 2009-09-03 | Mondobiotech Laboratories Ag | Therapeutic uses of angiogenin 108-122 and gluten exorphin a5 |
WO2009043527A3 (en) * | 2007-09-11 | 2009-05-28 | Mondobiotech Lab Ag | Therapeutic use of human growth hormone 1-43 |
WO2009033807A3 (en) * | 2007-09-11 | 2009-05-14 | Mondobiotech Lab Ag | Therapeutic uses of b-type natriuretic peptide and human growth hormone 1-43 |
WO2009043455A2 (en) * | 2007-09-11 | 2009-04-09 | Mondobiotech Laboratories Ag | Therapeutic uses of angiogenin 108-122 and gluten exorphin a5 |
US8906847B2 (en) | 2008-02-01 | 2014-12-09 | Ascendis Pharma A/S | Prodrug comprising a drug linker conjugate |
US9242011B2 (en) | 2008-04-01 | 2016-01-26 | Novo Nordisk A/S | Insulin albumin conjugates |
WO2009121884A1 (en) | 2008-04-01 | 2009-10-08 | Novo Nordisk A/S | Insulin albumin conjugates |
WO2009142727A3 (en) * | 2008-05-19 | 2010-03-11 | Vasogenix Pharmaceuticals, Inc. | Sequence modified calcitonin gene related peptides (cgrp) |
US9138462B2 (en) | 2009-07-31 | 2015-09-22 | Sanofi-Aventis Deutschland Gmbh | Prodrugs comprising an insulin linker conjugate |
US9265723B2 (en) | 2009-07-31 | 2016-02-23 | Sanofi-Aventis Deutschland Gmbh | Long acting insulin composition |
US9457066B2 (en) | 2009-07-31 | 2016-10-04 | Sanofi-Aventis Deutschland Gmbh | Prodrugs comprising an insulin linker conjugate |
CN102918056B (en) * | 2010-03-26 | 2016-08-10 | 诺沃—诺迪斯克有限公司 | Novel glucagon analogues |
CN102918056A (en) * | 2010-03-26 | 2013-02-06 | 诺沃—诺迪斯克有限公司 | Novel glucagon analogues |
US9133276B2 (en) | 2010-09-17 | 2015-09-15 | Sanofi-Aventis Deutschland Gmbh | Prodrugs comprising an exendin linker conjugate |
US9266939B2 (en) | 2010-12-27 | 2016-02-23 | Alexion Pharmaceuticals, Inc. | Compositions comprising natriuretic peptides and methods of use thereof |
US9486505B2 (en) | 2011-09-23 | 2016-11-08 | Novo Nordisk A/S | Glucagon analogues |
US9884124B2 (en) | 2012-05-17 | 2018-02-06 | Extend Biosciences, Inc. | Carriers for improved drug delivery |
US10052366B2 (en) | 2012-05-21 | 2018-08-21 | Alexion Pharmaceuticsl, Inc. | Compositions comprising alkaline phosphatase and/or natriuretic peptide and methods of use thereof |
US9751927B2 (en) | 2013-04-18 | 2017-09-05 | Novo Nordisk A/S | Stable, protracted GLP-1/glucagon receptor co-agonists for medical use |
US9474790B2 (en) | 2013-04-18 | 2016-10-25 | Novo Nordisk A/S | Stable, protracted GLP-1/glucagon receptor co-agonists for medical use |
WO2015001015A1 (en) * | 2013-07-04 | 2015-01-08 | Universitat De Barcelona | Actively transported and protease-resistant peptides as bbb shuttles and shuttle-cargo constructs |
US10570184B2 (en) | 2014-06-04 | 2020-02-25 | Novo Nordisk A/S | GLP-1/glucagon receptor co-agonists for medical use |
US10822596B2 (en) | 2014-07-11 | 2020-11-03 | Alexion Pharmaceuticals, Inc. | Compositions and methods for treating craniosynostosis |
US11116816B2 (en) | 2014-10-22 | 2021-09-14 | Extend Biosciences, Inc. | Therapeutic vitamin d conjugates |
US9616109B2 (en) | 2014-10-22 | 2017-04-11 | Extend Biosciences, Inc. | Insulin vitamin D conjugates |
US12076366B2 (en) | 2014-10-22 | 2024-09-03 | Extend Biosciences, Inc. | Therapeutic vitamin D conjugates |
US9789197B2 (en) | 2014-10-22 | 2017-10-17 | Extend Biosciences, Inc. | RNAi vitamin D conjugates |
US10702574B2 (en) | 2014-10-22 | 2020-07-07 | Extend Biosciences, Inc. | Therapeutic vitamin D conjugates |
US10420819B2 (en) | 2014-10-22 | 2019-09-24 | Extend Biosciences, Inc. | Insulin vitamin D conjugates |
US10406202B2 (en) | 2014-10-22 | 2019-09-10 | Extend Biosciences, Inc. | Therapeutic vitamin D conjugates |
US10449236B2 (en) | 2014-12-05 | 2019-10-22 | Alexion Pharmaceuticals, Inc. | Treating seizure with recombinant alkaline phosphatase |
US11224638B2 (en) | 2014-12-05 | 2022-01-18 | Alexion Pharmaceuticals, Inc. | Treating seizure with recombinant alkaline phosphatase |
US11564978B2 (en) | 2015-01-28 | 2023-01-31 | Alexion Pharmaceuticals, Inc. | Methods of treating a subject with an alkaline phosphatase deficiency |
US10603361B2 (en) | 2015-01-28 | 2020-03-31 | Alexion Pharmaceuticals, Inc. | Methods of treating a subject with an alkaline phosphatase deficiency |
AU2016221298B2 (en) * | 2015-02-22 | 2021-05-13 | Omnix Medical Ltd. | Antimicrobial peptides |
US11352612B2 (en) | 2015-08-17 | 2022-06-07 | Alexion Pharmaceuticals, Inc. | Manufacturing of alkaline phosphatases |
US11229686B2 (en) | 2015-09-28 | 2022-01-25 | Alexion Pharmaceuticals, Inc. | Reduced frequency dosage regimens for tissue non-specific alkaline phosphatase (TNSALP)-enzyme replacement therapy of hypophosphatasia |
US11400140B2 (en) | 2015-10-30 | 2022-08-02 | Alexion Pharmaceuticals, Inc. | Methods for treating craniosynostosis in a patient |
US11065306B2 (en) | 2016-03-08 | 2021-07-20 | Alexion Pharmaceuticals, Inc. | Methods for treating hypophosphatasia in children |
US10898549B2 (en) | 2016-04-01 | 2021-01-26 | Alexion Pharmaceuticals, Inc. | Methods for treating hypophosphatasia in adolescents and adults |
US11186832B2 (en) | 2016-04-01 | 2021-11-30 | Alexion Pharmaceuticals, Inc. | Treating muscle weakness with alkaline phosphatases |
US10988744B2 (en) | 2016-06-06 | 2021-04-27 | Alexion Pharmaceuticals, Inc. | Method of producing alkaline phosphatase |
US11116821B2 (en) | 2016-08-18 | 2021-09-14 | Alexion Pharmaceuticals, Inc. | Methods for treating tracheobronchomalacia |
US11224637B2 (en) | 2017-03-31 | 2022-01-18 | Alexion Pharmaceuticals, Inc. | Methods for treating hypophosphatasia (HPP) in adults and adolescents |
US11913039B2 (en) | 2018-03-30 | 2024-02-27 | Alexion Pharmaceuticals, Inc. | Method for producing recombinant alkaline phosphatase |
WO2021205001A1 (en) * | 2020-04-10 | 2021-10-14 | Alessandra Marconi | Peptides and uses thereof |
IT202000007720A1 (en) * | 2020-04-10 | 2021-10-10 | Alessandra Marconi | PEPTIDES AND THEIR USES |
WO2022115563A1 (en) * | 2020-11-25 | 2022-06-02 | Prolynx Llc | Extended release hydrogel conjugates of c-natriuretic peptides |
US12083169B2 (en) | 2021-02-12 | 2024-09-10 | Alexion Pharmaceuticals, Inc. | Alkaline phosphatase polypeptides and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
CA2505617A1 (en) | 2000-11-23 |
EP1105409A2 (en) | 2001-06-13 |
SI1105409T1 (en) | 2006-06-30 |
CA2373680C (en) | 2008-07-29 |
ES2257298T3 (en) | 2006-08-01 |
JP4221392B2 (en) | 2009-02-12 |
CA2499211A1 (en) | 2000-11-23 |
JP4219339B2 (en) | 2009-02-04 |
ATE318835T1 (en) | 2006-03-15 |
DE60026300T2 (en) | 2006-11-16 |
CA2623458A1 (en) | 2000-11-23 |
DK1105409T3 (en) | 2006-07-03 |
JP2005239736A (en) | 2005-09-08 |
JP4217004B2 (en) | 2009-01-28 |
EP1105409B1 (en) | 2006-03-01 |
EP1598365A1 (en) | 2005-11-23 |
EP1623994A2 (en) | 2006-02-08 |
EP2100901A1 (en) | 2009-09-16 |
AU5139300A (en) | 2000-12-05 |
JP2008150384A (en) | 2008-07-03 |
AU765753B2 (en) | 2003-09-25 |
JP2005263807A (en) | 2005-09-29 |
JP2009079048A (en) | 2009-04-16 |
JP2003508350A (en) | 2003-03-04 |
WO2000069900A9 (en) | 2002-07-04 |
CA2373680A1 (en) | 2000-11-23 |
EP1591453A1 (en) | 2005-11-02 |
DE60026300D1 (en) | 2006-04-27 |
PT1105409E (en) | 2006-07-31 |
JP2010168384A (en) | 2010-08-05 |
WO2000069900A3 (en) | 2001-02-15 |
EP1623994A3 (en) | 2008-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6849714B1 (en) | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components | |
US6887470B1 (en) | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components | |
CA2373680C (en) | Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components | |
US20090093408A1 (en) | Protection of exendin-4 peptides through conjugation | |
JP4116016B2 (en) | Exendin-4 which lasts for a long time | |
US8080516B2 (en) | Long lasting synthetic exendin-4 peptide conjugates | |
TWI300414B (en) | Modified peptide yy and conjugates thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2000936023 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09623548 Country of ref document: US |
|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWP | Wipo information: published in national office |
Ref document number: 2000936023 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2373680 Country of ref document: CA Ref country code: CA Ref document number: 2373680 Kind code of ref document: A Format of ref document f/p: F |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 618316 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 51393/00 Country of ref document: AU |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
AK | Designated states |
Kind code of ref document: C2 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: C2 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
COP | Corrected version of pamphlet |
Free format text: PAGES 184-186, CLAIMS, REPLACED BY NEW PAGES 184-186; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE |
|
WWG | Wipo information: grant in national office |
Ref document number: 51393/00 Country of ref document: AU |
|
WWG | Wipo information: grant in national office |
Ref document number: 2000936023 Country of ref document: EP |